ReplayMPC: A Fast Failure Recovery Protocol for
Secure Multiparty Computation Applications using
Blockchain

Oscar G. Bautista*, Kemal Akkaya*, and Soamar Homsi'
*Department of Electrical and Computer Engineering, Florida International University, Miami, USA
t Air Force Research Laboratory, Information Warfare Division, Rome, NY, USA
Emails: {obaut004, kakkaya} @fiu.edu, soamar.homsi@us.af.mil

Abstract—Although recent performance improvements to Se-
cure Multiparty Computation (SMPC) made it a practical solution
for complex applications such as privacy-preserving machine
learning (ML), other characteristics such as robustness are also
critical for its practical viability. For instance, since ML training
under SMPC may take longer times (e.g., hours or days in many
cases), any interruption of the computation will require restarting
the process, which results in more delays and waste of computing
resources. While one can maintain exchanged SMPC messages in a
separate database, their integrity and authenticity should be guar-
anteed to be able to re-use them later. Therefore, in this paper, we
propose ReplayMPC, an efficient failure recovery mechanism for
SMPC based on blockchain technology that enables resuming and
re-synchronizing SMPC parties after any type of communication
or system failures. Qur approach allows SMPC parties to save
computation state snapshots they use as restoration points during
the recovery and then reproduce the last computation rounds
by retrieving information from immutable messages stored on a
blockchain. Our experiment results on Algorand blockchain show
that recovery is much faster than starting the whole process from
scratch, saving time, computation, and networking resources.

Index Terms—secure multiparty computation, failure recovery,
resilient MPC, blockchain broadcast channel, privacy-preserving
machine learning

I. INTRODUCTION

Secure Multiparty Computation (SMPC) has been gaining
attention as a viable solution for performing computation on
sensitive data (e.g., medical records [1]), or data that may
provide related entities with a competitive advantage if dis-
closed (e.g., financial organizations having financial scores and
customer information [2], [3]). In SMPC, two or more parties
jointly evaluate a function without knowing other parties’
private inputs. Specifically, every SMPC party gets a share of
each party’s input and executes an SMPC protocol in rounds.
Each SMPC round consists of a local computation performed
by each party, followed by a message exchange through the
network interconnecting all parties.

Although SMPC efficiency has improved during the last few
years, it is still considerably slower than computing in the
clear. For instance, performing Machine Learning (ML) training
in SMPC can take hours or even days [4], [5], depending
on the complexity and the size of the data. The increased
execution time is due to the additional computation steps
required to compute on secret shares and, more importantly,

network communication overhead. However, this increased
computation time also increases the risk of SMPC halting
due to various reasons, including spontaneous node, OS, and
communications failures. This poses challenges that may affect
the robustness [6], which is the ability of the SMPC system to
successfully compute an output in the presence of failures.

While there are already some existing SMPC approaches
that can offer robustness by tolerating a certain number of
node failures, this comes at the expense of increased execution
time and reduced privacy. For instance, Shamir Secret-Sharing
(SSS) [7] can be set up to tolerate the failure of less than 2/3 of
the total number of SMPC parties in the joint computation, but
this reduces privacy because, with the corruption of more than
1/3 of the SMPC parties, the attacker can reveal the secret
inputs. In contrast, there are secret-sharing schemes where
privacy of the output is guaranteed with a very high probability
in the presence of up to n—1 malicious parties (e.g., SPDZ [8]).
Nonetheless, such systems cannot inherently tolerate a single
party failure. Therefore, there is a need to offer robustness
without sacrificing privacy and performance degradation in all
SMPC protocols.

In this work, we propose ReplayMPC, an efficient failure
recovery protocol which allows parties to rejoin a halted
computation execution, achieving re-synchronization with the
current SMPC round. This prevents parties from discarding
the computation progress made before identifying a failure;
saving time and computation resources. We propose to leverage
blockchain technology as an efficient communication network.
Specifically, our recovery protocol leverages previous SMPC
message exchanges from the ledger and previously saved
internal computation states to reproduce the lost computation
without interacting with the rest of their peers. We model
different states of the SMPC parties using a finite state machine
to keep track of the events and synchronize with other parties.
This brings a self-recovery capability without relying on any
other external entities.

We implemented and tested our proposed recovery protocol
using a cloud-hosted privacy-preserving ML training use case
and the SPDZ protocol. While the main goal is to confirm
the correct re-synchronization of a disconnected party, we also
asses the time it takes for such a party to reproduce a portion
of the training computation during the recovery phase. The

Approved for Public Release on 15 Nov 2022; Distribution Unlimited; Case Number: AFRL-2022-5506.

results of our experiments show that our approach enhances the
robustness of an SMPC system by reducing the recovery time
more than 87% compared to the case when the computation
executes normally from scratch.

This paper is organized as follows: Section II summarizes
previous works. Section III overviews key aspects of SMPC and
ML and describes our system model and general architecture
components. Section IV describes our recovery algorithm.
Section V presents security considerations for our proposed
approach. We discuss our experimental evaluation and results in
Section VI. Finally, we present our conclusions in Section VIIL.

II. RELATED WORK

Recent research on Robust SMPC systems mainly leverages
the inherent characteristic of threshold secret-sharing (i.e.,
secret-sharing schemes used by n parties, where ¢ shares are
needed to reconstruct the secret, and 1 < ¢ < n) such as
SSS [7]. For instance, HoneyBadgerMPC (HBMPC) [9] and
BFR-MPC [10] guarantee an output delivery within a certain
limit determined by the secret-sharing threshold. Similarly,
PARMPC [11] addresses robustness by extending SPDZ-like
protocols to support threshold secret-sharing. The above ap-
proaches have no specific requirement for bounding ¢. Nonethe-
less, the smaller the ¢ is, the more robust the approach is
because the scheme would allow more parties to stop col-
laborating before causing a computation halt. Additionally,
since PARMPC’s primary goal is public accountability, the
general approach is (reasonably) slower than the traditional
SPDZ protocol they extended. Different from these works, our
approach fits SMPC systems irrespective of the number of
corrupted parties. It focuses on enabling a node to recover from
a failure using any broadcast-based SMPC protocol (especially,
those with a fixed number of parties). Additionally, while
the threshold secret-sharing approaches reduce the security
(privacy) of the data (i.e., the more parties allowed to drop out
of the computation, the fewer parties are required to reconstruct
the secret.), our approach maintains the same level of security
of the implemented SMPC protocol. Finally, BFR-MPC uses
blockchain contracts to guarantee fairness and integrity in every
round, which increases the total execution time. In contrast,
ReplayMPC relies on blockchain and its efficient and secure
broadcast communication channel [6]. To the best of our
knowledge, we are the first to utilize blockchain for SMPC
Iecovery purposes.

A. Choudhuri et al. [12] proposes fluid MPC protocols in
the honest majority setting where the set of parties does not
need to be constant for the whole MPC computation. Instead,
some or all parties may leave the current computation round,
and new players would replace them without interrupting the
computation flow. This might increase the robustness of a
system against network failures or DoS attacks, provided that
the party leaving the computation can send their computation
state to the replacement party (i.e., coordinated replacement).
In contrast, our proposed approach leverages an immutable
history of message exchanges that allows the parties to recover
from unexpected failures, such as network-based issues, and

enables a replacement of a permanently failed party to replay
the previous rounds in much less time compared to having all
parties restart the computation.

III. PRELIMINARIES AND SYSTEM MODEL
A. Preliminaries

1) SMPC Overview: An SMPC system consists of two or
more parties that perform the secure computation, a network
over which the parties share messages, and a protocol that par-
ties follow to evaluate a function interactively. SMPC achieves
secrecy by implementing a secret-sharing protocol. Essentially,
each party holds a piece (a secret share) of private variables
and does not leak any information to other parties.

The main properties of SMPC are privacy and correctness.
Privacy is the guarantee that the secret share does not leak
information about the data. Correctness indicates whether the
result is correct or covertly manipulated. These properties
depend heavily on the behavior of the parties. For instance,
semi-honest parties follow the rules but try to infer more
information than intended (some literature also refers to them as
honest-but-curious parties). In contrast, malicious parties may
deviate from the protocol to cause harm (e.g., colluding with
other parties to undermine privacy or introduce errors to change
the results). For instance, SSS [7] protocols are secure against
semi-honest adversaries. The number of such adversarial parties
is a threshold ¢ of the total number of parties n, where typically
t < n/2 ort < n/3. Another example of SMPC protocol
is SPDZ by Damgérd et al. [8], which is maliciously secure
with a dishonest majority (i.e., up to n — 1). This protocol
uses additive secret sharing, in which parties get shares of the
private values and authentication tags, which are used at the
end to verify the correctness of the computation. Furthermore,
this protocol follows the offline/online phase paradigm. First, it
computes some correlated random materials, also known as raw
materials, in a computationally-heavy and input-independent
offline phase. This phase is followed by a much more efficient
online phase, where the parties jointly evaluate a function with
the (private) input data. The offline phase is also referred to as
pre-processing phase since it is independent of the private data.

2) Privacy-Preserving Machine Learning: Machine Learn-
ing (ML) training, in general, is an iterative process where
a mathematical model is initialized with random parameters
and evaluated on the training set of inputs to produce an
output. An optimization algorithm uses the average error of
the model outputs with respect to the known (i.e., real) outputs
to update the model parameters. This process is repeated
across several iterations over the training dataset until the
model’s accuracy exceeds an established threshold. Once the
training algorithm consumes the training dataset completely,
it completes one epoch. Generally, an ML training algorithm
takes several epochs to reach the accuracy threshold.

Several ML applications are now relying on SMPC as a
suitable solution for their privacy requirements [13]. However,
training an ML model in SMPC may take a lot of time and
consequently increase the risk of failure at the node or commu-
nication network levels. Therefore, long SMPC computations

such as ML training are ideal use cases to employ our proposed
failure recovery mechanism.

B. System Model

We assume the availability of an SMPC setup consisting
of a set P = {Py, Ps,...P,} of nodes, also referred to as
parties. These parties may be hosted in separate cloud locations.
We also assume the existence of a broadcast channel among
SMPC nodes based on a blockchain network (i.e., parties can
access the same blockchain to receive messages in the form of
transactions from the other parties).

In our case, we use a private Algorand blockchain-based
SMPC system [6] that enables access to fast-propagated trans-
actions. Such an approach outperforms general SMPC in
geographically distributed deployments. The Algorand-based
system consists of the following components.

a) SMPC Node: This node is capable of communicating
with the blockchain to submit and receive transactions. An
SMPC node runs two processes as depicted in Fig. 1. The
first one is an Algorand process responsible for the blockchain-
related tasks (i.e., submitting and receiving transactions). The
second one is an SMPC process that executes the specific
SMPC protocol, and communiates with the first one through
an APIL The security stance of an SMPC node depends on the
instantiated SMPC protocol’s threat model. As such, a node
behaving semi-honestly may try to learn other parties’ inputs,
and a node controlled by a malicious adversary may also try to
change the results. Note that an SMPC node connects to other
SMPC nodes through relay nodes, which are explained next.

b) Relay Node: These nodes are the backbone of the
Algorand network. The Algorand blockchain uses relay nodes
for fast propagation of transactions and other messages over
the network. The relay nodes run a gossip protocol [14] which
de-duplicate and groups the messages to improve the efficiency
of the transaction propagation. The Algorand relay nodes also
store the whole ledger and can respond to requests to retrieve
any block since the initial creation of the blockchain. The
SMPC system setup (e.g., number of SMPC parties, size of
the secret shares and the function to evaluate, etc.) defines the
storage requirements of a relay/archival node. For reference,

— Relay/Archival
Node

SMPC
processes

Algorand

processes Algorand AP

Fig. 1. MPC-ABC System Architecture

evaluating the ResNet-50 neural network requires over 41 GB
of storage [15].

c) Participation Node: These nodes run the blockchain’s
consensus protocol, adding new blocks to the ledger. While at
least two participation nodes can run the consensus protocol,
Algorand requires that honest participants hold at least 2/3
of the voting stake. Therefore, a minimum of three nodes is
recommended to add a margin that covers an eventual failure.
Furthermore, unlike an SMPC node, a dishonest participation
node may try to prevent transaction confirmation but cannot
modify authentic transactions as their sender signed them. Like
any other node in the Algorand network, the participation nodes
connect to relay nodes.

IV. BLOCKCHAIN-BASED SMPC RECOVERY
A. Motivation and Overview

While some SMPC protocols can tolerate a certain number of
parties leaving the computation without impeding the remaining
parties from computing the intended result [16], [17] (e.g.,
protocols based on threshold secret-sharing), other protocols
based on additive secret-sharing strictly require the interaction
of all parties to continue with the execution [8]. Nonetheless,
even when the SMPC parties use threshold secret-sharing,
there is a limit to the number of parties that the system
tolerates becoming unresponsive, beyond which the execution
halts. For instance, let us consider the case of a group of
SMPC parties performing an ML training task using a protocol
based on additive secret-sharing. In this scenario, a party
may stop responding because of external or internal causes
(e.g., a communication or OS related issue that temporarily
disconnects the party from the network). Consequently, the
SMPC execution halts since the remaining parties await the
messages from the failed party. Eventually, the parties abort
after a certain timeout period without returning any result. This
may affect applications such as privacy-preserving ML training,
which can typically take a long time, and waste much resources
if halted and restarted.

To tackle this issue, we need a mechanism that allows
restoring the SMPC execution as soon as the minimum number
of required parties are online and interacting with each other.
Our proposed protocol aims to enable the SMPC parties to
recover from a halt state, thus offering (improved) robustness
for SMPC. The main idea behind our approach is to leverage
saved states during the computation that the parties can load
later for resuming the computation and providing access to an
immutable history of communications to recompute the last
portion of the SMPC quickly. While state saving can be less
challenging to do for local computations within each SMPC
node, reaching a state that depends on other parties is a major
challenge. Moreover, although each node can have its state
replicated to a backup node (potentially increasing the attack
surface), a recovery protocol in such a scenario would require
all parties to coordinate to return to the last common state,
discarding a portion of the computation. Therefore, ReplayMPC
consists of two stages. First, we introduce a computation state,
essentially a snapshot of the SMPC variables stored by a

specific party at determined progress marks. Second, we present
a novel re-computation mechanism for the recovering parties
to make up the lost portion of the computation based on the
data provided from the first stage. Once the computation state
synchronizes with the other SMPC parties, they can resume the
SMPC execution. This mechanism utilizes a blockchain with
an efficient propagation network, which is the key element to
(i) guarantee the integrity and authenticity of previously shared
information among SMPC parties and (ii) not negatively impact
the execution compared to SMPC without recovery features.

In the next subsections, we describe the details of the two
stages of our protocol. The second stage has two cases which
will be discussed separately.

B. Saving the Computation State

During an SMPC computation, at the end of any given
iteration, each SMPC party has a set of variables, including
secret shares, that are unique for that specific party and itera-
tion number. Additionally, depending on the specific SMPC
protocol, the computation may consume raw materials (i.e.,
seemingly random but correlated data computed in advance)
in a synchronized fashion with all the other parties. These raw
materials may include different types of values (e.g., Beaver
triples, matrix triples, secure random bits, and others).

Therefore, we define the computation state to include all
the variables, counters, and indices that enables a party to
resume a computation from a specific progress mark. This data
needs to be saved locally and periodically. As such, when a
recovering party restores this state in the first stage, it can
identically reproduce, in the second stage, the next portion of
the computation which was halted.

As an example, let us consider the case of ML training,
where the SMPC parties go over the training dataset in a
synchronized manner over several iterations. At each iteration
the weights of the ML model are updated. Therefore, for
this ML use case, the computation state includes, the current
iteration number, the index of the data samples to process next,
the indices of each raw material type, and the current value
share of the ML model weights, as shown in Table 1. Note that
this data can be stored on a local database. The frequency of
storing this data can be tuned based on how much delay the
application can tolerate during a failure recovery. The impact
of the integrity of this data will be discussed in the Security
Analysis section.

TABLE 1
COMPUTATION STATE CONTENT EXAMPLE FOR AN ML USE
CASE

Value Type Quantity
Model weight value-shares BLOB model-specific
Raw material indices per type Integer one per type
Dataset mini-batch index Integer 1
Iteration number Integer 1

Txn sequence number Integer 1
Blockchain block number Integer 1
SMPC job ID String 1

Notes: BLOB stands for Binary Large Object. Txn is an
abbreviation for Transaction.

C. Modeling Recovery via a State Machine

SMPC protocols generally specify each party’s steps to eval-
uate a function. However, no specification generally indicates
how to proceed when failures occur. For instance, when a
message is not received, the parties would stay indefinitely
waiting for the messages to arrive until a receive timeout is
triggered, and the application will likely stop. Therefore, if
a failure recovery is to be initiated, one needs to first detect
the problem, understand its nature and then initiate a recovery
based on the specific situation. This suggests that we can model
the solution as a finite state machine to comprehensively cover
all the cases.

Let us start with the modeling of a normal SMPC execution.
A state machine would have two possible transitions in such
a case: complete successfully and move to the end state or
abort. However, a failure-aware SMPC system should define
additional machine states that allow the defection of an ab-
normal condition which would halt the SMPC execution and
initiates the recovery state in an attempt to resume the normal
execution.

Considering such states in mind, we propose the finite state
machine diagram for ReplayMPC shown in Fig. 2. We define
four states (Start, Normal, Halt and Recovery) and two terminal
states (Stop and End). Initially, a new SMPC job has no saved
state, and the parties transition directly to a normal execution
state after the Start state. During normal state any failure is
possible. This can either cause the application to abort (i.e.,
transition to Stop state) or delay the message reception from
other parties (i.e., transition to Halt state). These two states
cover the detection part of our proposed recovery protocol as
will be detailed below. In the case that the computation halts
for some time or the application stops completely, the parties
need to initiate the recovery task (i.e., transition to Recovery
which can be direct or indirect via Start state). The party moves
to End state if the computation is completed successfully.

Ongoing
computation

state Timeout

dx

Computation

Nothing
repla
to replay finiehed
Pending msg
No saved X received
computation
state Timeout 4
Timeout d
d3
Restart Computation
finished

Node-based
failure

Fig. 2. Failure-aware SMPC System’s Finite State Machine Diagram

Now let us focus on the detection mechanism to em-
ploy through an example. Let us assume that three parties
(Py, Py, Ps) perform an SMPC. The timeline for the events on
P, is shown in Fig. 3(a). Note that P; would save computation

states at times ¢, and t3. Now, let us assume that P, experiences
an issue that stops the SMPC execution at time t4. At that
point, P, and Ps keep waiting for messages from P; that will
not arrive. Thus, we propose utilizing a communication timeout
mechanism for the detection of an issue. The timeout denoted
as d; in Fig. 2 can be set to a short time. At this point, P, and
P transition to Halt state and wait for another fixed amount of
time (i.e., d2) before they initiate a recovery protocol instead
of aborting or keep waiting for messages indefinitely. Note that
since P;’s application stops (e.g., system-level failure, power
outage, etc.), then it transitions directly from Normal to Stop
state (i.e., in Halt state, the application is running and waiting
for messages while in Stop state the application is not running).

Last state saved
before the

Unavailability of at
least one party makes

Secure computation halted. the SMPC stop Total
computation secure
start \A@ é computation
[¢ @ @ t O O
@ @ 2000 4000
iterations iterations
@ State saved / O Next expected saved state
(a) Normal Progress of a Secure ML Training
Recovery mode: recompute
this section using data fetched
Application from the Blockchain SMPC
restart completes
u
Ottt @ - -+ Py Y
@ Recovering @

node(s) load last

Recover
saved state Y

mode finished
@ State saved / @ State loaded

(b) Recovery Timeline

Fig. 3. Example Timeline for party P; of the Proposed SMPC Recovery
Protocol

D. Recovery Mechanism for Node-based Failure

If there is a node failure, the assumption is that the SMPC
application will re-start from scratch on the failed node. Fol-
lowing our example in the previous subsection, this means that
at time t5, P; will verify whether it has a saved computation
state upon restart. In case there is a saved state, P; proceeds to
load it at time g, determines if it is an unfinished computation
and restores the shares of the ML model weights, and the
different indices from the database. P; also loads other stored
information, such as an identifier for the current SMPC job,
the iteration number, and the transaction sequence number.

After loading the last saved computation state, P, transitions
to Recovery state (Fig. 2) between tg and t; as shown in
Fig. 3(b). In this state, a recovering party reproduces a portion
of the computation starting from the last saved state, until it
progresses the computation to the last computed SMPC round,
at which all the other SMPC parties are waiting. P; reproduces
the computation by retrieving other parties’ previous messages
from the blockchain, which contains the history of all previous
communications, starting from the block pointed to by the last
saved state.

The reproduction of previous SMPC rounds is much faster in
recovery mode compared to the case when the parties originally

computed it. This is because the transactions are available from
the relay nodes, and a single block may contain information for
several SMPC rounds. Moreover, each SMPC node maintains
the last 1000 blocks in its local database, which makes the
retrieval process of the last rounds even faster since it is not
affected by the network delay.

Once the recovering party P has finished recomputing the
last SMPC rounds, it can transition from the Recovery state to
the Normal SMPC execution state at time t7 (Fig. 3(b)). This
transition typically occurs when P; sends the transaction(s)
corresponding to the current round that the other parties expect
to receive to resume the execution. P; can identify these
missing transactions because they are missing in the retrieved
blocks too. Finally, after P, submits the missing transactions,
all parties resume the SMPC execution.

Fig. 4 presents the pseudo-code for the procedure followed
by a crashed party to advance to the current computation state
and resume the SMPC execution.

Require: On-recovery party that successfully loaded the SMPC
application and reconnected to the rest of the nodes.

state < load_state()

start_block <+ state.block_number

stop_block < Current blockchain block

Party runs recovery_mode_mpc(start_block, stop_block)
Party sends the pending SMPC messages

Interactive SMPC execution resumes

SANSANP A

Fig. 4. Recovery Protocol for Restarting SMPC Node

Note that the above process is followed within the failing
party. We need to also manage the state transition on the healthy
parties. Initially, P, and Ps move from Halt state to Recovery
after a timeout dy as shown in Fig. 2. They do that to determine
whether they are at fault or just need to keep waiting for the
failed party to recover. In this case, P> and P; find out that they
have no SMPC rounds to replay (i.e., recompute) and return to
Halt state. When P, and P; are in the Halt state, they keep
waiting for messages from the unresponsive party. They do so
by making an API request to the local Blockchain process,
but no new transactions are posted during this time. Therefore,
the request for transactions from the local temporary pool
returns nothing. Consequently, the SMPC process will make
a new request again and again. The continuous submission
of API requests increases the CPU usage of these hosts. We
propose delaying the time between requests when the response
is empty in this scenario. Additionally, we do not want to
delay the execution unnecessarily during normal execution.
Consequently, we propose an exponentially increasing timer
from a low starting value up to a conservative maximum, which
is similar to Ethernet’s exponential backoff mechanism. For
instance, we may want to approximate such maximum delay
to a value lower than the block time; this way, the request will
not miss transactions that were available from the local pool
before the blockchain’s consensus protocol packed them into
blocks.

The healthy parties could generally wait for the failed party

to resume the computation indefinitely until the computation re-
sumes. Alternatively, our protocol offers the option for healthy
parties to save the current computation state and exit after a
predefined maximum time ds has elapsed. This timeout can
be adjusted based on certain parameters that may include the
restart time of a machine. In such a case, the computation can
be restarted at a later time when the failed party (or a substitute)
is back online. Fig. 5 presents the pseudo-code for a general
protocol followed by a healthy SMPC party during recovery.

Require: Computation stopped for d; time, and the party is in Halt
state and not at fault.
resume < false
abort « false
abort_timer <— Timer(ds)
while not (resume or abort) do
abort < is_expired(abort_timer)
if abort then
save state & exit
end if
wait(exponential_backoff_timer)
resume <— received pending messages?
: end while
Party resumes interactive SMPC execution

AN

_—
[

Fig. 5. Recovery Protocol for the Healthy Parties

E. Recovery Mechanism for Network-based Failure

A problem that may occur more frequently on SMPC is the
loss of synchronization due to errors in the communication
channel (e.g., a message not received or a packet malformed).
Of course, the parties may not crash, but at the very least, they
keep waiting for those messages, and thus the computation will
abort eventually.

In this scenario, all parties first transition from the Normal
to the Halt state (refer to Fig. 2) after a timeout d; and record
the current blockchain block number. Next, the parties wait for
a time ds before attempting a Recovery state. This is because
the parties do not know which of them needs to take action
to resume the computation. Therefore, they look inside the
last few blocks in the blockchain ledger in order to find the
messages they did not receive and the last messages they sent.
The length of dy depends on how much time it takes new
transactions to appear in the blockchain. For instance, in the
case of Algorand, new transactions are typically confirmed after
two blocks, which is equivalent to approximately nine seconds.
In this Recovery state, the parties verify whether the problem is
related to them and requires their action. After examining the
last blockchain blocks, a party does not need to take additional
action if the following holds: (i) the party does not find any new
messages from the other parties, and (ii) the party finds all its
last round messages. The parties (e.g., P> and Ps) that confirm
themselves unrelated to the problem are the healthy parties and
thus return to the Halt state. The rest of the protocol is the same
as in the previous case.

On the other hand, the party (e.g., P;) which determines
that the problem is related to itself proceeds to repeat the
last SMPC round (using the info on blockchain). For P, this

happens at time tg in Fig. 3(b). Eventually P; transitions to
the Normal state at time ¢;7. From this point, it can resume the
normal SMPC execution with the other parties. Fig. 6 shows
the algorithm for the faulty party.

Require: The faulty party records the current blockchain block
number as fail_at_block.

start_block <+ fail_at_block

wait(ds)

stop_block < Current blockchain block

Party runs recovery_mode_mpc(start_block, stop_block)
Party sends the pending SMPC messages

Interactive SMPC execution resumes

BANSANP - >

Fig. 6. Recovery Protocol for Network-related Loss of Sync

V. SECURITY CONSIDERATIONS

ReplayMPC enhances the specific SMPC system that imple-
ments it. As such, its provisions and protocols enable a crashed
SMPC party to recover from a failure, either fortuitous or
deliberately launched by an external entity (e.g., non-persistent
DoS, attack on the infrastructure, or other attacks intended
to prevent the SMPC execution from successful completion).
Recall from Section III-B that the goal of dishonest behavior are
different for SMPC and participation nodes. Therefore, since
the specific SMPC protocol runs on top of this blockchain-
based broadcast network, the particular protocol characteristics,
threat model (e.g., malicious versus semi-honest adversary),
and vulnerabilities are not impacted by the proposed recovery
mechanism. For instance, a maliciously secure SMPC proto-
col with dishonest majority will still be secure (i.e., privacy
protected) against n — 1 corruptions, but the unavailability
of a single party would still prevent the computation from
completion. Nonetheless, we briefly discuss the implications
of relying on information fetched from the blockchain to
recompute a portion or all of an SMPC job.

During the regular SMPC execution, the blockchain stores
the SMPC message exchanges as the payload of blockchain
transactions. Therefore, the integrity of these records derives
from the blockchain security guarantees. In other words, what
the SMPC parties submit will be recorded in the blockchain.
For instance, in the case of Algorand, the blockchain Proof-of-
Stake (PoS) consensus algorithm guarantees the confirmation of
transactions when honest participants of the consensus protocol
hold two-thirds of the online stake [14]. As mentioned in
Section III-B, a corruption of a participation node does not
undermine privacy. The main effect of a possible corruption by
the adversary would be to refrain from confirming authentic
transactions, leaving them out of the blockchain. Therefore,
by having at least two-thirds of the voting stake under the
control of honest participation nodes, we can be assured that
all messages exchanged are added to the blockchain and not
modified.

However, an attacker may compromise the specific relay
node SMPC parties are connected to and can change the
response by something else so that the SMPC party performs
recomputation using altered data. Note that this can also happen

if the attacker can modify the reply from the relay node on the
communication channel during transmission. A countermeasure
for this attack is to request such SMPC messages from two or
more relay nodes and compare the responses.

Note that integrity attacks on the saved computation states
are also possible. This will result in supplying a modified input
to the SMPC computation, which is equivalent to having this
party controlled by the adversary. Maliciously-secure SMPC
protocols have mechanisms that verify the correctness of the
result and abort if final verification fails.

VI. EXPERIMENTAL EVALUATION
A. Experiment Setup

We set up a proof of concept SMPC system deploying four
SMPC parties in the following Google Cloud Platform (GCP)
locations: us-centrall, us-west3, us-east4, and us-eastl. We also
selected Algorand as the blockchain that supports communica-
tion among parties because it provides a fast broadcast channel
and block generation. Additionally, Algorand is open source,
allowing a private (i.e., permissioned) network deployment. We
deployed such a private Algorand blockchain network with
one relay node also hosted on the cloud, specifically in us-
centrall. Each SMPC node is configured with 4 vCPUs, 4 GB
of RAM and a 15 GB solid state drive (SSD). The relay node
is configured with 4 vCPUs, 4 GB of RAM and a 20 GB
SSD. Additionally, we assume a one-time availability of a
coordination server which requests SMPC jobs to the SMPC
nodes and receives the computation results at the end. This
coordination server does not need to be hosted on the cloud..
We implemented ReplayMPC on top of the SPDZ protocol in
Python, and conducted experiments with two to four SMPC
nodes.

B. Metrics and Benchmarks

We consider two metrics. First, we measure the computation
state saving overhead, which is defined as the total delay
added to the regular SMPC execution (i.e., without the recovery
feature) due to saving the computation state periodically during
the computation. Second, we assess the recovery time, which
is the time it takes for a recovering party to ‘catch up’ with the
current computation state of the rest of the parties. Specifically,
this includes the time to load the last saved computation state
and the re-computation time of the missing SMPC rounds. A
special case occurs when there are no saved computation states,
where the recovering party re-computes all the rounds from the
beginning.

To the best of our knowledge, this is the first work that
implements an SMPC recovery strategy. Therefore, we use the
regular (i.e., without recovery mechanism) SMPC execution
time as a benchmark. This way, we can measure the additional
time that comes with our recovery approach.

C. Machine Learning Use Case

We evaluated ReplayMPC when running a privacy-
preserving ML training using the Condition Based Maintenance
of Naval Propulsion Plants dataset [18] for Linear Regression.

This dataset contains 16 features and over 11,000 samples. The
size of this dataset requires an SMPC training time long enough
to measure the recovery time across experiments. After feature
selection and feature engineering, we reduced the dataset to ten
features and used 75% of samples (i.e., 8952 samples) for the
privacy-preserving ML training. Moreover, we used the mini-
batch stochastic gradient descent algorithm with a batch size
of 110 samples and 80 epochs.

D. Performance Evaluation

1) Overhead of Computation State Management on Regular
SMPC: Since any recovery requires accessing previously stored
information, in the first experiment, we assessed the overhead
of computation state savings when performing an ML training
using SMPC. For each experiment, the parties are configured
to perform 6560 iterations obtained by completing 80 training
epochs with 82 iterations each. We configured the SMPC nodes
to save the computation state every 410 iterations (or 5 epochs).
This means that the nodes saved their computation state 16
times during the whole execution. In general, the selection
of the period between saving of the states depends on how
much time the users would be willing to tolerate in case of a
failure. Recall that at each state, the nodes record the parameters
indicated in Table I.

We repeated this experiment with different number (2, 3
and 4) of SMPC parties and present the total training time
in Table II. Recall that the SMPC nodes are geographically
distributed and the total execution time is dependent on the
different delays between the SMPC parties and the Algorand
relay node. Therefore, we give the maximum and minimum
training times obtained for all combination of nodes in the
SMPC set.

TABLE II
TOTAL PRIVATE ML TRAINING TIME WITH COMPUTATION STATE SAVING

of SMPC Parties Training Time (min.)

2 73.38 to 81.99
3 95.12 to 105.32
4 114.75

We present these total training times to be able to understand
the weight of computation state overhead in the training time.
We found that in average the computation state overhead ranges
between 5.7 ms and 6.9 ms. Adding up the times for the 16
states, the total overhead of computation state saving takes a
little over 100 ms in total. As can be seen from Table II, the
total training time is over at least 73 minutes and thus the
overhead is negligible compared to the total SMPC execution
time.

We repeated this experiment by saving the computation state
more frequently as shown in Table III. The results indicate
that even frequent saving will not significantly impact the total
training time.

2) Experiments for Node-based Failure Recovery: In this
experiment, we simulated an SMPC execution which halts
due to a node failure (e.g., system level, loss of power, etc.)
that causes the SMPC application to abort and be temporarily

TABLE III
OVERHEAD OF COMPUTATION STATE SAVING

of Snapshots Saved Total Overhead

16 100.8 ms
40 252 ms
80 504 ms

disconnected. We measured the recovery time starting from the
moment the recovering party re-launched the SMPC application
until the parties resumed the interactive execution. To this end,
we stopped the participation of party #2 halfway through the
training, specifically, at the iteration number 3430. Recall that
the SMPC parties were configured to save their computation
state every 410 iterations in these experiments. This means,
party #2 saved its last computation state, before crashing, just
after the iteration number 3280 (i.e., 8 x 410).

Upon re-launching the SMPC application, party #2 loads
this computation state and replays the next 150 iterations to
advance to the iteration number 3430 in recovery-mode, where
it does not need to submit any transactions to the blockchain.
Instead, party #2 reproduces the last computation rounds by
fetching previous broadcast messages from the local copy of
the ledger. Since it re-initiated the recovery protocol right after
we stopped it, the history of the previous communications was
still available within the last 1000 blocks of the ledger stored
locally (in the same node) by default. Note that as an alternative
the recovering party can fetch any messages from the relay
node, even if they are not recent.

As shown in Table IV, this recovery took just a few seconds
mainly due to only recomputing the last SMPC rounds. Loading
the computation state is almost instantaneous. If there is no
recovery mechanism, then all the parties would need to restart
from scratch and run SMPC rounds until the iteration 3430.
The execution times for this are reported in the first column of
Table IV. As can be seen, ReplayMPC brings huge time savings
which increases with the number of SMPC parties involved.

TABLE IV
SMPC REGULAR AND RECOVERY TIME
FOLLOWING A TEMPORARY NODE OUTAGE

of SMPC SMPC w/o ReplayMPC
Parties Recovery (min.) (sec.)
2 38.37 9.3
3 49.73 10.9
4 60.4 12.4

Note: w/o is an abbreviation for ‘without’.

3) Experiments for Replacing the Failed Party: There are
cases when the failed party will not recover and a substitute
party needs to recompute all the SMPC rounds from the
beginning. This is because the new party does not have access
to the failed party’s saved computation state snapshots as well
as the local blocks of the ledger.

In this experiment, we measured the recovery time when a
new party fetches previously exchanged SMPC messages from
the relay node. Naturally, the link delay between the SMPC
party and the relay node will affect the performance of the

computation replay. However, it is still much faster than the
regular SMPC execution.

Table V compares the recovery time of the first 3430 itera-
tions with respect to the regular SMPC execution for varying
number of parties. Note that they are over 8 times as fast as
the regular SMPC execution.

TABLE V
SMPC REGULAR AND RECOVERY TIME AIDED BY THE RELAY NODE

of SMPC SMPC w/o ReplayMPC Recovery Time
Parties Recovery (min.) (min.) Reduction
2 38.37 498 87.0%
3 49.73 6.12 87.7%
4 60.4 7.15 88.2%

These results indicate that a new party, even without hav-
ing access to locally saved computation state, can use our
blockchain-based recovery approach to recompute the previous
SMPC rounds much faster and use fewer resources instead of
starting the same SMPC job from scratch.

4) Simultaneous Recovery of Several SMPC parties: In this
experiment we evaluated the performance impact of having
more than one SMPC party fetching previous SMPC messages
from the relay node during the recovery. We repeated the previ-
ous experiment using 4 parties and interrupted the computation
at the iteration number 3430 to compare the results with the
previous experiment. We aborted the participation of parties
number #2 and #3 (equivalent to half of the SMPC set) and
restarted the application simultaneously on both parties.

During the recovery, both parties fetch previous SMPC
messages from the relay node. Therefore, we would expect to
observe an increased delay due to having a single relay node
handling requests from two SMPC parties. However, the results
shown in Table VI indicate no variation in the recovery time of
two parties compared to having just one party reproducing the
last SMPC rounds. The recovery time reported by party #3 is
slightly higher because its communication delay with the relay
node is higher than the link delay from party #2. Nonetheless,
its recovery time is also unaffected when it is the only party
running the recovery protocol or simultaneously with another

party.

TABLE VI
RECOVERY TIME FOR TWO SIMULTANEOUSLY FAILED PARTIES

Recovery Time
for a single Party

Recovery Time for two
simultaneously failed parties

7.15 min.
7.6 min.

7.13 min.
7.62 min.

Party 2
Party 3

VII. CONCLUSION

We introduced ReplayMPC, a novel and efficient blockchain-
based failure recovery protocol that enhances the robustness of
any SMPC protocol, especially those based on full-threshold
secret-sharing techniques. The proposed mechanism allows
crashed or temporarily out-of-synch parties to rejoin the current
computation job, saving time and computation resources. We

implemented ReplayMPC in Python and tested it on an ML
training using the SPDZ protocol. Our experiment results show
a recovery time reduction of more than 87% compared to the
case when the computation has to start from scratch. This
is achieved without significantly increasing the delay of the
normal SMPC execution.

ACKNOWLEDGMENT

This research was partly supported by the U.S. National
Science Foundation, award number US-NSF-1663051, and
the Air Force Research Laboratory / Information Directorate
(AFRL/RI) Internship program for summer 2021, Rome, NY.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory or the U.S.
Government.

REFERENCES

[1] X. Dong, D. A. Randolph, C. Weng, A. N. Kho, J. M. Rogers, and
X. Wang, “Developing high performance secure multi-party computation
protocols in healthcare: A case study of patient risk stratification,” AMIA
Summits on Translational Science Proceedings, vol. 2021, pp. 200-209,
May 2021.

[2] P. Bogetoft, I. Damgard, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft,
“A practical implementation of secure auctions based on multiparty
integer computation,” in Financial Cryptography and Data Security,
G. Di Crescenzo and A. Rubin, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 142-147.

[3] C. S. Jutla, “Upending stock market structure using secure multi-
party computation,” Cryptology ePrint Archive, Paper 2015/550, 2015.
[Online]. Available: https://eprint.iacr.org/2015/550

[4] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-Party Secure
Computation for Neural Network Training,” Proceedings on Privacy
Enhancing Technologies, vol. 2019, no. 3, pp. 2649, Jun. 2019.

[5] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascon,
“QUOTIENT: Two-Party Secure Neural Network Training and Predic-
tion,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, Nov. 2019, pp. 1231-1247.

[6] O. G. Bautista, M. H. Manshaei, R. Hernandez, K. Akkaya, S. Homsi,
and S. Uluagac, “Mpc-abc: Blockchain-based network communication
for efficiently secure multiparty computation,” Journal of Network and
Systems Management, vol. 31, 2023.

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

ACM,
Available:

Commun.
[Online].

A. Shamir, “How to share a
vol. 22, no. 11, p. 612-613, nov
https://doi.org/10.1145/359168.359176

I. Damgérd, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical Covertly Secure MPC for Dishonest Majority — Or: Breaking
the SPDZ Limits,” in Computer Security — ESORICS 2013, J. Crampton,
S. Jajodia, and K. Mayes, Eds. Berlin, Heidelberg: Springer, 2013, pp.
1-18.

D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. Miller,
“Honeybadgermpc and asynchromix: Practical asynchronous mpc and its
application to anonymous communication,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 887-903.

H. Gao, Z. Ma, S. Luo, and Z. Wang, “Bfr-mpc: A blockchain-based fair
and robust multi-party computation scheme,” IEEE Access, vol. 7, pp.
110439-110450, 2019.

M. Rivinius, P. Reisert, D. Rausch, and R. Kiisters, “Publicly accountable
robust multi-party computation,” Cryptology ePrint Archive, Paper
2022/436, 2022. [Online]. Available: https://eprint.iacr.org/2022/436

A. R. Choudhuri, A. Goel, M. Green, A. Jain, and G. Kaptchuk,
“Fluid mpc: Secure multiparty computation with dynamic participants,”
in Advances in Cryptology — CRYPTO 2021. Springer International
Publishing, 2021, pp. 94-123.

R. Xu, N. Baracaldo, and J. Joshi, “Privacy-preserving machine learning:
Methods, challenges and directions,” Sep. 2021, arXiv:2108.04417 [cs].
[Online]. Available: http://arxiv.org/abs/2108.04417

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of the
26th Symposium on Operating Systems Principles, ser. SOSP *17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 51-68.
H. Chen, M. Kim, I. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh,
“Maliciously secure matrix multiplication with applications to private
deep learning,” in Advances in Cryptology — ASIACRYPT 2020. Cham:
Springer International Publishing, 2020, pp. 31-59.

I. Damgard, M. Geisler, M. Krgigaard, and J. B. Nielsen, “Asynchronous
multiparty computation: Theory and implementation,” in Public Key
Cryptography — PKC 2009, S. Jarecki and G. Tsudik, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 160-179.

M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “SEPIA:
Privacy-Preserving aggregation of Multi-Domain network events and
statistics,” in /9th USENIX Security Symposium (USENIX Security 10).
Washington, DC: USENIX Association, Aug. 2010.

A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, and M. Figari,
“Condition based maintenance of naval propulsion plants data
set,” UCI Machine Learning Repository, 2014. [Online]. Available:
http://archive.ics.uci.edu/ml/datasets/condition+based+maintenance+of+

naval+propulsion+plants

secret,”
1979.

