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Abstract

We present a formation-control algorithm for autonomous fixed-wing air vehicles. The desired inter-vehicle positions are
time-varying, and we assume that at least one vehicle has access to a measurement its position relative to the leader, which
can be a physical or virtual member of the formation. Each vehicle is modeled with extended unicycle dynamics that include
orientation kinematics on SO(3), speed dynamics, and strict constraints on speed (i.e., ground speed). The analytic result shows
that the vehicles converge exponentially to the desired relative positions with each other and the leader. We also show that
each vehicle’s speed satisfies the speed constraints. The formation algorithm is demonstrated in software-in-the-loop (SITL)
simulations and experiments with fixed-wing air vehicles. To implement the formation-control algorithm, each vehicle has
middle-loop controllers to determine roll, pitch, and throttle commands from the outer-loop formation control. We present
SITL simulations with 4 fixed-wing air vehicles that demonstrate formation control with different communication structures.

Finally, we present formation-control experiments with up to 3 fixed-wing air vehicles.

Keywords Formation - Fixed-wing - UAV - Cooperative

1 Introduction

The number of applications for small and relatively inexpen-
sive uncrewed air vehicles (UAVs) has increased dramatically
for a variety of reasons, including the miniaturization of
electronic components and motors; improvements in lithium
battery performance, safety, and cost; and the availability
of measurements from global navigation satellite systems
(GNSS). Autonomous multi-vehicle systems have the poten-
tial to complete objectives that would be impossible for a
single UAV and to do so with minimal human oversight.
Potential applications include distributed sensing, cooper-
ative surveillance, precision agriculture, and search and
rescue. As another example, coordinated UAVs could be
used in a forest-fire scenario to reduce the time required to
conduct large-area surveys for search and rescue. Multiple
vehicles can coordinate for tasks such as cooperative lifting,
rescue missions, and transportation (Ota, 2006). Coordinated
UAVs can also be used to take meteorological measurements
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(Mayer et al., 2012; Bonin et al., 2013; Wainwright et al.,
2015; Bonin et al., 2015; Bailey et al., 2020) that can be used
to identify the rotation in the wind field that occurs during
severe storm formation. These applications require decen-
tralized methods for coordinating and controlling groups of
autonomous UAVs.

Surveys of multi-agent formation-control methods are
presented in Ren etal. (2007), Olfati-Saber et al. (2007), Mur-
ray (2007), Cao et al. (2013), Oh et al. (2015). Many cooper-
ative and formation control approaches have been developed
for agents with double-integrator dynamics (Olfati-Saber,
2006; Ren, 2008; Cao & Ren, 2012; Lee & Singh, 2012;
Punzo et al., 2014; Guo et al., 2014; Wellman & Hoagg,
2017; Yang & Fan, 2019; Lippay & Hoagg, 2022). Although
double-integrator models can be a reasonable approximation
for multi-rotor UAVs, they are not suitable for fixed-wing
UAVs or wheeled robots, which are subject to nonholonomic
constraints (Panagou et al., 2016; Qu, 2009; Low, 2011).

Fixed-wing UAVs offer a variety of advantages over
rotary-wing (e.g., multi-rotor) designs. For example, multi-
rotor air vehicles use thrust to provide lift. In contrast,
fixed-wing aircraft use thrust to produce forward velocity,
which, in turn, produces lift by inducing airflow over the
wings. This typically reduces the power required for a UAV
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of a given mass to stay airborne, which increases flight time
and payload capacity. Lower power consumption combined
with the ability to glide without propulsive power for rela-
tively long distances and to travel efficiently at high speeds
are major contributing factors to the popularity of fixed-wing
aircraft in commercial aviation. The primary trade-off is that
a fixed-wing UAV must move through the air continuously
at some minimum airspeed—below which the UAV does not
produce enough lift to counteract gravity.

A variety of models have been used for controller design
of fixed-wing UAVs. For example, control design can be per-
formed using traditional aircraft dynamics models (Park et
al., 2015; Gu et al., 2006; Singh et al., 2003; Mullen et al.,
2016; Cordeiro et al., 2020). However, simplified models can
be useful for control system design—particularly formation
control design—because they involve fewer model parame-
ters than a standard aerodynamic aircraft model. This paper
presents a formation-control algorithm for fixed-wing UAVs
modeled with extended unicycle dynamics that include ori-
entation kinematics on SO(3), first-order speed dynamics,
and a strict constraint on speed. Similar models for fixed-
wing UAVs have been used in the literature (Stipanovic¢ et
al., 2004; Zhang & Liu, 2013; Darbari et al., 2017; Beard
et al., 2014; Panyakeow & Meshahi, 2014; de Marina et al.,
2017; Yan et al., 2022; Chen et al., 2021; Wang et al., 2019;
Cai et al., 2020; Hu et al., 2019; Chao et al., 2012; Ali et
al., 2021; Qiu & Duan, 2014; Wang & Xin, 2013; Zhao et
al., 2019; Liang et al., 2020; Yu & Liu, 2016). However,
these related models do not include orientation kinematics
on SO(3), and many do not consider constraints on speed.

Formation control algorithms for UAVs have been designed
using a variety of methods. For example, Cai et al. (2020),
Zhang et al. (2020), Chao et al. (2012), Qiu and Duan (2014)
use model-predictive control, which can accommodate input
and state constraints, but can be computationally expensive.
The algorithms in Kahagh et al. (2022); Liao et al. (2017)
use artificial potential fields to achieve formation control
and mission objectives, whereas Liang et al. (2020); Chen
etal. (2021); Yan et al. (2022); Wang and Xin (2013); Singh
et al. (2003); Cordeiro et al. (2020); Lee and Lee (2021)
use Lyapunov-based control design. Similarly, a variety of
interagent communication structures have been explored,
including leader-to-every-follower communication (Hu et
al., 2019; Wang et al., 2019; Liang et al., 2020); undirected
communication (Cordeiro et al., 2020; Cai et al., 2020; Ali
et al., 2021; Wang & Xin, 2013; Yan et al., 2022; Zhao et
al., 2019); and acyclic communication (Wang et al., 2021;
Singh et al., 2003). This paper allows for any communica-
tion structure that has a spanning tree with the leader as the
center vertex. Finally, we note that experimental demonstra-
tions of formation-control algorithms for fixed-wing UAVs
include Beard et al. (2006), Park et al. (2015), de Marina et
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al. (2017), Darbari et al. (2017), Wang et al. (2019), Liao et
al. (2017).

This paper presents several new contributions. First, we
present and analyze a new formation-control algorithm for
fixed-wing UAVs modeled with extended unicycle dynam-
ics. Although this new algorithm shares some features with
the algorithm in Heintz and Hoagg (2020a), the algorithm in
this paper has several significant improvements. Notably, the
algorithm in this paper allows for a broad class of nonlinear
control functions, whereas the previous work only allowed
for one specific control function. Similarly, this paper allows
for a broad class of barrier functions (used to enforce the
speed constraints), whereas the previous work only allowed
for one specific barrier function. These generalization can
be useful because the control and barrier functions can be
selected (i.e., tuned) for the capabilities of a specific UAV. We
also note that the present paper allows for each agent to have
different control and barrier functions. This generality can be
useful for control of heterogeneous formations. In addition,
the class of barrier functions used in this paper yield improved
performance. For example, if exogenous forces (e.g., wind
shear and turbulence) drive a UAV’s speed outside its allow-
able range, then the barrier function in this paper drives the
speed back to the allowable range; the barrier function in the
earlier work does not have this property. Another important
advantage is that the angular velocity control in this paper can
be implemented with only 2 actuators, whereas the control
in the previous work generally requires 3 actuators.

A second new contribution of this paper is a systematic
method for implementing the formation-control algorithm
on fixed-wing UAVs. To implement the algorithm, we use
middle-loop roll, pitch, and throttle controllers that are com-
manded by the output of the outer-loop formation control.
This paper presents software-in-the-loop (SITL) simulations
that demonstrate the implementation with a formation of 4
UAVs. Finally, this paper includes flight experiments with
up to 3 UAVs. In these experiments, each UAV obtains feed-
back of its position and velocity from its onboard sensors
and transmits this feedback to other UAVs over a secure ad-
hoc wireless network. Some preliminary flight experiments
appeared in Heintz and Hoagg (2020b), but this paper goes
significantly beyond that preliminary conference publication
by presenting complete stability and performance analyses
as well as SITL results. In addition, the formation algorithm
in this paper is substantially improved relative to the prelim-
inary conference publication, and the experimental results in
this paper are more comprehensive.

2 Notation

Let I3 be the 3 x 3 identity matrix, and for j € {1, 2, 3}, let
ej € R3 be the jth column of /3. Let || - || be the 2-norm.
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The special orthogonal group SO(3) is the set of orthogo-
nal matrices in R3>*3 with determinant one. The set of skew
symmetric matrices in R3*3 is denoted so(3). If x € R, then
define

T T
—e3xX e X

0
[)C]X £ |: egx 0 —e}-xi| € 80(3).

T T
—e X ex 0

The number of agents (i.e., UAVs) is denoted by the pos-
itive integer n. Define the agent index set 7 £ {1,2,...,n}.
Unless otherwise stated, all statements in this paper that
involve the subscript i are for all i € 7.

3 Nonmenclature

3.1 UAV model

E Inertial frame

OE Origin of E

0; Location of ith agent (i.e., UAV)

qi Position of o; relative to og

pi 2% q Velocity of o; relative to og

qi = qile ith agent position

F; ith agent velocity frame

R; Rotation matrix from F; to E

Si Speed of ith agent

s; =20 Minimum allowable speed

Si > 8; Maximum allowable speed

S & (8;, 1) Set of allowable speeds

v € R3 Unit vector such that pj|g, = s;v;

fi Speed dynamics

8i Speed dynamics input function

u; Speed dynamics control input

w; Angular velocity control input

Vi £ Riv; Pointing direction

0g Location of leader

q Position of o, relative to og

ps =% qq Velocity of o, relative to og

gs = QglE Leader position

Xi Desired time-varying position for o;
relative to o, resolved in E

Xij Desired time-varying position for o;
relative to o resolved in E

F, Leader velocity frame

R Rotation matrix from F, to E

vi € R3 Desired position of o; relative to og
resolved in Fy

ki >0 Parameter in Assumption 1

3.2 Formation control algorithm

i Scalar function for control

pi(x) = wi(lx[?)x

- A

pi = sup,cps [|0i (X) |l
P
Bi=0
Bij =0

&
ki € (0, ki /pi)

Pdi = Ge + Xi + kipi (&)
sdi = il

Ei éK,’ —k,-,é,- >0

Sai = (s; + 6,5 — &)
Ydi 2 pai/sd,i

hi

h

a;, b,' >0

¢ >0

3.3 Stability analysis

~ A

qdi = qg — Xi
5. A .
§i =8 — S8d,i
5. A .
Yi = Yi — Yd,i

3.4 Implementation

Vi, 6, ¢
Yy, Og, Gg

0a,i

$d.i

T;

Oi

Vi

0d,i

Yd,i

ky,ps ky;is ky;a > 0
ko ps ko is koy.a > 0
g =9.81m/s?

Sa,i

no > 0

T)¢ > 0

Sa9 > 0

ny >0

ks ps ks;i >0

Og

Ve

Wg

Control function

Least upper bound on || p; ||
Gradient of p;

Gain on the ith agent’s posi-
tion error with leader

Gain on the ith agent’s posi-
tion error with agent j
Formation-error function
Gain used in desired veloc-
ity

Desired velocity

Desired speed

Parameter for Sy ;

Set of allowable desired speeds
Desired pointing direction
Speed barrier function
Gradient of A;

Gains for u; control law
Gain for w; control law

Position error
Speed error
Pointing direction error

Yaw, pitch, roll Euler angles
Yaw, pitch, roll Euler angles
of the leader

Pitch angle command

Roll angle command
Throttle command
Heading angle

Flight-path angle

Desired heading angle
Desired flight-path angle
PID gains for pitch control
PID gains for roll control
Acceleration due to gravity
Airspeed

Trim-throttle parameter
Trim-roll parameter
Trim-airspeed parameter
Gain for throttle control

PI gains for throttle control
Leader heading angle
Leader flight-path angle
Angular velocity of Fg rel-
ative to E resolved in F,
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4 UAV model and formation control
objectives

Let E be an inertial frame, that is, a frame in which Newton’s
second law is valid. The origin of E is og, which is any
convenient point on the Earth’s surface. Let o; be the location
of the ith agent (e.g., the location of the ith vehicle’s center
of mass). The position of o; relative to o is qj, and the ith
agent’s position qj is resolved in E as ¢; £ qj|g. The velocity
of o; relative to og with respect to E is pj AE qi.

LetF; be a frame such that p; resolved in F; is pi|r, = s;v;,
where v; € R3 is a constant unit vector, and for all # > 0,
si(t) > 0 is the speed of the ith agent. For all ¢+ > 0, the
speed of the ith agent is subject to the constraint that s; (¢) €
S & (s;,5), where 0 < 5; < 5;.

Let R; : [0,00) — SO(3) be the rotation matrix from
F; to E. Thus, the ith agent’s velocity p; resolved in E is
PilE = si R;v;, which implies that

qi(t) =si(OR; ()v;, (1

where g; (1) € R?, si(t) € S;, and R (1) € SO(3) are the
position, speed, and orientation of the ith agent, and g; (0) €
RR3 is the initial condition.

The speed of the ith agent satisfies

$i(1) = fi(0) + &i(Du; (1), @

where u; : [0, 0c0) — Ris the control input, s; (0) € S; is the
initial condition, and f; : [0, 00) — R and g; : [0, 00) —
R\ {0} are continuous.

The orientation kinematics of the ith agent are

Ri(t) = Ri()[w; (1)1, )

where R;(0) € SO(3) is the initial condition, and the control
input w; : [0, 00) — R3 is the angular velocity of F; relative
to E resolved in F;.

The vehicle model (1)—(3) is an extended unicycle model
that includes both speed dynamics (2) and orientation kine-
matics (3) on SO(3). Note that the unit vector in the direction
of the velocity ¢; is given by

yi(t) = Ri(t)v;. 4

Next, let og be the location of the leader, which can be a
physical agent (e.g., vehicle) or a virtual agent. The position
of o, relative to o is qg, and the velocity of o, relative to
og with respect to E is pg AE qg. The leader’s position qg
is resolved in E as g, = gg|E, which is assumed to be twice
continuously differentiable.

Let x; : [0, 00) — R3 be the time-varying desired posi-
tion of o; relative to og resolved in E. Thus, x;j = x; — xj is
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the time-varying desired position of o; relative to o resolved
in E. The objective is to design controls u#; and w; such that:

(O1) Foralli € Z,lim;—[qi (1) — qg(t) — xi(t)] = 0.
(02) Foralli € 7, lim; 0[g; (t) — go(t) — ;i (t)] = 0.
(O3) Foralli € Z and forall t > 0, s5;(¢) € S;.

Objective (O1) states that each agent approaches its
desired relative position with the leader, and (O2) states
that each agent approaches its desired relative velocity with
the leader. Objective (O3) states that the agents’ speed con-
straints are satisfied. Although the formation control problem
is described in 3 dimensions, the methods in this paper can
be specialized to the planar case (i.e., 2 dimensions).

One specialization of the time-varying formation control
problem described by (O1)—(03) is the situation where the
desired position of o; relative to og is constant in a leader-
fixed frame (e.g., a frame that rotates with the leader). For
example, let Fy be a frame that is fixed to oy and rotates
such that one of its orthogonal unit vectors is aligned with
the leader’s velocity vector pg. In this case, we can consider
the time-varying desired positions x;(f) = Rg(f)v;, where
Ry : [0, 00) — SO(3) is the rotation matrix from F, to E, and
vi € R3 is the desired position of o; relative to og resolved
in Fy. Thus, the desired relative positions are constant in the
leader-fixed frame Fy. In this case, (O1) and (O2) imply that
the formation translates with the leader’s position and rotates
with the leader’s velocity vector.

Next, we note that it is not possible to satisfy the formation
objectives (O1) and (O2) and the speed constraint (O3) for
an arbitrary leader trajectory g, and time-varying desired
formation y;. Specifically, if (O2) is satisfied, then the ith
agent’s velocity g; converges to gy + x;. Thus, (O2) implies
that we want the ith agent’s speed s; () to equal [|gg(t) +
Xi (t)]]. However, (O3) requires that s; (#) € S;. Thus, if s; (¢)
equals ||gg(¢)+ x; ()]l and satisfies 5; (t) € S;, then the leader
trajectory must satisty [lg¢ () + x; ()| € S;. Therefore, we
make the following assumption.

Assumption 1 There exists x; > 0 such that for all + > 0,
lge(t) + xi O € (s; + ki, §i — Ki).

Assumption 1 implies that for all z > 0, [|gg(z) + x; (?)]|
is contained in a proper subset of S;. As k; approaches zero,
Assumption 1 approaches the condition ||ge (1) + x; (1) ]| € S;,
which is necessary to satisfy ¢; (t) equals g¢(t) + x;(t) and
lgi (D] € Si.

5 Formation control algorithm

Let u; : [0,00) — (0, 00) be continuously differentiable
and satisfy the following conditions:
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(C1) M;(z) £ [; pi(w) dw is radially unbounded.
(C2) sup,~¢ +/zii(z) exists.

Consider the control function p; : R — R3 defined by

pi@) 2 i (1217) x, ®)
and note that it follows from (5) and (C2) that

pi = sup |lpi (0| = sup v/zpi (2)

xeR3 z>0

exists. The control function p; is used to design a desired
velocity for each UAV. The formation method in Heintz
and Hoagg (2020a) also uses a nonlinear control function
to design a desired velocity. However, Heintz and Hoagg
(2020a) considers only one specific control function. In con-
trast, this work allows for a broad class of functions p; based
on the choice of y;, which need only satisfy (C1) and (C2). It
is also worth noting that, unlike Heintz and Hoagg (2020a),
this work allows for each agent to have a different control
function (i.e., p; # p; fori # j). This generality can be
useful for control of heterogeneous formations. The follow-
ing examples of u; satisfy (C1) and (C2).

Example 1 Let
wi(@) = (v +v22)™",

where vy, v, > 0 and m € [0.5,1]. If v; > vy, then (5)
implies that for all x such that ||x|| < vi/va, p;(x) ~ v; "x,
which implies that p; is approximately linear. In contrast,
if vy > vy, then (5) implies that for all x such that ||x| >
v1 /v, pi (x) & (12 lx[1*)~"x, which has approximately con-
stant magnitude for m = 0.5. A

Example 2 Let

1, z €10,0.5),
1 +vi(z—0.5)2
i(z) = z €10.5,1.5],
wi(z) sz — 0.5, [ ]
1/4/z, z € (1.5, 00),

where v| = % —3andvy; =2 — %6. For all x such that
x| € [0,0.5), pi(x) = x, which is linear. For all x such
that ||x]| € [1.5, 00), pi(x) = x/||x||, which has constant
magnitude. Finally, note that x; is monotonically decreasing
on [0.5, 00). A

Example 1

05+ Example 2
Example 3

- = =pu(s)=1

w(ll)

05

o)l
\

ll]

Fig.1 Examples of p; and the corresponding || p; ||. Example 1 is shown
with withvy =1, v» = 1,and m = 0.5

Example 3 Let

1, z €[0,0.1),
14 vi(z —0.1)?

(2) = € [0.1,0.4],

#i (@) Fi(z— 0.3, © [ ]
1/, z € (0.4, 00),

where v = 75T V10 _ % and v, = % — % V10 Similar to

Example 2, p; (x) is linear if ||x|| is small, and p; (x) has con-
stant magnitude if || x || is large. However, p; is monotonically
increasing on [0.1, 0.4] and then monotonically deceasing on
[0.4, 00). A

Figure 1 shows p; and || p; ||, where u; is given by Example
1 (vi = vy =1, m = 0.5), Example 2, and Example 3. For
all 3 examples, p; = 1. Notice that Example 1 and Example
2 are such that for all z > 0, u;(z) < 1, which implies that
lpi(x)|| < |lx||. In contrast, Example 3 is such that for all
z € (0.1, 1), u;(z) > 1, which implies that ||p; (x)|| > ||x]|
over a subset of the domain.

Define the formation-error function

E2Bige—ai+x)+ Y, Bijai—ai+x). (6
JET\i)

where f; > 01is the gain on the ith agent’s position error with
the leader, and B;; > 0 is the gain on the ith agent’s position
error with agent j. Note that &; is a linear combination of the
ith agent’s position error with the leader and the other agents.

To explain the required interagent communication struc-
ture, define

A = diag(By, ..., Bn) € R™",
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andlet B € R"*" be such that the (i, j)thelementis B j) =
—Bij, and the (i, i)th element is B(; ;) = ZjeI\{i} Bij. The
matrix B is the weighted Laplacian of the directed graph
G = (Z, £), where the edge set is defined as £ £ {(i, j) €
IxZI: pBij > 0}. The algorithm in this paper requires that the
gains B; > O and B;; > O are such that A + B is nonsingular.
A sufficient condition for nonsingularity of A 4 B is given
by (Zhang & Lewis, 2012, Lemma 1). Specifically, A + B
is nonsingular if the directed graph G = (Z, £) has a vertex
| € T such that 8; > 0 and there is a walk from [ to every
other vertex. Thus, this paper requires that only one agent has
access to a measurement of its position relative to the leader.

Let k; € (0,«;/pi) be a gain used to determine the ith
agent’s desired velocity, which is defined by

Pdi = Ge + Xi + kipi(&). @)
In addition, define the ith agent’s desired speed

sai = | paill- (8)

Since p; = sup, g3 [|pi (x)]| exists, it follows that all terms
in (7) are bounded. Thus, the desired speed sq,; is bounded.
Next, define

g 2w —kipi >0,  Sai=(s;+ &5 — &)

The following result shows that the desired speed is not only
bounded, but also is such that for all # > 0, sqi(¢) is in Sq i,
which is a proper subset of the set of allowable speeds ;.
This fact is obtained from applying the triangle inequality to
(7) and (8) and using Assumption 1.

Fact1 Forallt > 0, sq,i(t) € Sq.i C Si.
Next, define the desired pointing direction

A 1
Ydi = — Pd,i, 9)
Sd,i

and note that it follows from Fact | that forall# > 0, sq i (¢) >
0, which implies that yq ; is well defined.

To enforce the speed constraint (O3), we consider a speed
barrier function &; : [0, 00) — R, which is continuously
differentiable. The gradient of &; is /2 : [0, 00) — R defined
by

L dh;
hi(s) 2 djs).

We assume that /; satisfies the following conditions:
(B1) Foralls € &;, hi(s) > 0.

(B2) Foralls € (—o0,s;) U (5;,00), hi(s) <O.
(B3) Foralls > 5;, hi(s) <O.
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(B5) Forall (s, sq4) € S; x Sq i, hi(s) + (sa — $)h}(s) > 0.

(B4) Foralls < s;, h;(s) > 0.

Note that (B1) and (B2) imply that 4; is positive inside S;,
equal to zero at the upper limit 5; and lower limit s;, and
negative elsewhere. In addition, (B3) and (B4) imply that
h; is strictly decreasing above the upper limit 5; and strictly
increasing below the lower limit s;. Finally, (B5) is a tech-
nical condition needed to ensure the the formation control is
well defined. The next result provides sufficient conditions
to ensure that (B3)-(B5) are satisfied.

Fact2 Assume that (B1) and (B2) are satisfied, and assume
that &} is continuously differentiable and strictly decreasing.
Then, (B3)-(B5) are satisfied.

Proof Since ' is continuous, it follows from (B1) and (B2)
that //(5;) < 0. Since, in addition, A/ is strictly decreasing,
it follows that for all s > 5;, h; (s) < 0, which confirms (B3).

Similarly, since h; is continuous, it follows from (B1) and
(B2) that &} (s;) > 0. Since, in addition, A is strictly decreas-
ing, it follows that for all s < s, h; (s) > 0, which confirms
(B4).

To prove (B5), leti € Z and let sq € Sq.i. Define

H(s) £ hi(s) + (sa — $)hj(s),

and note that (B3) and (B4) imply that H(s;) = (sq —
5)h(5) > 0and H(s;) = (sqa —s;)h;(s;) > 0. Next, define
dH dn’

) _ gy — 5y 3O

H'(s) =
() ds ds

Assume for contradiction that there exists z; € S; such that
H(z1) < 0. Since, in addition, H(s;) > 0 and H(s;) > O,
it follows that there exists zo € S; such that H'(z3) = 0

and H(z2) < 0. Since h; is continuously differentiable and

ictlv d e it foll h dh)(s)
strictly decreasing, it follows that —

< 0. Since,
s=22
in addition, H'(zp) = 0, it follows the definition of H' that

22 = sq. Thus, H(z2) = h;(sq), and since sq € Sgi C S;, it
follows from (B1) that H(z>) > 0, which is a contradiction.
[m]

The formation method in Heintz and Hoagg (2020a) also
uses a barrier function to enforce speed constraints. However,
Heintz and Hoagg (2020a) considers only one specific bar-
rier function. In contrast, this work allows for a broad class
of barrier functions %;, which need only satisfy (B1)-(BS).
The barrier-function method in this paper has several other
advantages over the previous work. First, the barrier function
in this paper is significantly simpler than that in the previous
work; notably, 4; is a function of only speed s;, whereas the
method in Heintz and Hoagg (2020a) uses a function of s;
and sq ;. Second, the method in Heintz and Hoagg (2020a)
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can result in comparatively slow response when the speed s;
is near the boundary of S;. In contrast, the barrier function
in this paper can be selected to yield fast response near the
boundary of S;. We also note that this work allows for each
agent to have a different barrier function, which can be use-
ful for heterogeneous formations in which the capabilities
of each vehicle dictates the allowable aggressiveness each
vehicle’s barrier function. Finally, if at some time v > 0, the
speed s; (7) is outside S;, then the barrier function in Heintz
and Hoagg (2020a) does not drive the speed s; into S;. In
contrast, the analysis in the following section demonstrates
that the generalized-and-improved barrier function in this
paper does drive s; into ;. This property is of practical sig-
nificance because disturbances (e.g., wind) could force the
speed outside of S;. The following 3 examples of /; satisfy
(B1)—(BY).

Example4 Letv > 0, and let h;(s) = v(5; —s)(s —5;). A

Example 5 Letv > 0,andleth;(s) = tanh (v(5;—s)(s—s,)).

A
Example6 Letv € (0, (5; — s;)/2), and let
)2
1-— —(5,-+:2 si) , S <8+,
hi(s) = {1, sels;+v, 5 —vl,
1-— (H";—;s_")z, s> 5 — .
Note that for all s € [s; + v, 5 — v], hi(s) = 1. A

Figure 2 shows h; and h/, where h; is given by Examples
4-6. Example 4 is similar to the barrier function in Heintz
and Hoagg (2020a) (but simpler that than in the previous
work because it does not depend on sq ;). In Example 4, h; is
quadratic, and h: is linear. In this case, if s is near the bound-
ary of §;, then |h;(s)| << 1, and the control u; (presented
below) is small in magnitude and results in slow responses.
In contrast, the barrier functions in Examples 5 and 6 have
comparatively steep slope near the boundary of &;. Thus,
|hi(s)] is small over a comparatively smaller region near the
boundary of S;. This results in faster responses when the
speed is near the boundary of ;.

Next, the time derivatives of pq i, S4,i, yd,i are given by

Pai 2 g + 5 — kil @) (B — de — 1)

+ D B —di - ), (10)
JET\{i}
sl o7
$ai 2 —paibdis (11)
§d,i
fag & PR SRR, (12)
,1

|
|
Example 4 |
Example 5 |
Example 6 |

L I

5 10 15 20 25 30 35

Fig. 2 Barrier function k; and its gradient A for Examples 4-6 with
v =1/50, v = 1/20, and v = 1, respectively. Note that s; = 10 and
5 =30

where the gradient of p; is p] : R3 — R3*3 defined by

A api
ol 2 D ey
X
dui(z) T
+2< dz z—||x|2>xx ' (4

Finally, consider the formation control laws

1 bi(sa.i—si)* — f
i \ hi(si)+(sai—si)hj(si) Lo
, ifs; €S,

o Sa,ihi (si)+a; (sa,i—si)hi(si)
Ui = R o Gai—sDR 1) 14

1 (bi(sqi — si)? .
— ———— ), ifs; ¢ S;,
@ < nen T L O
and
wi = R} [yilx <Ci)’d,i — Vi Yaivd,i + yiTyd,i)"d,i>, (15)

where a;, b;, ¢; > 0 are control gains.

Note that (14) is continuous, which can be confirmed by
evaluating both expressions in (14) at the boundary of S;. In
addition, (B3)-(B5) imply that the denominators in (14) are
nonzero.

One important advantage of the formation control pre-
sented in this paper relative to that in Heintz and Hoagg
(2020a) is that (15) can typically be implemented with one
fewer actuator. The approach in Heintz and Hoagg (2020a)
generally requires 3 actuators to implement the angular
velocity command w; . In other words, w; evolves in R3 rather
than a lower dimensional subspace of R3. In contrast, the
angular velocity command (15) evolves in a 2-dimensional
subspace, specifically, for all # > 0, vl.Tw,-(t) = 0. For exam-
ple, if v; = ey, then w; is in the span of e; and e3, that is,
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elTa),- = 0. In particular, w; evolves in the plane that is per-
pendicular to the direction of flight (i.e., p;). Thus, w; can be
generated by a pair of F; -fixed actuators that generate angular
velocities in the plane perpendicular to p;.

The control (5)—(15) involves w; and h; as well as the
parameters a;, b;, ¢; > 0, k; € (0,«;/p;), and B;, Bi; = 0.

Increasing the speed gains a; and b; tends to cause the
speed s; to converge more quickly to the desired speed sq.;.
Similarly, increasing the attitude gain ¢; tends to cause the
pointing direction y; to converge more quickly to the desired
pointing direction yq ;. However, increasing a;, b;, and c;
also tends to increase the magnitude of the controls u; and
w;. In practice, it may be useful to allow for time-varying
speed and attitude gains. We note that the analysis in the
next section can be generalized to allow for time-varying
gains a;, bj, ¢; : [0,00) — D, where D C R is bounded.
For clarity of the presentation, we focus on the case where
a;i, bi,c; > 0 are constant but emphasize that this is not
required.

Next, note that selecting k; close to the upper limit «; / p;
tends to make the desired velocity (7) more responsive to the
formation term p (§;), which, in turn, tends to make the agents
converge more quickly to the desired interagent positions.
The upper limit «; /p; on k; is imposed to guarantee that the
desired speed sq ; is in the admissible range Sy ;. The upper
limit on k; is determined by the choice of w;, the leader’s
velocity g, and the rate of change of the formation ;.

The formation gains B; and f;; determine how sensitive
pd.i 1s to errors in the ith agent’s position relative to the
leader and the ith agent’s position relative to the jth agent,
respectively.

Finally, we note that the control (5)—(15) relies on the
leader’s acceleration g, to calculate the desired acceleration
Pad.i- For many practical applications, g is relatively small.
In this case, simulations and experiments indicate that the
control algorithm can be effectively implemented with g, =
0. Nevertheless, the experimental flight results reported in
this paper compute the control (5)—(15) using an estimate of
g obtained from a process described in Sect. 10.

6 Stability analysis

In this section, we analyze the closed-loop dynamics (1)—
(15). Define the position error, speed error, and pointing
direction error

Gi = qi — qg — Xi» (16)
§i =5 — sdi, (17)
Vi £ yi — vdi, (18)
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and define
R; 2 {R € SOB3): y1,(0)Ry; # —1},

which is the set of all orientations except those where the
angle from Rv; to pq i(0) is exactly 7 rad.

The next theorem is the main theoretical result of this
paper. The result shows that for almost all initial conditions
(qi(0), si(0), R; (0)) € R3 x S; x SO(3), the error state
(gi, Si, yi) converges to zero exponentially and (O1)-(03)
are satisfied. In fact, the error state converges to zero for all
initial conditions except those where the angle from ¢; (0) to
pd.i(0) is exactly 7 rad. The proof of the following theorem
is in Appendix A.

Theorem 1 Assume that A 4 B is positive definite. Then, the
following statements hold:

D (G100, s Gn (D), 510D 50, 1@, 5aD))
0 is a Lyapunov stable equilibrium of (1)—(15).

ii) For all initial conditions (q,- 0), si (0), R; (0)) e R3
[0, o) X R;, qi, Si,and y; converge to zero exponentially.

iii) For all initial conditions (¢;(0), s;(0), R;(0)) € R? x
[0, o0) x R;, (O1) and (O2) are satisfied.

iv) If 5;(0) € S;, then (O3) is satisfied.

v) If 5;(0) ¢ S;, then there exists T > 0 such that for all
t€[0,T],si(t) ¢ S;and forallt > T,s;(t) € S;.

X

7 Hardware platform

This section describes the experimental fixed-wing UAV
platform used in the experiments presented in this paper.
The UAVs are Skywalker X8 flying wing foam airframes
(see Fig.3), which consist of 2 wings attached to a fuselage
section and reinforced with carbon fiber wing spars. These
UAVs are launched with a bungee-based catapult-assist sys-
tem (see Fig.4) and skid landed. We note that the formation
control implementation presented in the next section can be
used with a wide range of fixed-wing aircraft. The UAV is
equipped with a Pixhawk flight controller with the ArduPi-
lot firmware, which provides inner-loop control, waypoint
navigation, state estimation, and interfaces with a global posi-
tioning system (GPS) receiver. An on-board Raspberry Pi
obtains state estimates from the Pixhawk, communicates with
other UAVs using WiFi, and executes the formation control
(5)—(15). A propeller and brushless motor are mounted to the
aft end of the fuselage. The motor is controlled by an elec-
tronic speed controller (ESC), which is mounted inside the
fuselage and receives power from the battery through the Pix-
hawk power module. The ESC is connected to the Pixhawk
using a standard 3-pin servo connector.
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Fig.3 Skywalker X8 airframe

Fig.5 Top view of inside the UAV fuselage showing control electronics

The Pixhawk uses an extended Kalman filter to estimate
the UAV’s position, velocity, and attitude using measure-
ments from a 9-DoF inertial measurement unit (IMU),
barometer, GPS, and airspeed sensor. These estimates are
transmitted to the onboard Raspberry Pi through a univer-
sal serial bus connection. These estimates are also used for
inner-loop control and waypoint-based navigation. Figure 5
shows the electronics mounted in the fuselage. The UAV is
also equipped with a scientific payload for collecting mete-
orological measurement, which is described in Witte et al.
(2017), Bailey et al. (2020) but was not active during the
experiments in this article.

Let ¥, 6;, ¢; denote the yaw, pitch, and roll of the ith
UAV using a 3-2-1 Euler sequence. Similarly, let /g, 65, ¢g
denote the yaw, pitch, and roll of the leader UAV using a 3-2-
1 Euler sequence. These attitude measurements are obtained
from the onboard IMUs.

To implement the formation control (5)—(15), the Pix-
hawk on each UAV is set to fly-by-wire-A mode. In this
mode, the Pixhawk accepts a commanded pitch angle 64 ;,
commanded roll angle ¢q ;, and commanded throttle 7;. If
flown by a human pilot, then the Pixhawk receives these com-
mands from the RC transmitter operated by the pilot. For this
autonomous formation-control implementation, the onboard
Raspberry Pi provides these commands to the Pixhawk using
the MAVLink messaging protocol.

At startup, a secure ad-hoc WiFi network is created, allow-
ing communication between the UAVs. The Raspberry Pi
generates MAVLink commands using the DroneKit Python
application programming interface and stores the state esti-
mates and associated timestamps in Python class instances,
which are broadcast over the ad-hoc WiFi network using the
user datagram protocol at approximately 10 Hz.

The Python implementation has 4 processes: (1) broad-
cast UAV state information to the network (i.e., to the other
UAVs); (2) receive information from the other UAVs on
the network; (3) log information about all agents; and (4)
check failsafe conditions, execute the control, and manage
the startup and shutdown of the other processes. Communica-
tion between processes is achieved using Python thread-safe
queues.

8 Formation control implementation

This section presents a multi-loop implementation of the
formation-control algorithm (5)—(15) for the fixed-wing
UAVs described in Sect. 7. The key aspects of the imple-
mentation include: middle-loop controllers, computing the
time-varying formation (i.e., x;, Xi, Xi), and accounting for
asynchronous feedback. The frame F; is selected such that
vi=er=[1 0 0",

8.1 Middle-loop controllers

The control inputs for the UAV described in Sect. 7 are 64 ;,
@d.i, and T;. In contrast, the formation algorithm (5)—(15) pro-
vides controls u; and w;. Thus, we implement middle-loop
controllers such that closed-loop UAV dynamics approxi-
mate the dynamics (1)—(3). These middle-loop controllers
map u; and w; determined from the formation control (5)—
(15) to 64.i, ¢a.i, and T;, which are the control inputs for the
UAV. This multi-loop implementation is shown in Fig. 6.
Define the heading angle and flight-path angle

oi £ atan2(e3 G, e} §;) = atan2(e, yi, ] i),

> >

y; = — arcsin egq'i/s,- = —arcsin egyi.
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Vi Yi
P ow ] Pitch
Xgr Xgs XgE Yd,i : Control Gd,z
T PP T L Vd,i 19
qg,4g,9g s Vd,i = €2 Wi ( )
&, Formation . elw 0di UAV
—L=— Control 9dii = Cos Roll Od.i W}th
. (5)-(15) 0d,i Control d.é Flight
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Ui Throttle T
Control L
l_> (21)
. Ji, d—i7 Vi Si
Qi) Gi, R

Fig.6 Multi-loop implementation of the formation control (5)—(15)

Similarly, define the desired heading angle and desired flight-
path angle

T T
0q,i = atan2(e; yd.i, €] Yd,i)»

Yd,i

(> 1>

arcsin —egyd,i.

We now present middle-loop controllers that determine
0d.i>» ¢a.i, and T;. The pitch command 6y ; is given by

— ky, p(vi (1) — vai (D))
t
- ky,-,i/O vi(1) — vai(r)dr

— ky a(7i (1) — vai (D), (19)

0a,i(1) = va.i

where ky, p, ky, i, ky; ¢ > O are the proportional, integral, and

derivative (PID) gains. The desired-flight-path-angle rate is

approximated as yq; & egw,-, which follows from the 3-2-1

Euler angle kinematics where the final Euler rotation is small.
The roll command ¢q ; is given by

aq,i(t)si (t) cos y; (1)
8
— koy p(0i (1) — 04,i (1))

t
. f 01(7) — 0a(7) dt
0

— ko a (67 (1) = 6ai(1)), (20)

@q.i(t) = arctan

where where kg, p, ko; i, ko;,a > 0 are the PID gains, and
g = 9.81 m/s? is the acceleration due to gravity. The first
term in (20) is the roll angle that yields the desired heading
rate g ; with speed s; under the assumption of a coordinated
turn (Beard et al., 2014). The desired-heading-angle rate is
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approximated as gq ; ~ ega)i / cos y;, which follows from the
3-2-1 Euler angle kinematics where the final Euler rotation
is small.

The throttle command 7; is given by

Ti = 10 + g ((cos i (1)) > — 1)
+ 1 (“i(t) + 50,i(1) — 5 (1) — Sao)
- ksi,p(sa,i(t) - ui(t))

t
. / Sai(1) — ui (v) d, @1)
0

where s, i(f) € R is the measured airspeed; 9 > O is the
autopilot’s trim-throttle parameter; 4 > 0 is the autopilot’s
trim-roll parameter; s,, > O is the autopilot’s trim-airspeed
parameter; 1y > 0 is a feedback gain; and ky; p, ks, ; > O are
PI gains. The second term in (21) is an estimate of the throttle
required to counteract increased drag in a turn.

The commands 6y i, ¢q.i, and 7; are computed using (19)—
(21). Then, each command is saturated if it lies outside of
the autopilot’s acceptable ranges, which, for the Pixhawk,
are [—m/9, /9] rad for 64 ;, [-5m /18, Sm /18] rad for ¢q i,
and [0, 100] for 7;. In addition, we implement a standard
anti-windup approach to prevent the integral terms in (19)—
(21) from increasing in magnitude if the associated command
signal is saturated.

8.2 Computing %;, ,i’i, and ,1',

For all simulations and experiments in this paper, we use
the leader-frame specialization of this algorithm described
in Sect. 4. Specifically, we consider the time-varying desired
positions x; () = Rg(t)v;, where R, : [0, 00) — SO(3) is
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the rotation matrix from F, to E, and v; € R3 is the desired

position of o; relative to oy resolved in Fy. Thus, the desired

relative positions are constant in the leader-fixed frame Fy.
Define the leader’s heading angle and flight-path angle

T. T
oy = atan2(e, gg, €] gg), (22)
. T- .
Vg = —arcsinez qg/llggll, (23)
and the associated rotation matrix
COS Y5 COS Og — SiN 0 Sin Y, COS 0

COs ygSinoy COSOy Sinygsinog | . (24)
—siny, 0 COS Yo

N
R; =

Next, note that R, satisfies

Ry = Rglwglx. (25)
where it follows from the 3-2-1 Euler angle kinematics that

—0yg Sin Yy
wg = Ve . (26)
Og COS Vg

The time-varying desired positions are given by
Xi(t) = Rg(D)v;, 27)
and it follows from (25) and (27) that

$i(0) = Re(Olwg(d]v, @8)
i 0 = (Relwg (T + Re(Dliog (0] ). 29)

Since the leader’s sensor package (i.e., GPS, IMU, and
airspeed sensor) provides a measurement of g, we compute
Ry directly from (22)—(24). Then, x; is computed from (27).
In order to compute x; and ¥; from (28) and (29), we require
an estimate of @y and wg, which are not directly measured.
However, the leader’s IMU provides measurements of the
yaw rate 1/}g, pitch rate ég, and roll rate ng. Thus, we esti-
mate wy using (26) with 6, = 1/}g and y, = ég. Then, we
compute x; and ¥; from (28) and (29) using this estimate of
wg and the assumption that w, is negligible. Note that we
performed software-in-the-loop (SITL) simulations and pre-
liminary flight experiments both neglecting w, and using a
numerical approximation of @g. The SITL simulations and
flight experiments perform better by neglecting .

8.3 State measurement correction

Due to the software architecture imposed by DroneKit and
ArduPlane, the state feedback measurements on each UAV

are not synchronized with sampling of the control loop. Fur-
thermore, the control loops of the agents are not synchronized
with one another. To mitigate this, the timestamp of each mea-
surement is recorded alongside the measurement. Before a
measurement is used, it is corrected using first-order Euler
integration.

Each agent corrects its own state measurement before
broadcasting it, and each receiving agent corrects that mea-
surement again using the time at which the message was
received and the time at which its control loop is sampled.
Network latency is not accounted for in this method.

9 Software-in-the-loop simulation results

This section presents results of software-in-the-loop (SITL)
simulations using the formation control (5)-(15) with the
multi-loop implementation described in Sect.8. For these
simulations, one instance of the Python implementation is
executed for each UAV, and each instance communicates
with a corresponding instance of the Arduplane firmware run-
ning in SITL mode. These firmware instances also simulate
the dynamics of an aircraft based on a commercial off-the-
shelf remote-controlled aircraft (specifically, the Rascal110).
Formation control instances communicate with one another
over the local network. All software runs on a single Ubuntu
machine. In this way, the control algorithms and implemen-
tation are tested with a high-fidelity UAV model.

For all simulations, n = 3 UAVs. The speed dynamics are
(2), where f; = —0.64s; and g; = 0.64, which implies that
the speed dynamics are low pass with unity gain at DC, where
the time constant 0.64 is estimated from the closed-loop step
response of the UAV with the middle-loop speed control. The
speedbounds are s; = 16 m/sands; = 30 m/s, and the barrier
function is given by Example 5 with v = 1/20. The scalar
control function u; is given by Example 1 with v; = 50,
v=1,andm =0.5.Letk; =3,a;, =1,b; =0.1and ¢; =
0.1. The desired relative positions are vy = [-5 5 0]T m,
w=[-5 -5 —4"mandvz;=[-5 -5 4"m
The formation and middle-loop controls are implemented at
25 Hz.

In all simulations, a leader UAV flies rectangular trajecto-
ries and circular trajectories. First, the leader flies a sequence
of 4 waypoints arranged in a rectangle. Next, the leader flies
a sequence of 4 waypoints arranged in a rectangle, where
the northeast and southwest waypoints are 50m above the
others. Each of these sequences are repeated twice. Finally,
the leader executes a circular trajectory with radius 120 m
and changes altitude several times. Note that Assumption 1
is satisfied for all agents with k; = 3.6 m/s.

@ Springer



Autonomous Robots

Leader

— =1

— =

i=3

1200

1000 1000
800 600 800
600
400
Gy 400 200 S ()

Fig.7 Simulation 1: Trajectories of leader and agents in the horizontal
plane with time as the vertical axis

To describe the communication structure used in the SITL
simulations, define the neighbor set

N £{jeI: B> 0}

We examine 3 different communication structures: (1) an
undirected line (N7 = {2}, N2 = (1,3}, N3 = {2}) where
only agent 1 has feedback of the leader; (2) a directed line
M = 0, N, = {1}, N3 = {2}) where only agent 1 has
feedback of the leader; and (3) a directed line (N] = 0,
N3 = {1}, N3 = {2}) where all agents have feedback of the
leader. We now present results from each SITL simulation—
one for each communication structure.

Simulation 1 Let N1 = {2}, Vb = {1,3}, N3 = {2}, B1 =1,
and B> = B3 = 0, which implies that only agent 1 has
position feedback of the leader. For all i € {1, 2, 3} and all
J € N, let Bij = 1. Figure7 shows the UAV trajectories in
the horizontal plane, where the vertical axis is time. Figure 8
shows each agent’s position relative to the leader as well as
the desired relative position y; in each direction. The figure
also shows ||g;|| versus time. Figure9 shows the actual and
desired speed, flight-path angle, and heading angle of each
agent. A

Simulation 2 This simulation is the same as Simulation 1
except that N1 = @, Vb = {1}, N3 = {2}, which implies
that the interagent communication is a directed (rather than
undirected) line. Simulation Figs. 10 and 11 provide plots
similar to those described in Simulation 1. A

Simulation 3 This simulation is the same as Simulation 2
except that 81 = B = B3 = 1, which implies that all agents
have position feedback of the leader. Figures 12 and 13 pro-
vide plots similar to those described in Simulation 1. A

To evaluate performance, we use the root mean square
(RMS) of the position error g; for the rectangular and circular
portions of the trajectory, which are given by

N 1 It f B
Pri = —/ llGi (1)) dt, (30)
Lt — 10 0
N 1 fe f B
Pei = —/ llgi (1)) dt, (31
fef — 1,0 tc.0

where [t 0, t.f] and [fc o, fc r] correspond to the intervals of
the rectangular and circular portions, respectively. For all
simulations, ;0 = 95 s, trr = 550 s, .0 = 650 s, and

1=2 i=3
T T T T T T T T T T T T

R

100 200 300 400 500 600 700 800 900 1000

t (s)

100 200 300 400 500 600 700 800 900 1000
t(s) t(s)

100 200 300 400 500 600 700 800 900 1000

Fig.8 Simulation 1: Agent position relative to the leader ¢; — g, and ||g; ||. The desired relative position x; is shown with a dashed line
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Fig. 9 Simulation 1: Actual (solid) and desired (dashed) speed s;, flight-path angle y;, and heading o;. The upper and lower speed bounds are
indicated by thin black lines
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Fig. 10 Simulation 2: Agent position relative to the leader g; — g¢ and ||g; ||. The desired relative position x; is shown with a dashed line
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Fig. 11 Simulation 2: Actual (solid) and desired (dashed) speed s;, flight-path angle y;, and heading o;. The upper and lower speed bounds are
indicated by thin black lines
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Fig.12 Simulation 3: Agent position relative to the leader g; — g¢ and ||g; ||. The desired relative position x; is shown with a dashed line
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Fig. 13 Simulation 3: Actual (solid) and desired (dashed) speed s;, flight-path angle y;, and heading o;. The upper and lower speed bounds are
indicated by thin black lines

Table1 RMS of [|§;]| in m,

PO M % E M % E
mean RMS of ||G; | in m, and Pr.1 Pr2 Pr3 ean o Error P Pe,2 Pe.3 ean o Error

mean RMS of the percent error Simulation 1 2.6 44 53 41 59 19 32 38 35 43
Simulation2 12 25 36 24 36 13 25 34 24 36
Simulation3 1.3 14 15 14 18 13 15 15 14 19

tc.t = 1080 s. The RMS position errors for each UAV andthe =~ RMS position error is smaller than that of UAV 3 because
RMS position errors averaged over the n UAVsarein Table 1 ~ UAV 2 is a walk of length one (in the graph G) from UAV 1,
for each SITL simulation. This table also provides the mean  which has access to the leader’s position, whereas UAV 3 is
RMS of the percent error, that is, the RMS of |g; |/l il awalk of length 2 from UAV 1. The directed communication
averaged over the n UAVs. (Simulation 2) results in smaller RMS position errors than the

In Simulations 1 and 2, UAV 1°s RMS position error is undirected communication (Simulation 1). This observation
smaller than that of UAV 2, which is smaller than that of  is most likely a result of UAV 1 and UAV 2 using feedback
UAV 3 as shown in Table 1. UAV 1’s RMS position error is ~ from fewer UAVs for the directed case. Notably, UAV 1 only
smallest because it has direct feedback of the leader’s posi-  uses feedback from the leader and UAV 2 only uses feedback
tion, whereas the other UAVs do not. Furthermore, UAV 2’s from UAV 1. The RMS position error is smallest for Simula-
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tion 3 because each UAV has direct feedback of the leader’s
position. These simulations suggest that it is desirable for
each UAV to be closely connected (i.e., a short walk in the
graph G) to a UAV that has a measurement of the leader’s
position.

10 Experimental results

This section describes the results of flight experiments using
the formation control (5)—(15) with the multi-loop imple-
mentation described in Sect.8. These experiments were
conducted at the Lexington Model Airplane Club in Lexing-
ton, Kentucky, USA. Each UAV is launched from a bungee
launcher and uses the Pixhawk’s built-in automatic takeoff
functionality. After all UAVs have been launched, each UAV
(except the leader) is switched to fly-by-wire-A mode and
formation-control is engaged using a switch on the radio-
control transmitter for the corresponding UAV.

The speed dynamics are (2), where f; = —0.4s; and
gi = 0.4, which implies that the speed dynamics are low
pass with unity gain at DC, where the time constant 0.4 is
estimated from the closed-loop step response of the UAV with
the middle-loop speed control. The barrier function is imple-
mented as i; = 1, which implies that the barrier function
does not enforce speed bounds. However, the desired speed
sq.i 1s saturated if it lies outside the interval [18, 30] m/s. To
avoid stall, the commanded airspeed u; + s, ; — s; is saturated
if it lies outside the interval [18, 30] m/s. The scalar control
function p; is given by Example 1 with v; = 2.5 x 105,
v = 1l,andm = 0.5. Leta; = 1,b; = 0, and ¢;(t) =
0.0003s§’i(t). In these experiments, the gains §; and B;; are
implemented as diagonal matrices rather than scalars. This
generalization to (6) allows for different gains to be used in
each inertial direction. In these experiments, the gain in the
vertical direction is less than that in the horizontal plane in
order to limit oscillations in y; while yielding small position
errors in the horizontal plane. The values for ; and ;; are
provided in each experiment. The formation and middle-loop
controls are implemented at 10 Hz.

The leader’s acceleration ¢, is estimated by assuming that
qg satisfies (1)—(3) with the subscripts i replaced by g, and
where vg = e and s, = lg¢ |l. Thus, differentiating (1) yields
Gg = sgRge1 + 55 Roe1. We estimate §, using numerical dif-
ferentiation with a low-pass filter. We compute Rg using (25),
where w, is computed from (26) using estimates of y; and .

Specifically, y, is estimated using numerical differentiation

. .. . . . gtangg
with a low-pass filter, and o is estimated as o5 ~ Sg 0050y

which is the relationship for a coordinated turn (Beard et al.,
2014).

Experiment 1 During this experiment, the wind was approx-
imately 4 m/s from the northwest, and the ambient tempera-
ture was approximately 20° C. This experiment has a leader

Leader

—_—

¢ (2, Y, 200 200

so

Fig.14 Experiment 1: Trajectories of leader and agent in the horizontal
plane with time as the vertical axis. The axes e][qi and e; qi are the
position of the ith aircraft to the north and east of a fixed GPS reference
location, which is the origin of the inertial frame E

UAV and n = 1 additional UAV. The desired relative position
isvp =[=10 —10 20]T m, and Bi = diag(150, 150, 45).
First, the leader UAV flies in a circle with a 120 m radius for
approximately 260 s. Next, the leader UAV flies a rectangular
flight path based on several waypoints. Figure 14 shows the
UAV trajectories in the horizontal plane, where the vertical
axis is time. By r = 20 s, the UAV has achieved the desired
formation relative to the leader and stays in formation for the
remainder of the experiment. Figure 15 shows the first circle
in the trajectory from an overhead view, and Fig. 16 shows the
transition from circles to rectangles from an overhead view.
Figure 17 shows the agent’s position relative to the leader as
well as the desired relative position x; in each direction. Fig-
ure 18 shows the actual and desired speed, flight-path angle,
and heading angles of the agent. For this experiment, the
RMS errors are Py = 7.7 m, and Pr;; = 8.2 m, where
teo0=40st.t=250s,t0=270s,and t, y = 960 s. A

Experiment 2 During this experiment, the wind was approx-
imately 2m/s from the southwest, and the ambient tem-
perature was approximately 32° C. This experiment has a
leader UAV and n = 2 additional UAVs. The desired rel-
ative positions are vy = [—10 10 20]T m and v, =
[-10 —10 —20]"m,and 8] = B> = diag(105, 105, 31.5)
and B12 = Br1 = diag(50, 50, 15). The leader UAV flies a
rectangular flight path based on several waypoints. Figure 19
shows the UAV trajectories in the horizontal plane, where the
vertical axis is time. By ¢ = 40 s, the UAVs have achieved the
desired formation and stay in formation for the remainder of
the experiment. Figure 20 shows the first rectangle in the tra-

@ Springer



Autonomous Robots

600 T . . : .

550 f

500 r

450 r

€1T<Zz‘ (m)

400 r

350

300 ' ' ' ' '
450 500 550 600 650 700 750

erzr%' (m)

Fig. 15 Experiment 1: Abbreviated trajectories of the leader and agent
in the horizontal plane. The leader follows a circular trajectory and the
agent converges to the desired relative position. The axes equi and egqi
are the position of the ith aircraft to the north and east of a fixed GPS
reference location
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Fig. 16 Experiment 1: Abbreviated trajectories of the leader and agent
in the horizontal plane as the leader transitions from the circular to
rectangular trajectory. The agent remains in formation. The axes e]fqi
and egq,- are the position of the ith aircraft to the north and east of a
fixed GPS reference location

jectory from an overhead view. Figure 21 shows each agent’s
position relative to the leader as well as the desired relative
position yx; in each direction. Figure 22 shows the actual and
desired speed, flight-path angle, and heading angles of each
agent. For this experiment, the RMS errors are P, | = 8.6 m,
and Prp = 8.8 m, where #, 0 = 45 s and #; f = 680 s. A

Experiment 3 During this experiment, the wind was approx-
imately 2m/s from the southwest, and the ambient tempera-
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Fig. 17 Experiment 1: Agent position relative to the leader g1 — g and
[Ig1]l- The desired relative position x; is shown with a dashed line
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Fig. 18 Experiment 1: Actual (solid) and desired (dashed) speed s;,
flight-path angle y;, and heading o;
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Fig. 19 Experiment 2: Trajectories of leader and agents in the horizon-
tal plane with time as the vertical axis. The axes e]rqi and egqi are the
position of the ith aircraft to the north and east of a fixed GPS reference
location
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Fig.20 Experiment 2: Abbreviated trajectories of the leader and agents
in the horizontal plane. The leader follows a rectangular trajectory and
the agents converge to the desired relative positions. The axes eTqi and
e;rq,- are the position of the ith aircraft to the north and east of a fixed
GPS reference location

ture was approximately 32° C. This experiment has a leader
UAV and n = 2 additional UAVs. This experiment is similar
to Experiment 2, but the formation control is only used to
control the UAV formation in the horizontal plane (i.e., in 2
dimensions). In this case, the roll command ¢ ; and throttle
command 7; are determined from the middle-loop controls
(20) and (21). However, the pitch command 6y ; is determined
from a PID control designed to have egql- track a constant alti-
tude command. These commands are —80 m and — 120 m for
UAV 1 and UAV 2, respectively. Note that the inertial frame
is north-east-down, which implies that negative values in the
e3 direction correspond to positive altitude. For the formation
control in the horizontal plane, the desired relative positions
are v = [-10 —10]" mand v, = [-10 10]" m, and
B1 = B2 = 105 and B12 = B21 = 50. Note that the desired
relative positions and gains in the horizontal plan are the same
as those in Experiment 2. The leader UAV flies a rectangu-
lar flight path based on several waypoints. Figure 23 shows
the UAV trajectories in the horizontal plane, where the ver-
tical axis is time. By + = 40 s, the UAVs have achieved
the desired formation and stay in formation for the remain-
der of the experiment. Figure 24 shows each agent’s position
relative to the leader and yx; in each direction in the hori-
zontal plane. This figure also show the agent’s altitude and
the desired altitude. Figure 25 shows the actual and desired
speed, flight-path angle, and heading angles of each agent.
For this experiment, the RMS errors are P;;; = 6.7 m, and
Pr2 = 8.1 m, where t; o = 45 s and #, f = 570 s Note that
Pr.i is computed based on the position error in all 3 directions;
thus, the results can be compared with those of Experiments
1 and 2. A

The RMS position errors for each UAV and the RMS posi-
tion errors averaged over the n UAVs are in Table 2 for each
experiment. The RMS position errors for Experiments 1 and

2 are similar, which demonstrates that adding the additional
UAV does not substantially degrade the performance. The
RMS position errors in Experiment 3 is improved relative
to Experiment 2, which demonstrates that using formation
control only in the horizontal plane (i.e., 2 dimensions) and
a separate altitude control can improve performance.

Table 2 also provides the mean RMS of the percent error,
that is, the RMS of ||g; ||/l xi|l averaged over the n UAVs.
Since Experiment 3 uses formation control only in the hor-
izontal plane and there is no desired relative position y; in
the vertical direction, it is not possible to compute a mean
RMS of the percent error that is commensurable to those in
the other experiments and the SITL simulations. Thus, this
metric is not reported in Table 2 for Experiment 3.

The mean RMS of the position errors for the experiments
are approximately 6 times larger than those for the rectan-
gular position of the SITL simulation with the comparable
communication structure (i.e., Simulation 3). We attribute
this to several factors. First, the desired relative positions
v; in the experiments have larger magnitude than those in
the SITL simulations. Large ||v;| was used in the experi-
ments for safety, specifically, to limit the chance of collisions
between UAVs. However, since v; is the desired relative posi-
tion resolved in the leader’s velocity frame F, it follows that
larger ||v; || results in more aggressive desired trajectories for
the UAVs (i.e., || x;|| are larger). This difference is reflected
by the fact that although the mean RMS position error for
the experiments is approximately 6 times larger than those
for Simulation 3, the mean RMS of the percent error is only
2 times larger (34% and 35% for Experiments 1 and 2 com-
pared to 18% for Simulation 3). Thus, the more aggressive
desired trajectories is a significant driver in the larger RMS
position errors for the experiments. Note that these more
aggressive desired trajectories result most notably in more
aggressive desired speed sq,; as observed by comparing the
desired speeds in SITL simulations (see Figs.9, 11, and 13)
to those in the experiments (see Figs. 18, 22 and 25). A sec-
ond factor contributing to the difference between experiment
and SITL simulation is that the UAV model (1)-(3) does
not account for attitude dynamics; it only includes attitude
kinematics. Furthermore, the unmodeled attitude dynamics
may have a larger impact on the experimental results because
the experimental UAV has slower attitude dynamics than the
SITL UAV. Third, the speed dynamics for the experimental
UAV are more uncertain than those of the SITL UAV. For
example, the experimental UAV’s throttle response changes
as the flight battery is depleted. This effect is not mod-
eled in SITL. Fourth, the SITL simulations do not include
time-varying wind, whereas the experiments do. Fifth, the
multi-loop control is implemented at 25 Hz for SITL but
only 10 Hz for the experiments (because of data-rate lim-
itations in interagent communication and in the interface
between the Pixhawk and Raspberry Pi). Sixth, since the
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Fig.21 Experiment 2: Agent position relative to the leader g; — g, and ||g; ||. The desired relative position x; is shown with a dashed line
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Fig.22 Experiment 2: Actual (solid) and desired (dashed) speed s;, flight-path angle y;, and heading o;

experimental UAVs communicate over a wireless mesh net-
work, packet loss occurs frequently in the experiments. This
packet loss manifest as time delay in the feedback data. In
contrast, packet loss does not occur in SITL.
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Appendix A
Proof of Theorem 1
Proof To examine the speed error s;, consider the partial

Lyapunov-like function Z; : §; x Sqi — [0, 00) defined
by

1 [/s; —sdi 2
Zi(si,saq) = = [——=) Al
i (i Sd,l) 2( hi(s0) ) (A1)

and it follows that

5 aZ i 5 i) . aZ [ s i) .
Zi(si, sd,i) A i (i sd,l) §i + i (i sd,l) Sai
as; 954,
(s —5d.i) (hi(si) — (si — Sd,i)’é(&'))
hi(si)? hi(si)
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Fig.23 Experiment 3: Trajectories of leader and agents in the horizon-
tal plane with time as the vertical axis. The axes equ,- and egq,- are the
position of the ith aircraft to the north and east of a fixed GPS reference
location

(si — Sd,i) .

niGsn? o (A2

X.§,‘ —

Evaluating (A2) along (2) and (14) and using (17) implies
that for all 5; € S;,

2 <4
. a;§: b;s:; ai
Zi(si, 84i) = — L < 57, A3
(i sa) hi(si)*  hi(si)3 ~ hl.zs’ (&3)
where
hi £ max hi(s) > 0. (A4)

SEO;

To prove iv), note that 5;(0) € S;. Assume for contra-
diction that (O3) is not satisfied, which implies that there
exists #; > 0 such that for all ¥ € [0, 71), s;(t) € S; and
h(t1) = 0 (i.e., s;(t1) = 5; or 5;(t1) = s;). Since, in addi-
tion, sqi(f1) € Sa.i, it follows that §;(¢;) # 0. Thus, (A1)
yields that lim,_;, Z;(s;(t), s4,i(t)) = +00, which implies
that there exists to € [0, ¢1) such that Z; (s; (2), s4.i(©2)) >
Zi(5i(0), 54.i(0)). Since for all # € [0, 12], 5;(¢) € S;, it fol-
lows from (A3) that

Zi(si (1), 54,i(12)) = Z; (5;(0), 54,i(0))
t
+ f " Zi(s:(0). sas(0) dr
0
< Z;(5i(0), 54,;(0)),

which is a contradiction. Thus, (O3) is satisfied, which con-
firms iv).

To prove v), assume for contradiction that for all + > 0,
si(t) ¢ S;. Then, it follows from (2) and (14) that for all
t>0,
hi (s (1)) = R} (s: (D)5 (1) = bi5i (1) (AS)
Since for all t > 0, 5;(¢) ¢ S; and sq,;(t) € Sq,;, it follows
that §; (1)* > &2, which combined with (A5) implies that for
all £ > 0, hi(si (1)) > bje?. Let 13 = —h;(5;(0))/(b;e?), and
it follows that

13 .
hi(si(13)) =hi(Si(0))+/0 hi(si(1))de

> hi(s:(0)) + bie’t;
=0.
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Fig. 24 Experiment 3: Agent position relative to the leader ¢; — gy and ||g; || in the horizontal plan, and the agent altitude. The desired relative

position x; and desired altitude are shown with dashed lines
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Fig.25 Experiment 3: Actual (solid) and desired (dashed) speed s;, flight-path angle y;, and heading o;

Table2 RMS of ||g;|| in m, mean RMS of ||g; || in m, and mean RMS
of the percent error

Pr1 Pr2 Mean % Error
Experiment 1 8.2 N/A 8.2 34
Experiment 2 8.6 8.8 8.7 35
Experiment 3 6.7 8.1 7.4 N/A

Since h;(s;(t3)) > 0, it follows that s;(3) € S;, which is a
contradiction. Thus, there exists #y > 0 such that s; (ty) € S;.
Next, note that iv) implies that S; is positively invariant. Thus,
since 5;(0) ¢ S; and s;(f9) € S;, it follows that there exists
T € (0, tp) such that for all t € [0, T'], s5;(¢t) ¢ S; and for all
t > T,s;(t) €S;, which confirms v).

Next, define B £ {7 € R3: ||| < 2}, and consider the
partial Lyapunov-like function Y : B — [0, 2] defined by

Y3 = 5l (A6)

and it follows that

. Y (y;) - ~T 2

YGi) £ 8;, 5i = 555 (A7)
1

Since y; and yq ; are unit vectors, it follows that yl.T vi=0
and y({ iVa,i = 0. Thus, evaluating (A7) along the trajectories
of (3) and (15) yields

T -
Ya,iYi

T
YaiRiloilxvi

Y3 = =] Yai —
=~y Jai —
= —y! Yai — civa i Ri[ R [Vilxyailxvi

+ 37 9diva i Ri[RT [yl x va il x vi
— T yaivd i RiRT il Jailx vi- (A8)
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Next, since [RTx]x = RT[x]«R, and [[x|]xx2]lx =
—x1x2T + xleT, it follows that

Y(5i) = =y $ai — (ci — ¥} $a)yaillyilx yailxyi
— T yaivdillyilx Pailx i

= =y Yai — (ci = ¥ JaD (1 — Gg 90
+ 0 v, daivi

_ T . \2

= —ci(1 = (ygiyi)7)

= —ci(1 = yg oy (L + yg190)- (A9)
Note that
Y(F) =1—yivi. (A10)
along the trajectories of (A6) and (A9) yields
Y(3i) = —5¢i5 52— Y (G0)), (A1)

which is nonpositive because the codomain of Y is [0, 2].
To examine the position error g;, differentiating (16), and
using (1),(4),(5), and (7) implies that
Gi = siyi — de — i
= ki pi (&) + siyi — pd.i-

Since s;y; — pa.i = Siyi + Sd.iyi, it follows that

Gi = kipi (&) + 5iyi + 543, (A12)
where (6) and (16) imply that
E=—Pidi— Y Biildi—a) (A13)

JET\i}
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Next, define
q &

q é ' ) %‘ é E ?
Gn &n

and it follows from (A13) that

£=—((A+B)® )4, (Al4)
where ® is the Kronecker product. Since A + B is nonsin-
gular, it follows that (A14) can be viewed as a linear change
of variables between & and g. Next, (A12) implies that

G=PE + MGy ... Sayn)
+ A2(5d,1Y1s -+ Sd,nYn), (A15)
where
kipi(&1) ]
PE) = : ) (A16)
kn on (&n) _
Siyi ]
ALGIYL, -y Sayn) = : ) (A7)
SnYn i
54, 1)1
Ao(Sd,131s - -+ s Sdndn) = : , (A18)
sd,n)N’n
Thus, differentiating (A14) and using (A15) yields
E=—((A+B)® L)(PE) + AL+ Ay), (A19)

where we omit the arguments of Aj and A, for brevity. Since
A + B is nonsingular, it follows from Qu (2009, Theorem
4.25) that there exists a positive-definite diagonal matrix D €
R™ " such that R £ (A + B)TD + D(A + B) is positive
definite. Let dy, ..., d, > 0 denote the diagonal elements
of D, that is, D = diag(dy, ..., d,). Consider the partial
Lyapunov-like function X : R¥ — [0, 0o) defined by

X(E) £ dikiMi (111,

i€l

(A20)

where M; is defined in (C1). Hence, (A20) implies that

X&),

X@E) 2 y —=C¢
=Y dk IM; (I 112 )&
iel 851

=Y 2dikipi (1€ 18
i€l

=Y 2dikip] (€)é;
i€l

=2PT(E)(D ® B)E. (A21)

Evaluating (A21) along (A19) yields

%@ =—PT©(((A+BTD+ DA+ B) & 1) P(&)
—2PTE (DA + B) @ 1) (A1 + Aa)

=-PTERRB)PE) —2PT(E)Q(A + Ay)
< =36 PTE)PE) —2PT(E)Q(A1 + A2),  (A22)

where Q £ D(A + B) ® Iz, Lo £ Amin(R)/3 > 0, and Amin
denotes the minimum eigenvalue. Next, note that

1 T
0< (\/FoP(s) + ﬁQA1>
1
x (%P(E) + \/—E_OQA1>,
which implies that

1
—2PT(©) QA1 < PTE)PE) + %ATQTQAl

< PTEPE) +6ATA, (A23)

where ¢ £ Amax(QT 0)/€o > 0 and Apax denotes the max-
imum eigenvalue. Similarly,

—2PT(E)0A; < 6 PTE)PE) +€1A] As. (A24)

Thus, substituting (A23) and (A24) into (A22), and using
(A16)-(A18) yields
X(©E) < —LoPTE)PE) + LATA + 1A A

=Y — okl llpi EDIP + 157 + Lusg 115117,
iel

(A25)

Finally, letr; € (0, 2) and consider the Lyapunov function

V:R3”XBX~~~XB><81x-~~xSnde,]x~-~de,n—>
[0, co) defined by
V(%‘ ylv-"9yl’laslv~" Sﬂ7sd17" sdl’l)
2h?
=—X<$)+Z Y(y, )+ EZiGsisa) ).
(A26)

Using (A3), (A11) and (A25) to evaluate 1% along the closed-
loop trajectories yields that for all (&, y,...,
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ﬁn,sl,...,sn,sd,l,...,sd,n)eR3”xBx X Bx S8 x

X Sy x Sq,1 X -+ X Sdons

<.
Hl>

207 .
Y(yz) + _Z (i, sq 1))

—X(E) - Z( ‘
—Z( E i (D11

iel
2(2-Y() - ~
+ (%‘ 1) Sizllyi||2+si2>,
i

where we omit the arguments from V.

To prove i), define B; 2 {; € R3: ||3;]|> < 4—r;}. Since
2—Y@) =2—5l?/2 and r; € (0,2), it follows from
(A27) thatforall (¢, ¥1, ..., Yu, 81, .-+ Sn,Sd.1,---,8dn) €
R x By x - xB, xS x--x8y X 84,1 X -+ X Sd.ns

(A27)

. Lo .
ve->" (Ek?||pi<si)||2 +s,.2) :

i€l

which is nonpositive. Thus, the origin is a Lyapunov stable
equilibrium, which confirms i).

To prove ii), since R; (0) € R;, it follows from (A10) that
Y3 (0)=1- y({i(O)Ri (0)v; < 2, which implies that

ri £2-Y(3i(0) € (0,2].

Furthermore, since (A11) implies that Y (yi) <0, it follows
that forallt > 0, Y (3;(¢)) < Y (9;(0)). Thus, for all > 0,
2-Y(Qi@®) =22-Yi(0) =r. (A28)

Next, consider (A26) with r; replaced by r;, and it follows
from (A27) withr; replaced by r; and (A28) that forallz > 1,

. tok?
v <> (‘2—1’||pi<si<t>)||2

i€l

+ 51O + 5 (r>2), (A29)

which implies that V is nonincreasing. Thus, V is bounded,
which implies that X is bounded. Since, in addition, X is radi-
ally unbounded, it follows that £ is bounded, which implies
that there exists & > 0 such that forall 7 > 0, [|& (1)||* < &;.
Since, in addition, w; is continuous and its codomain is
(0, 00), it follows that

n; = lnf/h(lléz(t)ll )= min 1;(z) > 0. (A30)

z€[0,&]
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Next, it follows from (C2) that
fii = max p;(z) > 0,
z>0

which implies that

& 117
MiE 1) < /0 A dw = @& (A31)

Thus, using (5), (A30), and (A31) yields that for all # > 0,

2
[V
i & ()P = w2 1& @1 = E—{Mi(ns,-(t)u%. (A32)

Next, since for all 1 > 19, s;(t) € S;, it follows from (A1)
and (A3) that lim;_, ~ §; (z) = 0. Since, in addition, for all
t >0,sq,i(t) € Sq.i, it follows that

h; & inf h;(si (1)) > 0,
t>1
and using (A1) yields that for all t > #,

§i()% = 207 Zi(si (1), 54, (1)). (A33)

Substituting (A6), (A32), and (A33) into (A29) implies that
forall t > 19,

k22

. V4 L
V() < —Z( 2 ——=M; (& O17) + 257 Y (5 (1))

i€l

+ 217 Z; (si (1), sd,ia))). (A34)

Next, define

ZOki,Uw2 Citi
> = min ——— > 0, £3 £ min — > 0,
iel id; iel 2
02 mi ha; a
4 — ml:%l }—12 > 07 ES = min {527 £37 £4} > 05
le N
l

and it follows from (A34) and (A26) that for all r > ¢,

y dik; 452
V) = _Z (@E—M (&1 )+K3—Y(yl (1))
iel Cili
2h?
+£4a__lzi(5i(t),5d,i(l))) < —Ls5V(1).

1

Thus, for all ¢ > 19, V(1) < e 50V (). Since V con-
verges exponentially to zero, it follows from (A26) that X (§),
Y (3i), and Z; (s;, sq,i) converge to zero exponentially. Since
Y (3;) converges to zero exponentially, it follows from (A6)
that y; converges to zero exponentially. Next, since for all
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t>t,si(t) €S, it follows from (A1) and (A4) that for all
t> 19, 5 (0)* < Zh?Zi (i (1), s4,i(¢)). Thus, s5; converges to
zero exponentially. Finally, note that for all ¢ > 1y,

5 & ()12 )
M;(11&: ()] )2/0 w,dw = p 1§ @7 (A35)

Since X (§) converges to zero exponentially, it follows from
(A20) that M;(&;) converges to zero exponentially. Thus,
(A35) implies that &; converges to zero exponentially, which
combined with (A14) implies that g converges to zero expo-
nentially, which confirms ii).

To prove iii), since lim;_, o g; (t) = 0, it follows from (16)
that (O1) is satisfied. Next, note that since sq ; is bounded,
lim;— o0 & (1) = 0,lim;, o §; (1) = 0,and lim;_, oo y; = 0, it
follows from (A12) that lim,_, o 61'}- (t) = 0, which confirms
(02). O
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