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Utilizing a retrospective cost adaptation (RCA) algorithm to
achieve data-driven, adaptive, real-time (DART) precision
meteorological forecasts
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Highly-localized weather forecasts are an emerging need for the operational flight safety of
uncrewed aerial vehicles (UAVs), particularly given the expected growth of UAV shipments and
uses. Highly-localized forecasts will also serve to improve the tracking of toxic or contaminant
clouds associated with accidents or incidents such as a train derailment or chemical plant fire.
Therefore, with the ultimate goal of creating a data-driven, adaptive, real-time (DART) solution,
the Weather Research and Forecasting (WRF) model has been augmented with a retrospective
cost adaptation (RCA) algorithm as a potential means for improving precision meteorological
(sub-1 km) forecasts. The RCA algorithm serves to adapt the simulated horizontal wind speed
component values to observed measurements collected by appropriately instrumented UAVs
at specified geographic locations. Horizontal wind speed data that was incidentally gathered
from a UAV formation flight control experiment at the University of Kentucky flight field was
employed to evaluate and validate the DART solution. The results indicate that when the RCA
algorithm is employed with the WRF model, there is a 14% reduction in both the # and v wind
speed component mean absolute errors compared to the baseline WRF model. The next step
is to further validate the WRF model augmented with the RCA algorithm via flight test data
collected specifically for this purpose in August 2023 at the University of Kentucky flight field.
Once the promise of the DART approach is fully proven and operational, the ensuing forecasts
will benefit the UAV community and contaminant incident first responders.
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Nomenclature
Weather Research & Forecasting (WRF) Model
n = traditional terrain-following hydrostatic vertical coordinate system
Ne = user-specified value of 7 where vertical coordinate fully transitions to pressure-based
Pd = pressure of dry air
)2 = pressure at selected atmospheric top
Ds = pressure at surface
B = third order polynomial to transition from sigma vertical coordinate to a pressure based vertical coordinate
C1,C2,C3,C4 = coeflicients of third order polynomial
Ha = vertical coordinate
g = gravitational acceleration
Pd = density of air
Az = vertical height
v = velocity vector
v = covariant velocity vector
w = contravariant vertical velocity
Om = moist potential temperature
qm = mixing ratios of moisture variables
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1) = geopotential

a = inverse of density for air

ag = inverse of density for dry air

u,v = horizontal velocity components

W = vertical velocity component

0% = specific heat ratio for dry air

R4 = ideal gas constant for dry air

Po = reference surface pressure (typically 103 pascals)

Fy,Fv,Fw,Fe = forcing terms as a result of physics, turbulent mixing, spherical projections, and earth’s rotation models
t = time

Fx, Fy = independent forcing terms used by RCA algorithm as the adaptation parameter 6(n)

Retrospective Cost Adaptation (RCA) Algorithm

Atagape = adaptation time step

Nadapt = positive integer

At = computation time step

N = number of measurement locations

n = adaptation time step

0(n) = parameter modified to adapt simulation to measurements
¢mi = measurement at the i™ location

bs.i = simulated value at the /™ location

Z(n) = performance, difference between simulated and measured values at specified locations
f = feedback vector of simulated results

M;(n) = setof square matrices (6 X 6) at each adaptation time step

N;(n) = setof matrices (6 X f) at each adaptation time step

set of column matrices (1 X ) at each adaptation time step

(0] adaptive parameter

7/ = column matrix composed of the feedback vector, 6(n), and value 1
0 = optimization variable
Lr

H

h
—_
=
~
Il

= retrospective performance

f = jth impulse response parameter from 6 to {
= stacked matrix of adaptive parameter Q
= stacked matrix of optimization variable O
= retrospective cost

RCA Subscripts

m measurement

S simulated

r retrospective

I. Introduction
GIVEN the anticipated growth of the commercial UAV market, there is a growing need for data-driven, adaptive,
real-time (DART) precision meteorological (sub 1-km forecasts) for two reasons: 1) to boost public safety by
tracking hazardous contaminant clouds to better inform evacuation decisions; and 2) to improve unmanned aerial vehicle
(UAV) flight safety by avoiding hazardous flight regimes.

I1. Operational Concept
The operational concept for improving precision meteorological forecasts is effectively the same as that for tracking a
contaminant cloud, which is depicted in Fig. 1. Atthe location of a contaminant dispersion or the atmospheric/geographic
area of interest, a swarm of UAVs outfitted with appropriate sensors will be deployed. By flying in an autonomous or
semi-autonomous pattern, the UAVs will collect meteorological information and toxic particulate information, in the
case of tracking a contaminant cloud, that is telemetered in real-time to a mobile ground station. A numerical weather
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prediction (NWP) model immediately assimilates the data and is executed to provide a near-real-time forecast. Although
the figure depicts that the model is hosted at a central data center, ultimately, the concept is to house the NWP model on
a deployable server in a motor vehicle such as a van. Next, the forecast is telemetered up to the swarm’s guidance system,
which uses the information to reposition the UAVs to collect the next most beneficial set of observations. The process is
then cyclically repeated such that new observations are continuously telemetered to the ground station, assimilated into
the weather model, and then the revised forecast is telemetered back to the swarm’s guidance system to reposition the
UAVs. So, in summary, the operational concept employs a UAV-based measurement system to develop a data-driven,
adaptive, real-time (DART) meteorological forecast update within a small geographic region.

Sensor Data ——»

AR ) =
i "X\ / \ o

L; NN /, © \%3 Control Parameters «———— }}E‘E
2 "NXXX™ Mesh Network ,/ .
AR ! - -
S XXX~ . Vel -

SV \ <col® 5 “E
2ttt ' (~ e iy
ettty

/ 4 SN N
A /,‘ ; / ; i NN Weather Simulation

A A mme— N\ UAVEN Model Server
Point Source

Contaminant

Ground Station

Fig. 1 DART operational diagram for tracking a contaminant cloud

A. Use Cases

Firstly, the projected use in a wide range of industries and applications is driving growth in the commercial global
UAV market from USD 10.98 billion in 2022 to USD 54.81 billion in 2030 [1]. Currently, photography is the dominant
drone use case, followed by agriculture and inspection associated with real estate [2]. However, the future growth of the
UAV market will be increasingly due to emerging uses such as disaster management, relief and rescue operations, and
logistics and transportation operations [2]. Additionally, over the next ten years, the use cases involving distribution and
transportation will have the largest economic impact [3].

Regarding the UAV military market, a report by Fortune Business Insight estimates that by 2030, the worldwide
market size is expected to grow from USD 12.55 billion to USD 35.60 billions [4]. Therefore, the size of the military
market is anticipated to grow at a slower rate, even though it is currently larger than the commercial market. Drones
employed by the military are utilized for both tactical and strategic purposes, including supply logistics, combat sorties,
reconnaissance, and surveillance [5].

Given the foreseen growth in both the commercial and military UAV markets, precision weather forecasts will be an
imperative to maximize UAV asset utilization while minimizing operational flight risk.

Secondly, given the worldwide trend of increased urbanization, any transportation mishap that releases dust, debris,
or toxins into the atmosphere has the potential to endanger nearby inhabitants. An analysis of the U.S. DOT Pipeline
and Hazardous Materials Safety Administration database [6] indicates that there are about 280 ‘vapor(gas) dispersion’
occurrences in the United States each year. The damages resulting from these dispersions are not in direct proportion to
the number of incidences and range from USD 2 million to USD 31 million between 2014 and 2022. Consequently,
regardless of the cause, improving the capability to track dispersions via improved precision meteorological predictions
will benefit first responders in public evacuation decision-making.

B. Prior Research

The history of weather forecasting is quite lengthy and started well before 1848, when the Smithsonian launched
a meteorological observation program that sought to leverage the newly implemented telegraph networks to provide
advance notice of bad weather [7]. More recently, precision weather modeling progress has been made by studies
examining high-resolution planetary boundary layer (PBL) forecasts. A dissertation by Mayer (2011) [8] provided a
synthesis and collection of papers covering the use of a UAV for PBL studies, while a technical report by Passner et al.
(2012) [9] evaluated real-time weather observations from a UAV to update the Weather Research and Forecast (WRF)
model with observation nudging. Papers by Jacob et al. (2018) [10] and Nolan et al. (2018)[11] employed large eddy
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simulation (LES) models to profile the boundary layer by representing the flight of small UAVs and predict Lagrangian
coherent structures, which can contain concentrations of hazardous gas, respectively. In addition, studies by Liu et al.
(2020) [12] and a dissertation by Wiersema (2020) [13] have used the WRF-LES model with fine grid resolutions to
study regions with complex terrain, like mountainous areas. Some studies have evaluated the dynamic downscaling of
WRF model predictions, such as [14]. Moreover, Abdelghaffar et al. (2017) [15] have looked at contaminant source
localization techniques to feed UAV decision-making algorithms as a way to identify the location of the next observation
sample. Furthermore, the WRF-LES model was employed in a paper by Pinto et al. (2021) [16] to support real-time
flight planning, while the FastEddy® model was used by Mufioz-Esparza et al. (2021) [17] to explore micro-scale
weather modeling to support UAV operations in an urban environment.

C. Study Scope

This study seeks to build on the aforementioned prior efforts by taking an initial step towards a DART weather
simulation model by developing a data-driven, adaptive model while bearing in mind the real-time requirement.
Consequently, two major components are required: 1) a numerical weather model on the front end; and 2) a real-time,
or near-real-time, method to adapt the model to observations on the back end. So, as depicted in the middle box in Fig.
2, the research scope is to augment the Weather Research and Forecasting (WRF) model with the retrospective cost
adaptation (RCA) algorithm.

real-time faster than real- near-real-
assimilation time processing time update

Observations weather simulation
from sensors on model Forecast update sent to
UAV swarm a i) appropriate personnel

7 WRF model basgd on the use case
(precision meteorology: * First responders
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Fig. 2 Research scope is to develop a DART solution utilizing the WRF model augmented with the RCA
algorithm

The WRF model, or more specifically, the Advanced Research WRF (ARW) model, is open-source code that is
managed by the University Center for Atmospheric Research (UCAR) for the National Center of Atmospheric Research
(NCAR). An overview of this model is provided in the next subsection, while the governing equations are described in
the Numerical Frameworks and Formulations section.

The RCA algorithm was originally developed in the adaptive control literature. Additional information about the
history of this algorithm and the algorithm formulation as applied in this research is also provided in the Numerical
Frameworks and Formulations section.

D. Weather Research and Forecast (WRF) Model

1. Overview

The selected NWP model for this effort is the Weather Research and Forecasting (WRF) model, or more specifically,
the Advanced Research WRF (ARW) model, which is managed by the University Center for Atmospheric Research
(UCAR) for the National Center of Atmospheric Research (NCAR). Briefly stated, the ARW model solves the
conservation of mass, momentum, and energy equations along with the equation of state (ideal gas law), with a
hybrid-terrain-following hydrostatic-pressure vertical coordinate system, various physics options — microphysics,
cumulus parameterizations, surface physics, planetary boundary layer physics, and atmospheric radiation physics —
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and employs a time-split Runge-Kutta integration scheme [18, 19]. The major elements or programs of the WRF model
are [18]:

* WREF Preprocessing System (WPS): Synthesizes observations from various meteorological stations and sources
for input into real.exe

« WRFDA (WRF Data Assimilation): Data assimilation program for updating the simulation with real-time
observations

¢ Advanced Research WRF (ARW): Global weather simulation, which generates the model forecast

 Post-processing/Visualization Tools: Graphic, plotting, and animating results

The governing equations in this model are presented in the next section, Numerical Framework and Formulations.

2. WRF Large Eddy Simulation (WRF-LES)

For cases where the horizontal grid resolution is 1-km or greater, twelve user-selected atmospheric boundary layer
(ABL) or planetary boundary layer (PBL) schemes are available, as listed in the WRF V4 Description [19]. However,
WREF has the option to run a large eddy simulation (LES) at high resolutions to capture small-scale phenomena and is
commonly referred to as WRF-LES. Given that the use cases are for precision meteorology within the PBL, the LES
option of WRF was employed for all simulations. The resolution for the WRF-LES is much finer but is constrained near
the surface to a maximum vertical resolution of 16 meters and a maximum horizontal resolution of 30 meters, due
to the heterogeneous surface and elevation [20]. Moreover, data assimilation is also possible with WRF-LES and is
referred to as WREF real-time four-dimensional data assimilation LES (WRF RTFDDA-LES) [21]. In LES mode, large
turbulent eddies are explicitly resolved, although turbulence that is below the filter imposed by the computational grid
must still be determined via a sub-grid scale (SGS) model [22]. The choices of these models include a constant scheme,
a 1.5-order prognostic equation for turbulent kinetic energy (TKE) scheme, a 3D Smagorinsky first-order turbulence
closure scheme, and a 2D Smagorinsky scheme based only on horizontal wind for horizontal diffusion [18, 19]. Note
that the TKE model was utilized for all simulations performed in this study.

III. Numerical Framework and Formulations

A. WRF Governing Equations
Please note that the governing equations as described below are per the NCAR Technical Note, A Description of the
Advanced Research WRF Version 4 [19]. This information is included herein for completeness.
A traditional terrain-following hydrostatic pressure vertical coordinate system, or mass vertical coordinate, is given
by [23]
_ba= D
Ps — Pt
where the hydrostatic component of the pressure of dry air is p4, while the pressure at the top and surface boundaries are
represented by p, and py, respectively. Note that while terrain-following hydrostatic pressure coordinates are commonly
described as “sigma" coordinates, in the case of the WRF model, the sigma coordinate employs the Greek letter eta.
Version 4 of the WRF ARW has changed this traditional sigma coordinate to a hybrid coordinate, as defined by Park
(2003) [24], that permits the terrain effects to be ramped out with increasing altitude. A third-order polynomial, which
allows for a means to smooth the transition from a sigma coordinate at the surface to purely a pressure coordinate at
upper levels, is established as

ey

B(i) = c1 + can+c3n” + can’ @
subject to the following boundary conditions (where the subscript 7 indicates differentiation),
B(1) =1, Bn(l)z I, B(n:) =0 Bn(nc)z()’ 3
yielding,
__ e _ne@dmerne) o 20 knerng) o (L)
(1_770)3’ (1-1¢)3 ’ (1-7¢)3 ' (l_nc)3’
noting that 7. is user-specified value of 7 where the vertical coordinate fully transitions to purely a pressure method.

1

“
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The vertical coordinate is thereby defined by

pa = T = By ) (pa = po)+ 11 = By ) o = o) )

Given that within a grid cell, ugAn = Apg = —gpAz is proportional to the mass per unit area, the flux form of the
prognostic variables is given by

V=pgv=UV, W), Q=pw,  Op=pug0y, Om = Haqm, (6)

where, v = (u, v, w) are the horizontal and vertical direction covariant velocities, and w = 7} is the contravariant ‘vertical’
velocity. In addition, the moist potential temperature is given by 6,, = (1 + (R, /R4)q+) = 0(1 + 1.61q,,), while the
mixing ratios of moisture variables -- water vapor, cloud water, rain, water, etc., -- is given by Q,, = ugqm, where
dm = qv>9qc>qr, etc.

The governing equations of the ARW model also include the non-conserved variables, specifically the geopotential
(¢ = gz), even though this parameter is a prognostic variable, pressure (p), the inverse density of dry air (g = 1/pq),
and the inverse density taking into account the full parcel density @ = ag(1+ gy + ge +qr + qi +...) "

Therefore, by employing the variables defined above, the Euler equations in flux form are:

ou @\ dpao
E+(V Vu)+,uda'— (a—)a—na—Fu (7)
2% a\dpdgo
—+ (V- —+|—|=—=—=F
5 +( VU)+/lda (a )577 ay -1V (®)
ow o
aq
+(V-Vb,,) =Fe, (10)
0
g 44 (V-V) = (1)
0 -
0 iV V9) - gW] =0 (12)
((}\g—m +(V-Vqun) =Fp,, (13)
plus the diagnostic relation for the dry hydrostatic pressure:
0
22 = —aqpa (14)
n

along with the diagnostic relation for for the full pressure (dry air plus water vapor), which is the equation of state:

p=po R (1s)
Note that if a is employed to represent a generic variable, then:
V. Va 6((;111) 6((;;;1) . 6(;3751) (16)
and da da _da
V-Va= Ua— Va— Q% (17)

The specific heat ratio for dry air is y = ¢, /c, = 1.4, the gas constant for dry air is represented by Ry, and a
reference surface pressure is given by po, which is typically 10° pascals. Also, the terms Fy;, Fy, Fy, and Fg on the
right-hand side (RHS) are forcing terms that occur as a result of physics, turbulent mixing, spherical projections, and
the earth’s rotation models.
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Eq. (7) through Eq. (15) are the basic governing equations in the ARW model; however, in reality, the equations are
more complex. This complexity is due to recasting these governing equations to use perturbation variables as a means
to reduce: 1) truncation errors in the horizontal pressure gradient calculations in the discrete solver; and 2) machine
rounding errors in the vertical pressure gradient and buoyancy calculations. The details of these modifications are
detailed in the ARW description technical note [19].

B. Retrospective cost adaptation algorithm

Firstly, please note that the description of the RCA algorithm presented in this section is derived from Li et al. (2017,
2018) [25, 26], Fu et al. (2022) [27], and Sinha et al. (2023) [28].

The RCA algorithm was originally developed in the adaptive control literature. Specifically, Venugopal (2000) [29]
presents a gradient-based RCA algorithm that is effective for active noise control. A recursive-least-squares (RLS)-based
RCA algorithm is presented in Hoagg (2010, 2012) [30, 31].

In Li et al. (2018) [26], the RLS-based RCA algorithm is adopted for data-driven model adaptation rather than
adaptive control, where it was specifically used for data-driven model adaptation of the closure coefficients in a
Reynolds-averaged Navier-Stokes k-w model. Fu et al. (2022) [27] uses the RLS-based RCA to model material property
behavior.

In this work, RLS-based RCA is used to adapt independent forcing terms added to the WRF governing horizontal
momentum equations. Equations (7) and (8) are revised with an additional term each and written as

ou op a\dpd¢

—+(V-V —+|—|—7—-Fu=F 18
5y TV Vi)t paa +(01d) g ax Fu=fx (18)
171 ap a\dpd¢

—+(V-V —+|—|=—=-Fy=FH 1

ER +( U)+,udaay +(ad) anay vEIY (19)

where Fx and Fy are independent forcing terms for the x and y directions, respectively. These terms are the ones that
will be adapted by the RCA algorithm and notated as 6(n).

In addition, the first terms on the left-hand side of equations (18) and (19) are the temporal acceleration tendencies
in the x and y directions, respectively, while the second terms are the advection tendencies. The third and fourth terms
on the left-hand side of these equations represent the pressure gradient tendencies. In sum, these first four terms on the
left-hand side of equations (18) and (19) are the total mass-coupled horizontal momentum non-physics tendencies for
the x and y directions, respectively.

Furthermore, Fy and Fy are the net effects of forces in the x and y directions, respectively, due to Earth curvature,
Coriolis, turbulent mixing, horizontal diffusion, vertical diffusion, and radiation. These terms are the total mass-coupled
horizontal momentum physics tendencies.

With Fx and Fy established as 6(n), the RCA algorithm is given by

0(n) = [Fx(n) Fy(n)]" e R?, (20)

where n € N £ {0, 1,2,3,...} and n is the adaptation time step. The independent forcing terms 6(n) are updated with
the time step Atagapt = adaptAf, Where 1aqqpt is a positive integer and At is the WRF integration time step. To achieve
convergence of the RCA algorithm, 7,44t Was set to a value of one, and therefore Af,qap Was equivalent to A7, meaning
that one adaptation time step occurred with every iteration of the WRF model’s 3rd order Runge-Kutta split-time step
computations.

Next, measured values consisting of the x-component of wind speed magnitude («) and the y-component of wind
speed magnitude (v), for a combined total of 2N measurements at N specified locations, are required for the RCA
algorithm. Within the context of this algorithm, the term measurement is defined as a priori information about the
horizontal velocity distribution at the N locations. The measurements and the associated simulated values are specified
by

¢m, 1 (n)

11>

eRk, 21

D, :
¢m, 2N (n)
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¢s, 1(”)
o, = : € R, (22)

@5, 2n (1)

where ¢,, ;(n) € RY is the i measurement value, ¢, ;(n) € RY is the i simulated value, lp = ¥~ /;,and n € N,
i=1,...,2N, since each location has a u measured value and a v measured value. To adapt 6(n), performance is
defined as

{(n) = Oy(n) — @py(n). (23)

The external driver for 8(n) is a vector of simulated flow-field output (horizontal wind speed component magnitudes u
and v for this study), which is denoted by f(n) € R, Then, for all n € N, 6,, is determined from an auto-regressive
moving-average (ARMA) model with a feed-forward bias as given by

0(n) = ZM,-(n)H(n—i) +2Ni(n)f(n—i) + L(n), (24)
i=1 i=1

where 7, is a positive integer, M; (n) € R/*! is a square matrix at each adaptation time step, N;(n) € R/*¥ is a matrix
at each adaptation time step, and L(n) € R/¢ is a column at each adaptation time step.

Note that M;(n) is the auto-regressive parameter, N;(n) is the moving average, and L(n) is the feed-forward
bias, and these values are updated according to the adaptive law presented herein. The ARMA model is initialized
with M;(0) = Oz,xz,, Ni(0) = Opyxi,, and L(0) € R’ for the Fx and Fy independent forcing terms. For this study,
L(0) = 0y, since an initial feed-forward bias is not applied. The ARMA model, Eq. (24), can be rewritten as

0(n) = Q(n)y(n), (25)
where Q(n) is the adaptive parameter given by
Q(n) = [N\ (n) -+ N (n)  Mi(n) -+~ My, (n) L(n)] € RleXCrellytlolt), (26)
and ) )
fn=1)
s = [T~ | € Rt 27)
-H(n I nc)_

Next, an update equation for Q(n) is expressed by setting 0 as the optimization variable and defining retrospective
performance as

£(Q.n) = L)+ Y Hi[O - Q(n—))]w(n- ), (28)

J=0

where Q € Rlex(nels+lo)*) and @ is Q initially, n, is a positive integer, H; € R**! is the ;' impulse-response
parameter from 6 to . The methodology to determine H; is available as described in [26], with additional detail
provided in [27]. For this study, H; was analytically calculated to be a diagonal matrix with a constant value on the
diagonal equivalent to the WRF model Domain 3 integration time step size, although this diagonal constant value had to
be increased to 2.6 in order to prevent the algorithm from becoming unstable.

The retrospective performance is calculated based on the true performance by assuming that the optimization
variable Q was employed in place of prior adaptive parameters Q(n),...,Q(n —n,). As a result, the retrospective
performance serves as a proxy for the actual performance. The adaptive parameter is deemed to have converged when
Q(n) is constant, indicating that Q(n — i) = Q(n), in which case £, (Q(n),n) = ¢(n).

Recalling that vec X is the vector created by stacking the columns of matrix X, the following two stack matrices can
be defined

g(n) £ vec Q(n) € Rla, (29)
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§ % vecQ € Rla, (30)

where [, = lg(n.(If +1g) + 1). Therefore, retrospective performance can be rewritten as

ny n,
&@m) =)+ ) [W (n=-jyeH;lg- D Hio(n - )), (31)
=0 j=0
or
ny
£ (@) = L)+ ¥ (g - Y Hio(n - j), (32)
j=0
where ® represents the Kronecker product, and
Ny
P(n) 2 Z Y(n—j)®H] e Rlaxo, (33)
j=0
Next, the retrospective cost is
c T
J@m) 2 > EG.0é G0 +[a-9(0)] T[g-q(0)]. (34)

i=0

Note that I" € Rla*/a is symmetric and positive definite. The unique global minimizer of the retrospective cost J, for
each n € N, is given by

q(n+1) = q(n) - P(n)¥(m)Q " (n)¢ (n), (35)
where
P(n+1) = P(n) - P(M)¥n)Q~' (n)¥T (n)P(n), (36)
&r(n) = & (g(n),n) = £(n) + WT(n)g(n) = 3" H;f(n - j), (37)
Jj=0
Q(n) £ I, + YT (n)P(n)¥(n), (38)

and P(0) ="', Then, Q(n + 1) is computed from
O(n+1)=vec 'g(n+1) € Rloxelly+lo)+]) (39)

where vec™! is the inverse operator, meaning vec™'vec Q(n) = Q(n). Also, Eqgs. (35) and (36) are an RLS algorithm.
In summary, the RCA algorithm employed in the code-base consists of Egs. (25), (33), and (35) through (39).

IV. Validation
The WRF model set up for validation employed three nested domains centered on the University of Kentucky flight
field, which were defined within the WRF model to establish the geographic area of interest as shown in figure 3. On
November 10, 2022, as part of UAV formation flight control testing at the flight field, # and v horizontal wind speed
component data was incidentally gathered. Specifically, three UAVs — referred to as BC10B, BC10C, and BC10D —
were simultaneously flown in a stacked leader-follower racetrack formation. The collected data was used in a ‘batch
update’ validation approach as described below.

A. Batch Update Methodology

For the batch update validation approach, horizontal wind component data from UAVs BCB10C and BCB10D from
4 “‘clock’ locations in a small racetrack flight pattern that occurred between 16:22:38 and 16:32:58 on 11 November 2022,
was used as input for the RCA algorithm. This input data used a batch update procedure, meaning that the measurements
were updated once per lap. The 3D flight patterns of the three UAVs used for the batch update approach and the four
clock locations coinciding with positions of 3, 6, 9, and 12 o’clock are shown in Fig. 4 within the innermost nest, or
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Domain 3. Data from UAV BC10B from these same four clock locations and time frames was used for validation. Note,
as shown in Fig. 4, that the Domain 3 horizontal grid is composed of 16 WREF ‘tiles’, where a tile is a subsection of
a WREF grid that is sent to a different processor for parallel computations. Thus, the geographic area covered by the
three simultaneous flights is limited relative to the size of the modeled domain, as the vast majority of these flights are
primarily in a single WRF ‘tile’. Notwithstanding this limited geographic coverage, the data was deemed sufficient to
utilize and provide a validation indicator.

The data was actually collected at a sample rate of 200 Hz. Therefore, to determine an observation at one of the
four locations, measurements were averaged when the UAVs were within a 25 meters latitude and 25 meters longitude
of said location. Thus, for all three UAVs, four averaged u and v observed values were established for each lap at an
averaged timestamp and averaged altitude, with the latitude and longitude set to the associated i and j grid indices for
the clock position on that lap.

The batch update procedure required that the four most recent «# and v input observations from BC10C and BC10D
be simultaneously updated. Consequently, a common timestamp was designated as when the second or laggard UAV
crossed the 3 o’clock position in a given lap. Since the common timestamp did not exactly match the WRF model time
steps, the RCA inputs were updated when the simulation time was more than or equal to the common timestamp. Also
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the flight pattern occurred, and (b) 2D plot superimposed on a satellite map view also showing the 16 WREF tiles
of Domain 3
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note that given that the common timestamp was set at the 3 o’clock position, the measurements at the 12, 9, and 6
o’clock positions for the laggard UAV would be progressively latent or stale, while measurements for the faster or first
UAV would be even more latent at each clock position. The advantage of the batch update approach is that the entire
flow field is updated with the observations taken at roughly the same time — approximately within 30 seconds — with the
same time stamp. Plus, the added benefit is that spatial variations for the RCA algorithm input data are precluded.

B. Model Setup

V. Model Setup
As previously stated, three nested domains were defined within the WRF model to establish the geographic area of
interest centered on the University of Kentucky flight field, as previously shown in Fig. 3. All of the gray streets at the
bottom of this figure show the city of Lexington, which is laid out in a hub and spoke configuration, while the dark
yellow lines represent interstates or controlled access highways. Note that Domain 3 (D03) is the innermost domain.
Other key setup information and run-time options are provided in Table 1.

Table 1 Key WREF inputs and set-up parameters

Parameter Setting

WREF version 45

Nesting * 3 two-way, nested domains (see Fig. 3)

Domain 3 geographic region * Centered on the University of Kentucky flight field, just north of Lexington, KY
Domain 3 geographic area * 472 km?

Domain 3 horizontal grid resolution | * 50 m X 50 m

45 x 45 grid indices
16 WREF tiles (numbered O - 15)

128 levels (eta_levels), with finer resolution lower in the atmosphere
Increasing from 50 m to 123 m up to an altitude of about 2,180 m

¢ Above 2,180 m, increases from 440 m to 775 m up to the atmospheric top
defined as a pressure of 5,000 Pa.

Domain 3 vertical grid resolution

Initialization data ¢ National Centers for Environmental Prediction, Global Data Assimilation
System, Final (NCEP GDAS/FNL) 0.25 Degree Global Tropospheric Analyses
and Forecast Grids from NCAR [32]

Run simulation date/time * 10 November 2022 from 16:00 to 16:49
Integration time steps * 1 second for domains 1 and 3
¢ 1/3 of a second for domain 3
Physics option (mp_physics) 3, which is a simple and efficient WRF Single-Moment (WSM) scheme [18, 19]
LES option (km_opt) * 2, which is a 1.5-order turbulent kinetic energy 3D closure scheme [18, 19]

Of notable importance is the Domain 3 horizontal grid size of 50 m x 50 m to enable precision meteorological
forecasts. The vertical grid resolution was finer near the planetary surface and progressively became more coarse at
upper atmospheric levels since UAV operations and contaminant clouds are typically located at lower atmospheric levels.
Also, the LES option was enabled to enhance PBL modeling employing a 1.5-order turbulent kinetic energy scheme.

A. Validation Results

Two cases of the code were executed to allow for comparison and validation: 1) without the use of the RCA algorithm,
referred to as the baseline case; and 2) with the use of the RCA algorithm, referred to as the adapted simulation case.
The first validation step is to assess how the WRF-simulated flow field has changed as a result of the adaptation. Fig. 5
displays the baseline and RCA simulated 10-m wind speed and wind direction as a time progression composed of three
individual snapshots. The various colors represent the 10-m wind speed magnitudes, while the wind barbs serve to
indicate the wind direction. Figs. 5a, b, and c are progressive snapshots in time at 16:23:30, 16:30:00, and 16:33:00 on
11 November 2022, respectively, for the baseline case, while 5d, e, and f, respectively, are the same time snapshots for
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the adapted simulation case. The location of the University of Kentucky flight field is notated as a star in the plots.
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Fig.5 Time progression of 10-m wind speed magnitudes and wind directions on 11 November 2022 for the batch
update validation approach: (a) snapshot at time 16:23:30 for the baseline case; (b) snapshot at time 16:30:00
for baseline case; (c) snapshot at time 16:33:00 for the baseline case; (d) snapshot at time 16:23:30 for the RCA
simulation case; (e) snapshot at time 16:30:00 for the RCA simulation case; (f) snapshot at time 16:33 for the
RCA simulation case

A review of the baseline plots reveals that at 16:23:30, a zone of slightly lower wind speed is situated at and north of
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the flying field. This region drifts further north around 16:30:00, and by 16:33:00, it essentially dissipates from east to
west. While evaluation of the adapted simulation plots shows for the adapted horizontal wind speed components, just
south of the flight field, a small circular zone of higher wind speed commences, as highlighted in yellow at 16:23:30.
This lower wind speed region then advects with the overall flow regime towards the north before eventually fading,
but induces two circular areas of lower wind speed shown in blue. In addition, at 16:30:00, a new circular area of
higher wind speed develops, which then grows slightly and advects northward by 16:33:00. Furthermore, there are
areas of higher wind speeds, yellow and yellowish-green colors, that are visible mostly in the lower portion of the RCA
simulation charts but extend towards the north over time given the overall flow direction. Also, compared to the baseline,
which is effectively a northerly wind, the adapted simulation wind direction on the eastern half of the domain is shifted
to the north-northeast. These results indicate that the application of the RCA algorithm, utilizing flow field observations,
does indeed have an effect on the WRF model output. The flow in the entire domain was affected even though only a
small geographic region, primarily within a single WREF tile, was adapted. Moreover, adapting the flow to horizontal
wind speed component observations produces changes vertically as well, since the simulated 10-m wind speeds are
affected while the UAVS were broadly flown at altitudes between 300 m and 380 m.

The vertical changes in wind speeds due to adaptation are more readily visible in a vertical cross section of the
flow. So, Figs. 6 and 7 display 1000-meter vertical cross sections at a constant latitude of 38.1201° and a constant
longitude of -84.4977°, respectively. These figures are a time progression with the same snapshot times as the 10-m
wind speed and wind direction figure. The wind speed is roughly 3 m/s in the baseline case for both the constant latitude
and constant longitude vertical cross sections. Albeit, there are very small regions of lower wind speed at the PBL.

However, for the adapted simulation case, as soon as the adaptation starts, there is a clearly visible horizontal and
vertical effect in both of the figures, as shown at 16:23:30. The vertical cross-section at constant latitude, Fig. 6d,
particularly shows the initiation of the adaptation with a circular region of higher flow, shown in yellow between 390
m and 460 m, which also appears to induce a region of slower flow at the PBL, shown in blue. The area of higher
flow, which coincides with the location of the observations used by the RCA algorithm, grows in strength and size and
then basically persists, at slightly varying magnitudes and varying size, for the entire duration of the adaptation time
progression. Interestingly, other regions of roughly circular higher wind speeds, as depicted in a yellow color, also form
at varying locations and altitudes in these plots. For the adapted simulation in the vertical cross-section at constant
longitude charts, Fig. 6, the same formation of the circular region of higher wind speed forms at the location of the
UAV measurements between 38.1179° and 38.1193° latitude. This effect is visible as a very small yellow and red area
near the PBL at 16:23:30 and a larger but faint yellow area between 390 and 460 m altitude at the same latitudes at
16:30:00. This region grows in size and magnitude and advects north along with the overall flow, as seen at 16:33:00.
This formation of a region of higher wind speed and advection to the north occurs repeatedly during the adaptation time
frame. Therefore, based on Figs. 5, 6, and 7, the RCA algorithm does cause changes in the overall WRF simulated flow
field.

The second and key validation check is to assess the adapted WRF simulation to the BC10B observations, since the
data collected by this UAV was not used to feed the RCA algorithm. These comparisons, along with the baseline, are
shown in Figs.8 and 9 for the u and the v wind speed components, respectively. In addition, Fig. 10 breaks down the u
and the v BC10B measurements compared to the adapted WRF simulation at the four clock positions.

In terms of the overall # and v charts, compared to the baseline, the adapted simulation better represents the variation
in the horizontal wind speed components. However, the adapted value magnitudes are generally not as high nor as low
as the measurements. The v simulation values visually appear to better follow the pattern of the BC10B measurements
over time relative to the u values, particularly since there are large differences around 16:24:20, between 16:25:48 and
16:26:42, and between 16:28:30 and 16:29:24.

A visual evaluation of the horizontal wind speed component comparisons at the four clock positions shows that
the adapted simulation follows the general measurement trend. Specifically, the u values are basically flat over time at
all four locations, while the v values are slightly increasing over time, although there is variation in both wind speed
components within these broad trends. Additionally, the baseline case results also have these same trends for # and v
but are linear over time.

Importantly, in terms of accuracy improvement, Table 2 displays the average absolute errors and percentage
reductions of the baseline and adapted simulation relative to the BC10B measurements for the four clock locations, as
well as overall. Interestingly, the adapted simulation’s v absolute errors actually get respectively worse by 7.7% and
17.1% than the baseline at the 6 and 9 o’clock positions. Note that these are displayed as negative values in terms of
percentage “reduction”. Also, at 3 o’clock, the adapted simulation’s u average absolute error is marginally worse than
the baseline by 1.0%. Only for the 12 o’clock position is the adapted simulation’s average absolute error less than the
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baseline for both u and v, even though the 3 o’clock position had the least stale measurements, as described in the batch
update approach (Section ??). Therefore, in this case, there does not appear to be a discernible inverse correlation
between data latency and adapted simulation results, since a better result was achieved in a clock location with higher
latency.

Overall, however, for the adapted simulation, both horizontal wind speed component average absolute errors are
reduced by the same amount of 14.2% when compared to the baseline. Therefore, this result, when combined with the
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Table 2 Batch update u and v mean absolute error breakdown for the four measurement clock positions

o Wind speed Mean absolute Reduction
location component error (m/s) percentage
Baseline .Adapte.ed
simulation
u 0.78149 0.78953 -1.0%
3 o’clock
v 1.02671 0.82991 19.2%
u 0.76551 0.57640 24.7%
6 o’clock
v 0.59483 0.64058 -7.7%
u 0.77243 0.58447 24.3%
9 o’clock
v 0.51174 0.59923 -17.1%
u 0.41745 0.39887 4.5%
12 o’clock
v 1.28074 0.85939 32.9%
All u 0.68422 0.58732 14.2%
v 0.85351 0.73227 14.2%

more representative horizontal wind speed component variation patterns of the adapted simulation, indicates that the
RCA algorithm can improve the WRF model output with batch data updates. Finally, note that this improvement in the
simulation accuracy was achieved with very little observational data coverage of the geographic/atmospheric area under
examination.

VI. Conclusions
This study examined the viability of a means to improve precision weather forecasting via the use of the WRF model
augmented with the RCA algorithm. While the ultimate operational concept is to achieve a DART solution, the scope of
this effort was focused on developing a data-driven, adaptive solution while being mindful of the real-time requirement.
The augmented WRF model was validated using incidental # and v data collected from three UAVs during a flight
formation flight test on 10 November 2022. Based on the results of the analyses, the following conclusions can be drawn:

* The RCA algorithm will work properly with the WRF model, plus the adaptation not only changes the simulated u
and v values at the observed location, but it also affects these values for the entire geographic/atmospheric area
modeled.

* The RCA algorithm improved the overall accuracy of the WREF forecast, as the mean absolute errors of the adapted
simulation were less than the baseline WRF model by 14.2% for both u and v. However, the adapted simulation
was less accurate than the baseline at the 3 o’clock location for the # mean absolute error and at the 6 and 9
o’clock positions for the v mean absolute errors.

e The 14.2% mean absolute error reduction may understate potential real-time results since the geographic/atmo-
spheric coverage of the RCA algorithm input measurements was limited and primarily within a single WREF tile.
However, even with this limited coverage of the simulated region, the entire flow field was affected.

* Further testing is needed to both further validate the model and to examine the impact of adapting additional
meteorological parameters, such as pressure, temperature, and relative humidity.

VII. Future Work Plans
Flight tests were conducted in August 20023 at the University of Kentucky flight field, designed specifically to
validate the WRF moodel augmented with the RCA algorithm. Four flight tests were performed on two different days
using four UAVS flying in four separate racetracks, covering each WRF tile in Domain 3. The data has recently been
made available. Therefore, the immediate next step is to further validate the model and evaluate the impact of adapting
other meteorological parameters.
Ultimately, once a minimal viable product (MVP) or full system solution is developed, the viability of a real-time or
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near-real-time solution for the operational concept can be assessed and validated.
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