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Abstract

Transcriptomes from nontraditional model organisms often harbor a wealth of unexplored data. Examining these data sets can lead to
clarity and novel insights in traditional systems, as well as to discoveries across a multitude of fields. Despite significant advances in DNA
sequencing technologies and in their adoption, access to genomic and transcriptomic resources for nontraditional model organisms re-
mains limited. Crustaceans, for example, being among the most numerous, diverse, and widely distributed taxa on the planet, often
serve as excellent systems to address ecological, evolutionary, and organismal questions. While they are ubiquitously present across
environments, and of economic and food security importance, they remain severely underrepresented in publicly available sequence
databases. Here, we present CrusTome, a multispecies, multitissue, transcriptome database of 201 assembled mRNA transcriptomes
(189 crustaceans, 30 of which were previously unpublished, and 12 ecdysozoans for phylogenetic context) as an evolving and publicly
available resource. This database is suitable for evolutionary, ecological, and functional studies that employ genomic/transcriptomic
techniques and data sets. CrusTome is presented in BLAST and DIAMOND formats, providing robust data sets for sequence similarity
searches, orthology assignments, phylogenetic inference, etc. and thus allowing for straightforward incorporation into existing custom
pipelines for high-throughput analyses. In addition, to illustrate the use and potential of CrusTome, we conducted phylogenetic analyses

elucidating the identity and evolution of the cryptochrome/photolyase family of proteins across crustaceans.
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Introduction

A distinct paucity of readily available genomic and transcriptomic
resources persists for nonmodel organisms, despite recent ad-
vances in sequencing technologies and adoption of bioinformatics
across diverse fields (Mykles et al. 2016; Burnett et al. 2020).
Nonmodel organisms often harbor a wealth of useful genomic
and transcriptomic data, which can lead to discoveries and un-
foreseen advances in a diverse array of seemingly unrelated areas
(GIGA Community of Scientists 2014; Tagu et al. 2014).
Crustaceans are among the most numerous and diverse taxa on
the planet (Martin and Davis 2006; Ahyong et al. 2011; Schram
2013). Thanks to their ubiquitous presence across an extreme di-
versity of biomes (Pérez-Moreno et al. 2016; Bracken-Grissom and
Wolfe 2020), they are particularly well suited to address questions
of ecological, evolutionary, and organismal interest (Stillman et al.
2008; Pérez-Moreno et al. 2018; Wolfe et al. 2021). In addition to
their critical environmental and scientific relevance, crustaceans
are of major significance for social, economic, and food security
implications (Timm et al. 2019; Boyd et al. 2022). Nevertheless,
similar to other nonmodel invertebrates, crustaceans are severely
underrepresented in publicly accessible (and readily available)

databases such as those maintained by the National Center for
Biotechnology Information (NCBI) (GIGA Community of
Scientists 2014; Havird and Santos 2016; Hyde et al. 2020).
Obtaining data from raw read databases, such as the NCBI
Sequence Read Archive (SRA), and transforming them into a use-
able format represents a time-consuming and computationally
expensive process. The ability to search the Transcriptome
Shotgun Assembly (TSA) database and extract data in a high-
throughput manner is challenging, as most TSA transcriptomes
are assembled through different methodologies. These limita-
tions ultimately hinder accessibility of crustacean transcriptomes
for use by nonspecialists and researchers with limited computa-
tional, temporal, or financial resources.

Previous efforts in developing resources utilizing crustacean
transcriptomic data include CrustyBase, CrusTF, and Crustacean
Annotated Transcriptome (CAT) databases among others (Qin
et al. 2017; Nong et al. 2020; Hyde et al. 2020). CrustyBase provides ac-
cess to transcriptomes from 17 crustacean species through a graph-
ical interface for BLAST searches and evaluation of gene expression.
Assembled transcriptomes and expression data in CrustyBase are
uploaded by individual researchers or research groups. CrusTF is
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available as a graphical interface database dedicated to capture
transcription factors detected in transcriptomes of 170 crustacean
species. The CAT database is an annotated resource of multiple
transcriptomes generated from 7 crustacean species that is access-
ible for BLAST searches via a web-based graphical interface.

Here, we present CrusTome (a portmanteau from Crustacea
and the Greek word tomos, book or volume): a multispecies and
multitissue database of assembled mRNA transcriptomes from
201 species (currently, 189 crustaceans across 16 orders, 30 spe-
cies which were previously unpublished, and 12 additional repre-
sentatives from among Ecdysozoa). The goal of developing
CrusTome is to aid in evolutionary, ecological, and functional
studies that employ genomic/transcriptomic techniques for se-
quence similarity searches, orthology assignments, and phylo-
genetic inference, among other uses. CrusTome was generated
by assembling transcriptomic raw reads available in public re-
positories from a variety of tissues of individual crustacean spe-
cies, along with previously unpublished transcriptomic raw
reads. Transcriptomes of each species were assembled utilizing
similar methodology (discussed below) and processed to remove
microbial contamination and redundancy. By incorporating the
evidential gene pipeline (Gilbert 2019), a single refined transcrip-
tome was generated for each species and tissue type. These re-
fined transcriptomes were then combined to form a single
database, encompassing all selected species, that is presented in
BLAST and DIAMOND formats of assembled contigs and their pre-
dicted peptides. Presenting the database in these 2 formats allows
for simple and straightforward incorporation into existing custom
analysis pipelines, makingit particularly suitable for scripting and
high-throughput analyses (e.g. Pérez-Moreno et al. 2018; Drozdova
et al. 2021). The database will be updated regularly by assembling
and incorporating raw reads generated from new species and tis-
sues that are made available in public repositories. Additionally,
when advances in assembly software or bioinformatic pipelines
warrant the reprocessing or reassembly of the raw reads, updated
versions will be released. The development of CrusTome was
made possible using a high-memory computing node at the
Supercomputing Center for Education & Research (OSCER) at
the University of Oklahoma.

To showcase the utility and power of CrusTome, we present
here an example in which we conducted the first large-scale tran-
scriptomic exploration across crustaceans of the cryptochrome/
photolyase family (CPF). Cryptochromes and photolyases are
UV-A/blue-light sensitive proteins that can be found across the
entire tree of life and share a common general structure of a con-
served photosensory domain bound to 2 chromophore cofactors
(Sancar 2003, 2008; Chaves et al. 2011; Oliveri et al. 2014; Mei and
Dvornyk 2015). They are light-sensitive flavoproteins involved in
DNA repair, circadian rhythm regulation, and magnetoreception
that have also shown promising applications as optogenetic tools
(Oliveri et al. 2014; Mei and Dvornyk 2015; Hernandez-Candia and
Tucker 2020; Kiontke et al. 2020). Despite their ubiquity and func-
tional diversification, little is known about CPFs in crustaceans,
and, as such, they present an ideal opportunity to illustrate
CrusTome’s potential for phylogenetic characterization. The
code and scripts used to generate this analysis are made access-
ible, providing readers with a highly customizable framework
and pipeline that begin with BLAST searches across CrusTome
and end in developing highly refined phylogenies of gene families.
By utilizing CrusTome in combination with a phylogenetic pipe-
line, carcinologists can better annotate transcriptomes using a
phylogenetically informed evolutionary perspective. With the
computational resources available to us through OSCER, we aim

to aid fellow researchers in assembling and incorporating their
crustacean transcriptomic data sets into CrusTome, thereby
crowdsourcing an improved taxonomic representation of crusta-
ceans in the -omics era.

Links to download the CrusTome database, associated meta-
data, future updates, and the code to reproduce the example ana-
lysis herein are available at CrusTome’s GitHub site: https:/
github.com/invertome/crustome. Direct links to CrusTome
v0.1.0 BLAST and DIAMOND formats are presented under the
Data availability section of this manuscript.

Methods
Data sourcing

Transcriptomes were assembled from raw RNA-sequencing
(RNA-seq) reads that were publicly available. RNA-seq reads
from 30 species that were previously unpublished are also in-
cluded. Our usage of “raw reads” refers to RNA-seq reads exclu-
sively. Emphasis was placed on raw reads of nonhexapod
Pancrustacea samples (n=189) covering the phylogenetic breadth
available on the NCBI SRA database (excepting Hexapoda;
Leinonen et al. 2011), with representation of 16 crustacean orders.
Our usage of “crustacean(s)” refers to nonhexapod pancrusta-
ceans. Criteria for selecting raw reads included (1) the use of next-
generation sequencing (NGS) technologies to generate raw reads
and (2) a minimum read depth of 1 M reads per sample down-
loaded (Fig. 1a). Both criteria allowed for the assembly of complete
and contiguous transcriptomes, while avoiding fragmentation is-
sues due to low sequencing depth. Raw reads generated from 12
ecdysozoan and hexapod species were included to serve as out-
groups and to provide phylogenetic context, respectively, during
gene characterization and phylogenetic inference. Raw reads of
nematodes from the family Monhysteridae were included as an out-
group and to assist in identifying possible contaminant sources.
Species from the Monhysteridae family frequently occur as endo-
parasites or in association with numerous crustacean species
(Baylis 1915; Chitwood 1935; Tchesunov and Ivanenko 2022;
Westerman et al. 2022) and were thus deemed useful as a mechan-
ism to filter out potential nonarthropod contaminant sequences
during downstream analyses. Full details on the species and their
tissues included, accession identifiers, and corresponding raw
read and transcriptome metadata can be found in
Supplementary File 1.

Quality control

Raw reads downloaded from the NCBI SRA database were visually
inspected using FastQC (Andrews 2010) to determine read filtering,
trimming stringency, and thresholds to be applied across samples
in a standardized manner. As samples were of a heterogeneous na-
ture with a range of input qualities, trimming settings were set up
conservatively to ensure proper transcriptome assemblies and
the reliability of downstream analyses by avoiding fragmentation
issues due to incomplete removal of index/barcode sequences
and erroneous base-calls by the sequencing instrument.
Automated trimming of the sequencing reads was undertaken
using Trimmomatic (Bolger et al. 2014) with the following settings:
CROP="X" HEADCROP="15" MINLEN="45" SLIDINGWINDOW="4:20"
LEADING="15" TRAILING="15", with the CROP value “x” adjusted
to remove the error-prone final 10 error-prone bases according to
each sequencing library’s fragment length (e.g. 90 for 100 bp reads
or 140 for 150 bp reads). Subsequent to trimming, the resulting
reads were piped into Rcorrector using default settings (Song and
Florea 2015). k-mer-based random sequencing error correction of
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Fig. 1. Flowchart of the CrusTome database creation steps. a) Data sourcing. b) Quality control and preprocessing. c) Transcriptome assembly with
multiple assemblers. d) Obtaining optimal transcriptome via EVG pipeline. e) Contamination and redundancy filtering. f) Creation of BLAST and

DIAMOND databases. Figure created with Biorender.com.

Illumina reads used a De Bruijn graph algorithm, which is particu-
larly suitable for error correction of RNA-seq reads (Song and Florea
2015; MacManes 2018; Ortiz et al. 2021; Fig. 1b).

Transcriptome assembly

The quality-filtered, trimmed, and error-corrected reads were as-
sembled into de novo transcriptomes for each sample usinga mul-
tiassembler approach (Fig. 1c), which leverages the advantages of
different assembly algorithms and parameters to obtain a single
optimal, and less fragmented, transcriptome assembly
(Nakasugi et al. 2014; MacManes 2018; Gilbert 2019; Ortiz et al.
2021). For each species, 8 transcriptomes were initially assembled
via several iterations of the Trinity pipeline (version 2.13.2;

Grabherr et al. 2011; Haas et al. 2013) and rnaSPAdes (Bankevich
et al. 2012). For each Trinity assembly, different parameters were
specified for k-mer, normalization, and minimum contig length
(k25 + unnormalized reads, k25 + normalized reads, k25 + 60 bp min con-
tig length, k31 + normalized, and k23 + normalized). Only those contigs
that were supported by read mappings were retained (Haas et al.
2013). Additional assemblies were produced using rnaSPAdes (ver-
sion 3.15.13; Bankevich et al. 2012) and its integrated multi-k-mer
assembly approach. rnaSPAdes was run with 2 k-mer settings
(k39 +k59) after which assembled contigs were collated into 3 as-
semblies resulting from differing quality filtering thresholds
(hard_filtered_transcripts.fasta, — soft_filtered_transcripts.fasta, and
transcripts.fasta), all of which were included in subsequent merging
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steps. All of the Trinity and rnaSPAdes assemblies (n = 8) for each
sample were then merged into a single optimal transcriptome
via the EvidentialGene (EVG) pipeline (Gilbert 2019), with a selected
minimum amino acid length of 20 residues (e.g. to allow for the de-
tection and characterization of small neuropeptides; Fig. 1d). This
multiassembler and multiparameter design produces transcrip-
tome assemblies of higher quality and completeness (MacManes
2018; Gilbert 2019; Ortiz et al. 2021), which are illustrated by sum-
mary statistics and Benchmarking Universal Single-Copy
Orthologs (BUSCO) scores (Sim&o et al. 2015) among other metrics
of protein completeness (Gilbert 2019). The final merged transcrip-
tomes were filtered with the EVG pipeline for long noncoding RNA
(IncRNA) sequences, which are beyond CrusTome’s current scope,
to improve the efficiency of sequence similarity searches and
downstream analyses. The filtered mRNA transcriptomes were
then translated into amino acid sequences to produce both tran-
scribed and translated versions for convenience and accessibility.
Samples from previously assembled data (namely Daphnia and
hexapods) were included in their original TSA versions and pro-
cessed through the EVG pipeline for consistency and suitability
of comparisons. Itisimportant to note thatincluded samples con-
tinue to be subject of reassembly and will be included in their final
multiassembler versions in upcoming releases of CrusTome.
Transcriptome assembly and associated bioinformatic analyses
were performed using computational resources provided by the
Instructional & Research Computing Center (IRCC) at Florida
International University and the OSCER at University of
Oklahoma.

Contaminant filtering and redundancy removal

Both mRNA and amino acid transcriptomes for each sample were
subsequently filtered for contamination using Kraken 2.1.2 (Wood
etal. 2019; Wright et al. 2022) and a custom database that included
archaea, bacteria, virus, fungi, and sequencing vector sequences
(obtained from https:/lomanlab.github.io/mockcommunity/mc_
databases.html), as well as mouse and human sequences
(Bushnell 2018; to remove possible contamination arising from se-
quencing facilities), with settings optimized for filtering crust-
acean transcriptomes (“--confidence 0.1”; Wright et al. 2022). It is
important to note that the confidence setting employed was deter-
mined in an iterative process following Wright et al. (2022) to filter
outmost contaminant sequences with minimal loss of crustacean
sequences. However, it is possible that some noncrustacean se-
quences from symbionts may still be present in the database: fur-
ther filtering steps according to each specific scenario are highly
encouraged (e.g. via a phylogenetic assessment). A final applica-
tion of the CD-HIT-EST and CD-HIT (“Cluster Database at High
Identity with Tolerance”) clustering algorithm was run on each in-
dividual EVG-optimized transcriptome (mRNA and amino acid,
respectively) to cluster contigs at a 99% sequence identity
(Fig. le). This allowed for the removal of contigs likely to have
been produced from sequencing errors, while minimizing the re-
moval of true isoforms.

Transcriptome summary statistics and
completement assessment

TransRate version 1.0.3 and BUSCO version 3.0.2 were used to cal-
culate summary statistics and to assess the completeness of the
CrusTome transcriptome assemblies (Simdo et al. 2015;
Smith-Unna et al. 2016) (Supplementary File 1). BUSCO analyses
were conducted using OrthoDB’s Arthropoda database of ortholo-
gous groups (Waterhouse et al. 2013) as a reference data set
(OrthoDB v10).

BLAST and DIAMOND database creation

The CrusTome transcriptome and predicted amino acid data-
bases were created in 2 formats using default settings, as both
BLAST and DIAMOND databases (Altschul et al. 1990; Buchfink
et al. 2021; Fig. 1f) for compatibility with annotation and analysis
pipelines (e.g. see Das et al. 2016; Pérez-Moreno et al. 2018; Tang
et al. 2019; Drozdova et al. 2021). DIAMOND is an ultrafast align-
ment software that achieves considerable sequence similarity
search speeds by orders of magnitude faster than BLAST, at a min-
imum sensitivity cost (Buchfink et al. 2021), and, as such, is appro-
priate for the high-throughput applications now available with
CrusTome.

“CrusTome” example pipeline

An example analysis was conducted to illustrate the potential
of CrusTome for the identification and characterization of pro-
teins of interest. Specifically, we conducted a series of recur-
sive BLAST searches against CrusTome’s predicted amino
acid sequence database, followed by an alignment and phylo-
genetic inference strategy to gain insight into the presence
and expression of DNA-photolyases, cryptochromes, and
“Drosophila, Arabidopsis, Synechocystis, and Human” (DASH)-like
cryptochromes (Oliveri et al. 2014; Mei and Dvornyk 2015;
Kiontke et al. 2020) across crustaceans.

The phylogenetically informed annotation analyses consisted
of aninitial BLAST search against CrusTome using reference cryp-
tochrome and DNA-photolyase sequences previously character-
ized in insects (Supplementary File 2), specifying a maximum
number of hits of 500 to capture as much sequence diversity as
possible (Shah et al. 2019), but with a relatively stringent e-value
of e~ to limit results to relevant peptides. The list of hit IDs re-
sulting from this initial search was then used to extract the corre-
sponding sequences from CrusTome, which were then used as
input for a second BLAST search against the database to capture
additional sequence diversity. Sequences identified as hits from
this second BLAST iteration were once again extracted from
CrusTome. These putative peptides identified by BLAST were sub-
sequently concatenated with the insect references originally em-
ployed as search queries, which were then aligned with the
multiple sequence aligner Multiple Alignment using Fast Fourier
Transform (MAFFT, v.7.490; Yamada et al. 2016). The MAFFT soft-
ware was used to align putative cryptochrome and photolyase se-
quences obtained from the CrusTome database, along with the
original insect reference sequences used as BLAST queries.
MAFFT alignment parameters were specifically chosen to priori-
tize accuracy over speed and to allow for large unalignable regions
that can be pervasive in certain protein families (“--dash --ep O
--genafpair --maxiterate 1000”; see Yamada et al. 2016). The --dash
parameter enables MAFFT to query a Database of Aligned
Structural Homologs, providing structural information with
which to refine the alignment process (Rozewicki et al. 2019).
The resulting alignment was then trimmed using ClipKit (smart-
gap mode) (Steenwyk et al. 2020), which identifies and retains
phylogenetically informative sites for a more accurate and robust
phylogenetic inference. Maximum likelihood phylogenetic recon-
struction was undertaken with IQ-TREE2 (Nguyen et al. 2015) with
a Le-Gascuel (LG) general amino acid replacement matrix under a
FreeRate model with 10 rate categories (LG+R10; Yang 1995;
Miiller and Vingron 2000; Le and Gascuel 2008; Soubrier et al.
2012), as recommended for the trimmed alignment by
ModelFinder (Kalyaanamoorthy et al. 2017). The phylogenetic
tree resulting from this initial reconstruction was then piped, in
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conjunction with the alignment, to TreeShrink for outlier/paralog
detection and removal at an a-value of 0.05 (Mai and Mirarab
2018). The resulting pruned alignment was then used for a second
and final phylogenetic reconstruction with IQ-TREE2 (Nguyen
et al. 2015) for characterization and annotation of the putative
peptides. A second IQ-TREE2 phylogenetic reconstruction was
run using the same model parameters previously reported (LG +
R10; Yang 1995; Miuller and Vingron 2000; Le and Gascuel 2008;
Soubrier et al. 2012). Branch support of this final phylogeny was as-
sessed in bipartite by Ultra-Fast Bootstrap approximation
(UFBoot; 10,000 replicates) and an approximate Bayes test
(Guindon et al. 2010; Anisimova et al. 2011; Minh et al. 2013).
Finally, the resulting phylogenies were used to classify the ob-
tained peptide sequences as members of cryptochrome 1, crypto-
chrome 2, DASH-like cryptochromes, 6-4 pyrimidine-pyrimidone
photoproduct (6-4) photolyases, or cyclobutane pyrimidine dimer
(CPD) photolyases as per previous studies in other organisms
(Oliveri et al. 2014; Mei and Dvornyk 2015; Kiontke et al. 2020).
Protein sequences were collated for each of these major clades,
and each of the sequence groups was then aligned following the
previously mentioned strategy. The gene-specific alignments
were then used to generate hidden Markov model profiles with
HMMER (Finn et al. 2011; Eddy 2011). These profiles are made avail-
able with CrusTome as a community resource. Example code for
this phylogenetic analysis is included as Supplementary File 3.

Results and discussion

The underrepresentation of nonhexapod pancrustaceans in pub-
licly available databases is largely attributed to challenges of a
technical nature, rather than to a lack of effort or adoption of gen-
omic methodologies by researchers. This disparity is exemplified
by the rapid increase of raw sequencing reads in the NCBI SRA
(Havird and Santos 2016; Qin et al. 2017; Hyde et al. 2020), in con-
trast to the TSA database. The TSA database contains transcrip-
tome assemblies that are submitted to GenBank from the
research community. Consequently, these assemblies are highly
heterogeneous, in terms of sequencing and/or assembly methods,
fragmentation, redundancy, quality, metadata content, and an-
notation. For these reasons, many studies producing large
amounts of transcriptomic data now opt to submit raw sequen-
cing files to public repositories. As the SRA database is composed
of raw sequencing reads, accessing information stored therein re-
quires a specific expertise and set of skills, oftentimes with steep
learning curves. Given that crustacean “omics” data are now being
produced at a far greater rate than can be meaningfully accessed,
analyzed, and interpreted by many researchers, CrusTome deli-
vers a solution that is simple to implement to enable large-scale
transcriptomic analyses across nonhexapod Pancrustacea. The
multiple k-mer assembly strategy and subsequent merging
through the EVG pipeline used for CrusTome offers noticeable ad-
vantages for de novo transcriptome assembly from organisms
without a reference genome (Gilbert 2019; Summary Statistics &
BUSCO Assessment, Supplementary File 1). Additionally, special
emphasis was placed on the processing of the publicly available
data by reassembling and processing each included transcrip-
tome with the consistent pipeline (Fig. 1), rather than including as-
semblies produced by disparate methodologies. This uniform
processing provides a standardization for accurate downstream
analyses.

Several approaches have been used previously to address this
knowledge gap for representing crustaceans and other non-
traditional model organisms (Qin et al. 2017; Nong et al. 2020;

Hyde et al. 2020). For example, CrusTF is a web-based database re-
source containing sequence data, with an emphasis on transcrip-
tion factors, mined from multiple transcriptomic sources (Qin
et al. 2017). Having sourced data from over 170 transcriptomes,
CrusTF is the most taxonomically diverse curated database avail-
able to date. However, despite the taxonomic breadth covered
across Crustacea, ease of access, and web-based tools and oper-
ability, its scope is limited, as it pertains exclusively to transcrip-
tion factors and is only accessible through a graphical interface.
The CAT database consists of a web-based interface to conduct
BLAST searches against 71 transcriptomes, but only across 7 spe-
cies (Nong et al. 2020). Moreover, as a web interface-based data-
base, CAT 1is not available for high-throughput analyses,
scripting, or incorporation into bioinformatic pipelines. One dif-
ference is that CAT is an annotated database, and annotations
are not currently within the scope of CrusTome’s current version.
This is mainly due to the difficulty for providing accurate annota-
tions for nonmodel crustaceans using sequence similarity search-
based software and relying on curated databases more apt for
common model organisms. CrustyBase, a recently published
interactive database of crustacean transcriptomes, also employs
a web-based approach with a GUI that excels in terms of accessibil-
ity, navigation, and operability (Hyde et al. 2020). It also leverages the
advantages of being able to process gene expression data that can be
linked directly to each submitted transcriptome, an integrated
BLAST interface, and intuitive visualization features. Nevertheless,
although highly curated, it is dependent upon direct submissions
from the community and suffers from underrepresentation of
numerous crustacean taxa. Furthermore, similar to CrusTF,
CrustyBase’s main target audience consists of those comfortable
with conducting analyses exclusively through GUIs. While the GUI
presentation is of great advantage for data accessibility to a specific
sector that may be unfamiliar with coding, the utilization of these
databases by those who wish to incorporate their data sets into ex-
isting command line-based bioinformatic pipelines for large-scale
and/or high-throughput analyses is limited. CrusTome bridges
this gap by providing the entire database in downloadable formats.

CrusTome’s current version consists of a multispecies and multi-
tissue transcriptome database from 189 nonhexapod pancrusta-
cean species, including 30 previously unpublished transcriptomes
and 12 additional ecdysozoan species (see Supplementary File 1
for additional details). This initial version of CrusTome includes a
sample of resources currently available on the NCBI's public reposi-
tories and therefore is subject to similar representation biases
(Fig. 2a). Consequently, CrusTome should be considered an evolving
database resource, as it will continue to be updated to bridge these
gaps whenever relevant data become available. The present version
presents an uneven distribution of samples across pancrustacean
taxa biased towards the class Malacostraca, which comprises 174
out of 201 transcriptomes (Fig. 2b). Despite this apparent over-
representation, CrusTome includes representatives of rare and ob-
scure taxa that present intriguing opportunities for phylogenetics,
systematics, and evolution, such as remipedes and bathynellaceans
(Pérez-Moreno et al. 2016) and multiple deep-water malacostracans
(DeLeo and Bracken-Grissom 2020; Drozdova et al. 2021). Samples of
pancrustacean taxa Ostracoda, Mystacocarida, Branchiura, and
Cephalocarida are currently in the processing queue for upcoming
iterations, improving CrusTome’s phylogenetic breadth. In addition,
other members of Pancrustacea (namely hexapods), as well as a select
number of the subphylum Chelicerata and phylum Tardigrada tran-
scriptomes, have been included to aid in comparative analysis and
serve as outgroups to root phylogenies, along with nematodes
from the family Monhysteridae to filter potential contamination
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Fig. 2. a) Taxon coverage across major pancrustacean clades in the current version of the CrusTome database. Phylogeny adapted from Oakley et al.
(2013) and Bracken-Grissom and Wolfe (2020). b) Sankey diagram depicting the taxonomic distribution of transcriptomes included in the present version
of the database. c) Tissue type distribution of CrusTome transcriptomes across nonhexapod pancrustaceans. Illustration of Gecarcinus lateralis by An-Ping

Yu.

from symbiotic organisms and/or parasites (Baylis 1915;
Westerman et al. 2022). In addition to phylogenetic diversity,
CrusTome also provides a wide array of sample types, from single
tissues to whole organisms, aiming to encompass transcript diver-
sity both across and within species (Fig. 2).

Example analysis: large-scale exploration of
cryptochromes and DNA-photolyases across
Crustacea

To illustrate the functionality of the CrusTome database, an ana-
lysis was conducted to annotate previously uncharacterized CPF
proteins expressed across multiple tissues from species spanning
the pancrustacean phylogenetic tree. Cryptochromes and photo-
lyases are found across the entire tree of life that share a common
general structure, consisting of a conserved photosensory domain
bound to 2 chromophore cofactors (Sancar 2003; Chaves et al.
2011; Oliveri et al. 2014; Mei and Dvornyk 2015). However, import-
ant functional differences exist between the 2 types of CPF pro-
teins. Photolyases are light-dependent DNA repair enzymes that
can be classified based on the type of damage they repair: (1) the
CPD photolyases and (2) the 6-4 photolyase (Sancar 2003, 2008;

Hitomi et al. 2009; Oliveri et al. 2014). Despite their structural simi-
larity with photolyases, cryptochromes are not involved in DNA
repair activity and instead participate in a wide variety of func-
tions, such as light perception, transcriptional regulation, and
magnetoreception (Chaves et al. 2011; Liu et al. 2011; Oliveri et al.
2014; Bazalova et al. 2016). Although CPF proteins are known to
be present in all types of organisms (prokaryotic and eukaryotic;
Reitzel et al. 2010; Rivera et al. 2012; Zantke et al. 2013), including
crustaceans (i.e. the isopod Eurydice pulchra and the Antarctic krill
Euphausia superba; Teschke et al. 2011; Zhang et al. 2013), little is
known about their distribution and function across Pancrustacea.

Sequence similarity searches with BLAST (Altschul et al. 1990),
using reference CPF sequences from the NCBI GenBank (se-
quences and accession IDs in Supplementary File 1), recovered
putative CPF proteins from CrusTome’s amino acid sequence
database. A total of 382 unique sequences were obtained from
the 201 transcriptomes included in the database. These se-
quences were subsequently aligned and trimmed, then used for
phylogenetic reconstruction. The phylogram represented 5 major
CPF clades, which corresponded to CPD photolyases, crypto-
chrome 1, cryptochrome 2, CRY-DASH, and 6-4 photolyases
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(Fig. 3), whose phylogeny was in overall agreement with previous
work (Lin and Todo 2005; Lucas-Lled6 and Lynch 2009; Mei and
Dvornyk 2015). All of these groups formed monophyletic clades,
with the exception of the 6-4 photolyases, which interestingly

fell in their entirety as a clade within Cry2 sequences (additional
phylograms in Supplementary File 4). This is consistent with a
CPF phylogenetic analysis that found 6-4 photolyase and crypto-
chrome sequences cluster together, in contrast with other
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homologs (Mei and Dvornyk 2015). Differences in the taxonomic
distribution of the 5 major clades are immediately evident, par-
ticularly between the 2 cryptochromes. Cryptochrome 1 had a
more limited distribution, being found only among amphipods,
branchiopods, copepods, decapods, euphausiids, and thecostra-
cans (Fig. 4), while cryptochrome 2 was additionally found in iso-
pods, stomatopods, and mysids (Fig. 5). However, care should be
taken before making evolutionary or functional inferences, as
this difference in distribution may reflect the tissue types in-
cluded in the database. Nevertheless, the analysis shows the
ease of application and potential for novel insights found in
large-scale transcriptome analyses through the CrusTome data-
base. Cryptochrome and photolyase protein sequences from
CrusTome are available in Supplementary File 5.

Future directions and applications

Biased taxon representation in public data repositories is a press-
ing issue for numerous fields within pancrustacean biology.
CrusTome addresses this lack of taxonomic diversity by including
fully assembled and preprocessed transcriptomes of underrepre-
sented taxa. It is important to note that the taxonomic distribu-
tion of CrusTome’s transcriptomes is ultimately dependent on
sequence data that are publicly available and thus may be subject
to biases. It is for that reason that CrusTome was envisioned as a
community resource that will grow and evolve as data are pro-
duced and incorporated to continuously address taxonomic and
tissue representation gaps. The authors also look forward to po-
tential future collaborations with the developers of existing data-
base solutions for crustaceans (i.e. CrusTF, CrustyBase, and CAT)
to incorporate CrusTome into GUI-accessible resources. As the
scope of the aforementioned projects differs from that of
CrusTome, it is important to note that future work integrating
these different databases, and leveraging the advantages of
each, would be of great benefit to researchers using pancrusta-
ceans as model systems.

Conclusion

CrusTome provides a robust crustacean transcriptome database
in easily accessible formats, using a consistent pipeline for in-
creased reliability and comparability of results. A major goal is
to provide a mechanism to improve the current paucity of access-
ible genomic and transcriptomic data for nonmodel crustaceans.
This accessibility and ease of incorporation into existing pipelines
enable analyses at larger scales. Moreover, CrusTome can be used
to address long-standing questions in crustacean biology, such as
molting and growth (Mykles and Chang 2020; Mykles 2021), sen-
sory biology (e.g. vision and chemoreception; Pérez-Moreno et al.
2018; Kozma et al. 2020), convergent evolution (e.g. carcinization;
Wolfe et al. 2021; Yang et al. 2021), or adaptation to extreme or
changing environments (e.g. caves, deep-sea, and polar waters;
Pérez-Moreno et al. 2016; DeLeo and Bracken-Grissom 2020;
Andersen et al. 2022). It is our hope that the CrusTome database
facilitates access to the rapidly growing number of genomes and
transcriptomes being sequenced, particularly to those of non-
traditional model organisms. As the transition into a posttran-
scriptomic era takes place, pancrustacean research must take
full advantage of the large amounts of data produced by current
and emerging technologies. A major aim of CrusTome is to bridge
gaps of knowledge among pancrustaceans by including underre-
presented taxa. Accessibility to the large amounts of raw data
being deposited in public repositories enables scalable and inte-
grative multiomic analyses that could ultimately lead to novel

biological, ecological, and evolutionary insights across the tree
of life (Mykles et al. 2010).

Data availability

The CrusTome databases have been deposited in the Zenodo re-
pository for public access under DOI: https:/doi.org/10.5281/
zenodo.7730440. Supplementary File 1 contains a spreadsheet
with metadata regarding the raw data employed in building the
CrusTome database. Among these data, accession IDs and sample
identifiers are included. Additional links to the CrusTome data-
base’s associated metadata and example analyses (code, align-
ments, tree files, etc.) are available at the CrusTome GitHub site:
https://github.com/invertome/crustome.
Supplemental material available at G3 online.
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