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Abstract

Summary: pyCapsid is a Python package developed to facilitate the characterization of the dynamics and quasi-rigid mechanical units of protein
shells and other protein complexes. The package was developed in response to the rapid increase of high-resolution structures, particularly
capsids of viruses, requiring multiscale biophysical analyses. Given a protein shell, pyCapsid generates the collective vibrations of its amino-acid
residues, identifies quasi-rigid mechanical regions associated with the disassembly of the structure, and maps the results back to the input
proteins for interpretation. pyCapsid summarizes the main results in a report that includes publication-quality figures.

Availability and implementation: pyCapsid’s source code is available under MIT License on GitHub. It is compatible with Python 3.8-3.10 and
has been deployed in two leading Python package-management systems, PIP and Conda. Installation instructions and tutorials are available in
the online documentation and in the pyCapsid’s YouTube playlist. In addition, a cloud-based implementation of pyCapsid is available as a Google
Colab notebook. pyCapsid Colab does not require installation and generates the same report and outputs as the installable version. Users can

post issues regarding pyCapsid in the repository’s issues section.

1 Introduction

Viruses protect their infective genomes in protein shells called
capsids (Twarock and Luque 2019). The number of capsid
structures solved at high resolution has increased exponen-
tially in the last two decades, partly thanks to cryo-electron
microscopy advances (Callaway 2020, Johnson and Olson
2021, Montiel-Garcia et al. 2021). These 3D reconstructions
combined with computational algorithms and complementary
experimental techniques are leading to a mechanistic charac-
terization of the assembly, dynamics, and stability of viral
capsids, opening the doors to new antiviral strategies (Yeager
et al. 1990, Li et al. 2008, Luque and Reguera 2013, Zhang
et al. 2013, Grime et al. 2016, Hua et al. 2017, Organtini
et al. 2017, Qazi et al. 2018, Twarock and Stockley 2019,
Bayfield et al. 2020, Kizziah et al. 2020, Mata et al. 2023,
Podgorski et al. 2020, Bruinsma et al. 2021, Johnson et al.
2021, Montiel-Garcia et al. 2021, Plavec et al. 2021, Wilson
and Roof 2021, de Pablo and San Martin 2022, Lee et al.
2022, Mohajerani et al. 2022). Among the computational
methods, molecular dynamics algorithms have improved dra-
matically in the last decades and can infer the dynamics of
large protein complexes. However, they resolve relatively
short timescales (€1 ps) and require specialized computa-
tional resources (Perilla and Schulten 2017, Hadden et al.
2018, Jana and May 2021, Bryer et al. 2022). The fact that

capsids are assembled from 60 to more than 60 000 proteins
further limits the application of molecular dynamics
(Twarock and Luque 2019, Luque et al. 2020, Berg and
Roux 2021). Alternatively, the combination of normal mode
analysis (NMA), molecular coarse-graining, and elastic net-
work models (ENM) offers a more scalable solution (Bahar
et al. 2010, Romo and Grossfield 2011). This approach has
successfully estimated the collective motion of proteins in
complexes (Bahar et al. 2010) or identified structural confor-
mational changes in capsids (Tama and Brooks, 2005).
Nonetheless, no easy-to-use computational packages for non-
computational-based specialists are currently available to
characterize the dynamics and mechanical properties of pro-
tein shells. The bioinformatics software presented here,
pyCapsid, aims to address this issue.

pyCapsid is inspired by prior publications that applied
ENM, NMA, and clustering methods to extract the quasi-
rigid regions of protein shells (Polles ez al. 2013, Ponzoni
et al. 2015). These methods can identify the mechanical units
involved in the assembly or disassembly of protein shells
(Polles et al. 2013). However, obtaining these results using
packages such as PRINQ++ (Polles et al. 2013), SPECTRUS
(Ponzoni et al. 2015), NRGTEN (Mailhot and Najmanovich
2021), ClustENMD (Kaynak et al. 2021), WebPSN (Seeber
et al. 20135), or the popular ProDy (Zhang et al. 2021), is not
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trivial and limited to relatively small complexes. To address
this issue, we introduce pyCapsid as an accessible and efficient
Python package that identifies the dominant dynamics and
quasi-rigid regions of protein shells. The underlying methods
used in pyCapsid are generic and can be applied to other pro-
tein complexes, yet, in this first release of pyCapsid, we have
focused on the characterization of protein shells, such as viral
capsids, cellular protein compartments like encapsulins, and
gene-transfer agents (Giessen et al. 2019, Bardy et al. 2020,
Johnson and Olson 2021, Montiel-Garcia et al. 2021).

2 Methods and features

pyCapsid’s Python package is divided into five independent
modules (Fig. 1): the PDB (protein data bank) module, the
CG (coarse-graining) module, the NMA (normal mode analy-
sis) module, the QRC (quasi-rigid clustering) module, and the
VIS (visualization) module. The role and technical aspects of
each module are briefly described below.

PDB module. This module retrieves and loads structural
data from the Protein Data Bank (using the PDB ID) or a local
file in PDB or PDBx/mmCIF formats (Berman et al. 2000,
Westbrook et al. 2022). The PDB module builds on functions
from the Python package Biotite (Kunzmann and Hamacher
2018).

CG module. This module coarse-grains the proteins at the
amino-acid level and establishes an elastic force field between
amino acids. It offers four different elastic models: the aniso-
tropic network model (ANM), the Gaussian network model

(a) Input PDB-formatted (b) Build elastic (c) Normal mode analysis
atomic model network model (ENM)  NMA of low frequencies

(d) calibrate by fitting to

(e) Use spectral clustering to
experimental B-factors

find quasi-rigid clusters

B-factor (A?)

(f) Analyze
intra-cluster rigidity

(9) Apply results back
to full atomic model

Figure 1. pyCapsid’s key steps. (a) The protein shell (atom coordinates,
atom types, and B-factors) is inputted using a PDB file (or a PDB ID). (b)
The elastic network model (ENM) is calibrated (parametrized). (c) Normal
mode analysis (NMA) determines the distance fluctuations between
residues. (d) The correlation coefficient of predicted and experimental
B-factors is generated for quality control. (e) Spectral clustering is applied
to obtain the quasi-rigid molecular domains in the capsid. (f) The
fluctuations between residues within the rigid clusters are calculated.

(g) The results are mapped back to the capsid protein atomic model for
structural interpretation.

Brown et al.

(GNM), the generalized anisotropic, or unified elastic net-
work model (G-ANM or U-ENM), which is the default, and
the backbone-enhanced elastic network model (bb-ENM).
Each amino acid is coarse-grained as a point mass on the
alpha-carbon. The links in the network connect amino acids
that are within a threshold. The default value is 15 A for
ANM and 7.5 A for the other models. These values are based
on prior studies of elastic models reproducing empirical mo-
lecular thermal fluctuations (B-factors) (Micheletti et al.
2004, Eyal et al. 2006, Zheng 2008, Romo and Grossfield
2011). The small threshold distance leads to a sparse net-
work. This network, combined with the elastic strength values
of the elastic model, defines the Hessian matrix. The calcula-
tions to build the matrix are accelerated using Numba (Lam
etal. 2015).

NMA module. This module obtains the motions of the mac-
romolecular complex by decomposing the dynamics into inde-
pendent sinusoidal motions called normal modes (Goldstein
et al. 2002). The normal modes and associated frequencies
are obtained from the Hessian matrix derived in the CG mod-
ule. It is well established that only low-frequency modes are
relevant to the global dynamics of macromolecules (Bahar
et al. 2010). The default number of modes calculated in
pyCapsid is 200. This number was selected by comparing the
results with simulations using a larger number of modes (as
many modes as 1/100 of the number of residues, i.e. 1000
modes for a structure containing 100 000 residues). pyCapsid
also provides an optional dependency to accelerate the calcu-
lations in GPUs using CUDA via solvers in the cupy package
(Okuta et al. 2017).

ORC module. This module estimates the amino acids that
tend to fluctuate as a single mechanical unit (quasi-rigid clus-
ter) using the SPECTRUS algorithm (Ponzoni et al. 2015). A
cluster contains groups of residues that minimize the distance
fluctuations between residues. The clustering method used in
pyCapsid is the default discretize method from scikit-learn
(Pedregosa et al. 2012), and k-means clustering is offered as
an alternative (Yu and Shi 2003). pyCapsid explores a range
of clusters from four to a maximum number (cluster_max) set
by the user. The quality score defined in (Ponzoni et al. 2015)
is calculated for each number of clusters, and the set of clus-
ters with the maximum score is selected. If multiple local max-
ima are observed, each can be selected via the application
programming interface (API) for further analysis. These alter-
native maxima can also be obtained by restricting the number
of clusters when running pyCapsid.

VIS module. The results obtained from pyCapsid are stored
and organized in data files and figures in the same running
folder. pyCapsid’s online tutorial and YouTube channel pro-
vide instructions and scripts to visualize the results using the
molecular visualization tools NGLview and ChimeraX
(Nguyen et al. 2018, Pettersen et al. 2021). The results from
the cloud-based Colab notebook include a script that can be
run directly in Chimera X to generate the 3D visualizations.
To obtain high-quality visualizations and animations when
running pyCapsid locally, users must have installed
ChimeraX (version 1.5 or above) and indicate the path in the
pyCapsid’s configuration file.

Execution. Users running pyCapsid locally can specify the
necessary parameters in a configuration file (TOML format),
run it, and obtain the results. Users running pyCapsid on the
cloud as a Colab notebook can modify parameters as indi-
cated in the notebook’s quick-start guide. Providing the
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pyCapsid Colab option follows the accessibility trend of
cloud-based bioinformatics tools in this environment, like
ColabFold (Mirdita et al. 2022) and other tools predicting
protein complexes (Bryant et al. 2022). For advanced users,
pyCapsid provides an API to access the objects in the five sep-
arate modules described above.

3 Applications
3.1 Performance and accuracy

pyCapsid’s performance and accuracy were obtained by study-
ing 25 protein shells (see Data availability), which contained
from 16 000 to 400 000 amino acid residues, displayed icosahe-
dral symmetry with T-numbers spanning from T=1to T= 16,
and had resolutions ranging from 2 to 5.2 A. The baseline per-
formance was obtained using an HPC cluster core with Intel
Xeon CPU E5-2650 v4 (2.20 GHz) and 128 GB of RAM. The
peak memory usage ranged from 800 MB to 90 GB and in-
creased with the number of residues following a power law
(exponent =1.46 + 0.06 and R* = 0.97). The runtime ranged
from 2min to 36 h and increased with the number of residues
following a power law (exponent=2.20*0.10 and R* =
0.95). The correlation coefficient between the simulated and em-
pirical thermal motions (B-factors) of the amino acids was used
as a proxy to evaluate the accuracy of the selected elastic net-
work model (ENM) and normal mode analysis (NMA). The
correlation coefficients using the default number of modes
ranged from 0.10 to 0.88 out of 1.00. The distribution of corre-
lation coefficients was consistent with the correlations observed
for B-factors predicted using ENM and NMA in smaller protein
complexes (Eyal et al. 2006). The accuracy decreased linearly
for structures with lower experimental resolution (slope =
—0.20 = 0.05 1/A and R? = 0.40), with a regression projecting
perfect accuracy for structures with an ideal experimental resolu-
tion of 0 A (intercept = 1.23 * 0.18). The accuracy was indepen-
dent of the number of residues (Spearman’s coefficient = —0.09
and P-value = 0.66). pyCapsid’s performance was also assessed
by analyzing five small-to-medium capsids in a free cloud-based
Colab account and three personal computers with different con-
figurations. The execution times were on the same order of mag-
nitude as in the HPC, with average relative runtime factors
ranging from 0.98 (faster) to 2.66 (slower). The main bottleneck
was memory, which placed an upper limit to the largest capsid
size that could be analyzed. See Data availability for further
details.

3.2 Benchmarking

The five smallest protein shells were used to benchmark the
speed and accuracy of pyCapsid with respect to ProDy, a
well-stablished Python package for protein structural dynam-
ics analysis (Zhang et al. 2021). Since ProDy does not gener-
ate the quasi-rigid domain decomposition, the comparison
focused on the modules responsible for loading the PDB and
generating the normal modes analysis (NMA). The aniso-
tropic network model (ANM) was available in both ProDy
and pyCapsid and yielded the same B-factors. The unified
elastic network model (G-ANM or U-ENM), which is avail-
able in pyCapsid but not ProDy, improved by five times the
average correlation coefficient (from 0.11 for ANM to 0.56
for U-ENM) of the B-factors using the default number of
modes. pyCapsid displayed an average speed increase of
3.0 £ 1.5 with respect to ProDy. This increase was indepen-
dent of capsid size (Spearman’s coefficient=0.11 and

P-value = 0.76). The increase in speed was due to the use of
Numba and the invert shift mode in SciPy. This, however,
caused a similar increase in memory usage. In any case, ANM
or U-ENM did not impact pyCapsid’s speed performance
when using the same number of modes. Thus, U-ENM was se-
lected as the default and recommended model in the pyCapsid
package. pyCapsid was not benchmarked quantitatively with
tools other than ProDy because even the smallest protein
shells exceeded their capacity, or we encountered technical
barriers when deploying them locally to analyze such protein
shells. Nonetheless, four additional small capsids (PDB IDs
2ms2, 1za7, 1a34, and 3nap) were investigated by pyCapsid
recovering, the quasi-rigid domains published previously with
PISQRD++ (Polles et al. 2013) and SPECTRUS (Ponzoni
et al. 20135). See Data availability for further details.

3.3 Capsid disassembly

An application of pyCapsid is the ability to identify the capsid
regions and protein clusters that are most likely to be involved in
the initial steps of capsid disassembly, which is crucial for the de-
velopment of antiviral strategies. A current experimental issue is
the fact that capsids are very stable, so generic stressors and
denaturants are used to accelerate the disassembly to make stud-
ies in vitro possible (Zhao et al. 2012, Zhou et al. 2022). The
mechanical units predicted by pyCapsid could be tested experi-
mentally, e.g. using atomic force microscopy (Ortega-Esteban
et al. 2013, Martin-Gonzalez et al. 2023), mass spectrometry
(Uetrecht et al. 2011, Bond et al. 2020), and light scattering
(Garmann et al. 2019, Timmermans et al. 2022). Here, this po-
tential application of pyCapsid was tested by analyzing seven di-
verse capsids (SSV, TrV, HBV, CCMV, MS2, P22, and HK97)
that have been observed to disassemble experimentally
(Anobom et al. 2003, Lavelle et al. 2007, Duda et al. 2009,
Agirre et al. 2013, Kant et al. 2018, Strauss et al. 2018, Starr
et al. 2022). The quasi-rigid domains identified in these capsids
were consistent with the disassembly units observed empirically
(see the online/results/disassembly folder in Data availability).
pyCapsid’s predictions identify molecular targets that will guide
more mechanistic and capsid-specific disassembly experiments,
helping bridge in vivo and in vitro conditions.

4 Concluding remarks

pyCapsid can generate the collective motion and extract the
quasi-rigid functional regions involved in the stability and dis-
assembly of protein shells and other protein complexes. The
underlying algorithm of pyCapsid generates the dynamical
modes faster than established protein dynamics packages and
can handle the quasi-rigid domain decomposition of large
protein complexes in the range of minutes to over a day, even
in regular computers. The computational efficiency of
pyCapsid, combined with its accessibility via Python distribu-
tion packages, Google Colab, and online tutorials, will benefit
researchers in physical virology, structural bioinformatics,
and related fields and will facilitate the prediction of disas-
sembly units in protein shells, fostering new antiviral and
drug delivery strategies.
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