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Abstract

The rules and structure of human culture impact health as much as genetics or environment.
To study these relationships, we combine ancient DNA (n=230), skeletal metrics (n=391), pale-
opathology (n=606), and dietary stable isotopes (1=873) to analyze stature variation in Early
Neolithic Europeans from North Central, South Central, Balkan, and Mediterranean regions.
In North Central Europe, stable isotopes and linear enamel hypoplasias (LEH) indicate high
environmental stress across sexes, but female stature is low, despite polygenic scores identi-
cal to males, and suggests cultural factors preferentially supported male recovery from stress.
In Mediterranean populations, sexual dimorphism is reduced, indicating male vulnerability to
stress and no strong cultural preference for males. Our analysis indicates that biological ef-
fects of sex-specific inequities can be linked to cultural influences at least as early as 7000 years
ago, and culture, more than environment or genetics, drove height disparities in Early Neolithic
Europe.

1 Introduction

Human skeletal variation reflects varying combinations of genetic, cultural, and environmental fac-
tors. While there are many links between culture and health in the modern world, the history and
evolution of these relationships are not always well established. Due to the entanglement of these
factors, our ability to draw conclusions about their effects has been limited in archaeological data.
With the recent advent of ancient DNA sequencing technology, genetic information from ancient

populations has become increasingly available. However, attempting to analyze changing patterns of
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variation based solely on genetic data is difficult—genotypes do not necessarily equate to phenotypes
due to the effect of the environment.! Similarly, while it is tempting to predict phenotypic changes
in ancient people based on their genetic variation, this is currently challenging as genetic effects are
not always transferable across populations.? Our solution is to integrate these complementary fields
to construct multidisciplinary analyses with phenotype, genotype, culture, and environment data
from ancient human populations. This approach allows us to begin to separate the effects of these
variables and reveal the interactions between genes, environment, and culture which are critical in
shaping human health and variation.

Many traits of interest, including height, are highly polygenic, with thousands of independent
genetic variants contributing significantly to heritability. One common approach to addressing the
role of genetics in morphological change is to compare patterns of phenotypic variation with genetic
ancestry or genome-wide patterns of genetic variation.? However, even for highly polygenic traits
like height, genome-wide variation may not be directly relevant, leading to spurious associations
between genetic effects, ancestry, and environmental confounds. For example, if a population is tall
and has a high proportion of ancestry from Neolithic sources, it could be concluded that Neolithic
ancestry is associated with “genetic tallness”; however, the effects could equally be non-genetic
and related to lifestyle changes associated with agriculture. An alternative approach is to focus
only on genetic variation that is known to be associated with a specific trait.%7 Effect sizes for
these trait-related variants estimated from genome-wide association studies (GWAS) of present-day
individuals can be combined with genetic data from ancient individuals to calculate polygenic risk
scores (PRS), which can be thought of as estimated genetic values for the phenotype. In European
ancestry populations, polygenic scores for height can explain up to 25% of phenotypic variation
in present-day individuals,® and 6-8% of variation in ancient individuals.®'® On a broad scale,
temporal changes in polygenic score over time in Europe are qualitatively consistent with changes
in stature as inferred from the skeletal record,'! while local deviations from this pattern provide
evidence of environmental effects. 1011

Analyses of human populations over tens of thousands of years involve individuals that are
diverse in genetic ancestry, environment, and culture and it is challenging to exclude the possibility
of confounding by unmeasured variables. We therefore focus specifically on the European Early
Neolithic. One of the most studied periods in prehistory, it represents a fundamental shift in
technology, culture, and genetics. In particular, the Linearbandkeramik (LBK) culture of Central
Europe is one of the most comprehensively documented Early Neolithic cultures, with an abundance
of excavated settlements and cemeteries. 1> LBK groups tended to choose settlement locations based
on the presence of rich loess soils for farming, and the northern edge of these soils appears to
delineate the northern limit of LBK sites. 1314 Bioarchaeological evidence indicates broad regional
differences between individuals from northern settlements in this agricultural boundary zone vs
southern settlements in a climate zone that was more comfortable for Neolithic crops. 1?6 Based

on this, we divided our Central European group into Northern (above 50°N latitude) and Southern
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(below 50°N) populations. The Mesolithic hunter-gatherer population in Central Europe made a
limited genetic contribution to the LBK population, whose members harbor only traces of hunter-
gatherer admixture. "1"'® Contemporary populations from southeastern Europe have similarly low
levels of hunter-gatherer ancestry. ' In contrast, Neolithic southern European populations associated
with the Cardial and Impressed Ware cultures followed a separate migration route (Figure 1),
occupied a milder climate zone, and carried more Mesolithic ancestry. 120 Individuals in this region
tend to be shorter than those from Central Europe and combined with their admixed ancestry this
has led to suggestions of a genetic basis for decreased statures in this region. 2!

By comparing and contrasting four closely related archaeological populations, we aim to inves-
tigate how differences in environment and genetics combine to produce observed phenotypes. We
collected genetic data, skeletal metrics, paleopathology, and dietary stable isotopes to begin sepa-
rating the effects of each on Neolithic stature trends. By specifically investigating and controlling
for the effects of genetics in these samples, we are able to provide nuanced interpretations of height
variation, gain a better understanding of the aspects of height which are controlled by genetics or en-
vironment, and show evidence for sex-specific cultural effects which modify the genetically predicted
patterns. We illustrate the strengths of leveraging multidisciplinary datasets, and indicate caution
when analyzing genotype-phenotype relationships without complete data, especially for traits which
are not preserved in the archaeological record and cannot be directly tested. This integrated anal-
ysis highlights the role of plasticity in morphology, and establishes culturally mediated disparities

at least as early as the European Neolithic.

2 Results

2.1 Distributions of statures, polygenic scores, and stable isotope values

We collected either genetic, dietary stable isotope, paleopathology, or skeletal metric data from
1269 individuals associated with the archaeological LBK culture in Northern and Southern Central
Europe dated to between 7700-6900 years before present (BP), as well as 139 individuals from
the southeastern (Balkan) and 127 individuals from the southern (Mediterranean) regions dated
between 8000-6000 BP. All individuals included in the analysis have at least one of the four data
types available (Materials and Methods; Figure 2d; Supplementary Figure 1). We classify individuals
as “male” or “female” based on either chromosomal sex or the morphological category they most
closely resemble. We recognize that these two categories do not represent the full range of sex and
intersex morphologies in humans; however, to our knowledge, there currently are no methods by
which to identify other morphologies in the archaeological record. Though ideally morphological sex
variation would be analyzed on a continuous scale, in this study we incorporate previously published
data and thus use the word “dimorphism” to reflect that we analyze only two sex categories.
Observed patterns of femur length vary between sexes and populations. We find no evidence

of difference between male femora of the Central and Balkan regions (North vs. South Central:
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p=0.221, =0.419cm, SE=0.341; North Central vs Balkan: p=0.632, =0.444cm, SE=0.925), but
Mediterranean males are significantly shorter (p=0.003, f=-1.314cm, se=0.433). Conversely, female
femora show a different pattern, with no significant difference when comparing Mediterranean to
South Central (p=0.645, 5=-0.251cm, SE=0.542), and Balkan (p=0.491, 5=-0.703cm, SE=1.019)
populations, but significantly shorter values comparing North Central to South Central populations
(p < 0.001, B=-1.988cm, SE=0.560; Figure 3a). Differences between male and female femur lengths
are highly significant in all populations (p<0.001, 5=4.128cm, SE=0.228). In contrast to the differ-
ences in femoral lengths, we see no difference in polygenic scores for height between all populations
(pairwise t-tests min. p>0.9, DF=41-71) using the clumping/thresholding PRS construction (Fig-
ure 3b). This result is expected given the extensive overlap between the 95% confidence intervals
for the population PRS means (Figure 3b). PRS constructed with LDpred show Mediterranean
individuals to be shorter than the other populations (max. p=0.0293, DF=41-71; Supplementary
Figure 5). However, a PRS constructed using summary statistics derived from between-sibling
analysis?? finds no difference in genetic values between populations with either PRS construction
method (clumping/thresholding: min. p=0.099, DF=41-71; LDpred: min. p=0.143, DF=41-71),
so we conclude that apparent lower Mediterranean PRS may be due to population stratification in
the GWAS data and may not reflect a true genetic difference. There are no significant differences
between male and female PRS in any population (min. p=0.7647, 5=0.076cm, SE=0.254; Figure
3b), providing no evidence for a genetic basis to this dimorphism.

Signatures of 6'3C and §'°N suggest different dietary patterns in each of the analyzed groups
(Figure 3c, d). Both the Mediterranean and Balkan groups are significantly distinct from the Central
in §13C (max. p<0.001, $=0.541%c0, SE=0.136) while we find no difference in 6'°N values in the
Central and Mediterranean groups (p=0.101, 5=0.7%00, SE=0.42557), but distinct in the Balkans
(p<0.001, 5=5.0488%00, SE=0.237). Generally, the Balkan population is characterized by high
S9N values, while Mediterranean populations show high §'3C relative to the Central Europeans
(Figure3c). The exception to this pattern is a cluster of individuals, classified as Balkan in our
analysis, which overlaps with the North Central population as well as some of the Mediterranean.
These points represent individuals from present-day Greece and indicate that the diets of these
peoples might better be classified as Mediterranean than Balkan. Nitrogen values are higher in
males compared to females (ANOVA F=21.0, DF=1,622, p<0.001) differ across regions (F=390.2,
DF=3,622, p<0.001; Figure 3d), and the interaction between sex and region is significant (F=3.5,
DF-3,622, p—0.016).

2.2 Patterns of non-genetic factors in Central Europe

The most dramatic observation is the difference in female stature and consequent sexual dim-
porphism in Northern compared to Southern Central Europe. Female femora in the North are
significantly shorter than female femora in the South (p<0.001, 5=-1.988cm, SE=0.560), while
male femora are not significantly different (p=0.221; $=0.419cm, SE=0.341; Figure 3a). On aver-
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age, male femora from the North are about 13% longer than female femora, Southern Central and
Balkan male femora are about 9% and 11% longer respectively, and Mediterranean male femora
are only 5% longer (Figure 3a). These values are reduced slightly when calculated using estimated
statures instead of femora (North Central: 10%, South Central: 7%, Balkans: 8%, Mediterranean:
4%), possibly due to error associated with stature estimation (see Ref. 9) and body proportions,
or because the relationship between femur length and stature is different between males and fe-
males. Where we have both genetic and metric data for the same individuals, there is a qualitative
relationship between femur length and PRS; PRS tends to increase as femur lengths increase (Sup-
plementary Figure 3b). However, the effect of PRS on femur length is not significant, likely due to
the small number of individuals with both types of data available in the sample (n=55; p=0.059,
£=0.781, SE=0.405cm/SD, BF=0.278).

Overall, trends in dietary stable isotopes show that individuals in Southern Central Europe have
significantly higher nitrogen values (§'°N; p<0.001; 3=0.865%c0, SE=0.143) and lower carbon (§'3;
p<0.001; 8=-0.383%00, SE=0.082) as compared to the North. However, while males in both regions
qualitatively have higher nitrogen, the interaction between sex and region is not significant (p=0.872;
B=-0.0316%00, SE=0.196) Figure 4a), indicating that the difference between male and female values
in each region is not significant, though the Bayes factor (BF=-0.012) suggests this might be due
to a lack of power. Carbon values are similar between the sexes (p=0.473; 5=0.081%00, SE=0.113,
BF=-1.749). For individuals with both stature and stable isotope values, we find no statistically
significant relationship between femur length and §'°N (p=0.489; 3—-0.223%¢0, SE=0.322, BF—=-
1.495) or §3C (p=0.114; B=0.550%00, SE=0.346, BF=-0.651) in either Central group, separately
or combined.

We do, however, find a statistically significant relationship between presence of linear enamel
hypoplasias (LEH) and shorter femora, suggesting that LEH may reflect an underlying variable in
childhood that also affects stature (p=0.0214; f=-1.275cm, SE=0.548; Figure 4c). Both males and
females from the North are more likely to have LEH than individuals living in the South (logistic
regression p—0.0018; 5—-1.386, se=—0.444). Indeed, over 50% of the Northern sample have LEH while
they are only present in about 20% of the Southern (Figure 4b). There is no significant difference
between the number of males and females with LEH in either region (p=0.832; 5=0.113, SE=0.534,
BF=-1.425). Though the interaction effect between sex and LEH on femur length is not significant
(p=0.072; =1.390, SE=0.765, BF=-0.121), qualitatively the effect of LEH on femur length appears
greater in females than in males and Bayes Factors suggest our sample does not have the power to
detect the interaction (Figure 4c). When the sexes are analyzed separately, females with LEH do
have significantly shorter femora than those without (p=0.022; f=-1.334cm, SE=0.570, BF=0.963),
which is not the case for males (p=0.741; 5=0.186cm, SE=0.562, BF=-1.264). We hypothesize that
the relationship between LEH and femur length is driven by females, but our sample size is too small
to formally show this. Incidence of cribra orbitalia is also significantly higher in the Northern region
than in the Southern (p<0.001, 8=-1.890, SE=0.449), though we do not see a relationship with
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femur length (p=0.609; 5=-0.324cm, SE=0.633, BF=-1.245). We find no evidence of differences in
porotic hyperostosis between the North and South (p=0.524; 5=-0.265, SE=0.417, BF=-1.345), nor
do we detect a relationship between porotic hyperostosis and femur length (p=0.878; 5=0.0567cm,
SE=0.369, BF=-1.747).

In summary, comparison of Northern and Southern Central Europe identifies no predicted genetic
difference in stature, which is consistent with male but not female femur length. This suggests a
non-genetic basis for reduced female stature. Stable isotope data and skeletal stress indicators
suggest lower protein intake and more general stress in the North; however, males and females
overall appear equally affected by these variables. Despite a similar number of hypoplasias in both
sexes, shorter femora in females suggest that increased general stress, due to other unmeasured

environmental or cultural factors, leads to a female-specific reduction in stature.

2.3 Patterns of genetic ancestry in the Mediterranean

In contrast to Northern Central Europe, Mediterranean Neolithic males are shorter than other
groups, but females are not. PCA indicates that individuals from the Central regions and the
Balkans share similar genetic ancestry while those from the Mediterranean are distinct (Figure 2c;
unimputed PCA in Supplementary Figure 4a), a difference known to be due to higher levels of
hunter-gatherer ancestry in the Mediterranean.!” We therefore additionally compared our samples
to Mesolithic individuals of Western Hunter-Gatherer (WHG) ancestry, as well as individuals from
early Neolithic Anatolia. These two groups represent source populations for the two largest ancestry
components in Europe at this time. 17

On the PCA plots of these extended data, Neolithic Anatolians cluster with Central and Balkan
groups. While Mediterraneans are near the farmer cluster, they are shifted towards the WHG (Fig-
ure 5a; unimputed PCA in Supplementary Figure 4b). ADMIXTURE analysis of all six populations
supports this conclusion, showing significantly increased proportions of WHG ancestry in the Ne-
olithic Mediterranean as compared with Central Europe (p<0.001; $=0.354%, SE=0.438). The
average proportion of WHG ancestry in the Mediterranean is 11.4% (SE=0.53%); in the Balkans,
5.3% (SE=se=0.57%); in the South Central, 4.1% (SE=0.16%); and in the North Central, 1.1%
(SE=0.09%). If there are significant PRS differences between Mediterranean and other popula-
tions, they would likely be linked to this greater WHG ancestry and reflect genetic differences
between WHG and other populations.

Computing PRS using clumping/thresholding, we find that the WHG have the lowest PRS of
any population in our data (p<0.001, 5=-0.903SD, SE=0.232), while Anatolians are similar to the
Balkan and Central Europeans. Among individuals, proportions of WHG ancestry are significantly
associated with lower PRS (p=0.006, 5=-0.594%/SD, SE=0.214, BF=1.481). However, when we
compute PRS with an infinitesimal LDpred2 model, Mediterranean PRS is intermediate between
Neolithic Europeans and WHG. When we repeat the LDpred analysis using summary statistics
computed from between-sibling GWAS,?? we find that the direction of Hunter-Gatherer PRS flips,
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and they have significantly greater PRS than the other groups p=0.002; 3=0.701, SE=0.225; Sup-
plementary Figure 3a). The inconsistency of these results shows that the apparent PRS difference
between WHG and Neolithic populations is highly sensitive to the PRS construction and summary
statistics. This may indicate uncorrected population stratification in the non-sibling GWAS. 23,24
We therefore conclude that there is no strong evidence for a genetic difference in stature between

Mediterranean and other Neolithic populations.

3 Discussion

Understanding the causes of past stature variation not only allows us to understand ancient com-
munities, but may also provide us with insights into the origin and evolution of modern health
patterns. However, interpretations of human stature variation through time remain confounded by
the difficulty of separating genetic and environmental effects, obscuring trends. Recently, several
researchers have begun to compile multivariate datasets for the purposes of understanding human
stature 1925727: however, many of these analyses do not directly take genetic effects into account, 227
or cover very broad temporal or geographic ranges.!??% In contrast, we aim to understand these
processes on a finer scale to better interpret the outcomes of biological and environmental /cultural
interactions. For instance, previous studies of stature variation from the Mesolithic to Neolithic
indicated that Neolithic individuals were not achieving their genetic height potential,!? but our
analyses suggest that this effect might be heterogeneous, pertaining more to some locations and
portions of society than others. Finally, while interesting in its own right, height can also serve
as a model trait for how to incorporate genetics and anthropological data into studies of human
morphology and variation. Here, by integrating genetic, cultural, and environmental data, we are
able to begin teasing apart the contributions of genetic and non-genetic factors in producing the
observed phenotypic variation. We also illustrate the existing limitations of interpreting genetic
data.

We note several limitations in our data which restrict our analysis and interpretations. While we
have a narrowly defined geographic and temporal sample in our Central European group, limitations
of existing data required us to broaden our inclusion criteria in other regions to strike a balance
between controlling variables and having statistical power. Though our South Central group is
geographically more broad than the North, they fall within a specific time range and genetic and
osteological samples are well-matched geographically. However, comparative materials from the
Mediterranean and Balkan regions necessitated a broader time period to compile a sample size that
would be statistically meaningful. Restricting these two groups to either time-match Central Europe
or to geographically match data types results in very small samples with little power to address key
questions (Supplementary Figure 7). The range of these populations is relatively broad and our
approach is averaging trends across the whole region, likely obscuring local nuances. Due to these

limitations, we have focused the majority of our interpretation on the Central European populations
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where we have the most and highest quality data, and have thus restricted our discussion of the
Mediterranean and Balkan populations to only those results that we felt were adequately supported.
Future, more detailed studies of these regions would have the potential to reveal fine-scale dynamics
like those we observe in Central Europe.

Overall, the Central and Balkan groups are genetically homogenous with similar levels of hunter-
gatherer admixture and polygenic scores, while Mediterranean individuals have more hunter-gatherer

TI718) This may be associated with lower PRS,

ancestry (consistent with previous observations
though this relationship is not robust and may simply reflect residual population stratification in
the GWAS. None of our populations show evidence for substantial genetic differences in height be-
tween sexes (Supplemetary Figure 2), which is expected given that there is little evidence for sex
differences in ancestry, or of sex-specific genetic effects on stature.?®3° We can therefore largely
exclude a genetic contribution to differences in stature between North Central individuals and other

groups, while we find no strong evidence for a genetic contribution to shorter Mediterranean stature.

3.1 Central European dimorphism reflects the effects of culture

Dietary differences between Southern and Northern Central European populations may indicate
environmental stress in the North. In the early European Neolithic, the expansion of agriculture is
thought to have been largely limited by poor soils and climate, as colder temperatures and decreased
daylight made it increasingly difficult to grow early cereals (wheat, barley) and pulses (peas). 332
The boundary to which these plants could be grown has been estimated to coincide with the northern
limits of the LBK culture,!*33 and the majority of our Northern sites are concentrated near this
climate edge in areas of fertile loess soils.'* However, as there are many nuances which affect
the interpretation of stable isotope values, especially between populations, differences between our
Northern and Southern groups may not be as dramatic as they appear. An examination of isotope
values from herbivorous animals in our study regions (using data from Refs. 16,34-38) indicates
that baseline values of §'°N are elevated in the South Central region as compared to the North,
potentially due to differences in climate and the use of manure as fertilizer. Therefore some portion
of the difference between Northern and Southern nitrogen values might be attributable to variation
in climate and farming practices rather than diet. Differences in carbon values between populations
can be similarly sensitive to environment and we feel that interpreting the carbon results would be
difficult without a more in-depth isotopic analysis. However, isotopic values from other studies show
a higher proportion of plant vs animal foods in the North, particularly low protein domesticated
cereal grains. 1°3%39 Additionally, the available archaeological evidence supports some level of dietary
difference between the Northern and Southern regions. While remains of cattle and dairy production
are documented in Northern LBK sites, 404! there is less archaeological evidence for the presence of
other wild or domesticated animals that are seen in the South, indicating the people of this region
were highly reliant on plant foods.??42 We conclude that our observed differences in Northern and

Southern stable isotope values probably reflect both dietary factors and differences in climate or



294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

farming practices.

It is therefore not surprising that people of the Northern Central region exhibit evidence of
increased stress potentially due to unreliable and lower quality food resources. Lower protein con-
sumption could be an indicator of dietary stress and has been linked to decreased stature.*3 Diet
can affect dimorphism in some cases,** but the isotopic signatures of males and females in the
North Central and South Central regions are very similar, suggesting that this factor alone does not
explain reduced female stature in the North. Femur length and isotope values for individuals are
not significantly associated in our data, an indication that either diet has little effect on Neolithic
stature or stable isotopes do not capture the elements of diet relevant to height. Alternatively, it is
possible the range of variation in our data is too small to see this effect, or our sample of individuals
with both metric and isotopic data is not large enough. In addition, we only analyzed adult samples
and while the isotopic values of weaned children in the LBK fall within the range of adults,?? it
is possible that there could be sex differences in childhood diets affecting femur growth. Future
studies incorporating collagen from long bones or teeth, rather than from ribs as we have here,
would give dietary evidence with greater time depth, and might be able to provide more nuanced
interpretations in the absence of a known-sex sub-adult population.

Paleopathological analysis also indicates increased stress in the Northern population in the form
of increased incidence of linear enamel hypoplasia and cribra orbitalia. The causes of LEH formation
are varied and their appearance in the bioarchaeological record is generally interpreted as a non-
specific indication of childhood stress. %> Other archaeological sites have reported a high instance of
LEH with high sexual dimorphism ratios in areas of Neolithic Europe, though the cause and meaning
of these patterns was not explored (e.g. Ref. 46 and references therein). It has been suggested that
cribra orbitalia might also reflect childhood stress, specifically anaemias, even when seen in adults. 47
Our results are consistent with others who have considered the same paleopathologies and found
a qualitative relationship between presence of paleopathology and shorter femora.!? In our data,
incidence of both LEH and cribra orbitalia are higher in Northern compared to Southern Central
Europe, but are not different between sexes in either group. The association between shorter femora
and presence of LEH appears to be driven by females, suggesting a moderating factor causing a
female-specific effect despite equal incidence of LEH in both sexes.

While we see a general increase in stress shared between sexes in North Central Europe, typical
population-level stress responses usually show male vulnerability and female buffering effects. 4850
Though the exact causes and mechanisms are not well understood, female biology tends to have a

51753 and environmental changes®* compared

less extreme response, or is “buffered”, to many diseases
to males. Our data indicate an opposite pattern in Central Europe, and no evidence of a variable
which acts upon females alone. However, the Northern population shows sexual dimorphism that
is extreme by present-day standards. In most modern global populations the ratio of male to
female height is 1.06-1.085° (ratios in Ref. 55 range up to 1.12, but population locations or cultural

affiliations are not given, see Ref. 44), though it is difficult to know how to compare height versus
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femur length ratios as the transformation from metrics to stature scales differently in males and
females. Based on 147 European individuals from the past 100 years (using data from Ref. 56),
we find that the height ratio is very similar to the ratio of femur length—typically within 1%. We
therefore conclude that dimorphism ratios in Southern Central (1.09) and Balkan (1.11) Europeans
are elevated and the ratio in the North Central region is exceptionally high (1.14). Few modern
populations have height dimorphism ratios as high as 1.10, and those that we could find in the
literature come from India®’ and the United Arab Emirates,® both countries known for their
cultural preferences and biases for male children.?’

We therefore hypothesize that the effects of high environmental stress in the North were mod-
ulated by culture. Other researchers have noted specific situations in which culture buffers males
against environmental effects and creates vulnerability in females: there is an association between
decreased female stature and polygyny in cultures around the globe;%0 female height was more
influenced by economic conditions during infancy and early childhood than males in lower-class
19th-century Europe;%' sexual dimorphism ratios in modern Chile decreased after the institution
of social and government programs to combat gender inequality;%? 20th-century female stature de-
creased in India during times of environmental stress due to sexually disproportionate investment of
scarce resources;® and son preference has been shown to decrease the height of female children in
Indian families regardless of birth order.%? In LBK sites, strontium isotope values show that females
are more likely to be non-local compared to males, suggesting patrilocality and potential differences
in cultural treatment of females.'454 In parallel to our evidence for higher biological variation in
females, ongoing discussion about the relationship between biological sex and the formation of gen-
dered identities in the LBK suggests more variation in the roles and identities of females compared
to males.% We therefore suggest that culturally mediated differences led to sex-specific stress re-
sponses in Neolithic Central Europe wia cultural practices which either directly decreased female
stature or, more likely, supported catch-up growth preferentially in males. Though dimorphism
ratios in the South Central and Balkan regions are not as extreme as in the North, they are elevated
and also consistent with this pattern of male bias, but response is likely less exaggerated due to

lower environmental stress conditions.

3.2 Mediterranean dimorphism may have an environmental basis

In the Early Neolithic Mediterranean population we see decreased male stature and low dimorphism
ratios (1.05) relative to other Neolithic populations. Mediterranean populations are genetically dis-
tinct from other Early Neolithic groups with a higher proportion of WHG ancestry. In some analyses,
WHG ancestry proportion correlates with lower PRS for height. However, PRS in the Mediterranean
and WHG populations are sensitive to PRS construction method likely due to residual population
stratification in the GWAS. These inconsistent results mean that we can neither confirm nor exclude
the possibility of a genetic contribution to differences in stature between the Mediterranean and

other Early Neolithic populations, though on balance we find the likelihood for a substantial genetic
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contribution to be low. Even if it were not, the genetic effects alone could not explain the reduced
dimorphism ratio, emphasizing the need to also consider cultural/environmental effects.

While the dimorphism ratio in the Mediterranean Neolithic is low, it is not outside the range of
present-day populations.® In fact, while males are relatively short, the longest average female femur
lengths of our data are in the Mediterranean. This reduction in dimorphism is commonly seen in
populations where the sexes experience an equal stress burden: as males tend to be more sensitive,
decreasing their height, females are biologically buffered and stature remains consistent. 850,66
Although we do not have paleopathological stress data for the Mediterranean individuals in our
sample, published values for other Neolithic Mediterranean populations are generally similar to those

6769 with exceptions. ¥ Dietary isotopes indicate that the Mediterranean

for South Central Europe,
diet differs in some aspects, with increased §'3C values compared to the other Neolithic populations,
but similar §'°N values. Our data indicates similar protein intake and low-level stress as other
Neolithic populations, but do not suggest any clear hypothesis for the difference in male stature
between the Mediterranean and other Neolithic groups. Possible differences in Mediterranean body
proportions which are not captured by femur length should be mentioned as a caveat, though
this likely would not be enough to account for the differences in stature compared to the rest of
Europe, and would not affect observed dimorphism within the population. Our hypothesis is that
the Mediterranean experienced similar levels of environmental stress as other Neolithic groups, but

that they did not share the cultural practices which preferentially supported males and increased

female vulnerability.

3.3 Conclusion

By integrating genetic and anthropological data, we are able to begin to understand the contribu-
tions of genetics and environment to human variation, allowing us to better interpret the genetic,
environmental, and cultural landscapes of Neolithic Europe. Our results are consistent with a model
in which sexually dimorphic differences in femur length are culturally and environmentally driven:
relatively low dimorphism in the Mediterranean caused by female buffering to environmental stress
and less cultural male preference, and high dimorphism in Northern Central Europe caused by the
interaction of relatively high environmental stress and strong cultural male preference. Some analy-
ses suggest that differences in average femur length between Central/Southeastern Europe and the
Mediterranean are associated with differing genetic ancestries, but lack of robustness, uncertainty
about the transferrability of polygenic scores, and questions of residual population stratification
prevent us from interpreting this conclusively. In this study we focused on the European Early
Neolithic because of its relative genetic, cultural, and environmental homogeneity, but, with more
data, these methods could be extended to other populations, traits, and timescales to further ex-
plore the effects of human culture on biological variation. Using this approach, we gain a deeper
understanding of the relationship between phenotypic plasticity, culture and genetic architecture,

which constrain the mechanisms by which human biology adapts to environment.
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4 Materials and Methods

We collected a combination of genetic, dietary stable isotope, skeletal metric, and paleopathological
(stress) data from 1282 individuals from the Central European Early Neolithic associated with the
archaeological LBK culture, approximately 7700-6900 BP (Figure 2, Supplementary Table 1). As
there is archaeological evidence for broad regional variation within the LBK and our sampled sites
form clear geographic groups, we divided these individuals into two regions based on geographical
location, those to the north of 50°N latitude (North Central) and those to the south (South Central)
(Figure 2a-b; North Central n=203, n femur length=133, n isotopes=100, n aDNA=67, n stress=83;
South Central n=1067, n femur length=187, n isotopes=670, n aDNA=T72 n stress=523). Each
individual has at least one of the data types, and while some individuals have multiple data types,
the overlaps are small (Supplementary Figure 1).

To provide wider context, we also compared Central individuals to other Neolithic populations
from southern European (Mediterranean) and southeastern European (Balkan) regions, and re-
stricted to individuals dated to 8000-6000 BP. We chose these regions as the Neolithic transition
occurs at similar times and is associated with populations closely related to Central Europe. The
acceptable date range for inclusion in the study was expanded from that which defines the LBK as
these dates encompass comparable Early Neolithic phases in other parts of Europe while maximizing
the number of eligible individuals. There could be a possibility that the later Balkan and Mediter-
ranean individuals were more adapted to Neolithic life than the Central European groups, as these
samples cover a longer time period, but we found no statistical within-population differences in
our variables between the early and late ranges of our time span (minimum p=0.08). We excluded
areas such as Scandinavia and Britain, where Neolithic technologies were not generally adopted
until a later date. For the final analysis, we included 127 Mediterranean (n femur length=60, n
isotopes=25, n aDNA=42) and 139 Balkan (n femur length=12, n isotopes=78, n aDNA=49) indi-
viduals (Figure 2). Unfortunately, there is a wide range of recording and reporting used for skeletal
stress indicators, and it was not possible to build a statistically powerful dataset in these two popu-
lations for comparison; as a result, we did not analyze paleopathology in these populations. Finally,
we collected genetic data from Mesolithic hunter-gatherer (n=25, 14000-7080BP, south of 48°N)

and Anatolian Neolithic (n=21) individuals for additional comparison.

4.1 Genetic data

We obtained genetic data for a total of 276 individuals. 18 2%71-87 Nost data were generated by
targeting a set of 1.24 million SNPs (the “1240k” capture reagent).!”™ For each individual, we
randomly selected a single allele from each of the 1240k sites. Coverage in our dataset is low
(median coverage—0.33; coverage above 0.60 n=71), and typically, it is not possible to directly infer
diploid genotypes, potentially limiting PRS performance. Imputation of missing genotypes has been

shown to help improve polygenic predictions for low coverage ancient samples,” and we therefore
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imputed diploid genotypes using the two-stage method described in that paper, restricting to SNPs
in the 1240k set.

We calculated polygenic scores as previously described.? Briefly, we used standing height sum-
mary statistics generated by the Neale Lab from 456,000 individuals of European ancestry in the
UK Biobank®® for analyses of combined-sex PRS, and summary statistics from male- and female-
only UK Biobank GWAS also generated by the Neale Lab.88 To test the potential effects of residual
population structure in our data, we also computed PRS using additional summary statistics from a
between-sibling GWAS (n=99,997).%2 We intersected the sites from each of these datasets with those
on the 1240k array and then further restricted to HapMap3 SNPs (SNPs n=405,000). We computed
polygenic scores using both a clumping/thresholding approach (r2=0.3, p-value cutoff=10~¢, 100kb
windows in plink23), and an infinitesimal LDpred2 model using their pre-computed LD reference
panel.?? Finally, we computed polygenic scores using the --score command in plink2. In order to
maximize the possibility of detecting sex-specific effects, we generated sex-specific PRS using three
different approaches: 1) calculating PRS for all individuals using the female summary statistics; 2)
calculating PRS for all individuals using the male summary statistics; and 3) calculating PRS for
males and females separately using their respective summary statistics. While approach 3 seems
at first to be the best for detecting these effects, observed patterns potentially become difficult to
interpret due to differences in scaling between male and female PRS calculated as separate datasets.

We computed principal components for both unimputed and imputed data using smartpca,** pro-
jecting ancient individuals onto principal component axes defined by 777 present-day West Eurasian
individuals.??> We also estimated K=2 unsupervised ADMIXTURE? components for unimputed

ancient individuals after first LD pruning using the command --pairwise-indep 200 25 0.4 in plink2.

4.2 Osteology and stable isotope data

We aggregated skeletal metric data from both published %648 and unpublished (n=28) sources.
Maximum femur lengths were recorded when available, otherwise we estimated femur length from
published stature estimates.® Estimated femur lengths correlate highly with stature estimates, but
decrease the error that results from combining different estimations methods. The method from
Ref. 99 provides separate equations for estimating the statures of northern vs. southern Europeans
when using the tibia, due to differences in body proportions between the regions. There are two
Mediterranean samples for which we estimated the length of the femur based on statures which used
the southern tibia equation. Ref. 99 does not provide regional equations for femur estimation, so
for these two individuals, we estimated femur length using the reverse of this region-agnostic femur
equation.

For the individuals in this study who do not have genetic data, morphology was used to estimate
sex. We acknowledge that there are a range of sex and intersex morphologies present in humans,
however, current methods of skeletal sex estimation only classify morphologies as associated with

male or female categories. We use the term “dimorphism” to reflect that we analyze two sex clas-
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sifications in this study, rather than as a statement about the nature of human variation. The
majority of individuals in the current study have been taken from previous publications, and we
used the sexes which had been estimated by those authors. For the individuals in our study which
have not been previously published, sex was determined by co-authors using a 5-point scale on the
cranium and pelvis as described by Ref. 100. For all individuals, sexes determined as probable male
or probable female were coded in our study as either male or female as appropriate. Subadults
and those with indeterminate morphologies were coded as NA, resulting in these individuals being
dropped from the sex-specific analyses. The majority of sexes for individuals with metric data were
determined by, or supervised by, co-authors and the remainder (n=13) either have genetic sexes or
come from Ref. 56 which we consider a reliable source. Despite generally high accuracy for mor-
phological sex determination, some level of uncertainty always remains, mainly due to variation in

101 Sex estimations for our sample have all been

sexual dimorphism and preservation of the remains.
performed in the last 20 years, and the majority within the last 5 years, meaning the researchers who
performed them should be aware of avoiding the biases which can affect sex-ratios in the estimations
of older data. Our dataset is large enough that small errors in classification of sex should not make
substantial differences to results or interpretation, but the potential for inaccurate morphological
sex estimations must always be considered in any osteological analysis. A large portion of our
paleopathology data comes from tables S3 and S6 of Ref. 102, in which there are many instances
of the same individual listed in both tables, but with discordant sex estimations. As we could not
determine the reason for these discrepancies, we used the sex which was reported in the original
publications cited as sources for their data. The few individuals (n=3) for whom this could not
be resolved were treated as indeterminate and coded as NA. Ages were determined based on the
average of the age range reported for each individual in their original publications.

For the paleopathological data in Central Europe, we took data from published sources, 2492,102-105
as presence/absence of linear enamel hypoplasia (LEH), porotic hyperostosis, and cribra orbitalia.
These three pathologies are often used by anthropologists as indicators of general, non-specific stress
experienced by individuals or populations. While the exact eitiologies of these pathologies are gen-
erally not known, they have been shown to change through time within and between populations,
and often correlate with environmental, social, or cultural shifts. Linear enamel hypoplasias are
horizontal defects in tooth enamel that form during episodes of childhood stress severe enough to
interrupt growth for some period of time, usually associated with dietary deficiency or infectious
disease.*® Individuals can exhibit one or multiple LEH on single or multiple teeth and in order
to minimize errors from differences in reporting LEH in the literature, we have simply recorded
whether an individual had any LEH (present) or none (absent). Porotic hyperostosis and cribra
orbitalia are both porous lesions that are distinguished by their appearance on either the cranial
vault or roof of the eye orbit respectively. The eitiologies of these are mostly unknown and though
they are traditionally associated with amaemias, there are also a number of other conditions that

can produce the same type of lesions. Medically, there is little evidence of these pathological changes
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despite their prevalence in the bioarchaeological record. % Similar to LEH, we have recorded these
as either present or absent for each individual in order to standardize between reporting conventions
across publications.

While sensitive to confounding factors such as climate, vegetation, and individual metabolism, 17
§13C and §'°N stable isotope data can be used to reconstruct aspects of diet. 198 Here, carbon values
are indicative of dietary plant resources and of the terrestrial vs marine vs limnic provenance of
food, while nitrogen values are mainly associated with dietary protein intake and generally indi-
cate proportions of plant- vs animal-based diets. 19710 We collected dietary stable isotopes §'2C
and 05N from published !6:34-36,42,94,96,102,104,105,107,109-112 apq ynpublished (n=38) reports. We
excluded atomic mass spectrometer (AMS) values derived from radiocarbon dating, as they may
not be comparable to isotope-ratio mass spectrometer (IRMS) measurements, as well as values from
children below the age of three, due to increased nitrogen values from breastfeeding. Stable isotope
values from older children were included in population-wide diet analyses as the isotope ranges fall
within those of adults; however, we only included adults with estimated sexes in the sex-based diet
analyses. If information on the sampled material was available, we chose values measured from
rib collagen, as these samples are most plentiful, though they only reflect the last few years of the
individual’s life.

All previously unpublished osteological data was collected and analyzed by co-authors with
permission from the necessary regulating organizations and in accordance with German laws and

policies.

4.3 Statistical models

We tested the effects of PRS, femur length, and isotope data on stature using linear regression
models including sex and geographic region as covariates in combination with other variables as
appropriate (e.g., femur ~ sex + region + PRS; !N ~ sex + region + femur). We included
interaction terms to test the relationships between geographic regions and sex (e.g., femur ~ region
* sex) logistic regression with the same covariates to test for factors affecting presence/absence of
paleopathologies. Two-tailed pairwise t-tests corrected for multiple testing using the Holm method
were used to test for regional differences in the PRS and regional differences with-in sex in the
femora since these tests do not include other covariates. Two-way ANOVA of the linear models
were used to test for interaction effects between sex and region on §'°N since the linear model was
likely under powered to detect these effects. Changing the method used to correct for multiple
comparisons did not alter the results which appear to be robust to the correction method. We did
not test data for normality or equal variances. Natural log of Bayes Factors are reported for null
results using the default priors and settings for ImBF() from the BayesFactor package v. 0.9.12-
4.4 in R which implements the g-mixture prior described in Ref. 114. We carried out all other

statistical tests using the base functions in R version 4.3.11°
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4.4 Data Availability

All non-genetic data and polygenic scores used in this analysis are provided in Supplementary Table

1. Original ancient DNA data files can be downloaded from the resources provided in their cited pub-

lications and from the Allen Ancient DNA Resource (AADR) https://reich.hms.harvard.edu/allen-ancient-d
GWAS summary statistics can be downloaded from the Neale Lab (http://www.nealelab.is and

the sibling GWAS summary statistics from OpenGWAS (https://gwas.mrcieu.ac.uk/). Pre-

viously published osteological data can be found in their cited sources which include the LiVES

database (doi: 10.17171/2-12-2-1) and Dr. Christopher Ruff’s public dataset (https://www.hopkinsmedicine.org;
Additional data from the PCAs, ADMIXTURE analysis, and sex-specific polygenic scores are avail-

able at https://github.com/mathilab/Neolithic_height.git.

4.5 Code Availability

R code used in this analysis is available at https://github.com/mathilab/Neolithic_height.git.
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Figure 1: Migrations of Farly Farmers into Europe This schematic illustration highlights the two main
migration routes from Anatolia to Europe during the Early Neolithic period. !¢ Populations followed two
routes: southern, along the Mediterranean coast (including sea routes, generalized here by dashed blue
lines) where they admixed with existing hunter-gatherer populations; or northern, through the Balkans
and into Central Europe, with only limited hunter-gatherer admixture. We analyze patterns within the
Linearbandkeramik culture, dividing it into Northern and Southern Central European groups. Vector map
of the European continent from stock.adobe. com.
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A) Map of sites - genetic data B)  Map of sites - skeletal data
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Figure 2: Sample properties and distributions Upper row: Sites used for genetic (a) and skeletal (b) data in
the analysis. The Central European population is split into Northern and Southern groups at 50°N latitude
(emphasized). Vector maps of the European continent from stock.adobe.com. Lower row: (c) imputed
genetic data projected into the PCA space of 777 modern Eurasian individuals (grey points). (d) sample
numbers by years before present (years BP) for skeletal (right) and genetic (left) data.
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A) Femur lengths of Neolithic Europeans B) Polygenic scores of Neolithic Europeans
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Figure 3: Distributions of statures, polygenic scores, and isotopes Solid bars across the tops of plots indicate
significant differences between male populations by two-sided pairwise t-test adjusted for multiple compar-
isons; solid bars below plots indicate significant differences between female populations by two-way pairwise
t-test; black points indicate the mean of each group; and vertical bars show 95% confidence intervals. a)
Femur length in the four populations: values to the right of the vertical dotted line are the difference between
the mean male and female femora; values to the left are the sexual dimorphism ratios of male/female femur
lengths for each population. Sample sizes, left to right, males: 68, 100, 6, 40; females: 65, 88, 6, 20. a)
Polygenic scores for the four populations show similar scores for individuals across all regions. Differences
between male and female PRS are not significant. Sample sizes, left to right, males: 32, 35, 25, 19; females:
32, 37, 24, 23. a) Plot of 6'3C (x-axis) and §'°N (y-axis) dietary stable isotopes for the four populations:
individuals from the Balkans are distinguished by high nitrogen values, while those in the Mediterranean
generally have higher carbon. North Central n=100, South Central n=666, Balkan n=78, Mediterranean
n=19.d) Sex differences in §15N values by sex for each population: §'°N values are slightly higher for males
in all populations, but this difference is only significant in the Mediterranean (p=0.035). Sample sizes, left
to right, males: 42, 254, 19, 8; females: 37, 249, 17, 4.
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Central Europeans:

A) Dietary stable isotopes by sex B) LEH prevalence C) Femur length and LEH
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Figure 4: Evidence of environmental stress in Northern Central Europe. a) Differences in §'3C (right)
and 61°N (left) values. Overall, the South has higher nitrogen values than the North and lower carbon;
within each population, the difference in isotopes between sexes is not significant based on linear regression.
Sample sizes, left to right, 61°N: 37, 42, 249, 254; §13C: 37, 42, 250, 254. b) Proportion of linear enamel
hypoplasias. The South has significantly less than the North (linear regression, p=0.002; beta=-1.386,
se=0.444) and differences between sexes are not significant. c) Presence of linear enamel hypoplasias is
significantly associated with shorter femora (linear regression, p=0.02, beta—-1.334, se=0.570); differences
in prevalence between sexes are not significant. Sample sizes, left to right, North Central: 5, 8, 7, 9; South
Central: 35, 16, 44, 12
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A)  Genetic ancestry PCA - imputed B) ADMIXTURE
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Figure 5: Comparison with genetic source populations a) Ancient individuals projected into modern PCA
space, including those of Mesolithic Western Hunter-Gatherer (WHG) and Anatolian Early Farmer ances-
try. b) ADMIXTURE plot of K=2 ancestry groups showing the increased proportion of WHG ancestry in
Mediterranean individuals. ¢) Polygenic scores for each region including Mesolithic Hunter-Gatherers and
Anatolian Early Farmers. Sample sizes left to right: 64, 72, 49, 42, 25, 21. d) Polygenic scores calculated
from between-sibling summary statistics. Sample sizes left to right: 64, 72, 49, 42, 25, 21.
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Supplementary Figure 1: Samples by data type
Venn diagram illustrating the overlaps in data. All individuals have at least one type of data, but
only subsets have more than one type.
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Supplementary Figure 2: Sex-specific clumping/thresholding PRS.
In each plot, black points are the group mean and black bars are the 95% confidence intervals.
Differences between groups was assessed based on two-tailed pairwise t-tests adjusted for multiple
comparisons; sample sizes are the same for all plots, from left to right, females: 32, 37, 24, 23, 9,
9; males: 32, 35, 25, 19, 16, 12. A) PRS calculated using the combined sex summary statistics
from the Neale Lab. There are no significant differences. B) PRS calculated for all individuals
using the male-specific summary statistics from the Neale Lab. There are no significant differences.
C) PRS calculated for all individuals using the female-specific summary statistics from the Neale
Lab. There are no significant differences. D) PRS calculated for males and females separately
using their respective summary statistics. There are no significant differences. (Summary stats:

Neale Lab (2018))



A) Sibling PRS Relationship between femur length and PRS
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Supplementary Figure 3: Sibling-based PRS and femoral lengths
A) PRS calculated with between-sibling effect sizes using the LDpred2 model. Based on two-tailed
pairwise t-tests adjusted for multiple comparisons, there are no differences between groups. Black
points indicate group means. Black bars show the 95% confidence intervals. left to right, n=64, 72,
49, 42, 25, 21. B) Femur length (y-azis) increases with clumping/thresholding PRS (z-axis) though
the effect is not significant likely due to the small sample size (n=55). Blue line is the regression
line and grey area is the 95% confidence interval.
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Supplementary Figure 4: PCA for unimputed DNA.
A) Unimputed PCA for Neolithic Europe, equivalent to Figure 2C in the main text. B) Unimputed
PCA for all samples, equivalent to Figure 5A in the main text.



Polygenic scores of Neolithic Europeans
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Supplementary Figure 5: LDpred2 PRS.
Polygenic scores calculated using infinitessimal LDpred 2 model (Privé, 2020). There is no
difference between North Central, South Central or Balkans populations. Mediterraneans PRS are
significantly lower than the other groups (linear regression, p=0.002). Similarly, the difference
between males and females is only significant in the Mediterranean (two-sided pairwise t-test,
adjusted for multiple comparisons, p=0.04). Sample sizes, left to right, males: 32, 35, 25, 19;
females: 32, 37, 24, 23. Black points are group means, black bars represent 95% confidence
intervals.



Difference in herbivore baseline isotopes for Central Europe
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Supplementary Figure 6: Herbivore baseline.
Isotopic data from herbivores to establish a baseline for interpretation of human isotopic results.
See citation in main text for data sources.

A) PRS restricted to 6900-7200BP B) Femora restricted to 6900-7200BP
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Supplementary Figure 7: Date restricted plots.
Black points are group means, black bars represent 95% confidence intervals. A) Plot of PRS data
restricted to the same narrow date range used in the Central European population samples and
illustrating the subsequent loss of power to detect effects. Sample sizes left to right, females: 32,
37, 0, 3; males: 32, 35, 1, 8. B) Plot of femora data restricted to the same date range as used in
the Central FEuropean sample and illustrating the subsequent loss of power to detect effects. Sample
sizes, left to right, females: 65, 88, 0, 1; males: 68, 100, 0, 0.



	LBK_paper-2
	LBK_paper

