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Abstract—Edge computing is increasingly proposed as a solu-
tion for reducing resource consumption of mobile devices running
simultaneous localization and mapping (SLAM) algorithms, with
most edge-assisted SLAM systems assuming the communication
resources between the mobile device and the edge server to be
unlimited, or relying on heuristics to choose the information to
be transmitted to the edge. This paper presents AdaptSLAM, an
edge-assisted visual (V) and visual-inertial (VI) SLAM system
that adapts to the available communication and computation re-
sources, based on a theoretically grounded method we developed
to select the subset of keyframes (the representative frames) for
constructing the best local and global maps in the mobile device
and the edge server under resource constraints. We implemented
AdaptSLAM to work with the state-of-the-art open-source V-
and VI-SLAM ORB-SLAMS3 framework, and demonstrated that,
under constrained network bandwidth, AdaptSLAM reduces the
tracking error by 62% compared to the best baseline method.

Index Terms—Simultaneous localization and mapping, edge
computing, uncertainty quantification and minimization

I. INTRODUCTION

Simultaneous localization and mapping (SLAM), the pro-
cess of simultaneously constructing a map of the environ-
ment and tracking the mobile device’s pose within it, is an
essential capability for a wide range of applications, such
as autonomous driving and robotic navigation [1]. In partic-
ular, visual (V) and visual-inertial (VI) SLAM, which use
cameras either alone or in combination with inertial sensors,
have demonstrated remarkable progress over the last three
decades [2], and have become an indispensable component
of emerging mobile applications such as drone-based surveil-
lance [3], [4] and markerless augmented reality [S]-[8].

Due to the high computational demands placed by the V-
and VI-SLAM on mobile devices [9]-[11], offloading parts
of the workload to edge servers has emerged as a promising
solution for lessening the loads on the mobile devices and
improving the overall performance [9]-[17]. However, such
approach experiences performance degradation under resource
limitations and fluctuations. The existing edge-assisted SLAM
solutions either assume wireless network resources to be
sufficient for unrestricted offloading, or rely on heuristics in
making offloading decisions. By contrast, in this paper we
develop an edge computing-assisted SLAM framework, which
we call AdaptSLAM, that intelligently adapts to both commu-
nication and computation resources to maintain high SLAM
performance. Similar to prior work [10]-[16], AdaptSLAM
runs a real-time tracking module and maintains a local map
on the mobile device, while offloading non-time-critical and

computationally expensive processes (global map optimization
and loop closing) to the edge server. However, unlike prior
designs, AdaptSLAM uses a theoretically grounded method
to build the local and global maps of limited size, and
minimize the uncertainty of the maps, laying the foundation
for the optimal adaptive offloading of SLAM tasks under the
communication and computation constraints.

First, we develop an uncertainty quantification model for
the local and global maps in edge-assisted V-SLAM and VI-
SLAM. Specifically, since these maps are built from the infor-
mation contained in the keyframes (i.e., the most representative
frames) [18]-[20], the developed model characterizes how the
keyframes and the connections between them contribute to
the uncertainty. To the best of our knowledge, this is the first
uncertainty quantification model for V-SLAM and VI-SLAM in
edge-assisted architectures.

Next, we apply the developed uncertainty quantification
model to efficiently select subsets of keyframes to build local
and global maps under the constraints of limited computation
and communication resources. The local and global map
construction is formulated as NP-hard cardinality-constrained
combinatorial optimization problems [21]. We demonstrate
that the map construction problems are ‘close to’ submodular
problems under some conditions, propose a low-complexity
greedy-based algorithm to obtain near-optimal solutions, and
present a computation reuse method to speed up map construc-
tion. We implement AdaptSLAM in conjunction with the state-
of-the-art V- and VI-SLAM ORB-SLAM3 [19] framework,
and evaluate the implementation with both simulated and
real-world communication and computation conditions. Under
constrained bandwidth, AdaptSLAM reduces the tracking error
by 62% compared with the best baseline method.

To summarize, the main contributions of this paper are: (i)
the first uncertainty quantification model of maps in V- and
VI-SLAM under the edge-assisted architecture, (ii) an analyt-
ically grounded algorithm for efficiently selecting subsets of
keyframes to build local and global maps under computation
and communication resource budgets, and (iii) a compre-
hensive evaluation of AdaptSLAM on two configurations of
mobile devices. We open-source AdaptSLAM via GitHub.!

The rest of this paper is organized as follows. §II reviews
the related work, §III provides the preliminaries, §IV and
§V introduce the AdaptSLAM system architecture and model,

Thttps://github.com/i3tyc/AdaptSLAM
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§VI presents the problem formulation, and §VII presents the
problem solutions. We present the evaluation in §VIII and
conclude the paper in §IX.

II. RELATED WORK

V- and VI-SLAM. Due to the affordability of cameras and
the richness of information provided by them, V-SLAM has
been widely studied in the past three decades [2]. It can be
classified into direct approaches (LSD-SLAM [22], DSO [23]),
which operate directly on pixel intensity values, and feature-
based approaches (PTAM [24], ORB-SLAM?2 [18], Pair-
Navi [25]), which extract salient regions in each camera
frame. We focus on feature-based approaches since direct
approaches require high computing power for real-time per-
formance [2]. To provide robustness (to textureless areas,
motion blur, illumination changes), there is a growing trend
of employing VI-SLAM, that assists the cameras with an
inertial measurement unit (IMU) [19], [20], [26]; VI-SLAM
has become the de-facto standard SLAM method for modern
augmented reality platforms [5], [6]. In VI-SLAM, visual
information and IMU data can be loosely [26] or tightly [19],
[20] coupled. We implement AdaptSLAM based on ORB-
SLAM3 [19], a state-of-the-art open-source V- and VI-SLAM
system which tightly integrates visual and IMU information.

Edge-assisted SLAM. Recent studies [4], [9]-[17], [27]-
[29] have focused on offloading parts of SLAM workloads
from mobile devices to edge (or cloud) servers to reduce
mobile device resource consumption. A standard approach
is to offload computationally expensive tasks (global map
optimization, loop closing), while exploiting onboard com-
putation for running the tasks critical to the mobile device’s
autonomy (tracking, local map optimization) [10]-[17]. Most
edge-assisted SLAM frameworks assume wireless network
resources to be sufficient for unconstrained offloading [4],
[12]-[15], [28]; some use heuristics to choose the information
to be offloaded under communication constraints [9]-[11],
[16], [17], [27], [29]. Some frameworks only keep the newest
keyframes in the local map to combat the constrained compu-
tation resources on mobile devices [13], [15]. Complementing
this work, we propose a theoretical framework to characterize
how keyframes contribute to the SLAM performance, laying
the foundation for the adaptive offloading of SLAM tasks
under the communication and computation constraints.

Uncertainty quantification and minimization. Recent
work [30]-[32] has focused on quantifying and minimizing
the pose estimate uncertainty in V-SLAM. Since the pose
estimate accuracy is difficult to obtain due to the lack of
ground-truth poses of mobile devices, the uncertainty can
guide the decision-making in SLAM systems. In [30], [31],
it is used for measurement selection (selecting measurements
between keyframes [30] and selecting extracted features of
keyframes [31]); in [32], it is used for anchor selection (se-
lecting keyframes to make their poses have ‘zero uncertainty’).
Complementing this work, we quantify the pose estimate
uncertainty of both V- and VI-SLAM under the edge-assisted
architecture. After the uncertainty quantification, we study

the problem of selecting a subset of keyframes to minimize
the uncertainty. This problem is largely overlooked in the
literature, but is of great importance for tackling computation
and communication constraints in edge-assisted SLAM.

III. PRELIMINARIES
A. Graph Preliminaries

A directed multigraph is defined by the tuple of sets G =
(V,€,C), where V = {v1,--- , vy} is the set of nodes, £ is
the set of edges, and C is the set of edge categories. Let e =
((vs,v5),¢) € € denote the edge, where the nodes v;,v; € V
are the head and tail of e, and ¢ € C is the category of e.
We let w, be the weight of edge e. We allow multiple edges
from v; to v; to exist, and denote the set of edges from v; to
v; by &; ;. Note that the edges in &; ; are differentiated from
each other by their category labels. The total edge weight from

nodes v; to v; is given by w; ; = > we, which is the sum
ee&,J
of all edge weights from v; to v;.

The weighted Laplacian matrix L of graph G is a [V| x |V
matrix where the 4, j-th element L, ; is given by:

—Wj 5, { 75]
Lij=9 Y w., i=j >
e€&;

where & C & is the set of all edges whose head is node v;.
The reduced Laplacian matrix L is obtained by removing an
arbitrary node (i.e., removing the row and column associated
to the node) from L.

B. Set Function

We define a set function f for a finite set V' as a mapping
f:2Y — R that assigns a value f () to each subset S C V.

Submodularity. A set function f is submodular if f (L) +
S =2fLUS)+f(LnS)forall L,SCV.

Submodularity ratio. The submodularity ratio of a set
function f with respect to a parameter s is

_ . fLU{e)) ~F (L)
7= LCV,SCV,|S|<s,zeV\(suL) f(LUSU{z}) — f(LU S()l'

where we define 0/0 := 1.
The cardinality-fixed maximization problem is

f(5). )

max
SCV,|S|=s
The keyframe selection optimization is closely related to
the cardinality-fixed maximization problem introduced above,
which is an NP-hard problem [33]. However, for submodular
set functions, there is an efficient greedy approach that will
come close to the optimum value for (2), with a provable
optimality gap. This result is formally stated in Theorem 1.

Algorithm 1 Greedy algorithm to solve (2)
1. S% « (;
2: while (|S#| < ) do
3. 2%+ argmax f(S*U{z})—f(S%). S% « S#U{z*}.
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Theorem 1. [33], [34] Given a non-negative and monoton-
ically increasing set function f with a submodularity ratio v,
let S# be the solution produced by the greedy algorithm
(Algorithm 1) and S* be the solution of (2). Then, f (S#) >

(1 —exp(—=7)) f (5%).
C. SLAM Preliminaries

The components of SLAM systems include [2], [19], [20]:

Tracking. The tracking module detects 2D feature points
(e.g., SIFT, SURF, or ORB) in the current frame. Each
feature point corresponds to a 3D map point (a distinguishable
landmark) in the environment. The tracking module uses
these feature points to find correspondences with a previous
reference frame. It also processes the IMU measurements.
Based on the correspondences in feature points and the IMU
measurements, it calculates the relative pose change between
the selected reference frame and the current frame. The module
also determines if this frame should be a keyframe based on
criteria such as the similarity to the previous keyframes [19].

Local and global mapping. It finds correspondences (of
feature points) between the new keyframe and the other
keyframes in the map. It then performs map optimizations,
i.e., estimates the keyframe poses given the common feature
points between the keyframes and the IMU measurements.
Map optimizations are computationally expensive. In edge-
assisted SLAM, global mapping runs on the server [10]-[16].

Loop closing. By comparing the new keyframe to all
previous keyframes, the module checks if the new keyframe is
revisiting a place. If so (i.e., if a loop is detected), it establishes
connections between the keyframe and all related previous
ones, and then performs global map optimizations. Loop
closing is computationally expensive and can be offloaded to
the edge server in the edge-assisted SLAM [10]-[16].

IV. ADAPTSLAM SYSTEM ARCHITECTURE

The design of AdaptSLAM is shown in Fig. 1. The mobile
device, equipped with a camera and an IMU, can communicate
with the edge server bidirectionally. The mobile device and the
edge server cooperatively run SLAM algorithms to estimate
the mobile device’s pose and a map of the environment.
AdaptSLAM optimizes the SLAM performance under compu-
tation resource limits of the mobile device and communication
resource limits between the mobile device and the edge server.

We split the modules between the mobile device and the
edge server similar to [10], [12]-[17]. The mobile device
offloads loop closing and global map optimization modules
to the edge server, while running real-time tracking and local
mapping onboard. Unlike existing edge-assisted SLAM sys-
tems [10], [12]-[17], AdaptSLAM aims to optimally construct
the local and global maps under the computation and commu-
nication resource constraints. The design of AdaptSLAM is
mainly focused on two added modules, local map construction
and global map construction highlighted in purple in Fig. 1.
In local map construction, due to the computation resource
limits, the mobile device selects a subset of keyframes from
candidate keyframes to build a local map. In global map

P ———— — |
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' Image|  Tracki Global Map | |  Global Map |
| racking . Selected A
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Fig. 1: Overview of the AdaptSLAM system architecture.

construction, to adapt to the constrained wireless connection
for uplink transmission, the mobile device also selects a subset
of keyframes to be transmitted to the edge server to build a
global map. The AdaptSLAM optimally selects the keyframes
to build local and global maps, minimizing the pose estimate
uncertainty under the resource constraints.

Similar to [10], the selected keyframes are transmitted from
the mobile device to the server, and the map after the global
map optimization is transmitted from the server to the mobile
device. For the uplink transmission, instead of the whole
keyframe, the 2D feature points extracted from the keyframes
are sent. For the downlink communication, the poses of the
keyframes obtained by the global map optimization, and the
feature points of the keyframes are transmitted.

V. ADAPTSLAM SYSTEM MODEL
A. The Pose Graph and the Map

We divide time into slots of equal size of At. We introduce
the pose graph and the map at time slot ¢ that lasts for At
seconds. For clarity of notation, we will omit the time index
below.

Definition 1 (Pose graph). For a given index set K =
{1,...,|K|} (indexing camera poses and representing
keyframes), the pose graph is defined as the undirected multi-
graph G = (K,&,C), where K is the node set, £ is the edge
set, and C = {IMU, vis} is the category set. Here, IMU stands
for the IMU edges, and vis stands for the covisibility edges.

Given a pose graph G = (K, £,C), there is a camera pose
P, = (z,y,2,wg,wy,w,) for all n € K, where the first
three entries are the 3-D positions and the last three ones are
the Euler angles (yaw, pitch and roll) representing the camera
orientation. Edges in £ are represented as e = ((n,m), ¢) for
n,m € K and ¢ € C. Two keyframes in K are connected
by a covisibility edge if there are 3D map points observed
in both keyframes. Two consecutive keyframes are connected
by an IMU edge if there are accelerometer and gyroscope
readings from one keyframe to another. There may exist both
a covisibility edge and an IMU edge between two keyframes.

For each e = ((n,m),c) € &, we observe relative noisy
pose measurements between n and m, which is written as
A, = P, — P, + x., where x. is the measurement noise
on edge e. The map optimization problem is to find the
maximum likelihood estimates {f’n}ne i for the actual camera
poses {P,, }nex. For Gaussian distributed edge noise, the map

optimization problem is
. ~ \T ~
_min E (Xe) ZeXe,

3)
{P"}ne}c ecé
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where X, = A, — f’m + f’n and Z. is the information matrix
(i.e., inverse covariance matrix) of the measurement error on
e [35]. (ie)TIefce is the Mahalanobis norm [19], [20] of the
estimated measurement noise for e with respect to Z.

Below, we assume that the measurement noise x. is Gaus-
sian distributed with isotropic covariance (as in [30], [36],
[37]). We assume that the information matrix Z, can be
characterized by a weight assigned to e [36], [38]. Specifically,
IT. = wZ, where w, > 1 is the weight for e and 7 is the
matrix that is constant for all measurements. We note that the
relative measurements between keyframes n and m introduce
the same information for them. We assume all weights w, to
be independent from each other for edges between different
pairs of keyframes as in [19], [20], [38], [39].

The map optimization problem in (3) is solved by standard
methods such as Levenberg-Marquardt algorithm implemented
in g2o0 [40] and Ceres solvers [41] as in [19], [20].

Definition 2 (Anchor). We say that a node is the anchor of
the pose graph if the pose of the node is known.

The map (local or global) consists of the pose graph (in
Definition 1) and map points in the environment. In this paper,
we will use the terms map and pose graph interchangeably.
Without loss of generality, we will also assume that the global
(or local) map is anchored on the first node, as in [36], [38].
This assumption is made because SLAM can only estimate
the relative pose change based on the covisibility and inertial
measurements, while the absolute pose estimate in the global
coordinate system cannot be provided.

B. The Local Map

Local map construction. The candidate keyframes are se-
lected from camera frames according to the selection strategy
in ORB-SLAM3 [19], and these candidate keyframes form
the set IC. Due to the constrained computation resources,
the mobile device selects a fixed keyframe set Kf;zcq and a
local keyframe set Kj,. from the candidate keyframes, where
IKrizeal < lf and |Kjoe| < lioe. The fixed keyframe set
Ktized C Kguser is selected from the global map Ky yser
that was last transmitted from the edge server. The poses
of keyframes in Ky;;.q act as fixed priors in the local map
optimization. This is because poses of keyframes in g yser
are already optimized in the global map optimization and
hence have low uncertainty. The poses of keyframes in the
local keyframe set Kjoe C K \ Ky user Will be optimized
according to the map optimization problem introduced above.

The edges between keyframes in K, form the set &, and
the edges whose one node belongs to X;,. and another node
belongs to K fizeq form the set & ;.

Local map optimization. After selecting /C;,. in the local
map construction, the local map optimization is to optimize

the estimated poses {Pn}

Mahalanobis norms >
eESZOCUgl,f
local pose graph optimization, the keyframes in Kf;,.q are

to minimize the sum of
nekioe

(%) Z.%.. Note that in the

included in the optimization with their poses fixed. The local
map optimization to solve (3) is

min E

n}nE’Czoc eegmcugl‘f

“4)

{P

C. The Global Map

Global map construction. Due to the limited bandwidth
between the mobile device and the edge server, only a subset
of candidate keyframes are offloaded to the edge server to
build a global map. The selection of keyframes to be offloaded
will be optimized to minimize the pose estimation uncertainty
of the global map when considering the underlying wireless
network constraints.

The edge server maintains the global map, denoted as
Kg,edge, holding all keyframes uploaded by the mobile device.
The edges between keyframes in the global map g cage
constitute the set £g;op. Note that Ky cqqe may be different
from Ky yser, because the global map is large and it takes
time to transmit the most up-to-date global map from the edge
server to the mobile device.

Global map optimization. After selecting g cq4. in the
global map construction, the edge server performs the global
map optimization to estimate poses 15n in Kgeqge and

minimize the sum of Mahalanobis norms Y. (X.) ZcXe.
e€&€giop
Specifically, the edge solves (3) when & = g'glob and K =

Kg,edge, 1.€., the global map optimization is to solve

. ~ T ~
_ min E (Xe) ZeXe.
{Pn}"e’cg,edge eegglub

®)

VI. PROBLEM FORMULATION

AdaptSLAM aims to efficiently select keyframes to con-
struct optimal local and global maps, i.e., we select keyframes
in Ko and Kyipeq for the local map and Ky cqg. for the
global map. We construct optimal local and global maps by
minimizing the uncertainty of the keyframes’ estimated poses.

A. Uncertainty Quantification

Let p, = f’n — P, denote the pose estimate error
of keyframe n. The estimated measurement noise can be
rewritten as X = Pp — Pm + Xe = DPn,m + X, Where
Pn,m Pn — Pm- We stack all p,,n € K and get

a pose estimate error vector w = <p1T,p2T,-~- ,p‘T,q).

We rewrite the olj)Jective function of map optimization
in (3) as Z (ie) Ipif’ - Z p;Lr,mIepn,m +
ec& e=((n,m),c)e€

2 > PomIexe + Y x)Iexc. If we can rewrite
e=((n,m),c)€E ect

the quadratic term > pTTL’mIepn’m in the format of
e=((n,m),c)€E

wZ,w ', where 7, is called the information matrix of the
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pose graph, the uncertainty of the pose graph is quantified by
—log det (Z,,) according to the D-optimality [30]-[32].2
We denote the pose estimate error vectors for the global

(plﬂ'" ’pI\IC

(p,Tl,~-- ,pj‘)c ‘), where uq, - - - yUIKy caqe| ATC the
keyframes in ngyedge,Loaind T1," " ,T|K..| are the keyframes
in [Cjoc. The first pose in the global and local pose graph is
known (p,, = 0, p,, = 0). We rewrite the quadratic terms of
the objective functions of global and local map optimizations
in (5 and 4) as Py Lebum =
e=((n,m),c)€€qi0p

T T _
WgIglob (Icg,edge) Wg (OI' pn,7mIep7z,m —
e=((n,m),c)€€10UE 5

WlIloc (]Cloca ]Cfized)wl—r): where Iglob (]Cg,edge) and
Zioc (Kioes Kfizea) are called the information matrices of
the global and local maps and will be derived later (in
Definition 3 and Lemmas 1 and 2).

and local maps as w, = and

g,edgel

W, =

Definition 3 (Uncertainty). The uncertainty of the global (or
local) pose graph is defined as —logdet (fglob (Kg.edge)

(or —log det (j'-loc (Kioc, ICfimd)>, where Ly (Kg,cage) and

Tioc (Kioe, Kizea) are obtained by removing the first row and
first column in the information matrices Lgiop (Kg eage) and
Iloc (’Cloca ICfi:ned)-

From Definition 3, the uncertainty quantification is based
on the global and local map optimizations introduced in §V-C
and §V-B. After quantifying the uncertainty, we will later (in
§VI-B) optimize the local and global map construction which
in turn minimizes the uncertainty of poses obtained from local
and global map optimizations.

Lemma 1 (Uncertainty of global pose graph). For the
global ma(p optimization, the uncertainty is calculated as

—log det iglob (]Cg,edge)); where iglob (]Cg,edge) = f;gzob@)z
with Eglob being the matrix obtained by deleting the first row

and column in the Laplacian matrix Lgop, and ® being the
Kronecker product. The i, j-th element of Ly is given by

- Z We, { 7& .]
- e=((ui,u;),c)€E  cdge
[Lgiob); ; = wo, i=j (6)
e=((u,9),¢)E€Eg, edge Ui #q
Proof. See Appendix A in the technical report [44]. O

From Lemma 1, the uncertainty of the global pose graph
can be calculated based on the reduced Laplacian matrix
(I:glob). According to the relationship between the reduced
Laplacian matrix and the tree structure [45], the uncertainty is
inversely proportional to the logarithm of weighted number of
spanning trees in the global pose graph. Similar conclusions
are drawn for 2D pose graphs [30] and 3D pose graphs with

2Common approaches to quantifying uncertainty in SLAM are to use real
scalar functions of the maximum likelihood estimator covariance matrix [42].
Among them, D-optimality (determinant of the covariance matrix) [36], [38]
captures the uncertainty due to all the elements of a covariance matrix and
has well-known geometrical and information-theoretic interpretations [43].

only covisibility edges [36], [38], where the device can move
in 2D plane and 3D space respectively. We extend the results
to VI-SLAM where the global pose graph is a multigraph with
the possibility of having both a covisibility edge and an IMU
edge between two keyframes.

Lemma 2 (Uncertainty of local pose graph). The uncertainty
S for the local map, where

is — log det (j-loc (K:loca K:fia:ed)
Tioe (Kioe, Kfized) = Liye @ T with Lyo. being the matrix
obtained by deleting the first row and the first column in Lj,..
The i, j-th element of Ly (of size |Kioc| X |Kioc|) is given by

- Z We, ( 7’é .]
'=((T’i1 ')7 )65 oc
[Liocli; = T we, i=4 © D
e=((7i,9),¢)€E1, fUEloc,q#Ti
Proof. See Appendix B in the technical report [44]. O

From Lemma 2, the uncertainty of the local map is propor-
tional to the uncertainty of the pose graph G anchoring on the
first node in Xy, and all nodes in K ¢;,.4, Where G’s node set is
K tizea UK oc and edge set includes all measurements between
any two nodes in Kyizeq U Ko Note that keyframe poses
in Kyizeq are optimized on the edge server and transmitted
to the mobile device, and they are considered as constants
in the local pose graph optimization. From the uncertainty’s
perspective, adding fixed keyframes in Kfizcq iS equivalent
to anchoring these keyframe poses (i.e., deleting rows and
columns corresponding to the anchored nodes in the Laplacian
matrix of graph G). In addition, from Lemma 2, although poses
are fixed, the anchored nodes still reduce the uncertainty of
the pose graph. Hence, apart from KCj,., we will select the
anchored keyframe set K f;zeq to minimize the uncertainty.

B. Uncertainty Minimization Problems

We now formulate optimization problems whose objectives
are to minimize the uncertainty of the local and global
maps. For the local map optimization, under the computation
resource constraints, we solve Problem 1 for each keyframe k.
For the global map optimization, under the communication
resource constraints, we solve Problem 2 to adaptively offload
keyframes to the edge server.

Problem 1 (Local map construction).
max IOg det (Eoc (ICloc U {k} 3 ’Cfized)) (8)
Kioc,Kfized

s.1. |’Cloc| < llom K:loc g K \ ICg,user (9)
chixed| < lfa Icfiaced g Kg,user~ (10)

The objective of Problem 1 is equivalent to minimizing the
uncertainty of the local map. Constraint (9) means that the size
of Ky is constrained to reduce the computational complexity
in the local map optimization, and that the keyframes to
be optimized in the local map are selected from keyframes
that are not in Ky ,ser. Constraint (10) means that the size
of Kyizea is constrained, and that the fixed keyframes are
selected from /Cy e that were previously optimized on and
transmitted from the edge server.
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Problem 2 (Global map construction).

log det (f b (Koedoe UK ) 1
’C’Qg{%)g(,edge ogde glob (ICg, dge U K ) (11)
s.t. dIK'| < D. (12)

The objective of Problem 2 is equivalent to minimizing the
uncertainty of the global map. K \ K4 caqqe is set of the
keyframes that have not been offloaded to the server, and
we select a subset of keyframes, K', from K \ g cage.
The constraint (12) guarantees that the keyframes cannot be
offloaded from the device to the server at a higher bitrate than
the available channel capacity, where D is the channel capacity
constraint representing the maximum number of bits that can
be transmitted in a given transmission window. We assume that
the data size d of each keyframe is the same, which is based on
the observation that the data size is relatively consistent across
keyframes in popular public SLAM datasets [46], [47].

VII. LocAL AND GLOBAL MAP CONSTRUCTION

We analyze the properties of approximate submodularity
in map construction problems, and propose low-complexity
algorithms to efficiently construct local and global maps.

A. Local Map Construction

The keyframes in the local map include those in two disjoint
sets Ko and Kprizeq. To efficiently solve Problem 1, we
decompose it into two problems aiming at minimizing the
uncertainty: Problem 3 that selects keyframes in Kj,. and
Problem 4 that selects keyframes in Kyzcq. We obtain the
optimal local keyframe set X}, . in Problem 3. Based on K7}, ,
we then obtain the optimal fixed keyframe set K7, ., in
Problem 4. We will compare the solutions to Problems 3 and 4
with the optimal solution to Problem 1 in §VIII to show that

the performance loss induced by the decomposition is small.

Problem 3.
* . = arg max log det (floc(lClocU {k}, @))

loc
loc

st (9).
Problem 4.
K¥izea = arg Ié?ia:fd log det (j:loc( locU{k}, ’Cfmed)>
s.t. (10).

1) The Selection of Local Keyframe Set K,.: We first
solve Problem 3. It is a nonsubmodular optimization problem
with constraints, which are NP-hard and generally difficult
to be solved with an approximation ratio [21]. Hence, we
decompose Problem 3 into subproblems (Problems 5 and 6)
that are equivalent to the original Problem 3 and can be
approximately solved with a low-complexity algorithm.

In problem 5, assume that we already select a keyframe
subset [Cpase from K\ g yser (With the size I 2 | Kpase| <
lioc), and we aim to further select a keyframe set KCugq
to be added to Kpsse to minimize the local map uncer-
tainty. Rewriting the objective as Unc (Kaqq U Kpase U {k}) =

—log det (floc (Kada U Kpase U {k}, (Z))), we aim to get the
optimal /Cy 44 (denoted as OPT yqq(KChase)) given Kpgse:

Problem 5.
OPT 444 (K:base) = arg max —Unc (lCadd U Kpgse U {k})

Kada

s.1. |lcadd| < lloc - lb-

After getting the solutions (i.e., OPT 444 (Kpase)) to Prob-
lem 5 for all possible Kp,se Of size [, we obtain the optimal
Krase (denoted as KF__ ) in Problem 6.

base
Problem 6.

Kpose = arg max —Unc (OPT 40 (Kpase) U Kpase U {k})

base

S.1. |K:base| = .

Lemma 3. Given ly > 0, let K., be the solution for Problem
6 and OPT .44 (K},,.) be the solution for Problem 5 for
the input set Kj,... Then, Kj, . is given by K}, = Kj,.. U

loc
OPTqad (K, s0)-
Proof. The proof is straightforward and hence omitted. [

We can obtain K} . in Problem 3 by solving Problems 5
and 6. We will show that the objective function of Problem 5 is
‘close to’ a submodular function when the size of the keyframe
set Kpase 18 large. In this case, Problem 5 can be efficiently
solved using a greedy algorithm with an approximation ratio.
When |Kpgse| is small, we need to compare the objective

function for different combinations of Kpyse and Kygq-

Wmax

Lemma 4. When Kiae T, < 1, the submodularity ratio ~y
of the objective function in Problem 5 is lower bounded by

1 4K gaa|*w?
y=>1+-=log|1- e ; (13)
Y ( |Kbase| Wmin — Wmax
where ¥ = min -~ Y, logWnm  Wmax =

MEKadd neciCyyae

max Wy, my aNd Win = min

Why.m -
n,MEKpase Uadd n,MEKpase Uadd mome- Y
is close to 1 when |Kpqse| is significantly larger than |KCoqq).

Proof. See Appendix C in the technical report [44]. O

From Lemma 4, the objective function in Problem 5 is
‘close to’ a submodular function when the size of the exist-
ing keyframe set (i.e., |fCpase|) is much larger than |KCoq4)-
Hence, we can use the greedy algorithm to approximately
solve Problem 5. According to Theorem 1, the solution
obtained by the greedy algorithm for Problem 5, denoted
by OPTa#dd (Kpase), has an approximation guarantee that
OPTa#dd (chase) P (1 - exp(—’y)) OPTadd (Kbase)'

According to the analysis of the properties of Problems 5
and 6, we now solve Problem 3 to select the local keyframe set
Kioc using Algorithm 2 (top-h greedy-based algorithm). © is
the set of possible keyframe sets that minimize the local map
uncertainty, and we only maintain h keyframe sets to save
the computation resources. A, A € O, denotes the element
in © and represents one possible keyframe set. When the
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Algorithm 2 Selecting local keyframe set /Cj,. in the local

map (top-h greedy-based algorithm)

SRR

while ( |A] < ljo.) do

if |A| <l then h < H else h + 1;

Select the top-h highest-scoring combinations of
AA € © and n,n € K\ Kguser that minimize
Unc (AU {n,k}). Unc (AU {n, k}) is calculated using
the computation reuse algorithm in Algorithm 2;

5:  Update O as the set of i highest-scoring combinations
of A and n. Each element of O is a set (i.e., AU {n})
corresponding to one combination;

. K}, + arg 5\11618 Unc(A U {k}).

loc

b

[=))

Algorithm 3 Computation reuse algorithm

1: Input: det(A), A~1;

2. B+ AL Calculate BZ-B;F, i=1,--- AL

3: Calculate (A’)™" using (15). Calculate det(A’) using
(16). Calculate det(Z (AU {n,k})) using (14).

size of A is smaller than a threshold Iy, (|A| < ), we
select the top-H (H > 1) highest-scoring combinations of
A and n,n € K\ Ky yser, that minimize Unc (AU {k,n}).
When |A| gets larger, we only select the highest-scoring
combination. The reasons are as follows. A can be seen as the
existing keyframe set KCpqse. According to Lemma 4, when
the size of the existing keyframe set (which is |A| here) is
small, there is no guarantee that Unc (Kqgq U Kpase U {k}) is
close to a submodular function (i.e., the submodularity ratio
is much smaller than 1). Hence, we need to try different
combinations of A and n to search for the combination that
minimizes the uncertainty after each iteration. As |A| grows,
the submodularity ratio is close to 1, and a greedy algorithm
achieves n approximation (n = 1 — exp(—v), v — 1). In
this case, we apply the greedy algorithm and only keep the
combination that achieves minimal uncertainty at each step.

2) Computation Reuse Algorithm: We use the computation
reuse algorithm (Algorithm 3) to speed up Algorithm 2. We
observe that for different n,n € K\ Ky yser, only a limited
number (3|A|+1) of elements in the matrix Z (A U {n, k}) are
different. Calculating the log-determinant function of a (|A|+
1) x (|A| +1) matrix Z (A U {n, k}) has a high computational
complexity (of O(]A|+1)3) [48]. Hence, instead of computing
the objective function for each n from scratch, we reuse parts
of computation results for different n.

Letting A 2 7 (A U {k}) denote the information matrix of
the local map in the |A|-th iteration (of Algorithm 2), the infor-
mation matrix in the (|A| 4 1)-th iteration is Z (A U {n, k}) =

A +diag(a) a'

a d

, where a = (a1, az, -+ ,a5)) with

|A]
a; = Wy, n, A is the i-th element of A, and d = wy, ,+ >, a;.
=1
We aim to calculate det(Z (A U {n, k})) using the calcula-
tion of det(A) and A~! from the previous iteration. Letting

A’ £ A + diag(a), det(Z (AU {n, k})) is calculated by

det(Z(AU{n,k})) = (d—a(A)"taT)det(A"). (14)

Next we efficiently calculate (A’)~! and det(A’) to get

det(Z (AU{n,k})). We can rewrite A’ as A’ = A +

[A|
> B, B; where B; = | 0,---,+\/a;,---,0 |. According to
=1 NG,

i—th
Sherman—Morrison formula [49], (A’)"" is given by

|A]
A)y'~ B - —%“_ BB/ 15
( ) ~~ Zl—l—aiB“\;,L’ (as)
Reuse =1 " Reuse

where B = A~1, B, is the 4, i-th element of B, and B; is
the ¢-th column vector of B. Using (15), B and BiBiT can be
computed only once to be used for different n,n € K\KCg yser
which greatly reduces the computational cost. According to the
rank-1 update of determinant [49], det(A’) can be written as

det (A') =det (A) (1 + a;By.1) {1(|A| = 1) + L(JA| > 1)

[A| i—1 T
a; BB

% I | l1+a; |B— E It I

pals o 1+a;By;

i—1
B o Z aijB?
= 14a;B; ;

duces the computational complexity. Substituting (15) and (16)
into (14), we get the final results of det(Z (A U {n, k})).
The computation complexity of different algorithms.
If we select keyframes in K;,. using a brute-force algo-
rithm based on exhaustive enumeration of combinations of

keyframes in Kj,., the complexity is O ((lzﬂc) 3 where

is already calculated in (15), which re-

loc )
p = KK\ Kg user| is the number of keyframes that have not
been offloaded to the edge server. Without computation reuse,
the computation complexity of the proposed top-h greedy-
based algorithm is O(Hpl} ). With computation reuse, it is

loc
reduced to O(HI} ) + O(Hpl} ). Since we only keep joc

loc
keyframes in Cj,. of the local map and a small H in Algo-
rithm 2 to save computation resources, i.e., p > lj,c > H,
the proposed greedy-based algorithm with computation reuse
significantly reduces the computational complexity.

3) The Selection of Fixed Keyframe Set Kjizeq: After
selecting the local keyframe set K;,. by solving Problem 3,

we solve Problem 4 to select the fixed keyframe set.

Lemma 5. Problem 4 is non-negative, monotone and submod-
ular with a cardinality-fixed constraint.

Proof. The proof is straightforward and hence omitted. O

Lemma 5 indicates that the problem can be approximately
solved with greedy methods in Algorithm 1 [33]. For each
iteration, the algorithm selects one keyframe from KCg yser t0
be added to the fixed keyframe set K t;;cq. The approximation
ratio n = 1 —exp(—1) guarantees that worst-case performance
of a greedy algorithm cannot be far from optimal.
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B. Global Map Construction

We use a low-complexity algorithm to solve Problem 2 to
construct the global map. The objective function of Problem 2
can be rewritten as —Unc (K cq4ge U K'), which has the same
structure as that of Problem 3. Problems 2 and 3 both add
keyframes to the existing keyframe sets to construct a pose
graph and optimize the keyframe poses in the pose graph.
Hence, Algorithms 2 and 3 can be used to solve Problem 2.
In Algorithm 2, [j,. is replaced by %, and K\ Kg user is
replaced by C \ Ky cqqe. Calculating the uncertainty of a
large global map is computationally intensive, and hence the
proposed low-complexity algorithm is essential to reducing the
computational load on the mobile device.

VIII. EVALUATION

We implement AdaptSLAM on the open-source ORB-
SLAM3 [19] framework which typically outperforms older
SLAM methods [24], [25], with both V- and VI- configura-
tions. The edge server modules are run on a Dell XPS 8930
desktop with Intel (R) Core (TM) i7-9700K CPU@3.6GHz
and NVIDIA GTX 1080 GPU under Ubuntu 18.04LTS. In
§VIII-A, the mobile device modules are run on the same
desktop under simulated computation and network constraints.
In §VIII-B, the mobile device modules are implemented on a
laptop (with an AMD Ryzen 7 4800H CPU and an NVIDIA
GTX 1660 Ti GPU), using a virtual machine with 4-core CPUs
and 8GB of RAM. The weight w,, e = ((n,m), ¢) is set as the
number of common map features visible in keyframes n and
m for covisibility edges, similar to [19], [50], and the IMU
edge weight is set as a large value (i.e., 500) as the existence
of IMU measurements greatly reduces the tracking error. We
empirically set H = 5 and l;5, = 30 in Algorithm 2 to ensure
low complexity and good performance at the same time.

Metric. We use root mean square (RMS) absolute trajectory
error (ATE) as the SLAM performance metric which is com-
monly used in the literature [19], [S1]. ATE is the absolute
distance between the estimated and ground truth trajectories.

Baseline methods. We compare AdaptSLAM with 5 base-
lines. Random selects the keyframe randomly. DropOldest
drops the oldest keyframes when the number of keyframes
is constrained. ORBBuf, proposed in [27], chooses the
keyframes that maximize the minimal edge weight between
the adjacent selected keyframes. BruteForce examines all the
combinations of keyframes to search for the optimal one that
minimizes the uncertainty (in Problems 1 and 2). BruteForce
can achieve better SLAM performance than AdaptSLAM
but is shown to have exponential computation complexity
in §VII-A. In the original ORB-SLAMS3, the local map
includes all covisibility keyframes, and the global map in-
cludes all keyframes. The original ORB-SLAM3 also achieves
better SLAM performance and consumes more computation
resources than AdaptSLAM as the numbers of keyframes in
both local and global maps are large.

Datasets. We evaluate AdaptSLAM on public SLAM
datasets containing V and VI sequences, including TUM [47]
and EuRoC [46]. The difficulty of a SLAM sequence depends

on the extent of device mobility and scene illumination. We
use EuRoC sequences V101 (easy), V102 (medium), and V103
(difficult), and difficult TUM VI room1 and room6 sequences.
We report the results over 10 trials for each sequence.

A. Simulated Computation and Network Constraints

First, we limit the number of keyframes in the local map
under computation constraints, and all keyframes are used
to build the global map without communication constraints.
Second, we maintain local maps as in the default settings
of ORB-SLAM3, and limit the number of keyframes in the
global map under constrained communications, where D in
Problem 2 is set according to the available bandwidth.

Local map construction. We demonstrate the RMS ATE of
different keyframe selection methods, for different V-SLAM
(Fig. 2a) and VI-SLAM (Fig. 2b) sequences. The size of
the local map is limited to 10 keyframes and 9 anchors
in V-SLAM sequences, and 25 keyframes and 10 anchors
in VI-SLAM sequences (to ensure successful tracking while
keeping a small local map). AdaptSLAM reduces the RMS
ATE compared with Random, DropOldest, and ORBBuf by
more than 70%, 62%, and 42%, averaged over all sequences.
The performance of AdaptSLAM is close to BruteForce, which
demonstrates that our greedy-based algorithms yield near-
optimal solutions, with substantially reduced computational
complexity. Moreover, the performance of AdaptSLAM is close
to the original ORB-SLAM3 (less than 0.05 m RMS ATE
difference for all sequences) even though the size of the local
map is reduced by more than 75%.

The influence of the number /;,. of keyframes in the local
map on the RMS ATE for different methods is shown in
Fig. 3. We present the results for EuRoC V102 (of medium
difficulty), which are representative. When [;,. is reduced
from 30 to 10, AdaptSLAM increases the RMS ATE by only
6.7%, to 0.09 m, as compared to 0.37, 0.16, and 0.12 m
for, correspondingly, Random, DropOldest, and ORBBuf. This
indicates that AdaptSLAM achieves low tracking error under
stringent computation resource constraints.

Global map construction. First, we examine the case
where only half of all keyframes are offloaded to build a
global map, for V-SLAM (Fig. 4a) and VI-SLAM (Fig. 4b)
sequences. AdaptSLAM reduces the RMS ATE compared with
the closest baseline ORBBuf by 27% and 46% on average for
V- and VI-SLAM, and has small performance loss compared
with the original ORB-SLAM3, despite reducing the number
of keyframes by half.

Next, in Fig. 5, we examine four methods whose perfor-
mance is impacted by the available bandwidth, under different
levels of communication constraints. Without bandwidth lim-
itations, all methods have the same performance as the global
map holds all keyframes. When the bandwidth is limited,
Random and DropOldest have the worst performance as they
ignore the relations of keyframes in the pose graph. The
ORBBuf performs better, but the tracking error is increased
by 4.0x and 9.8x when the bandwidth is limited to 80
and 40 Mbps. AdaptSLAM achieves the best performance,
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Fig. 6: RMS ATE for dif- TABLE I: The latency for local
ference network traces.  map construction and optimization.

reducing the RMS ATE compared to ORBBuf by 62% and 78%
when network bandwidth is 80 and 40 Mbps, correspondingly.
This highlights the superiority of AdaptSLAM in achieving
high tracking accuracy under communication constraints.

B. Real-World Computation and Network Constraints

Following the approach of splitting modules between the
edge server and the mobile device [10], we split the modules
as shown in Fig. 1. The server and the device are connected
via a network cable to minimize other factors. To ensure
reproducibility, we replay the network traces collected from a
4G network [52]. Focusing on mobile devices carried by users,
we choose network traces (footl, foot3, and foot5) collected
by pedestrians. We set D in Problem 2 according to the traces.

We examine the RMS ATE under the network traces in
Fig. 6 for the EuRoC V102 sequence. The results for only
four methods are presented because the overall time taken for
running the SLAM modules onboard is high for BruteForce
and the original SLAM. AdaptSLAM reduces the RMS ATE by
65%, 61%, and 35% (averaged over all traces) compared with
Random, DropOldest, and ORBBuf. AdaptSLAM achieves
high tracking accuracy under real-world network traces.

Table I shows the computation latency of mobile devices
for all six methods. We compare the latency for running

keyframes (for EuRoC V102).

local map construction and optimization, which is the main
source of latency for modules running onboard [10]. Compared
with AdaptSLAM, the original ORB-SLAM3 takes 3.7x as
much time for optimizing the local map as all covisibility
keyframes are included in the local map without keyframe
selection. Without the edge-assisted architecture, the original
ORB-SLAM3 also runs global mapping and loop closing
onboard which have even higher latency [10]. BruteForce takes
5.3x as much time for examining all the combinations of
keyframes to minimize the local map uncertainty. The latency
for constructing and optimizing local maps using AdaptSLAM
is close to that using Random and DropOldest (<12.3%
difference). Low latency for local mapping shows that edge-
assisted SLAM is appealing, as local mapping is the biggest
source of delay for modules executing onboard after offloading
the intensive tasks (loop closing and global mapping).

IX. CONCLUSION

We present AdaptSLAM, an edge-assisted SLAM that effi-
ciently select subsets of keyframes to build local and global
maps, under constrained communication and computation re-
sources. AdaptSLAM quantifies the pose estimate uncertainty
of V- and VI-SLAM under the edge-assisted architecture,
and minimizes the uncertainty by low-complexity algorithms.
AdaptSLAM reduces the size of the local keyframe set by
75% compared with the original ORB-SLAM3 with a small
performance loss. The authors have provided public access to
their code at https://github.com/i3tyc/AdaptSLAM.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CSR-
1903136, CNS-1908051, and CNS-2112562, NSF CAREER
Award IIS-2046072, by an IBM Faculty Award, and by the
Australian Research Council under Grant DP200101627.

Authorized licensed use limited to: Duke University. Downloaded on February 14,2024 at 17:51:27 UTC from IEEE Xplore. Restrictions apply.



[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

REFERENCES

D. M. Rosen, K. J. Doherty, A. Terdn Espinoza, and J. J. Leonard,
“Advances in inference and representation for simultaneous localization
and mapping,” Annu. Rev. Control Robot. Auton. Syst., vol. 4, pp. 215-
242, 2021.

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” [EEE
Trans. Robot., vol. 32, no. 6, pp. 1309-1332, 2016.

C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collabora-
tive monocular SLAM with multiple micro aerial vehicles,” in Proc.
IEEE/RSJ IROS, 2013.

R. Williams, B. Konev, and F. Coenen, “Scalable distributed collabora-
tive tracking and mapping with micro aerial vehicles,” in Proc. IEEE/RSJ
IROS, 2015.

Google. (2022) ARCore. https://developers.google.com/ar.

Apple. (2022)  ARKit.  https://developer.apple.com/augmented-
reality/arkit/.

T. Scargill, G. Premsankar, J. Chen, and M. Gorlatova, “Here to stay: A
quantitative comparison of virtual object stability in markerless mobile
AR,” in Proc. IEEE/ACM Workshop on Cyber-Physical-Human System
Design and Implementation, 2022.

Y.-J. Yeh and H.-Y. Lin, “3D reconstruction and visual SLAM of indoor
scenes for augmented reality application,” in Proc. IEEE ICCA, 2018.
J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang,
“Edge assisted mobile semantic visual SLAM,” in Proc. IEEE INFO-
COM, 2020.

A. J. Ben Ali, Z. S. Hashemifar, and K. Dantu, “Edge-SLAM: Edge-
assisted visual simultaneous localization and mapping,” in Proc. ACM
MobiSys, 2020.

A.J. B. Ali, M. Kouroshli, S. Semenova, Z. S. Hashemifar, S. Y. Ko, and
K. Dantu, “Edge-SLAM: edge-assisted visual simultaneous localization
and mapping,” ACM Trans. Embed. Comput. Syst., vol. 22, no. 1, pp.
1-31, 2022.

I. Deutsch, M. Liu, and R. Siegwart, “A framework for multi-robot pose
graph SLAM,” in Proc. IEEE RCAR, 2016.

M. Karrer, P. Schmuck, and M. Chli, “CVI-SLAM—collaborative visual-
inertial SLAM,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 2762-2769,
2018.

F. Li, S. Yang, X. Yi, and X. Yang, “CORB-SLAM: a collaborative
visual SLAM system for multiple robots,” in CollaborateCom. Springer,
2017.

P. Schmuck and M. Chli, “CCM-SLAM: Robust and efficient centralized
collaborative monocular simultaneous localization and mapping for
robotic teams,” J. Field Robot., vol. 36, no. 4, pp. 763-781, 2019.
K.-L. Wright, A. Sivakumar, P. Steenkiste, B. Yu, and F. Bai, “Cloud-
SLAM: Edge offloading of stateful vehicular applications,” in Proc.
IEEE/ACM SEC, 2020.

J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu,
“SwarmMap: Scaling up real-time collaborative visual SLAM at the
edge,” in Proc. USENIX NSDI, 2022.

R. Mur-Artal and J. D. Tardés, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,” I[EEE Trans. Robot.,
vol. 33, no. 5, pp. 1255-1262, 2017.

C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel, and J. D.
Tardds, “ORB-SLAM3: An accurate open-source library for visual,
visual—inertial, and multimap SLAM,” IEEE Trans. Robot., 2021.

T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34,
no. 4, pp. 1004-1020, 2018.

A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek, “Guar-
antees for greedy maximization of non-submodular functions with
applications,” in Proc. PMLR ICML, 2017.

J. Engel, T. Schops, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in Proc. Springer ECCV, 2014.

J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” I[EEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 611-625, 2017.
G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. IEEE ISMAR, 2007.

E. Dong, J. Xu, C. Wu, Y. Liu, and Z. Yang, “Pair-Navi: Peer-to-peer
indoor navigation with mobile visual SLAM,” in Proc. IEEE INFOCOM,
2019.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

(39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

(471

[48]

[49]

(501

[51]

[52]

S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Real-
time onboard visual-inertial state estimation and self-calibration of
MAVs in unknown environments,” in Proc. IEEE ICRA, 2012.

Y.-P. Wang, Z.-X. Zou, C. Wang, Y.-J. Dong, L. Qiao, and D. Manocha,
“ORBBuf: A robust buffering method for remote visual SLAM,” in Proc.
1EEE/RSJ IROS, 2021.

L. Riazuelo, J. Civera, and J. M. Montiel, “C2TAM: A cloud framework
for cooperative tracking and mapping,” Robot. Auton. Syst., vol. 62,
no. 4, pp. 401-413, 2014.

P. Huang, L. Zeng, X. Chen, K. Luo, Z. Zhou, and S. Yu, “Edge robotics:
Edge-computing-accelerated multi-robot simultaneous localization and
mapping,” IEEE Internet Things J., 2022.

K. Khosoussi, M. Giamou, G. S. Sukhatme, S. Huang, G. Dissanayake,
and J. P. How, “Reliable graphs for SLAM,” Int. J. Robot. Res., vol. 38,
no. 2-3, pp. 260-298, 2019.

L. Carlone and S. Karaman, “Attention and anticipation in fast visual-
inertial navigation,” IEEE Trans. Robot., vol. 35, no. 1, pp. 1-20, 2018.
Y. Chen, L. Zhao, Y. Zhang, S. Huang, and G. Dissanayake, “Anchor
selection for SLAM based on graph topology and submodular optimiza-
tion,” IEEE Trans. Robot., 2021.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—I,” Mathe-
matical programming, vol. 14, no. 1, pp. 265-294, 1978.

A. Das and D. Kempe, “Approximate submodularity and its applications:
Subset selection, sparse approximation and dictionary selection,” J.
Mach. Learn. Res., vol. 19, no. 1, pp. 74-107, 2018.

L. Carlone, G. C. Calafiore, C. Tommolillo, and F. Dellaert, “Planar
pose graph optimization: Duality, optimal solutions, and verification,”
IEEE Trans. Robot., vol. 32, no. 3, pp. 545-565, 2016.

J. A. Placed and J. A. Castellanos, “Fast autonomous robotic exploration
using the underlying graph structure,” in Proc. IEEE/RSJ IROS, 2021.
K. Khosoussi, S. Huang, and G. Dissanayake, “Tree-connectivity: Eval-
uating the graphical structure of SLAM,” in Proc. IEEE ICRA, 2016.
Y. Chen, S. Huang, L. Zhao, and G. Dissanayake, “Cramér—Rao bounds
and optimal design metrics for pose-graph SLAM,” IEEE Trans. Robot.,
vol. 37, no. 2, pp. 627-641, 2021.

N. Boumal, A. Singer, P-A. Absil, and V. D. Blondel, “Cramér-Rao
bounds for synchronization of rotations,” Information and Inference: A
Journal of the IMA, vol. 3, no. 1, pp. 1-39, 2014.

R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g“0: A general framework for graph optimization,” in [EEE ICRA,
2011.

S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-
solver.org.

M. L. Rodriguez-Arévalo, J. Neira, and J. A. Castellanos, “On the
importance of uncertainty representation in active SLAM,” IEEE Trans.
Robot., vol. 34, no. 3, pp. 829-834, 2018.

F. Pukelsheim, Optimal design of experiments. SIAM, 2006.

Y. Chen, H. Inaltekin, and M. Gorlatova, “AdaptSLAM: Edge-assisted
adaptive SLAM with resource constraints via uncertainty minimization,”
Tech. Rep., 2023. [Online]. Available: https://arxiv.org/abs/2301.04620
K. Khosoussi, S. Huang, and G. Dissanayake, “Novel insights into the
impact of graph structure on SLAM,” in IEEE/RSJ IROS, 2014.

M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
Int. J. Rob. Res., vol. 35, no. 10, pp. 1157-1163, 2016.

D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stiickler, and D. Cre-
mers, “The TUM VI benchmark for evaluating visual-inertial odometry,”
in Proc. IEEE/RSJ IROS, 2018.

G. Strang, Linear algebra and its applications. Thomson, Brooks/Cole,
2006.

G. H. Golub and C. F. Van Loan, Matrix computations.
2013.

Y. Chen, L. Zhao, K. M. B. Lee, C. Yoo, S. Huang, and R. Fitch,
“Broadcast your weaknesses: Cooperative active pose-graph SLAM for
multiple robots,” IEEE Robot. Autom. Lett, vol. 5, no. 2, pp. 2200-2207,
2020.

Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual (-inertial) odometry,” in Proc. IEEE/RSJ IROS,
2018.

J. Van Der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “HTTP/2-based adaptive streaming of
HEVC video over 4G/LTE networks,” IEEE Commun. Lett., vol. 20,
no. 11, pp. 2177-2180, 2016.

JHU press,

Authorized licensed use limited to: Duke University. Downloaded on February 14,2024 at 17:51:27 UTC from IEEE Xplore. Restrictions apply.



