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ABSTRACT. Black-throated blue warbler (Setophaga caerulescens) populations have been declining at the southern edge of the breeding
range in North Carolina over the past two decades. Determining the causes of population declines in migratory species requires
knowledge of the threats faced throughout the entire annual cycle, necessitating accurate information about the migratory routes and
non-breeding areas used by birds. We used light-level geolocators to identify the fall migratory routes and non-breeding distributions
of adults breeding at the southern edge of the range in North Carolina (n = 5), where populations are declining, and at the core of the
range in New Hampshire (n = 8), where populations are stable. The strength of migratory connectivity was moderate (mean = 0.42).
New Hampshire birds used non-breeding areas broadly distributed across the Caribbean, whereas North Carolina birds used a restricted
non-breeding area largely in the Dominican Republic. Suitable forest cover declined at a higher rate from 2000 to 2019 in the Dominican
Republic than in other Caribbean countries (8.4% vs. 2-4% loss), exposing birds from the trailing edge to significantly higher suitable
habitat loss on the non-breeding grounds compared with range-core birds. Birds from the two study populations also exhibited differing
migratory routes, with North Carolina birds migrating south through Florida and many New Hampshire birds performing an overwater
flight from the Carolinas to the Caribbean. Our results suggest the possibility that, at least for this species, forest loss on the island of
Hispaniola could be exacerbating population declines at the southern edge of the breeding range in North Carolina.

La géolocalisation fondée sur le degré de lumiére révéle un niveau modéré de connectivité migratoire
chez des populations stables et en diminution de Parulines bleues (Setophaga caerulescens)

RESUME. Les populations de Parulines bleues (Setophaga caerulescens) ont diminué a la limite sud de I'aire de reproduction en
Caroline du Nord au cours des deux derniéres décennies. Pour déterminer les causes du déclin de populations d’espéces migratrices, il
faut connaitre les menaces qui pésent sur celles-ci tout au long du cycle annuel, et donc avoir acces a des informations précises sur les
routes de migration et les aires hors reproduction utilisées par les oiseaux. Nous avons utilisé des géolocalisateurs munis de
photorécepteurs pour identifier les routes de migration d’automne et la répartition hors reproduction d’adultes nichant a la limite sud
de I'aire de répartition en Caroline du Nord (n = 5), ou la population est en diminution, et au cceur de I’aire de répartition dans le New
Hampshire (n = 8), ot la population est stable. Le degré de connectivité migratoire était modéré (moyenne = 0,42). Les oiseaux du New
Hampshire ont fréquenté des aires hors reproduction trés réparties dans les Caraibes, tandis que les oiseaux de Caroline du Nord ont
utilisé des aires hors reproduction restreintes, principalement en République dominicaine. Le couvert forestier adéquat a diminué a un
taux plus élevé de 2000 a 2019 en République dominicaine que dans les autres pays des Caraibes (8,4 % contre 2-4 % de perte), exposant
les oiseaux nichant a la limite de I’aire de reproduction a une perte d’habitat significativement plus élevée sur les aires hors reproduction
que les oiseaux nichant au ceeur de I’aire de répartition. Les oiseaux des deux populations étudiées présentaient également des itinéraires
de migration différents, ceux de Caroline du Nord migrant vers le sud par la Floride et de nombreux oiseaux du New Hampshire
effectuant un vol au-dessus de 1’eau depuis les Carolines jusqu’aux Caraibes. Nos résultats indiquent la possibilité que, au moins pour
cette espece, la perte de forét sur I'ile d’Hispaniola pourrait exacerber les diminutions de population a la limite sud de Iaire de
reproduction en Caroline du Nord.
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INTRODUCTION documented in long-distance migrants (Robbins et al. 1989,
Ballard et al. 2003, Rosenberg et al. 2019). The pattern of decline
for most species varies across the entire range, with populations
decreasing in some regions and increasing or remaining stable in
others (Sauer et al. 2017). Understanding the causes of these
declines is complicated by the fact that migratory birds are

Almost three billion birds breeding in North America have been
lost over the past 50 years (Rosenberg et al. 2019). Declines vary
by habitat type and have been broadly observed across many
taxonomic groups, but many of the strongest declines have been
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subjected to a wide range of conditions and threats throughout
their annual cycle (Rappole and McDonald 1994, Sherry and
Holmes 1995, Faaborg et al. 2010, Sergio et al. 2019). Conditions
on the non-breeding grounds and during migration can affect
breeding-season demographic rates and population dynamics
(Marra et al. 1998, Norris et al. 2004, Sanderson et al. 2006,
Hewson et al. 2016), and conditions experienced throughout the
annual cycle likely interact to drive population dynamics (Sherry
and Holmes 1995, Sillett et al. 2000, Runge and Marra 2005).
Threats experienced during the non-breeding season are most
likely to cause regional population declines on the breeding
grounds if migratory connectivity is strong, such that birds from
declining populations use broadly discrete non-breeding areas or
migratory pathways compared with birds from stable or
increasing populations (Finch et al. 2017, Kramer et al. 2018).
Thus, quantifying the strength of migratory connectivity is
critically important for understanding the causes of population
declines in migratory birds (Webster et al. 2002, Webster and
Marra 2005).

Many species of long-distance migratory birds that breed
predominantly in Canada and the northern USA reach the
southern edge of their breeding distributions in the Appalachian
Mountains of Georgia and North Carolina. These species are
restricted to high-elevation forests of the Southern Appalachians,
where conditions are cooler, wetter, and more similar to
conditions further north within the core of the breeding range
(Merker and Chandler 2021). Many of these species are declining
at the southern limit of their range in North Carolina (Sauer et
al. 2017), with population declines being associated with
abandonment of low-elevation breeding habitats and upslope
range shifts for at least some species (Stodola et al. 2013, Merker
2017, Lewis et al. 2023). Due to the elevational range shifts, we
refer to populations in this region as trailing edge populations.
This strong elevational pattern shown by several species suggests
that climate change on the breeding grounds is a primary driver
of their trailing edge population declines in North Carolina
(Lewis et al. 2023); however, breeding declines could be
exacerbated by threats encountered on the non-breeding grounds.
Currently, information about specific migratory routes or non-
breeding areas is lacking for most of these trailing edge
populations breeding in North Carolina, thereby precluding an
understanding of how threats encountered during the non-
breeding season may influence these populations.

One such trailing-edge species is the Black-throated Blue Warbler
(Setophaga caerulescens [BTBW]). Black-throated Blue Warblers
are small (9—11 g), sexually dimorphic songbirds that spend the
non-breeding season primarily in the Caribbean and breed
predominantly in the northern USA and southeastern Canada,
with a trailing distribution in the Southern Appalachians (Holmes
et al. 2017). Over 1.4 million BTBW are estimated to have been
lost since 1970 (Rosenberg et al. 2019), although population
trajectories vary regionally (Sauer et al. 2017). Since 2002, BTBW
breeding demography has been extensively studied at research
stations located at the trailing edge of the breeding range in North
Carolina and within the core of the breeding range in New
Hampshire (hereafter, trailing edge and range core sites,
respectively). Populations have been declining over the past two
decades at low elevations at the trailing edge site, but populations
have remained relatively stable at the range core site (Lewis et al.
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2023). Furthermore, population dynamics at the research stations
appear to be representative of patterns in the broader region, i.e.,
western North Carolina and central New Hampshire (Sillett and
Holmes 2005, Holmes 2011, Doser et al. 2022, Lewis et al. 2023).
Lewis et al. (2023) suggested that climate change on the breeding
grounds is the most likely driver of this regional pattern of
population declines; however, threats encountered during the non-
breeding season could also contribute to breeding-ground declines
if migratory connectivity is strong. Previous research provides some
support for the hypothesis that non-breeding-season threats could
exacerbate regional breeding-ground declines in BTBW. Using
stable-hydrogen isotope signatures from BTBW feather samples
collected across the breeding and non-breeding ranges, Rubenstein
etal. (2002) found that birds breeding in the Southern Appalachians
predominantly spend the non-breeding season further east in the
Caribbean than do more northern-breeding birds. Stable isotope
analyses, however, provide very broad-scale estimates of migratory
connectivity and do not provide information about migratory
routes. More precise data on migratory pathways and non-breeding
areas for specific breeding populations are required to disentangle
the effects of threats encountered throughout the annual cycle on
population declines. Here, we use light-level geolocators to
determine migratory routes, calculate the strength of migratory
connectivity, and assess forest loss on the non-breeding grounds for
BTBW breeding in North Carolina and New Hampshire.

METHODS

We assessed the migratory routes and non-breeding areas of BTBW
by deploying archival light-level geolocators on breeding adults at
two range positions: the trailing edge of the range within the
Nantahala National Forest in the Appalachian Mountains of North
Carolina (35°6” N, 83°24” W), and within the range core at the
Hubbard Brook Experimental Forest in New Hampshire (43°56" N,
71°45” W). Both sites are composed of contiguous hardwood forest
that has experienced little in the way of land use change over the
past few decades. We deployed geolocators on males at both range
positions, although we also deployed some units on females at the
range core site in 2017-2018. We captured territorial males with
mist nets using conspecific playback, and we captured females
passively or by flushing them off of nests. We banded birds upon
capture with a USGS aluminum leg band and unique combination
of three colored leg bands. We fit birds with a 0.36 g Intigeo
P30Z11-7-DIP geolocator (Migrate Technology, Cambridge, UK)
using a leg-loop harness made of elastic beading cord (Naef-
Daenzer 2007). Archival light-level geolocator data can be used to
infer the daily longitude and latitude of the unit during the previous
year. Although accuracy is much lower than with satellite and GPS
tags (expected accuracy of geolocators is ca. 200 km; Fudickar et
al. 2012, Lisovski et al. 2012), geolocators currently provide the best
method for assessing migratory connectivity of small birds. The
combined mass of the geolocator and harness was <5% of warbler
body mass. We deployed 36 geolocators at the trailing edge site
between 2018-2019 and 83 at the range core site in 2015, 2017, and
2018. We recovered geolocators in the subsequent year by searching
areas near deployment locations and netting returning birds.

We performed all analyses in program R v. 4.0.4 (R Core Team
2020). We used the solar/satellite geolocation for animal tracking
(SGAT) program to estimate geographic positions and associated
error from the light data (Wotherspoon et al. 2013). We assigned


http://www.ace-eco.org/vol18/iss2/art12/

twilight events (i.e., sunrise, sunset) with the TwGeos package
(Lisovski et al. 2015, Lisovski et al. 2020) using a light threshold
of one and a minimum time between sunset and sunrise of § h.
Light data from a few birds showed extreme and variable shading
on the breeding grounds, which occurs when light is blocked from
reaching the light sensor (e.g., the bird is in thick vegetation or
flight feathers obstruct the sensor). In these cases, we used a light
threshold of 1.5. We manually edited twilights if (1) they differed
by at least 30 min from the corresponding twilight events on the
previous and subsequent days, and (2) they did not occur during
periods when the bird was likely to have been migrating. We
performed calibration from ambient light recorded when birds
were known to be at the deployment location (e.g., deployment
date until 1 August). We extended the calibration period for one
unit until 31 August because it was not deployed until early
August, and light levels indicated that the bird did not leave the
deployment area until September. Calibration infers error
associated with light recordings by calculating a reference zenith
angle (position of the sun relative to the vertical plane at twilight)
for the period when the bird was known to be stationary. Some
birds exhibited different zenith angles between the breeding and
non-breeding grounds, likely due to differences in weather,
topography, or habitat between areas (Lisovski et al. 2012,
Hallworth et al. 2015). In these instances, we calculated a separate
zenith angle for the non-breeding season using the GeoLight
package (Lisovski and Hahn 2012, Lisovski et al. 2020).

The SGAT program estimates locations from the light-level data
using raw estimates of geographic position from the threshold
analysis, a behavioral model describing likely flight speeds, and a
spatial model restricting stationary periods to land. We defined
the behavioral model with separate flight speeds for stationary
and migratory periods (Hallworth et al. 2021). Similar to Tonra
etal. (2019), we generated a spatial mask using BTBW occurrence
data across the entire annual cycle from the Spatio-Temporal
Exploratory Model (STEM) from eBird (Fink et al. 2020). The
spatial mask reduces the likelihood of positions falling outside
the normal range of BTBW. We ran models three times with
Markov Chain Monte Carlo (MCMC) simulations, using three
chains of 3,000 iterations. Each subsequent model was initialized
with the median estimates of longitude and latitude from the
previous run (Lisovski et al. 2020). Stationary periods were
determined from location estimates generated from the MCMC
posterior distribution, using the MigSchedule function from the
LLmig package (https://github.com/MTHallworth/LLmig; Tonra
et al. 2019). We estimated the migratory distance traveled by each
bird by summing the great circle distance (shortest distance
between points on a sphere) between the median longitude and
latitude estimates for successive stationary periods during
migration. We summed the great circle distances traveled along
each leg of the migratory journey to calculate the total length of
the migratory journey. The assumptions of parametric statistical
tests could not be met, so we assessed differences in migratory
route length between range positions with a Mann-Whitney U
test.

We calculated the strength of migratory connectivity between
breeding and non-breeding locations using the MigConnectivity
package (Cohen et al. 2018) with 1,000 bootstrap runs. The
strength of migratory connectivity describes the geographic link
of populations in two or more phases of the annual cycle.

Avian Conservation and Ecology 18(2): 12
http://www.ace-eco.org/voll8/iss2/art12/

Estimates range from -1 (birds close together in one season spread
further apart in another season) to 1 (birds close together in one
season staying close together in another season), with a 0 value
representing no pattern. Black-throated Blue Warblers showed a
general east/west divide during the non-breeding season (see
Results), so we used two non-breeding target regions (Cuba and
Jamaica vs. Hispaniola) for the migratory connectivity analysis.
The estMC function incorporates location uncertainty and
relative abundance of the study species between deployment
regions, which we calculated from the eBird STEM models. To
calculate relative abundance of the two range positions, we
extracted BTBW breeding abundance for each Bird Conservation
Region, subset down to the state in which each deployment region
was located (North Carolina Appalachian Mountains and New
Hampshire Northern Hardwood Forest). We classified the
strength of migratory connectivity as either weak (0.333 or less),
moderate (0.334-0.667), or strong (0.668-1) based on
classifications in Hallworth et al. (2015).

As an ancillary analysis, we assessed whether non-breeding areas
used by BTBW from the trailing edge site experienced higher levels
of habitat loss over the past two decades compared with non-
breeding areas of BTBW from the range core site. Black-throated
Blue Warblers are primarily associated with forested habitat
throughout the annual cycle (Holmes et al. 2017); therefore, forest
loss in the Caribbean likely represents non-breeding habitat loss.
We downloaded forest cover loss data from 2000-2019 for the
entire Caribbean using the Global Forest Change data set (v. 1.7;
Hansen et al. 2013). This data set provides a binary measure of
change from forest to non-forest cover over the 20002019 period.
Black-throated Blue Warblers predominantly spend the non-
breeding season in higher-elevation forests in the Caribbean
(Holmes et al. 1989, Wunderle and Waide 1993, Latta et al. 2003);
therefore, we subset the forest loss data to only include forest loss
at or above 100 m in elevation. We further refined our raster of
BTBW non-breeding habitat loss by subsetting to only areas with
at least 40% probability of BTBW occurrence during the
stationary non-breeding season from the eBird STEM models
(values range from ca. 0-80%). We refer to this distribution as
“suitable areas” and “suitable forest cover loss.” We then used the
MCMC posterior distribution to extract the mean relative
probability of non-breeding occurrence (1 December—1 March)
for each bird. We multiplied the raster of BTBW habitat loss over
the past two decades by the relative probability of occurrence
during the non-breeding season of each bird. We then summed
across the resulting cells to generate an index of habitat loss for
the non-breeding areas of each bird. We used a one-tailed Mann-
Whitney U-test to determine if this index of non-breeding habitat
loss was higher for trailing edge birds compared with range core
birds.

RESULTS

We recovered geolocators from five birds at the trailing edge site
and eight birds at the range core site. Only one unit was recovered
from a female. An additional four birds (two from each range
position) were recovered without their geolocators; omitting these
birds, recovery rates were 15% at the trailing edge site and 10% at
the range core site. Recovery rates of tagged birds varied by year,
from 7-20% at the trailing edge site and from 4-20% at the range
core site. We collected tracking data from all 13 geolocators;
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however, we could not determine fall migratory routes for three
range core birds due to extreme shading resulting in biologically
implausible stopover locations (e.g., in Amazonia or the Atlantic
Ocean).

Black-throated Blue Warblers breeding at the two range positions
showed a general longitudinal divide in their stationary non-
breeding areas. Non-breeding areas of birds from the range core
site were broadly distributed across the Caribbean, from Cuba to
the Dominican Republic, but probability of occurrence peaked
in central Cuba (Fig. 1A). Of the eight birds from the range core
site, three spent the non-breeding season in central to eastern
Cuba, two (including the lone recovered female) spent the non-
breeding season in either Jamaica or southern Cuba, and three
spent the non-breeding season on the island of Hispaniola. The
specific country could not be determined for two birds on the
island of Hispaniola, but the third bird appeared to spend the
non-breeding season in the Dominican Republic. In contrast to
the longitudinal spread of birds from the range core site, all five
birds from the trailing edge site spent the non-breeding season on
the island of Hispaniola, largely in the Dominican Republic (Fig.
1B). No returning birds spent the non-breeding season in Puerto
Rico or western Cuba. The combination of a restricted non-
breeding distribution for birds from the trailing edge site and
diffuse non-breeding range of birds from the range core site
resulted in moderate migratory connectivity (MC mean = 0.42,
SE = 0.26).

Fig. 1. Non-breeding distribution (1 December—1 March)
determined via light-level geolocation for Black-throated Blue
Warblers (Setophaga caerulescens) breeding at the core of the
range in New Hampshire (A, n = 8) and trailing edge of the
range in North Carolina (B, n = 5). Geolocator deployment
occurred from 2018 to 2019 at the trailing edge and in 2015,
2017, and 2018 at the range core. Heat maps show 95% credible
intervals for non-breeding probability of occurrence (green =
highest probability). Non-breeding probability of occurrence
was calculated for each breeding range position by summing
likelihood of occurrence across birds at each pixel and dividing
by the sum of all likelihood values across birds. New
Hampshire birds spent the non-breeding season in a broad area
across the Caribbean, but probability of occurrence was
centered in Cuba. North Carolina birds spent the non-breeding
season in the Dominican Republic.
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Estimated fall migratory routes differed between range positions.
Black-throated Blue Warblers from the trailing edge site largely
migrated south through Florida and Cuba before turning east to
Hispaniola (Fig. 2B). In contrast, many birds from the range core
site followed the coast southwest until reaching the Carolinas,
after which they flew directly across the ocean to non-breeding
areas in Cuba or Jamaica (Fig. 2A). This direct flight from the
Carolinas to Cuba could have saved birds up to 300 km of flight
distance compared with the overland route through Florida.
Migratory routes were generally shorter for birds from the trailing
edge site (mean = 2,545 km, SD = 271 km) than from the range
core site (mean = 2,991 km, SD= 434 km), but this difference was
not statistically significant (Mann-Whitney U-test, p = 0.056).

Fig. 2. Fall migratory routes of Black-throated Blue Warblers
(Setophaga caerulescens) determined via geolocation for birds
breeding at the core of the range in New Hampshire (A, n = 8)
and trailing edge of the range in North Carolina (B, n = 5).
Deployment locations are shown with black diamonds.
Geolocator deployment occurred from 2018 to 2019 at the
trailing edge and in 2015, 2017, and 2018 at the range core.
Median longitude and latitude are shown for stationary periods
for each bird, as well as 95% credible intervals. Different colors
represent different birds and do not necessarily represent the
migratory path taken. Migratory tracks could not be
determined for three range core birds, although estimated non-
breeding locations are shown. The light blue track from the
range core (subfigure A) was from a female; all other tracks
were from males. Successive stopover locations are connected
with a dotted line, but this does not represent the actual flight
path that the bird took.
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Caribbean countries varied in their degree of suitable forest cover
loss from 2000 to 2019. The greatest suitable forest cover loss was
observed in the Dominican Republic with a loss of 1,924 km?
(8.4% of suitable area), followed by Cuba (1,541 km?, 2.7% of
suitable area), Haiti (570 km?, 2.9% of suitable area), and Jamaica
(394 km?, 3.9% of suitable area). Suitable forest cover loss was
especially concentrated in the mountains of central Hispaniola
and at the very eastern tip of Cuba. Due to their restricted non-
breeding range in the Dominican Republic, BTBW from the
trailing edge were exposed to significantly higher levels of suitable
forest cover loss on the non-breeding grounds than were range
core birds (Mann-Whitney U-test, p = 0.003).
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DISCUSSION

Black-throated Blue Warblers exhibited moderate migratory
connectivity between breeding and non-breeding areas; the non-
breeding range of birds from the trailing edge site was centered
on the island of Hispaniola, whereas the non-breeding range of
birds from the range core site was centered further west, primarily
in Cuba. Although breeding populations were not completely
separate on the stationary non-breeding grounds, BTBW
exhibited stronger migratory connectivity than has been observed
in many other species of long-distance migratory birds (Finch et
al. 2017, Cohen et al. 2019, Tonra et al. 2019, Hallworth et al.
2021, but see Hallworth et al. 2015, Kramer et al. 2018). The
stronger migratory connectivity in BTBW could possibly be an
artifact of the low sample size of returning birds (McKinnon and
Love 2018); however, previous research using stable isotopes has
also found longitudinal separation on the non-breeding grounds
between BTBW from the southern and northern portions of the
breeding range (Rubenstein et al. 2002). The geolocator data
confirm the findings of Rubenstein et al. (2002), but also show
that the size of the non-breeding range differs between breeding
populations (Hallworth and Marra 2015). Birds from the range
core site spent the non-breeding season across a broad region of
the Caribbean, from central Cuba to eastern Hispaniola, whereas
birds from the trailing edge site were concentrated on Hispaniola.
These results suggest that BTBW from the trailing edge site not
only spend the non-breeding season in somewhat different regions
compared with birds from the range core site, but also have a
greatly restricted non-breeding range.

The restricted non-breeding range of BTBW from the trailing
edge site suggests that they may be particularly vulnerable to
threats, such as habitat loss or hurricane activity, on the island of
Hispaniola. This restricted range in the Dominican Republic is
likely caused, at least partially, by the widespread loss of primary
forest in Haiti (Hedges et al. 2018), thereby forcing birds that
spend the non-breeding season on Hispaniola into the more intact
forests of the Dominican Republic. This massive pre-2000 forest
cover loss in Haiti likely explains why suitable forest cover loss
from 2000-2019 was so much lower in Haiti than in the
neighboring Dominican Republic. Despite retaining more forest
cover than its neighbor, the Dominican Republic has experienced
substantial forest cover loss over the past few decades, mainly
attributable to fire and clearing for agriculture (Lloyd and Leo6n
2019). Although nearly 38% (n = 3 of 8) of birds from the range
core site also spent the non-breeding season in Hispaniola, and
thus should have been exposed to the same negative effects of
deforestation, most used areas further west in the Caribbean.
Conservation efforts have led to substantial recovery of forested
land in Cuba (Goulart et al. 2018); therefore, the diffuse non-
breeding range of BTBW from the range core site may have
buffered against any population-level effects of deforestation in
the eastern Caribbean. Our forest-loss analysis was necessarily
conducted at a broad scale due to the inherent location
uncertainty associated with light-level geolocation; however, our
results suggest the possibility that habitat loss on the island of
Hispaniola could have exacerbated observed trailing edge declines
on the breeding grounds in North Carolina.

Fall migratory routes also differed between the breeding
populations; trailing edge birds migrated south through Florida,
whereas many birds from the range core made overwater flights
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from the Carolinas to the Caribbean. Because of the uncertainty
associated with light-level geolocation, the locations of short-
duration stopovers in Fig. 2 should be interpreted with caution.
Most BTBW migrated during the fall equinox period when
latitude cannot be reliably estimated; however, the differential
migration routes between the range positions is not an artifact of
location uncertainty. Longitude estimates are relatively
unaffected by the equinox (Hallworth et al. 2015), and the 95%
credible intervals of longitude estimates for only one range core
bird overlapped Florida during fall migration. Geolocator
tracking has revealed that Connecticut Warblers (Oporornis agilis;
McKinnon et al. 2017, Hallworth et al. 2021) and, to a greater
extent, Blackpoll Warblers (Setophaga striata; DeLucaetal. 2015)
also undertake similar trans-Atlantic flights during migration.
This overwater trip between the Carolinas and the Caribbean
likely saved BTBW from the range core site one night of prolonged
flight, plus any time that would have been spent at stopover sites
in Georgia and Florida, which could provide a significant benefit
if early arrival on the non-breeding grounds allows access to
higher-quality habitats or other fitness benefits (Newton 2006).

Changing conditions along the differential migratory routes
could affect trailing edge population declines in North Carolina
(Baker et al. 2004, Hewson et al. 2016); however, several lines of
evidence suggest that this may be unlikely. First, migration is the
most energetically expensive and hazardous phase of the annual
cycle, and the majority of annual mortality occurs during
migration (Sillett and Holmes 2002, Klaassen et al. 2014, Paxton
et al. 2017, Sergio et al. 2019). Longer migratory routes may
therefore be associated with higher mortality, but routes tended
to be longer for birds from the range core site. Second, birds from
the trailing edge site predominantly migrated over land, whereas
many range core birds made long transoceanic flights. Most birds
likely can complete these long flights without incident, although
prolonged overwater crossings may lead to heightened mortality
risk if birds are physiologically unprepared or encounter
inclement weather en route (Newton 2007, Ward et al. 2018). The
prolonged overwater flight could convey fitness benefits for birds
from the range core site compared with a longer overland route;
however, the associated risks of overwater flight for these birds
may lead to higher mortality during migration than experienced
by birds from the trailing edge site. Finally, most birds from the
trailing edge site made a stopover in Cuba, which is the primary
non-breeding area for birds from the range core site. Any threats
facing birds from the trailing edge site stopping in Cuba likely
would have had a larger effect on the birds from the range core
site. The longer migratory route and prolonged trans-Atlantic
flight may explain why apparent survival is lower at the range core
site than at the trailing edge site (Lewis et al. 2023), but conditions
along the migratory routes are unlikely to be the primary drivers
of trailing edge population declines in North Carolina.

Recovery rates of geolocator-tagged BTBW were low but similar
to most other studies deploying geolocators on small birds
(Salewski et al. 2013, DeLuca et al. 2015, Delancey et al. 2020,
Hallworth et al. 2021, but see Peterson et al. 2015). Although this
study was not designed to evaluate the fitness effects of
geolocators, the low return rates may indicate that geolocators
had a negative effect on BTBW apparent survival. Studies have
reported conflicting results on the fitness consequences of
geolocators (e.g., Arlt et al. 2013, Peterson et al. 2015, Raybuck
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et al. 2017), but a recent metanalysis found only minor effects of
geolocators on apparent survival (Brlik et al. 2020). Several
BTBW dispersed >100 m between years, and one bird was
recaptured 750 m from its deployment location. Breeding
dispersal has also been observed for geolocator-tagged Cerulean
Warblers (Setophaga cerulea; Raybuck et al. 2017); therefore,
geolocator return rates are likely to underestimate true survival.
We currently do not have enough data to assess the effects of
geolocator deployment on emigration; for example, if the extra
weight left birds at a competitive disadvantage and forced
dispersal to alternative breeding sites.

Tracked BTBW likely used non-breeding areas in Cuba, Jamaica,
and Hispaniola, although we did not detect any birds spending
the non-breeding season in Puerto Rico. Stable isotopes suggest
that Puerto Rican BTBW are likely to breed in the Appalachians
(Rubenstein et al. 2002). We found no evidence of this with the
geolocator tracks; however, Puerto Rican birds may breed further
north of the trailing edge study site (e.g., West Virginia or
Pennsylvania), similar to patterns exhibited by Ovenbirds
(Seiurus aurocapilla), another long-distance migrant spending the
non-breeding season in Puerto Rico (Hallworth et al. 2015). We
may not have detected any birds migrating to Puerto Rico for two
reasons: (1) birds from the study populations did not spend the
non-breeding season there; or (2) birds that spend the non-
breeding season in Puerto Rico have higher mortality than other
non-breeding locations and thus do not return to the breeding
grounds (Rushing et al. 2021). Birds from the trailing edge site
therefore may have spent the non-breeding period in Puerto Rico,
but declining conditions on the island led to reduced survival and
lower return rates to the breeding grounds. Forest cover has tripled
in Puerto Rico since the 1970s (Yuan et al. 2017), but changes in
habitat quality or other threats could have affected BTBW during
the non-breeding season. A third possibility is that birds did spend
the non-breeding season in Puerto Rico and returned to the study
sites, but we did not recapture them. We spent considerable effort
searching an expanded area around the study sites for returned
birds and we recaptured all returning birds we located, but the
observed breeding dispersal for some returning birds suggests that
we likely did not recapture every bird that returned to the breeding
sites. Deploying geolocators across the non-breeding grounds,
especially in Puerto Rico, would be beneficial for refining
estimates of BTBW migratory connectivity.

Our results support the possibility that non-breeding habitat loss
may be contributing to breeding population declines at the trailing
edge site; however, they do not imply that breeding-ground effects
are unimportant for explaining trailing edge declines in North
Carolina. Indeed, several lines of evidence suggest that
environmental threats on the breeding grounds are a major driver
of declines at the trailing edge site. If deforestation on the island
of Hispaniola is driving breeding declines, then population
declines should be observed across all breeding elevations in the
Southern Appalachians. Instead, populations have remained
stable at the highest elevations but declined at the lowest, warmest
elevations in response to warming temperatures (Lewis et al.
2023). Furthermore, many trailing edge species are declining at
the southern edge of their breeding range despite using very
different non-breeding areas. For example, populations of
Canada Warblers (Cardellina canadensis) and Veeries (Catharus
fuscescens) are also declining at low elevations in North Carolina
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(Merker 2017); however, these species predominantly spend the
non-breeding season in the Andes Mountains and Amazonia,
respectively. For non-breeding habitat loss to be driving breeding
declines in all these species, each would have to exhibit strong
migratory connectivity with trailing-edge populations in North
Carolina utilizing non-breeding areas with high rates of forest
loss or other threats. These findings suggest that trailing edge
declines in North Carolina are unlikely to be solely driven by non-
breeding habitat loss. Instead, the migratory paths of BTBW
suggest the possibility that habitat loss on the non-breeding
grounds could be magnifying climate-induced population
declines at the trailing edge site. Our results suggest that more
intensive study is needed on the non-breeding grounds,
particularly examining how non-breeding season conditions
interact with breeding-ground climate change to drive population
declines.

CONCLUSION

We found moderate migratory connectivity in BTBW. Birds
breeding at a range core site in New Hampshire exhibited a broad
non-breeding distribution across the Caribbean, whereas birds
breeding at a trailing edge site in North Carolina exhibited a
restricted non-breeding range on the island of Hispaniola.
Deforestation rates have been accelerating in the Dominican
Republic (Lloyd and Leon 2019), which could be
disproportionately affecting BTBW from the trailing edge of the
range in North Carolina. The island of Hispaniola also provides
important non-breeding habitat for other species, such as the
Bicknell’s Thrush (Catharus bicknelli, McFarland et al. 2013);
therefore, protecting forested land on Hispaniola should be a top
conservation priority. Promoting sustainable agricultural
practices, such as shade-grown coffee, may also provide suitable
habitat for a variety of forest-dwelling species such as BTBW
(Wunderle and Latta 1996, Wunderle 1999); however, sustainable
agricultural practices generally support lower biodiversity than
primary forest (Rappole et al. 2003, Chandler and Royle 2013).
Sustainable agricultural practices should therefore be considered
lower priority than conservation of native forest. Although
population declines in North Carolina appear largely driven by
climate change on the breeding grounds, our results suggest the
possibility that deforestation in the Caribbean may be
exacerbating these declines. Further work from elsewhere in the
breeding and non-breeding range is needed to refine estimates of
migratory connectivity in BTBW to determine the relative
influence of threats experienced throughout the annual cycle on
trailing edge population declines in North Carolina.
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