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Abstract Process-based land surface models are important tools for estimating global wetland methane
(CH,) emissions and projecting their behavior across space and time. So far there are no performance
assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to
identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven
wetland models at 23 eddy covariance tower sites. Our study first characterizes site-level patterns of freshwater
wetland CH, fluxes (FCH,) at different time scales. A Monte Carlo approach was developed to incorporate flux
observation error to avoid misidentification of the time scales that dominate model error. Our results suggest
that (a) significant model-observation disagreements are mainly at multi-day time scales (<15 days); (b) most
of the models can capture the CH, variability at monthly and seasonal time scales (>32 days) for the boreal

and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and
tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating
that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and

(d) differences in error pattern are related to model structure (e.g., proxy of CH, production). Our evaluation
suggests the need to accurately replicate FCH, variability, especially at short time scales, in future wetland CH,
model developments.

Plain Language Summary Land surface models are useful tools to estimate and predict wetland
methane (CH,) flux but there is no evaluation of modeled CH, flux error at different time scales. Here we use a
statistical approach and observations from eddy covariance sites to evaluate the performance of seven wetland
models for different wetland types. The results suggest models have captured CH, flux variability at monthly or
seasonal time scales for boreal and Arctic tundra wetlands but failed to capture the observed seasonal variability
for temperate and tropical/subtropical wetlands. The analysis suggests that improving modeled flux at short
time scale is important for future model development.
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1. Introduction

Methane (CH,) is a potent important greenhouse gas in terms of radiative forcing whose concentration in the
atmosphere (~1,900 ppb) has increased by approximately 150% since pre-industrial times (Canadell et al., 2021;
IPCC, 2013). Methane emitted from wetland ecosystems is the largest natural source at ~120-180 Tg CH, yr~!
(Poulter et al., 2017; Saunois et al., 2020) and contributes to short-term trend and interannual variability
observed in atmospheric CH, concentration (Bousquet et al., 2006; Saunois et al., 2017; Zhang, Fluet-Chouinard,
et al., 2021; Zhang, Poulter, et al., 2021). Our understanding of global wetland CH, emissions heavily relies on
process-based wetland CH, models, which incorporate biogeochemical mechanisms, climate forcing variables
(e.g., temperature), and spatio-temporal distributions of surface inundation and wetland extent across the world
(Melton et al., 2013; Wania et al., 2013; Xu, Riley, et al., 2016; Xu, Yuan, et al., 2016; Zhang, Fluet-Chouinard,
et al., 2021; Zhang, Poulter, et al., 2021). These models play a critical role in diagnosing and forecasting terres-
trial CH, dynamics across space and time, but their wetland CH, flux (FCH,) estimates have large uncertainties
due to potential biases in parameterizations, limited mechanistic characterization of known CH, processes such
as thermal impact of rainfall (Neumann et al., 2019) and microbial dynamics on FCH, (Chadburn et al., 2020).
However, it is unclear how well the current wetland models can replicate the observed FCH, variability and
magnitude at different time scales. Therefore, it is necessary to evaluate wetland CH, model performance against
observations to identify temporal model error patterns and inform future model development.

So far there has not been a major synthesis effort to evaluate multiple wetland CH, models against global cover-
age of eddy covariance (EC) observations from different biomes using a standard simulation protocol, despite a
few efforts to evaluate a single wetland CH, model at multiple sites (Ringeval et al., 2014; Wania et al., 2010) and
a model inter-comparison (Melton et al., 2013; Wania et al., 2013). Moreover, current models may have a
biased seasonal cycle over temperate and tropical wetlands, as suggested by a few recent regional studies (Lunt
et al., 2019; Maasakkers et al., 2021; Yu et al., 2021). It is necessary to evaluate the simulated FCH, variability
against EC observations for different biomes at different time scales. Arguably, model development to represent
terrestrial CH, processes has been hindered by (a) limited number of local-to-regional CH, observations to eval-
uate model outputs; (b) lack of understanding of the underlying processes informed by EC measurements and
how well these processes are represented in the models. Evaluations of wetland CH, models against the recently
complied database FLUXNET-CH, (Delwiche et al., 2021; Knox et al., 2019, 2021) offer an opportunity to
improve understanding of current model performance for different wetland types.

Despite previous observational synthesis studies (Chang et al., 2021; Delwiche et al., 2021; Knox et al., 2021)
that have identified the major controlling factors that regulate temporal variations in freshwater wetland FCH, at
different time scales, it is currently unknown how accurate wetland CH, models are in predicting FCH, across
time scales and what factors are likely causing model biases across different temporal scales. Knox et al. (2021)
demonstrated that dominant factors controlling the seasonality in EC-based FCH, vary with wetland types and
the major processes that regulate FCH, vary at different time scales (e.g., from sub-daily to seasonal). For exam-
ple, although soil temperature simulations are well established in wetland models with different thermal param-
eterization schemes, the representation of the modeled relationship between FCH, and temperature should be
closely evaluated since it may affect model performance for the high latitudes. Examples include cold regions
influenced by freeze-thaw cycles where FCH, may occur during the zero-curtain period when subsurface soil
temperature are poised near 0°C (Tao et al., 2021; Zona et al., 2016). In addition, temperature hysteresis could
contribute to different FCH, drivers across seasons (Chang et al., 2021). In contrast, models tend to use different
proxies to calculate microbial CH, production (e.g., Gross Primary Production, Net Primary Production [NPP],
ecosystem Heterotrophic Respiration [Reco], and carbon substrate concentrations), which likely influences simu-
lated accuracy in reproducing FCH, at different time scales.

It is difficult to diagnose the mechanisms responsible for the lack of agreement between model and observation
using conventional model-fitting approaches (Schaefer et al., 2012; Taylor, 2001) that apply statistical metrics
(e.g., RMSE, 72, standard deviation). In contrast, model-observation evaluations in the frequency domain using
wavelet analysis (Figure 1) or Fourier transform can provide insights about model-observation disagreements
at different temporal scales (Dietze et al., 2011; Stoy et al., 2013; Vargas et al., 2010). Wavelet analysis is espe-
cially useful for model evaluation since, compared to Fourier transform, it can identify not only the time scales
that influence a signal but also inform when those time scales are significant. Previous studies have identified
disagreement between models and observations for carbon dioxide (CO,) fluxes across different ecosystems
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Figure 1. A conceptual description of differences between information in the time-domain and the frequency domain and

an example of model-data evaluation in the frequency domain (adapted from Vargas et al. (2010)). A time series can be
decomposed into time and frequency (i.e., time scale) domain using the continuous wavelet transform. The resulting wavelet
power spectra are plotted on what is referred to as wavelet half-plane, where time is along x axis, frequency/time scale along y
axis, and spectra power indicated by color. Statistically significant areas are clearly distinguished by thick black contour lines.
The white line is the cone of influence (COI) beyond which wavelet coefficients are unreliable (referred to as “edge effect”).
While the COI is included in the calculations, we do not draw any conclusions or interpretations based on the wavelet
coefficients beyond the COL

(Golub et al., 2023; Li et al., 2023; Richardson et al., 2012; Schwalm et al., 2010; Stoy et al., 2013) using wave-
let analysis, and have found that (a) model errors in CO, flux peak at the diurnal scale and (b) the model error
patterns are associated with model structure and environmental drivers. However, so far there is no assessment for
FCH,. Consequently, assessments of model-observation agreements using wavelet analysis are needed to identify
discrepancies between observed and modeled FCH, and provide insights for model development.

Our study aims to evaluate the performance of wetland CH, models in the frequency domain against a large
ensemble of EC measurements of ecosystem-scale FCH,. The goal is to quantify the most important time scales
(e.g., multi-day, monthly, and seasonal) for the variability of FCH, across wetland types and provide insights
about the time periods in which models should be improved. Our specific objectives are to: (a) quantify the
most relevant time-scales for the variability of FCH, in the models and observations at the site-level, (b) test the
disagreement between in situ observations and modeled FCH, in time-frequency domain, (c) give insights into
model structures responsible for model/observation mismatch. Based on previous findings for CO, flux (Dietze
et al., 2011; Stoy et al., 2013), we hypothesize that (a) models will have better model-observation agreement in
terms of flux variability at longer time scales (e.g., monthly to seasonal) than short to intermediate time scale
(e.g., multi-day to sub-monthly) as important biological processes regulated by seasonal variation (e.g., CH,
production response to temperature) are adequately formulated in the models; (b) models will tend to fail at multi-
day and sub-monthly time scales due to forcing error propagation and limited representation of modeled plant
physiology and biogeochemical processes; (c) The models have better performance over boreal and Arctic tundra
sites than temperate and tropical sites, as temperature become less dominating in controlling FCH, variability for
those wetland types.

2. Materials and Methods

We used data from 23 freshwater wetland sites included in the FLUXNET-CH, Community Product (Delwiche
et al., 2021) to evaluate seven wetland CH, models from the Global Carbon Project (GCP) Methane Budget
(Saunois et al., 2020; Stavert et al., 2021). The model simulations follow a common simulation protocol using
a gridded climate data set from Climate Research Unit (CRU/CRU-JRA; CRU-JRA is a 6-hourly interpolated
climate data set from Japanese Reanalysis data; JRA, i.e., aligned with CRU on the monthly basis) as the inputs.
The selected EC sites have a total of 70 site-years of data classified as boreal forest/taiga (n = 25), Arctic tundra
(n = 15), temperate (n = 25), and tropical/subtropical wetlands (n = 5). We take into account the flux meas-
urement errors in identifying model-data disagreements with observations by assessing the contribution of
flux-tower observations error via a Monte Carlo approach.
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Table 1

Summary of Site Characteristics

Site ID Country Latitude Longitude Biome type Wetland type Start year End year Data reference
BR-NPW Brazil —16.50 —56.41 Tropical/Subtropical Seasonal 2014 2016 Dalmagro

et al. (2019)
CA-SCB Canada 61.31 —121.30 Boreal forest Bog 2014 2018 Sonnentag and

Helbig (2020)
FI-LOM Finland 68.00 24.21 Boreal forest Fen 2008 2010 Lohila et al. (2020)
MY-MLM Malaysia 1.46 111.15 Tropical/Subtropical Swamp 2014 2015 Wong et al. (2020)
RU-VRK Russia 67.06 62.94 Arctic tundra Wet Tundra 2008 2008 Friborg and

Shurpali (2020)
SE-DEG Sweden 64.18 19.56 Boreal forest Fen 2014 2017 Nilsson and

Peichl (2020)
SE-ST1 Sweden 68.35 19.05 Arctic tundra Fen 2012 2014 Jansen et al. (2020)
SE-STO Sweden 68.36 19.05 Arctic tundra Bog 2015 2015 Jansen et al. (2020)
US-ATQ USA 70.47 —157.41 Arctic tundra Wet Tundra 2014 2014 Zona and

Oechel (2020a)
US-BZB USA 64.70 —148.32 Boreal forest Bog 2014 2016 Euskirchen and

Edgar (2020)
US-BZF USA 64.70 —148.31 Boreal forest Fen 2014 2016 Euskirchen (2022a)
US-BZS USA 64.70 148.32 Boreal forest Swamp 2015 2016 Euskirchen (2022b)
US-EML USA 68.88 —149.25 Arctic tundra Bog 2015 2016 Schuur (2020)
US-ICS USA 68.61 —149.31 Arctic tundra Wet Tundra 2015 2016 Euskirchen

et al. (2020)
US-1IVO USA 68.49 —155.75 Arctic tundra Wet Tundra 2013 2016 Zona and

Oechel (2020b)
US-LOS USA 46.08 —89.98 Temperate Fen 2014 2017 Desai and

Thom (2020)
US-ORV USA 40.02 —83.02 Temperate Marsh 2011 2015 Bohrer and

Morin (2020)
US-OWC USA 41.38 —82.51 Temperate Marsh 2015 2015 Bohrer and

Morin (2020)
US-SNE USA 38.04 —121.75 Temperate Marsh 2016 2017 Shortt et al. (2020)
US-TW1 USA 38.11 —121.65 Temperate Marsh 2011 2017 Valach et al. (2020)
US-UAF USA 64.87 —147.86 Boreal forest Bog 2011 2017 Iwata et al. (2020)
US-WPT USA 41.47 —-82.99 Temperate Marsh 2011 2013 Chen and Chu (2020)

2.1. FLUXNET-CH,

Twenty-three sites from the FLUXNET-CH, database were selected for the analysis (Table 1; Figure 2) based on
three criteria: (a) tidal, upland, and agricultural sites were excluded from the analysis as the models only simulate
natural inland freshwater wetland FCH,; (b) there had to be at least one complete site-year of overlapping EC
observations and model results for all seven wetland models; and (c) only restored freshwater wetlands at later
stages of wetland development (>10 years) were included in the analysis.

In order to match the broad definition of freshwater wetlands in the models, selected EC sites were regrouped
to represent a broad range of wetland/biome type along a latitudinal gradient. The original freshwater wetland
types were classified into bog, fen, marsh, and swamp based on site-specific literature (Delwiche et al., 2021).
The biome types (Arctic tundra, boreal forest/taiga, temperate, and tropical/subtropical), were defined based upon
Olson et al. (2001) using site coordinates and vegetation types to group wetland sites. Since continuous wavelet
decomposition requires a gap-free time series, we used gap-filled data from the FLUXNET-CH, database. Details
on data standardization and gap-filling are described in Knox et al. (2019) and Delwiche et al. (2021). Gaps in
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Figure 2. Locations of eddy covariance sites from FLUXNET-CH, in this study, with sites colored by wetland types. The
variable size of dots in the map corresponds to the sample size (i.e., number of site-years) with a larger dot indicating a higher
sample size. Base map used came from https://hub.arcgis.com/datasets/esri::world-countries.

FCH, were filled using artificial neural networks (ANN) as described in Knox et al. (2019). An estimate of FCH,
observation error at every time step was generated, accounting for uncertainties associated with the gap-filling
process and random measurement errors. The errors of observed FCH, follows a double exponential distribution
(Knox et al., 2019), which has a fatter tail than normal and is highly heteroscedastic, with error increasing linearly
with the absolute magnitude of the flux, similar to CO, flux errors as suggested by previous studies (Hollinger
& Richardson, 2005; Lasslop et al., 2008; Richardson et al., 2006, 2008). These uncertainties are incorporated in
the spectral null model, as described in the spectral analysis (Section 2.3).

2.2. Wetland FCH, Models

Our study applies seven global wetland CH, models from the GCP Methane Budget activities (Saunois
et al., 2020), including Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC),
E3SM Land Model (ELM), Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), Jena Scheme
for Biosphere-Atmosphere Coupling in Hamburg Helsinkl Model of MEthane builLd-up and emission
(JSBACH-HIMMELLI), Lund-Potsdam-Jena Wald Schnee and Landschaft version (LPJ-wsl), Terrestrial Ecosys-
tem Model-Methane Dynamics Module, and TRIPLEX-GHG. The details about the structure and configurations
of the wetland CH, models can be found in Table 2. All the models were run to steady-state using their own
parameters and no site-specific tunings were done. Ancillary data such as soil texture and CH,-related parameter
sets were used as model-specific inputs (Table 2). Thus the assumptions about the local environment at each site
depended on the individual model's setup. The models were run at the global scale at their native spatial reso-
lution following a prescribed protocol to facilitate intercomparison. The models were run at the grid cell level
using the CRU-JRA 6-hourly, land surface, gridded climate data set, which was constructed by combining the
CRU data set and the reanalysis from Japanese Reanalysis data (JRA) produced by the Japanese Meteorological
Agency. The CRU-JRA was adjusted where possible to align with the monthly climate data set CRU (version
ts3.26) data. For CLASSIC that requires climate inputs at half-hour time step, the CRU-JRA has been interpo-
lated to half-hourly using a linear interpolation or random distributions. LPJ-wsl model uses the monthly CRU
data set, and a weather generator within the model to produce precipitation events and daily temperature. Here
we evaluate the wetland FCH, strength (¢CH, m~2 day~!), which was defined as the total flux over a 24-hr period
over a standardized wetland area (m?). The FCH, strength is calculated as FCH, divided by wetland areal fraction
within the grid cell to exclude the effect of inundation dynamics in the FCH, calculation.

The wetland CH, models can be generally characterized as a set of functions describing the biogeochemical
processes that control CH, production and oxidation through methanogenesis and methanotrophy, and the
biophysical processes that regulate CH, transport from the soil to the atmosphere (Table 2). Methanogenesis in
the models is linked to different proxies (e.g., carbon substrate, heterotrophic respiration, NPP) with a wide range
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of model complexity—more sophisticated models include wetland Plant Functional Types (PFTs) and explicitly
simulate the processes of CH, production, consumption, and transport, while the simplified models use general-
ized empirical equations to simulate net flux without considering individual components of FCH,. More complex
model structures provide capacity to capture the important temporal patterns of FCH, but this invariably leads
to additional parameter uncertainty due to the scarcity of observational constraints. The response function of
FCH, dynamics to temperature in each model is another factor that influences the simulated time series of FCH,.
For example, for high-latitude wetlands, model representations of freeze-thaw cycles influence the performance
in capturing FCH, during the early spring thaw and zero-curtain period (Zona et al., 2016). It is worth noting
that assessing the overall complexity of the wetland models is challenging due to its integrations with multiple
processes such as freeze/thaw cycle, soil thermal schemes, nutrient cycles, and other components within land
surface models. While certain wetland methane modules may appear simpler than others in terms of represented
processes and parameters, it is not straightforward to establish a clear ranking of complexity.

2.3. Evaluation Strategy and Wavelet Analyses

This analysis focused on the comparison of observed and modeled FCH,. All analyses were conducted using
daily time series. Since the modeled FCH, fluxes are not directly comparable to the EC measurements due to the
spatial mismatch between modeled gridded fluxes and site-level observations, we evaluate simulated FCH, by
calculating the normalized residual error (NRE, ¢_, ) between normalized model and observation as:

§,m,t-

Model; ,; — Modely Data,, — Data,,
Esmt = p I M

Where the subscripts denote site (s), model (m), and time (t) and the overbar denotes the average over the full

length of the time series. The model and observation results were mean-centered to eliminate biases in the net
flux, and divided by the standard deviation (o) across the entire record to normalize the amplitude of variability.
This NRE metric can be used to compare the synchrony of the model with the observation rather than evaluating
absolute model biases.

We applied wavelet analysis to decompose the FCH, time series into an additive series of wave functions that
have time scales of variability from 2 to 124 days. Wavelet analysis can identify the time scales that dominate
a signal because wave functions that best match the fluctuations in the data will explain the most variance (i.e.,
power). Specifically, we used the continuous wavelet transform because of its ability to translate a time series into
the frequency domain and its suitability for visual interpretation. The ability to discern small intervals of scales
(i.e., spectral resolution) depends on the choice of the mother wavelet function (Cornish et al., 2006). For this, we
applied the Morlet wavelet, a complex non-orthogonal wavelet that has been widely used for geophysical applica-
tions (Torrence & Compo, 1998) and biometeorological measurements (Meyers et al., 1993). Following a similar
definition from Knox et al. (2021), time scales of variation were classified into four bands, “multi-day scale”
(2-5 days), “weekly scale” (5—15 days), “monthly scale” (1542 days), and the “seasonal scale” (>42 days). It is
important to note that the “seasonal” time scale defined in our study, with an upper bound of 124 days, is notably
shorter compared to the “seasonal” time scale defined in Sturtevant et al. (2016) and Knox et al. (2021). Conse-
quently, the seasonal time scale in our study is more in line with a time scale of approximately up to 3 months. The
four bands were then summarized on both a by-site and by-model basis regarding the relative contribution of each
band to the overall spectra. The continuous wavelet decomposition was computed using the Morlet wavelet basis
function (function name: wt) from the R package “biwavelet” (Gouhier et al., 2021). We use the bias-corrected
wavelet power following Y. Liu et al. (2007) to ensure a consistent definition of power in order to enable compar-
isons across spectral peaks. Wavelet power spectra on very long timescales (>64 days) often exceed the so-called
cone-of-influence (COI) beyond which edge effects become important due to incomplete time locality across
frequencies. Therefore, the power spectra outside of COI is not interpreted here.

An appropriate null model is important to determine whether the model-observation disagreement is statistically
significant. We applied a similar approach to that of Dietze et al. (2011) to generate 1,000 sets of “pseudo” time
series for each site using a Monte Carlo approach. The NRE between the pseudo time series and the original data
and the wavelet spectra of the NRE were calculated in the same way as the model errors. The 1,000 replicates
of pseudo time series were generated with the uncertainties estimated by Knox et al. (2019) accounting for both
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Figure 3. Example of wavelet decomposition and identification of the LPJ-wsl model error with eddy covariance observations at the US-WPT site for 2011-2013. (a)
Time series of observations (Obs) methane flux (FCH,, red line) with 1 — & observational uncertainty (shaded red area) and LPJ-wsl modeled FCH, (Model, blue line).
(b) Normalized time series of FCH, from model and observations; the shaded area in red represents the upper and lower range of the normalized pseudo time series
from the Monte Carlo simulations. (c) Time series of normalized residual error (NRE) (Z-score of NRE) between wetland model and observations, with shaded area in
red representing NRE between observations and normalized pseudo time series, that is, NULL model. (d) Wavelet coefficients displayed in the wavelet half-plane for
the normalized observations, (e) same as (d) but for LPJ-wsl modeled FCH, (Model), (f) NRE between model and the observations.
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uncertainties in the ANN-based gap-filling algorithm and measurement uncertainty. Systematic errors due to
representativeness (Chu et al., 2021; Pallandt et al., 2021), lack of nocturnal mixing, sub-mesoscale circulations,
and other factors are not discussed here (Baldocchi, 2014; Peltola et al., 2015). Also note that, because the
uncertainty from ANN estimation was strongly linked to the sample size, the flux errors tended to be high when
the measurement availability was limited by local meteorological conditions such as the snow presence and soil
freeze and thaw cycles.

The wavelet spectra were evaluated in the following ways:

¢ Significant spectra regions. The significant region was defined by counting the total number of area in the
time-frequency distribution where the spectral characteristics of FCH, and model-observation mismatch were
statistically significant. It was calculated by re-coding significant power as 1 and non-significant power as 0
and then stacking all site-years to count the total number.

e Marginal distribution of power spectrum of the NRE. The disagreements in the marginal power spectra were
aggregated by the four defined time bands to summarize model performance across different time scales.

¢ Scaling exponent a for each model was calculated to quantify the spectral properties of persistence of auto-
correlation structure (i.e., memory effect) in model error. This is particularly relevant because land surface
models employ numerical discretization methods and numerical approximations (e.g., soil thermal schemes
that affects FCH, calculation), which can introduce errors that accumulate and impact subsequent model
predictions. Scaling exponent a was expressed as the slope of the log-log transformed relationship between
frequency (i.e., time scale) and power. The scaling exponent a with a range between 1 and 2 was considered as
intermediate “pink” noise between “white” and “red” noise. White or red noise indicated that if the modeled
FCH, had a persistent memory effect (i.e., autocorrelation structure), which can be attributed to model error
which resulted in larger and long-lived systematic biases at longer time scales.

One-way analysis of variance (ANOVA) was used to diagnose the relationship between model structure and the
marginal distribution of spectra power for wetland types. The marginal distribution of spectral power of each
band was compared with different groups of models for each wetland type. The model structures are defined
in Table S1 in Supporting Information S1 to identify if there were significant differences (p < 0.001) between
model groups.

3. Results
3.1. Wavelet Decomposition of FCH, Time Series From LPJ-wsl at an Example Site

Figure 3 shows the time series of FCH, from the observations and one model (LPJ-wsl) and demonstrates its
wavelet-based power spectra at one marsh site (US-WPT) in the central U.S. (Chu et al., 2015). We use this
example to explain the Monte Carlo analysis with pseudo-data and discuss the model-observation disagreement.
Figure 3a shows that FCH, simulated by the LPJ-wsl model generally captured the seasonal cycle, but with a
lower magnitude at the freshwater marsh site. The model also captured a dip in FCH,, after the peak during the
June-July-August (JJA) months, which is consistent with the observed temporal pattern. Figure 3b suggests that
the temporal patterns of normalized FCH, between the model and observations have a good agreement (r = 0.83,
p < 0.05). The relatively high uncertainty in the observed FCH, at the beginning of 2011 is mainly due to the
limited number of observations, which causes higher uncertainty in the gap-filling method. This example shows
that the discrepancies between the modeled and observed FCH,, and the NRE uncertainty range from the null
model, tend to be higher during the JJA months when the flux intensity is relatively high and highly variable, or
when the data availability is limited (Figure 3c).

Both the observation and the model show significant power spectra during the JJA months (Figures 3d and 3e).
The modeled FCH, have a longer range of dominant time scale from 2 to 64 days than the observed 2—8 days. The
modeled FCH, has weaker spectral powers (colors toward blue) during the winter and spring seasons, indicating
that the model may have less variability than the observations during the winter and spring seasons (Figures 3d
and 3e). It is important to note that the power spectra of the NRE are not the difference between the wavelet
coefficients displayed in Figures 3d and 3e.

The wavelet plot for the NRE suggests the largest discrepancies is mostly from JJA months, reflected as strong
spectral power in the wavelet NRE (Figure 3f). It is encouraging that there is a degree of correspondence between
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Figure 4. Wavelet evaluation of FCH,, for the LPJ-wsl model against 3 site-year observations (2011-2013) at US-WPT site. (a) Count of significant power in the
time-frequency domain for the time series of FCH, observations. (b) Same as (a) but for LPJ-wsl modeled FCH,. (c) Count of significant power of normalized residual
errors (NRE) between model and observations. (d) Marginal distribution of power spectra of NRE as compared to the null spectra (99% of confidence interval, solid
black line) based on measurement uncertainties for each year 2011, 2012, and 2013 (red, blue, and green lines, respectively). (e) The marginal distribution of power
spectra of NRE divided by the maximum of the null spectra (NULL) on a log scale. Values greater than O (dotted line) indicate that the model error has significantly
more spectral power at those time scales than would be expected based on observation error.

the model and observations: (a) the mismatch between model and observations is not significant at the monthly

and seasonal time scale (>32 days) except for 2013 when anomalously high FCH, is observed in August; (b)

the wavelet coefficients in NRE have a low magnitude during the December-January-February (DJF) months,

suggesting a less important role of the winter season fluxes at US-WPT. It is also worth noting that the seasonal
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Figure 5. Significant model-observation disagreement along with time scales for all sites by biomes, represented by the marginal distribution of significant regions of
normalized residual error. High values of the significant region indicate high tendency of model-observation mismatch and vice versa. The significant region is defined
as the areas where the wavelet power spectrum is statistically significant (95% confidence interval). The marginal distribution of significant regions is then calculated
by stacking all site-years to count the significant power in the time-frequency domain.

cycle of observed FCH, has much higher year-to-year variations than the modeled fluxes, which is partly due to
the strong influence of local environmental conditions on the measured seasonal cycle that are not captured by
the model.

3.2. Evaluation of LPJ-wsl at the Example Site

Model-observation discrepancies in LPJ-wsl at the US-WPT site were highest at daily to weekly scales. Figure 4
show that the measurements identify significant regions at high frequency (i.e., multi-day to weekly scales)
while LPJ-wsl displays significant regions in the whole range of frequencies with more areas at the mid-to-low
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Figure 6. Model performance along time scales with a consideration of uncertainty in observations, reflected by the comparison of model error spectra to the null
spectra. The power spectra (Power) are divided by the upper confidence interval of the null (NULL) model (99% quantile) based on logged observations, following the
same calculation as Figure 4e. A model error spectrum greater than 0 (horizontal black line) indicates more significant spectral power at these time scales. The slope of
the fitted curve represents the scaling component a.

frequency (i.e., monthly to seasonal scales). LPJ-wsl tends to underestimate the time span of FCH, pulses at a
high frequency, with strong pulse emission only occurring in late July, indicating less variability in the modeled
FCH, during the JJA months. Regarding the disagreement between model and observations, most of the signif-
icant regions are in the multi-day to weekly scales, suggesting the model failed to capture the flux variability at
these time scales. The discrepancy in FCH, only occurs from May to August while it is negligible during the DJF
months, when FCH, are small and uncertainty is proportionally large.

Figure 4d provides an example of the model-observation mismatch in the global power spectrum for LPJ-wsl
and observed FCH, at US-WPT in each year separately. Figure 4d is the marginal distribution of the full error
spectrum by site-year in Figure 3f, in comparison to the maximum of the spectra of observation error from the
Monte Carlo estimates. Here we choose a 99% confidence interval (CI) to define the criteria because, unlike CO,,
FCH, is highly spatially heterogeneous and has much higher year-to-year variability. To facilitate the compari-
son, we divided the model-data error spectra by the 99% CI of the observation error spectra for each time scale
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(Figure 4e). Any time scale that falls above the horizontal line (>0) indicates a model residual error that is higher
than the uncertainty in the observations. The error of the model is constantly increasing with time-scale, while
the random uncertainties in FCH, are declining with time-scale with the highest uncertainties at multi-day scales.
Here the estimate of the scaling exponent a for the LPJ-wsl model at US-WPT sites ranged from 1.5 to 1.7,
suggesting a moderate correlation structure (i.e., pink noise).

3.3. Significant Regions of NRE Between the Models and Data

Next, we present the significant regions of model-observation mismatches for all 23 sites and all seven models
(Figure 5). Our results suggest that the models have diverse performance with the largest mismatch occurring
at the multi-day times scales. For most of the models, the significant mismatch is lower during monthly or
seasonal time scales. This pattern confirms the hypothesis that the models generally have better performance
in simulating the flux variability at longer time scales than at short-to-intermediate time scales. The increases
in significant mismatch at the lowest frequency time scale (>64 days) are likely due to the edge effect, reflecting
the limited length of the time series (365 days for a site—year) rather than a confirmation of model performance
at capturing fluxes at the time scale. Across the wetland models there are diverse patterns of significant regions
in FCH,, most of which are different from the observation-based patterns, suggesting that there are significant
discrepancies between model structures and observed process controls (Figure S1 in Supporting Information S1).
The observation-based patterns suggest that most of the significant high power is concentrated within the time
scale less than 7 days from May to August (wet season for tropical sites), while the models tend to have relatively
high power at a lower frequency (time scale larger than 14 days) at different time periods of the year depending
on different model structure.

The comparison of significant regions in model-data mismatch suggests that the models have varying behav-
ior on different wetland types (Figure 5). The majority of models show broadly consistent patterns of signif-
icant mismatch across time-scales for the boreal forest and temperate regions. In contrast, the patterns for
tropical and subtropical wetland types is diverse among the wetland models. Note that the small sample size
of tropical/subtropical wetlands in our study also has an impact on the representativeness of site-level obser-
vations. The significant regions for boreal forest and Arctic tundra regions show high power during the JJA
seasons (Figure S2 in Supporting Information S1), indicating a consistent dominant control (likely tempera-
ture) in the models for these wetlands as suggested by recent studies (Irvin et al., 2021; Knox et al., 2021). For
tropical/subtropical wetlands, the significant regions in NRE are spread over all time-scales with diverse patterns
across the models, indicating the causes of mismatch with models differ as daily mean temperature becomes less
dominant in controlling FCH, variability and other processes (e.g., water table dynamics and solar irradiance
cycle) become more important.

3.4. Global Model Spectra

We explored the model error patterns by calculating the scaling factor a for each model. When considering the
observation error in the flux data (the null model is calculated the same way as in Figure 4e), the spectral analysis
of the NRE suggests the model errors approximate pink noise patterns for all the wetland models, with the mean
scaling exponent a of the model estimates ranging from 1.1 to 1.6 for different wetland types (Figure 6). The
mean scaling exponent for the boreal forest and Arctic tundra regions (1.1-1.3) was generally lower than that for
temperate and tropical regions (1.5-1.6), suggesting the wetland model performance for the temperate and tropi-
cal/subtropical regions generally has a longer memory effect (i.e., high tendency for greater persistence of model
error) than wetlands in high latitudes. All the models show an increase in error at the monthly and seasonal time
scales and the greatest variability across models at multi-day time scales. There was a tendency for the spectral
error of some models to exhibit greater persistence than other models. For example, even though the LPJ-wsl
model shows relatively low error compared to the other models for boreal and temperate wetlands, the scaling
exponents a of LPJ-wsl (1.8 and 1.6 respectively) are higher than most of the other models, suggesting that
LPJ-wsl model error tends to have a larger memory effect. For the temperate and tropical wetlands, all the models
show similar scaling exponents a regardless of model structure, indicating the similarity of model behaviors in
environmental controls for these wetlands.
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Table 3

The p Values of Analysis of Variance Analysis for the Impact of Model Structure on the Spectral Power for Different Wetland Types Within Each of the Four-Time

Scales

Wetland type Time scale Wetland PFT  Component of CH, flux CH, production proxy Incorporation of nitrogen cycles Fire Spatial resolution

Boreal forest Multiday <0.001 <0.001 <0.001 <0.001 0.043 ns
Weekly <0.001 <0.001 <0.001 <0.001 <0.001 ns
Monthly <0.001 <0.001 <0.001 <0.001 <0.001 ns
Seasonal <0.001 <0.001 ns ns <0.001 ns

Arctic tundra Multiday <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Weekly <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Monthly <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Seasonal <0.001 <0.001 <0.001 ns 0.002 0.08

Temperate Multiday <0.001 <0.001 ns <0.001 <0.001 <0.001
Weekly <0.001 <0.001 ns ns 0.004 0.003
Monthly <0.001 0.002 ns 0.018 0.003 0.002
Seasonal ns ns 0.001 0.007 <0.001 <0.001

Tropical/ Multiday <0.001 <0.001 <0.001 ns ns 0.055

aulifirgpiezl Weekly <0.001 ns ns ns ns 0.061

Monthly <0.001 ns ns ns <0.001 0.019
Seasonal <0.001 ns ns ns <0.001 0.002

Note. ns: non significant.

4. Discussion and Conclusions

Our initial hypothesis was that models would perform well at monthly and seasonal time scales because the
biogeochemical processes at these time scales are largely driven by solar radiation cycles and corresponding
changes in soil temperature. Our results support this hypothesis for Arctic tundra and boreal wetland types where
the variations of temperature are the dominant control of FCH, (Knox et al., 2021). However, in contrast to our
expectations, the models have difficulty capturing variability at monthly and seasonal time scales for temperate
and tropical wetlands, where other environmental controls emerge. Considering that the precipitation-driven
variables such as water table depth are significantly correlated with the seasonal cycle of FCH, at the site level
for temperate and tropical sites (Knox et al., 2021), the lower agreements between model and data may be partly
caused by discrepancies in precipitation between gridded climate data sets and site-level meteorological condi-
tions. The models also lack representation of hydrological processes at a scale fine enough to reflect the lateral
flow from uplands to lowlands and its influence on the water dynamics. The distribution of model wavelet spectra
(Figure S1 in Supporting Information S1) on visual inspection appears very different from the site-level measure-
ments, indicating that the models' structures need to better capture variability at multi-day and weekly time scales.

Our analysis further reveals important characteristics in the time series of model errors, which indicates that
the errors at short time scales have a memory effect on biases at long time scales. These results suggest that
further model development should focus first on correctly replicating flux variability and magnitude at multi-day
time scales. Investigations into modeled FCH, spectra (Figure S1 in Supporting Information S1) suggest that,
in general, models tend to exhibit higher variabilities over monthly time scales from May to August whereas
measurements suggest higher variabilities at multi-day time scales. One reason is likely that other environmental
variables (e.g., vapor pressure deficit, atmospheric pressure) that regulate FCH, variability at short time scales
(Stoy et al., 2005) are not included in the model inputs. Additionally, many of the models predict a strong pulse in
spectra power across different time scales during a short time period, especially for the JJA months, which causes
significant errors at monthly and seasonal time scales (Figures S1 and S2 in Supporting Information S1). This
pattern has not been observed by the EC measurements, indicating shared model errors due to the meteorological
forcing among models and/or due to missing processes arising from limited understanding of wetland ecosystem
dynamics (Neumann et al., 2019; Zona et al., 2016).
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Figure 7. Heat map showing model-observation disagreement by time scales for different wetland types. All of the
model-observation disagreement per time scale are normalized to 1-100 with the value of highest model-observation
disagreement equal to 100 and lowest to 1. Light yellow and red represent the lowest and highest errors, respectively. The
time scales are defined as “Multiday” (2-5 days), “Weekly” (5—-15 days), “Monthly” (15-42 days), and “Seasonal scale”
(>42 days).

The spectral properties of the model errors along with time scales (Figure 6) indicates that the model structure
has an impact on FCH, variability, and different groups of models that share similar structure tend to have lower
errors propagated from short time scales to high time scales. The ANOVA analysis (Table 3) suggests that the
explicit representation of wetland PFTs, CH, component fluxes, and wetland production proxies are significantly
associated with variance for boreal and Arctic tundra wetland FCH, prediction, with a modest and inconsistent
effect for temperate and tropical wetlands. The effects of including the nitrogen cycle, fire, and spatial resolution
of grid cells were non-significant for most of the time scales. In addition, CH, transport through aerenchyma and
stomata, which is linked to photosynthesis, and other processes such as ventilation in aerenchymatous vegeta-
tion with influence from latent heat flux are critical for models to capture the variability at the diel scale (Knox
et al., 2021). Unfortunately, we did not have sub-daily FCH, model predictions nor were they driven by site-level
meteorological forcings, so we could not evaluate whether representation of processes at the diel scale has an
impact on model performance at intermediate scales.
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The ranking of model performance across different time scales suggests that no model outperforms others at all
time scales and across all wetland types (Figure 7). However, specific models demonstrate better alignment with
observed variability across distinct wetland types and time scales, thereby enabling their targeted application to
particular regions. Moreover, this quantitative evaluation of model performance offers possibility to improve
wetland model ensemble estimations in future studies (Poulter et al., 2017). Given different biogeochemical
structures and parameterizations, the analysis suggests inclusion of representation of some key processes in
wetland models and proper parameterizations are the basis for improving model performance. However, complex
model structure does not guarantee superior model performance, which highlights the importance of properly
parameterizing processes at a certain time scale. For instance, models with explicit CH, components and multiple
wetland PFTs could perform worse than simple models at certain time scales, which is likely due to increased
uncertainty from parameterization due to poor observational constraints. A further diagnosis of what environ-
mental and biotic parameters impact the agreement with EC measurements is needed for a better choice of param-
eter values in representing the realistic temporal variability of FCH,.

There are a few limitations in the observations affecting our model evaluation. First, the length of observed time
series is limited across sites with few sites having more than 5-year records. Unlike CO,, measurements of FCH,
are only beginning to cover multiple-year records and thus the EC tower records are not long enough to assess the
model's performance in capturing annual and interannual variability. For spectral methods, the short records are
particularly problematic for longer sub-annual time scales (e.g., seasonal) due to edge effects on the amount of
useable data. Consequently, the magnitude of model-observation disagreement at annual time scales beyond the
scope of this study remains uncertain. Given that the wetland model results at annual and interannual time scales
are particularly of interest to the global CH, budget, having decadal records of measurements is important for an
evaluation of model performance at these time scales. Second, the model-site comparisons are statistically chal-
lenging as the model-site-year combinations are not randomly distributed but rather depend on the performance
at a few sites given the reality of unevenly distributed EC wetland sites. Both undoubtedly have the potential to
introduce biases in statistical interpretation and thus influence model score. For instance, the evaluation of model
performance for temperate wetlands is strongly affected by model simulations at one marsh site US-TW1 in the
United States, which is a restored wetland that contributes ~28% (n = 7 site-years) of the total site-years for
temperate wetlands. US-TW1 has a water table height managed at ~25 cm above the soil (Oikawa et al., 2017),
which influences the temporal pattern of FCH, via hydrological control and thus model evaluations. Lastly,
it's worth noting that the scarcity of tropical sites (only 2 sites spanning 5 site-years) has the potential to intro-
duce biases when assessing disagreements between the model and observations. All of the limitations indicate
a critical need for more detailed evaluation of model performance at site-level and long-term measurements for
underrepresented regions.

One of the important aspects of this analysis is that it is possible that the model performance was underestimated
due to the limitation in estimating observation uncertainty and due to potential spatial mismatch between models
and EC observations. Although we calculated the spectral uncertainty with the inclusion of observational errors
in the evaluation across time scales, the interpretation of whether model-observation disagreements falls outside
the acceptable range is strongly influenced by the uncertainty of FCH, observations. The default gap-filling
methods such as ANN-based estimates for observational uncertainty appear to be overly tight across all sites
as suggested by a recent study (Irvin et al., 2021), indicating that actual observation error may be higher than
the estimates in our study. In addition, on top of the uncertainty of all the measurements, there is uncertainty
originating from a mismatch between the footprints of the individual towers that are usually <1 km? and the size
of gridded pixels that are often 0.5° or larger (Chu et al., 2021). This footprint mismatch introduces additional
noise which is not considered here.

Our study evaluated seven global-scale wetland models from the GCP Methane Assessment against EC FCH,
measurements from the FLUXNET-CH,, data set in the time-frequency domain. This analysis helped to identify
model-observation disagreements in variability across different time scales and provided guidelines for further
wetland model developments. Further detailed intercomparison of model structure and parameterizations is
needed to diagnose model structural and parameterization errors. In particular, a more advanced intercomparison
protocol would help distinguish structural and parameterization limitations by (a) testing multiple parameteriza-
tion schemes for major wetland processes (e.g., CH, production rate and transport); (b) running the models with
inputs from FLUXNET-CH,, local meteorological condition and local site information such as slope, drainage,
and vegetation characteristics; and (c) including longer-term records and spatially representative observations
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with full uncertainty characterization from EC tower measurements. In addition, incorporating wavelet analysis
into a more comprehensive framework that includes evaluation of other key variables and machine learning-based
estimates (Bansal et al., 2023; McNicol et al., 2023) may help identify the factors influencing its performance
at specific time scales more effectively. Modeling global-scale wetland CH, emissions is essential for accurately
quantifying the contribution of wetland-CH, feedback to ongoing climate change within the contemporary global
CH, budget, given their increasing role as potential contributors to the rise in atmospheric CH, concentration in
recent years (Peng et al., 2022; Zhang et al., 2023). Future intercomparison of wetland CH, models will improve
understanding of how wetland emissions contribute to variations of atmospheric CH, concentration during the
past decades and future projections.
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Erratum

The originally published version of this article contained errors in the affiliations of two co-authors, Antti
Leppédnen and Maarit Raivonen. The correct affiliation for both authors is Institute for Atmospheric and Earth
System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland. The errors have been
corrected, and this may be considered the authoritative version of record.
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