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A B S T R A C T   

Salt marshes are highly productive ecosystems relevant for Blue Carbon assessments, but information for esti
mating gross primary productivity (GPP) from proximal remote sensing (PRS) is limited. Temperate salt marshes 
have seasonal canopy structure and metabolism changes, defining different canopy phenological phases, GPP 
rates, and spectral reflectance. We combined multi-annual PRS data (i.e., PhenoCam, discrete hyperspectral 
measurements, and automated spectral reflectance sensors) with GPP derived from eddy covariance. We tested 
the performance of empirical models to predict GPP from 12 common vegetation indices (VIs; e.g., NDVI, EVI, 
PSRI, GCC), Sun-Induced Fluorescence (SIF), and reflectance from different areas of the electromagnetic spec
trum (i.e., VIS-IR, RedEdge, IR, and SIF) across the annual cycle and canopy phenological phases (i.e., Greenup, 
Maturity, Senescence, and Dormancy). Plant Senescence Reflectance Index (PSRI) from hyperspectral data and 
the Greenness Index (GCC) from PhenoCam, showed the strongest relationship with daily GPP across the annual 
cycle and within phenological phases (r2=0.30–0.92). Information from the visible-infrared electromagnetic 
region (VIS-IR) coupled with a partial least square approach (PLSR) showed the highest data-model agreement 
with GPP, mainly because of its relevance to respond to physiological and structural changes in the canopy, 
compared with indices (e.g., GCC) that particularly react to changes in the greenness of the canopy. The most 
relevant electromagnetic regions to model GPP were ~550 nm and ~710 nm. Canopy phenological phases 
impose challenges for modeling GPP with VIs and the PLSR approach, particularly during Maturity, Senescence, 
and Dormancy. As more eddy covariance sites are established in salt marshes, the application of PRS can be 
widely tested. Our results highlight the potential to use canopy reflectance from the visible spectrum region for 
modeling annual GPP in salt marshes as an example of advances within the AmeriFlux network.   

1. Introduction 

Salt marshes are highly productive ecosystems relevant to the local- 
to-global carbon cycle (Hayes et al., 2018) but need better representa
tion of their function as part of the coastal interface in Earth System 
Models (Ward et al., 2020). Gross primary productivity (GPP) is a crit
ical element of the carbon stored in salt marshes, and consequently, 
accurate estimations are essential for closing the carbon budget (Alongi, 
2020; Eagin et al., 2020). This flux is primarily regulated by plant 
phenology associated with changes in light, temperature, nutrient 
availability, and hydrological patterns (Knox et al., 2017; Lu et al., 2017; 
Vázquez-Lule et al., 2022). In recent years, ecosystem-scale GPP has 
been estimated using the eddy covariance (EC) technique in wetlands 
(Forbrich et al., 2018; Knox et al., 2017; Lu et al., 2017), and this 

information has been coupled with spaceborne data to estimate GPP at 
the regional scale (Eagin et al., 2020). Furthermore, spectral properties 
of canopy reflectance have proven helpful in representing the temporal 
variability of GPP in salt marshes (Eagin et al., 2020; Hill et al., 2021; 
Tao et al., 2018; Vázquez-Lule et al., 2022). That said, there is a need to 
improve the application of spectral reflectance derived from different 
platforms to better represent GPP from salt marshes in regional and 
global models (Ryu et al., 2019; Ward et al., 2020). 

Applying remote sensing tools in coastal areas is challenging because 
atmospheric scattering effects can impact the reflectance data collected 
by airborne and satellite spectrometers (Malthus and Mumby, 2003). 
Coastal regions with higher levels of atmospheric vapor are particularly 
prone to this issue, as it can impact how the near-infrared region in
teracts with the land surface reflectance (Adam et al., 2010). As an 
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alternative, Proximal Remote Sensing (PRS; e.g., handheld spectrome
ters, spectral sensors, and phenological cameras [PhenoCam]) is a 
feasible and cost-effective tool to monitor and predict GPP and salt 
marsh ecosystem productivity (Hill et al., 2021; Knox et al., 2017), and it 
is appealing for ecological studies, as it also reduces the atmospheric 
influence on the collection of canopy irradiance and reflectance, and 
allows for finer scale observations and analysis (Matthes et al., 2015; 
Richardson, 2019; Vázquez-Lule et al., 2022). In addition, PRS is a 
relevant component for increasing the footprint of ground-truth infor
mation required for upscaling reflectance from the ecosystems to the 
landscape scale (Asner and Martin, 2016; Porcar-Castell et al., 2014). 
However, there are substantial differences in the available PRS tools; 
some of them are related to the spatial region of interest covered, the 
temporal resolution of data collected, and the spectral composition of 
data and derived products (Richardson, 2019; Rossini et al., 2010; Hill 
et al., 2021). Those properties may have a different sensitivity to model 
GPP in coastal wetlands; therefore, intensive research is needed. 

Recently, the capabilities of PRS to monitor and predict GPP have 
increased through the collection and usability of multi and hyper
spectral data (Dechant et al., 2020; Inoue et al., 2008; Kim et al., 2021; 
Rossini et al., 2010). Hyperspectral data from PRS can be used to derive 
vegetation indices (VIs), the Sun-Induced Fluorescence (SIF), and in 
multivariate approaches to provide insights about the temporal vari
ability of GPP and other plant traits (Dechant et al., 2020; Inoue et al., 
2008; Rossini et al., 2010; Zarco-Tejada et al., 2013). Generally, 
methods to model GPP from spectral data are grouped into parametric 
and non-parametric. Parametric approaches are used to derive 
well-known spectral VIs - such as Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI), or Photochemical 
Reflectance Index (PRI) - that can relate to GPP (Inoue et al., 2008; 
Rossini et al., 2010; Zarco-Tejada et al., 2013). Non-parametric ap
proaches, such as the Partial Least Square Regression (PLSR), have also 
been used for data-model agreement of GPP with hyperspectral data 
(Cheng et al., 2020; Dechant et al., 2019; DuBois et al., 2018; Matthes 
et al., 2015). PLSR is based on optimizing models by their learning and 
training with the properties under study (i.e., GPP). It can reduce the 
spectral information to a set of latent variables and improve relation
ships between the hyperspectral reflectance and GPP by capturing data 
from many individual regressions at once (Matthes et al., 2015; Serbin 
et al., 2016). In addition, the use of PLSR with hyperspectral data to 
model GPP gives the availability to test the individual or collective 
performance of electromagnetic regions that may explain different 
properties in vegetation, such as the Infrared region (IR) that is related 
to changes in the physiological condition of vegetation or the red edge 
region (RedEdge) that shows the most contrasting differences between 
the absorption of red light during the photosynthesis and the physio
logical state of vegetation. 

More recently, information derived from SIF has been used as a proxy 
for GPP across terrestrial ecosystems (Kim et al., 2021; Miao et al., 2018; 
Yang et al., 2018; Zarco-Tejada et al., 2013). SIF is a dissipated way of 
energy during the light reactions of photosynthesis, as it is the radiative 
loss of energy that absorbs and remits photons (Meroni et al., 2009; 
Porcar-Castell et al., 2014). SIF can be estimated from irradiances 
collected by hyperspectral PRS using the Fraunhofer lines depth/dis
criminator (FLD) method. The FDL is one of the most suitable methods to 
passively assess SIF on the dark parts of the electromagnetic region as a 
response to the absorption of gases from the atmosphere (e.g., O2). Then 
radiances emitted on some of those lines correspond to SIF emissions 
from the vegetation activity (Porcar-Castell et al., 2014). SIF estimations 
are sensitive to changes in the Ecosystem-Scale GPP from the daily and 
annual variability across different terrestrial ecosystems (Rossini et al., 
2010; Zarco-Tejada et al., 2013); however, information is lacking for 
testing the applicability of SIF to estimate GPP across canopy pheno
logical phases in salt marshes. 

The AmeriFlux network has exponentially grown in the last 25 years, 
but several ecosystems still need to be better represented across the 

United States (Villarreal et al., 2018) and Latin America (Villarreal and 
Vargas, 2021). Interest in carbon dynamics in salt marshes has increased 
in the previous decade, but their representation within AmeriFlux and 
FLUXENT still lags behind freshwater wetlands and terrestrial ecosys
tems (Delwiche et al., 2021). The main goal of this study was to identify 
the spectral properties of reflectance data from PRS that could be useful 
to model and predict daily GPP in a salt marsh across the annual cycle 
and during different canopy phenological phases. For this purpose, we 
tested different VIs, SIF, and areas of the electromagnetic spectrum be
tween 480 and 820 nm. We coupled information from automatic and 
manual canopy spectral reflectance from PRS instruments with GPP 
during three years of study (2016 to 2018). 

We asked three interrelated questions: (1) How does hyperspectral 
reflectance characterize the salt marsh GPP across different canopy 
phenological phases (i.e., Greenup, Maturity, Senescence, and 
Dormancy)?; (2) What are the individual performance of different VIs 
and SIF estimations to model daily GPP?; (3) How do different electro
magnetic regions (i.e., Visible and Infrared (VIS-IR); red edge 
(RedEdge); Infrared (IR) and SIF) from hyperspectral PRS perform to 
model daily GPP? We hypothesized that hyperspectral reflectance would 
show different patterns and magnitudes across the electromagnetic re
gions for each canopy phenological phase as a response to changes in 
growth and greenness patterns (Zhu et al., 2010). We expected that SIF 
would show a strong relationship with daily GPP compared with any 
other relationship between GPP and VIs as a result of the documented 
association of SIF with photosynthesis in other ecosystems (Dechant 
et al., 2020; Li et al., 2018; Zarco-Tejada et al., 2013; Zhang et al., 2018). 
In addition, we hypothesized that the RedEdge region would show a 
robust data-model agreement with GPP compared with other electro
magnetic regions, mainly because it shows a higher reflectance contrast 
between the region that relates with the absorption of light by chloro
phyll pigments (i.e., red) and the IR region that associates with the 
physiological condition of vegetation (Cheng et al., 2020; Dechant et al., 
2019; Matthes et al., 2015). 

2. Materials and methods 

2.1. Study site 

The study site is a temperate tidal salt marsh dominated by grasses at 
the St. Jones Reserve, Delaware, USA (39◦05′ 17.49″, 75◦26′14.00″). The 
dominant plant species is Spartina alterniflora (~66% of the area) 
(=Sporobolus alterniflorus (Loisel.); Peterson et al. 2014), followed by 
Spartina cynosuroides (i.e., ~29% of the area) (=Sporobolus cynosuroides 
(L.); Peterson et al. 2014) and Phragmites australis (i.e., <5% of the area). 
This ecosystem has four distinct canopy phenological phases across the 
annual cycle: Greenup, when grasses start to grow, and their greenness 
and GPP have a linear increase, usually in the study site from April to 
June, in addition during this phase, the GPP increases, making of this 
ecosystem a net sink of carbon; Maturity, when grasses reach their peak 
of growth and greenness, usually from July to September, also during 
this phase GPP is higher than ecosystem respiration and the salt marsh is 
a sink of carbon; Senescence, when grasses begin to decrease in green
ness, and as well their defoliation starts, usually from September to 
October; during this phase as well as dormancy, respiration is larger 
than GPP and the ecosystem is a source of carbon to the atmosphere; and 
Dormancy, when grasses are inactive, and the GPP reach their lower 
point, this phenological phase is from November to March (Trifunovic 
et al., 2020; Vázquez-Lule and Vargas, 2021). At this study site, the soils 
are silty clay loam (Capooci et al., 2019), and tides are semidiurnal, with 
two similar high tides and low tides in 24 h (CEC, 2015). Tides at our site 
rarely submerge the vegetation (only during extreme surge events) and 
consequently have little effect on influencing canopy spectral reflec
tance measurements (Hill et al., 2021; Vázquez-Lule et al., 2022). 

The St. Jones Reserve is part of the Delaware National Estuarine 
Research Reserve and one of the National Estuarine Reserve Research 
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System (NERRS) from the National Oceanic and Atmospheric Adminis
tration (NOAA, 2020). It is also part of the AmeriFlux Network (US-StJ), 
PhenoCam Network (stjones; Seyednasrollah et al. 2019), and SpecNet 
(US-Stj) (Fig. 1). 

2.2. Eddy covariance measurements 

We used three years of eddy covariance (EC) data to derive GPP from 
net ecosystem exchange (NEE) measurements (i.e., January 2016 to 
December 2018). The EC tower has a height of 3.5 m and was estab
lished in 2015. It has a WindMaster Pro anemometer, model 160724 
(Gill Instruments, Lymington, Hampshire UK), and an LI-7200RS 
enclosed path CO2/H2O analyzer (LICOR Environmental, Lincoln, 
NE). The average footprint area of EC has a ratio of about 150 m around 
the tower, where 95% of fluxes are from dominant salt marsh species (i. 
e., S. alterniflora and S. cynosuroides; Fig. 1). We processed these data 
following standardized protocols for QA/QC, calculation of half-hour 
fluxes, and gap filling of NEE (Vázquez-Lule and Vargas, 2021). We 
applied a coordinate double-rotation for misalignments of the 
anemometer, a block average Reynolds decomposition for correction of 
fluctuations in turbulence, and the Webb–Pearman–Leuning correction 
for air density fluctuations when readings of the LI-7200RS thermopars 
were missing. For a more detailed description, see Vázquez-Lule and 
Vargas (2021). Half-hour estimates of GPP were calculated from parti
tioning NEE following standardized protocols based on the relationship 
of nighttime NEE with temperature (Reichstein et al., 2005); daily GPP 
was subsequently calculated from this time series. We used this data to 
estimate daily cumulative GPP. We tested for statistically significant 
differences in daily GPP across canopy phenological phases by 
comparing least square means and then using the Tukey post hoc test. 
For all the statistical analyses, GPP was used in original units after 
removing values higher than the GPP mean plus two standard deviation 
values (i.e., mean = 4.3 and SD = 4.7). 

2.3. Proximal remote sensing instrumentation 

We used an array of PRS instruments to collect automatic VIs from 
spectral reflectance sensors (i.e., Normalized Difference Vegetation 
Index [NDVI(t)] and the Photochemical Reflectance Index [PRI(t)], 
phenology camera’s color band data (i.e., PhenoCam) and manually 
hyperspectral PRS data during the study period. These proximal sensors 
have different data collection frequencies; however, we standardize 
them as a daily collection (i.e., daily time steps). All PRS measurements 
were inside the EC tower’s footprint area and represented the reflec
tance of the dominant salt marsh species in the ecosystem (i.e., 
S. alterniflora and S. cynosuroides). 

2.3.1. Automatic measurements from spectral reflectance sensors 
The Normalized Difference Vegetation Index (i.e., NDVI(t)) and the 

Photochemical Reflectance Index (i.e., PRI(t)) from automatic spectral 
reflectance sensors were used (Meter Inc, Pullman, WA, USA). These 
sensors were installed with a field view angle of ~45◦, and their average 
footprint was around 1.5 m; they collected data every 5 min in two areas 
of the salt marsh (Hill et al., 2021; Vázquez-Lule et al., 2022; Fig. 1). We 
calculated daily averages of both vegetation indices considering mea
surements collected between 11:00 and 13:00 h local time to reduce the 
effect of variability at the light conditions following standardized pro
tocols (Gamon et al., 2015; Hill et al., 2021). 

2.3.2. PhenoCam 
We used PhenoCam data collected every 30 min during the day 

(StarDot NetCam SC; StarDot Technologies, California, USA). A Pheno
Cam was installed in the upper part of the EC tower, and it collected 
continuous photographs in Red-Green-Blue and InfraRed. Salt marsh 
vegetation represented ~80% of the camera’s field range, and the data 
used for this analysis was inside the EC footprint area (Fig. 1). From 
PhenoCam data, we used data collected between 11:00 and 13:00 h local 
time to reduce the effect of variability in the light conditions (Hill et al., 

Fig. 1. Study site at the St. Jones Reserve, Delaware, and proximal remote sensing instrumentation. (a) A red triangle represents the Eddy Covariance (EC) System; 
the green light polygon represents the EC footprint; the yellow circle represents the location of the PhenoCam. (b) Closeup panel showing the proximal remote 
sensing instrumentation. Yellow lines represent the PhenoCam footprint; the NDVI-PRI footprint sensors are presented in magenta in two separate areas of the salt 
marsh, and the blue polygons highlight areas where the hyperspectral samples were collected. 
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2021). This data was used to calculate the daily Greenness Index (i.e., 
GCC) as the ratio of green digital numbers and the total digital numbers 
of all color bands (Red + Green + Blue). We used the Phenopix R 
package (Filippa et al., 2016) and the function “autofilter” and spline 
filter to estimate daily GCC (Migliavacca et al., 2011). The “green
Explore” function was used to fit phenology GCC curves for every year, 
and the “gu” method (Gu et al., 2009) to define the transition between 
canopy phenological phases based on a combination of local maximum 
GCC and the first derivative (Filippa et al., 2016; Gu et al., 2009; Tri
funovic et al., 2020; Vázquez-Lule and Vargas 2021). 

2.3.3. Hyperspectral sensors 
We manually collected hyperspectral data with handheld spec

trometers in an area of ~450 m2 of vegetation inside the EC footprint. 
We measured the reflectance from the dominant salt marsh species and 
then averaged these samples to represent the reflectance at the canopy 
scale (Vázquez-Lule et al., 2022; Fig. 1). Two synchronized fiber optic 
spectrometers were used, one with a detector range of 480 to 820 nm 
and a spectral resolution of ~1 nm (S480–820), and the other with a de
tector range of 720 to 800 nm with a spectral resolution ~ 0.08 nm 
(S720–800) (Jaz Spectrometer, Ocean Optics, Dunedin, FL). Canopy sur
face relative irradiance was measured from stands of salt marsh vege
tation about every 1.5 weeks from September 2016 to December 2018. 
All measurements were performed under stable light conditions between 
8:00 am and 10:30 am during sunny days without clouds and partially 
cloudy conditions, at the height of ~2 m above the soil surface as 
described previously (Vázquez-Lule et al., 2022). The hyperspectral data 
collected was used to calculate VIs and SIF (see Section 2.4) and to 
model GPP with the PLSR approach (see Section 2.5). 

For every measurement, we used a cosine corrector to filter the 
irradiance and all the samples were collected with a field view of 180◦

and with a perpendicular angle between the canopy and cosine 
(Vázquez-Lule et al., 2022). We also adjusted the integration time of the 
incoming light, then performed a dark calibration covering the cosine 
corrector with a black plastic cap, then registered the upwelling irra
diance and, finally, the downwelling irradiance. Upwelling irradiance 
was registered every 2–3 samplings of downwelling irradiance, and dark 
calibration was performed after 10–20 samples of downwelling irradi
ance or as needed if light conditions changed. During every measure
ment campaign, we collected ~120 downwelling irradiance samples. 
We calculated the reflectance for every downwelling irradiance mea
surement as follows: 

R =
(S ∗ W) − (D ∗ W)

(I ∗ W) − (D ∗ W)
(1)  

where, R is the calculated reflectance; S downwelling irradiance; W 
wavelength; D dark calibration value; and I upwelling irradiance. After 
reflectance was calculated for every downwelling sampling, we calcu
lated the mean daily reflectance and its standard deviation 
(Vázquez-Lule et al., 2022). We showed the reflectance pattern by 
canopy phenological phases from the reflectance collected from both 
spectrometers (i.e., S480–820 and S720–800). 

2.4. Vegetation indices and SIF estimation 

We calculated common VIs, which have been correlated with GPP for 
grasses and rice paddies (Cerasoli et al., 2018; Inoue et al., 2008; Rossini 
et al., 2010; Zarco-Tejada et al., 2013; Zhang and Zhou, 2017) and are 
described in Table 1. The time series for these indices are shown in SM 
Fig. S1a–S1c. For this purpose, reflectance from the VIS-IR electro
magnetic region at 1 nm of spectral resolution (i.e., S480–820) was used. 
We performed linear regression models to test the relationship between 
GPP and each VIs across the annual cycle and by canopy phenological 
phases. In addition, we identified the contribution of VIs to model 
annual GPP with stepwise linear regression models (see supplementary 

materials). 
SIF was calculated with a radiance-based approach, using the de

tector with a range of 720 to 800 nm and a spectral resolution of ~ 0.08 
nm (S720–800). We applied the FLD method based on the difference be
tween two flux measurements inside and outside the Fraunhofer Line. 
Fraunhofer Lines represent areas of the electromagnetic region with 
higher absorption of O2, meaning that the emitted energy on those lines 
represents the amount of SIF from the vegetation activity. To calculate 
SIF, we used a standard mathematical description of the FLD (Meroni 
et al., 2009), and the ~773.5 nm Fraunhofer Line (FL) as the highest 
point of SIF emission. 

2.5. Data-model agreement between GPP and reflectance from different 
electromagnetic regions 

Hyperspectral measurements were coupled with a PLSR approach to 
derive potential predictive models of GPP at this study site. The PLSR is a 
multivariate modeling method to identify the relationship and structure 
between two data matrices. It has the advantage of handling high 
collinearity in the predictor matrix due to more predictor variables than 
the observed matrix (Wold et al., 2001). We developed daily GPP models 
for the following scenarios of vegetation: (a) Annual cycle, including all 
canopy phenological phases (AnnualwD); (b) Annual cycle without 
Dormancy phase (AnnualnD); we included this scenario under the 
assumption that during Dormancy GPP in this ecosystem is neglectable; 
(c) Greenup; (d) Maturity; (e) Senescence; and (f) Dormancy. 

We tested every scenario of canopy phenological phases with 
reflectance from four electromagnetic regions: (a) Visible and Infrared 
(VIS-IR, 480 to 820 nm; 1 nm spectral resolution); (b) Infrared (IR, 756 
to 820 nm; 1 nm spectral resolution); (c) Red Edge (RedEdge 675 to 755 
nm; 1 nm spectral resolution); and (d) SIF (760 to 786 nm; 0.08 nm 
spectral resolution). We followed the PLSR implementation provided by 
Serbin et al. (2016) and tested different PLSR models for every scenario. 
For every model, 70% of the data was used for model calibration and 
30% for independent model validation. We used the PRESS (Prediction 
Residual Sum of Squares) metric as information criteria to assess the 
optimal number of components in the PLSR and to reduce the model 
overfitting (Vázquez-Lule et al., 2022). Consequently, for scenarios of 
the annual cycle (i.e., AnnualwD; AnnualnD), ≤ 15 components were 

Table 1 
Spectral Vegetation Indices (VIs) used in this study for linear regression models 
with GPP across different canopy phenological phases.  

Acronym 
VI 

Name VI Equation Ref. 

CI Chlorophyll Index [R750-R705]/ 
[R750+R705] 

(Gitelson and 
Merzlyak, 
1994) 

CI-Green Chlorophyl Index of 
Green 

[R750/R550]-1 (Gitelson et al., 
2005) 

CI- 
RedEdge 

Chlorophyl Index of 
Red Edge 

[R750/R710]-1 (Gitelson et al., 
2005) 

EVI Enhanced Vegetation 
Index 

2.5*[R800-R670]/ 
[R800+6*R670- 
7.5*R400+1] 

(Huete et al., 
2002) 

MCARI Modified Chlorophyll 
Absorption Ratio 
Index 

[(R750-R7100- 
0.2*9R750-R550)]* 
[R750/R710) 

(Wu et al., 
2009) 

PSRI Plant Senescence 
Reflectance Index 

[R680-R500]/R750 (Merzlyak 
et al., 1999) 

RedEdge- 
NDVI-a 

Red Edge NDVI [R750-R710]/ 
[R750+R710] 

(Gitelson and 
Merzlyak, 
1996) 

RedEdge- 
NDVI-b 

Red Edge NDVI [R750-R720]/ 
[R750+R720] 

(Gitelson and 
Merzlyak, 
1994) 

sPRI Modified 
Photochemical 
Reflectance Index 

[(R531-R570)/ 
(R531+R570)+1]/2 

(Gamon et al., 
1992)  
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used, and for all other scenarios (i.e., Greenup, Maturity, Senescence, 
and Dormancy), ≤ 8 components. We used a Jackknife resampling 
method with 1000 permutations and iterative cross-validation to test the 
stability and generality of models (Serbin et al., 2016). 

For scenarios of the annual cycle, a 10-fold cross-validation was 
used, and for all other scenarios, a 2-fold cross-validation was used. The 
r2 coefficient, the root mean square error (RMSE), and the bias metric 
were used to evaluate the performance and uncertainty of every model 
(Serbin et al., 2016). Finally, an independent model validation with the 
remaining 30% of available data was performed. Results with over 
>30% of explained variance are reported to highlight the main findings 
of this study. 

We computed the correlation of each nanometer on the different 
electromagnetic regions with GPP. Correlation coefficients are reported 
in a comparative graph for every scenario. We also estimated the vari
able importance in projection (VIP), which shows each nanometer’s 
contribution to the overall prediction variance of GPP for each PLSR 
model (Meacham-Hensold et al., 2020; Serbin et al., 2016). VIP results 
are shown in comparative graphs for every electromagnetic region. 

3. Results 

3.1. Gross primary productivity and general climatology 

During the study period, the annual mean GCC index was 0.34±0.03, 
with lower values during Dormancy (0.31±0.01) and higher values 
during Maturity (0.38±0.01; Fig. 2a). PAR had an annual mean of 139 
±77 µmol m−2 s−1, with lower values during Dormancy (97±57 µmol 

m−2 s−1) and higher values during Maturity (212±58 µmol m−2 s−1; 
Fig. 2b). The annual mean air temperature was 14±9 ◦C with lower 
temperature during Dormancy (6±6 ◦C) and higher temperature during 
Maturity (25±3 ◦C; Fig. 2c). Salinity had an annual mean of 5±4 ppm, 
with lower values during Dormancy (3.5±3 ppm) and higher values 
during Maturity (10±4 ppm, Fig. 2d). The daily annual cumulative 
mean of GPP was 4.2±4.2 g C-CO2 m−2, with lower values during 
Dormancy (0.68±0.55 g C-CO2 m−2) and higher values during Maturity 
(9.8±2.9 g C-CO2 m−2; Figs. 2e and 3). Daily GPP was significantly 
different between all canopy phenological phases (p <0.05; Fig. 3) 

3.2. Reflectance across canopy phenological phases 

We found that Greenup, Maturity, and Senescence showed a similar 
reflectance pattern across the VIS-IR electromagnetic region, with 
differing magnitudes of reflectance. The main differences between that 
reflectance were ~550 nm, ~700 nm, and the slope from ~700 to 740 
nm (Fig. 4a–c). Dormancy showed an almost linear reflectance increase 
from 480 to 820 nm (Fig. 4d). During Senescence, two reflectance 
samples showed a similar response to reflectance samples during 
Maturity, and those samples were excluded from future analyses 
(Fig. 4c). Although those measurements fall within Senescence, dates 
were relatively close to the Maturity phase, and the reflectance magni
tudes were more like Maturity than Senescence. 

We found similar reflectance patterns for the SIF electromagnetic 
region (760 to 786 nm, 0.08 nm spectral resolution) for Greenup, 
Maturity, and Senescence, with substantial differences between 770 and 
775 nm, mainly on the FL used to calculate SIF (773.5 nm; Fig. 4e–g). In 

Fig. 2. Canopy phenological phases and ancillary information were used in this study. (a)Greenness index (GCC index) derived from PhenoCam data, where letters at 
the top represent canopy phenological phases: D, Dormancy; G, Greenup; M, Maturity; S, Senescence. (b)Daily photosynthetic active radiation (PAR), (c)Air tem
perature (Temperature), (d) Salinity, and (e) Daily sum of gross primary productivity (GPP) in the study site. Mean daily values are in black and mean (or sum for 
GPP) ± one standard deviation values are in light gray. 
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contrast, during Dormancy, some samples did not show a decreased 
reflectance on the FL (Fig. 4h). 

3.3. Relationship of VIs and SIF with GPP 

We tested the relationship of GPP across the annual cycle and canopy 
phenological phases with 12 VIs. We found linear relationships between 
almost all VIs and GPP across the annual cycle, except for PRI(t) and 
MCARI (Table 2; Supplementary Material (SM) Fig. S2). GPP during 
Greenup showed relationships with almost all VIs (n=11) (SM Fig. S3), 
while GPP during Maturity and Dormancy showed relationships with 3 
and 1 VIs, respectively (SM Figs. S4 and S6, respectively). GPP across 
Senescence showed relationships with 6 VIs (Table 2; SM Fig. S5). All 
vegetation indices, except MCARI and PSRI, showed a positive slope 

with GPP across the annual cycle and for each canopy phenological 
phase. We found that PSRI was the only VIs that showed a relationship 
with GPP across all canopy phenological phases with a linear model 
(Table 2; Fig. 5). Because of the pattern of this data, we added a test of an 
exponential decay model between PSRI and GPP (Fig. 5). 

Results from the stepwise regression models for annual GPP, 
including the dormancy phase (i.e., Annual(wd)) and not including 
dormancy (i.e., Annual(nd)), are presented in supplementary materials 
Table S1. This table shows that VIs explained 87% of the GPP annual 
variability, and the most relevant were GCC, SIF, and CI-Green. 
Furthermore, to test the influence of VIs different than GCC, we 
removed this index and found that GPP annual variability was explained 
by at least 84%, and the most relevant indices were RedEdge-NDVI-a, CI- 
Green, and CI-RedEdge (SM Table S1). 

3.4. Data-model agreement of GPP with different electromagnetic regions 
across canopy phenological phases 

For the electromagnetic regions of VIS-IR, IR and RedEdge, we found 
a good data-model agreement between GPP and reflectance for model 
calibration for the scenarios of Annual (wD) (r2=0.78 to 0.83), Annual 
(nD) (r2=0.74 to 0.83), and Greenup (r2=0.54 to 0.86; Table 3). We did 
not find a robust data-model agreement between GPP and reflectance for 
any electromagnetic regions analyzed during Maturity, Senescence, and 
Dormancy (i.e., r2 < 0.2). For this reason, these results are not shown. 

Data-model agreement for GPP and reflectance during the annual 
cycle was higher for Annual (wD) for the VIS-IR electromagnetic region, 
with a model calibration (i.e., Cal.) of Cal.r2=0.83 (RMSE < 1.59 and 
Bias=-0.02), and a model validation of (i.e., Val.) Val.r2=0.80 (RMSE <
= 1.93 and Bias= 0.31). We found similar results for Annual(nD), for the 
RedEdge electromagnetic region, with a model calibration of Cal. 
r2=0.83 (RMSE < 1.52 and Bias= 0.04) and a model validation of Val. 
r2=0.56 (RMSE < = 2.35 and Bias= 1.29). Greenup showed the best 
data-model agreement between GPP and reflectance for the RedEdge 
electromagnetic region, with a model calibration of Cal.r2=0.86 (RMSE 
< 1.40 and Bias=-0.05) and a model validation of Val.r2=0.75 (RMSE <
= 1.27 and Bias= -0.94) (Table 3). 

We used correlation analyses to identify the relationship of GPP with 
reflectance by nanometer for each electromagnetic region (i.e., VIS-IR, 
IR, RedEdge, and SIF) and scenarios tested with the PLSR approach. 

Fig. 3. Daily GPP for each canopy phenological phase during the study period. 
The gray boxplot represents GPP during Dormancy; the green boxplot repre
sents GPP during Greenup; the dark green boxplot represents GPP during 
Maturity; the orange boxplot represents GPP during Senescence. Different let
ters represent significant differences between canopy phenological phases. 

Fig. 4. Hyperspectral reflectance in the Visible and Infrared electromagnetic regions (VIS-IR, a to d) and reflectance in the Sun-Induced Fluorescence (SIF) elec
tromagnetic region (e to h). In all panels, green represents Greenup; dark green represents Maturity; orange represents Senescence; and gray represents Dormancy. 
For panels a to d, hyphen lines in gray highlight the region of ~550 nm, dot lines in gray highlight the region of ~700 nm, and vertical solid dark lines highlight the 
SIF region on panels e to h. For panels e to h, hyphen-dot lines highlight the region of 773.5 nm. 
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We found different correlation coefficients between GPP and reflectance 
across the electromagnetic regions (Fig. 6a–c). As expected, our results 
showed that GPP followed a similar response to vegetated coverage for 
the VIS-IR electromagnetic region (Fig. 6a); this means a small peak in 
the green region, a decrease in the red region, and an increase in the IR 
region. GPP and reflectance correlation coefficients across the IR region 
for the scenarios were positive and similar (r > 0.6; Fig. 6b), while GPP 
and reflectance correlation coefficients across the RedEdge region were 
negative before 715 nm and positive after 720 nm (Fig. 6c). 

To identify the contribution of each nanometer on the overall pre
diction variance of GPP across different scenarios for each PLSR model, 
we found that VIP showed differences between the data-model agree
ment of GPP and reflectance across the electromagnetic regions (Fig. 7). 
VIP for the VIS-IR region showed the most contrasting pattern across 
canopy phenological phases, with higher differences ~550 nm, ~720 
nm, and ~770 nm (Fig. 7a). VIP for the IR region and for the RedEdge 
region showed a similar pattern and values for the scenarios (Fig. 7b and 
Fig. 7c; respectively). 

4. Discussion 

4.1. Reflectance from hyperspectral PRS during canopy phenological 
phases 

Our results showed significant differences in GPP across the annual 
cycle and for almost all canopy phenological phases. Maturity showed 
~133% higher daily GPP than the daily annual cumulative GPP; in 
contrast, daily cumulative GPP during Dormancy was ~83% lower than 
the daily annual cumulative GPP (Fig. 3). These changes across the 
annual cycle influenced the reflectance as a response to changes in the 
physical structure of grasses, the increase of greenness (or a shift of 
greenness to brownness), the reabsorption of nutrients, and the influ
ence of soil (Vazquez-Lule, et al. 2022). These changes increase the 
reflectance when grasses decay during senescence and throughout the 
dormancy phase (Jacquemoud and Ustin, 2019; Matthes et al., 2015; 
Xiao et al., 2019). 

We highlight the spectral difference between the use of GCC to 
identify canopy phenological phases during the study period and the 
pattern identified with the hyperspectral PRS during the transition of 
Maturity to Senescence in 2017 (i.e., spectral samples that were iden
tified as part of senescence but they had a hyperspectral pattern that 
matched better the samples of maturity). Maturity during 2017 was at 
least 50% shorter in duration than the same phase during other years 
(Fig. 2a), resulting in an abrupt transition to Senescence. The conse
quence of this rough transition is that two samples from early August 
2017 were assigned to Senescence with the GCC (i.e., Fig. 4c; samples 
with higher reflectance), but the reflectance measured with the hyper
spectral PRS resembled samples from the Maturity phase (Fig. 4b). We 
attribute these differences to the ability of the hyperspectral data to 
explain broad differences in the greenness condition of vegetation (i.e., 
before the 700 nm) and changes related to the physiological activity of 
vegetation, that are better captured by the IR region after the 700 nm 
(Peñuelas and Filella, 1998). 

4.2. Role of VIs to model GPP in salt marsh ecosystems 

Our results showed that almost all VIs considered in this study could 
model GPP across the annual cycle (Table 2). We attribute this finding to 
two reasons: (a) better performance of regression models with more 
data, and (b) higher representativeness of the GPP variability during the 
annual cycle. The GCC derived from PhenoCam showed higher signifi
cant relationships (i.e., r2=0.81); this result is consistent with studies in 
salt marshes that found an association between GCC and the net 
ecosystem productivity and GPP (Hill et al., 2021; Knox et al., 2017). 
The functionality of GCC to model GPP could relate to the spatial 
coverage of regions of interest (i.e., ROI’s) from the PhenoCam data that 

Table 2 
Linear regression models between VIs and GPP across the annual cycle and by 
canopy phenological phases over three years in a salt marsh.  

Vegetation 
Indices 

GPP g C-CO2 m¡2 

Annual 
Slope 
(r2) 

Greenup 
Slope 
(r2) 

Maturity 
Slope 
(r2) 

Senescence 
Slope (r2) 

Dormancy 
Slope (r2) 

NDVI(t) 16.9 
(0.75)* 

18.5 
(0.79)*  

13.4 (0.32)*  

GCC Index(p) 140.9 
(0.81)* 

163 
(0.71)* 

129 
(0.30)* 

115.7 
(0.58)*  

SIF 9.9 
(0.37)*     

CI 25.2 
(0.77)* 

30.1 
(0.98)*  

21 (0.36)*  

CI-Green 73.8 
(0.55)* 

141.9 
(0.90)*    

CI-RedEdge 83.4 
(0.74)* 

132.2 
(0.95)*  

82.8 (0.36)*  

EVI 33.4.2 
(0.62)* 

49.84 
(0.87)*    

MCARI  -553.9 
(0.98)*    

PSRI -35 
(0.75)* 

-37.7 
(0.92)* 

-79.4 
(0.60)* 

-26.4 (0.39) 
* 

-8.8 (0.78) 
* 

RedEdge- 
NDVI-a 

29.1 
(0.77)* 

34.4 
(0.98)*  

22.3 (0.30)*  

RedEdge- 
NDVI-b 

43.1 
(0.78)* 

49.4 
(0.96)*    

sPRI 3131.8 
(0.63)* 

4685.9 
(0.72)* 

3190.4 
(0.60)*    

* Significant differences (p < 0.05). Table does not show relationships be
tween VI’s and GPP lower than r2

<0.3. 
(t) Sensors installed on the Eddy Covariance Tower. 
(p) VI derived from PhenoCam data. 
NDVI(t): Normalized Difference Vegetation Index; PRI: Photochemical 

Reflectance Index; GCC Index(p): Greenness Index; SIF: Sun-Induced Fluores
cence; CI: Chlorophyll Index; CI-Green: Chlorophyll Index of Green; CI-RedEdge: 
Chlorophyll Index of Red Edge; EVI: Enhanced Vegetation Index; GCC: Green
ness Index; MCARI: Modified chlorophyll absorption ratio index; PSRI: Plant 
Senescence Reflectance Index; RedEdge-NDVI-a: Red Edge Normalized Differ
ence vegetation Index (use of 710 nm); RedEdge-NDVI-b: Red Edge Normalized 
Difference vegetation Index (use of 720 nm); sPRI: Modified Photochemical 
Reflectance Index. 

Panel figures of these relationships are in SM Figs. S2 to S6. 

Fig. 5. Linear regression and exponential decay models between the Plant 
Senescence Reflectance Index (PSRI) and GPP across the canopy phenolog
ical phases. 

A. Vázquez-Lule and R. Vargas                                                                                                                                                                                                              



Agricultural and Forest Meteorology 341 (2023) 109639

8

can represent a broad canopy response from dominant species in the 
ecosystem, even higher than ROI’s collected from the hyperspectral PRS 
sensors and automatic spectral sensors (i.e., NDVI(t) and PRI (t)) (Hill 
et al., 2021). In addition, GCC is formulated from the intensity of pri
mary colors instead of the reflectance (Richardson, 2019); this could 
reduce the influence of atmospheric conditions on the responses. Results 
about the relationship between PhenoCam data and GPP are consistent 
with findings in salt marshes and other ecosystems (Filippa et al., 2018; 
Hill et al., 2021; Knox et al., 2017). Our stepwise results also show that a 
couple of VIs could help model annual GPP (SM Table S1) and that the 
most relevant VIs were those more sensitive to changes in the greenness 
condition. 

Almost all VIs had a higher relationship with GPP during the 

Greenup canopy phenological phase than other phases (i.e., r2=0.71 to 
0.98). We attribute this finding to the dynamic increase and range of 
greenness and the development of grasses during this time, character
ized by a positive slope on the GPP curve (Fig. 2e). This GPP signature 
during Greenup may favor the linear relationship with almost all VIs 
(Table 2). This also could be related to the wavelengths used to 
formulate the VIs, which are most sensitive to identifying changes in the 
chlorophyll concentration that influence photosynthesis activity. 
Consequently, all the indices used in this study considered the red region 
of the electromagnetic spectrum (~620 to ~740 nm, Table 2) related to 
energy absorption by chlorophyll pigments. In addition, 50% of these 
indices used the green region (~500 to 570 nm). The reflectance in this 
part of the electromagnetic spectrum increases with photosynthesis 

Table 3 
Data-model agreement of GPP and reflectance analyzed with the PLSR approach.  

Reflectance Electromagnetic Region Model Fitting for GPP n Components Model Calibration Model Validation 

r2 RMSE * BIAS r2 RMSE * BIAS 

480 to 820 nm 
VIS-IR 

Annual (wD) 42 3 0.83 1.59 -0.02 0.80 1.93 0.31 
Greenup 12 3 0.81 1.61 -0.06 0.64 1.54 0.10 
Annual (nD) 36 3 0.74 2.16 -0.12 0.92 0.75 0.27 

756 to 820 nm. InfraRed Annual (wD) 42 2 0.78 1.79 0.02 0.91 1.22 -0.14 
Greenup 12 4 0.54 2.43 -0.33 0.46 1.89 0.67 
Annual (nD) 36 3 0.80 1.66 0.07 0.88 1.52 0.46 

675 to 755 nm. 
Red Edge 

Annual (wD) 43 5 0.79 1.75 0.23 0.75 2.14 0.33 
Greenup 12 2 0.86 1.40 -0.05 0.75 1.27 -0.94 
Annual (nD) 36 4 0.83 1.52 0.04 0.56 2.35 1.29  

* RMSE is in g C-CO2 m−2; (wD) With Dormancy; (nD) Without Dormancy. 

Fig. 6. Summary of correlation coefficients between GPP and reflectance for each nanometer across different electromagnetic regions. (a) Correlation coefficients 
between GPP and reflectance from 480 to 820 nm (Visible and infrared region); (b) Correlation coefficients between GPP and reflectance from 756 to 820 nm 
(Infrared region); (c) Correlation coefficients between GPP and reflectance from 675 to 755 nm (RedEdge region). 
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rates during the active growth of grasses (Jacquemoud and Ustin, 2019). 
For the rest of the canopy phenological phases, the relationships be
tween GPP and VIs showed a lower r2 (i.e., 0.71). During Maturity, the 
sensitivity of VIs is reduced due to the possibility of sensor over
saturation caused by the complete soil coverage by green vegetation in 
the field (Jacquemoud and Ustin, 2019), as well as consistent growth of 
grasses during this phenophase. We highlight that environmental con
ditions during Maturity, particularly the amount of light (i.e., high 
values of PAR, Fig. 2b), may interfere with the hyperspectral collections 
(Brantley et al., 2011; Gnyp et al., 2014). We also found a less strong 
relationship between VIs and GPP across Senescence (Table 2; r2=0.30 
to 0.58). We attribute this response to the combined influence of active 
vegetation (i.e., green grasses still growing) and less physiologically 
active foliage (i.e., turn on from green to brown grasses), as well as the 
defoliation of grasses and an increasing exposition of soils. For the lack 
of relationship of VIs with GPP across Dormancy, we attribute this 
finding to the lower GPP values as a response of inactive vegetation 
during that phase (Fig. 3), as a consequence of a reduction of photo
synthetic pigments that influence the response of vegetation indices 
across other phenological phases; in addition, an increase of soil 
response and dead vegetation may oversaturate the reflectance in this 
part of the electromagnetic spectrum (Xiao et al., 2019; Zhu et al., 
2010). 

Our results showed that PSRI could model GPP across the annual 
cycle and all canopy phenological phases (Table 2; Fig. 5). The PSRI 
index was initially formulated to follow changes in the chlorophyll- 
carotenoid ratio (i.e., Chl/Car) (Merzlyak et al., 1999). Recent studies 
in terrestrial grasses have found that PSRI showed a higher relationship 

with GPP across phenological phases, mainly because of its sensitivity to 
detect changes in the pigments’ concentration, rapid changes in the 
decay of chlorophyll, and the increase of carotenoids (Cerasoli et al., 
2018; Merzlyak et al., 2003). Increases in PSRI values could be indirectly 
related to transitions in canopy phenology and their impact on photo
synthesis, ultimately affecting GPP (Gamon, 2015). This result is also 
supported by the relationship of GPP with the sPRI, which was also 
formulated to follow up changes on the Chl/Car ratio (Gamon et al., 
1992). However, this result contrasts with the lack of relationship be
tween PRI(t) and GPP (Table 2). Similar findings have been reported due 
to a decrease in the sensitivity of the PRI to changes in the canopy 
structure, particularly the leaf inclination angle at the stand-level 
(Gitelson et al., 2017a, 2017b). We also attributed this finding to the 
ROI’s collected by automatic spectral sensors, which represent less 
variability of the salt marsh ecosystem because of their constant moni
toring at the same area compared with a larger representation of the 
spatial variability with hyperspectral collections (samples collected in 
an area of 450 m2). 

In addition, we found an exponential decay of GPP with the PSRI; 
this finding could be an indirect response of vegetation to the increase of 
non-photosynthetic water-soluble pigments, such as anthocyanins, that 
are associated with the resistance of vegetation when stress in the 
environment increases (Jacquemoud and Ustin, 2019; Vina and Gitel
son, 2011). In our study site, a decrease in solar radiation could be 
associated with low air temperature at the end of the year (i.e., canopy 
phenological phases of senescence and dormancy) associated with a 
decrease in GPP. 

Contrary to our expectations, we did not find a strong linear 

Fig. 7. Summary of Variable Importance of Projection (VIP) for GPP for different electromagnetic regions and canopy phenological phases. (a) VIP between GPP and 
reflectance from 480 to 820 nm (VIS-IR), the hyphened line highlights the region of ~550 nm, the dotted line the region of ~720 nm, and the hyphen-dotted line the 
region of ~770 nm; (b) VIP between GPP and reflectance from 756 to 820 nm (IR); (c) VIP between GPP and reflectance from 675 to 755 nm (RedEdge); the solid 
lines represent the region with higher contrast that is ~700 nm to ~720 nm. 
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relationship between SIF and GPP (Table 2, supplementary materials 
Fig. S2c). We attribute these results to several possibilities: (a) the angle 
and influence of incident light on the vegetation during the data col
lections (Zhang et al., 2021); (b) the daily scale of our approach, which 
limits our understanding of the relationship between GPP and SIF during 
the diurnal cycle; and (c) changes in the canopy structure and the in
fluence of shaded and sunlight leaves on the absorbed photosyntheti
cally active radiation (APAR). This last point has been suggested as one 
of the main drivers of the positive relationships between SIF and GPP 
(Dechant et al., 2020; Yang et al., 2021). We highlight that SIF had 
negative values during the early growing season (i.e., early Greenup) 
and the end of the growing season (i.e., Dormancy). Similar results have 
been found in bare soils or where vegetation is scarce as an artificial 
response because of an oversaturation of the sensors (Turner et al., 
2020). Our results are consistent with recent research developed for 
crops. However, we postulate that additional information combining 
SIF, GPP, and APAR is needed for salt marshes across the diurnal cycle to 
understand limitations and opportunities to model GPP from SIF at the 
canopy scale and with satellite sources across different canopy pheno
logical phases. 

4.3. Data-model agreement between GPP and reflectance with the PLSR 
approach 

Our findings for the data model agreement between GPP and 
reflectance from the VIS-IR region with the PLSR approach showed a 
better performance across the annual cycle and during the Greenup 
canopy phenological phase (Table 3). We attributed this finding to the 
availability of all spectra to model the vegetation response, such as the 
structural changes on the canopy and the greenness condition of vege
tation (Fig. 6a). 

It is expected that the IR region responds to changes in the physio
logical conditions of vegetation, particularly as a response to the water 
content of the leaves (Peñuelas and Filella, 1998). However, the IR re
gion was less sensitive to model GPP changes in this ecosystem with the 
PLSR approach. This could be related to the differences in the 
short-range covered by our hyperspectral sensors (~700 nm to 820 nm) 
compared with the full coverage of the IR region (~700 nm to 1000 nm). 
Consequently, it is possible that this technical limitation may constrain 
our findings, and future studies should consider hyperspectral sensors 
capable of measuring the whole IR region to model GPP. We advocate 
for more studies using hyperspectral measurements in salt marshes to 
represent how changes in nutrients and photosynthesis influence the 
reflectance of canopy dynamics (Vazquez-Lule et al., 2022). 

Our results suggest that additional information in the electromag
netic region (i.e., VIS-IR) is relevant to model and predicting GPP in this 
temperate salt marsh but may not be essential to predicting GPP in other 
ecosystems. For example a study in a subalpine evergreen forest did not 
find improvement in modeling GPP using the entire electromagnetic 
region when compared with the specific use of VIs (Cheng et al., 2020). 
Instead of reflectance, we propose that different approaches (e.g., ra
diances) could be tested to improve the data-model agreement of GPP 
across other canopy phenological phases in salt marsh grasses with the 
PLSR approach (Dechant et al., 2019). Hyperspectral information is 
flexible and has multiple possibilities for analyzing different regions of 
the electromagnetic spectrum. For example, there is a large potential for 
indices that could minimize the influence of soils background and could 
potentially increase the accuracy of estimating GPP across different 
environmental conditions (e.g., NIRv and NIRvP; Badgley et al. 2017, 
Dechant et al. 2022). It is also relevant to use the thermal infrared to 
model and test the relationship between photosynthesis and other 
physiological processes such as transpiration (Bayat et al., 2018). 
Remote sensing thermal information is available from public historical 
sources (i.e., Landsat, MODIS) and future missions that will have im
provements on the spectral and spatial resolution (e.g., the Surface 
Biology and Geology from the USGS, Environmental Monitoring and 

Analysis Program from the German Space Agency mission (EnMAP) 
(Ustin and Middleton, 2021)). 

We highlight challenges related to differences in the spatial and 
temporal scale related to collecting PRS information and GPP. While 
GPP represents information at the ecosystem scale, including the foot
print areas of the PRS sensors, it has a higher temporal variability than 
that measured with PRS. Future studies could use PSR aided by drones or 
airborne sensors to cover a larger area within the footprint of an EC 
tower. Furthermore, GPP represents integrated measurements at the 
daily scale, which has a temporal overlap with collections from the 
automatic spectral sensors and the PhenomCam but not the hyper
spectral reflectance (i.e., collected for ~1.5 weeks). This temporal 
mismatch may impact the modeling performance using different elec
tromagnetic regions and VIs, and the limitation to identify changes in 
canopy phenological stages with hyperspectral information. We suggest 
that future studies may use automatic and synchronized measurements 
of hyperspectral information and GPP to improve modeling efforts 
(Woodgate et al., 2020; Zarco-Tejada et al., 2013) 

5. Conclusions 

Our results highlight the challenges of modeling and predicting GPP 
with PRS in a temperate tidal salt marsh with high variability during the 
annual cycle as a response to different canopy phenological phases. We 
also showed that VIs related to Chl/Car ratio changes were more 
valuable to model GPP across almost all canopy phenological phases 
than VIs formulated with reflectance data from the IR region. In addi
tion, the hyperspectral VIS-IR region showed more sensitivity to 
improve the data-model agreement of GPP with the PLSR approach 
across the annual cycle. We also highlighted differences in the usability 
of other PRS instruments (i.e., PhenoCam, Spectral sensors, and 
Hyperspectral PRS) to generate information that can model GPP, 
particularly differences in the footprint of every sensor, type of collec
tion (i.e., manual vs. automatic) and temporal frequency. We conclude 
that this salt marsh shows essential differences among phenological 
canopy phases that influence the performance of reflectance and VIs to 
model and predict GPP. These results demonstrate the potential to 
model and predict the annual variability of GPP in a salt marsh 
ecosystem with conventional vegetation indices and the hyperspectral 
data from the VIS-IR region. 
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Jurasinski, G., Kang, M., Kasak, K., King, J., Klatt, J., Koebsch, F., Krauss, K.W., Lai, 
D.Y.F., Lohila, A., Mammarella, I., Belelli Marchesini, L., Manca, G., Matthes, J.H., 
Maximov, T., Merbold, L., Mitra, B., Morin, T.H., Nemitz, E., Nilsson, M.B., Niu, S., 
Oechel, W.C., Oikawa, P.Y., Ono, K., Peichl, M., Peltola, O., Reba, M.L., Richardson, 
A.D., Riley, W., Runkle, B.R.K., Ryu, Y., Sachs, T., Sakabe, A., Sanchez, C.R., Schuur, 
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