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ARTICLE INFO ABSTRACT

Keywords: Salt marshes are highly productive ecosystems relevant for Blue Carbon assessments, but information for esti-
Canopy phenology mating gross primary productivity (GPP) from proximal remote sensing (PRS) is limited. Temperate salt marshes
Hyperspectral have seasonal canopy structure and metabolism changes, defining different canopy phenological phases, GPP
ngz:zg rates, and spectral reflectance. We combined multi-annual PRS data (i.e., PhenoCam, discrete hyperspectral
Photosynthesis measurements, and automated spectral reflectance sensors) with GPP derived from eddy covariance. We tested

the performance of empirical models to predict GPP from 12 common vegetation indices (VIs; e.g., NDVI, EVI,
PSRI, GCC), Sun-Induced Fluorescence (SIF), and reflectance from different areas of the electromagnetic spec-
trum (i.e., VIS-IR, RedEdge, IR, and SIF) across the annual cycle and canopy phenological phases (i.e., Greenup,
Maturity, Senescence, and Dormancy). Plant Senescence Reflectance Index (PSRI) from hyperspectral data and
the Greenness Index (GCC) from PhenoCam, showed the strongest relationship with daily GPP across the annual
cycle and within phenological phases (r>=0.30-0.92). Information from the visible-infrared electromagnetic
region (VIS-IR) coupled with a partial least square approach (PLSR) showed the highest data-model agreement
with GPP, mainly because of its relevance to respond to physiological and structural changes in the canopy,
compared with indices (e.g., GCC) that particularly react to changes in the greenness of the canopy. The most
relevant electromagnetic regions to model GPP were ~550 nm and ~710 nm. Canopy phenological phases
impose challenges for modeling GPP with VIs and the PLSR approach, particularly during Maturity, Senescence,
and Dormancy. As more eddy covariance sites are established in salt marshes, the application of PRS can be
widely tested. Our results highlight the potential to use canopy reflectance from the visible spectrum region for
modeling annual GPP in salt marshes as an example of advances within the AmeriFlux network.

Solar induced fluorescence

1. Introduction information has been coupled with spaceborne data to estimate GPP at

the regional scale (Eagin et al., 2020). Furthermore, spectral properties

Salt marshes are highly productive ecosystems relevant to the local-
to-global carbon cycle (Hayes et al., 2018) but need better representa-
tion of their function as part of the coastal interface in Earth System
Models (Ward et al., 2020). Gross primary productivity (GPP) is a crit-
ical element of the carbon stored in salt marshes, and consequently,
accurate estimations are essential for closing the carbon budget (Alongi,
2020; Eagin et al., 2020). This flux is primarily regulated by plant
phenology associated with changes in light, temperature, nutrient
availability, and hydrological patterns (Knox et al., 2017; Lu et al., 2017;
Vazquez-Lule et al., 2022). In recent years, ecosystem-scale GPP has
been estimated using the eddy covariance (EC) technique in wetlands
(Forbrich et al., 2018; Knox et al., 2017; Lu et al., 2017), and this
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of canopy reflectance have proven helpful in representing the temporal
variability of GPP in salt marshes (Eagin et al., 2020; Hill et al., 2021;
Tao et al., 2018; Vazquez-Lule et al., 2022). That said, there is a need to
improve the application of spectral reflectance derived from different
platforms to better represent GPP from salt marshes in regional and
global models (Ryu et al., 2019; Ward et al., 2020).

Applying remote sensing tools in coastal areas is challenging because
atmospheric scattering effects can impact the reflectance data collected
by airborne and satellite spectrometers (Malthus and Mumby, 2003).
Coastal regions with higher levels of atmospheric vapor are particularly
prone to this issue, as it can impact how the near-infrared region in-
teracts with the land surface reflectance (Adam et al., 2010). As an
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alternative, Proximal Remote Sensing (PRS; e.g., handheld spectrome-
ters, spectral sensors, and phenological cameras [PhenoCam]) is a
feasible and cost-effective tool to monitor and predict GPP and salt
marsh ecosystem productivity (Hill et al., 2021; Knox et al., 2017), and it
is appealing for ecological studies, as it also reduces the atmospheric
influence on the collection of canopy irradiance and reflectance, and
allows for finer scale observations and analysis (Matthes et al., 2015;
Richardson, 2019; Vazquez-Lule et al., 2022). In addition, PRS is a
relevant component for increasing the footprint of ground-truth infor-
mation required for upscaling reflectance from the ecosystems to the
landscape scale (Asner and Martin, 2016; Porcar-Castell et al., 2014).
However, there are substantial differences in the available PRS tools;
some of them are related to the spatial region of interest covered, the
temporal resolution of data collected, and the spectral composition of
data and derived products (Richardson, 2019; Rossini et al., 2010; Hill
et al., 2021). Those properties may have a different sensitivity to model
GPP in coastal wetlands; therefore, intensive research is needed.

Recently, the capabilities of PRS to monitor and predict GPP have
increased through the collection and usability of multi and hyper-
spectral data (Dechant et al., 2020; Inoue et al., 2008; Kim et al., 2021;
Rossini et al., 2010). Hyperspectral data from PRS can be used to derive
vegetation indices (VIs), the Sun-Induced Fluorescence (SIF), and in
multivariate approaches to provide insights about the temporal vari-
ability of GPP and other plant traits (Dechant et al., 2020; Inoue et al.,
2008; Rossini et al., 2010; Zarco-Tejada et al., 2013). Generally,
methods to model GPP from spectral data are grouped into parametric
and non-parametric. Parametric approaches are used to derive
well-known spectral VIs - such as Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI), or Photochemical
Reflectance Index (PRI) - that can relate to GPP (Inoue et al., 2008;
Rossini et al., 2010; Zarco-Tejada et al., 2013). Non-parametric ap-
proaches, such as the Partial Least Square Regression (PLSR), have also
been used for data-model agreement of GPP with hyperspectral data
(Cheng et al., 2020; Dechant et al., 2019; DuBois et al., 2018; Matthes
et al., 2015). PLSR is based on optimizing models by their learning and
training with the properties under study (i.e., GPP). It can reduce the
spectral information to a set of latent variables and improve relation-
ships between the hyperspectral reflectance and GPP by capturing data
from many individual regressions at once (Matthes et al., 2015; Serbin
et al.,, 2016). In addition, the use of PLSR with hyperspectral data to
model GPP gives the availability to test the individual or collective
performance of electromagnetic regions that may explain different
properties in vegetation, such as the Infrared region (IR) that is related
to changes in the physiological condition of vegetation or the red edge
region (RedEdge) that shows the most contrasting differences between
the absorption of red light during the photosynthesis and the physio-
logical state of vegetation.

More recently, information derived from SIF has been used as a proxy
for GPP across terrestrial ecosystems (Kim et al., 2021; Miao et al., 2018;
Yang et al., 2018; Zarco-Tejada et al., 2013). SIF is a dissipated way of
energy during the light reactions of photosynthesis, as it is the radiative
loss of energy that absorbs and remits photons (Meroni et al., 2009;
Porcar-Castell et al., 2014). SIF can be estimated from irradiances
collected by hyperspectral PRS using the Fraunhofer lines depth/dis-
criminator (FLD) method. The FDL is one of the most suitable methods to
passively assess SIF on the dark parts of the electromagnetic region as a
response to the absorption of gases from the atmosphere (e.g., O3). Then
radiances emitted on some of those lines correspond to SIF emissions
from the vegetation activity (Porcar-Castell et al., 2014). SIF estimations
are sensitive to changes in the Ecosystem-Scale GPP from the daily and
annual variability across different terrestrial ecosystems (Rossini et al.,
2010; Zarco-Tejada et al., 2013); however, information is lacking for
testing the applicability of SIF to estimate GPP across canopy pheno-
logical phases in salt marshes.

The AmeriFlux network has exponentially grown in the last 25 years,
but several ecosystems still need to be better represented across the

Agricultural and Forest Meteorology 341 (2023) 109639

United States (Villarreal et al., 2018) and Latin America (Villarreal and
Vargas, 2021). Interest in carbon dynamics in salt marshes has increased
in the previous decade, but their representation within AmeriFlux and
FLUXENT still lags behind freshwater wetlands and terrestrial ecosys-
tems (Delwiche et al., 2021). The main goal of this study was to identify
the spectral properties of reflectance data from PRS that could be useful
to model and predict daily GPP in a salt marsh across the annual cycle
and during different canopy phenological phases. For this purpose, we
tested different VIs, SIF, and areas of the electromagnetic spectrum be-
tween 480 and 820 nm. We coupled information from automatic and
manual canopy spectral reflectance from PRS instruments with GPP
during three years of study (2016 to 2018).

We asked three interrelated questions: (1) How does hyperspectral
reflectance characterize the salt marsh GPP across different canopy
phenological phases (i.e., Greenup, Maturity, Senescence, and
Dormancy)?; (2) What are the individual performance of different VIs
and SIF estimations to model daily GPP?; (3) How do different electro-
magnetic regions (i.e., Visible and Infrared (VIS-IR); red edge
(RedEdge); Infrared (IR) and SIF) from hyperspectral PRS perform to
model daily GPP? We hypothesized that hyperspectral reflectance would
show different patterns and magnitudes across the electromagnetic re-
gions for each canopy phenological phase as a response to changes in
growth and greenness patterns (Zhu et al., 2010). We expected that SIF
would show a strong relationship with daily GPP compared with any
other relationship between GPP and VIs as a result of the documented
association of SIF with photosynthesis in other ecosystems (Dechant
etal., 2020; Li et al., 2018; Zarco-Tejada et al., 2013; Zhang et al., 2018).
In addition, we hypothesized that the RedEdge region would show a
robust data-model agreement with GPP compared with other electro-
magnetic regions, mainly because it shows a higher reflectance contrast
between the region that relates with the absorption of light by chloro-
phyll pigments (i.e., red) and the IR region that associates with the
physiological condition of vegetation (Cheng et al., 2020; Dechant et al.,
2019; Matthes et al., 2015).

2. Materials and methods
2.1. Study site

The study site is a temperate tidal salt marsh dominated by grasses at
the St. Jones Reserve, Delaware, USA (39°05' 17.49”, 75°26'14.00"). The
dominant plant species is Spartina alterniflora (~66% of the area)
(=Sporobolus alterniflorus (Loisel.); Peterson et al. 2014), followed by
Spartina cynosuroides (i.e., ~29% of the area) (=Sporobolus cynosuroides
(L.); Peterson et al. 2014) and Phragmites australis (i.e., <5% of the area).
This ecosystem has four distinct canopy phenological phases across the
annual cycle: Greenup, when grasses start to grow, and their greenness
and GPP have a linear increase, usually in the study site from April to
June, in addition during this phase, the GPP increases, making of this
ecosystem a net sink of carbon; Maturity, when grasses reach their peak
of growth and greenness, usually from July to September, also during
this phase GPP is higher than ecosystem respiration and the salt marsh is
a sink of carbon; Senescence, when grasses begin to decrease in green-
ness, and as well their defoliation starts, usually from September to
October; during this phase as well as dormancy, respiration is larger
than GPP and the ecosystem is a source of carbon to the atmosphere; and
Dormancy, when grasses are inactive, and the GPP reach their lower
point, this phenological phase is from November to March (Trifunovic
etal., 2020; Vazquez-Lule and Vargas, 2021). At this study site, the soils
are silty clay loam (Capooci et al., 2019), and tides are semidiurnal, with
two similar high tides and low tides in 24 h (CEC, 2015). Tides at our site
rarely submerge the vegetation (only during extreme surge events) and
consequently have little effect on influencing canopy spectral reflec-
tance measurements (Hill et al., 2021; Vazquez-Lule et al., 2022).

The St. Jones Reserve is part of the Delaware National Estuarine
Research Reserve and one of the National Estuarine Reserve Research
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System (NERRS) from the National Oceanic and Atmospheric Adminis-
tration (NOAA, 2020). It is also part of the AmeriFlux Network (US-StJ),
PhenoCam Network (stjones; Seyednasrollah et al. 2019), and SpecNet
(US-stj) (Fig. 1).

2.2. Eddy covariance measurements

We used three years of eddy covariance (EC) data to derive GPP from
net ecosystem exchange (NEE) measurements (i.e., January 2016 to
December 2018). The EC tower has a height of 3.5 m and was estab-
lished in 2015. It has a WindMaster Pro anemometer, model 160724
(Gill Instruments, Lymington, Hampshire UK), and an LI-7200RS
enclosed path CO2/H20 analyzer (LICOR Environmental, Lincoln,
NE). The average footprint area of EC has a ratio of about 150 m around
the tower, where 95% of fluxes are from dominant salt marsh species (i.
e., S. alterniflora and S. cynosuroides; Fig. 1). We processed these data
following standardized protocols for QA/QC, calculation of half-hour
fluxes, and gap filling of NEE (Vazquez-Lule and Vargas, 2021). We
applied a coordinate double-rotation for misalignments of the
anemometer, a block average Reynolds decomposition for correction of
fluctuations in turbulence, and the Webb-Pearman-Leuning correction
for air density fluctuations when readings of the LI-7200RS thermopars
were missing. For a more detailed description, see Vazquez-Lule and
Vargas (2021). Half-hour estimates of GPP were calculated from parti-
tioning NEE following standardized protocols based on the relationship
of nighttime NEE with temperature (Reichstein et al., 2005); daily GPP
was subsequently calculated from this time series. We used this data to
estimate daily cumulative GPP. We tested for statistically significant
differences in daily GPP across canopy phenological phases by
comparing least square means and then using the Tukey post hoc test.
For all the statistical analyses, GPP was used in original units after
removing values higher than the GPP mean plus two standard deviation
values (i.e., mean = 4.3 and SD = 4.7).
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2.3. Proximal remote sensing instrumentation

We used an array of PRS instruments to collect automatic VIs from
spectral reflectance sensors (i.e., Normalized Difference Vegetation
Index [NDVIy)] and the Photochemical Reflectance Index [PRI],
phenology camera’s color band data (i.e., PhenoCam) and manually
hyperspectral PRS data during the study period. These proximal sensors
have different data collection frequencies; however, we standardize
them as a daily collection (i.e., daily time steps). All PRS measurements
were inside the EC tower’s footprint area and represented the reflec-
tance of the dominant salt marsh species in the ecosystem (i.e.,
S. alterniflora and S. cynosuroides).

2.3.1. Automatic measurements from spectral reflectance sensors

The Normalized Difference Vegetation Index (i.e., NDVI) and the
Photochemical Reflectance Index (i.e., PRI)) from automatic spectral
reflectance sensors were used (Meter Inc, Pullman, WA, USA). These
sensors were installed with a field view angle of ~45°, and their average
footprint was around 1.5 m; they collected data every 5 min in two areas
of the salt marsh (Hill et al., 2021; Vazquez-Lule et al., 2022; Fig. 1). We
calculated daily averages of both vegetation indices considering mea-
surements collected between 11:00 and 13:00 h local time to reduce the
effect of variability at the light conditions following standardized pro-
tocols (Gamon et al., 2015; Hill et al., 2021).

2.3.2. PhenoCam

We used PhenoCam data collected every 30 min during the day
(StarDot NetCam SC; StarDot Technologies, California, USA). A Pheno-
Cam was installed in the upper part of the EC tower, and it collected
continuous photographs in Red-Green-Blue and InfraRed. Salt marsh
vegetation represented ~80% of the camera’s field range, and the data
used for this analysis was inside the EC footprint area (Fig. 1). From
PhenoCam data, we used data collected between 11:00 and 13:00 h local
time to reduce the effect of variability in the light conditions (Hill et al.,

PhenoCam footprint

[ Hyperspectral samples

NDVI-PRI footprint

Fig. 1. Study site at the St. Jones Reserve, Delaware, and proximal remote sensing instrumentation. (a) A red triangle represents the Eddy Covariance (EC) System;
the green light polygon represents the EC footprint; the yellow circle represents the location of the PhenoCam. (b) Closeup panel showing the proximal remote
sensing instrumentation. Yellow lines represent the PhenoCam footprint; the NDVI-PRI footprint sensors are presented in magenta in two separate areas of the salt
marsh, and the blue polygons highlight areas where the hyperspectral samples were collected.
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2021). This data was used to calculate the daily Greenness Index (i.e.,
GCC) as the ratio of green digital numbers and the total digital numbers
of all color bands (Red + Green + Blue). We used the Phenopix R
package (Filippa et al., 2016) and the function “autofilter” and spline
filter to estimate daily GCC (Migliavacca et al., 2011). The “green-
Explore” function was used to fit phenology GCC curves for every year,
and the “gu” method (Gu et al., 2009) to define the transition between
canopy phenological phases based on a combination of local maximum
GCC and the first derivative (Filippa et al., 2016; Gu et al., 2009; Tri-
funovic et al., 2020; Vazquez-Lule and Vargas 2021).

2.3.3. Hyperspectral sensors

We manually collected hyperspectral data with handheld spec-
trometers in an area of ~450 m? of vegetation inside the EC footprint.
We measured the reflectance from the dominant salt marsh species and
then averaged these samples to represent the reflectance at the canopy
scale (Vazquez-Lule et al., 2022; Fig. 1). Two synchronized fiber optic
spectrometers were used, one with a detector range of 480 to 820 nm
and a spectral resolution of ~1 nm (S4g0_g20), and the other with a de-
tector range of 720 to 800 nm with a spectral resolution ~ 0.08 nm
(S720-800) (Jaz Spectrometer, Ocean Optics, Dunedin, FL). Canopy sur-
face relative irradiance was measured from stands of salt marsh vege-
tation about every 1.5 weeks from September 2016 to December 2018.
All measurements were performed under stable light conditions between
8:00 am and 10:30 am during sunny days without clouds and partially
cloudy conditions, at the height of ~2 m above the soil surface as
described previously (Vazquez-Lule et al., 2022). The hyperspectral data
collected was used to calculate VIs and SIF (see Section 2.4) and to
model GPP with the PLSR approach (see Section 2.5).

For every measurement, we used a cosine corrector to filter the
irradiance and all the samples were collected with a field view of 180°
and with a perpendicular angle between the canopy and cosine
(Vazquez-Lule et al., 2022). We also adjusted the integration time of the
incoming light, then performed a dark calibration covering the cosine
corrector with a black plastic cap, then registered the upwelling irra-
diance and, finally, the downwelling irradiance. Upwelling irradiance
was registered every 2-3 samplings of downwelling irradiance, and dark
calibration was performed after 10-20 samples of downwelling irradi-
ance or as needed if light conditions changed. During every measure-
ment campaign, we collected ~120 downwelling irradiance samples.
We calculated the reflectance for every downwelling irradiance mea-
surement as follows:

(S« W)—(D x W)

T rweoewm »

where, R is the calculated reflectance; S downwelling irradiance; W
wavelength; D dark calibration value; and I upwelling irradiance. After
reflectance was calculated for every downwelling sampling, we calcu-
lated the mean daily reflectance and its standard deviation
(Vazquez-Lule et al., 2022). We showed the reflectance pattern by
canopy phenological phases from the reflectance collected from both
spectrometers (i.e., S4gp_g20 and S720_goo0)-

2.4. Vegetation indices and SIF estimation

We calculated common VIs, which have been correlated with GPP for
grasses and rice paddies (Cerasoli et al., 2018; Inoue et al., 2008; Rossini
et al., 2010; Zarco-Tejada et al., 2013; Zhang and Zhou, 2017) and are
described in Table 1. The time series for these indices are shown in SM
Fig. Sla-Slc. For this purpose, reflectance from the VIS-IR electro-
magnetic region at 1 nm of spectral resolution (i.e., S4g0_820) was used.
We performed linear regression models to test the relationship between
GPP and each VIs across the annual cycle and by canopy phenological
phases. In addition, we identified the contribution of VIs to model
annual GPP with stepwise linear regression models (see supplementary

Table 1
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Spectral Vegetation Indices (VIs) used in this study for linear regression models
with GPP across different canopy phenological phases.

Acronym Name VI Equation Ref.
VI
CI Chlorophyll Index [R750-R705]/ (Gitelson and
[R750+R705] Merzlyak,
1994)
CI-Green Chlorophyl Index of [R750/R550]-1 (Gitelson et al.,
Green 2005)
CI- Chlorophyl Index of [R750/R710]-1 (Gitelson et al.,
RedEdge Red Edge 2005)
EVI Enhanced Vegetation 2.5*[R800-R6701/ (Huete et al.,
Index [R800+6*R670- 2002)
7.5*R400+1]
MCARI Modified Chlorophyll [(R750-R7100- (Wu et al.,
Absorption Ratio 0.2*9R750-R550)]* 2009)
Index [R750/R710)
PSRI Plant Senescence [R680-R500]/R750 (Merzlyak
Reflectance Index et al., 1999)
RedEdge- Red Edge NDVI [R750-R710]/ (Gitelson and
NDVI-a [R750+R710] Merzlyak,
1996)
RedEdge- Red Edge NDVI [R750-R7201/ (Gitelson and
NDVI-b [R750-+R720] Merzlyak,
1994)
SPRI Modified [(R531-R570)/ (Gamon et al.,
Photochemical (R5314+R570)+1]1/2 1992)
Reflectance Index
materials).

SIF was calculated with a radiance-based approach, using the de-
tector with a range of 720 to 800 nm and a spectral resolution of ~ 0.08
nm (S720_800). We applied the FLD method based on the difference be-
tween two flux measurements inside and outside the Fraunhofer Line.
Fraunhofer Lines represent areas of the electromagnetic region with
higher absorption of O, meaning that the emitted energy on those lines
represents the amount of SIF from the vegetation activity. To calculate
SIF, we used a standard mathematical description of the FLD (Meroni
et al., 2009), and the ~773.5 nm Fraunhofer Line (FL) as the highest
point of SIF emission.

2.5. Data-model agreement between GPP and reflectance from different
electromagnetic regions

Hyperspectral measurements were coupled with a PLSR approach to
derive potential predictive models of GPP at this study site. The PLSR is a
multivariate modeling method to identify the relationship and structure
between two data matrices. It has the advantage of handling high
collinearity in the predictor matrix due to more predictor variables than
the observed matrix (Wold et al., 2001). We developed daily GPP models
for the following scenarios of vegetation: (a) Annual cycle, including all
canopy phenological phases (Annualyp); (b) Annual cycle without
Dormancy phase (Annual,p); we included this scenario under the
assumption that during Dormancy GPP in this ecosystem is neglectable;
(c) Greenup; (d) Maturity; (e) Senescence; and (f) Dormancy.

We tested every scenario of canopy phenological phases with
reflectance from four electromagnetic regions: (a) Visible and Infrared
(VIS-IR, 480 to 820 nm; 1 nm spectral resolution); (b) Infrared (IR, 756
to 820 nm; 1 nm spectral resolution); (c) Red Edge (RedEdge 675 to 755
nm; 1 nm spectral resolution); and (d) SIF (760 to 786 nm; 0.08 nm
spectral resolution). We followed the PLSR implementation provided by
Serbin et al. (2016) and tested different PLSR models for every scenario.
For every model, 70% of the data was used for model calibration and
30% for independent model validation. We used the PRESS (Prediction
Residual Sum of Squares) metric as information criteria to assess the
optimal number of components in the PLSR and to reduce the model
overfitting (Vazquez-Lule et al., 2022). Consequently, for scenarios of
the annual cycle (i.e., Annualyp; Annual,p), < 15 components were
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used, and for all other scenarios (i.e., Greenup, Maturity, Senescence,
and Dormancy), < 8 components. We used a Jackknife resampling
method with 1000 permutations and iterative cross-validation to test the
stability and generality of models (Serbin et al., 2016).

For scenarios of the annual cycle, a 10-fold cross-validation was
used, and for all other scenarios, a 2-fold cross-validation was used. The
2 coefficient, the root mean square error (RMSE), and the bias metric
were used to evaluate the performance and uncertainty of every model
(Serbin et al., 2016). Finally, an independent model validation with the
remaining 30% of available data was performed. Results with over
>30% of explained variance are reported to highlight the main findings
of this study.

We computed the correlation of each nanometer on the different
electromagnetic regions with GPP. Correlation coefficients are reported
in a comparative graph for every scenario. We also estimated the vari-
able importance in projection (VIP), which shows each nanometer’s
contribution to the overall prediction variance of GPP for each PLSR
model (Meacham-Hensold et al., 2020; Serbin et al., 2016). VIP results
are shown in comparative graphs for every electromagnetic region.

3. Results
3.1. Gross primary productivity and general climatology

During the study period, the annual mean GCC index was 0.34+0.03,
with lower values during Dormancy (0.31+0.01) and higher values
during Maturity (0.38+0.01; Fig. 2a). PAR had an annual mean of 139
+77 umol m~2 s71, with lower values during Dormancy (97+57 umol
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m~2 s7!) and higher values during Maturity (212+58 pmol m~2 s™};

Fig. 2b). The annual mean air temperature was 14+9 °C with lower
temperature during Dormancy (6+6 °C) and higher temperature during
Maturity (2543 °C; Fig. 2c). Salinity had an annual mean of 5+4 ppm,
with lower values during Dormancy (3.5+3 ppm) and higher values
during Maturity (10+4 ppm, Fig. 2d). The daily annual cumulative
mean of GPP was 4.2+4.2 g C-CO; m~2, with lower values during
Dormancy (0.6840.55 g C-CO, m~2) and higher values during Maturity
(9.842.9 g C-CO, m™% Figs. 2e and 3). Daily GPP was significantly
different between all canopy phenological phases (p <0.05; Fig. 3)

3.2. Reflectance across canopy phenological phases

We found that Greenup, Maturity, and Senescence showed a similar
reflectance pattern across the VIS-IR electromagnetic region, with
differing magnitudes of reflectance. The main differences between that
reflectance were ~550 nm, ~700 nm, and the slope from ~700 to 740
nm (Fig. 4a-c). Dormancy showed an almost linear reflectance increase
from 480 to 820 nm (Fig. 4d). During Senescence, two reflectance
samples showed a similar response to reflectance samples during
Maturity, and those samples were excluded from future analyses
(Fig. 4c). Although those measurements fall within Senescence, dates
were relatively close to the Maturity phase, and the reflectance magni-
tudes were more like Maturity than Senescence.

We found similar reflectance patterns for the SIF electromagnetic
region (760 to 786 nm, 0.08 nm spectral resolution) for Greenup,
Maturity, and Senescence, with substantial differences between 770 and
775 nm, mainly on the FL used to calculate SIF (773.5 nm; Fig. 4e-g). In
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s with GPP across the annual cycle and for each canopy phenological
phase. We found that PSRI was the only VIs that showed a relationship
~ d with GPP across all canopy phenological phases with a linear model
- -1 (Table 2; Fig. 5). Because of the pattern of this data, we added a test of an
exponential decay model between PSRI and GPP (Fig. 5).
& = Results from the stepwise regression models for annual GPP,
S including the dormancy phase (i.e., Annual(wd)) and not including
ON © dormancy (i.e., Annual(nd)), are presented in supplementary materials
Q Table S1. This table shows that VIs explained 87% of the GPP annual
O variability, and the most relevant were GCC, SIF, and CI-Green.
2 © A Furthermore, to test the influence of VIs different than GCC, we
o removed this index and found that GPP annual variability was explained
?5 <~ by at least 84%, and the most relevant indices were RedEdge-NDVI-a, CI-
Green, and CI-RedEdge (SM Table S1).
o 4 _a
——] 3.4. Data-model agreement of GPP with different electromagnetic regions
o —]— — across canopy phenological phases
Dormancy Greenup Maturity Senescence

For the electromagnetic regions of VIS-IR, IR and RedEdge, we found

Fig. 3. Daily GPP for each canopy phenological phase during the study period. a g.ood fiata-model agreer.nent between GPP arzld reflectance for model
The gray boxplot represents GPP during Dormancy; the green boxplot repre- cahbrgtlon for the scenarios of Annuazl wp) (r"=0.78 to 0.83), Annual
sents GPP during Greenup; the dark green boxplot represents GPP during @p) (r*=0.74 to 0.83), and Greenup (r°=0.54 to 0.86; Table 3). We did

Maturity; the orange boxplot represents GPP during Senescence. Different let- not find a robust data-model agreement between GPP and reflectance for
ters represent significant differences between canopy phenological phases. any electromagnetic regions analyzed during Maturity, Senescence, and

Dormancy (i.e., r? < 0.2). For this reason, these results are not shown.
contrast, during Dormancy, some samples did not show a decreased Data-model agreement for GPP and reflectance during the annual
reflectance on the FL (Fig. 4h). cycle was higher for Annual (,p) for the VIS-IR electromagnetic region,

with a model calibration (i.e., Cal.) of Cal.r’=0.83 (RMSE < 1.59 and

Bias=-0.02), and a model validation of (i.e., Val.) Val.r’=0.80 (RMSE <

3.3. Relationship of VIs and SIF with GPP = 1.93 and Bias= 0.31). We found similar results for Annualp), for the
RedEdge electromagnetic region, with a model calibration of Cal.

We tested the relationship of GPP across the annual cycle and canopy r?=0.83 (RMSE < 1.52 and Bias= 0.04) and a model validation of Val.
phenological phases with 12 VIs. We found linear relationships between r?=0.56 (RMSE < = 2.35 and Bias= 1.29). Greenup showed the best
almost all VIs and GPP across the annual cycle, except for PRI and data-model agreement between GPP and reflectance for the RedEdge
MCARI (Table 2; Supplementary Material (SM) Fig. S2). GPP during electromagnetic region, with a model calibration of Cal.r>=0.86 (RMSE
Greenup showed relationships with almost all VIs (n=11) (SM Fig. S3), < 1.40 and Bias=-0.05) and a model validation of Val.r?=0.75 (RMSE <

while GPP during Maturity and Dormancy showed relationships with 3 = 1.27 and Bias= -0.94) (Table 3).
and 1 VIs, respectively (SM Figs. S4 and S6, respectively). GPP across We used correlation analyses to identify the relationship of GPP with
Senescence showed relationships with 6 VIs (Table 2; SM Fig. S5). All reflectance by nanometer for each electromagnetic region (i.e., VIS-IR,

vegetation indices, except MCARI and PSRI, showed a positive slope IR, RedEdge, and SIF) and scenarios tested with the PLSR approach.
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We found different correlation coefficients between GPP and reflectance
across the electromagnetic regions (Fig. 6a—c). As expected, our results
showed that GPP followed a similar response to vegetated coverage for
the VIS-IR electromagnetic region (Fig. 6a); this means a small peak in
the green region, a decrease in the red region, and an increase in the IR
region. GPP and reflectance correlation coefficients across the IR region
for the scenarios were positive and similar (r > 0.6; Fig. 6b), while GPP
and reflectance correlation coefficients across the RedEdge region were
negative before 715 nm and positive after 720 nm (Fig. 6c).

To identify the contribution of each nanometer on the overall pre-
diction variance of GPP across different scenarios for each PLSR model,
we found that VIP showed differences between the data-model agree-
ment of GPP and reflectance across the electromagnetic regions (Fig. 7).
VIP for the VIS-IR region showed the most contrasting pattern across
canopy phenological phases, with higher differences ~550 nm, ~720
nm, and ~770 nm (Fig. 7a). VIP for the IR region and for the RedEdge
region showed a similar pattern and values for the scenarios (Fig. 7b and
Fig. 7c; respectively).

4. Discussion

4.1. Reflectance from hyperspectral PRS during canopy phenological
phases

Our results showed significant differences in GPP across the annual
cycle and for almost all canopy phenological phases. Maturity showed
~133% higher daily GPP than the daily annual cumulative GPP; in
contrast, daily cumulative GPP during Dormancy was ~83% lower than
the daily annual cumulative GPP (Fig. 3). These changes across the
annual cycle influenced the reflectance as a response to changes in the
physical structure of grasses, the increase of greenness (or a shift of
greenness to brownness), the reabsorption of nutrients, and the influ-
ence of soil (Vazquez-Lule, et al. 2022). These changes increase the
reflectance when grasses decay during senescence and throughout the
dormancy phase (Jacquemoud and Ustin, 2019; Matthes et al., 2015;
Xiao et al., 2019).

We highlight the spectral difference between the use of GCC to
identify canopy phenological phases during the study period and the
pattern identified with the hyperspectral PRS during the transition of
Maturity to Senescence in 2017 (i.e., spectral samples that were iden-
tified as part of senescence but they had a hyperspectral pattern that
matched better the samples of maturity). Maturity during 2017 was at
least 50% shorter in duration than the same phase during other years
(Fig. 2a), resulting in an abrupt transition to Senescence. The conse-
quence of this rough transition is that two samples from early August
2017 were assigned to Senescence with the GCC (i.e., Fig. 4c; samples
with higher reflectance), but the reflectance measured with the hyper-
spectral PRS resembled samples from the Maturity phase (Fig. 4b). We
attribute these differences to the ability of the hyperspectral data to
explain broad differences in the greenness condition of vegetation (i.e.,
before the 700 nm) and changes related to the physiological activity of
vegetation, that are better captured by the IR region after the 700 nm
(Penuelas and Filella, 1998).

4.2. Role of VIs to model GPP in salt marsh ecosystems

Our results showed that almost all VIs considered in this study could
model GPP across the annual cycle (Table 2). We attribute this finding to
two reasons: (a) better performance of regression models with more
data, and (b) higher representativeness of the GPP variability during the
annual cycle. The GCC derived from PhenoCam showed higher signifi-
cant relationships (i.e., r?=0.81); this result is consistent with studies in
salt marshes that found an association between GCC and the net
ecosystem productivity and GPP (Hill et al., 2021; Knox et al., 2017).
The functionality of GCC to model GPP could relate to the spatial
coverage of regions of interest (i.e., ROI’s) from the PhenoCam data that
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Table 2
Linear regression models between VIs and GPP across the annual cycle and by
canopy phenological phases over three years in a salt marsh.

Vegetation GPP g C-CO, m~2
Indices A
Annual Greenup Maturity Senescence Dormancy
Slope Slope Slope Slope (%) Slope (1)
(6] (t9)] @«
NDVI 16.9 185 13.4(0.32)*
(0.75)* (0.79)*
GCC Index,)  140.9 163 129 115.7
(0.81)* (0.71)* (0.30)* (0.58)*
SIF 9.9
(0.37)*
CI 25.2 30.1 21 (0.36)*
(0.77)* (0.98)*
CI-Green 73.8 141.9
(0.55)* (0.90)*
CI-RedEdge 83.4 132.2 82.8(0.36)"
(0.74)* (0.95)*
EVI 33.4.2 49.84
(0.62)* (0.87)*
MCARI -553.9
(0.98)*
PSRI -35 -37.7 -79.4 -26.4 (0.39) -8.8 (0.78)
(0.75)* (0.92)* (0.60)* *
RedEdge- 29.1 34.4 22.3(0.30)*
NDVI-a 0.77)* (0.98)*
RedEdge- 43.1 49.4
NDVI-b (0.78)* (0.96)*
sPRI 3131.8 4685.9 3190.4
(0.63)* (0.72)* (0.60)*

" Significant differences (p < 0.05). Table does not show relationships be-
tween VI's and GPP lower than r2<0.3.

(t) Sensors installed on the Eddy Covariance Tower.

(p) VI derived from PhenoCam data.

NDVIy: Normalized Difference Vegetation Index; PRI: Photochemical
Reflectance Index; GCC Index(p): Greenness Index; SIF: Sun-Induced Fluores-
cence; CI: Chlorophyll Index; CI-Green: Chlorophyll Index of Green; CI-RedEdge:
Chlorophyll Index of Red Edge; EVI: Enhanced Vegetation Index; GCC: Green-
ness Index; MCARIL: Modified chlorophyll absorption ratio index; PSRI: Plant
Senescence Reflectance Index; RedEdge-NDVI-a: Red Edge Normalized Differ-
ence vegetation Index (use of 710 nm); RedEdge-NDVI-b: Red Edge Normalized
Difference vegetation Index (use of 720 nm); sPRI: Modified Photochemical
Reflectance Index.

Panel figures of these relationships are in SM Figs. S2 to S6.
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® Maturity
\ @99 Senescence

\ Dormancy

Linear regression model
) y=-35"PSRI + 11.45;
?=0.75

_ Exponential decay model
y=14.93 gt915PSR) 4 0,03

GPP g C-CO, m?

T T
0.0 0.1 0.2 0.3 0.4

PSRI: Plant Senescence Reflectance Index

Fig. 5. Linear regression and exponential decay models between the Plant
Senescence Reflectance Index (PSRI) and GPP across the canopy phenolog-
ical phases.
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Table 3
Data-model agreement of GPP and reflectance analyzed with the PLSR approach.
Reflectance Electromagnetic Region Model Fitting for GPP n Components Model Calibration Model Validation
> RMSE * BIAS > RMSE * BIAS
480 to 820 nm Annual wp) 42 3 0.83 1.59 -0.02 0.80 1.93 0.31
VIS-IR Greenup 12 3 0.81 1.61 -0.06 0.64 1.54 0.10
Annual (p) 36 3 0.74 2.16 -0.12 0.92 0.75 0.27
756 to 820 nm. InfraRed Annual (p) 42 2 0.78 1.79 0.02 0.91 1.22 -0.14
Greenup 12 4 0.54 2.43 -0.33 0.46 1.89 0.67
Annual p) 36 3 0.80 1.66 0.07 0.88 1.52 0.46
675 to 755 nm. Annual (yp) 43 5 0.79 1.75 0.23 0.75 2.14 0.33
Red Edge Greenup 12 2 0.86 1.40 -0.05 0.75 1.27 -0.94
Annual p) 36 4 0.83 1.52 0.04 0.56 2.35 1.29
“ RMSE is in g C-CO, m~?; (wD) With Dormancy; (nD) Without Dormancy.
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Fig. 6. Summary of correlation coefficients between GPP and reflectance for each nanometer across different electromagnetic regions. (a) Correlation coefficients
between GPP and reflectance from 480 to 820 nm (Visible and infrared region); (b) Correlation coefficients between GPP and reflectance from 756 to 820 nm
(Infrared region); (c) Correlation coefficients between GPP and reflectance from 675 to 755 nm (RedEdge region).

can represent a broad canopy response from dominant species in the
ecosystem, even higher than ROI’s collected from the hyperspectral PRS
sensors and automatic spectral sensors (i.e., NDVI(t) and PRI (t)) (Hill
et al., 2021). In addition, GCC is formulated from the intensity of pri-
mary colors instead of the reflectance (Richardson, 2019); this could
reduce the influence of atmospheric conditions on the responses. Results
about the relationship between PhenoCam data and GPP are consistent
with findings in salt marshes and other ecosystems (Filippa et al., 2018;
Hill et al., 2021; Knox et al., 2017). Our stepwise results also show that a
couple of VIs could help model annual GPP (SM Table S1) and that the
most relevant VIs were those more sensitive to changes in the greenness
condition.

Almost all VIs had a higher relationship with GPP during the

Greenup canopy phenological phase than other phases (i.e., 1>=0.71 to
0.98). We attribute this finding to the dynamic increase and range of
greenness and the development of grasses during this time, character-
ized by a positive slope on the GPP curve (Fig. 2e). This GPP signature
during Greenup may favor the linear relationship with almost all VIs
(Table 2). This also could be related to the wavelengths used to
formulate the VIs, which are most sensitive to identifying changes in the
chlorophyll concentration that influence photosynthesis activity.
Consequently, all the indices used in this study considered the red region
of the electromagnetic spectrum (~620 to ~740 nm, Table 2) related to
energy absorption by chlorophyll pigments. In addition, 50% of these
indices used the green region (~500 to 570 nm). The reflectance in this
part of the electromagnetic spectrum increases with photosynthesis
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rates during the active growth of grasses (Jacquemoud and Ustin, 2019).
For the rest of the canopy phenological phases, the relationships be-
tween GPP and VIs showed a lower > (i.e., 0.71). During Maturity, the
sensitivity of VIs is reduced due to the possibility of sensor over-
saturation caused by the complete soil coverage by green vegetation in
the field (Jacquemoud and Ustin, 2019), as well as consistent growth of
grasses during this phenophase. We highlight that environmental con-
ditions during Maturity, particularly the amount of light (i.e., high
values of PAR, Fig. 2b), may interfere with the hyperspectral collections
(Brantley et al., 2011; Gnyp et al., 2014). We also found a less strong
relationship between VIs and GPP across Senescence (Table 2; r?*=0.30
to 0.58). We attribute this response to the combined influence of active
vegetation (i.e., green grasses still growing) and less physiologically
active foliage (i.e., turn on from green to brown grasses), as well as the
defoliation of grasses and an increasing exposition of soils. For the lack
of relationship of VIs with GPP across Dormancy, we attribute this
finding to the lower GPP values as a response of inactive vegetation
during that phase (Fig. 3), as a consequence of a reduction of photo-
synthetic pigments that influence the response of vegetation indices
across other phenological phases; in addition, an increase of soil
response and dead vegetation may oversaturate the reflectance in this
part of the electromagnetic spectrum (Xiao et al., 2019; Zhu et al.,
2010).

Our results showed that PSRI could model GPP across the annual
cycle and all canopy phenological phases (Table 2; Fig. 5). The PSRI
index was initially formulated to follow changes in the chlorophyll-
carotenoid ratio (i.e., Chl/Car) (Merzlyak et al., 1999). Recent studies
in terrestrial grasses have found that PSRI showed a higher relationship

with GPP across phenological phases, mainly because of its sensitivity to
detect changes in the pigments’ concentration, rapid changes in the
decay of chlorophyll, and the increase of carotenoids (Cerasoli et al.,
2018; Merzlyak et al., 2003). Increases in PSRI values could be indirectly
related to transitions in canopy phenology and their impact on photo-
synthesis, ultimately affecting GPP (Gamon, 2015). This result is also
supported by the relationship of GPP with the sPRI, which was also
formulated to follow up changes on the Chl/Car ratio (Gamon et al.,
1992). However, this result contrasts with the lack of relationship be-
tween PRI and GPP (Table 2). Similar findings have been reported due
to a decrease in the sensitivity of the PRI to changes in the canopy
structure, particularly the leaf inclination angle at the stand-level
(Gitelson et al., 2017a, 2017b). We also attributed this finding to the
ROI's collected by automatic spectral sensors, which represent less
variability of the salt marsh ecosystem because of their constant moni-
toring at the same area compared with a larger representation of the
spatial variability with hyperspectral collections (samples collected in
an area of 450 m?).

In addition, we found an exponential decay of GPP with the PSRI;
this finding could be an indirect response of vegetation to the increase of
non-photosynthetic water-soluble pigments, such as anthocyanins, that
are associated with the resistance of vegetation when stress in the
environment increases (Jacquemoud and Ustin, 2019; Vina and Gitel-
son, 2011). In our study site, a decrease in solar radiation could be
associated with low air temperature at the end of the year (i.e., canopy
phenological phases of senescence and dormancy) associated with a
decrease in GPP.

Contrary to our expectations, we did not find a strong linear
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relationship between SIF and GPP (Table 2, supplementary materials
Fig. S2c). We attribute these results to several possibilities: (a) the angle
and influence of incident light on the vegetation during the data col-
lections (Zhang et al., 2021); (b) the daily scale of our approach, which
limits our understanding of the relationship between GPP and SIF during
the diurnal cycle; and (c) changes in the canopy structure and the in-
fluence of shaded and sunlight leaves on the absorbed photosyntheti-
cally active radiation (APAR). This last point has been suggested as one
of the main drivers of the positive relationships between SIF and GPP
(Dechant et al., 2020; Yang et al., 2021). We highlight that SIF had
negative values during the early growing season (i.e., early Greenup)
and the end of the growing season (i.e., Dormancy). Similar results have
been found in bare soils or where vegetation is scarce as an artificial
response because of an oversaturation of the sensors (Turner et al.,
2020). Our results are consistent with recent research developed for
crops. However, we postulate that additional information combining
SIF, GPP, and APAR is needed for salt marshes across the diurnal cycle to
understand limitations and opportunities to model GPP from SIF at the
canopy scale and with satellite sources across different canopy pheno-
logical phases.

4.3. Data-model agreement between GPP and reflectance with the PLSR
approach

Our findings for the data model agreement between GPP and
reflectance from the VIS-IR region with the PLSR approach showed a
better performance across the annual cycle and during the Greenup
canopy phenological phase (Table 3). We attributed this finding to the
availability of all spectra to model the vegetation response, such as the
structural changes on the canopy and the greenness condition of vege-
tation (Fig. 6a).

It is expected that the IR region responds to changes in the physio-
logical conditions of vegetation, particularly as a response to the water
content of the leaves (Penuelas and Filella, 1998). However, the IR re-
gion was less sensitive to model GPP changes in this ecosystem with the
PLSR approach. This could be related to the differences in the
short-range covered by our hyperspectral sensors (~700 nm to 820 nm)
compared with the full coverage of the IR region (~700 nm to 1000 nm).
Consequently, it is possible that this technical limitation may constrain
our findings, and future studies should consider hyperspectral sensors
capable of measuring the whole IR region to model GPP. We advocate
for more studies using hyperspectral measurements in salt marshes to
represent how changes in nutrients and photosynthesis influence the
reflectance of canopy dynamics (Vazquez-Lule et al., 2022).

Our results suggest that additional information in the electromag-
netic region (i.e., VIS-IR) is relevant to model and predicting GPP in this
temperate salt marsh but may not be essential to predicting GPP in other
ecosystems. For example a study in a subalpine evergreen forest did not
find improvement in modeling GPP using the entire electromagnetic
region when compared with the specific use of VIs (Cheng et al., 2020).
Instead of reflectance, we propose that different approaches (e.g., ra-
diances) could be tested to improve the data-model agreement of GPP
across other canopy phenological phases in salt marsh grasses with the
PLSR approach (Dechant et al., 2019). Hyperspectral information is
flexible and has multiple possibilities for analyzing different regions of
the electromagnetic spectrum. For example, there is a large potential for
indices that could minimize the influence of soils background and could
potentially increase the accuracy of estimating GPP across different
environmental conditions (e.g., NIRv and NIRvP; Badgley et al. 2017,
Dechant et al. 2022). It is also relevant to use the thermal infrared to
model and test the relationship between photosynthesis and other
physiological processes such as transpiration (Bayat et al., 2018).
Remote sensing thermal information is available from public historical
sources (i.e., Landsat, MODIS) and future missions that will have im-
provements on the spectral and spatial resolution (e.g., the Surface
Biology and Geology from the USGS, Environmental Monitoring and
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Analysis Program from the German Space Agency mission (EnMAP)
(Ustin and Middleton, 2021)).

We highlight challenges related to differences in the spatial and
temporal scale related to collecting PRS information and GPP. While
GPP represents information at the ecosystem scale, including the foot-
print areas of the PRS sensors, it has a higher temporal variability than
that measured with PRS. Future studies could use PSR aided by drones or
airborne sensors to cover a larger area within the footprint of an EC
tower. Furthermore, GPP represents integrated measurements at the
daily scale, which has a temporal overlap with collections from the
automatic spectral sensors and the PhenomCam but not the hyper-
spectral reflectance (i.e., collected for ~1.5 weeks). This temporal
mismatch may impact the modeling performance using different elec-
tromagnetic regions and VIs, and the limitation to identify changes in
canopy phenological stages with hyperspectral information. We suggest
that future studies may use automatic and synchronized measurements
of hyperspectral information and GPP to improve modeling efforts
(Woodgate et al., 2020; Zarco-Tejada et al., 2013)

5. Conclusions

Our results highlight the challenges of modeling and predicting GPP
with PRS in a temperate tidal salt marsh with high variability during the
annual cycle as a response to different canopy phenological phases. We
also showed that VIs related to Chl/Car ratio changes were more
valuable to model GPP across almost all canopy phenological phases
than VIs formulated with reflectance data from the IR region. In addi-
tion, the hyperspectral VIS-IR region showed more sensitivity to
improve the data-model agreement of GPP with the PLSR approach
across the annual cycle. We also highlighted differences in the usability
of other PRS instruments (i.e., PhenoCam, Spectral sensors, and
Hyperspectral PRS) to generate information that can model GPP,
particularly differences in the footprint of every sensor, type of collec-
tion (i.e., manual vs. automatic) and temporal frequency. We conclude
that this salt marsh shows essential differences among phenological
canopy phases that influence the performance of reflectance and VIs to
model and predict GPP. These results demonstrate the potential to
model and predict the annual variability of GPP in a salt marsh
ecosystem with conventional vegetation indices and the hyperspectral
data from the VIS-IR region.
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