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ABSTRACT

Soil COy efflux represents a complex interplay of biological and physical processes that result in the production
and transfer of CO; from soils to the atmosphere. Temperature has been widely recognized as a critical factor
regulating soil CO3 efflux and is commonly utilized in deterministic empirical models to predict this important
flux for the carbon cycle. This study introduces the Bernstein copula-based cosimulation (BCC) as a data-driven
probabilistic approach to model the temperature-soil CO efflux relationship. The BCC accounts for the joint
probability distribution and temporal dependence of soil CO; efflux, which are often overlooked in deterministic
models. The BCC was implemented as a proof of concept using two years of data on soil CO; efflux conditioned
by soil temperature in a temperate forest. The BBC accurately reproduced the original probability distribution,
temporal dependency, and temperature-soil CO; efflux relationship. Our findings show that a deterministic
method, such as the commonly employed exponential relationship between soil CO; efflux and temperature, is
limited for comprehensively capturing the intricate nature of the temperature-soil CO; efflux relationship. This is
due to the confounding and interacting effects of environmental drivers beyond temperature, which are not fully
accounted for in such a deterministic approach. Furthermore, the BCC revealed that the probability density
between the joint cumulative probability of temperature and soil CO; efflux is not constant, which raises the
concern that deterministic approaches introduce incorrect assumptions for estimating temperature-soil CO2
relationship. In conclusion, we propose that probabilistic approaches hold promise for effectively depicting
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dependency relationships for soil CO; efflux modeling, and for improving predictions of the effects of weather

variability and climate change.

1. Introduction

Soil CO; efflux is a complex process that involves biological (e.g.,
plant and microbial respiration) and physical processes (e.g., diffusion,
mass transport) that ultimately result in the production and transport of
CO;, from soils to the atmosphere (Raich and Schlesinger, 1992; Ryan
and Law, 2005). This flux at an estimated 87 + 9 PgC y ™! is poorly
constrained in the global terrestrial carbon cycle (Jian et al., 2022) and
represents substantial uncertainty in ecosystem-process models (Luo
et al., 2015; Sulman et al., 2018; Wei et al., 2022).

Temperature has been recognized as a major control for soil COy
efflux and is widely used to model this flux (Bahn et al., 2010; Phillips
et al.,, 2017; Tuomi et al., 2008). Therefore, rising temperatures are
expected to stimulate soil CO5 efflux by accelerating autotrophic respi-
ration rates and heterotrophic decomposition of the organic matter
(Bond-Lamberty et al., 2018). This expectation is based on observations
(Bradford et al., 2008) that corroborate the generalities of the temper-
ature dependence of biochemical processes described mathematically in
the late 19th century (Arrhenius, 1889; Van’t Hoff, 1899). However, the
assumption by Arrhenius and van’t Hoff of constant temperature
sensitivity at all temperatures is incorrect to model soil CO efflux in
mesic (Curiel Yuste et al., 2004; Lloyd and Taylor, 1994) and especially
in water-limited ecosystems (Almagro et al., 2009; Leon et al., 2014).
This limitation has motivated the development of other deterministic
empirical models by incorporating temperature-moisture relationships
(Del Grosso et al., 2005; Orchard and Cook, 1983; Vargas et al., 2010),
mechanistic approaches to integrate temperature-sensitive enzymatic
processes with constraints of substrate supply (Davidson et al., 2012;
Todd-Brown et al., 2012), or macromolecular rate theory (Alster et al.,
2020). Over time, the complexity of deterministic models for soil carbon
dynamics and soil CO; efflux has increased to capture the many
biogeochemical mechanisms involved (Abramoff et al., 2022; Sulman
et al., 2018).

An alternative approach for predicting soil CO; efflux is stochastic or
probabilistic modeling. These approaches aim to understand a system’s
behavior regarding its underlying probability distribution and make
independent predictions based on this information. Probabilistic models
are assumed to improve our understanding of the complex dynamics of
soil CO; efflux and its complex response to multiple environmental
factors (e.g., warming, precipitation events, and compounding effects).
Several studies have incorporated these principles to model soil CO5
efflux in Mediterranean (Anjileli et al., 2019) and temperate (Daly et al.,
2008) ecosystems and at the global scale (Huang et al., 2021). Other
studies have used these principles to predict and partition soil CO5 efflux
(Zhou et al., 2010), and study the response to elevated CO5 (Gao et al.,
2020) or extreme heat events (Anjileli et al., 2021). Although there are
fewer examples of probabilistic models when compared to deterministic
models, there is an increasing interest in representing stochasticity for
modeling soil organic matter dynamics (Waring et al., 2020).

We propose that the temporal variability of soil COy efflux can be
modeled based on its dependency on temperature using a probabilistic
cosimulation approach. This study uses a copula approach based on
probability theory (Sklar, 1959) to reproduce complex relationships
between variables (Nelsen, 2006). Copulas are statistical tools that
describe the dependence structure between random variables regardless
of their marginal distributions. In a copula-based cosimulation, the
marginal distribution function of each variable is modeled separately.
Then, the copula linked to those individual distribution functions is
modeled to capture their joint dependence.

For this study, we apply the Bernstein copula-based cosimulation
(BCC) method as it does not assume linearity or Gaussian distribution,

which are characteristics of the relationship between temperature and
soil CO efflux (Vazquez-Ramirez et al., 2023). Briefly, the BCC is based
on stochastic realizations obtained by the global optimization method (i.
e., differential evolution) where the objective functions are univariate
probability distribution, dependency coefficients, and a semivariogram
model (Le et al., 2020; Vazquez-Ramirez et al., 2023). This approach can
simulate the behavior of systems characterized by multiple stochastic
interdependent processes while reproducing the statistical properties
and temporal dependency. We postulate that the BCC is a superior
approach to model soil CO5 efflux because it incorporates information
on the joint probability distribution and temporal dependence of this
phenomenon that traditional deterministic methods ignore. To test this,
the BCC was implemented as a proof of concept using information on soil
CO;, efflux and soil temperature from a temperate forest.

2. Methods

Two approaches for modeling soil CO» efflux based on soil temper-
ature information are presented. The two approaches were implemented
using dependency functions based on deterministic or probabilistic
methods. The first approach is a deterministic method represented by
the widely used exponential relationship between soil CO; efflux and
soil temperature, represented by an exponential function-based esti-
mation (EFE; Lloyd and Taylor, 1994). The second approach is a prob-
abilistic method represented by the BCC conditioned by temperature (Le
et al., 2020). These dependency functions based on soil temperature
were evaluated using publicly available information on soil CO5 efflux
and temperature from a temperate forest (Vargas and Allen, 2008a,
2008b; Vargas et al., 2010).

2.1. Study site

The study site is located at the University of California James San
Jacinto Mountain Reserve, a UC Natural Reserve System field station.
The Reserve is a mixed conifer-oak forest at 1640 m.a.s.l. in the San
Jacinto Mountains, CA, USA (33° 48’ 30” N, 116° 46’ 40” W). Most
precipitation occurs between November and April, with a mean annual
rainfall of 640 mm and a mean air temperature of 10.3 °C. Measure-
ments were performed at an area with mature woody vegetation with
prominent individuals (DBH > 30 cm) of Quercus chrysolepis Leibem.
(Canyon live oak), and Pinus ponderosa C. Lawson (Ponderosa Pine). Soil
and fine root characteristics have been described in previous studies
(Vargas and Allen, 2008a, 2008b). Soil bulk density was 0.9 g/cm?, and
soil texture was 83 % sand, 10 % silt, and 7 % clay. Total soil carbon and
nitrogen (0-16 cm depth) were 3.1 % (£0.5 s.d.) and 0.08 % (+0.02 s.
d.), respectively. Fine root biomass (0-16 cm) was 18 g m’z, and fine
root nitrogen was 0.58 % (+0.23 s.d.).

Soil CO, efflux measurements were performed using the flux
gradient method described for the study site in multiple studies (Vargas
et al., 2010; Vargas and Allen, 2008a, 2008b). Briefly, soil CO5 con-
centrations (CARBOCAP, GMM 222, Vaisala, Helsinki, Finland), tem-
perature, and moisture (Decagon, ECHO) were measured at three
locations and three soil depths (2, 8, 16 cm). All measurements were
recorded at 5-min intervals. Soil CO; efflux was calculated using Fick’s
first law of diffusion, and the diffusivity of soil CO5 in the soil profile was
estimated using the Moldrup model (Moldrup et al., 1999). Vargas and
Allen (2008b) reported an 2 of 0.94 between soil CO5, efflux measured
using a soil chamber (Li-8100-102) connected to a soil respiration sys-
tem (LI-8100, LI-COR Lincoln, NE, USA) and the values calculated from
the gradient method. The soil CO, efflux and temperature measurements
used in this study are publicly available and have been incorporated into
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the COSORE dataset (Bond-Lamberty et al., 2020). For the analyses
presented in this study, data were aggregated into daily means of soil
CO4, efflux from January 1st 2006 to December 31st’ 2007.

2.2. Modeling soil CO; efflux

The workflow for modeling soil CO; efflux included three steps: (a)
Input data, (b) Dependency function modeling, and (c) Prediction and
Uncertainty (Supplementary Fig. S1).

2.2.1. Input data

The input data consisted of two variables X = {x1,x2,...,X,} and Y =
{¥1,¥2, ...,y } representing time series with the same length of data n; X
is the time series of the independent variable (i.e., temperature) and Y is
the time series of the dependent variable (i.e., soil CO; efflux). Then, 50
% of the data were used to train the models (i.e., training data) and the
remaining data (i.e., test data) to validate the output of the models.
Training data was selected from odd days (Fig. S2) and test data from
even days (Fig. S3) to preserve the original time series’ statistical
properties and temporal dependence. Therefore, the performance of
model outputs was tested on how well they represent the statistical
properties and temporal dependence exhibited in the test dataset (Var-
gas and Le, 2023).

2.2.2. Dependency function modeling

The deterministic approach (EFE) was represented by a widely used
exponential function Y = a+ ePX.This deterministic function was
parameterized using the training data of temperature (X) and soil COy
efflux (Y), where a and b are the parameters to obtain (Lloyd and Taylor,
1994). This equation is rooted in the first principles of thermodynamics
and is widely used for modeling soil CO; efflux because of its simplicity
and broad applicability (Tuomi et al., 2008). We applied the Im and
predict functions of the stats package in R (R Code Team, 2022), and the
parameter interval= "predict” in the function predict to determine a 95 %
confidence interval range to represent the uncertainty of the model and
the model output (i.e., prediction).

The probabilistic approach (BCC) consisted of: a) modeling the joint
probability distribution through univariate probability distributions and
the copula distribution approximated by the Bernstein polynomial and
the Bernstein copula; and b) modeling the temporal dependency func-
tion of the variable of interest Y using the semivariogram function (Le
et al., 2020). According to Sklar’s theorem (Sklar, 1959), the joint
probability distribution can be decomposed into the univariate proba-
bility functions F(x), G(y), and the copula function C: H(x,y) =
C(F(x),G(y)). This means that rather than modeling the joint proba-
bility function directly from a scatterplot representing the data of X and
Y, its decomposition is modeled. To do this, the cumulative univariate
distributions F,(x) and Gn(y) and the empirical copula (i.e., Pseudo-
observation) C,(Fn(x),Gn(y)) were calculated. The distributions F;(x)
and G,(y) were modeled by the Bernstein polynomial, and the distri-
bution C,(Fy(x),Gn(y)) was approximated by the Bernstein copula (Le
et al., 2020). Finally, the empirical variogram was calculated from the
soil COy efflux values using the training data, and a semivariogram
model (e.g., spherical, exponential, or Gaussian semivariogram) was
fitted to preserve the information on the temporal dependency.

2.2.3. Prediction & uncertainty

Soil CO; efflux conditioned by the temperature was predicted based
on the two dependency functions (i.e., deterministic and probabilistic)
described in the previous section. Both approaches were parameterized
with the training data, and test data was used for prediction purposes.
We calculated uncertainty for EFE by fitting the temperature of the test
data to predict soil CO3 efflux and its corresponding 95 % confidence
interval range. For the BCC method, one hundred simulations of soil CO5
efflux using the temperature of the test data were predicted to calculate

Science of the Total Environment 912 (2024) 169391

the probability and uncertainty (Le et al., 2020). Then, a global opti-
mization method (i.e., differential evolution) was applied to obtain the
soil CO, efflux prediction with similar univariate behavior and temporal
and joint dependence as the training data. The 95 % quartile range was
predicted for the one hundred simulations to determine BCC’s uncer-
tainty range. Finally, the predictions and uncertainties for EFE and BCC
were compared against the soil CO; efflux values from the test data. The
algorithm is implemented using the RGEOSTAD tools (Diaz-Viera et al.,
2021) and is coded using the R software (R Code Team, 2022).

3. Results
3.1. Input data

We analyzed two years of information on daily temperature [°C] and
soil CO efflux [pmol m2s71] (Fi g. la and b). The statistical properties
of the complete dataset of temperature were: mean 10.9 °C, median
9.5 °C, standard deviation 8.4 °C, minimum —1.8 °C, and maximum
28.7 °C (Fig. 1a). The statistical properties of the temperature training
data were: mean 10.9 °C, median 9.5 °C, standard deviation 8.5 °C,
minimum —1.4 °C, and maximum 28.7 °C (Fig. S2a). The statistical
properties of the temperature test data were: mean 10.9 °C, median
9.6 °C, standard deviation 8.4 °C, minimum —1.8 °C, and maximum
28.4 °C (Fig. S3a). No statistically significant differences existed be-
tween the complete dataset, training data, or test data.

The statistical properties of the complete dataset of soil CO, efflux
were: mean 1.1 pmol m2 s’l, median 0.9 pmol m2 s’l, standard de-
viation 0.6 pmol m~2 s~!, minimum 0.2 pmol m~2 s~}, and maximum
3.9 pmol m~2 s7! (Fig. 1b). The statistical properties of the soil CO
efflux training data were: mean 1.1 pmol m~2s~!, median 0.9 pmol m 2
s~!, standard deviation 0.6 pmol m~? 57!, minimum 0.2 pmol m2s7},
and maximum 3.2 pmol m2s7! (Fig. S2b). The statistical properties of
the soil CO; efflux test data were: mean 1.1 pmol m~2 571, median 0.9
pmol m~2 57!, standard deviation 0.6 pmol m~2 s}, minimum 0.2 pmol
m~2 57!, and maximum 3.9 pmol m~2 s~(Fig. $3b). Similarly, there
were no statistically significant differences between the complete
dataset, training data, or test data.

The following statistics represent the relationship between soil CO,
efflux and temperature: Pearson = 0.69, Spearman = 0.71, Kendall =
0.52 (Fig. 1c). These results are identical for the complete dataset,
training, and test data. An experimental semivariogram was used to
explore and represented the temporal dependency of soil CO5 efflux. In
all cases (i.e., complete dataset, training, and test data), the sum of the
points in the experimental semivariogram was equal to 0.5, demon-
strating that the temporal dependencies of the time series were similar
(Fig. S4a, b, and c).

3.2. Dependency function modeling

3.2.1. Using a deterministic approach

An exponential function (EFE method) was fitted using the training
data obtaining the following equation: CO2 efflux = 0.598 +
0044 Temperature vyith an adjusted R2 = 0.5 and a root mean square error
(RMSE) of 0.36 (Fig. 2). In addition, a 95 % confidence interval was
estimated for this model, which was then used to quantify the prediction
uncertainty (Fig. 2).

3.2.2. Using a probabilistic approach

The first step to model soil CO; efflux with the Bernstein copula (BCC
method) was to decompose the empirical bivariate joint probability
distribution (Fig. 3a) into the empirical univariate probability distri-
butions (black dots in Fig. 3b and c) and the empirical copula function
(black dots in Fig. 3d). Then, the empirical univariate distributions were
approximated by the Bernstein polynomial (blue line in Fig. 3b and c),
and the empirical copula function was approximated using the Bernstein
copula (blue lines in Fig. 3d). The cumulative probability distribution of
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Fig. 2. Deterministic dependency model based on the exponential relationship between temperature and soil CO; efflux. The red line was generated by fitting an
exponential model using the training data, and the gray dots represent the 95 % confidence intervals.

soil CO; efflux conditioned by temperature was not constant (Fig. 3d);
where at a given soil temperature, a range of different soil CO5 efflux
values was possible, and these ranges varied across temperatures. To
illustrate this, we show the cumulative probability distribution of soil
CO;, efflux for categories of soil temperature from 0 to 25 °C (Fig. 4).
These results emphasize that the magnitude and distribution of soil CO5
efflux were variable across different soil temperature ranges. In contrast,
the EFE method predicted a deterministic value of soil CO; efflux for a
given range of temperatures (Fig. 2).

Once the empirical univariate probability distribution and the
empirical copula functions were modeled, the joint probability distri-
bution of soil temperature and soil CO; efflux was fully constructed. The
Bernstein polynomials and the Bernstein copula approximate empirical
marginal functions and empirical copulas very well (Fig. 3b, ¢, and d).
Therefore, the joint distribution function between temperature and soil
CO;, efflux was fully constructed. According to Sklar’s theorem (Sklar,
1959), the dependency relationship between the variables X and Y is
entirely contained by the copula function C,(Fy(x), Gn(y) ) (Fig. 3d) and
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tribution function of soil CO; efflux approximated by the Bernstein polynomial (blue line); (c) univariate distribution function of temperature approximated by the
Bernstein polynomial (blue line); and (d) copula function approximated by Bernstein copula (blue contour) in copula space (pseudo-observation).

this dependency does not depend on the marginal functions F,(x), Gn(y)
(Fig. 3b and c).

Finally, a semivariogram model was fitted to the experimental
semivariogram for the training data of soil CO; efflux where the sum of
the points was equal to 0.5 (Fig. S4b). A spherical variogram model was
obtained with a nugget of 0.003, a sill of 0.075, and a temporal corre-
lation range of 24 days (Fig. S5). This fitted variogram model had a sum
of squared error (SSE) of 0.002 compared to the experimental semi-
variogram from the training dataset.

3.3. Prediction & uncertainty

3.3.1. Comparison of univariate statistical properties

The statistical properties of the predicted soil CO5 efflux using the
deterministic approach (i.e., EFE) were: mean 1.0 pmol m 2 s}, median
0.9 pmol m~2 57}, standard deviation 0.4 pmol m~2 s%, minimum 0.6
pmol m—2 s’l, and maximum 2.1 pmol m 257! (red dots in Fig. 5a). The
residuals show that the deterministic model underestimated soil CO5
efflux during the growing season of the first year and overestimated soil
CO4, efflux for most of the mid-to-late part of the second year (Fig. S6a).
The statistical properties of the predicted soil CO, efflux using the
probabilistic approach (i.e., BCC) were: mean 1.1 pmol m~2 s~ !, median
0.9 pmol m~? s7}, standard deviation 0.6 pmol m~2 s%, minimum 0.3
pmol m~2 571, and maximum 2.9 pmol m~2 s~! (blue dots in Fig. 5b).
The residuals show that the probabilistic approach properly represents
the magnitudes and patterns of soil CO; efflux (Fig. S6b). Furthermore,
the p-values of the Kolmogorov-Smirnov test for the comparison of the
predictions with the test data (black dots in Fig. S7 and histogram-

boxplot in Fig. S8a) were O for the EFE (red triangle in Fig. S7 and
histogram-boxplot in Fig. S8b) and 1 for the BCC (blue squares in Fig. S7
and histogram-boxplot in Fig. S8c). This shows that the probability
distribution of the BCC prediction matches that of the test data, while
the probability distribution of the EFE prediction differs significantly
from the test data.

3.3.2. Comparison of dependency relationship

The dependency relationship between predicted soil CO5 efflux and
temperature (using the EFE) was represented by Pearson = 0.99,
Spearman = 1, and Kendall = 1; suggesting a spurious relationship as a
result of the deterministic nature of the approach (Fig. 5¢). The de-
pendency relationship between predicted soil CO, efflux and tempera-
ture (using the BCC) was represented by Pearson = 0.7, Spearman =
0.71, and Kendall = 0.51; preserving the dependency relationship and
scatter plot pattern of the complete dataset, training, or test data
(Fig. 5d).

3.3.3. Comparison of temporal dependence or variability

The sum of the points of the experimental semivariogram for the
predicted soil COy efflux using the EFE was 0.1, demonstrating a
different temporal dependency than the complete dataset or the test data
(Fig. S9). The error or difference between the empirical variogram of the
prediction of the EFE with the test data was 0.4 (Fig. S9). The sum of the
points of the experimental semivariogram for the predicted soil CO,
efflux using the BCC was 0.5. The error or difference between the
empirical variogram of the prediction of the BCC with the test data was
0.05 and 8 times smaller than the error from the EFE (Fig. S9).
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3.3.4. Comparison of uncertainties and errors

From the models built using the training data, the predictions of the
soil CO;, efflux conditioned by the temperature of the test data (red dots
in Fig. 5a for the EFE and blue dots in Fig. 5b for the BCC) and its
associated uncertainty range were made (the gray area in Fig. 5a for the

EFE and the gray area in Fig. 5b for the BCC). The temporal distribution
pattern of the EFE prediction points is different from soil CO5 efflux
values from the test data (Fig. 5a). In contrast, the pattern of BCC pre-
diction points is closer to soil CO5 efflux values from the test data
(Fig. 5b). The prediction of soil COy efflux using the BCC method
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presents a total error of 7.61 % when compared to the test data (i.e., the
absolute sum of the blue dots in Fig. S6 divided by the total sum of soil
CO4 efflux from the test data), while the prediction using the EFE
method has a 15.22 % (i.e., the absolute sum of the red dots in Fig. S6
divided by the total sum of soil CO; efflux from the test data), or about a
50 % larger error than the BCC method. The total uncertainty of the EFE
method is about 1.4 times more than the BCC method (i.e., the sum of
the uncertainty range in Figs. S6a and S6b). The results show that the
errors and uncertainty ranges of the BCC method are substantially lower
than those of the EFE method (Fig. S6).

4. Discussion

Our results support the expectation that BCC is a superior approach
to model soil CO;y efflux only using temperature information than a
simple deterministic approach (i.e., EFE method). This commonly used
deterministic approach provides an apparent temperature-soil CO5
efflux response that does not accurately represent the actual dependency
relationship between these variables. The dependency relationship be-
tween soil COy efflux and temperature has commonly been used to
derive empirical response functions, estimate the temperature de-
pendency of soil CO5 efflux (i.e., Q1¢), and derive annual estimates of
soil CO; efflux based on sporadic measurements in time (Bahn et al.,
2010; Davidson et al., 2006). Although temperature is an essential
environmental driver for many underlying biophysical processes that
regulate soil COy efflux, its direct influence on this flux can only be
approximated by empirical models. This is because there are multiple
challenges to identifying the actual temperature-soil COy efflux de-
pendency relationship that includes belowground carbon allocation in
plants (Chen et al., 2011; Meeran et al., 2021), the influence of water on
soil CO4, diffusivity and rewetting of soils (Kim et al., 2012), or thermal
gradients in the soil (Graf et al., 2008; Tang et al., 2005; Vargas and
Allen, 2008c¢). It has been proposed that because of these challenges,
deterministic temperature response functions are limited in representing
the temporal variability of soil CO; efflux and predicting the effects of
climate change (Sierra, 2012; Subke and Bahn, 2010). Although we
advocate for increased complexity in models to capture the many
biogeochemical mechanisms involved (Abramoff et al., 2022; Sulman
et al., 2018), we propose that a shift from a deterministic to a proba-
bilistic approach should be explored for improving dependency re-
lationships in simple empirical modeling approaches.

This study demonstrates the limitations of an empirical deterministic
approach exemplified by a widely used exponential function (i.e., EFE)
to represent the apparent temperature-soil CO5 relationship and predict
how soil CO;, fluxes change over time. This empirical approach attempts
to describe the pairwise dependence of these variables but assumes that
the same univariate marginal distribution characterizes their behavior.
Our results show this is not the case (Fig. 1c); consequently, the EFE
violates this assumption and produces a deterministic output with lim-
itations to predict soil CO4 efflux (Fig. 5). The EFE model output gen-
erates a very strong spurious relationship between these variables that is
not observed with the original data (Fig. 5¢). A traditional explanation
has been that a simple empirical model representing the apparent
temperature-soil CO9 relationship may not be accurate because there are
confounding factors such as water pulses and changes in substrate
supply from plants to roots and mycorrhizae (Vargas et al., 2010; Vargas
and Allen, 2008a). The scientific literature has many examples of why
confounding factors (e.g., light, water, photosynthesis) challenge the
deterministic modeling of soil CO2 fluxes only based on temperature
(Davidson et al., 1998; Liu et al., 2006; Zhang et al., 2018), but this
simple deterministic approach is constantly used and usually over-
represents the influence of temperature in predicting terrestrial respi-
ration (Davidson et al., 2006; Murray-Tortarolo et al., 2022; Wei et al.,
2022).

We propose that the BCC is a promising approach to modeling the
actual temperature-soil CO2 relationship by combining information
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from the joint cumulative probability distribution function using a
copula with input from their temporal dependency. Our results
demonstrate that the joint cumulative probability distributions were
accurately approximated by the Bernstein polynomial and the Bernstein
copula (Fig. 3). The Bernstein copula showed a positive relationship
between the cumulative probability of soil CO; efflux and the cumula-
tive probability of soil temperature (Fig. 3d) and preserved the original
characteristics of the relationship (Figs. 2 and 5d). We highlight that the
BCC can represent non-linear and non-Gaussian relationships between
variables, which are more representative of real-world data (e.g., the
relationship between soil CO3 efflux and temperature).

We found that the probability density between the joint cumulative
probability of temperature and soil CO, efflux is not constant (Fig. 3d
and Fig. 4). These results raise questions about deterministic approaches
that predict specific soil CO; efflux rates given specific soil temperatures
(Fig. 5¢) and provide support for the concern of potential incorrect es-
timations of apparent temperature-soil CO5 relationships (Davidson
et al., 2006; Subke and Bahn, 2010). The BCC accurately reproduced the
temperature-soil CO; relationship by preserving the variability in their
joint cumulative probability distributions (Fig. 5d). We postulate that
the information on the joint probability distribution provides insights
about ranges of temperature and soil CO5 efflux of interest that can be
explored with manipulative experiments to understand the biophysical
processes that regulate this variability. For example, temperatures be-
tween 5 and 10° C showed the largest variability in the cumulative
probability distribution of soil CO; efflux, while there were more con-
strained values at temperatures between 15 and 20° C (Fig. 4). These
results highlight the importance of understanding the joint probability
distribution to describe dependence relationships and may prove rele-
vant to quantify and improve theoretical approaches such as the thermal
adaptation of microbial respiration to changes in temperature (Alster
et al., 2020; Bradford et al., 2008).

The BCC was able to properly show how soil CO; efflux varies in time
based only on temperature information. Our results show that the uni-
variate cumulative probability distribution of predicted soil CO5 efflux
using BCC was similar to the one of the test data (Fig. S7 and Fig. S8) and
is also capable of representing the temporal dependence (Fig. S9). In
contrast, the EFE could not describe the univariate cumulative proba-
bility distribution (Fig. S7 and Fig. S8) nor the temporal dependence of
soil COg efflux (Fig. S9). Reproducing the temporal dependence in time
series is essential to preserve the sequential information present in the
data. The BCC has an additional advantage as it captures patterns and
dependencies in the time series and the dynamics and relationships
between data points in time. Arguably, a model can reproduce the mean
and the probability distribution of the data but not necessarily the
temporal dependencies that provide interpretability of the model
output. Previous studies have analyzed the importance of evaluating
model outputs in the frequency domain to understand data-model dis-
agreements and provide insights into biophysical processes or environ-
mental events that may challenge model performance (Dietze et al.,
2011; Stoy et al., 2013; Vargas et al., 2010, 2018). Replicating temporal
dependence is a crucial aspect that is critical for constructing better
models, obtaining interpretability, and extracting relevant features from
time-varying data (e.g., seasonality, pulses). Overall, it enables us to
capture the data’s sequential pattern, and the BCC effectively uses it
with potential applications to model data relationships across diverse
scientific domains (Le et al., 2020; Vargas and Le, 2023).

The BCC approach has limitations and future potential. Its
complexity and the need for robust datasets for model training can pose
challenges, particularly regarding data availability and the computa-
tional resources required for global optimization methods. Moreover,
while the BCC offers improved precision over deterministic models, its
predictive power is still contingent on the quality and representativeness
of the input data. The BCC approach has substantially higher compu-
tational costs than the EFE for model construction and prediction.
Nevertheless, this computational cost can be overcome using
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representative subsampling techniques like the temporal Latin Hyper-
cube Sampling (Vargas and Le, 2023) combined with parallelization in
multiple processors, depending on the length of the training data.
Furthermore, the BBC approach should be tested with longer time series,
and across various ecosystems and weather conditions. This will help
evaluate its effectiveness across biomes and non-stationary conditions
such as precipitation pulses, which have a tendency to generate hot-
moments for greenhouse gas fluxes (Kim et al., 2012; Petrakis et al.,
2017). We highlight that the BCC approach can be extended to multi-
variate cases with several environmental variables to predict a set of
greenhouse gasses of interest, including CO3, CHy4, and N»O efflux. This
extension can be achieved using the vine copula (Czado and Nagler,
2022) and can be implemented to represent the spatial variability of soil
gas fluxes.

5. Conclusion

We conclude that the probabilistic method based on the Bernstein
copula (i.e., BCC) produces better precision and accuracy than the
deterministic method based on a commonly used exponential function
(i.e., EFE). The relevance of the BCC approach is that the dependency
relationship between soil CO; efflux and temperature is transformed
from the time domain to the probability domain, and this dependency
relationship is then modeled using the copula function and separated
from the univariate probability distributions. We highlight that soil CO,
efflux and temperature have different univariate marginal distributions
and, therefore, question deterministic approaches that assume the same
univariate distribution of two variables when analyzing pairwise de-
pendencies. Furthermore, the BCC reproduces the temporal dependence
function of soil CO; efflux (by including semivariogram information), a
characteristic often neglected by most modeling approaches, assuming
that the temporal variability is inherently described by analyzing pair-
wise dependencies. Ultimately, probabilistic methods have the potential
to accurately delineate dependency connections for soil CO5 efflux
modeling and in enhancing projections of the consequences of weather
variability and climate change.
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