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Beyond a deterministic representation of the temperature dependence of 
soil respiration 

Van Huong Le 1, Rodrigo Vargas *,1 

Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States of America   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We introduce the Bernstein copula- 
based cosimulation for modeling soil 
CO2 efflux. 

• The approach considers the joint prob
ability distribution and temporal 
dependence of soil CO2 efflux. 

• The method improves accuracy and 
precision for prediction purposes. 

• Probabilistic approaches hold promise 
for accurately representing dependency 
relationships.  
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A B S T R A C T   

Soil CO2 efflux represents a complex interplay of biological and physical processes that result in the production 
and transfer of CO2 from soils to the atmosphere. Temperature has been widely recognized as a critical factor 
regulating soil CO2 efflux and is commonly utilized in deterministic empirical models to predict this important 
flux for the carbon cycle. This study introduces the Bernstein copula-based cosimulation (BCC) as a data-driven 
probabilistic approach to model the temperature-soil CO2 efflux relationship. The BCC accounts for the joint 
probability distribution and temporal dependence of soil CO2 efflux, which are often overlooked in deterministic 
models. The BCC was implemented as a proof of concept using two years of data on soil CO2 efflux conditioned 
by soil temperature in a temperate forest. The BBC accurately reproduced the original probability distribution, 
temporal dependency, and temperature-soil CO2 efflux relationship. Our findings show that a deterministic 
method, such as the commonly employed exponential relationship between soil CO2 efflux and temperature, is 
limited for comprehensively capturing the intricate nature of the temperature-soil CO2 efflux relationship. This is 
due to the confounding and interacting effects of environmental drivers beyond temperature, which are not fully 
accounted for in such a deterministic approach. Furthermore, the BCC revealed that the probability density 
between the joint cumulative probability of temperature and soil CO2 efflux is not constant, which raises the 
concern that deterministic approaches introduce incorrect assumptions for estimating temperature-soil CO2 
relationship. In conclusion, we propose that probabilistic approaches hold promise for effectively depicting 
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dependency relationships for soil CO2 efflux modeling, and for improving predictions of the effects of weather 
variability and climate change.   

1. Introduction 

Soil CO2 efflux is a complex process that involves biological (e.g., 
plant and microbial respiration) and physical processes (e.g., diffusion, 
mass transport) that ultimately result in the production and transport of 
CO2 from soils to the atmosphere (Raich and Schlesinger, 1992; Ryan 
and Law, 2005). This flux at an estimated 87 ± 9 PgC y−1 is poorly 
constrained in the global terrestrial carbon cycle (Jian et al., 2022) and 
represents substantial uncertainty in ecosystem-process models (Luo 
et al., 2015; Sulman et al., 2018; Wei et al., 2022). 

Temperature has been recognized as a major control for soil CO2 
efflux and is widely used to model this flux (Bahn et al., 2010; Phillips 
et al., 2017; Tuomi et al., 2008). Therefore, rising temperatures are 
expected to stimulate soil CO2 efflux by accelerating autotrophic respi
ration rates and heterotrophic decomposition of the organic matter 
(Bond-Lamberty et al., 2018). This expectation is based on observations 
(Bradford et al., 2008) that corroborate the generalities of the temper
ature dependence of biochemical processes described mathematically in 
the late 19th century (Arrhenius, 1889; Van’t Hoff, 1899). However, the 
assumption by Arrhenius and van’t Hoff of constant temperature 
sensitivity at all temperatures is incorrect to model soil CO2 efflux in 
mesic (Curiel Yuste et al., 2004; Lloyd and Taylor, 1994) and especially 
in water-limited ecosystems (Almagro et al., 2009; Leon et al., 2014). 
This limitation has motivated the development of other deterministic 
empirical models by incorporating temperature-moisture relationships 
(Del Grosso et al., 2005; Orchard and Cook, 1983; Vargas et al., 2010), 
mechanistic approaches to integrate temperature-sensitive enzymatic 
processes with constraints of substrate supply (Davidson et al., 2012; 
Todd-Brown et al., 2012), or macromolecular rate theory (Alster et al., 
2020). Over time, the complexity of deterministic models for soil carbon 
dynamics and soil CO2 efflux has increased to capture the many 
biogeochemical mechanisms involved (Abramoff et al., 2022; Sulman 
et al., 2018). 

An alternative approach for predicting soil CO2 efflux is stochastic or 
probabilistic modeling. These approaches aim to understand a system’s 
behavior regarding its underlying probability distribution and make 
independent predictions based on this information. Probabilistic models 
are assumed to improve our understanding of the complex dynamics of 
soil CO2 efflux and its complex response to multiple environmental 
factors (e.g., warming, precipitation events, and compounding effects). 
Several studies have incorporated these principles to model soil CO2 
efflux in Mediterranean (Anjileli et al., 2019) and temperate (Daly et al., 
2008) ecosystems and at the global scale (Huang et al., 2021). Other 
studies have used these principles to predict and partition soil CO2 efflux 
(Zhou et al., 2010), and study the response to elevated CO2 (Gao et al., 
2020) or extreme heat events (Anjileli et al., 2021). Although there are 
fewer examples of probabilistic models when compared to deterministic 
models, there is an increasing interest in representing stochasticity for 
modeling soil organic matter dynamics (Waring et al., 2020). 

We propose that the temporal variability of soil CO2 efflux can be 
modeled based on its dependency on temperature using a probabilistic 
cosimulation approach. This study uses a copula approach based on 
probability theory (Sklar, 1959) to reproduce complex relationships 
between variables (Nelsen, 2006). Copulas are statistical tools that 
describe the dependence structure between random variables regardless 
of their marginal distributions. In a copula-based cosimulation, the 
marginal distribution function of each variable is modeled separately. 
Then, the copula linked to those individual distribution functions is 
modeled to capture their joint dependence. 

For this study, we apply the Bernstein copula-based cosimulation 
(BCC) method as it does not assume linearity or Gaussian distribution, 

which are characteristics of the relationship between temperature and 
soil CO2 efflux (Vázquez-Ramírez et al., 2023). Briefly, the BCC is based 
on stochastic realizations obtained by the global optimization method (i. 
e., differential evolution) where the objective functions are univariate 
probability distribution, dependency coefficients, and a semivariogram 
model (Le et al., 2020; Vázquez-Ramírez et al., 2023). This approach can 
simulate the behavior of systems characterized by multiple stochastic 
interdependent processes while reproducing the statistical properties 
and temporal dependency. We postulate that the BCC is a superior 
approach to model soil CO2 efflux because it incorporates information 
on the joint probability distribution and temporal dependence of this 
phenomenon that traditional deterministic methods ignore. To test this, 
the BCC was implemented as a proof of concept using information on soil 
CO2 efflux and soil temperature from a temperate forest. 

2. Methods 

Two approaches for modeling soil CO2 efflux based on soil temper
ature information are presented. The two approaches were implemented 
using dependency functions based on deterministic or probabilistic 
methods. The first approach is a deterministic method represented by 
the widely used exponential relationship between soil CO2 efflux and 
soil temperature, represented by an exponential function-based esti
mation (EFE; Lloyd and Taylor, 1994). The second approach is a prob
abilistic method represented by the BCC conditioned by temperature (Le 
et al., 2020). These dependency functions based on soil temperature 
were evaluated using publicly available information on soil CO2 efflux 
and temperature from a temperate forest (Vargas and Allen, 2008a, 
2008b; Vargas et al., 2010). 

2.1. Study site 

The study site is located at the University of California James San 
Jacinto Mountain Reserve, a UC Natural Reserve System field station. 
The Reserve is a mixed conifer-oak forest at 1640 m.a.s.l. in the San 
Jacinto Mountains, CA, USA (33◦ 48’ 30” N, 116◦ 46’ 40” W). Most 
precipitation occurs between November and April, with a mean annual 
rainfall of 640 mm and a mean air temperature of 10.3 ◦C. Measure
ments were performed at an area with mature woody vegetation with 
prominent individuals (DBH > 30 cm) of Quercus chrysolepis Leibem. 
(Canyon live oak), and Pinus ponderosa C. Lawson (Ponderosa Pine). Soil 
and fine root characteristics have been described in previous studies 
(Vargas and Allen, 2008a, 2008b). Soil bulk density was 0.9 g/cm3, and 
soil texture was 83 % sand, 10 % silt, and 7 % clay. Total soil carbon and 
nitrogen (0–16 cm depth) were 3.1 % (±0.5 s.d.) and 0.08 % (±0.02 s. 
d.), respectively. Fine root biomass (0–16 cm) was 18 g m−2, and fine 
root nitrogen was 0.58 % (±0.23 s.d.). 

Soil CO2 efflux measurements were performed using the flux 
gradient method described for the study site in multiple studies (Vargas 
et al., 2010; Vargas and Allen, 2008a, 2008b). Briefly, soil CO2 con
centrations (CARBOCAP, GMM 222, Vaisala, Helsinki, Finland), tem
perature, and moisture (Decagon, ECHO) were measured at three 
locations and three soil depths (2, 8, 16 cm). All measurements were 
recorded at 5-min intervals. Soil CO2 efflux was calculated using Fick’s 
first law of diffusion, and the diffusivity of soil CO2 in the soil profile was 
estimated using the Moldrup model (Moldrup et al., 1999). Vargas and 
Allen (2008b) reported an r2 of 0.94 between soil CO2 efflux measured 
using a soil chamber (Li-8100-102) connected to a soil respiration sys
tem (LI-8100, LI-COR Lincoln, NE, USA) and the values calculated from 
the gradient method. The soil CO2 efflux and temperature measurements 
used in this study are publicly available and have been incorporated into 
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the COSORE dataset (Bond-Lamberty et al., 2020). For the analyses 
presented in this study, data were aggregated into daily means of soil 
CO2 efflux from January 1st 2006 to December 31st, 2007. 

2.2. Modeling soil CO2 efflux 

The workflow for modeling soil CO2 efflux included three steps: (a) 
Input data, (b) Dependency function modeling, and (c) Prediction and 
Uncertainty (Supplementary Fig. S1). 

2.2.1. Input data 
The input data consisted of two variables X = {x1, x2, …, xn} and Y =

{
y1, y2, …, yn

}
representing time series with the same length of data n; X 

is the time series of the independent variable (i.e., temperature) and Y is 
the time series of the dependent variable (i.e., soil CO2 efflux). Then, 50 
% of the data were used to train the models (i.e., training data) and the 
remaining data (i.e., test data) to validate the output of the models. 
Training data was selected from odd days (Fig. S2) and test data from 
even days (Fig. S3) to preserve the original time series’ statistical 
properties and temporal dependence. Therefore, the performance of 
model outputs was tested on how well they represent the statistical 
properties and temporal dependence exhibited in the test dataset (Var
gas and Le, 2023). 

2.2.2. Dependency function modeling 
The deterministic approach (EFE) was represented by a widely used 

exponential function Y = a + ebX.This deterministic function was 
parameterized using the training data of temperature (X) and soil CO2 
efflux (Y), where a and b are the parameters to obtain (Lloyd and Taylor, 
1994). This equation is rooted in the first principles of thermodynamics 
and is widely used for modeling soil CO2 efflux because of its simplicity 
and broad applicability (Tuomi et al., 2008). We applied the lm and 
predict functions of the stats package in R (R Code Team, 2022), and the 
parameter interval= "predict" in the function predict to determine a 95 % 
confidence interval range to represent the uncertainty of the model and 
the model output (i.e., prediction). 

The probabilistic approach (BCC) consisted of: a) modeling the joint 
probability distribution through univariate probability distributions and 
the copula distribution approximated by the Bernstein polynomial and 
the Bernstein copula; and b) modeling the temporal dependency func
tion of the variable of interest Y using the semivariogram function (Le 
et al., 2020). According to Sklar’s theorem (Sklar, 1959), the joint 
probability distribution can be decomposed into the univariate proba
bility functions F(x), G(y), and the copula function C: H(x, y) =

C(F(x) , G(y) ). This means that rather than modeling the joint proba
bility function directly from a scatterplot representing the data of X and 
Y, its decomposition is modeled. To do this, the cumulative univariate 
distributions Fn(x) and Gn(y) and the empirical copula (i.e., Pseudo- 
observation) Cn(Fn(x) , Gn(y) ) were calculated. The distributions Fn(x)

and Gn(y) were modeled by the Bernstein polynomial, and the distri
bution Cn(Fn(x) , Gn(y) ) was approximated by the Bernstein copula (Le 
et al., 2020). Finally, the empirical variogram was calculated from the 
soil CO2 efflux values using the training data, and a semivariogram 
model (e.g., spherical, exponential, or Gaussian semivariogram) was 
fitted to preserve the information on the temporal dependency. 

2.2.3. Prediction & uncertainty 
Soil CO2 efflux conditioned by the temperature was predicted based 

on the two dependency functions (i.e., deterministic and probabilistic) 
described in the previous section. Both approaches were parameterized 
with the training data, and test data was used for prediction purposes. 
We calculated uncertainty for EFE by fitting the temperature of the test 
data to predict soil CO2 efflux and its corresponding 95 % confidence 
interval range. For the BCC method, one hundred simulations of soil CO2 
efflux using the temperature of the test data were predicted to calculate 

the probability and uncertainty (Le et al., 2020). Then, a global opti
mization method (i.e., differential evolution) was applied to obtain the 
soil CO2 efflux prediction with similar univariate behavior and temporal 
and joint dependence as the training data. The 95 % quartile range was 
predicted for the one hundred simulations to determine BCC’s uncer
tainty range. Finally, the predictions and uncertainties for EFE and BCC 
were compared against the soil CO2 efflux values from the test data. The 
algorithm is implemented using the RGEOSTAD tools (Díaz-Viera et al., 
2021) and is coded using the R software (R Code Team, 2022). 

3. Results 

3.1. Input data 

We analyzed two years of information on daily temperature [◦C] and 
soil CO2 efflux [μmol m−2 s−1] (Fig. 1a and b). The statistical properties 
of the complete dataset of temperature were: mean 10.9 ◦C, median 
9.5 ◦C, standard deviation 8.4 ◦C, minimum −1.8 ◦C, and maximum 
28.7 ◦C (Fig. 1a). The statistical properties of the temperature training 
data were: mean 10.9 ◦C, median 9.5 ◦C, standard deviation 8.5 ◦C, 
minimum −1.4 ◦C, and maximum 28.7 ◦C (Fig. S2a). The statistical 
properties of the temperature test data were: mean 10.9 ◦C, median 
9.6 ◦C, standard deviation 8.4 ◦C, minimum −1.8 ◦C, and maximum 
28.4 ◦C (Fig. S3a). No statistically significant differences existed be
tween the complete dataset, training data, or test data. 

The statistical properties of the complete dataset of soil CO2 efflux 
were: mean 1.1 μmol m−2 s−1, median 0.9 μmol m−2 s−1, standard de
viation 0.6 μmol m−2 s−1, minimum 0.2 μmol m−2 s−1, and maximum 
3.9 μmol m−2 s−1 (Fig. 1b). The statistical properties of the soil CO2 
efflux training data were: mean 1.1 μmol m−2 s−1, median 0.9 μmol m−2 

s−1, standard deviation 0.6 μmol m−2 s−1, minimum 0.2 μmol m−2 s−1, 
and maximum 3.2 μmol m−2 s−1 (Fig. S2b). The statistical properties of 
the soil CO2 efflux test data were: mean 1.1 μmol m−2 s−1, median 0.9 
μmol m−2 s−1, standard deviation 0.6 μmol m−2 s−1, minimum 0.2 μmol 
m−2 s−1, and maximum 3.9 μmol m−2 s−1(Fig. S3b). Similarly, there 
were no statistically significant differences between the complete 
dataset, training data, or test data. 

The following statistics represent the relationship between soil CO2 
efflux and temperature: Pearson = 0.69, Spearman = 0.71, Kendall =
0.52 (Fig. 1c). These results are identical for the complete dataset, 
training, and test data. An experimental semivariogram was used to 
explore and represented the temporal dependency of soil CO2 efflux. In 
all cases (i.e., complete dataset, training, and test data), the sum of the 
points in the experimental semivariogram was equal to 0.5, demon
strating that the temporal dependencies of the time series were similar 
(Fig. S4a, b, and c). 

3.2. Dependency function modeling 

3.2.1. Using a deterministic approach 
An exponential function (EFE method) was fitted using the training 

data obtaining the following equation: CO2 efflux = 0.598 +

e0.044*Temperature with an adjusted R2 = 0.5 and a root mean square error 
(RMSE) of 0.36 (Fig. 2). In addition, a 95 % confidence interval was 
estimated for this model, which was then used to quantify the prediction 
uncertainty (Fig. 2). 

3.2.2. Using a probabilistic approach 
The first step to model soil CO2 efflux with the Bernstein copula (BCC 

method) was to decompose the empirical bivariate joint probability 
distribution (Fig. 3a) into the empirical univariate probability distri
butions (black dots in Fig. 3b and c) and the empirical copula function 
(black dots in Fig. 3d). Then, the empirical univariate distributions were 
approximated by the Bernstein polynomial (blue line in Fig. 3b and c), 
and the empirical copula function was approximated using the Bernstein 
copula (blue lines in Fig. 3d). The cumulative probability distribution of 
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soil CO2 efflux conditioned by temperature was not constant (Fig. 3d); 
where at a given soil temperature, a range of different soil CO2 efflux 
values was possible, and these ranges varied across temperatures. To 
illustrate this, we show the cumulative probability distribution of soil 
CO2 efflux for categories of soil temperature from 0 to 25 ◦C (Fig. 4). 
These results emphasize that the magnitude and distribution of soil CO2 
efflux were variable across different soil temperature ranges. In contrast, 
the EFE method predicted a deterministic value of soil CO2 efflux for a 
given range of temperatures (Fig. 2). 

Once the empirical univariate probability distribution and the 
empirical copula functions were modeled, the joint probability distri
bution of soil temperature and soil CO2 efflux was fully constructed. The 
Bernstein polynomials and the Bernstein copula approximate empirical 
marginal functions and empirical copulas very well (Fig. 3b, c, and d). 
Therefore, the joint distribution function between temperature and soil 
CO2 efflux was fully constructed. According to Sklar’s theorem (Sklar, 
1959), the dependency relationship between the variables X and Y is 
entirely contained by the copula function Cn(Fn(x) , Gn(y) ) (Fig. 3d) and 

Fig. 1. Daily time series of (a) temperature, (b) soil CO2 efflux, and the (c) bivariate relationship between them. The mean is represented in red, and the median in 
blue in panels (a) and (b). Panel (c) includes the univariate marginal distribution of each variable. 

Fig. 2. Deterministic dependency model based on the exponential relationship between temperature and soil CO2 efflux. The red line was generated by fitting an 
exponential model using the training data, and the gray dots represent the 95 % confidence intervals. 
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this dependency does not depend on the marginal functions Fn(x), Gn(y)

(Fig. 3b and c). 
Finally, a semivariogram model was fitted to the experimental 

semivariogram for the training data of soil CO2 efflux where the sum of 
the points was equal to 0.5 (Fig. S4b). A spherical variogram model was 
obtained with a nugget of 0.003, a sill of 0.075, and a temporal corre
lation range of 24 days (Fig. S5). This fitted variogram model had a sum 
of squared error (SSE) of 0.002 compared to the experimental semi
variogram from the training dataset. 

3.3. Prediction & uncertainty 

3.3.1. Comparison of univariate statistical properties 
The statistical properties of the predicted soil CO2 efflux using the 

deterministic approach (i.e., EFE) were: mean 1.0 μmol m−2 s−1, median 
0.9 μmol m−2 s−1, standard deviation 0.4 μmol m−2 s−1, minimum 0.6 
μmol m−2 s−1, and maximum 2.1 μmol m−2 s−1 (red dots in Fig. 5a). The 
residuals show that the deterministic model underestimated soil CO2 
efflux during the growing season of the first year and overestimated soil 
CO2 efflux for most of the mid-to-late part of the second year (Fig. S6a). 
The statistical properties of the predicted soil CO2 efflux using the 
probabilistic approach (i.e., BCC) were: mean 1.1 μmol m−2 s−1, median 
0.9 μmol m−2 s−1, standard deviation 0.6 μmol m−2 s−1, minimum 0.3 
μmol m−2 s−1, and maximum 2.9 μmol m−2 s−1 (blue dots in Fig. 5b). 
The residuals show that the probabilistic approach properly represents 
the magnitudes and patterns of soil CO2 efflux (Fig. S6b). Furthermore, 
the p-values of the Kolmogorov-Smirnov test for the comparison of the 
predictions with the test data (black dots in Fig. S7 and histogram- 

boxplot in Fig. S8a) were 0 for the EFE (red triangle in Fig. S7 and 
histogram-boxplot in Fig. S8b) and 1 for the BCC (blue squares in Fig. S7 
and histogram-boxplot in Fig. S8c). This shows that the probability 
distribution of the BCC prediction matches that of the test data, while 
the probability distribution of the EFE prediction differs significantly 
from the test data. 

3.3.2. Comparison of dependency relationship 
The dependency relationship between predicted soil CO2 efflux and 

temperature (using the EFE) was represented by Pearson = 0.99, 
Spearman = 1, and Kendall = 1; suggesting a spurious relationship as a 
result of the deterministic nature of the approach (Fig. 5c). The de
pendency relationship between predicted soil CO2 efflux and tempera
ture (using the BCC) was represented by Pearson = 0.7, Spearman =
0.71, and Kendall = 0.51; preserving the dependency relationship and 
scatter plot pattern of the complete dataset, training, or test data 
(Fig. 5d). 

3.3.3. Comparison of temporal dependence or variability 
The sum of the points of the experimental semivariogram for the 

predicted soil CO2 efflux using the EFE was 0.1, demonstrating a 
different temporal dependency than the complete dataset or the test data 
(Fig. S9). The error or difference between the empirical variogram of the 
prediction of the EFE with the test data was 0.4 (Fig. S9). The sum of the 
points of the experimental semivariogram for the predicted soil CO2 
efflux using the BCC was 0.5. The error or difference between the 
empirical variogram of the prediction of the BCC with the test data was 
0.05 and 8 times smaller than the error from the EFE (Fig. S9). 

Fig. 3. Dependency model based on the probability distribution function via copula: (a) scatterplot between temperature and soil CO2 efflux; (b) univariate dis
tribution function of soil CO2 efflux approximated by the Bernstein polynomial (blue line); (c) univariate distribution function of temperature approximated by the 
Bernstein polynomial (blue line); and (d) copula function approximated by Bernstein copula (blue contour) in copula space (pseudo-observation). 
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3.3.4. Comparison of uncertainties and errors 
From the models built using the training data, the predictions of the 

soil CO2 efflux conditioned by the temperature of the test data (red dots 
in Fig. 5a for the EFE and blue dots in Fig. 5b for the BCC) and its 
associated uncertainty range were made (the gray area in Fig. 5a for the 

EFE and the gray area in Fig. 5b for the BCC). The temporal distribution 
pattern of the EFE prediction points is different from soil CO2 efflux 
values from the test data (Fig. 5a). In contrast, the pattern of BCC pre
diction points is closer to soil CO2 efflux values from the test data 
(Fig. 5b). The prediction of soil CO2 efflux using the BCC method 

Fig. 4. Violin plots between the conditioned temperature and the cumulative probability distribution of soil CO2 efflux predicted using the BCC. This figure 
demonstrates that the probability of the soil CO2 efflux value is not constant for a given temperature and complements the information presented in Fig. 3b, c, and d. 

Fig. 5. Temporal distribution of CO2 efflux prediction conditioned by temperature using: (a) an EFE as a deterministic approach (red dots), and (b) BCC as a 
stochastic approach (blue dots). The black dots represent the independent test data and the gray dots in both the associated uncertainty for each one of the ap
proaches. Scatterplots between temperature (from test data) and the soil CO2 efflux predictions from EFE (c) and BCC (d). 
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presents a total error of 7.61 % when compared to the test data (i.e., the 
absolute sum of the blue dots in Fig. S6 divided by the total sum of soil 
CO2 efflux from the test data), while the prediction using the EFE 
method has a 15.22 % (i.e., the absolute sum of the red dots in Fig. S6 
divided by the total sum of soil CO2 efflux from the test data), or about a 
50 % larger error than the BCC method. The total uncertainty of the EFE 
method is about 1.4 times more than the BCC method (i.e., the sum of 
the uncertainty range in Figs. S6a and S6b). The results show that the 
errors and uncertainty ranges of the BCC method are substantially lower 
than those of the EFE method (Fig. S6). 

4. Discussion 

Our results support the expectation that BCC is a superior approach 
to model soil CO2 efflux only using temperature information than a 
simple deterministic approach (i.e., EFE method). This commonly used 
deterministic approach provides an apparent temperature-soil CO2 
efflux response that does not accurately represent the actual dependency 
relationship between these variables. The dependency relationship be
tween soil CO2 efflux and temperature has commonly been used to 
derive empirical response functions, estimate the temperature de
pendency of soil CO2 efflux (i.e., Q10), and derive annual estimates of 
soil CO2 efflux based on sporadic measurements in time (Bahn et al., 
2010; Davidson et al., 2006). Although temperature is an essential 
environmental driver for many underlying biophysical processes that 
regulate soil CO2 efflux, its direct influence on this flux can only be 
approximated by empirical models. This is because there are multiple 
challenges to identifying the actual temperature-soil CO2 efflux de
pendency relationship that includes belowground carbon allocation in 
plants (Chen et al., 2011; Meeran et al., 2021), the influence of water on 
soil CO2 diffusivity and rewetting of soils (Kim et al., 2012), or thermal 
gradients in the soil (Graf et al., 2008; Tang et al., 2005; Vargas and 
Allen, 2008c). It has been proposed that because of these challenges, 
deterministic temperature response functions are limited in representing 
the temporal variability of soil CO2 efflux and predicting the effects of 
climate change (Sierra, 2012; Subke and Bahn, 2010). Although we 
advocate for increased complexity in models to capture the many 
biogeochemical mechanisms involved (Abramoff et al., 2022; Sulman 
et al., 2018), we propose that a shift from a deterministic to a proba
bilistic approach should be explored for improving dependency re
lationships in simple empirical modeling approaches. 

This study demonstrates the limitations of an empirical deterministic 
approach exemplified by a widely used exponential function (i.e., EFE) 
to represent the apparent temperature-soil CO2 relationship and predict 
how soil CO2 fluxes change over time. This empirical approach attempts 
to describe the pairwise dependence of these variables but assumes that 
the same univariate marginal distribution characterizes their behavior. 
Our results show this is not the case (Fig. 1c); consequently, the EFE 
violates this assumption and produces a deterministic output with lim
itations to predict soil CO2 efflux (Fig. 5). The EFE model output gen
erates a very strong spurious relationship between these variables that is 
not observed with the original data (Fig. 5c). A traditional explanation 
has been that a simple empirical model representing the apparent 
temperature-soil CO2 relationship may not be accurate because there are 
confounding factors such as water pulses and changes in substrate 
supply from plants to roots and mycorrhizae (Vargas et al., 2010; Vargas 
and Allen, 2008a). The scientific literature has many examples of why 
confounding factors (e.g., light, water, photosynthesis) challenge the 
deterministic modeling of soil CO2 fluxes only based on temperature 
(Davidson et al., 1998; Liu et al., 2006; Zhang et al., 2018), but this 
simple deterministic approach is constantly used and usually over
represents the influence of temperature in predicting terrestrial respi
ration (Davidson et al., 2006; Murray-Tortarolo et al., 2022; Wei et al., 
2022). 

We propose that the BCC is a promising approach to modeling the 
actual temperature-soil CO2 relationship by combining information 

from the joint cumulative probability distribution function using a 
copula with input from their temporal dependency. Our results 
demonstrate that the joint cumulative probability distributions were 
accurately approximated by the Bernstein polynomial and the Bernstein 
copula (Fig. 3). The Bernstein copula showed a positive relationship 
between the cumulative probability of soil CO2 efflux and the cumula
tive probability of soil temperature (Fig. 3d) and preserved the original 
characteristics of the relationship (Figs. 2 and 5d). We highlight that the 
BCC can represent non-linear and non-Gaussian relationships between 
variables, which are more representative of real-world data (e.g., the 
relationship between soil CO2 efflux and temperature). 

We found that the probability density between the joint cumulative 
probability of temperature and soil CO2 efflux is not constant (Fig. 3d 
and Fig. 4). These results raise questions about deterministic approaches 
that predict specific soil CO2 efflux rates given specific soil temperatures 
(Fig. 5c) and provide support for the concern of potential incorrect es
timations of apparent temperature-soil CO2 relationships (Davidson 
et al., 2006; Subke and Bahn, 2010). The BCC accurately reproduced the 
temperature-soil CO2 relationship by preserving the variability in their 
joint cumulative probability distributions (Fig. 5d). We postulate that 
the information on the joint probability distribution provides insights 
about ranges of temperature and soil CO2 efflux of interest that can be 
explored with manipulative experiments to understand the biophysical 
processes that regulate this variability. For example, temperatures be
tween 5 and 10o C showed the largest variability in the cumulative 
probability distribution of soil CO2 efflux, while there were more con
strained values at temperatures between 15 and 20o C (Fig. 4). These 
results highlight the importance of understanding the joint probability 
distribution to describe dependence relationships and may prove rele
vant to quantify and improve theoretical approaches such as the thermal 
adaptation of microbial respiration to changes in temperature (Alster 
et al., 2020; Bradford et al., 2008). 

The BCC was able to properly show how soil CO2 efflux varies in time 
based only on temperature information. Our results show that the uni
variate cumulative probability distribution of predicted soil CO2 efflux 
using BCC was similar to the one of the test data (Fig. S7 and Fig. S8) and 
is also capable of representing the temporal dependence (Fig. S9). In 
contrast, the EFE could not describe the univariate cumulative proba
bility distribution (Fig. S7 and Fig. S8) nor the temporal dependence of 
soil CO2 efflux (Fig. S9). Reproducing the temporal dependence in time 
series is essential to preserve the sequential information present in the 
data. The BCC has an additional advantage as it captures patterns and 
dependencies in the time series and the dynamics and relationships 
between data points in time. Arguably, a model can reproduce the mean 
and the probability distribution of the data but not necessarily the 
temporal dependencies that provide interpretability of the model 
output. Previous studies have analyzed the importance of evaluating 
model outputs in the frequency domain to understand data-model dis
agreements and provide insights into biophysical processes or environ
mental events that may challenge model performance (Dietze et al., 
2011; Stoy et al., 2013; Vargas et al., 2010, 2018). Replicating temporal 
dependence is a crucial aspect that is critical for constructing better 
models, obtaining interpretability, and extracting relevant features from 
time-varying data (e.g., seasonality, pulses). Overall, it enables us to 
capture the data’s sequential pattern, and the BCC effectively uses it 
with potential applications to model data relationships across diverse 
scientific domains (Le et al., 2020; Vargas and Le, 2023). 

The BCC approach has limitations and future potential. Its 
complexity and the need for robust datasets for model training can pose 
challenges, particularly regarding data availability and the computa
tional resources required for global optimization methods. Moreover, 
while the BCC offers improved precision over deterministic models, its 
predictive power is still contingent on the quality and representativeness 
of the input data. The BCC approach has substantially higher compu
tational costs than the EFE for model construction and prediction. 
Nevertheless, this computational cost can be overcome using 
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representative subsampling techniques like the temporal Latin Hyper
cube Sampling (Vargas and Le, 2023) combined with parallelization in 
multiple processors, depending on the length of the training data. 
Furthermore, the BBC approach should be tested with longer time series, 
and across various ecosystems and weather conditions. This will help 
evaluate its effectiveness across biomes and non-stationary conditions 
such as precipitation pulses, which have a tendency to generate hot- 
moments for greenhouse gas fluxes (Kim et al., 2012; Petrakis et al., 
2017). We highlight that the BCC approach can be extended to multi
variate cases with several environmental variables to predict a set of 
greenhouse gasses of interest, including CO2, CH4, and N2O efflux. This 
extension can be achieved using the vine copula (Czado and Nagler, 
2022) and can be implemented to represent the spatial variability of soil 
gas fluxes. 

5. Conclusion 

We conclude that the probabilistic method based on the Bernstein 
copula (i.e., BCC) produces better precision and accuracy than the 
deterministic method based on a commonly used exponential function 
(i.e., EFE). The relevance of the BCC approach is that the dependency 
relationship between soil CO2 efflux and temperature is transformed 
from the time domain to the probability domain, and this dependency 
relationship is then modeled using the copula function and separated 
from the univariate probability distributions. We highlight that soil CO2 
efflux and temperature have different univariate marginal distributions 
and, therefore, question deterministic approaches that assume the same 
univariate distribution of two variables when analyzing pairwise de
pendencies. Furthermore, the BCC reproduces the temporal dependence 
function of soil CO2 efflux (by including semivariogram information), a 
characteristic often neglected by most modeling approaches, assuming 
that the temporal variability is inherently described by analyzing pair
wise dependencies. Ultimately, probabilistic methods have the potential 
to accurately delineate dependency connections for soil CO2 efflux 
modeling and in enhancing projections of the consequences of weather 
variability and climate change. 
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Wanek, W., Bahn, M., 2021. Warming and elevated CO2 intensify drought and 
recovery responses of grassland carbon allocation to soil respiration. Glob. Chang. 
Biol. 27 (14), 3230–3243. 

Moldrup, P., Olesen, T., Yamaguchi, T., Schjonning, P., Rolston, D.E., 1999. Modeling 
diffusion and reaction in soils. IX. The bucking-ham-Burdine-Campbell equation for 
gas diffusivity in undisturbed soil. Soil Sci. 164 (8), 542–551. 

Murray-Tortarolo, G., Poulter, B., Vargas, R., Hayes, D., Michalak, A.M., Williams, C., 
Windham-Myers, L., Wang, J.A., Wickland, K.P., Butman, D., Tian, H., Sitch, S., 
Friedlingstein, P., O’Sullivan, M., Briggs, P., Arora, V., Lombardozzi, D., Jain, A.K., 
Yuan, W., Kurz, W., 2022. A process-model perspective on recent changes in the 
carbon cycle of North America. J. Geophys. Res. Biogeosci. 127 (9), 
e2022JG006904. 

Nelsen, R.B., 2006. An Introduction to Copulas. Springer, New York.  
Orchard, V.A., Cook, F.J., 1983. Relationship between soil respiration and soil moisture. 

Soil Biol. Biochem. 15 (4), 447–453. 
Petrakis, S., Seyfferth, A., Kan, J., Inamdar, S., Vargas, R., 2017. Influence of 

experimental extreme water pulses on greenhouse gas emissions from soils. 
Biogeochemistry 133, 147–164. 

Phillips, C.L., Bond-Lamberty, B., Desai, A.R., Lavoie, M., Risk, D., Tang, J.W., Todd- 
Brown, K., Vargas, R., 2017. The value of soil respiration measurements for 
interpreting and modeling terrestrial carbon cycling. Plant Soil 413 (1–2), 1–25. 

R Code Team, 2022. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria.  

Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration 
and its relationship to vegetation and climate. Tellus B: Chem. Phys. Meteorol. 44 
(2), 81–99. 

Ryan, M.G., Law, B.E., 2005. Interpreting, measuring, and modeling soil respiration. 
Biogeochemistry 73 (1), 3–27. 

Sierra, C.A., 2012. Temperature sensitivity of organic matter decomposition in the 
Arrhenius equation: some theoretical considerations. Biogeochemistry 108 (1), 1–15. 
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