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Abstract

Reconstructing images from the Event Horizon Telescope (EHT) observations of M87*, the supermassive black
hole at the center of the galaxy M87, depends on a prior to impose desired image statistics. However, given the
impossibility of directly observing black holes, there is no clear choice for a prior. We present a framework for
flexibly designing a range of priors, each bringing different biases to the image reconstruction. These priors can be
weak (e.g., impose only basic natural-image statistics) or strong (e.g., impose assumptions of black hole structure).
Our framework uses Bayesian inference with score-based priors, which are data-driven priors arising from a deep
generative model that can learn complicated image distributions. Using our Bayesian imaging approach with
sophisticated data-driven priors, we can assess how visual features and uncertainty of reconstructed images change
depending on the prior. In addition to simulated data, we image the real EHT M87* data and discuss how recovered
features are influenced by the choice of prior.

Unified Astronomy Thesaurus concepts: Very long baseline interferometry (1769); Event horizons (479);
Supermassive black holes (1663); Algorithms (1883); Astronomy image processing (2306); Prior distribution
(1927); Posterior distribution (1926)

1. Introduction

In 2019, the Event Horizon Telescope (EHT) Collaboration
obtained the first picture of M87* through computational
imaging methods (Event Horizon Telescope Collaboration
et al. 2019a, 2019d, 2019f). The published images gave
humans a glimpse of the shadow cast by the supermassive
black hole (J.-P. Luminet 1979; H. Falcke et al. 2000; R.-S. Lu
et al. 2014) in the galaxy M87 based on data that EHT
telescopes had collected in 2017 April (Event Horizon
Telescope Collaboration et al. 2019b, 2019c), and more recent
images showed the persistence of the shadow a year later
(K. Akiyama et al. 2024). However, these images necessarily
incorporated imaging assumptions that were independent of
telescope data. Because measurements obtained from very long
baseline interferometry (VLBI; P. H. van Cittert 1934;
A. R. Thompson et al. 2017) with EHT telescopes are
corrupted and limited in number, infinitely many images—
many of them implausible and not interpretable—would agree
with a given set of measurements. Therefore, reconstructing an
image from VLBI data requires assumptions about plausible
image statistics in order to constrain the space of possible
images (Event Horizon Telescope Collaboration et al. 2019d).

Imaging assumptions can be formalized as a prior, or a
probability distribution of images that are acceptable regardless of
observations (J. A. Scales & L. Tenorio 2001). More formally, we
define a prior as a distribution of images x with a probability
density function p(x). In Bayesian inference the prior helps
determine the image posterior p(x|y) given observations y.
However, designing a prior is not a straightforward task,
especially considering the absence of true images of black holes.

We address this problem with a principled strategy: we collect a
range of priors that each impose different visual biases and plug
these priors into a Bayesian imaging algorithm along with EHT
VLBI data. Whereas the EHT Collaboration explored different
imaging assumptions via the use of different imaging pipelines
(e.g., CLEAN (J. Högbom 1974; U. Schwarz 1978;
B. Clark 1980; F. Schwab 1984; T. Cornwell et al. 1999;
M. Shepherd 2011; H. Müller & A. Lobanov 2023) and
regularized maximum likelihood (RML) methods (A. A. Chael
et al. 2016; K. L. Bouman et al. 2016; K. Akiyama et al. 2019),
we explore different priors within the same imaging pipeline. Our
imaging approach allows us to assess how visual characteristics
and uncertainty, as quantified through a Bayesian posterior, vary
with the choice of prior.
An aim of our method is to easily move along the spectrum

between strong constraints and weak constraints on the image.
On one side of the spectrum lie model-fitting strategies, which
find the parameters of an underlying geometric (Event Horizon
Telescope Collaboration et al. 2019f; K. Nalewajko et al. 2020;
F. Vincent et al. 2021; H. Sun et al. 2022; W. Lockhart &
S. E. Gralla 2022), physical (K. Gebhardt et al. 2011;
J. L. Walsh et al. 2013; R. Nemmen 2019; Event Horizon
Telescope Collaboration et al. 2019e; T. Kawashima et al.
2021; F. Yuan et al. 2022), or statistical (L. Medeiros et al.
2023) model that best match the observations. On the other side
lie traditional imaging approaches using weak regularizers like
total variation (K. Akiyama et al. 2017; K. Kuramochi et al.
2018) and maximum entropy (R. Narayan & R. Nityana-
nda 1986). However, each side has its own limitations: model
fitting prevents discovering new features that cannot be
explained by the assumed model, whereas traditional regular-
izers struggle to produce visually rich images. This motivates a
method for imaging under a diverse array of priors, ranging
from those akin to model fitting (e.g., by assuming black hole
structure) to those similar to weak regularizers (e.g., by
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assuming basic properties of natural images). One can in
principle obtain different priors by changing the regularization
function (H. Müller et al. 2023) or tuning regularization
parameters (Event Horizon Telescope Collaboration et al.
2019d), but it is impractical to hand-design a regularizer for
every desired prior.

A promising avenue is to use a data-driven prior that is fit to
a training set of images with the desired statistics. Parameteriz-
ing the data-driven prior to be expressive enough is crucial. For
example, principal component analysis offers a simple
probabilistic model of images, but it has been shown to not
accurately express complicated image distributions (B. T. Feng
et al. 2023). We choose to parameterize the prior by a score-
based diffusion model (score-based prior), which has been
demonstrated as a powerful deep generative model capable of
modeling a variety of image probability distributions (J. Ho
et al. 2020; P. Dhariwal & A. Nichol 2021; Y. Song et al.
2021b), no matter how simple or complicated. That is, given a
desired image prior p(x), it can be assumed that the learned
prior pθ(x) with parameters θ trained on samples from p(x)
satisfies pθ(x)≈ p(x) (B. T. Feng et al. 2023).

With score-based priors, we achieve a collection of M87*

images that all fit the observed data but differ in certain visual
characteristics. Specifically, we trained a score-based prior on
each of the following data sets: CIFAR-10 (A. Krizhevsky &
G. Hinton 2009; generic natural images), general relativistic
magnetohydrodynamic (GRMHD) simulations (G. N. Wong
et al. 2022), radially inefficient accretion flow (RIAF)
simulations (A. E. Broderick et al. 2011), and CelebA (Z. Liu
et al. 2015; celebrity faces). We use a Bayesian imaging
technique to apply each prior to the M87* observations,
resulting in a collection of image posteriors. Each posterior is a
probability distribution of images conditioned on the M87* data
but incorporating a different prior. The visual biases of images
from different posteriors are strikingly different, yet the images
share structure that is prior invariant, such as the ring shape and
brightness asymmetry. We thus present two contributions
based on our results: (1) a collection of possible M87* images
that humans can selectively interpret based on their trust of the
assumed biases, and (2) analysis of which extracted black hole
features are robust to the prior and can be reliably used in
scientific analysis.

In this manuscript, we first describe relevant background in
Section 2 and our Bayesian imaging method involving score-
based priors in Section 3. In Section 4, we validate the imaging
approach on simulated data using a collection of score-based
priors ranging from weak biases (e.g., a prior trained on generic
natural images) to strong biases (e.g., a prior trained on RIAF
images). In Section 5, we present image posteriors of M87*

based on the same collection of priors. Next, in Section 6, we
analyze the influence of the prior on characteristic ring features,
including diameter, width, and orientation, by performing tests
on both the simulated-data and M87* images. Finally, in
Section 7, we summarize our findings and conclude that our
proposed imaging strategy allows one to define any collection
of priors and analyze their effect on reconstructed images.

2. Background

2.1. Bayesian Imaging

Given measurements y= f(x∗), where f is a known forward
model and x∗ is an unknown source image, we would like to

recover an image x such that f(x)≈ y. However, when y is
sparse and corrupted, there is inherent uncertainty in the inverse
problem of finding x (J. A. Scales & L. Tenorio 2001).
Bayesian imaging accounts for this uncertainty by modeling a
probability distribution known as the posterior, or p(x|y).
According to Bayes’s rule, the log probability of an image
under the posterior is given by

( ∣ ) ( ∣ ) ( ) ( )= + +x y y x xp p plog log log const. 1

We refer to p(y|x) as the measurement likelihood, or simply
likelihood, and we refer to p(x) as the prior. In this work, the
posterior is based on a forward model for interferometric data
and a score-based prior.

2.2. Score-based Priors

A score-based diffusion model is a deep generative model
that learns to sample from an image distribution (J. Sohl-Dic-
kstein et al. 2015; J. Ho et al. 2020; Y. Song et al. 2021b). We
refer to its generative image distribution as a score-based prior
and denote it as pθ, where θ are the learned parameters. Given
training images from a target prior pdata, the diffusion model is
trained so that pθ≈ pdata.
Many methods have been developed to solve inverse problems

with a pretrained diffusion model (A. Jalal et al. 2021; J. Choi
et al. 2021; A. Adam et al. 2022; A. Graikos et al. 2022; B. Kawar
et al. 2022; H. Chung & J. C. Ye 2022; H. Chung et al.
2022a, 2022b, 2023; Y. Song et al. 2022; J. Song et al. 2023;
M. Mardani et al. 2023; N. Dia et al. 2023). However, these
methods typically produce a conditional distribution that does not
correspond to an exact posterior. Since we instead prioritize
posterior estimation, we turn to a more accurate approach that
approximates the posterior through variational inference with a
stand-alone score-based prior (B. T. Feng & K. L. Bouman 2023;
B. T. Feng et al. 2023).
The crucial benefit of a score-based diffusion model is that it

allows for computing image probabilities under pθ (Y. Song
et al. 2021b). That is, given any image x, we can compute

( )q xplog through an analytical, differentiable formula. To
sample from a posterior whose prior is a score-based prior, we
can use any posterior sampling approach that requires the value
or gradient of the posterior log density.
While (·)qplog has been used for posterior sampling

(B. T. Feng et al. 2023), the function is slow to compute and
only feasible for images with at most 32× 32 pixels. We
therefore appeal to a recently proposed surrogate score-based
prior that is more computationally efficient (B. T. Feng &
K. L. Bouman 2023). The surrogate score-based prior is based on
the evidence lower bound (ELBO) bθ( · ) of a score-based prior.
Instead of evaluating ( )q xplog , we evaluate ( ) ( )q qx xb plog as
the surrogate log density. Please refer to Appendix C for details
about score-based diffusion models, including the formulae for

(·)qplog and bθ( · ).

2.3. EHT Measurements

The EHT performs VLBI with a global array of radio
telescopes. Each pair of telescopes i, j, known as a baseline,
provides a Fourier measurement called a visibility vij (P. H. van
Cittert 1934; F. Zernike 1938; A. R. Thompson et al. 2017).
However, the baselines only sparsely sample the complex 2D
Fourier plane, or (u,v) space. Moreover, the visibilities are
affected by thermal noise, station-dependent gain errors, and
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station-dependent phase errors (Event Horizon Telescope
Collaboration et al. 2019c).

To overcome station-dependent errors, we use robust data
products known as closure quantities. A closure phase
(R. Jennison 1958) is given by a triplet of telescopes i, j, k
and computed as ( ) v v vij jk ki . A log closure amplitude
(R. Twiss et al. 1960) is given by a combination of four

telescopes i, j, k, ℓ and computed as ( )∣ ∣∣ ∣
∣ ∣∣ ∣

log
v v

v v
ij kℓ

ik jℓ
. We denote

the set of all linearly independent observed closure phases as
Î y N

cp
cp and that of log closure amplitudes as

Î y N
logca

logca. In the case of visibilities with a high signal-
to-noise ratio (i.e., SNR> 1), closure phases and log closure
amplitudes approximately experience mean-zero Gaussian
thermal noise (A. E. Rogers et al. 1995; A. E. Broderick &
D. W. Pesce 2020; L. Blackburn et al. 2020) with standard
deviations s Î N

cp cp and s Î N
logca logca, respectively. We

assume the high-SNR setting. Conditioned on an image x, the
measurement distribution can be modeled as Gaussian with log
likelihoods

( ∣ ) ( )

( ∣ ) ( ) ( )

s

s

=- -

=- -

y x f x y

y x f x y

p

p

log
1

2
and

log
1

2
, 2

cp
cp
2 cp cp 2

2

logca
logca
2 logca logca 2

2

 

 

where fcp and flogca are nonlinear forward models. We note
that the Gaussian noise is not purely (statistically) independent,

but it is approximately independent under high-SNR
visibilities or can be made independent under a linear
transformation (A. E. Broderick & D. W. Pesce 2020; L. Bla-
ckburn et al. 2020; P. Arras et al. 2022). Please refer to
Appendix D for details about interferometric data products and
their forward models.

It is possible to use the same imaging algorithm with
visibility amplitudes instead of log closure amplitudes.
Visibility amplitudes, which have been used for other imaging
results (Event Horizon Telescope Collaboration et al. 2019d;
L. Medeiros et al. 2023), are more constraining than closure
amplitudes, but they require calibration according to assump-
tions such as station-dependent systematic noise. In this work,
we focus on using log closure amplitudes in order to avoid
tuning the calibration assumptions. The original M87* work
includes reconstructions from both types of data products for
reference (Event Horizon Telescope Collaboration et al.
2019d).

3. Method

Here we describe how to sample from an image posterior given
EHT measurements and a score-based prior. The method is that
of B. T. Feng & K. L. Bouman (2023) with a measurement
likelihood based on closure quantities (Equation (2)). We
formulate the following posterior log density:

where pθ(x|y) is given a θ subscript to clarify its dependence on the
score-based prior pθ. We include a flux constraint objective

( ( ) ¯ )- -xV V 2, where V(x) is the total flux (i.e., the sum of the
pixel values) of the image x and V̄ is the target total flux, because
closure quantities do not constrain the total flux. We set V̄ as the
median total flux of images sampled from the score-based prior pθ
and then scale posterior images to the original total flux as
measured in the zero-baseline visibility. Please see Appendix A for
a discussion on the flux constraint objective. Note that since our
priors were trained on compact centered images, we do not need
an explicit center-of-light constraint.
We use variational inference to sample from pθ(x|y),

approximating the complicated posterior with a tractable
distribution known as the variational distribution. We use a
RealNVP (L. Dinh et al. 2016), a type of deep generative
model known as a normalizing flow (G. Papamakarios et al.
2021), with parameters f as the variational distribution (H. Sun
& K. L. Bouman 2021). Samples from the RealNVP are images
x from a distribution qf, and we optimize f to minimize an
upper bound on the Kullback–Leibler (KL) divergence
DKL(qf∥pθ( · |y)):

where ( ) ( )q qx xb plog is an efficient lower bound on the
exact log probability of x under the score-based prior (Y. Song
et al. 2021a; B. T. Feng & K. L. Bouman 2023).
We approximately solve Equation (4) with stochastic

gradient descent, iteratively Monte Carlo approximating the
KL upper bound with a batch of samples from qf and
computing the gradient with respect to f.
We find that annealing the weight of the data-fit terms

gradually from 0 to 1 helps prevent bad local minima (see
Appendix A.2 for a discussion on data annealing). Further-
more, we find that optimization can be sensitive to the chosen
target flux V̄ and data annealing schedule. One way to mitigate
this is to make sure the diffusion model has a median total flux
that is close to the median total flux of the training images. The
data annealing may need to be tuned to achieve a local
minimum at which the posterior images exhibit characteristic
features of the prior (e.g., posterior images should be centered
if all the training images for the prior are centered). Once f is
optimized, samples x∼ qf can be efficiently obtained as

( | ) ( | ) ( | ) ( ) ( ( ) ) ( )
¯

= + + - - +q qx y y x y x x xp p p p V Vlog log log log const., 3cp logca
2

[ ( | ) ( | ) ( ) ( ( ) ) ( )] ( )
¯

f = - - - + - +
f

q f
*

~ f
 y x y x x x xp p b V V qargmin log log log , 4x q cp logca

2

3
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samples from an approximate posterior. The RealNVP
occasionally outputs slightly negative pixel values, so we clip
samples at inference time to a minimum value of 0 to impose a
positivity constraint. Please refer to Appendix F for imple-
mentation details. Figure 1 illustrates the essential components
of our imaging method: the RealNVP variational posterior and
the score-based prior.

3.1. Score-based Priors Used in This Work

In this work, we focus on the following score-based priors,
each trained on a data set of images assuming a 128 μas field of
view (FOV). Unless stated otherwise, we use the terms “prior”
and “score-based prior” synonymously. Figure 2 shows
samples from each prior.

1. The CIFAR-10 prior was trained on the CIFAR-
10 (A. Krizhevsky & G. Hinton 2009) data set of

32× 32 images from 10 object classes (e.g., airplane,
automobile, dog). We used a training set of 45K
grayscale images. The images were tapered on the edges
to incorporate assumptions of a black background and a
centered object. A tapering effect is created by defining a
binary mask with a center square region of pixels set to 1
and everywhere else set to 0, then applying a Gaussian
blur kernel with standard deviation 8 μas, and then
element-wise multiplying the blurred mask with the
image. The size of the taper was randomly varied during
training by randomly varying the size of the center square
region of the mask, resulting in a centered compact region
of between 12.8× 12.8 μas and 83.2× 83.2 μas.

2. The GRMHD prior was trained on 100K images from
GRMHD simulations (G. N. Wong et al. 2022) of Sgr A*

resized to 64× 64 pixels. During training, the GRMHD
images were randomly flipped horizontally and randomly

Figure 1. Method illustration. The CIFAR-10 prior was used for these examples; images are shown as 32 × 32 pixels on a [0, 1] scale. At a high level, we optimize a
variational distribution qf to approximate the image posterior pθ( · |y) given a score-based prior pθ and log likelihood based on EHT measurements. Panel (a) illustrates
our particular variational distribution: a RealNVP with parameters f. At each optimization iteration i, the measurement log likelihood (Equation (2)) and the log
density under the score-based prior of each sample x from ( )=f fq q i are evaluated. The average gradient is computed with respect to f to update f( i). In other words,
qf is optimized to produce samples that have high probability under both measurement likelihood and prior. Panel (b) zooms in to the score-based prior. A score-based
prior is based on a score-based diffusion model, a deep generative model with parameters θ, that is trained on images from a target prior. Once trained, the diffusion
model generates samples from a generative image distribution pθ. There is an analytical formula for computing the ELBO bθ(x) of the log probability ( )q xplog for any
image x, even for out-of-distribution images and images of pure noise.

Figure 2. Score-based priors used in this work. Nine samples from each learned prior are shown.
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zoomed between −16.7% (zoomed in) and +14.5%
(zoomed out), thus varying the diameter of the thin ring
to be between 35 and 48 μas.

3. The RIAF prior was trained on 9070 images of RIAF
(A. E. Broderick et al. 2011) simulations. The RIAF
images were downloaded4 with all available spin and
inclination parameters and resized to 32× 32. During
training, they were also randomly zoomed between
−16.7% and +14.5%, randomly flipped horizontally,
and randomly rotated between −2π and +2π.

4. The CelebA prior was trained on the CelebA (Z. Liu et al.
2015) data set of celebrity faces. We used a training set of
160K images that were resized to 32× 32. The same
tapering effect that was used for CIFAR-10 was applied.
Although far from a reasonable prior for astronomical
images, a prior trained on faces helps us see what
happens when strong but probably incorrect assumptions
are made.

The RIAF and GRMHD priors incorporate strong assumptions
about a ring structure. The CIFAR-10 and CelebA priors, on
the other hand, do not assume any ring structure or even the
presence of an astronomical object. One might make the
following order of priors from weak to strong assumptions:
CIFAR-10, GRMHD, RIAF. In addition, we have the CelebA
prior, which makes specific assumptions against our
expectations.

4. Simulated-data Results

We validate our imaging approach on simulated observations
of synthetic source images. A crucial advantage of our
approach is that it does not involve parameter tuning. As we
do not need to hand-tune hyperparameters based on a
calibration data set, the experiments presented in this section
are simply meant to verify the efficacy of the approach.

Figure 3 shows results for a data set of eight source images.
Among the images are validation images used in the original
M87* imaging work (Event Horizon Telescope Collaboration
et al. 2019d) and two images of an elliptical object used in the
Sgr A* imaging work (E. H. T. Collaboration et al. 2022). All
observations were simulated based on the April 6 observing
array using code provided by Event Horizon Telescope
Collaboration et al. (2019d). We used closure phases and log
closure amplitudes of the combined low-band and high-band
data and followed the same preprocessing steps as the eht-
imaging algorithm (assuming nonclosing fractional systema-
tic noise of 0.03), except we did not add station-dependent
systematic noise since we do not need to calibrate the visibility
amplitudes. Although imaging was done with a prior-
dependent total flux and either 32× 32 pixels or 64× 64
pixels depending on the prior, we rescale images to have a total
flux of 0.6 Jy and resize them to 128× 128 for visualization.

The quality of image reconstruction heavily depends on the
prior. For example, the GRMHD reconstruction of GRMHD 1
appears more convincing than the GRMHD reconstruction of
the Double image in Figure 3. On the other hand, the RML
methods used in previous EHT imaging efforts (Event Horizon
Telescope Collaboration et al. 2019d; E. H. T. Collaboration
et al. 2022) achieve overall cleaner reconstructions of synthetic
data. One reason for the better performance of those RML

methods is that they use regularization parameters chosen
based on a calibration data set that is very similar to their test
images. In contrast, we consider priors that may be profoundly
different from the true source image (e.g., CelebA prior applied
to the Double data). Another reason is that RML methods
produce a mean image that tends to be cleaner than individual
posterior samples, which are shown in Figure 3. We emphasize
that the goal of our work is not to achieve the cleanest or most
accurate reconstructions; rather, we aim to showcase the effects
of different priors, even when those priors might not lead to the
best reconstruction owing to mismatch with the data.
Overall, the reconstructed images make sense according to

the biases of the prior. The CelebA prior introduces face-like
features, especially when the ground-truth source object is
fairly “flat” (e.g., the Disk and Elliptical images), and it is the
only prior that leads to multimodal estimated posteriors. Images
under the RIAF prior are always centered and ring- or disklike.
The GRMHD prior always prefers the presence of a thin ring at
the center of the image. The CIFAR-10 prior imposes weak
biases and appears to assemble images from small, locally
smooth patches.
Table 1 quantifies the performance of the various priors on

each source image. As in previous work (Event Horizon
Telescope Collaboration et al. 2019d; E. H. T. Collaboration
et al. 2022), we evaluate the normalized cross-correlation
(NCC). Since our approach does not explicitly constrain the
center of light, we use a shift-invariant NCC metric, which is
computed as the maximum NCC between all shifted versions
of the reconstructed image and the ground-truth image. As
expected, the closer the prior is to the ground-truth image, the
more accurately it recovers the ground-truth image. For
example, the GRMHD prior excels at recovering the Ring,
Crescent, and GRMHD images but struggles with the non-
ringlike images. The RIAF prior performs well on ringlike
images and disklike images. The CelebA prior, unsurprisingly,
performs poorly on this data set of images. The CIFAR-10
prior does best compared to the other priors at recovering the
non-ringlike images (e.g., Double and Point+Elliptical). It
performs generally well across all the source images, suggest-
ing that it serves as an effective “general-purpose” prior.
Table 2 quantifies agreement with the simulated data using

the reduced χ2 metric—we note that it is not a true reduced χ2

since we only incorporate image pixels as degrees of freedom,
but it is useful as a proxy metric of data consistency. There
does not appear to be a correlation between the χ2 statistics in
Table 2 and the NCC statistics in Table 1. The results in
Table 2 simply confirm data consistency of the reconstructed
images, as χ2 values are consistently less than 2 and often close
to 1 (lower χ2 corresponds to more data consistency, and
χ2≈ 1 is considered a sign of a good balance between data and
prior). The RIAF prior results in the highest χ2 values, perhaps
because it is the most constraining prior. Overall, our tests on
simulated data confirm that the score-based priors impose the
expected biases on the image reconstruction while allowing for
reasonable data consistency.

4.1. Characterizing the Simulated-data Posteriors

In addition to evaluating single samples from the posterior
(Figure 3), we can assess aspects of the posterior distribution
such as uncertainty and multimodality. Figure 4 shows the
mean and pixel-wise standard deviation of posteriors under the
CIFAR-10, GRMHD, and RIAF priors. We find that4 http://vlbiimaging.csail.mit.edu/myData
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uncertainty decreases as the prior becomes stronger. For a weak
prior like CIFAR-10, which leads to high posterior uncertainty,
it can be helpful to consider the mean reconstruction instead of
noisier individual samples.

The CelebA prior leads to bimodal posteriors, which are
characterized in Figure 5. We note that the number of modes in
the estimated posterior may be due to the variational family
being used; in the future, a more expressive family of
distributions parameterized through a better network architec-
ture may identify more modes. It is perhaps reassuring that a
prior with such erroneous assumptions (i.e., that face statistics
well describe these particular source images) is able to account

for mismatches with the data through a wider posterior. For
example, for the Ring, Double, and GRMHD 1 data, the
posterior covers two modes, one of which accurately recovers
the ground-truth image.

4.2. Biases of the CIFAR-10 Prior

While CIFAR-10 represents a “generic” natural-image prior,
the data set itself still contains biases. The CIFAR-10 data set
comprises upright images of animals and man-made objects,
which tend to exhibit horizontal or vertical lines. As Figure 6(a)
shows, the average log power spectrum of CIFAR-10 images

Figure 3. Image reconstructions from simulated data. A sample (one sample from each mode if the posterior is bimodal) is shown from each estimated posterior.
Qualitatively, the CIFAR-10 prior adds the least amount of bias, producing reasonable reconstructions of each image in this data set. The GRMHD prior strongly
prefers a centered ring in the image. The RIAF prior prefers a centered ring- or disklike structure in the image. The CelebA prior struggles to recover these source
images, in some cases adding face features, and it leads to the most multimodal posteriors. However, it performs decently well on certain images like the Crescent and
GRMHD images. When the source image is known to be well approximated by a GRMHD or RIAF model, the more constrained GRMHD or RIAF prior may be the
best choice.
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has most power in the purely horizontal or vertical spatial
frequencies. This preference for vertically or horizontally
oriented edges results in images of objects that look somewhat
rectangular instead of circular, even given measurements of a
ring structure. See, for example, the CIFAR-10 reconstructions
from the Crescent and GRMHD 1 data in Figures 3 and 4 or the
April 10 and 11 CIFAR-10 reconstructions of M87* in the
following section. In Figure 6, we demonstrate on the Crescent
data how boxy artifacts can be mitigated with a prior trained on
warped CIFAR-10 images or a prior trained on images with a
1/f 2 spectral distribution. By distorting CIFAR-10 images with
warped random affine transforms, we expect to reduce the
presence of straight lines by perturbing them to have more
curvature. Alternatively, by randomly sampling from a 1/f 2

spectral distribution, we create a data set of images that follow
a simplified statistical model without any preference for straight
lines.

5. M87* Results

We estimated image posteriors of M87* given the EHT
observations from 2017 April. For each of the four observation
days, we gathered the closure phases and log closure
amplitudes from the combined low-band and high-band public
data.5 We used the same data preprocessing and visualization
steps as for the synthetic data.

Table 1
Normalized Cross-correlation (NCC)

CIFAR-10 GRMHD RIAF CelebA

Ring 0.95 ± 0.009 0.98 ± 0.024 0.90 ± 0.003 0.88 ± 0.090
Crescent 0.85 ± 0.019 0.96 ± 0.007 0.92 ± 0.005 0.95 ± 0.007
Double 0.94 ± 0.009 0.49 ± 0.028 0.93 ± 0.004 0.39 ± 0.130
Disk 0.95 ± 0.007 0.59 ± 0.027 0.99 ± 0.002 0.80 ± 0.020
Elliptical 0.79 ± 0.037 0.50 ± 0.029 0.97 ± 0.002 0.75 ± 0.026
Point + Ell. 0.87 ± 0.022 0.58 ± 0.031 0.68 ± 0.010 0.43 ± 0.026
GRMHD 1 0.84 ± 0.015 0.86 ± 0.009 0.83 ± 0.004 0.46 ± 0.089
GRMHD 2 0.85 ± 0.012 0.90 ± 0.003 0.85 ± 0.006 0.77 ± 0.012

Note. The avg. ± std. dev. of the NCC metric for 128 samples from the posterior is reported (highest NCC in each row is shown in bold). In general, the closer the
prior is to the ground-truth image, the closer its posterior samples are to the ground truth. For example, the Ring, Crescent, and GRMHD images are best reconstructed
with the GRMHD prior, whereas non-ringlike images are poorly reconstructed with the GRMHD prior. The CIFAR-10 prior may be the best “general-purpose” prior,
giving NCC values between about 0.80 and 0.95 across these images.

Table 2
Data-consistency Metrics (χ2) for Closure Quantities of Simulated Data

CIFAR-10 GRMHD RIAF CelebA

Ring ccp
2 0.87 ± 0.02 0.90 ± 0.03 0.96 ± 0.02 0.89 ± 0.04

clogca
2 0.72 ± 0.03 0.75 ± 0.05 1.04 ± 0.06 0.72 ± 0.03

Crescent ccp
2 0.73 ± 0.02 0.76 ± 0.02 0.84 ± 0.03 0.73 ± 0.02

clogca
2 0.67 ± 0.02 0.78 ± 0.03 0.95 ± 0.05 0.68 ± 0.02

Double ccp
2 0.96 ± 0.02 1.00 ± 0.03 1.01 ± 0.03 0.99 ± 0.03

clogca
2 0.77 ± 0.02 0.81 ± 0.04 1.31 ± 0.08 0.84 ± 0.03

Disk ccp
2 1.82 ± 0.04 1.83 ± 0.05 1.80 ± 0.03 1.81 ± 0.05

clogca
2 1.30 ± 0.04 1.56 ± 0.14 1.41 ± 0.04 1.42 ± 0.06

Elliptical ccp
2 1.76 ± 0.04 1.76 ± 0.04 1.91 ± 0.04 1.79 ± 0.04

clogca
2 1.44 ± 0.03 1.64 ± 0.06 1.64 ± 0.05 1.43 ± 0.03

Point + Ell. ccp
2 1.22 ± 0.02 1.21 ± 0.02 1.42 ± 0.04 1.24 ± 0.02

clogca
2 0.83 ± 0.02 0.83 ± 0.03 0.96 ± 0.03 0.84 ± 0.02

GRMHD 1 ccp
2 0.90 ± 0.02 0.89 ± 0.07 1.02 ± 0.04 0.90 ± 0.05

clogca
2 0.72 ± 0.03 0.70 ± 0.03 1.08 ± 0.07 0.83 ± 0.03

GRMHD 2 ccp
2 0.59 ± 0.02 0.59 ± 0.01 0.62 ± 0.04 0.60 ± 0.02

clogca
2 0.51 ± 0.02 0.56 ± 0.03 1.01 ± 0.08 0.53 ± 0.02

Note. χcp and χlogca are the χ
2 metrics for closure phases and log closure amplitudes, respectively. The avg. ± std. dev. of 128 samples from the estimated posterior is

reported. Lower χ2 is a sign of higher data consistency. χ2 ≈ 1 is considered an indication of a good balance between the observed data and the prior. The Disk,
Elliptical, and Point+Elliptical images are the most challenging cases for these particular priors, as evidenced by the high χ2 values that indicate data-fitting difficulty.

5 https://datacommons.cyverse.org/browse/iplant/home/shared/commons_
repo/curated/EHTC_FirstM87Results_Apr2019
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Figure 7 shows a posterior sample for each of the
observation days, under each prior. The CIFAR-10 and CelebA
priors, which incorporate no assumptions about black holes,
lead to images with a ringlike structure. The CelebA
reconstructions include some face-like details, especially for
April 10, the day with the fewest observations and thus the day
whose image is least constrained by measurements. None-
theless, the fact that both the black-hole-agnostic priors recover
ring shapes is strong evidence of a ringlike structure in the
measurements. It also reveals that basic natural-image statistics
shared by CIFAR-10 and CelebA may be sufficient to retrieve
the ring structure under a constrained FOV.

The GRMHD and RIAF priors lead to images with a well-
defined ring structure. The GRMHD prior is visually richer,
encouraging a thin ring with wispy features in the bright region
of the ring. The RIAF prior constrains the image according to a
simplified geometric model without adding any lower-level
details.

Table 3, which reports reduced χ2 values, confirms that all
the reconstructed images are consistent with the EHT
measurements. Across priors and observation days, the χ2

values are <1.5, which is considered a good sign of fitting the
measured data. As with the simulated data, the RIAF prior
struggles most to fit the data (most of its χ2 values are greater
than 1) because it imposes the most constraining black hole
model. The rest of the priors tend to result in χ2< 1, which
means that they are flexible enough to somewhat overfit the
data and that any differences between their posteriors are likely
due to the visual biases of the priors that are not constrained by
the data.

5.1. Characterizing the Posteriors

Our imaging approach leads to single-mode M87* image
posteriors, except for some CelebA posteriors that are bimodal.
Figure 8 shows Gaussian fits of the posteriors estimated under
the CIFAR-10, GRMHD, and RIAF priors. Under all these

Figure 4. Mean and std. dev. of simulated-data posteriors. We find that uncertainty decreases with a stronger prior (i.e., maximum std. dev. decreases from CIFAR-10
to GRMHD to RIAF). CIFAR-10 exhibits the most uncertainty given that it is the most flexible of the priors. Compared to the individual samples in Figure 3, the mean
images appear much cleaner.

Figure 5. Mean and std. dev. of simulated-data posteriors under the CelebA prior. The CelebA prior is the only one that gives rise to bimodal posteriors. For each
posterior, a one- or two-component Gaussian mixture model (one for a single-mode posterior and two for a bimodal posterior) was fit to 128 samples. The mean, pixel-
wise std. dev., and weight of each Gaussian component are shown. For the Ring, Double, and GRMHD 1 data, one of the two modes is quite similar to the ground-
truth image, while the other is not.
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priors, the mean image shows a clear progression of the bright
spot of the ring moving counterclockwise over the four
observation days. The pixel-wise standard deviation shows

areas of uncertainty around the mean. Similarly to our results
with simulated data, the results in Figure 8 show that as the
prior becomes stronger (i.e., from CIFAR-10 to GRMHD to

Figure 6. Reducing the CIFAR-10 bias toward horizontal lines and vertical lines. For example, given simulated data of the Crescent image from Figure 3, this bias
results in posterior images containing a boxy object, even though the actual Crescent is a ring without any straight edges. This is likely due to the statistics of the
CIFAR-10 data set, which contains mostly man-made objects and animals. Such images include many sharp corners and lines arising from boxy objects like cars, the
legs of standing animals, or horizon lines. Although CIFAR-10 is our choice of a generic natural-image prior, it is possible to define an alternative natural-image prior
with less preference for vertically or horizontally oriented edges. We tested a prior trained on CIFAR-10 images that underwent warped random affine transforms and a
prior trained on 32 × 32 images with power spectral density proportional to 1/f 2 (since the power spectra of natural images have been shown to follow a 1/f α trend,
where f is the spatial frequency in cycles per image (A. van der Schaaf & J. van Hateren 1996), and α is typically between 1 and 3). The CIFAR-10, Warped CIFAR-
10, and 1/f 2 priors were all trained with the same number of training images (45K), with the same tapering effect described in Section 3.1, and for the same number of
iterations (100K). (a) Nine training samples and the average log power spectrum of 10K training samples (without the taper) for each prior. The average spectral power
of CIFAR-10 images is relatively high in the horizontal and vertical frequencies. Warping the CIFAR-10 images seems to reduce the preference for vertical
frequencies, but a large presence of horizontal frequencies remains (perhaps in part because horizons are still distinguishable after warping, as can be seen in some of
the training samples). The 1/f 2 noise images have isotropically distributed spectral power. (b) Results of imaging the Crescent simulated data under the different
priors. A posterior sample and the average of 128 posterior samples are shown for each prior. With the regular CIFAR-10 prior, there is a sharp corner at the top right
of the ringlike object that makes it look squarish. This artifact is not present in the Warped CIFAR-10 reconstructions, which more resemble a smooth ring. The 1/f 2

prior, which does not have a preference for any frequency orientation, also recovers an object that resembles a smooth ring.

Table 3
Data-consistency Metrics (χ2) for Closure Quantities of M87* Data

CIFAR-10 GRMHD RIAF CelebA

April 5 ccp
2 0.80 ± 0.03 0.83 ± 0.15 1.27 ± 0.06 0.80 ± 0.03

clogca
2 0.75 ± 0.04 0.76 ± 0.09 1.50 ± 0.10 0.71 ± 0.04

April 6 ccp
2 0.92 ± 0.02 0.93 ± 0.05 1.08 ± 0.03 0.93 ± 0.03

clogca
2 0.76 ± 0.02 0.74 ± 0.04 1.00 ± 0.05 0.80 ± 0.06

April 10 ccp
2 0.92 ± 0.05 0.89 ± 0.04 1.25 ± 0.07 0.90 ± 0.05

clogca
2 0.73 ± 0.06 0.71 ± 0.04 1.35 ± 0.12 0.72 ± 0.06

April 11 ccp
2 1.09 ± 0.02 1.06 ± 0.02 1.26 ± 0.04 1.08 ± 0.03

clogca
2 0.69 ± 0.04 0.65 ± 0.04 1.01 ± 0.06 0.65 ± 0.03

Note. χcp and χlogca are the χ
2 metrics for closure phases and log closure amplitudes, respectively. The avg. ± std. dev. of 128 samples from the estimated posterior is

reported. χ2 ≈ 1 indicates a good balance between fitting the observed data and fitting the prior. Lower χ2 means more data consistency. The RIAF prior leads to the
highest χ2 values, meaning that the strength of this prior relative to the data is strongest. This is probably because the RIAF model is the most constraining of the
priors.
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RIAF), the uncertainty goes down. Under the CIFAR-10 and
GRMHD priors there is uncertainty throughout the ring,
whereas under the RIAF prior uncertainty lies mainly along
the edges of the ring.

Figure 9 visualizes the bimodal posteriors under the CelebA
prior. Like with CIFAR-10, the magnitude of the uncertainty is
higher than that of the GRMHD and RIAF priors. The presence
of multiple modes further reflects higher uncertainty under the
CelebA prior, which makes sense for a prior that is so
mismatched with the observed data.

A feature that stands out in the CIFAR-10, GRMHD, and
CelebA reconstructions is a southwest region of extended flux
outside the ring. It is especially noticeable in the April 5 and 6
images. See, for example, the faint spot of brightness in the
CIFAR-10 reconstructions and the faint wisp to the southwest
in the GRMHD reconstructions in Figures 7 and 8. A

disconnected southwest region of brightness also appears in
both modes of the CelebA posterior on April 5 and in the
second mode of the April 6 posterior in Figure 9. Such a feature
is not visible in the RIAF reconstructions. With previous
imaging results that only incorporated one prior, it would have
been difficult to conclude whether this feature was an artifact of
imaging or a clue from the data. Our results in Figures 8 and 9
suggest that it is a prior-dependent feature, with different priors
placing different amounts of brightness in that southwest
region.
To summarize our findings from the estimated M87*

posteriors, the most notable result is that all priors recover
ringlike structure. The priors that do not assume a black hole
(i.e., CIFAR-10 and CelebA) exhibit the most uncertainty in
the posterior and are most flexible with adding flux outside of
the ring. The priors based on a black hole model (i.e., GRMHD

Figure 7. M87* posterior samples. A random posterior image is shown for each observation day and prior. The CIFAR-10 prior was trained on images of everyday
objects and makes no assumptions of black hole structure, yet it recovers a ringlike structure for all four observation days. The GRMHD prior assumes a fluid-flow
model of black holes, which helps it recover visually striking images of a thin ring with wisps. The RIAF prior assumes a simplified crescent model of black holes,
which results in simplified crescent images of M87*. The CelebA prior was trained on images of human faces, so its preferred images are presumably far away from
the true source image. Even with its incorrect and strong biases, the CelebA prior recovers a ringlike structure, here favoring an eye from the face prior to explain the
ring. These images under various priors all fit the EHT observations but incorporate different visual biases.
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and RIAF) reconstruct the clearest rings, with the GRMHD
prior providing the most visual detail. In general, the more
constraining the prior, the less uncertainty there is in the
posterior, but the more potential there is to overfit to prior
assumptions.

6. Extracted Ring Features

An important stage of analysis is to extract ring features from
reconstructed images, distilling any ring structure into a few
parameters dictating its geometry and brightness profile. In
Event Horizon Telescope Collaboration et al. (2019d, 2019f),
the EHT Collaboration extracted, among other quantities, the
following characteristic ring features: diameter, width, orienta-
tion, asymmetry, and fractional central brightness. It found the
ring diameter and orientation angle to be most consistent across
imaging methods, with the other quantities varying depending
on the imaging pipeline. In this paper, we focus on these

characteristic features and analyze the effect of the prior
on them.
The diameter d indicates the full size of the ring and is

calculated based on the distance between the peak brightness
and the ring center. The width w indicates the thickness of the
ring itself. The orientation angle n, measured east of north,
roughly indicates the radial position of most of the brightness.
The azimuthal asymmetry A, a measure of brightness
asymmetry throughout the ring, roughly indicates the magni-
tude of brightness at the measured orientation. The fractional
central brightness fC indicates how bright the interior of the ring
is compared to the ring itself and can be considered an inverse
brightness contrast ratio. We use the REx feature extraction
algorithm (A. A. Chael 2019) implemented in the eht-
imaging library. Parameters d and fC are measured the same
way as in Event Horizon Telescope Collaboration et al.
(2019d), but the other features have slight differences (we
default to following the REx implementation rather than the

Figure 8. Mean and std. dev. of posterior samples. Like with the simulated data in Figure 4, uncertainty decreases as the prior becomes stronger. Note that under the
CIFAR-10 prior the day with the most uncertainty is April 10, the day with the least data. The stronger priors (i.e., GRMHD and RIAF) do not exhibit more
uncertainty for this day compared to other days.

Figure 9. Bimodal M87* image posteriors under the CelebA prior. A two-component Gaussian mixture model was fit to 128 posterior samples for April 5, 6, and 10.
The mean, std. dev., and weight of each Gaussian mixture component are shown. The only single-mode posterior is for April 11, which is the day with the most (u,v)
coverage.
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equations provided in Event Horizon Telescope Collaboration
et al. 2019d). Appendix E contains the exact equations we used
to compute these features. Figure 10 helps visualize some of
the features.

6.1. Ring Features of Simulated-data Reconstructions

We performed feature extraction on images from simulated
data, focusing on the source images with ringlike structure:

Crescent, Ring, GRMHD 1, and GRMHD 2. We analyzed the
recovered posteriors under all the score-based priors but
excluded the non-ringlike samples from the CelebA posteriors
for the Ring and GRMHD 1 data (see Figure 3, which shows
that the second mode of the Ring posterior and the first mode of
the GRMHD 1 posterior do not have a ringlike structure).
Figure 11 shows all the extracted features and their error bars.
In the following paragraphs, we discuss each feature and its
dependence (or lack thereof) on the prior.

Figure 10. Visualization of extracted ring features of M87* images. Shown is a random sample (centered by REx) from each posterior for April 6. Parameter d is the
ring diameter; w is the ring width. Parameters rleft and rright delimit the radial FWHM used to estimate the orientation angle and asymmetry. Parameter η is the
orientation angle measured east of north. The purple cross marks the location of peak brightness. Asymmetry A and fractional central brightness fC are not visualized.
The green dashed circle demarcates the inner disk of radius 5 μas used to define fC.

Table 4
Extracted Ring Features of M87* Images

eht-imaging* CIFAR-10 GRMHD RIAF CelebA

Diameter (μas)
April 5 39.3 ± 1.6 41.2 ± 5.7 41.5 ± 2.4 40.5 ± 5.1 43.0 ± 6.6
April 6 39.5 ± 1.5 41.2 ± 5.3 41.2 ± 2.2 42.6 ± 2.3 41.7 ± 8.1
April 10 40.5 ± 1.3 41.5 ± 6.5 41.2 ± 2.0 44.0 ± 2.8 55.0 ± 15.8
April 11 41.1 ± 1.2 42.5 ± 5.3 42.4 ± 2.7 45.0 ± 2.2 44.2 ± 5.2

Width (μas)
April 5 16.3 ± 1.5 13.3 ± 3.9 8.9 ± 3.7 20.8 ± 4.3 11.7 ± 3.4
April 6 16.2 ± 1.0 12.4 ± 3.4 9.1 ± 3.5 19.7 ± 4.2 15.1 ± 6.6
April 10 15.7 ± 1.3 14.1 ± 4.3 10.0 ± 4.8 21.6 ± 4.1 17.5 ± 8.8
April 11 15.6 ± 0.9 12.4 ± 3.0 9.3 ± 4.0 18.5 ± 3.1 13.1 ± 4.0

Orientation (deg)
April 5 149.0 ± 4.0 163.5 ± 11.9 141.4 ± 18.4 147.0 ± 13.0 136.2 ± 19.9
April 6 151.2 ± 3.2 169.5 ± 12.6 149.7 ± 15.1 152.0 ± 16.8 156.8 ± 17.5
April 10 171.1 ± 3.4 180.4 ± 10.8 152.7 ± 18.9 163.2 ± 19.4 179.7 ± 18.4
April 11 167.5 ± 3.1 182.2 ± 11.7 157.2 ± 25.5 169.0 ± 15.1 162.0 ± 11.3

Asymmetry
April 5 0.25 ± 0.01 0.30 ± 0.05 0.25 ± 0.08 0.23 ± 0.06 0.21 ± 0.05
April 6 0.24 ± 0.02 0.28 ± 0.04 0.24 ± 0.09 0.26 ± 0.03 0.33 ± 0.07
April 10 0.23 ± 0.00 0.31 ± 0.04 0.22 ± 0.10 0.21 ± 0.02 0.35 ± 0.05
April 11 0.20 ± 0.01 0.25 ± 0.04 0.21 ± 0.11 0.22 ± 0.02 0.26 ± 0.03

Frac. central brightness
April 5 0.07 0.07 ± 0.04 0.02 ± 0.01 0.16 ± 0.05 0.01 ± 0.01
April 6 0.07 0.07 ± 0.04 0.02 ± 0.01 0.25 ± 0.03 0.09 ± 0.07
April 10 0.04 0.13 ± 0.05 0.02 ± 0.01 0.26 ± 0.03 0.21 ± 0.08
April 11 0.04 0.07 ± 0.03 0.02 ± 0.01 0.23 ± 0.02 0.08 ± 0.04

Note. This table reports the means and std. devs. that are visualized in Figure 12. *eht-imaging is not exactly comparable to the score-based priors because it is a
different imaging algorithm that uses hand-crafted regularizers instead of a data-driven prior. There are small differences from the values for eht-imaging reported
in Table 7 of Event Horizon Telescope Collaboration et al. (2019d). This may be due to differences in implementation/hardware and in the exact definitions of the
features (see Appendix E for details).
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Diameter. All priors recover the diameter of the source
image (within one standard deviation from the mean extracted
diameter). The only exception is that the RIAF prior leads to a
larger diameter for GRMHD 1. A possible explanation is that
the RIAF model is too strong of a prior for these data, as it must
account for all the flux in the image with a thick crescent (as
evidenced by the relatively high extracted diameter and width
of the RIAF-reconstructed images). The RIAF prior also leads
to the highest χ2 values (Table 2), further evidence that it has
difficulty fitting the GRMHD 1 observations. On the other
hand, the RIAF prior correctly recovers the diameter and has
lower χ2 values for the Ring and Crescent, two objects that can
be well approximated with an RIAF model. Even though the
diameter should be well constrained by the measurements, our
results demonstrate how a strong-enough prior may recover a
ring structure but with an incorrect diameter.

The CIFAR-10 prior gives the most accurate mean diameter,
although with greater uncertainty than the GRMHD and RIAF
priors. This makes sense, as the CIFAR-10 prior, in making the
weakest assumptions, is most flexible with the image
reconstruction. The CelebA prior exhibits significantly high
uncertainty for GRMHD 2, perhaps because its recovered
images have the least ringlike structure (Figure 3). The

GRMHD prior accurately recovers the diameter across all
these ringlike data and with relatively little uncertainty.
Width. The ring width varies significantly with the prior,

which supports previous findings that the width is less well
constrained by the measurements than the diameter is (Event
Horizon Telescope Collaboration et al. 2019d, 2019f). The
GRMHD prior recovers the thinnest rings as a result of being
trained on GRMHD images that exhibit thin rings.
Orientation. All priors recover the orientation angle of the

source image, except the CelebA prior given GRMHD 2 data.
Like the high diameter uncertainty, this may be due to the
reconstructed images having relatively weak ring structure. As
can be seen in the two samples from this posterior in Figure 3,
there is actually some brightness outside of the ringlike area.
These results further highlight that strong and incorrect
assumptions in the prior may inhibit correct recovery of ring
features that should be constrained by the observations. Besides
this extreme case of applying a CelebA prior to GRMHD data,
the ring orientation appears to be independent of the prior.
Asymmetry. The brightness asymmetry appears to be fairly

robust to the prior. Again, the exception is the CelebA prior
applied to the GRMHD 2 data, which can be explained by the
weak ring structure present in the CelebA-recovered images.

Figure 11. Extracted ring features of images reconstructed from simulated data. The dotted line indicates the measured quantity of the ground-truth image, and the
shaded yellow region indicates the std. dev. as computed by REx (the orientation of the Ring image was manually set to span 0°–360°). For the score-based priors
(CIFAR, GRMHD, RIAF, CelebA), the mean was computed across the measured quantities of 128 posterior samples. The std. dev. for all features except fractional
central brightness ( fC) was computed as the square root of the average variance across these samples. Since REx does not provide uncertainty for fC of a single image,
the fC error bars were computed as the std. dev. of the fC values of all posterior samples. All choices of prior roughly recover the target diameter, orientation, and
asymmetry. The only exceptions are that the RIAF prior overestimates the diameter of GRMHD 1 (due to the difficulty of fitting GRMHD data to a strong RIAF prior)
and that the CelebA prior overbiases the orientation of GRMHD 2 (due to the CelebA prior struggling to produce a strong ring structure with such data). The width and
fractional central brightness are particularly prior dependent, with the GRMHD prior providing consistently small values for these features. In contrast, the RIAF prior
prefers large widths and high fC values. Please see Figure 3 for image samples.
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We note that for the Ring data, all priors produce a slight
asymmetry even though the ground-truth object has no
asymmetry, which is unavoidable with most imaging
algorithms (Event Horizon Telescope Collaboration et al.
2019d).

Fractional central brightness. This feature varies extremely
with the prior, and the original M87* imaging work also found
that fC is not well constrained by the data (Event Horizon
Telescope Collaboration et al. 2019d). The GRMHD prior
recovers the lowest fractional central brightness for the
GRMHD observations. Along with smaller ring widths, these
low fC values indicate that using a well-matched GRMHD prior
on GRMHD observations gives the benefit of sharper images
than could be obtained with a weaker prior like CIFAR-10.

6.1.1. Discussion

To summarize our results on simulated data, we find that the
recovered ring diameter, orientation angle, and asymmetry are
fairly robust to the image prior, while the width and fractional
central brightness are tied to the prior. However, it is possible
to overly bias the diameter with an overly biased prior. In
particular, the RIAF prior applied to observations of a GRMHD
simulation with flux extending beyond the ring may be too
constraining and cause overestimation of the diameter.
Reassuringly, priors that are less constraining or more accurate

dependably recover the diameter, orientation, and asymmetry.
On the other hand, features like the ring width and fractional
central brightness can be adjusted by imposing different priors.

6.2. Ring Features of M87* Reconstructions

Figure 12 and Table 4 show the results of feature extraction
for the M87* image reconstructions. Table 4 includes the
results of using the eht-imaging algorithm with fiducial
parameters (Event Horizon Telescope Collaboration et al.
2019d) for reference, although eht-imaging is not directly
comparable to our score-based priors since it utilizes hand-
crafted regularizers as a proxy for a prior and visibility
amplitudes instead of closure amplitudes. Figure 10 visualizes
the ring features on April 6 reconstructions. We assumed ring
structure in all the posterior samples under the different score-
based priors. As shown in Figures 7 and 9, the CelebA images
have the weakest ring structure, which may have caused higher
variance in the extracted features.
The CIFAR-10 prior recovers a mean diameter of

41.2–42.5 μas across the four observations days. Accounting
for error bars, all score-based priors agree on a range of
possible diameters. The diameters recovered by our score-
based priors are consistent with the diameter recovered by
eht-imaging, although with slightly higher means and
larger error bars. Like with the simulated data, the RIAF prior

Figure 12. Extracted ring features of M87* images. The means and error bars were computed the same way as for Figure 11. The different priors (CIFAR, GRMHD,
RIAF, CelebA) all agree on the diameter, orientation, and asymmetry up to error bars. There is some disagreement in asymmetry for April 10, which is the day with
fewest observations. We note a slight upward trend in diameter and orientation angle over the observation days. The width and fractional central brightness change
with the prior, with the GRMHD prior providing the thinnest rings and most brightness contrast. Please see Figure 7 for image samples.
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leads to relatively high diameters. Combined with the fact that
the RIAF prior has the highest χ2 values in Table 3, this
suggests that the RIAF model is likely too constraining
for M87*.

The ring width depends on the prior, with the GRMHD prior
resulting in the lowest width (about 9 μas). The RIAF prior
causes the largest width (about 20 μas), which is only slightly
larger than the width recovered by eht-imaging (about
16 μas, as listed in Table 4).

The orientation angle is consistent across the priors, roughly
ranging from 150° on April 5 to 170° on April 11. Like
previous work, we find that both the diameter and orientation
angle have an upward trend over the observation days as
brightness shifts to the southwest (Event Horizon Telescope
Collaboration et al. 2019d, 2019f).

The amount of asymmetry is also roughly consistent across
the priors. Interestingly, there is most discrepancy between the
priors in the April 10 reconstructions. April 10 is the day with
fewest observations, which may cause the brightness asym-
metry to be more flexible under the data.

As expected, the fractional central brightness varies
significantly with the prior. As with the simulated data, the
GRMHD prior achieves the greatest brightness contrast.

Overall, the conclusions regarding the effects of priors on the
M87* reconstructions are consistent with the conclusions of
previous analyses (Event Horizon Telescope Collaboration
et al. 2019d, 2019f) and our simulated-data analysis. The
diameter, orientation, and asymmetry are robust to the prior,
although some priors result in greater variability than others.
There is a slight upward bias in diameter from the RIAF prior,
due to wider rings that account for all the flux in one RIAF
model. The most prior-dependent features are the width and
fractional central brightness.

7. Discussion

We have presented a strategy for probing the influence of
different priors on imaging from EHT VLBI data. Our imaging
approach allows one to infer a diverse collection of image
posteriors, each incorporating different assumptions. From
these results, one can analyze the effect of the prior on the
visual quality and uncertainty of reconstructed images, as well

as on the recovered ring features. We applied this strategy to
EHT observations of M87* and found that a GRMHD prior is
most effective at recovering a visually detailed image with a
thin ring and sharp contrast. However, it exhibits less posterior
uncertainty than some other priors do, meaning that one should
only trust the GRMHD reconstructions if one believes in the
existence of an underlying compact ring structure. On the other
hand, it is possible to allow for more flexibility in the posterior
with a weaker prior. For example, a CIFAR-10 prior still
recovers a ring with similar diameter, orientation, and bright-
ness asymmetry, albeit with blurrier quality. Our proposed
strategy allows scientists to reliably interpret reconstructed
images and account for the role of prior assumptions in their
analysis.

Acknowledgments

This work was funded by NSF 2048237, 2034306, 1935980,
1955864, and PHY-2019786 and the Amazon AI4Science
Partnership Discovery Grant. B.T.F. is supported by the NSF
GRFP. The authors thank Charles Gammie, Ben Prather,
Abhishek Joshi, Vedant Dhruv, and C. K. Chan for sharing
their GRMHD simulations, as well as Aviad Levis for many
helpful discussions.

Appendix A
Flux Constraint and Data Annealing

As mentioned in Section 3, we make two additions to a
vanilla VI approach: a flux constraint objective and a data-
weight annealing schedule. Figure 13 demonstrates the effect of
each addition through an ablation study. A flux constraint
imposes the assumption that all posterior images have the same
total flux, which reduces the complexity of the posterior
distribution. Data annealing helps prevent falling into bad
local minima when optimizing the variational distribution
(Equation (4)), since the magnitude of the data loss is much
higher than the magnitude of the prior loss at the beginning of
optimization. As Figure 13 shows, both additions help make
optimization more stable.

Figure 13. Ablation of data annealing and flux constraint. The simulated measurements are of the Crescent image in Figure 3. The posterior samples are shown with
their original number of pixels (i.e., 32 × 32 or 64 × 64) and with their original pixel values (which should be between 0 and 1). “None” is vanilla optimization
without data-weight annealing or a flux constraint objective. Without a flux constraint, the total flux V(x) of samples varies widely; furthermore, a posterior that is
unconstrained in the total flux may be too complicated to model with VI. Without data annealing, optimization may become unstable, as is the case for the GRMHD
prior here. Optimization is generally more stable when both data annealing and a flux constraint are used.

15

The Astrophysical Journal, 975:201 (22pp), 2024 November 10 Feng, Bouman, & Freeman



A.1. Flux Constraint

Recall that a flux constraint is imposed through the following
objective term in Equation (4):

( ) ( ( ) ¯ ) ( )= - x xV V , A1flux
2

where V(x) is the total flux of the image x and V̄ is the target
total flux.

The flux constraint should be considered an additional prior on
top of the score-based prior. It imposes the assumption of a
constant total flux across the posterior (since closure quantities in
the log likelihood do not constrain total flux). The value of V̄ also
influences the posterior: a lower V̄ encourages sparser, more
compact images than a higher V̄ . Figure 14 demonstrates this when
using the CelebA prior on simulated data of the Crescent image.

Our approach is to set V̄ according to the preferred total flux
of the score-based prior. That is, we set it as the median total
flux of 512 samples from the prior. This results in
¯ =V 38, 173, 90, and 112 for the CIFAR-10, GRMHD, RIAF,
and CelebA priors, respectively. Images can be scaled to the
actual target flux V̄orig measured by the zero-baseline (e.g.,

¯ =V 0.6orig Jy) by a factor of ¯ ¯V Vorig . By setting V̄ based on the
score-based prior, we attempt to make most of the image
reconstruction bias come from the score-based prior rather than
from the target flux.

A.2. Data Annealing

The variational distribution is randomly initialized to solve
the VI optimization problem (Equation (4)), which means that
the data loss, or negative log likelihood, is quite high at the
beginning of optimization. This can cause convergence to
posterior samples that are not preferred by the score-based prior
(see the GRMHD example in Figure 13 when only a flux
constraint is used). To avoid poor local minima, we initialize
the weight of the data loss at 0 and then gradually anneal it to 1
with the following annealing schedule:

( )
( ( ))

( )l =
+ - -

i
r i s

1

1 exp
, A2data

where Î +i is the optimization step, r ä [0, 1] is the
annealing rate, and Î +s is the pivot step at which
λdata(i)= 0.5. We use r= 0.002 and s= 12000. Therefore,
strictly speaking, our optimization approach is to iteratively
apply the gradient of the following loss function with respect to
the RealNVP parameters f at each step i:

Since we run optimization for 100K steps, λdata(i) is
mostly equal to 1 except at the very beginning of
optimization.

( ) [ ( )( ( | ) ( | )) ( ) ( ( ) ) ( )] ( )
¯

f l= - - - + - +q f~ f
 y x y x x x xi i p p b V V q, : log log log . A3x q data cp logca

2

Figure 14. Effect of target flux V̄ . The simulated measurements are of the Crescent image in Figure 3, and the prior is the CelebA score-based prior. ¯ =V 112 is the
default target total flux chosen based on samples from the prior. When V̄ is halved to 56, the estimated posterior images are sparser. When V̄ is doubled to 224, the
estimated posterior images have less compactness. ¯ =V 112 is essentially the preferred total flux under the score-based prior.

16

The Astrophysical Journal, 975:201 (22pp), 2024 November 10 Feng, Bouman, & Freeman



Appendix B
Model Uncertainty of the Prior

In this appendix, we explore model uncertainty of the score-
based prior and how it affects estimated ring features. We
performed an experiment in which we divided the GRMHD
training data set into two subsets of 50K images and trained a
score-based prior on each subset, as well as a score-based prior
on the full data set. For this experiment, the GRMHD images
were resized to 32× 32. Model uncertainty arises from the
different training images and randomness during training,
including randomness of data augmentations. We applied these

three realizations of a GRMHD prior to the four ringlike test
images (using a slower data annealing rate than the one used in
the main results). Figure 15 compares results of the three
versions (“Full,” “Subset 1,” and “Subset 2”) of the GRMHD
prior. The mean reconstructions are generally very similar,
although it is possible for a version of the prior to impose the
centering preference less strongly (see the Subset 2 posterior
for the GRMHD 2 test image, which includes a mode that has
an off-center ring). We also find that the extracted ring features
are fairly robust to model uncertainty of the prior, as the error
bars of the extracted features under the three different
realizations of the prior usually overlap.

Figure 15. Model uncertainty of the GRMHD score-based prior. We trained a prior on the full GRMHD training data set (“Full”) and two priors (“Subset 1” and
“Subset 2”) on two disjoint subsets of the GRMHD training data set. We obtained posterior samples under these three realizations of a GRMHD prior given synthetic
observations of the four ringlike test images. Panel (a) shows the posterior means and pixel-wise standard deviations. The visual statistics of the three priors are
similar. However, as the GRMHD 2 posterior under Subset 2 demonstrates, due to randomness in training, the resulting score-based prior may not always impose
certain features so strongly. In this case, the Subset 2 prior results in some off-center rings when reconstructing the GRMHD 2 image. Panel (b) shows extracted ring
features, comparing to the ground truth as shown in Figure 11. Consistent with the results for the 64 × 64 GRMHD prior in Figure 11, these realizations of a 32 × 32
GRMHD prior tend to slightly overestimate the diameter. However, among the different realizations of the prior, the extracted ring features are fairly consistent. The
feature most sensitive to model uncertainty of the prior is fractional central brightness.
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Appendix C
Score-based Priors

To obtain a score-based prior, we train a score-based
diffusion model with parameters θ on samples from the target
prior pdata. Once trained, the diffusion model can sample from a
learned distribution pθ≈ pdata. In this appendix, we provide
technical background on score-based diffusion models and how
to evaluate pθ.

C.1. Score-based Diffusion Models

A score-based diffusion model learns to gradually denoise
samples from the tractable distribution ( )p =  I0, into
samples from a clean image distribution pdata. Denoising is
treated as a continuous-time process such that an image is a
time-dependent variable x(t) for tä [0, T]. A higher t
corresponds to higher independent Gaussian noise in x(t).
The following stochastic differential equation (SDE) dictates
how x(t) is “diffused” as t goes from 0 to T:

( ) ( ) [ ] ( )= + Îx f x wt g t t Td , d , 0, . C1

Here Î w D is a standard Brownian motion, (· )  f t, : D D

is the drift coefficient that controls the deterministic evolution
of x(t), and ( ) Î g t is the diffusion coefficient that controls
the rate of noise increase in x(t). (Note that f( · , t) here is
distinct from the forward model f( · ) in Section 2.1.) The
stochastic trajectory { ( )} =x t t

T
0 gives rise to a time-dependent

marginal probability distribution pt. In addition, f( · , t) and g(t)
are constructed such that if p0= pdata then pT≈ π.

A diffusion model learns to reverse the diffusion process.
One can sample from the complicated distribution pdata by first
sampling from the tractable π distribution and then using the

diffusion model to transform those samples into clean images
from pdata. The reverse of the diffusion process is given by the
following reverse-time SDE:

[ ( ) ( ) ( )] ( ) ¯ [ ]
( )

= -  + Îx f x t g t p x t g t w t Td , log d d , 0, .

C2
x t

2

The gradient ( ) xplogx t is known as the Stein
score (C. Stein 1972) of x under pt, and it helps bring noisy
images closer to the clean image distribution. It is also the
component in Equation (C2) that is learned by the diffusion
model. A convolutional neural network with parameters θ,
known as the score model sθ, is trained to approximate the true
score such that ( ) ( )» qs x xt p, logx t . The score model
appears in the following learned approximation of
Equation (C2), which is used to sample from an approximation
of pdata:

[ ( ) ( ) ( )] ( ) ¯ [ ]
( )

= - + Îqx f x s xt g t t t g t t Twd , , d d , 0, .
C3

2

For x(T)∼ π, we denote the time-dependent marginal distribu-
tion of x(t) according to Equation (C3) as p̂t. We denote the

diffusion model prior as ≔ ˆqp p0. For a well-trained score
model, we have that pθ≈ pdata.

C.2. Image Probabilities under a Score-based Diffusion Model

To use pθ as a prior in an inference algorithm that optimizes
the posterior log density, we need access to the function

(·)qplog . Computing the probability of an image x under pθ
requires inverting x(0)= x to x(T) (i.e., we need to find the x(T)
that would result in x(0) through the reverse diffusion defined
by Equation (C3)). However, although we can use
Equation (C3) to sample from pθ, the presence of Brownian
motion makes the sampling function not invertible. As a result,
there is no tractable way to compute ( )q xplog . Instead, we can
appeal to an ordinary differential equation (ODE) for tractable
log probabilities or to the ELBO as an efficient proxy.

C.2.1. Computing Probabilities with an ODE

The following probability flow ODE defines a generative
image distribution qp

ODE theoretically equal to pθ:

( ) ( ) ( ) ˜ ( ) ( )= - =q q
x

f x s x f x
t

t g t t t
d

d
,

1

2
, : , . C42

Like the reverse-time SDE, this ODE can be used to sample
( ) ~ qx p0 ODE by starting with x(T)∼ π. Furthermore, an ODE

can be solved in both directions of time, making the sampling
function invertible. To compute ( )q xplog ODE for an image x, we
map x(0)= x to x(T) by solving the ODE in the forward time
direction. The log probability is given by the log probability of
x(T) under π (which is tractable to evaluate) plus a normal-
ization factor accounting for the change in log density
throughout the ODE:

Equation (C5) is tractable to evaluate with an ODE solver, but
it is computationally expensive. It can be prohibitively
expensive when the image is large or when used in an iterative
optimization algorithm.

C.2.2. Surrogate Probabilities with an Evidence Lower Bound

Y. Song et al. (2021a) derived the ELBO bθ of a score-based
diffusion model such that ( ) ( )q qx xb plog for any x. The
lower bound, which is similar to the denoising-based training
objective of diffusion models, is given by

( ) ≔ [ ( )] ( ) ( ) ( )( | ) òp -q
¢¢x x xb g t h t tlog

1

2
, d , C6x xp

T

0

2
T0

where

⎡
⎣⎢

⎤
⎦⎥

( )

( ) ≔ ( ) ( ∣ )

( ∣ )
( )

· ( )

( ∣ ) ¢ -  ¢

-  ¢ -  ¢

q¢ ¢

¢ ¢



C7

x s x x x

x x f x

h t t p

p
g t

t

, , log

log
2

, .

x x x

x x

p t

t

0 2
2

0 2
2

2

t0
 

 

Here, ( | )¢x xp t0 denotes the transition distribution of ( ) = ¢x xt
given x(0)= x under the diffusion SDE (Equation (C1)).
In denoising diffusion models, which use a linear

( ( )) ( ( )) ˜ ( ( ) ) ( ) ( )òp= +  ⋅ =q qx x f x x xp T t t tlog 0 log , d , 0 . C5
TODE
0
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drift coefficient f( · , t), this transition distribution is
Gaussian: ( ∣ ) ( ( ) ( ) )a b¢ = ¢x x x x Ip t t; ,t0

2 . This in turn

makes ( ) ( )ò xg t h t t, d
T

0
2 similar to a denoising score-

matching objective. In fact, Equation (C6) is known as the
“denoising score-matching loss” in the original theoretical
work (Y. Song et al. 2021a).

To see the correspondence to denoising, note that for
( ∣ ) ( ( ) ( ) )a b¢ = ¢x x x x Ip t t; ,t0

2 we can sample ¢x as
αtx+ βtz for ( )~ z I0, . Then the gradient ( ∣ ) ¢¢ x xplogx t0 in
Equation (C7) is given by

( ∣ ) ( ) ( )
b

a
b

 ¢ = - ¢ - = -¢ x x x x
z

plog
1

. C8x t
t

t
t

0 2

The first term in Equation (C7), ( ) ( ∣ )¢ -  ¢q ¢s x x xt p, logx t0 2
2  ,

thus can be thought of as the denoising error of the score
model. A lower error corresponds to a higher ELBO according
to Equation (C6). The remaining two terms in Equation (C7)
are normalizing factors independent of θ. Loosely speaking, the
ELBO indicates how well the diffusion model can denoise the
given image: an image with high probability under the
diffusion model is easy to denoise, whereas a low-probability
image is difficult to denoise.

The quantity bθ(x) is efficient to compute by adding
Gaussian noise to x and seeing how well the score model
estimates the noise. We Monte Carlo approximate the
expectation over ( ∣ )¢x xp T0 with Nz noise samples, and we
Monte Carlo approximate the time integral in Equation (C6)
with importance sampling of Nt time samples. In practice,
Nz= Nt= 1 is sufficient for our imaging algorithm.

Appendix D
Interferometric Data Products

In this appendix, we provide background on the data
products obtained with VLBI. In VLBI, a network of radio
telescopes collects spatial frequency measurements of the
sky’s image. We denote the source image as I(x, y), where

(x,y) are 2D spatial coordinates. Each pair of telescopes is
called a baseline and provides a Fourier measurement called
a visibility. The van Cittert–Zernike Theorem (P. H. van
Cittert 1934; F. Zernike 1938t) states that the ideal visibility
vij* measured by the baseline bij between telescopes i and j is
a single (u,v) measurement on the complex 2D Fourier
plane (A. R. Thompson et al. 2017):

˜( ) ( ) ( )( )ò ò= = p* - +v I u v I x y e x y: , , d d . D1ij
xu yv2 i

(Here i is used to denote the imaginary unit to avoid confusion
with the telescope index i.) The coordinates (u,v) (measured in
wavelengths) are the projected baseline orthogonal to the line

of sight. An array of Ns telescopes, or stations, has ⎛
⎝

⎞
⎠

N

2
s

independent baselines, each providing a visibility at each point
in time.
In practice, ideal visibilities are corrupted owing to multiple

factors: (1) baseline-dependent thermal noise, (2) station-
dependent gain errors, and (3) station-dependent phase errors.
Baseline-dependent thermal noise is modeled as a Gaussian
random variable ( )e s~  0,ij ij

2 , where σij is based on the
system equivalent flux density (SEFD) of each telescope:
s µ +SEFD SEFDij i j . The station-dependent gain error gi
arises from each telescope i using its own time-dependent 2× 2
Jones matrix (J. Hamaker et al. 1996). The station-dependent
phase error fi arises from atmospheric turbulence that
causes light to travel at different velocities toward each
telescope (G. I. Taylor 1938; R. Hinder 1970; A. N. Kolmogo-
rov 1991). Other sources of corruption, including polarization
leakage and bandpass errors, may introduce baseline-dependent
errors, but they are slow-varying and assumed to be removable
with a priori calibration (A. A. Chael et al. 2018). The
measured visibility of baseline bij can be written as

( )( ) e= +f f-v g g e v , D2ij i j
i

ij iji j *

where all systematic errors (i.e., those besides thermal noise)
are wrapped into station-dependent gain/phase errors.

D.1. Closure Quantities

Station-dependent errors are difficult to remove owing
to the absence of corroborating information from other
stations. Calibrating the measured visibilities calls for an
iterative self-calibration process that introduces many a priori
assumptions and becomes infeasible at high telescope
frequencies (A. A. Chael et al. 2018). An alternative avenue
is to use closure quantities that are unchanged by station-
dependent errors.
Closure phases (R. Jennison 1958) are robust to station-

dependent phase errors. They arise from a data product known
as the complex bispectrum, which is formed by multiplying the
three baselines within a triangle of telescopes i, j, k:

( )( ) ( ) ( ) e= +f f f f f f- - -g e e e v v v D4ijk
i i i

ij jk ki ijk
2

i j j k k i * * *

( )e= +g v v v , D5ijk ij jk ki ijk
2 * * *

where εijk is the thermal noise in the measured bispectrum.
Importantly, Equation (D3) does not include any phase errors.
Thus the closure phase is given by the phase of the bispectrum
and is robust to phase corruption. While the total number of

triplets in the telescope array is ⎛
⎝

⎞
⎠

N

3
s , the total number of

linearly independent closure phases is ⎛
⎝

⎞
⎠

=
-

N
N 1

2
s

cp . To

understand this number, see that the set of independent closure
phases can be formed by selecting one station as a reference
and then creating the set of all triangles that contain that station.

( )( )( ) ( )( ) ( ) ( )e e e= + + +f f f f f f- - -v v v g g e v g g e v g g e v D3ij jk ki i j
i

ij ij j k
i

jk jk k i
i

ki kii j j k k j* * *
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The resulting closure phases are independent in that no one
closure phase can be formed as a linear combination of other
closure phases.

Closure amplitudes (R. Twiss et al. 1960) address the issue
of station-dependent gain errors. A closure amplitude arises
from a combination of four telescopes i, j, k, ℓ:

( )( )
( )( )

( )
( ) ( )

( ) ( )

e e

e e
=

+ +

+ +

f f f f

f f f f

- -

- -

v v

v v

g g e v g g e v

g g e v g g e v
D6

ij kl

ik jl

i j
i

ij ij k ℓ
i

kℓ kℓ

i k
i

ik ik j ℓ
i

jℓ jℓ

i j k ℓ

i k j ℓ

* *

* *

( )
( ) ( )

( ) ( ) e= +
f f f f

f f f f

- -

- -

g g g g e e v v

g g g g e e v v
D7

i j k ℓ
i i

ij kℓ

i j k ℓ
i i

ik jℓ
ijkℓ

i j k ℓ

i k j ℓ

* *

* *

( )( ) e= +f f-e
v v

v v
, D8i ij kℓ

ik jℓ
ijkℓ

2 k j

* *

* *

where εijkℓ is the thermal noise in the closure amplitude.
Equation (D6) does not depend on station-dependent gain
errors, so the amplitude ∣ ∣v v

v v
ij kl

ik jl
is taken as the closure amplitude.

In this work, we use the log of the closure amplitude. The
number of linearly independent log closure amplitudes

is ⎛
⎝

⎞
⎠

( )
=

-
N

N N 3

2
s s

logca .

Appendix E
Ring Feature Extraction

We used the REx feature extraction algorithm
(A. A. Chael 2019) to compute the characteristic features in
Section 6. The diameter and fractional central brightness follow
the same formulae as in Event Horizon Telescope Collabora-
tion et al. (2019d). Except for the fractional central brightness,
which is not included in REx, all features were computed
exactly according to the latest implementation of REx6 (as of
2023 October). The REx implementation corresponds to
slightly different equations for computing features than those
given in Event Horizon Telescope Collaboration et al. (2019d).
In this appendix, we will note any differences from the
equations used in Event Horizon Telescope Collaboration et al.
(2019d).

REx first preprocesses the image by blurring it with a 2 μas
FWHM Gaussian and regridding it to 160× 160 pixels. It
identifies the ring center based on the image thresholded to
5% of the peak brightness, and then it computes characteristic
features. The characteristic features, which we define in the
following paragraphs, are all computed based on radial–
angular profiles I(r, θ) of the centered image, where I(r, θ) is
the brightness at radius r and azimuthal angle θ from the
measured center. The profiles are interpolated over the
domains r ä [0, 50] μas and θ ä [0, 2π] rad.

The diameter d is measured as twice the mean radial distance
of the peak brightness:

( ) ≔ ( ) ( )[ ]
[ ]

q q= á ñq p
q p

Î
Î

d r I r2 2 argmax , , E1
r

pk 0,2
0,2

where 〈·〉θ ä [0, 2π] denotes the mean over the domain θ ä [0,
2π]. The uncertainty of the diameter is given as the
corresponding standard deviation. This equation for d exactly

agrees with Equation (18) in Event Horizon Telescope
Collaboration et al. (2019d).
The width w is measured as the mean FWHM of radial

slices:

( ( )) ( )[ ]q= á ñq pÎw I rFWHM , , E20,2

where FWHM( · ) evaluates the FWHM of a 1D radial profile.
The uncertainty is computed as the corresponding standard
deviation. Note that this is slightly different from the
expression for w given in Equation (20) in Event Horizon
Telescope Collaboration et al. (2019d), which first subtracts the
mean flux outside the ring before estimating the width.
To measure the orientation angle, REx first estimates the

FWHM of the mean radial profile with zero-mean outside flux,
defined as

( ¯ ( ) )-I r IFWHM ,floor

where ¯ ( ) ≔ ( ) [ ]qá ñq pÎI r I r, 0,2 and ≔ ( ) [ ]qá = ñq pÎI I r 50,floor 0,2 . Let
rleft and rright denote the minimum and maximum radii,
respectively, of this FWHM. The orientation angle is computed
by finding the phase of the first angular mode of each
normalized angular profile I(r, θ) at fixed r throughout the
FWHM and then taking the circular mean:

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

( )

( )
( )

[ ]

ò

ò
h

q q

q q
= 

p q

p

Î

I r e

I r

, d

, d
. E3

i

r r r

0

2

0

2

,left right

The uncertainty of η is the corresponding circular standard
deviation. The only difference between this equation and
Equation (21) in Event Horizon Telescope Collaboration
et al. (2019d) comes from rleft and rright. In Event Horizon
Telescope Collaboration et al. (2019d), rin = (d− w)/2 and
rout= (d+ w)/2 are used instead.
The azimuthal asymmetry A is measured as the mean

normalized amplitude of the same first angular modes,
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and the uncertainty of A is the corresponding standard
deviation. Once again, the only difference from Equation
(22) in Event Horizon Telescope Collaboration et al. (2019d) is
that rleft and rright are used instead of rin and rout.
We define the fractional central brightness fC (which is not

included in REx) as the ratio of an “interior” mean flux to the
mean flux along the ring:
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Here the inside is defined as the inner disk of radius 5 μas, and
the outside is defined as the region with radius larger than the
measured radius d/2. There is no uncertainty quantification for
fC. This definition of fC exactly agrees with Equation (23) in
Event Horizon Telescope Collaboration et al. (2019d).6 https://github.com/achael/eht-imaging/blob/main/ehtim/features/rex.py
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Appendix F
Implementation Details

In this appendix, we provide implementation details about
the approach used in our experiments.

F.1. Optimization of the RealNVP Variational Posterior

For the variational distribution, we used a RealNVP normalizing
flow network with 32 affine-coupling layers with a width of D/8
neurons in the first layer, where D is the number of pixels in the
images (i.e., 32× 32 or 64× 64 in this work). Stochastic gradient-
based optimization was done with batches of 64 images and the
Adam optimizer with a learning rate of 10−5 and gradient clip of 1.
For each posterior, we ran optimization for 100K iterations.

F.2. Score-based Prior Settings

For the score-based diffusion model, we used a score model with
the NCSN++ architecture with 64 filters in the first layer, trained
according to the Variance–Preserving (VP) SDE (Y. Song et al.
2021b). The CIFAR-10, GRMHD, RIAF, and CelebA score-based
priors were trained for 100K, 100K, 20K, and 100K iterations,
respectively. The ELBO bθ(x) (Equation (C6)) was Monte Carlo
approximated with Nt= 1 time sample and Nz= 1 noise sample.
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