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Abstract: Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur
at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demon-
strates that sex and gender can lead to differences in stress responses that predispose males and
females to different expressions of similar pathologies. In this curated review, we focus on what is
known about sex differences in classic mechanisms of stress response, such as glucocorticoid hor-
mones and corticotrophin-releasing factor (CRF), which are components of the hypothalamic-
pituitary-adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as ser-
otonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid
and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout
the review. We also review in detail preclinical data investigating sex differences caused by recently-
recognized regulators of stress and disease, such as the immune system, genetic and epigenetic mech-
anisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress re-
sponses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for
all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into
preclinical research is imperative for the understanding and treatment of stress-related neuropsychiat-

ric disorders, such as depression, anxiety and Alzheimer’s disease.
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1. INTRODUCTION

Stressful experiences are a part of life, but the way peo-
ple respond to stress varies. In general, the stress response
itself is meant to be adaptive, particularly to acute stressors,
as it allows for mobilizing energy stores while suppressing
growth reproduction and drives the immune system to pre-
pare the body to deal with a threat environment [1, 2]. In
some cases, prior stress can promote resilience to future
stressors, a phenomenon called stress inoculation [3, 4].
However, the effects of a maladaptive response to stress can
be multidimensional and may include different neurobiologi-
cal and psychological outcomes, like alexithymia [5]. For
example, maladaptive responses have recently been observed
in stressed healthcare professionals during the recent
COVID-19 pandemic [6]. Moreover, chronic stress or an
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unchecked stress response is a risk factor for a range of psy-
chiatric and neurodegenerative disorders, including major
depression and Alzheimer’s disease (AD) [7-9].

There are many factors that can contribute to variability
in how people respond to stress, ranging from genetic factors
to environmental (e.g., social support). Here, we focus on
how sex/gender can lead to differences in stress responses
that predispose males and females to different pathology.

Evidence that sex/gender can influence stress reactions
comes, in part, from epidemiological data that reveal that
disorders linked to stress hormone dysregulation occur at
different rates in men and women [10]. For example, rates of
major depression are nearly twice as high in women as in
men [11, 12]. Women are also more likely to suffer from
anxiety disorders than men, with a lifetime female-to-male
prevalence ratio of 1.7:1 [13]. This sex/gender disparity is
observed in various disorders linked to high levels of per-
ceived stress and trauma and stress hormones, including gen-
eralized anxiety disorder, panic disorder, social anxiety dis-
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order, specific phobias, and post-traumatic stress disorder
(PTSD) [14, 15]. Other neurological and medical conditions
- such as AD, migraines, insomnia, and irritable bowel syn-
drome - that are more common in women than men are often
comorbid with depression and anxiety, perhaps suggesting
some common underlying pathology [16-25]. However, it is
an oversimplification to assume that women are simply more
vulnerable to stress. There are disorders exacerbated by
stress, such as schizophrenia, that have a male bias in rates
and age of onset [26-28]. Additionally, psychological and
sociocultural factors play a role. For example, diagnostic
criteria, which for psychiatric disorders are completely
symptom-based can influence outcomes. One study using a
broader diagnosis for depression that includes additional
symptoms, such as anger attacks/aggression, substance
abuse, and risk-taking, found that this expanded criterion
eliminates sex disparities in disease prevalence [29].

Based on epidemiological data alone, it is difficult to
obtain a clear picture of whether biological sex differences
are important to consider in the understanding of the etiology
of stress-related disorders and treatment development. To
address these limitations, the field has turned to non-human
animal models of stressor exposure to determine whether
there are sex differences in stress responses relevant to hu-
man health. These models are crucial in driving drug devel-
opment [30], so it may be surprising that, historically, they
excluded female animals [31]. However, in response to pres-
sure from funding agencies in the United States of America
and Canada [32], in the past five years or so, more basic and
preclinical studies have included both sexes in their designs,
although there are still major gaps in proper sex comparisons
[33, 34], as well as targeted funding [35].

Despite the limited data including female subjects, here
we focus on what is known about sex differences in classic
mechanisms of responding to stress. We also talk about more
recently recognized regulators of stress and disease, such as
the immune system, epigenetic mechanisms, neurodegenera-
tion and sex differences therein. Finally, we discuss how
understanding sex differences in stress responses can be lev-
eraged into novel therapeutics that better treat psychiatric
and neurological disorders in everyone.

2. CLASSICAL MECHANISMS AND STRESS RE-
SPONSES

The hypothalamus-pituitary-adrenal (HPA) axis is acti-
vated, in part, to provide energy to the body in response to
stress, and its dysregulation has been implicated in stress-
related disorders. Sex differences in the HPA axis have been
described in detail [36], with female rodents having higher
plasma corticosterone, the most abundant glucocorticoid
found in rats, in comparison to males [37-39]. However, this
sex difference seems to depend on several factors, such as
strain, age, time of sampling, housing conditions, diet and
estrous cycle phase, reproductive status, etc. [39-42]. Inter-
estingly, globulin corticosteroid binding, which determines
the amount of the unbound, active corticosterone that reaches
the brain, is also sex-differentiated [43] and is influenced by
stress [44].

Stress-induced activation of the HPA axis is more robust
in female rats than in males, but this activation does not
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seem to correlate with the female behavioral response to
stress [36, 45, 46]. For example, stress enhances corticotro-
pin-releasing factor (CRF), ACTH, and corticosterone more
in female than male rats [41, 47, 48], but when surgical
adrenalectomy is performed in female rats, and corti-
costerone is substituted, resulting in stable corticosterone
levels, females continue to demonstrate stress associated
behavior in the FST. This finding suggests that generally, the
female behavioral response to stress, as evidenced in this
case from the immobility, swimming and climbing FST be-
haviors, is less influenced by the HPA axis, whereas in
males, their behavioral response to stress more accurately
tracks the HPA axis (dys)function [45].

Similarly, in another study, adrenalectomy also did not
alter a well-described stress effect in female rats. Specifical-
ly, associative learning in trace eyeblink condition is de-
creased in female rats as a consequence of acute stress expo-
sure (30 min of tail shock in a restrainer tube) that has been
applied 24 hours in advance. However, in male rats, the same
surgery, which prevents HPA axis activation, abolished the
effects of acute stress in enhancing male eyeblink condition-
ing [49]. Notably, these acute stress effects require the hip-
pocampus in both sexes [50] and cause respective sex-
differentiated stress responses in the density of spines in the
CALl area of the hippocampus, i.e., decrease in females and
increase in males. The phase of the estrous cycle is important
in determining the female stress effect on learning and spine
density on the hippocampus, which is a measure of synaptic
plasticity. Specifically, this is evident when females are
stressed in the proestrous phase of the cycle and are sacri-
ficed or begin testing in the diestrous phase when estrogens
are low (for review, see: [51]). Interestingly, this female
stress effect is also dependent on the organizational effects of
gonadal hormones, as the female response can be masculin-
ized with one injection of testosterone on the first day of
birth [52]. Both associative learning and spine density, in
response to acute stress in adult masculinized female rats
(which do not have a cycle) are enhanced in a similar fashion
to male rats [53, 54].

Sex differences in neurotransmitter levels are also present
in response to stress [40, 55, 56]. In particular, rats exposed
to the FST, which consists of two sessions of swim stress on
two consecutive days, had enhanced serotonergic activity.
This was indicated by an increased 5-HIAA/5-HT turnover
ratio in the hippocampus and levels of serotonin’s metabolite
5-HIAA in the prefrontal cortex on the second day [39]. In-
terestingly, serotonergic activity in the prefrontal cortex cor-
relates with behavior in the FST, whereas hippocampal sero-
tonin does not [57]. In response to 6 weeks of chronic mild
stress, only female rats exhibit decreased serotonergic activi-
ty in the hippocampus and the hypothalamus, which might
be linked with a higher rate of female depression and strong-
er response to SSRIs [40].

Sex differences in the response of the dopaminergic sys-
tem to short-term stress also occur. Specifically, dopaminer-
gic activity is enhanced in females following the forced
swim and this has been considered as an adaptive mechanism
[39, 58]. Previous studies have also shown that stress expo-
sure influences amino acid levels in the prefrontal cortex and
the hippocampus of rats, two brain regions involved in
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stress-related and affective disorders [59-61]. In particular,
exposure to two sessions of swim stress enhanced glutamate,
glutamine, GABA and taurine levels in female rats. In males
only GABA and taurine levels were enhanced [39]. It has
been suggested that stress-induced glutamatergic and GA-
BAergic enhancements are linked with changes in sero-
tonergic and dopaminergic activity in the PFC [62, 63].

Overall, enhancements in neurotransmitter levels in re-
sponse to short-term or acute stress can be considered as a
typical adaptive response, whereas chronic stressful experi-
ence results in decreased neurotransmission that contributes
to the neurobiology of stress-related and affective disorders.

3. SEX DIFFERENCES IN THE CORTICOTROPIN
RELEASING FACTOR - CRF SYSTEM

CRF dysregulation is implicated in psychiatric disorders,
such as major depressive disorder (MDD), and neurodegen-
erative disorders, such as AD. In stress-related psychiatric
disorders, high CRF levels are found in the cerebrospinal
fluid (CSF) of humans with depression and PTSD [64, 65].
In MDD, the elevated CRF in CSF normalizes with success-
ful treatment, correlating CRF levels with symptomatology
[66]. In postmortem brain tissue from people with depres-
sion, high levels of CRF are found in the paraventricular:
nucleus (PVN) and in neuromodulatory regions, including
the raphe and locus coeruleus (LC) [67, 68]. CRF is also
linked to neurodegenerative disorders. In AD, chronic stress,
which leads to high CRF levels, increases the risk for the
disorder [69, 70]. However, CRF immunoreactivity is re-
duced in postmortem tissue from people with AD, but this is
accompanied by CRF receptor upregulation, perhaps as a
compensatory response to counter the lower CRF levels [71,
72]. The impact of these changes is unclear, but it has led to
the theory that initial CRF hypersecretion due to stress in-
creases AD risk, but the lasting dysregulation of central CRF
may decrease its tone on important regions for memory and
cognition, contributing to cognitive deficits [69]. As noted,
MDD and AD occur more often in women, but unfortunate-
ly, sex/gender differences in CRF in patients with these con-
ditions have not been investigated. In neurotypical popula-
tions, peripheral administration of CRF causes an increased
ACTH response in women compared to men [73]. This could
indicate that women have a greater HPA axis response to
CREF release, which could bias them towards these disorders
linked to CRF.

Despite the paucity of data on sex differences in CRF in
humans, there are many rodent studies showing that, in re-
gions relevant to affect and cognition, there are sex differ-
ences in CRF that range from the inputs that regulate CRF
neurons to CRF’s postsynaptic efficacy (for review see [74]).
There is some evidence that female rats have greater CRF
expression than males in the PVN [48, 75]. In target regions
of the PVN, including the pituitary and the medial septum,
CRF binding protein (CRF-BP), which binds free CRF to
reduce its bioavailability, is higher in female than male ro-
dents [76, 77]. This increase in female CRF-BP may help
compensate for higher levels of CRF released into these re-
gions from the PVN.

There are two types of CRF receptors: CRF; and CRF,,
Global knockout studies have found largely opposing effects
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of these receptors where CRF, initiates the HPA axis and
increases anxiety, while CRF, mediates the duration of the
HPA axis response, promoting stress recovery and reducing
anxiety [78-80]. There are sex differences in CRF receptor
function. For example, CRF; binding typically reflects recep-
tor number, and it is increased in the cortex, nucleus accum-
bens, and amygdala of adult female rats [81]. In the rostral
portion of the anteroventral periventricular nucleus of the
hypothalamus, a region that regulates maternal behavior,
female mice have more CRF,-positive neurons than males,
and these sex differences in exacerbated by chronic variable
stress [82, 83]. There are also sex differences in CRF; bind-
ing, which tends to be male-biased in that higher levels of
CRF, binding in the bed nucleus of the stria terminalis,
amygdala, and hypothalamus are found in male compared to
female rats [81]. Given the differential roles of CRF; and
CRF,, these sex differences in binding may bias females
toward stress reactivity and anxiety and males towards stress
recovery. In addition to differences in receptor amount, sex
differences in the distribution of CRF receptors on different
cell types have also been reported. In the dorsal raphe, CRF,
receptors have a higher colocalization with parvalbumin-
containing GABA neurons in male mice, while in the hippo-
campal CA1 region, there is great CRF receptor colocaliza-
tion with delta opioid receptor-containing dendrites in female
rats [84, 85]. Sex differences in receptor distribution can
influence how regions respond to stress and their down-
stream effects on efferent targets.

CRF receptors are G-protein coupled receptors, and while
they preferentially bind the Gs protein and signal through the
cyclic AMP (cAMP) protein kinase A (PKA) signaling
pathway, they can also bind other G proteins and B-arrestin
[86, 87]. Thus, the downstream effects of CRF receptors are
not only regulated by their receptor number and localization
but also by their signaling. Sex differences in CRF; signaling
are found in the LC, a noradrenergic-containing nucleus that
projects to many regions, including the cortex, to increase
levels of arousal [88-90]. Specifically, CRF, receptors in the
LC signal more through the cAMP-PKA pathway in females
compared to male rats, which increases the sensitivity of
female LC neurons to CRF [91]. This sex difference in sensi-
tivity is linked to sex differences in cortical network activity,
as CRF in the LC increases theta oscillations in the medial
prefrontal cortex and its coherence with the orbitofrontal
cortex in females but not in males [92]. Under acute or mod-
erate stress, this increased sensitivity of LC neurons to CRF
in females may help promote alertness and cognitive pro-
cessing. However, under conditions of CRF hypersecretion,
it could lead to hyperarousal, a negative state of being on
edge that contributes to some symptoms of depression and
PTSD and may be more prominent in women [93-96].

Similar sex differences in CRF; are also found in the
cortex, where CRF, receptors are more highly coupled to Gs
in females but to B-arrestin in males [91]. B-arrestin can acti-
vate its own suite of signaling cascades that are often distinct
from those activated by G-proteins [97, 98]. Using a phos-
phoproteomic approach in CRF overexpressing (CRF-OE)
mice, it was found that CRF hypersecretion increased activa-
tion of phosphopeptides in cortical Gs signaling pathways in
females and B-arrestin signaling pathways in males [99].
This indicates that the signaling of the CRF, is sex-biased
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[100]. An additional discovery was that CRF-OE female
mice had an overrepresentation of phosphopeptides in the
AD pathway and increased tau phosphorylation in the cortex
[99]. In a mouse model of AD pathology, female mice that
express human APP and also have an overexpression of CRF
in the forebrain have an increased formation of amyloid 3
plaques and cognitive impairments relative to males [99].
Together, these studies suggest that CRF hypersecretion can
bias females toward AD pathology (Fig. 1).

Given the link between high levels of CRF and brain
disorders, there has been an effort to develop CRF, receptor
antagonists to treat psychiatric disorders [101]. These antag-
onists were initially tested in preclinical studies using male
rodents [102-106]. At the time, there was no evidence that
the CRF, receptor could signal differently in males and fe-
males because researchers were not using female rodents in
their studies. However, this different signaling likely reflects
a sex difference in the conformation of the CRF, receptor,
which could alter the efficacy of antagonists. The one clini-
cal trial that showed some efficacy of CRF, antagonists in
depression included only men [107]. The other unsuccessful
CRF, antagonist clinical trials for depression tested CRF,
antagonists in mixed-sex/gender groups or only in women
(for review, see [36]). Unfortunately, the data from the
mixed-sex/gender trials was not disambiguated by sex, so we
are unaware whether these drugs were actually effective in
men in these other trials. These findings highlight the prob-
lems with excluding females from basic and preclinical re-
search and not disambiguating data by sex/gender in clinical
trials. Moreover, they underscore that sex differences in
pharmacodynamics, such as receptor function, should be
assessed and considered in developing therapeutics.

4. THE PRECIPITATING ROLE OF CHRONIC
STRESS ON NEURODEGENERATION: THE ROLE
OF SEX

As noted, clinical studies have suggested that lifetime
stress is associated with the early onset of AD pathology
[108, 109]. In addition to CRF, other stress hormones, such
as glucocorticoids (GCs), are associated with the initiation
and progression of AD. For instance, chronic stress may ad-
vance the age of onset of the familial form of AD, while cor-
tisol levels in AD patients correlate with their memory defi-
cits [110-112]. In addition, high cortisol levels, the abundant
GC in humans, are commonly found in AD patients’ plasma,
saliva, and CSF [113-115], while AD patients also show
higher total daily secretion of cortisol [116]. It is noteworthy
that female AD patients show higher cortisol levels than
male patients [117], suggesting that a sex difference in the
stress response may contribute to the increased risk of wom-
en for AD with a potential role for both GC and centrally
active CRF.

Focusing on the accumulation of amyloid B (AB), a mo-
lecular hallmark of AD brain, a recent clinical study that
used Pittsburgh compound B positron emission tomography
(PiB - PET) technology correlated high cortisol levels with
elevated AP levels in the AD brain [118]. In line with clini-
cal evidence, animal studies showed that elevated GC levels
or exposure to chronic stressful conditions increased the lev-
els and accumulation of A in the brain, resulting in im-
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paired cognitive function [119, 120]. In addition, neuronal
mechanisms involved in the degradation or excretion of AP
may be inactivated by stress; e.g., chronic stress affects the
brain's excretion properties by reducing the expression of
aquaporin 4 (AQP4) protein, exacerbating the accumulation
of AP [121]. As mentioned above, CRF may also play a crit-
ical role in the stress-driven precipitation of AD, with fe-
males being more vulnerable to males [99, 122]. However,
the role of GC and their signaling in the interplay of stress
and sex in AD precipitation remains mainly unclear.

Different studies suggest that chronic stress also triggers
different parameters of Tau pathology, the other hallmark of
the AD brain. Exposure of animals to chronic stressful con-
ditions resulted in the hyperphosphorylation of Tau and its
accumulation in both neuronal dendrites and synapses, lead-
ing to neuronal malfunction and impairments of synaptic
signaling [123-125]. This stress- or GC-driven accumulation
of abnormal forms of Tau protein may occur via the inhibi-
tion of different degradation mechanisms of Tau. For in-
stance, the autophagy mechanism and the endolysosomal
degradation pathway are inhibited under stressful conditions,
and this leads to pathological accumulation of Tau protein
and neuronal malfunction in the brain of experimental AD
rodent models [126, 127]. In addition, molecular chaperones,
e.g., heat shock proteins (Hsp90 and Hsp70) involved in Tau
degradation, are also shown to be dysregulated by chronic
stress [124]. Hsp90 and Hsp70 maintain GC receptors in a
high-affinity state, thus suggesting a point at which GC/GC
receptor signaling and Tau degradation machinery can inter-
sect. Interestingly, the above mechanism related to Tau ac-
cumulation is suggested to be involved in the increased vul-
nerability of the female hippocampus to the detrimental ef-
fect of chronic stress. Compared to males, females exhibited
higher levels of Tau pathology and neuronal malfunction, as
well as cognitive impairment in response to prolonged stress
with particular role for molecular chaperones [124]. Note
that prolonged exogenous administration of GCs presents
similar effects, demonstrating their central role in the patho-
logical process triggered by chronic stress [125, 128]. It is
now clear that the HPA axis, GCs, and CRF are involved in
the regulation of AD pathological mechanisms under expo-
sure to prolonged chronic stress, resulting in the accumula-
tion of AP and Tau protein in the brain [129]. For example,
animal studies suggest the involvement of CRF receptors in
stress-induced hyperphosphorylation of Tau. As noted, CRF
overexpression increases the hyperphosphorylation of Tau
with a greater effect in females than males [130, 131].

Notably, it is important to mention here a potential inter-
action of sex hormones with different components of stress
(e.g., GC and GC signaling). For instance, it is suggested
that loss of the neuroprotective effect of estrogens could con-
tribute to the increased vulnerability of females to stress-
driven AD brain pathology [132], as de-masculinization of
neonatal male AD Tg mice narrows the gender gap in terms
of AP pathology [133]. Moreover, there is strong evidence
for an interplay between GC and sex steroids, in particular
with respect to the regulation of neuroendocrine function and
behavior. Previous studies demonstrate that the depletion of
male gonadal steroids exacerbates the GC-driven Tau hyper-
phosphorylation [134], while clinical evidence recently
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Fig. (1). CRF and glucocorticoid signaling interplay in male and female AD brain. A schematic representation of the complex interplay
between sex hormones, corticotrophin-releasing factor (CRF), and glucocorticoid (GC) signaling in male and female Altzheimer disease (AD)
brain. Under chronic stress conditions, both CRF and GC receptor (GR) signaling seems to participate in the stress-driven Ap overproduction
as well as Tau hyperphosphorylation and accumulation in the AD brain with female brain exhibiting a CRF-Gs-PKA cascade activation that
contributes to both AD pathomechanisms. Note the counteracting role of sex steroids in stress-induced GR activation and downstream
induction of AD-related pathomechanisms, suggesting that reduction of male or female sex steroids (e.g., by aging) and the concomitant
exposure to prolonged stress and high GC levels increase AP overproduction and/or Tau hyperphosphorylation and accumulation thus,
endangering neuronal function and triggering AD neuropathology. (4 higher resolution/colour version of this figure is available in the elec-

tronic copy of the article).

showed that testosterone can counteract GC-induced hippo-
campal atrophy and memory deficits in middle-aged men
[135]. Given that age is a risk for AD and that GC and sex
steroid levels are inversely regulated (increased and de-
creased, respectively) during aging [136], future studies
should further clarify the molecular underpinning of the
complex interplay between sex, aging and stress in the pre-
cipitation of AD, as well as further dissect the GC and CRF
contribution to the stress-driven AD brain pathology.

5. BEYOND CLASSICAL STRESS RESPONSES: SEX
DIFFERENCES IN GENETICS, EPIGENETICS, AND
IMMUNE RESPONSE TO STRESS

Translational studies have identified genetic, epigenetic,
and immune mechanisms that contribute to stress susceptibil-
ity and are relevant to human mood disorders. Preclinical
studies often use stress to induce behavior that overlaps with
symptoms/domains of depression. These stress paradigms
vary with different laboratories using forms of social, varia-

ble, or unpredictable stress applied chronically to induce
changes in behavior [137]. In some of these paradigms, not
only do males and females engage in different behaviors in
response to stress, but the underlying transcriptional re-
sponse is different or even opposite [138-144]. Even when
depression-like behaviors are similarly induced in male and
female mice, there is less than 30% overlap in stress-induced
gene expression in the nucleus accumbens (NAc) and pPFC
[145]. In humans’ different transcriptional signatures have
been identified in these brain regions of men and women
with depression [146, 147]. A variety of epigenetic mecha-
nisms contribute to transcriptional sex differences in both
humans with depression and rodents exposed to stress. These
include sex-specific regulation by DNA methyltransferase
(DNMTs), histone modifications, microRNAs (miRNA) and
long non-coding RNA (IncRNA).

DNMTs are enzymes that covalently link a methyl group
to the 5 position of cytosine nucleotides of DNA, resulting
in the suppression of gene expression [148]. There are sever-
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al classes of DNMTs, including DNMT1, which maintains
methylation between progenitor and daughter cells [149].
DNMTs 3a & b are involved with de novo methylation, for
which they methylate sites that were previously unmethylat-
ed and/or recruit methylation binding domain proteins to
produce a variety of histone modifications [149]. DNA
methylation is a component of typical development, and con-
stitutive knockout is lethal. Rodent studies suggest males and
females have different baseline patterns of methylation,
which is important to feminizing the brain and its response to
a variety of stimuli [140, 150]. The NAc, a key region in-
volved in reward, DNMT3a over-expression shifts both sex-
es to be more sensitive to stress [140]. In males, DNMT3a
over-expression, in the absence of stress, increases spine
density in the NAc, similar to the effects of either cocaine
administration or social stress [151, 152]. Blocking
DNMT3a activation by 6-day variable stress in the NAc of
female mice shifts their behavior to a male-like response and
promotes behavioral resilience [140]. Bulk sequencing of the
NAc demonstrated that this manipulation removed many of
the pre-existing transcriptional differences induced by stress
between males and females, resulting in greater overlap of
transcription. When intracerebral DNMT3a was repressed in
female mice during early prenatal development, they en-
gaged in male-like sex behaviors in adulthood after priming
with testosterone and exposure to a receptive female [150].

While DNMT3a knockdown promoted a male-like re-
sponse to stress in females, stress can be blocked in males by
decreasing DNMT1 expression and increasing histone modi-
fications [153]. Male mice given the phytochemicals dihy-
drocaffeic acid (DHCA) and malvidin-3'-O-glucoside (Mal-
gluc) are resilient to social defeat stress and have reduced
interleukin-6 (IL-6) expression in the periphery and de-
creased spine density in the NAc. In both male and female
mice exposed to social defeat stress or variable stress,
DHCA/Mal-gluc blocks the effects of stress on behavior, but
through different mechanisms resulting in different transcrip-
tional changes and alterations of different peripheral cyto-
kines [153, 154].

Histone modifications result from additions or removal of
marks on the N-terminal tails of the histone core in nucleo-
somes [155-158]. These modifications can open or close
chromatin structures, resulting in the ability to express or
suppress gene transcription [157, 159, 160]. Histone modifi-
cations during development have long-lasting effects by sex-
specifically shaping brain regions and their subsequent stress
response. The bed nucleus of the stria terminalis (BNST) is a
sexually dimorphic structure involved in emotional respons-
es to stress. It is masculinized through histone acylation in
combination with testosterone during an early postnatal criti-
cal window [161]. Neurons in the female BNST undergo
apoptosis during this critical window, resulting in a smaller
volume in females compared to males [161]. If male mice
are treated during this time point with a histone deacetylase
inhibitor (HDAC), they have a feminized BNST [161]. Injec-
tion of testosterone into females during this same time will
produce a male-like BNST [162]. In adulthood, masculinized
females respond to acute stress like males, resulting in en-
hanced learning ability [162, 163], suggesting that epigenetic
modification of the BNST may be involved in stress resili-
ence. Histone modifications in adulthood can alter the behav-
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ioral response of male rodents to social stress through hyper-
acetylation of the BDNF promoter in the hippocampus,
which also occurs following chronic antidepressant treatment
[164]. Sex differences in long-term retrieval of fear memory
are also dependent on histone modifications, specifically
acetylation of the Cyclin-dependent kinase 5 promoter [165].

In addition to epigenetic mechanisms that act on promot-
er regions, noncoding RNAs also contribute to sex differ-
ences in the stress response. MicroRNAs (miRs) are short
(~20 nucleotides) non-coding RNAs that act upon mRNAs to
suppress protein translation [166]. Male and female mice
exposed to variable stress have no overlap in the downregu-
lation of NAc miRs and only 3 overlapping upregulated
miRs. Network analysis indicated that many of the genes
upregulated by female miRs are immune-related pathways,
whereas in males’ upregulation of miRs is associated with
neuronal signaling pathways [167]. In male mice exposed to
social defeat stress, an miR in peripheral immune cells regu-
lates the behavioral and immune response to stress [168]. So-
cial defeat stress increased the goeulation of immature, pro-
inflammatory monocytes (Ly6¢™®") in both susceptible and
resilient mice. However, differences in expression of the
miR106b~25 cluster in bone marrow-derived bone marrow
leukocytes regulated the behavioral response to stress. Leuko-
cyte-specific knockout of this miR cluster promoted resilience.
MiR-144-3p in red blood cells has also been identified as a
biomarker of depression in humans and stress susceptibility in
mice [169]. Furthermore, this miR has the potential to identi-
fy who will respond to ketamine treatment or not [169].

Non-coding RNA in sperm can also contribute to epige-
netic and transgenerational effects of stress. Paternal stress
transmits to the next generation, producing a stress-
susceptible phenotype in offspring [170-172]. Both miRs and
long non-coding (IncRNA) have been identified as driving
these transgenerational effects [170, 172]. LncRNA is impli-
cated in female depression and stress susceptibility. Women
with depression have altered primate-specific IncRNAs
LINC00473 and Rp11-298d21 (FEDORA) in the PFC [143,
144]. Viral-mediated upregulation of these IncRNAs in the
PFC of mice promotes stress resilience or stress susceptibil-
ity, respectively, in females but not in male mice. Interest-
ingly, FEDORA expression in the blood was also a potential
biomarker of depression for women [143].

Epigenetic regulation of stress/depression also occurs
from the ability of immune-associated genes to escape X
inactivation (Fig. 2). The X chromosome contains more im-
mune-related genes than any other chromosome [173], and at
least 9 of these genes escape X inactivation, resulting in a
larger dose for females [174]. These include the toll-like 7
receptor which is activated by single-strand RNA viruses
like COVID-19, and CXCR3, a chemokine receptor down-
stream of interferon signaling and CD40LG, which modu-
lates T cell communication to B cells. Females have a
stronger immune system than males in that they have a more
effective response to vaccines, greater production of antibod-
ies, greater release of cytokines during infection, and strong-
er rejection of tumors and/or transplanted tissue [175].
The tradeoff for this enhanced protection is a greater risk of
auto-immune disorders. Women account for 70- 80% of the
population experiencing autoimmune disorders [174, 175].
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Fig. (2). Novel mechanisms of stress susceptibility beyond the HPA axis. Recent rodent studies suggest that multiple epigenetic mechanisms
contribute to sex differences in stress susceptibility. These include the ability of alleles on the X chromosome to escape X inactivation in
females, DNA methylation and histone modifications that impact the likelihood that a gene will be expressed and noncoding RNAs, including
IncRNA and miRs. These mechanisms strongly impact the immune system and gonadal hormones, which also engage in bidirectional
communication. Cytokines released by peripheral immune cells and hormones can act in an endocrine fashion to alter immune cells in
the brain that, in turn, impact synaptic plasticity. (4 higher resolution/colour version of this figure is available in the electronic copy of the

article).

Autoimmune disorders and depression are intertwined, as
experiencing one disease results in an increased risk of de-
veloping the other.

Recent research has identified additional peripheral influ-
ences that contribute to depression in humans and the stress
response in rodents. One theory that is currently being ex-
plored is the leaky gut hypothesis [176]. The concept is that
stress loosens the intestinal barrier, allowing endotoxins that
escape and increase inflammatory signaling in the body and
brain. Striking evidence that the gut microbiome contributes
to depression symptoms comes from a study that transplant-
ed gut microbes from donors with depression into adult male
rats [177]. Rats that got recolonized with microbiota from
depressed but not control donors expressed anhedonia and
exploratory anxiety-associated behaviors. Ongoing research
explores the mechanisms involved and how the gut microbi-
ome can be reshaped to treat mood disorders [178-180]. The
gut microbiome can differ by sex [181]. Opposite-sex micro-
biome transplants confer some of the immune properties of
the host [182]; however, more research is needed to under-
stand how sex interacts with gut microbes to shape stress
behavioral responses to stress and its relevance to depres-
sion.

Young males and females have differences in blood-
brain-barrier (BBB) permeability, which can be further al-

tered by stress [183]. Females have greater permeability of
the PFC and a more inflamed immune profile at baseline
than males [184]. Stress increases the permeability of PFC in
females, whereas stress increases the permeability of the
striatum in males [185, 186]. These sex differences likely
explain why different areas of the brain are more vulnerable
to peripheral inflammation in males and females. Increased
permeability in response to stress occurs via downregulation
of the tight junction protein claudin 5. In males, this occurs
in the NAc, allowing increased amounts of peripheral cyto-
kines to enter that brain region [185]. In female mice, stress
also caused the downregulation of claudin 5 to increase BBB
permeability. However, the impact was on the PFC rather
than the NAc [186, 187]. The authors also found correspond-
ing changes in genes associated with BBB permeability in
post-mortem PFC tissue of women with MDD, suggesting
that the PFC may be more vulnerable to neurovascular dam-
age than the NAc in females across species.

Moreover, females have a higher number of reactive mi-
croglia, the innate immune cells of the brain within the PFC
[188]. Following stress, males express a more reactive im-
mune profile, and females express a greater number of ho-
meostatic markers. Increased microglia activation in the PFC
of humans with depression has been identified using post-
mortem tissue, and more recently, it was suggested by PET
imaging studies that use Translocator protein 4 (TSPO4),
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which is expressed by microglia, astrocytes and endothelial
cells [189]. This initial downregulation of microglia activa-
tion in the PFC by females may be a protective compensato-
ry response given the greater permeability of this region.
Inversely, microglia from females are activated by stress in
the NAc, whereas males seem to be able to suppress activa-
tion, maintaining homeostasis [190].

Sex differences in depression and stress responsivity are
also influenced by gonadal hormones. Estrogens, progester-
one, and androgen receptors are present in most immune
cells [191-193]. Because estrogens and progesterone fluctu-
ate across the cycle, they have a dose-dependent impact on
immune cell function. Low levels of estrogens stimulate ac-
tivation of these cells, whereas high levels of estrogens sup-
press immune function [194]. Studies on stress suggest that
estrogen is a modulator of inflammation, as well as a modu-
lator of behavioral responses [151, 195]. Estrogens can in-
crease the secretion of pro-inflammatory interleukins (IL-6
and IL-8) in the innate immune system and increase the se-
cretion of antibodies and regulatory T cells by B cells, in-
creasing the number of regulatory T cells [194]. In general,
testosterone suppresses immune activation, particularly by
the adaptive immune system [196]. Testosterone induces
apoptosis of T cells, resulting in a reduced number in males
[197, 198]. Suppressive effects of testosterone on the im-
mune system may, in part, protect males from the immune-
mediated effects of stress. For example, testosterone re-
placement in male or female gonadectomized mice blocked
stimulation of the pro-inflammatory cytokine Tumor necro-
sis factor alpha (TNF-a) with the endotoxin lipopolysaccha-
ride (LPS) [199]. LPS is often used to induce “sickness be-
havior,” which overlaps with symptoms of depression [200].
In humans, men and women have different immune respons-
es to LPS injection, including higher levels of circulating
pro-inflammatory cytokines TNF-a and interleukin-6 along
with greater activation of cortisol, whereas men have an in-
crease in the anti-inflammatory cytokine interleukin 10
[201]. Testosterone has a diurnal rhythm, and little is known
about how it may differently regulate the immune system
during the light vs. dark cycle [202]. Most studies that have
examined the effect of testosterone on the immune system
have examined it in the context of removal or addition. Men
who have naturally low levels of testosterone do not exhibit
a diurnal rhythm. Further complicating the matter is that cor-
tisol is a regulator of both testosterone secretion and the im-
mune system [202]. In both sexes, the HPA axis traditionally
acts to suppress immune responses. As such, sex differences
in HPA axis activity also contribute to sex differences in the
immune response to stress.

6. SEX DIFFERENCES IN DRUG RESPONSE

Depression, anxiety, AD and other stress-related disor-
ders require a multifaced treatment plan, which may include
psychotherapy, psychosocial interventions and neuropsycho-
pharmacological treatment, according to the severity of the
disorder and the individual patient needs [203]. Several med-
ication classes are available, prominently including selective
serotonin reuptake inhibitors (SSRI) and serotonin-
noradrenaline reuptake inhibitors (SNRI). Such medications
are misleadingly referred to as “antidepressants” [204] but
are considered effective treatments for anxiety, obsessive-
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compulsive disorder and other brain diseases where the
monoaminergic neurotransmission may be altered. They are
also often prescribed to treat psychiatric symptoms, which
are present in neurodegenerative disorders.

To date, there is evidence of sex differences in the phar-
macokinetic and pharmacodynamic properties of SSRIs
[205-207]. Moreover, it is postulated that many of the phar-
macodynamic sex differences may be based on the underly-
ing pharmacokinetic differences between sexes, i.e., sex dif-
ferences in absorption, distribution, metabolism, and excre-
tion. For example, in women, gastric acid secretion is less
pronounced, and the gastrointestinal tract transit time is
elongated, and as a result, the maximum drug concentration
may be reduced [206, 208]. On the other hand, bioavailabil-
ity is often found to be enhanced in women [209, 210]. Re-
garding the distribution of drugs, protein binding is less in
women, thus increasing the fraction of unbound active drugs
[211]. Another important aspect of sex differences in distri-
bution is that women have a larger fat/muscle ratio than men.
As CNS-acting drugs must pass the BBB and thus are de-
signed as highly lipophilic, their initial distribution in wom-
en is broader, and then they display a lower redistribution
rate and clearance. Moreover, hormonal fluctuations during
women's menstrual cycle may further affect the absorption
and distribution of psychotropics [210, 212]. To date, the
most robust evidence regarding pharmacokinetic sex differ-
ences is for the metabolism of antidepressants [206, 213].
However, there are no proper guidelines regarding different
dosing of most psychotropics in men and women, although
generally, women are probably exposed to higher drug lev-
els. In relevance to that, recently, regulatory agencies issued
warnings about using lower doses of some hypnotic medica-
tions, such as zolpidem, in women [214].

Similar to pharmacokinetics, important sex differences
are thought to exist in the pharmacodynamics of many li-
censed psychotropics [206, 215]. Regarding antidepressants,
data is inconclusive and, at times, conflicting. Some studies
support the existence of sex differences [205, 216-218],
whereas others fail to identify clinically significant differ-
ences [219, 220]. As suggested above regarding CRF-
antagonists that failed in clinical trials, a possible explana-
tion for these discrepancies is the lack of proper stratification
in clinical studies according to sex, as well as to women’s
hormonal status [221]. Indeed, when age and hormonal sta-
tus are considered, premenopausal women respond better to
SSRI, whereas older postmenopausal women do not respond
as well [217, 222]. The role of estrogens in facilitating drug
response was further highlighted by the finding that in post-
menopausal women, hormonal replacement therapy co-
administered with SSRIs increased favorable outcomes [221,
223]. Several studies produced similar findings, supporting
the beneficial interplay between estrogens and antidepres-
sants [224-228]. However, it is worth mentioning that there
have been negative studies as well [229, 230], suggesting
that the mediating effect of estrogens may be more compli-
cated and context-dependent in various patient populations,
according to the underlying neurobiology and especially that
of the serotonin transporter (SERT) binding [231].

Pharmacokinetic and pharmacodynamic sex differences
are also found in several preclinical studies of psychotropics.
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Behavioral tests such as the Tail Suspension Test (TST) and
the Forced Swim Test (FST) are often used to study the ef-
fects of antidepressants. When properly validated, such tests
can also highlight important sex differences [232, 233]. For
example, compared to males, female rats display higher lev-
els of immobility and lower head shake counts during the
FST [45, 58, 234]. Most antidepressants typically reduce
immobility and increase swimming duration [223, 235, 236],
and female rodents respond more favorably to lower doses of
several SSRIs [234, 237-239].

Sex differences may also exist for several other psycho-
tropics, not directly acting on the monoaminergic neuro-
transmission. Esketamine, a stereoisomer of the racemic drug
ketamine, is a newly licensed medication for severe depres-
sion and suicidality [240, 241]. Although clinical studies
have yet to show important pharmacodynamic sex differ-
ences, few preclinical studies suggest sex differences, as
females present higher sensitivity to ketamine’s actions than
male animals [242]. Moreover, in social isolation stress
models, females recovered from depressive-like behaviors
with lower doses of ketamine than males [243].

Regarding cholinesterase inhibitors that are mainly used
for treating AD, limited data suggest that women respond
better to treatment than men [244], but overall, there is an
almost complete lack of sex-specific data reported in clinical
trials for AD drugs. Also, there is no sex-specific reporting
of adverse events related to these treatments [245]. There-
fore, more sex-specific designed studies are needed in AD
research, as well.

As mentioned, research on therapy for stress-related dis-
orders has focused lately on other targets beyond classical
ones. Apart from those already discussed above, these in-
clude NMDA receptors and glutamatergic pathways, sero-
tonergic receptors (e.g., S-HT2A as targets of psychedelics),
the GABAergic system, neuropeptides, endocannabinoids
and many more [246-248]. Another very interesting line of
research includes neurosteroids, which are produced de novo
locally in the brain, as nowadays, it is known that the brain
possesses all the enzymes required for the de novo synthesis
of steroids from cholesterol and not just from steroid precur-
sors synthesized in the gonads or adrenals, which subse-
quently enter the brain through the bloodstream [249]. Also,
there is accumulating evidence that these neurosteroids play
a significant role in neuropsychiatric disorders. For example,
allopregnanolone, which is the most investigated, is modu-
lated by stress and is involved in PTSD and depression
[250]. Notably, brexanolone, which is a pharmaceutical
preparation of allopregnanolone, has been licensed as a
treatment for post-partum depression [251].

Estrogens can also act as neurosteroids synthesized local-
ly in the brain from steroid precursors, such as testosterone.
This conversion is catalyzed by the rate-limiting enzyme
aromatase, encoded by the CYP19 gene, and is happening
locally in the brain of both males and females [249]. These
neuroestrogens are known to be involved in several brain
functions, including neuroprotection, cognition and mood
[252-254]. As mentioned, testosterone can also derive from
de novo synthesis locally in the brain or from circulating
sources that enter the brain. As known, testosterone is con-
verted to estrogens by aromatase or to non-aromatizable an-
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drogens (such as DHT) that have also been found to have an
important impact on brain functions, especially cognition
and neurodegeneration [249]. As mentioned above, sex ster-
oids, especially testosterone, are known to interact with the
HPA axis [255, 256].

Regarding stress studies, there is evidence that the en-
zyme aromatase is modulated by stress in the hypothalamus
of male and female adult quails [257], as well as in the male,
but not in the female adult rat hypothalamus [39]. In preclin-
ical models of antidepressant activity, short-term subacute
administration of letrozole produced a clear antidepressant
effect, which was comparable in effect size to that of fluoxe-
tine, an established antidepressant treatment [258]. However,
in other studies of repeated letrozole administration over
several days (7-21 days), there were no clear antidepressant
behavioral effects despite a persisting modulation of the
monoaminergic neurotransmission systems [258, 259]. Sus-
tained aromatase inhibition decreased noradrenaline and do-
paminergic activity, as demonstrated by the dopaminergic
turnover rates in the hippocampus and PFC of male and fe-
male adult rats [39]. Moreover, aromatase inhibition en-
hanced serotonergic activity, as demonstrated by the seroto-
nin turnover rate in the hippocampus of males and females
[39]. These effects were not influenced by adult gonadecto-
my of rats, which suggests that inhibition of estrogen locally
in the brain may play a role [39]. These findings are further
supported by the fact that adult ovariectomized aromatase
knockout female mice also exhibit enhanced serotonergic
activity in the hippocampus, suggesting a modulatory role of
neuro-estrogens on hippocampal function [260].

These and other studies suggest that neuro estrogens, as
well as their receptors, could be interesting, druggable tar-
gets for the treatment of stress-related disorders. Importantly,
estrogen’s receptors include classical intracellular ERa and
ERp receptors, as well as the membrane G protein-coupled
estrogen receptor 1 (GPER1) receptor, which is involved in
rapid, non-genomic actions of estrogens in the brain [261,
262]. ERa and ERP receptors, as well as their modulators,
such as tamoxifen and raloxifene, have long been studied for
their role in anxiety, cognition and depression, especially
during menopause [249, 263, 264]. ERp seems to be more
involved in mood regulation [264]. Also, tamoxifen has been
suggested as a potential treatment for episodes of mania, but
more studies are needed [265, 266]. The GPERI1 has also
been recently involved in stress response and anxiety in male
and female mice [267, 268], as well as in depression in men
and women [269]. More studies are needed to elucidate the
role of pharmacological treatments targeting estrogen recep-
tors in anxiety, affective disorders and AD.

CONCLUSION

As discussed in detail above, several animal and human
studies confirm the existence of various sex differences in
the neurobiological mechanisms of stress response that are
linked with the pathophysiology of depression, anxiety and
AD [138]. However, only recently, preclinical studies started
to include both sexes in stress animal models. A significant
emphasis has been given by the National Institutes of Health
(NIH) policy to consider sex as a biological variable (SABV)
in basic research [270]. For practical recommendations on
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SABYV experimental design, the role of gonadal hormones, as
well as relevant statistics, the readers are referred to an NIH-
funded 18-part video series made by Cohen Veterans Biosci-
ence. These videos are open-access and available online for
researchers [271].

Moreover, funding agencies in the USA, Canada, Aus-
tralia and the European Union vigorously request the inclu-
sion of sex and gender in research, aiming to facilitate better
disease understanding [272]. In particular, the inclusion of
SABYV in neuropsychopharmacology and stress research may
significantly increase the translatability of preclinical find-
ings to clinical setups, which in turn can lead to the devel-
opment of more efficacious treatment for stress-related dis-
orders [273-275]. In fact, the often-observed sex mismatch
between preclinical and clinical trials may account for other
confounders, for the problem of limited reproducibility in
research [276, 277]. Therefore, more sex-aware preclinical
research may facilitate the generation of leads for further
clinical testing and expedite the early recognition of adverse
events that may appear more frequently or at lower doses in
one sex or the other [278]. Finally, training a new generation
of physicians and health care professionals to account for sex
and gender in their practice will pave the way for more per-
sonalized care, especially regarding stress-related disorders
that, as presented in this review, are heavily characterized by
sex-dependent neurobiology.

LIST OF ABBREVIATIONS

AD = Alzheimer’s Disease

BBB = Blood-brain-barrier

CSF = Cerebrospinal Fluid
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GCs = Glucocorticoids

HPA = Hypothalamus-pituitary-adrenal
LC = Locus Coeruleus

LPS = Lipopolysaccharide

MDD = Major Depressive Disorder
miRNA = microRNAs

NAc = Nucleus Accumbens

PTSD = Post-traumatic Stress Disorder
SNRI = Serotonin-noradrenaline Reuptake Inhibitors
TNF-a = Tumor Necrosis Factor Alpha
TST = Tail Suspension Test
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