
37

A Survey of Tool Support for Working with Design Decisions
in Code

SAHAR MEHRPOUR and THOMAS D. LATOZA, George Mason University, USA

Whenever developers choose among alternative technical approaches, they make a design decision. Collec-
tively, design decisions shape how software implements its requirements and shape non-functional quality
attributes such as maintainability, extensibility, and performance. Developers work with design decisions
both when identifying, choosing, and documenting alternatives and when later work requires following and
understanding previously made design decisions. Design decisions encompass design rationale, describing
the alternatives and justification for a design choice, as well as design rules, describing the constraints im-
posed by specific alternatives. This article summarizes and classifies research on these activities, examining
different approaches through which tools may support developers in working with design decisions in code.
We focus both on the technical aspects of tools as well as the human aspects of how tools support developers.
Our survey identifies goals developers have in working with design decisions throughout the lifecycle of
design decisions. We also examine the potential support tools may offer developers in achieving these goals
and the challenges in offering better support.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering
→ Software maintenance tools; • Information systems → Information retrieval; • Human-centered
computing;

Additional Key Words and Phrases: Design decisions, design rules, design rationale, developer tools

ACM Reference format:
Sahar Mehrpour and Thomas D. LaToza. 2023. A Survey of Tool Support for Working with Design Decisions
in Code. ACM Comput. Surv. 56, 2, Article 37 (September 2023), 37 pages.
https://doi.org/10.1145/3607868

1 INTRODUCTION
When building software, developers work with design decisions every day. For example, a devel-
oper might employ the Proxy pattern [59] in a document editor to reduce the cost of expensive
object creations by providing a placeholder for the objects and only creating them on-demand. Or
a developer might decide that, to reduce latency, map data will be lazily loaded and only trans-
ferred when needed. Or a developer might decide that, to make it easier to potentially change the
library used for persistence, all interactions with the persistence framework will be localized in a
specific module.

This work was supported in part by the National Science Foundation under grant NSF CCF-1703734 and CCF-1845508.
Authors’ address: S. Mehrpour and T. D. LaToza, George Mason University, 4400 University Drive, Fairfax, VA; emails:
{smehrpou, tlatoza}@gmu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
0360-0300/2023/09-ART37 $15.00
https://doi.org/10.1145/3607868

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://orcid.org/0000-0002-9263-3360
https://orcid.org/0000-0002-9564-3337
https://doi.org/10.1145/3607868
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3607868
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607868&domain=pdf&date_stamp=2023-09-14

37:2 S. Mehrpour and T. D. LaToza

Design decisions describe a choice and the potential alternatives for a specific design prob-
lem [147]. They describe how the system commits to a particular design and how the design space
is restricted [49]. They shape how software achieves its requirements, impacting the behavior of
a program. At the same time, design decisions shape how software achieves a wide range of non-
functional requirements, such as maintainability, extensibility, and performance.

Developers work with design decisions to accomplish specific goals, both when initially choos-
ing between alternatives to make a design decision as well as when returning to a previously made
decision to understand how to follow it. For example, a developer may have a goal to understand
the rationale behind a design decision and the reasons for choosing one alternative instead of oth-
ers. Accomplishing this goal can help to build a correct mental model of a codebase and to ensure
that future changes and decision-making follow the intended design. A developer might also have
a goal to write code that follows an existing design decision. In this case, the developer needs a
clear and concise understanding of the design decision, the constraints it imposes, and how code
elsewhere is implemented consistent with these constraints.

To work with design decisions, developers are traditionally encouraged to use design docu-
ments, which are intended to contain information on important design decisions. However, in
practice today, developers work with design documents that are rarely updated, leaving them
outdated, incomplete, and untrustworthy [92]. Even when updated, it can be hard to follow design
decisions [104]. As design documents become distrusted or abandoned, developers may manually
reverse-engineer design decisions and their rationale from code [84], which is often challenging.
Questions about design rationale are some of the most frequently reported hard-to-answer
questions [83] and create one of the most serious problems developers report facing [84].

The difficulties developers experience in working with design decisions may have profound con-
sequences on software projects, leading to code decay, architectural erosion, and defects [48, 95].
Incorrect, unfit, or ignored design decisions alter code’s behavior, result in the code diverging
from developers’ own mental models of it, decrease code comprehensibility, and cause code de-
cay. Difficulties may lead the implementation of the program to diverge from the original design
(architectural drift) and for new design decisions to violate the intended architecture (software
erosion) [60, 61, 146, 155].

To address developers’ difficulties, researchers have proposed a variety of tools that offer
developers better support for accomplishing their goals in tasks in which they work with design
decisions. Documentation tools enable developers to make design decisions explicit by document-
ing them in structured formats. Static analysis and system architecture tools enable developers
to check documented design decisions against code. Design rationale tools capture, organize, and
maintain design rationale and the process of decision-making. Design pattern catalog tools link
code to existing documentation. Reverse engineering tools and software query languages enable
developers to find unwritten design decisions by extracting frequent code snippets or to test
hypothesized design decisions against code.

Given the vital role of software tools in facilitating developers’ work, it is imperative to inves-
tigate their usage in practice and identify areas for improvement to better support developers’
needs. Previous surveys have primarily focused on the technical performance of tools, such as
their features and precision. Surveys have examined tools and techniques for detecting patterns in
code, such as code clones [126, 134] and design patterns [6, 45], and static analysis [91] and design
rationale tools [122]. However, it is equally important to understand tools from the developers’
perspective to assess if and when current tools may address the real needs of developers when
working with design decisions and motivate the design of future more effective tools [109].

In this survey, we address these gaps by taking a developer-centered approach where we
examine the goals developers have when working with design decisions and how tools may meet

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:3

these needs. Specifically, we answer questions such as: What are the primary goals of developers
when working with design decisions? Do existing tools meet these goals, and if not, how can
they be modified to better support developers? Can existing tools be used to fulfill multiple
goals?

This survey makes three contributions. First, we offer a taxonomy of tools that assist developers
in working with design decisions. Second, we provide a list of goals that developers aim to accom-
plish, reflecting the needs developers have in working with design decisions. Third, we provide
an evaluation of the level of support offered by each of these types of developer tools in helping
developers to achieve these goals.

The structure of this survey is as follows: We first overview the background and related work on
developer goals and software tools for working with design decisions (Section 2). Next, we describe
the process and the methodology we followed to create this survey (Section 3). We define design
decisions, including their constituent parts, various forms, and related concepts (Section 4). We
then present a taxonomy of tools for working with design decisions and review tools of each type
(Section 5). We identify six goals developers have when working with design decisions (Section 6)
and critically examine the support offered by tools in helping developers achieve each of these
goals (Section 7). We conclude with a discussion of new directions where tools may offer more
effective support to developers in their work with design decisions in code (Sections 8 and 9).

2 RELATED WORK
Design decisions play a crucial role software development. A variety of tools have been designed
to help developers work with design decisions, which we survey in this article. Other work has
examined how developers work with design decisions in their everyday work with programming
and identified challenges with using tools to work with design decisions. This survey also reviews
this work, using it to identify goals developers have when working with design decisions as well
as critically examine how effectively each type of tool may support achieving these goals.

Prior survey articles have reviewed many of the tools we examine in this article. One survey
examined techniques used to document design decisions and identified reasons why these docu-
mentation methods are not commonly adopted in practice [8]. Another surveyed the tools and
techniques that have been designed for managing design rationale [122]. Work has also examined
the use of program analysis tools for software maintenance that are available and can be used
by practitioners [91]. Other surveys have classified tools and techniques for mining codebases to
detect code clones [126, 134], code patterns [10], and design patterns [6, 45]. In addition to these,
this article also surveys design pattern catalog tools, system architecture tools, and software query
languages and tools, for which we are aware of no prior surveys.

Building on these surveys, this survey differs by going beyond a technical perspective of the
techniques used to also examine tools from the point of view of a developer working with design
decisions. We identify developer goals in working with design decisions and critically examine the
support tools may offer in helping developers achieve these goals.

3 SURVEY METHODOLOGY
To create this article, we considered principles from well-known literature review methodolo-
gies [76]. This section provides an overview of the methodology used for conducting this survey.

3.1 Research Goals and Questions
The goals of this survey are to investigate the types of tools available for developers to support their
work with design decisions, understand the goals that developers have when working with design
decisions, and identify how accomplishing these goals can be supported by various types of tools.

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:4 S. Mehrpour and T. D. LaToza

Additionally, this survey aims to identify limitations in existing tools and explore opportunities for
improvement or to introduce new tools that can better support developers. With these objectives
in mind, we aim to address the following research questions:

RQ1. What types of tools are available to support developers working with design decisions?
RQ2. What are developers’ goals when they work with design decisions?
RQ3. In what ways do tools support developers in accomplishing their goals working with

design decisions?
We address RQ1 in Section 5, RQ2 in Section 6, and RQ3 in Section 7.

3.2 Identification and Selection Strategy
Search strategy. To identify relevant studies for RQ1 and RQ2, we used several methods: (1) We
collected a set of research papers that we were already familiar with that covered developers’
tasks, their interaction with tools, and tools designed for working with design decisions in code.
(2) We also collected another set of related papers through searching literature databases, such
as Google Scholar, DBLP, IEEEXplore, and the ACM digital library, using relevant keywords such
as “developer tasks,” “developer tools,” “following rules,” “changing code,” “finding patterns,” and
“detecting defects.” (3) We then used snowballing to identify additional studies by examining the
references of the papers we found and the studies that cited them. To identify prior surveys related
to the tools we identified in RQ2, we searched literature databases using keywords such as “survey”
and “overview,” as well as using the tool types in Section 5 as keywords. We then used further
snowballing to identify recent surveys by examining surveys that cite older surveys.

Inclusion and exclusion criteria. The scope of the papers examined in this survey includes techni-
cal reports and papers presented at workshops, conferences, and journals in software engineering
and human–computer interaction. To address RQ1, we included studies that focused on developers
and their needs, goals, and challenges. For RQ2, we considered tools designed to support develop-
ers in completing tasks that involve working with various representations of design decisions, such
as design patterns. We excluded studies and tools that were considered too preliminary, such as
position papers, as well as tools that did not pertain to design decisions, such as debugging tools.

3.3 Data Extraction
For each article about a tool, we made notes on the paper’s self-positioning, including the tool’s
purpose and the tasks it supports, as well as its features, including its user interface. We also noted
example use cases and potential future features of the tool mentioned in the paper.

4 DEFINITIONS
In this section, we define several key concepts related to design decisions: software design, design
decisions, design rationale, design rules, and design patterns.

Software design. Software design is the process of creating a blueprint for a software system by
defining, visualizing, creating, and testing the architecture, components, modules, and interfaces
to fulfill specified requirements [1, 70].

Design decision. In this article, we define a design decision as a choice between alternative tech-
nical approaches made to achieve a goal [113]. For example, a design decision might be to choose
the Proxy pattern [59] instead of Facade or Factory [59] to represent elements in a document editor.
Design decisions may be characterized by the scope of their impact, ranging from low-level choices
that impact a few lines of code, to cross-cutting architectural decisions that impact an entire code-
base [132]. Design decisions may be simple, compound, or cross-cutting. “Simple decisions have a

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:5

Fig. 1. An example argument in the QOC model of
argumentation [99]. Design choices are specified as
questions (design choices), options (design alterna-
tives), and criteria (properties and requirements).

Fig. 2. In the IBIS model of argumentation [40], de-
sign choices (issues) can be generalized, specialized,
or create other design choices. Each design choice
is accompanied by several design alternatives (posi-
tions) that are supported or opposed by arguments.

singular rationale and consequence. Compound decisions include several closely related rationales,
but their consequences are generally contained in one component. Finally, cross-cutting decisions
affect a wider range of components, and their rationale follows a higher-level concern such as the
architectural quality of the system” [132]. A variety of attributes may be associated with a design
decision, such as its authors, history, area of impact (e.g., usability, security), current state (e.g.,
idea or implemented), risk, and cost [80].

Design rationale. Central to a design decision is its rationale [117]. Design rationale describes
the alternatives that were considered and the justification for why the selected alternative was cho-
sen [86, 107]. For example, a developer may select the Proxy pattern [58] in a document editor to
reduce the cost of expensive object creations and only create them on-demand. Design rationale of-
fers traceability that explicitly links requirements to the descriptions of artifact features that satisfy
these criteria [47]. Design rationale may be captured and represented informally or through more
structured formal approaches [39]. Informal approaches represent design decisions and rationale
in raw documents [24] or other communication artifacts such as email, chat, audio, or video that
record the design process [87]. Formal approaches impose a structure by which design decisions are
represented through an argumentation model describing how the design decision was made and the
rationale behind it [47], and as such they are widely known as design rationale models. For exam-
ple, in Toulmin’s model of argumentation, several elements are specified, such as a claim (a design
decision), datum (data providing evidence for this claim), and a warrant that connects the claim
and the datum [143]. This model does not capture design alternatives or their arguments. Other
prominent design rationale models are the Questions, Options, and Criteria (QOC) model [99],
the Issue-Based Information System (IBIS) model [39, 123], and model used in the Decision
Representation Language (DRL) [85]. In the QOC model, questions capture design choices, op-
tions describe design alternatives, and criteria enumerate properties and requirements that must
be satisfied (Figure 1). Each question is associated with several options, and each option may satisfy
or violate criteria. Design rationale is illustrated through a diagram, where lines connecting ques-
tions and options represent arguments. Similar to QOC, IBIS diagrammatically represents design
issues (Figure 2). Specifically, in IBIS, issues (design choices), positions (design alternatives), and ar-
guments are each diagram elements, and directed edges between them describe their relationships.
This representation describes how a resolution is reached and a decision is made. IBIS influenced
other design rationale models, including the Procedural Hierarchy of Issues (PHI) [54] and the
model proposed by Potts and Bruns [120], which itself was extended in the model of DRL [85] by
adding design rationale elements to the model (Figure 3). The DRL model then inspired later argu-

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:6 S. Mehrpour and T. D. LaToza

Fig. 3. In the DRL model in RATSpeak [28], design decisions are specified as design choices (decision prob-
lems), design alternatives, and arguments, which encompass requirements that are supported or violate
assumptions about alternatives and the relationship with other alternatives and claims (design decisions).

mentation models, such as the Design Document Model (DDM) [67, 77] (also inspired by QOC)
and RATSpeak [28].

Design rule. After a selected alternative has been chosen, this selection imposes a set of con-
straints that code must follow to be consistent with the design decision. These constraints are
design rules [13]. Design rules impose “partial specifications to which the realization of one or
more architectural [and non-architectural] entities have to conform to” [72]. For example, apply-
ing the Proxy pattern [58] to a document editor requires creating a proxy class and an entity class
for each element in the editor, along with an editor class that may only access the proxy. Con-
straints may require or prohibit the existence of an entity or artifact, require specific properties
for cross-cutting concerns (which may be hard to map to a specific location in source code), or
constrain the conditions under which code is executed [80].

4.0.1 Design Pattern. While a design decision is most often considered to be a choice made in a
specific situation, a design decision can also be considered as a more general, and reusable, choice
that balances competing considerations. This perspective was best popularized in the form of a
design pattern, offering a solution to a problem in a context [58]. Many design patterns have been
introduced, such as the GoF (Gang of Four) patterns on object-oriented design [59], patterns
for Agile programming [103], patterns for enterprise software [56], and patterns for specific
programming languages such as Java [22]. Design patterns have often been closely associated
with structural constraints on code elements, describing how a specific problem is solved by
enumerating a few classes with specific roles and specifying constraints on their relationships
(e.g., the Observer pattern [59] decouples a subject from an observer by maintaining a list of ob-
servers that are notified of state changes). Similar to design patterns, architectural styles also offer
reusable solutions to a problem. However, instead of constraining how a few classes are connected,
instead constrain how all elements in a system are connected. For example, in the Model-View-
Controller [133], three types of elements have constraints on their interactions throughout the
system.

5 TOOLS FOR INTERACTING WITH DESIGN DECISIONS IN CODE
A wide variety of tools have been proposed to support developers in working with design decisions
in code. We identified 85 papers that introduce a tool that a developer may use to work with design
decisions (Figure 4). These tools can be categorized along several dimensions, including what a

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:7

Fig. 4. A taxonomy of tools for supporting developers working with design decisions in code. Tools embody
many choices about how decisions are captured and represented (italic text), resulting in a variety of ap-
proaches (bold text). The blue labels indicate the number of papers in each category.

Table 1. Tools Focus on Supporting Developer Work with Design Decisions in a Primary Task, but May
Also Impact how Developers Achieve Other Goals (Section 6)

Rule Status Tool Types primary task

Captured

Documentation Tools document design decisions Section 5.1
Static Analysis Tools document and check design rules Section 5.2
Design Rationale Tools document alternatives and design rationale Section 5.3
Design Pattern Catalog Tools document design patterns Section 5.4
System Architecture Tools document and check module dependency rules Section 5.5

Not Captured Reverse Engineering Tools infer potential design decisions Section 5.6
Software Query Languages and Tools test hypothesized decisions by identifying examples Section 5.7

developer is asked to do before or after making a design decision and how a design decision is
represented. We used this categorization to created a taxonomy for tools (Figure 4). The types of
tools we survey and the primary tasks they are intended to support are listed in Table 1.

Most broadly, tools may support developer work with design decisions that are either explicitly
captured and written down at the point when a developer makes a decision or that remain uncap-
tured. Tools have envisioned several ways to offer support for explicitly captured decisions. Design
decisions may be represented through a link to a more generic form of the design decision, as found
in Design Pattern Catalog Tools (Section 5.4). Or design decisions may be directly documented, ei-
ther as the design rationale explaining the choice or the design rule associated with the design de-
cision. Design rationale may be documented either explicitly, as alternatives and the criteria used
to choose between them (Design Rationale Tools, Section 5.3), or less formally, through unstruc-
tured text (Documentation Tools, Section 5.1). Other tools focus on checking that code remains
consistent with a design rule. These may focus either on higher-level architectural rules (System
Architecture Tools, Section 5.5) or lower-level code rules (Static Analysis Tools, Section 5.2).

As design decisions are often not written down and explicitly captured when the design deci-
sions were originally made, a wide variety of tools have been designed to help support developer
work with uncaptured design decisions. Tools may support developers as they attempt to infer de-
sign decisions from examples (Reverse Engineering Tools, Section 5.6) or to hypothesize design de-
cisions and test these hypotheses against code (Software Query Languages and Tools, Section 5.7).

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:8 S. Mehrpour and T. D. LaToza

Fig. 5. CODES [150] generates JavaDoc from
related discussions on Stack Overflow.

Fig. 6. Tutorons [66] generates context-relevant doc-
umentation for explaining complex options and syn-
tax, such as for the wget command, REGEX queries,
and CSS selectors.

5.1 Documentation Tools
Design decision documentation tools support systematic documentation of design decisions.
While their primary purpose is to capture design decisions, documentation tools may also provide
features to facilitate editing and updating design decisions over time, such as by linking design
decisions to code [68, 104] (Figures 9 and 14), visualizing the relationships among decisions [90],
or generating documentation using external resources [150] (Figure 5).

Documentation tools vary in how a decision is represented, which may be code-based or
on-demand [124]. In code-based documentation tools, design decisions are formulated as code
patterns (e.g., ActiveDocumentation [104]), with a focus on lower-level decisions. In contrast,
on-demand documentation tools are responsive, generating documentation from external re-
sources based on a user query. For example, CODES [150] searches for related discussions in
Stack Overflow and inserts found descriptions as JavaDoc documentation in the code (Figure 5).
Tutorons [66] responds to user queries to generate code-specific documentation explaining
complex options and syntax using prepared templates (Figure 6).

Related Survey. While we focus on tools for documentation in this survey, prior work has sur-
veyed techniques for documentation. Alexeeva et al. [8] conducted a systematic literature review
of approaches for documenting design decisions. They classified documentation techniques across
five dimensions: goal, formalism for classifying decisions (e.g., properties or free-text), which de-
cisions are documented, artifacts included with the decision, and tool-support.

5.2 Static Analysis Tools
Static analysis tools check code for conformance against pre-defined rules [151]. Static analysis
tools may be used to check consistency between a design decision and code by checking that
it follows the design rule reflecting the chosen alternative. Static analysis tools vary widely in
their capabilities, including the types of rules they may check, their extensibility to new rules, the
languages they support, and the developer experience of interacting with the tools (Table 2).

Static analysis tools are generally pre-configured to check for specific universal design rules
that reflect constraints that should hold across all projects (e.g., PMD [41], FindBugs [69], and
CheckStyle [2]). An extensible static analysis supplements this with support for developers to them-
selves author custom rules. These rules may document and check design rules imposed by design
decisions. Tools support a variety of techniques and notations by which developers may author
project-specific design rules. Some offer libraries for writing rules as code while others use special-

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:9

Table 2. Novak et al. [111] Identify Several Dimensions Characterizing the Capabilities
of Static Analysis Tools

Dimension Description Approaches
Rule Types of rules that may be checked Style, Naming, Concurrency, Exceptions,

Performance, Security, SQL, Maintainability,
Correctness

Configurability Ability to customize tool Text document, GUI, XML, Rulesets
Technology Analysis techniques used to identify rule

violations
Dataflow, Syntax, Theorem proving, Model
checking

Extensibility If the tool can be extended with
customized rules

Possible, Not possible

Developer Experience How developers interact with the tool Environment integration, Automatic
Locating errors in code, Extensive help on
faults, User interface, Command Line, GUI

Input Types of files that can be loaded into tool Source Code, Byte Code
Output Presentation of the results from tool HTML, XML, List, Text

Fig. 7. In Design Fragments [50], developers write
down design rules about framework interactions,
which are then checked against code.

Fig. 8. SEURAT [29] enables documenting design ra-
tionale through a tree representation (left) and link-
ing it to code (right).

ized notations. Rules may be expressed as constraints on information collected while traversing
the Abstract Syntax Tree (e.g., CheckStyle, PMD), XPath queries (e.g., PMD), or XML (e.g., De-
sign Fragments [50], (Figure 7)). Some tools (e.g., Tricorder [129] and RulePad [105]) specifically
emphasize their ability to empower all developers to write their own rules.

Related Survey. In this survey, we categorize static analysis tools based on the scope of rules
they check. Prior work [91] categorized 25 program analysis tools based on their popularity in
research and search engines, their purpose, and the programming languages they support.

5.3 Design Rationale Tools
Design rationale tools enable developers to make the reasoning behind design decisions explicit
by documenting, organizing, maintaining, and reusing rationale. Design rationale tools may be
model-based, using an explicit argumentation model that describes alternatives and criteria used
to choose between them, or artifact-based, linking to existing artifacts that include unstructured
textual descriptions of rationale.

Model-based design rationale tools enable developers to explore documented rationale through
visual diagrams or textual representations. Tools often represent the design rationale explicitly,
identifying alternatives that were considered and the criteria with which a developer selected an

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:10 S. Mehrpour and T. D. LaToza

Fig. 9. DecDoc [68] documents design decisions through UML diagrams (left) and code annotations (right).

alternative through an argumentation model (Section 4). Many tools support nesting design de-
cisions, where an alternative may have design choices within it. Tools may display the argumen-
tation model of alternatives and criteria through a visualization. Early tools such as InfoRat [27]
display argumentation models using a textual representation through lists of items. gIBIS [40]
uses the IBIS model to visualize design rationale as a graph, with nodes for issues (design choices),
positions (alternatives), and arguments (Figure 2). SEURAT [29] lists design rationale informa-
tion (including decisions, alternatives, and arguments) as levels in a tree (Figure 8). DecDoc [68]
uses the Documentation Decision Model (DDM) [67] to capture design decisions through two
separate approaches: architectural design decisions UML diagrams and design decisions in code
through annotations (Figure 9). As graphs visualizing rationale may become large and cluttered,
tools may make the diagrams zoomable (e.g., gIBIS) or collapsible (e.g., SEURAT), displaying details
on demand (Figure 8).

Tools may also support the process of evaluating design rationale. For example, SEURAT [29]
enables developers to annotate code fragments relevant to specific design issues, creating two-
way links between rationale and code. Completeness and consistency is checked for violations of
syntactic rules (e.g., multiple alternatives are selected) and semantic rules (e.g., the same argument
is used for and against an alternative), with notifications of potential violations of requirements
or when chosen alternatives may be non-optimal.

In contrast to model-based tools that explicitly represent alternatives, artifact-based tools
offer links to existing artifacts containing text describing design rationale. Design rationale
may be discussed on communication platforms such as chat and email. However, these artifacts
are often disconnected from code and may be lost or forgotten. To support the use of these
artifacts to explain rationale, artifact-based design rationale tools such as CodeLink [157] and
REACT [9] organize design rationale information, automatically extracting discussion of rationale
or enabling developers to annotate these discussions in non-code artifacts. CodeLink organizes
emails containing rationale, making them easier to find by processing them to extract develop-
ment contexts (i.e., time, project information, the author’s task, and the author’s development
environment) and identify relevant source code. REACT enables developers to annotate design
rationale elements (design choices, alternatives, pro-arguments, con-arguments, and decisions)
in Slack.

Related Survey. In this survey, we classify design rationale tools into model-based and
artifact-based tools. Prior work categorized early model-based design rationale tools, introduced

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:11

Fig. 10. SAVE [78] visualizes dependencies
between system components, indicating
potential violations with an edge icon.

Fig. 11. Dependency-Structure Matrix tools visualize compo-
nent dependencies in a matrix and indicate violations of de-
pendency constraints (cells with triangles) [5].

between 1970 to 2000, as process- or feature-oriented, identified an argumentation model (e.g.,
IBIS, QOC), examined whether rationale was automatically extracted or captured from developers,
and identified an information retrieval process (navigation, automatically triggered, query-based,
or hybrid) [122].

5.4 Design Pattern Catalog Tools
Design pattern catalog tools systematically collect known design patterns introduced for common
problems, enabling a new decision to be documented and explained by referencing a prior general-
ized decision (e.g., adopting the Strategy pattern). Catalogs represent design patterns using struc-
tured templates that enumerate attributes, facilitating search and exploration. Most famously, the
“Gang of Four” introduced a catalog of design patterns for object-oriented design. They described
each pattern through 12 properties, including jurisdiction (elements where the pattern applies),
characterization (the pattern’s functionality), intent (the rationale of the pattern), and motivation
(a scenario where it applies) [58]. Later templates introduced a variety of additional properties,
such as solution principle and runtime behavior [30, 46]. Catalog tools may also capture architec-
tural patterns. Catalog tools may support extension to other types of patterns by modifying the
underlying templates (e.g., SEURAT_Architecture [154]).

By representing design patterns through structured templates, catalog tools enable browsing
and search along the enumerated dimensions. For example, DRIMER supports identifying
and understanding patterns by integrating design patterns, examples, and their rationale in
a unified model called Design Recommendation and Intent Model (DRIM) [116]. SEU-
RAT_Architecture [154] integrates rationale management with design patterns by recording
attributes including positive and negative consequences.

5.5 System Architecture Tools
System architecture tools enable developers to document architectural design decisions and check
code against the constraints they impose. Two influential approaches are Reflexion Models
(RM) [78] and Dependency-Structure Matrices (DSM) [130]. In RM tools, components are ex-
tracted from the code, visualized, and checked for conformance against a specified, intended ar-
chitecture. For example, SAVE [78] visualizes the system as a graph, where nodes represent the
system components and edges represent dependencies (Figure 10). Violations of constraints are
illustrated with icons on edges. Like Reflexion Models, DSM tools capture dependency structure
but display dependency structure in a matrix form. The rows and columns correspond to system

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:12 S. Mehrpour and T. D. LaToza

components, and each cell in the matrix denotes dependencies between components. For example,
in Lattix’s Dependency Manager tool [5], rows and columns correspond to classes, and cells count
directed dependencies between classes. Constraints on dependencies between classes may be de-
fined by marking cells as allowed or forbidden, with violations reported through small triangles
shown on cells (Figure 11).

5.6 Reverse Engineering Tools
Reverse engineering tools extract design artifacts from a program to support developers in spec-
ified tasks [37]. In this survey, we focus on reverse engineering tools that might be applicable to
detecting potential design decisions in code. Reverse engineering tools may help developers infer
design decisions by identifying frequently co-occurring code fragments, suggesting the presence
of a design rule associated with a design decision. These tools assume that the more a pattern is
repeated, the more likely that pattern is intentional and reflects an underlying design rule. Reverse
engineering tools may also be used to detect design patterns. Working from a predefined set of
attributes defining design patterns, tools may identify instances of these in code.

5.7 Software Query Languages and Tools
Software query languages and tools enable developers to test a hypothesized design rule. Devel-
opers formulate a design rule as a query and then examine identified example code fragments that
follow or violate the rule. Techniques vary in the query language used to express design rules,
including general-purpose programming languages, domain-specific languages, and semi-natural
languages.

General Purpose Programming Languages. Using general purpose programming languages to
write queries reduces the required learning curve for the developer to learn the query language
but adds complexity and overhead when writing complex queries. EG [15] supports extracting
common and idiomatic examples for a given API method, but with queries limited to API meth-
ods. ArchJava [7] offers an architectural description language for checking architectural decisions
against code, extending Java by adding constructs to define architectural components, connectors
between components, and ports (sets of method calls).

Domain-specific Languages. Domain-specific languages offer languages specifically designed for
expressing queries, with widely varying complexity and expressiveness. Some query languages
like Semmle.QL [42] are similar to well-known languages such as SQL, reducing learning barri-
ers. For example, a Semmle.QL query to find classes that only implement the compareTo method
without implementing the equals method is written as:

from Class c
where c.declaresMethod(‘‘compareTo’’) and not(c.declaresMethod(‘‘equals’’))
select c.getPackage(), c

Other query languages use novel notation, such as XPath in PMD [41], SOUL [43] (a functional
language), and Acme [63] (an architecture description language). While offering considerable
expressiveness, these languages require users to learn a new and often complex language to
write queries. For example, a PMD XPath query to find classes without private fields is written
as:

//ClassOrInterfaceDeclaration[count(ClassOrInterfaceBody/ClassOrInterface BodyDeclaration/

FieldDeclaration[@Private="true"])=0]

A SOUL query to find bar methods in classes is written as:

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:13

if jtMethodDeclaration(?m) {
public ?type bar(?paramList) { ?statements };
}

And an Acme query checking that a connection C1 between components A and B implies a con-
nection C2 is written as:

(forall b :! B in sys.components | (forall cnp :! P1T in b.ports | (forall a :! A in
sys.components | (forall cnr :! P2T in a.ports | (connected (cnp, cnr) -> (exists cqr
:! P3T in b.ports | (exists cqp :! P4T in a.ports | connected (cqr, cqp)...)

Semi-natural Languages. Natural language is an expressive and natural approach for writing
queries. However, natural language is often ambiguous and difficult to interpret. Therefore, many
tools use specifically designed semi-natural languages that seek to remain close enough to natural
language to benefit from their naturalness and expressiveness while introducing structure to re-
duce ambiguity. Browse-By-Query (BBQ) [3] and srcQL [16] use semi-structured grammars for
expressing queries. A BBQ query to find bar methods in classes is written as:

matching "bar" methods in all classes

A query in srcQL to find a function that contains an fopen() followed by an fclose() on the
same variable is written as:

FIND src:function CONTAINS $X = fopen() FOLLOWED BY fclose($X)

Architectural design rules may also be specified through semi-natural language. For example, a
design rule in Dictō [36] for the model-view-controller architectural style may be specified as:

Test=Package with name:"com.app.Test"
View=Package with name:"com.app.View"
Model=Package with name:"com.app.Model"
Controller=Package with name:"com.app.Controller"
Test, View can only depend on Model, Controller

6 DEVELOPER GOALS WHEN WORKING WITH DESIGN DECISIONS
To examine how developers can be better supported when working with design decisions, it is
important to consider the goals they hope to accomplish. A goal specifies an objective that an in-
dividual seeks to achieve through a series of mental or physical activities [64, 98]. In programming
tasks, goals encompass the tasks developers do (e.g., fix a defect, migrate to a new library version)
as well as the questions and subgoals necessary to complete these tasks (e.g., determine the cause
of a defect, determine the assignment statement that last wrote to a field). Goals often describe an
objective by the developer to implement a change to a program or to gather information [81, 109].
In this survey, we consider goals developers may have when working with a design decision, ex-
amining the situations where developers may work with a design decision and how tools might
effectively support these situations.

Broadly, a design decision can be thought of as transitioning through a lifecycle. It is first
created, impacts subsequent work, and, eventually, may be revisited and changed. To make a
design decision, a developer first formulates a problem. For many programming problems, there
may be more than one solution, each with positive and negative consequences [96]. Developers
may collect and evaluate each alternative, considering their advantages and disadvantages as well
as existing design constraints [20]. After a design decision is made, it may be captured by the devel-
oper in, for example, a design document so future developers can understand it [114] and prevent
knowledge vaporization [33]. However, in practice, many design decisions remain uncaptured,
undocumented, and tacit in the heads of decision-makers [72, 147]. Over time, to understand,

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:14 S. Mehrpour and T. D. LaToza

Table 3. When Working with Design Decisions, Developers Seek to Accomplish a Number of Distinct
Goals

Goal Example
Goal 1

(Section 7.1)
Identify potential alternatives How should functionality be decomposed into classes to achieve

extensibility and maintainability?
Goal 2

(Section 7.2)
Select an alternative as a design decision Is the best alternative for this situation the Command Pattern

or Publish/Subscribe?
Goal 3

(Section 7.3)
Document the chosen alternative Communicate the design decision of selecting the Command

pattern to future developers through documentation.
Goal 4

(Section 7.4)
Check hypothesized design decisions against code After reading the code, a developer hypothesizes that the

Command pattern is being used and seeks additional evidence
to test this hypothesis.

Goal 5
(Section 7.5)

Find and follow relevant design decisions While creating a new class to implement a new user action, a
developer tries to determine how it should be connected to
existing functionality that captures user toolbar actions.

Goal 6
(Section 7.6)

Determine why an alternative was selected After seeing that communication is mediated through
Command patterns, the developer tries to determine why it was
selected instead of a Publish/Subscribe approach.

maintain, and reuse code, developers need to understand related design decisions [127] to follow
and to be consistent [79, 137]. To detect uncaptured design decisions, developers may apply reverse
engineering techniques to find implicit design decisions in code [18], or may conjecture design
decisions by generating hypotheses and testing them by examining the code [138]. When consid-
ering changing design decisions, developers often seek to understand their rationale [72, 107, 137],
which is the most frequently reported category of hard-to-answer questions by developers [83].

From this, we identified six key goals developers may have in working with design decisions:
(1) identify potential alternatives, (2) select an alternative as a design decision, (3) document the
chosen alternative, (4) check a hypothesized design decision against code, (5) find and follow rele-
vant design decisions, and (6) determine why an alternative was selected (Table 3).

7 SUPPORTING DEVELOPER GOALS
While many tools are most closely associated with a single goal (the primary task identified
in Table 1), many offer at least partial support for a wider variety of developer goals. In this
section, we consider how a wide variety of approaches may offer support for each of the goals
we pinpointed in the previous section and the challenges that may exist in achieving this support.
Table 4 summarizes the support tools may offer developers in achieving these goals and the
challenges developers may have when using these tools.

7.1 Goal 1: Identify Potential Alternatives
When developers face a problem writing code, they must find a solution [135]. To this end, de-
velopers may identify a range of potential solutions for further examination [20, 96] from multi-
ple sources, including novel solutions [31, 110] as well as reusing solutions and ideas from other
projects [55, 102, 148, 149] and developers’ own past experiences [100]. Developers may also brain-
storm and discuss ideas with their team [100]. Solutions may also be adapted from solutions to
similar problems found within a developer’s own project [35, 100]. Developers may also draw on
solutions to more general problems, such as those written in tutorials, blog posts, books, or other
mediums.

Tools may support developers in finding potential alternatives to a design problem, either by
helping developers identify and understand similar decisions made within their own project or by
helping identify general solutions to problems to adapt and reuse. For example, design rationale
tools might help developers by recording a number of alternative solutions that they have consid-

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:15
Ta

bl
e

4.
Ex

is
tin

g
D

ev
el

op
er

To
ol

s
H

el
p

D
ev

el
op

er
s

A
ch

ie
ve

D
iff

er
en

tG
oa

ls
In

vo
lv

in
g

D
es

ig
n

D
ec

is
io

ns

G
oa

l1
:I

de
nt

if
y

po
te

nt
ia

l
al

te
rn

at
iv

es
G

oa
l2

:S
el

ec
ta

n
al

te
rn

at
iv

e
as

a
de

si
gn

de
ci

si
on

G
oa

l3
:D

oc
um

en
tt

he
ch

os
en

al
te

rn
at

iv
e

G
oa

l4
:C

he
ck

hy
po

th
es

iz
ed

de
si

gn
de

ci
si

on
ag

ai
ns

tc
od

e
G

oa
l5

:F
in

d
an

d
fo

llo
w

re
le

va
nt

de
si

gn
de

ci
si

on
s

G
oa

l6
:D

et
er

m
in

e
w

hy
an

al
te

rn
at

iv
e

w
as

se
le

ct
ed

D
oc

um
en

ta
tio

n
To

ol
s

+
De

ve
lo

pe
rs

m
ay

se
ar

ch
an

d
re

us
e

do
cu

m
en

te
d

de
cis

io
ns

if
ap

pl
ica

bl
e.

-U
se

fu
ln

es
so

ft
oo

ls
de

pe
nd

so
n

th
e

ex
ist

en
ce

,c
lar

ity
,a

nd
co

rr
ec

tn
es

so
f

th
ed

oc
um

en
ta

tio
n.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

fro
m

th
e

lan
gu

ag
eu

se
d

in
th

et
oo

lt
o

th
at

in
th

eir
co

de
.

+
De

ve
lo

pe
rs

m
ay

re
us

ed
oc

um
en

te
d

alt
er

na
tiv

es
if

ap
pl

ica
bl

e.
-U

se
fu

ln
es

so
ft

oo
ls

de
pe

nd
so

n
th

e
ex

ist
en

ce
,c

lar
ity

,a
nd

co
rr

ec
tn

es
so

f
th

ed
oc

um
en

ta
tio

n.
-D

ev
elo

pe
rs

ne
ed

to
m

ap
fro

m
th

e
lan

gu
ag

eu
se

d
in

th
et

oo
lt

o
th

at
in

th
eir

co
de

.

-N
o

Su
pp

or
t.

+
De

ve
lo

pe
rs

ca
n

lo
ok

up
th

er
ela

te
d

de
sig

n
de

cis
io

ns
if

do
cu

m
en

te
d.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
ta

tio
n.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

fro
m

th
e

lan
gu

ag
eu

se
d

in
th

et
oo

lt
o

th
at

in
th

eir
co

de
.

+
De

ve
lo

pe
rs

ca
n

lo
ok

up
th

er
ela

te
d

de
sig

n
de

cis
io

ns
if

do
cu

m
en

te
d.

-U
se

fu
ln

es
so

ft
oo

ls
de

pe
nd

so
n

th
e

ex
ist

en
ce

,c
lar

ity
,a

nd
co

rr
ec

tn
es

so
f

th
ed

oc
um

en
te

d
de

cis
io

ns
.

+
De

ve
lo

pe
rs

ca
n

lo
ok

at
ra

tio
na

le
of

do
cu

m
en

te
d

de
sig

n
ru

les
in

th
et

oo
l.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
de

cis
io

ns
.

St
at

ic
A

na
ly

si
sT

oo
ls

-N
o

Su
pp

or
t.

-N
o

Su
pp

or
t.

+
De

ve
lo

pe
rs

m
ay

do
cu

m
en

tt
he

ch
os

en
alt

er
na

tiv
es

if
th

et
oo

ls
su

pp
or

t
cu

sto
m

ru
le

au
th

or
in

g.
-D

ev
elo

pe
rs

ne
ed

tim
e,

eff
or

t,
bu

dg
et

,
an

d
m

ot
iv

at
io

n
to

us
et

he
to

ol
s.

-D
ev

elo
pe

rs
ne

ed
to

ha
ve

sp
ec

ia
liz

ed
kn

ow
led

ge
an

d
ex

pe
rti

se
to

w
rit

e
ch

ec
ka

bl
er

ul
es

.

+
De

ve
lo

pe
rs

ca
n

au
th

or
de

sig
n

ru
les

in
th

et
oo

la
nd

us
et

he
to

ol
to

ch
ec

k
th

ec
od

ef
or

co
nf

or
m

an
ce

.
-D

ev
elo

pe
rs

ne
ed

sp
ec

ia
liz

ed
kn

ow
led

ge
an

d
ex

pe
rti

se
to

w
rit

e
ch

ec
ka

bl
er

ul
es

an
d

in
te

rp
re

tt
he

re
su

lts
.

+
Th

et
oo

lc
he

ck
st

he
co

de
ag

ai
ns

tt
he

ru
le

fo
rc

on
fo

rm
an

ce
.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
de

cis
io

ns
.

+
If

re
co

rd
ed

,t
he

n
de

ve
lo

pe
rs

ca
n

ex
am

in
et

he
ra

tio
na

le
of

de
sig

n
ru

les
us

in
g

th
et

oo
l.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
de

cis
io

ns
.

D
es

ig
n

R
at

io
na

le
To

ol
s

+
De

ve
lo

pe
rs

m
ay

se
ar

ch
fo

ra
nd

re
us

e
do

cu
m

en
te

d
de

cis
io

ns
,i

ft
he

y
ex

ist
.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
de

sig
n

ra
tio

na
le.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

be
tw

ee
n

th
e

lan
gu

ag
eu

se
d

to
de

sc
rib

er
at

io
na

le
an

d
th

at
in

th
eir

co
de

.

+
De

ve
lo

pe
rs

m
ay

re
us

ed
oc

um
en

te
d

alt
er

na
tiv

es
,i

fa
pp

lic
ab

le.
-U

se
fu

ln
es

sd
ep

en
ds

on
th

ee
xi

ste
nc

e,
cla

rit
y,

co
rr

ec
tn

es
s,

an
d

lan
gu

ag
eo

f
th

ed
oc

um
en

te
d

de
sig

n
ra

tio
na

le.
-D

ev
elo

pe
rs

ne
ed

to
m

ap
fro

m
th

e
lan

gu
ag

eu
se

d
in

de
sc

rib
in

g
ra

tio
na

le
to

th
at

in
th

eir
co

de
.

+
De

ve
lo

pe
rs

ca
n

do
cu

m
en

tt
he

de
cis

io
n

ra
tio

na
le

us
in

g
th

et
oo

l.
-D

ev
elo

pe
rs

ne
ed

tim
e,

eff
or

t,
bu

dg
et

,
an

d
m

ot
iv

at
io

n
to

us
et

he
to

ol
s.

+
De

ve
lo

pe
rs

ca
n

lo
ok

up
de

cis
io

ns
do

cu
m

en
te

d
in

th
et

oo
l.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
de

sig
n

ra
tio

na
le.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

fro
m

th
e

lan
gu

ag
eu

se
d

in
de

sc
rib

in
g

th
e

ra
tio

na
le

to
th

at
in

th
eir

co
de

.

+
De

ve
lo

pe
rs

ca
n

lo
ok

up
de

cis
io

ns
do

cu
m

en
te

d
in

th
et

oo
l.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
de

sig
n

ra
tio

na
le.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

fro
m

th
e

lan
gu

ag
eu

se
d

fo
ri

n
de

sc
rib

in
g

ra
tio

na
le

to
th

at
in

th
eir

co
de

.

+
De

ve
lo

pe
rs

ca
n

us
et

he
to

ol
to

ex
am

in
et

he
ra

tio
na

le
of

de
sig

n
ru

les
.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
de

sig
n

ra
tio

na
le.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

th
el

an
gu

ag
e

us
ed

fo
rt

he
ra

tio
na

le
an

d
th

eir
co

de
.

D
es

ig
n

Pa
tt

er
n

C
at

al
og

To
ol

s
+

De
ve

lo
pe

rs
m

ay
se

ar
ch

an
d

lo
ok

at
ca

ta
lo

g
of

de
sig

n
pa

tte
rn

sa
nd

fin
d

de
sig

n
pa

tte
rn

th
at

ad
dr

es
se

s
ch

all
en

ge
s.

-U
se

fu
ln

es
so

ft
oo

ls
de

pe
nd

so
n

th
e

ex
ist

en
ce

,c
lar

ity
,a

nd
co

rr
ec

tn
es

so
f

th
ed

oc
um

en
te

d
de

sig
n

pa
tte

rn
s.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

fro
m

th
e

id
en

tifi
er

su
sin

g
in

th
ed

es
ig

n
pa

tte
rn

s
to

th
os

ei
n

th
eir

co
de

.

+
De

ve
lo

pe
rs

ca
n

se
ec

on
se

qu
en

ce
s

de
fin

ed
fo

rd
es

ig
n

pa
tte

rn
si

n
th

e
ca

ta
lo

g.
-U

se
fu

ln
es

sd
ep

en
ds

on
th

ee
xi

ste
nc

e,
cla

rit
y,

an
d

co
rr

ec
tn

es
so

ft
he

do
cu

m
en

te
d

de
sig

n
pa

tte
rn

s.
-D

ev
elo

pe
rs

ne
ed

to
m

ap
fro

m
th

e
id

en
tifi

er
su

se
d

in
th

ed
es

ig
n

pa
tte

rn
s

to
th

os
ei

n
th

eir
co

de
.

+
De

ve
lo

pe
rs

w
ho

ar
ef

am
ili

ar
w

ith
th

e
de

sig
n

pa
tte

rn
ca

ta
lo

g
m

ay
us

et
he

id
en

tifi
er

st
o

fin
d

th
ep

at
te

rn
si

n
co

de
.

-D
ev

elo
pe

rs
ne

ed
tim

e,
eff

or
t,

bu
dg

et
,

an
d

m
ot

iv
at

io
n

to
us

et
he

to
ol

s.

+
De

ve
lo

pe
rs

w
ho

ar
ef

am
ili

ar
w

ith
th

e
de

sig
n

pa
tte

rn
ca

ta
lo

g
m

ay
us

et
he

id
en

tifi
er

st
o

fin
d

th
ed

es
ig

n
pa

tte
rn

s
in

co
de

an
d

m
ak

ec
ha

ng
es

co
ns

ist
en

tly
.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
de

sig
n

pa
tte

rn
s.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

de
sig

n
pa

tte
rn

id
en

tifi
er

st
o

th
eir

co
de

.

+
De

ve
lo

pe
rs

ca
n

us
ei

de
nt

ifi
er

st
o

m
at

ch
th

ed
es

ig
n

pa
tte

rn
si

n
th

e
ca

ta
lo

g
an

d
to

m
ak

ec
ha

ng
es

co
ns

ist
en

tly
.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
th

ec
or

re
ct

ne
ss

of
th

e
do

cu
m

en
te

d
de

sig
n

pa
tte

rn
s.

-D
ev

elo
pe

rs
ne

ed
to

m
ap

de
sig

n
pa

tte
rn

id
en

tifi
er

st
o

th
os

ei
n

th
eir

co
de

.

+
De

ve
lo

pe
rs

m
ay

go
to

th
ec

at
alo

g
to

se
ew

hy
an

alt
er

na
tiv

em
ig

ht
ha

ve
be

en
ch

os
en

.
-U

se
fu

ln
es

sd
ep

en
ds

on
th

ee
xi

ste
nc

e,
cla

rit
y,

an
d

co
rr

ec
tn

es
so

ft
he

do
cu

m
en

te
d

de
sig

n
pa

tte
rn

s.
-D

ev
elo

pe
rs

ne
ed

to
m

ap
fro

m
th

e
lan

gu
ag

eu
se

d
in

th
ed

oc
um

en
te

d
ra

tio
na

le
to

th
eir

co
de

.

Sy
st

em
A

rc
hi

te
ct

ur
e

To
ol

s
-N

o
Su

pp
or

t.
-N

o
Su

pp
or

t.
+

De
ve

lo
pe

rs
ca

n
co

nfi
gu

re
th

e
in

te
nd

ed
ar

ch
ite

ct
ur

ei
n

th
et

oo
l.

-D
ev

elo
pe

rs
ne

ed
tim

e,
eff

or
t,

bu
dg

et
,

an
d

m
ot

iv
at

io
n

to
us

et
he

to
ol

s.

+
De

ve
lo

pe
rs

ca
n

te
st

hy
po

th
es

ize
d

de
cis

io
ns

.
-U

se
fu

ln
es

sd
ep

en
ds

on
th

ee
xi

ste
nc

e,
cla

rit
y,

an
d

co
rr

ec
tn

es
so

ft
he

do
cu

m
en

te
d

de
cis

io
ns

.
-D

ev
elo

pe
rs

ne
ed

to
ha

ve
sp

ec
ia

liz
ed

kn
ow

led
ge

to
te

st
de

cis
io

ns
an

d
in

te
rp

re
tt

he
re

su
lts

.

+
Th

et
oo

lv
isu

ali
ze

st
he

sy
ste

m
ar

ch
ite

ct
ur

ea
nd

sh
ow

si
nc

on
sis

te
nc

ies
w

ith
th

ei
nt

en
de

d
ar

ch
ite

ct
ur

e.
-U

se
fu

ln
es

sd
ep

en
ds

on
th

ee
xi

ste
nc

e,
cla

rit
y,

an
d

co
rr

ec
tn

es
so

ft
he

do
cu

m
en

te
d

de
cis

io
ns

.
-D

ev
elo

pe
rs

ne
ed

to
in

te
rp

re
tt

he
m

od
els

.

+
De

ve
lo

pe
rs

m
ay

lo
ok

up
th

e
ra

tio
na

le
if

do
cu

m
en

te
d.

-U
se

fu
ln

es
sd

ep
en

ds
on

th
ee

xi
ste

nc
e,

cla
rit

y,
an

d
co

rr
ec

tn
es

so
ft

he
do

cu
m

en
te

d
ra

tio
na

le.

R
ev

er
se

En
gi

ne
er

in
g

To
ol

s
+

De
ve

lo
pe

rs
ca

n
id

en
tif

y
an

d
co

m
pa

re
ex

ist
in

g
alt

er
na

tiv
ei

m
pl

em
en

ta
tio

ns
of

ab
eh

av
io

r.
-D

ev
elo

pe
rs

ne
ed

to
in

te
rp

re
tt

he
re

su
lts

.
-T

he
re

su
lts

de
pe

nd
on

th
et

oo
l

co
nfi

gu
ra

tio
ns

.

-N
o

Su
pp

or
t.

-N
o

Su
pp

or
t.

-N
o

Su
pp

or
t.

+
To

ol
sm

ay
he

lp
fin

d
re

lev
an

td
es

ig
n

ru
les

an
d

id
en

tif
y

an
y

in
co

ns
ist

en
cie

s.
-D

ev
elo

pe
rs

ne
ed

to
in

te
rp

re
tt

he
re

su
lts

.
-T

oo
ls

m
ay

pr
od

uc
ef

als
ep

os
iti

ve
s.

-N
o

Su
pp

or
t.

So
ft

w
ar

e
Q

ue
ry

La
ng

ua
ge

sa
nd

To
ol

s
+

De
ve

lo
pe

rs
ca

n
w

rit
eq

ue
rie

st
o

lo
ok

fo
ra

nd
co

m
pa

re
ex

ist
in

g
im

pl
em

en
ta

tio
ns

of
ab

eh
av

io
r.

-D
ev

elo
pe

rs
m

ay
ne

ed
sp

ec
ia

liz
ed

kn
ow

led
ge

to
w

rit
eq

ue
rie

sa
nd

in
te

rp
re

tt
he

re
su

lts
.

-N
o

Su
pp

or
t.

-N
o

Su
pp

or
t.

+
To

ol
sm

ay
he

lp
ch

ec
k

fo
r

hy
po

th
es

ize
d

de
cis

io
n

in
co

de
.

-D
ev

elo
pe

rs
m

ay
ne

ed
sp

ec
ia

liz
ed

kn
ow

led
ge

to
w

rit
eq

ue
rie

sa
nd

in
te

rp
re

tt
he

re
su

lts
.

+
De

ve
lo

pe
rs

m
ay

fo
rm

ul
at

eq
ue

rie
s

an
d

co
m

pa
re

re
su

lts
to

fin
d

in
co

ns
ist

en
cie

s.
-D

ev
elo

pe
rs

m
ay

re
qu

ire
sp

ec
ia

liz
ed

kn
ow

led
ge

to
w

rit
eq

ue
rie

sa
nd

in
te

rp
re

tt
he

re
su

lts
.

-T
oo

ls
m

ay
pr

od
uc

ef
als

ep
os

iti
ve

s.

-N
o

Su
pp

or
t.

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:16 S. Mehrpour and T. D. LaToza

ered in the past [127]. The following subsections describe the ways in which different tools may
offer support in achieving this goal.

7.1.1 Documentation Tools. Documentation tools document design decisions with information
that may inform developers about their potential applicability to future design problems. Docu-
mentation tools may help developers look for related design decisions [156] and understand the
rationale behind these choices. For example, in ActiveDocumentation [104], design decisions are
associated with labels to help developers locate decisions relevant to a specific topic. Developers
may then read descriptions of design decision to understand their rationale and find code examples
that illustrate decisions.

7.1.2 Design Rationale Tools. Documented design rationale may help developers in reusing
design decisions [47]. Model-based design rationale tools document design rationale by capturing
design choices, alternatives, arguments for or against the alternatives, and rationale (Section 5.3).
If design decisions share a similar context, then their alternatives may be applicable [88].
Documented alternatives may potentially be reused when a developer makes new design
choices [23, 102, 116]. However, arguments used in making a past design choice may no longer
apply, as these may depend on the specific context of past design choices [88]. Even when
alternatives do not apply directly, they may inspire new alternatives [31, 100].

7.1.3 Design Pattern Catalog Tools. Design patterns offer a solution to a problem in a con-
text [58], offering developers a menu of readily available alternatives with which to solve prob-
lems. For example, to implement an element that may take one of multiple forms (e.g., graphical
elements in an editor), the developer can look at the Gang of Four patterns for object jurisdiction
and structural purpose [59]. Design pattern catalog tools support working with patterns, describ-
ing each with properties including their type, scope, intent, and motivation [55]. Many design
pattern catalog tools offer features to facilitate the search and exploration process. A developer
may browse patterns supporting the intent of creating objects in DRIMER [116]. Tools such as
SEURAT_Architecture [154] visualize design patterns and their properties in tree structures and
maintain links to code fragments where the patterns are applied.

7.1.4 Reverse Engineering Tools. Reverse engineering tools transform code into abstract forms
and extract information to detect unknown design rules and design patterns, which may be used
as alternatives for new design decisions. In many tools, extracted potential design rules are pre-
sented as code fragments without description or rationale (e.g., Reference [139]), and it is left to
developers to evaluate the fragments and infer a design rule and rationale. To do this, developers
may examine the mined code fragments in the context of the codebase [138, 139]. Developers may
then consider if the discovered design rules are solutions to their design problem. For example, a
tool might extract code fragments that suggest to the developer the presence of a factory or pro-
totype pattern, which the developer might then consider as alternatives when deciding how to
support extensibility.

7.1.5 Software Query Languages and Tools. Software query languages and tools enable devel-
opers to query code to answer questions. Using these to identify alternatives may require more
knowledge of the codebase than other tools, as the developer must first formulate an idea of a
design or implementation to create a query. For example, a developer considering how to support
extensibility might use a software query language to look for implementations of the Factory or
Prototype pattern in their codebase.

7.1.6 Challenges. A central challenge with documentation and design rationale tools is the
quality (e.g., clarity and correctness) of the content developers write down. If the documentation

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:17

is vague, incomplete, or incorrect, then it may mislead developers and create more harm than
good [92]. Creating documentation is usually considered a burden imposed on developers [71, 106],
and developers often skip documenting or maintaining the documentation of design decisions [92].
As a result, documentation is often missing, outdated, or incomplete [92], and many assumptions
made when making decisions remain undocumented [62] (see Section 7.3.5). It is crucial for tools
to consider ways in which the burden for developers in creating documentation might be reduced,
such as by reducing the effort to create the documentation or providing immediate benefits that
the authors of documentation receive in completing their task.

Another challenge developers face is bridging the gap between the concepts and language they
use in framing their new design problem and the language and the vocabulary used in describing
existing problems in documentation, catalogs of design patterns, and other artifacts. Concept as-
signment (matching human-oriented concepts to code or context) [21], the potential for vocabu-
lary mismatch (differences in word choices) [57], and domain-specific vocabulary used in existing
artifacts are key barriers to reusing information within existing artifacts [62]. In documentation
tools and design rationale tools, documented decisions and alternatives are often described with
system-specific terms and context [102, 131]. This may make it hard for developers to understand
how to generalize and relate these decisions to the design problem they face. In contrast, design
pattern catalogs take a step towards instead employing a generalized and standardized vocabulary.
But there may still be challenges in adapting this terminology back to the context of the problem
the developer is considering.

Reverse engineering alternatives from existing code brings additional challenges. Rather than
produce alternatives that can be readily considered, these tools instead produce code snippets. De-
velopers must then examine the code snippets to infer alternatives, which may require additional
knowledge and effort. To write queries using software query languages and tools, developers
need knowledge about the design and implementation of the code (Section 7.1.5) and may need
to learn new specialized domain-specific languages (Section 5.7), knowledge that developers may
lack [105]. In reverse engineering tools, technical limitations can cause challenges, as the qual-
ity of the results depends heavily on the tool configuration, including the criteria used to find
matches and specific threshold values chosen (e.g., References [17, 93]). For example, reverse en-
gineering tools based on code clone detection techniques may ignore code fragments with few
occurrences [17]. In software query languages and tools, developers find code snippets by writing
queries, and as such, incorrect queries lead to incorrect results.

Takeaways. When searching for potential alternatives, developers can leverage previously doc-
umented design decisions and the alternatives they encode from various sources. If decisions
have been documented, then they might leverage those in design rationale, documentation, or
design pattern catalog tools. However, this may bring challenges with mapping the language
used in documentation to that in the problem the developer is currently considering. Develop-
ers can also identify potential alternatives by examining existing code, including theirs, and
they may receive some assistance from tools such as reverse engineering and software query
languages and tools. However, these tools only produce code snippets, not alternatives, and de-
velopers need to themselves have the knowledge necessary to infer the design alternative from
the code snippet, a process that may also require considerable effort.

7.2 Goal 2: Select an Alternative as a Design Decision
After identifying potential alternatives, developers must select one of the alternatives as the solu-
tion to their design problem. To choose a solution, developers need information about each alterna-
tive to understand its consequences. Developers consider and compare alternatives, weighing their

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:18 S. Mehrpour and T. D. LaToza

consequences, and may externalize their thinking through whiteboards or notes [101]. In choosing
an alternative, developers may consider the concerns addressed, impacted decisions, assumptions
and decisions that limit viable alternatives, and pros and cons of choosing each [20, 145].

A variety of developer tools and techniques may help support choosing between potential al-
ternative solutions to a problem. Tools such as documentation tools enable developers to evaluate
and reuse existing design decisions. These tools collect design decisions with information such as a
description or rationale that help developers maintain consistency in decision-making and support
principled decision-making [136]. Design rationale helps developers make important architectural
decisions more rigorously and methodically [52]. Developer tools such as design rationale tools
support developers in selecting an alternative by gathering information on alternatives, such as
a description and consequences, in structured formats. By including information about rationale
and consequences, design pattern catalog tools may assist developers in identifying advantages
and disadvantages of applying a design pattern for a specific problem.

7.2.1 Documentation Tools. Code-based documentation tools record design decisions with in-
formation such as descriptions and rationale supporting developers in evaluating and selecting an
alternative. For example, in ActiveDocumentation [104] each design decision is documented with
a title, a description that may contain the rationale, labels specifying the scope of design decisions,
and violated and example code snippets extracted from a codebase. When considering documented
decisions as alternatives for another design choice, ActiveDocumentation helps developers in eval-
uating the alternatives by providing information about design rationale in descriptions and related
scopes and concepts through labels.

On-demand documentation tools that provide rich explanations for selected code snippets may
also support developers in evaluating alternatives. For example, CODES [150] generates JavaDoc
for a method using Stack Overflow discussions, which might contain useful information for eval-
uating the method when considered as an alternative.

7.2.2 Design Rationale Tools. Model-based design rationale tools record information about de-
sign rationale, enabling developers to assess and choose alternatives [26, 47]. In design rationale
tools, each alternative is accompanied by opposing and supporting arguments, and if an alterna-
tive is reused, then the associated arguments can be considered in evaluating the alternative. For
example, in tools that apply the QOC model [99], each design choice (“question”) is associated
with alternatives (“options”), and each option satisfies some “criteria” and violates other criteria.
Similarly, in tools applying IBIS [123], each design choice (“issue”) is associated with several alter-
natives (“positions”) with advantages and drawbacks discussed in “arguments.” Using these, devel-
opers may assess each alternative by examining its associated arguments to choose an option.

To help choose alternatives, design rationale tools visually present design rationale informa-
tion [27, 29, 140], support discussing decisions with teammates [40], and notify developers about
missing or incorrectly chosen alternatives [29]. Design rationale tools present documented ratio-
nale models through diagrams [29, 140] or textual representations [27]. Design rationale diagrams
often are intended to clearly illustrate the relationships among elements in the design rationale
model [29, 40, 140]. Textual representations of design rationale information are often used in
Model-free tools, offering search features to help developers locate relevant information [9, 157]. In
textual representations, the relationship between different elements can be less clear, and it can be
hard to obtain a broad understanding of all design rational elements. Some design rationale tools
support developers’ collaboratively discussing design rationale [40]. This is particularly useful for
collaboratively making choices about specific issues, such as high-level design choices that impact
several parts of the system and that are maintained by different developer teams [47]. These
choices require communication between developers with varying skills and objectives [47]. Finally,

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:19

tools may also support choosing alternatives by detecting inconsistencies among alternatives. For
example, SEURAT examines the arguments of selected alternatives to identify incorrect decisions
or arguments early in the design process and evaluate design decisions and alternatives [29]

7.2.3 Design Pattern Catalog Tools. Design pattern catalog tools record design pattern informa-
tion in a structured format, making it easier for developers to directly compare alternatives across
specific dimensions. Pattern catalogs record information such as descriptions, intent, characteriza-
tions, motivation, and implementation details. These attributes may assist developers in evaluat-
ing design patterns from a particular perspective. For example, in SEURAT_Architecture [154]
developers can compare design patterns by analyzing the attributes affected by each design
pattern.

7.2.4 Challenges. Using documentation tools, design rationale tools, or design pattern catalogs
to select an alternative may impose challenges on developers. To successfully select an alterna-
tive, information about each alternative should be clear and coherent. Incorrect documentation
may misguide developers. Language may also impose a barrier. In reusing and adapting design
choices [102], developers must understand the details of the design decisions and map the language
used in the recorded alternative to the new project context.

Takeaways. Developers evaluate and compare alternatives to make a design decision. To ac-
complish this, they may examine information previously captured for each alternative. For in-
stance, developers can review the rationale behind an alternative if it is documented in design
pattern catalog tools, design rationale tools, or documentation tools. The usefulness of these
tools depends on the quality of the documented information, as clear and coherent documenta-
tion is necessary to effectively evaluate and compare alternatives.

7.3 Goal 3: Document the Chosen Alternative
After making a design decision or discovering an undocumented design decision, developers
may document a design decision to avoid knowledge vaporization [65]. Documentation may also
help developers to identify potential design alternatives when facing similar problems in the fu-
ture [142] (Section 7.1.1). Developers may document a variety of information about a design deci-
sion, including a description of the decision, often written with project-specific vocabulary, and a
rationale describing its reasoning and justification [80, 115, 145].

Tools change the process by which developers document a design decision by prescribing a
format and structure in which it is documented. Model-based design rationale tools use models
to record design decisions and provide a history of the decision-making process. Design pattern
catalog tools document the information of design patterns in a structured format, prescribing a
template to capture specific attributes. Static analysis tools differ in focusing on documenting the
design rule, ensuring the conformance of code to the rule, and focus less on offering rationale
motivating the choice. Similarly, system architecture tools document architectural design rules
about the allowed dependency structure of code and check code for conformity.

7.3.1 Static Analysis Tools. Extensible static analysis tools support developers in documenting
specific types of design rules in a checkable format. Tools such as PMD [41] and FindBugs [69]
find inconsistencies in code by documenting design rules, checking code, and reporting violations.
Many design rules can be expressed as AST patterns [105], enabling the rule to be documented in a
checkable representation. To use these tools to capture project-specific design rules, rather than the
general defect patterns for which many of these tools were originally designed, developers must
use the extensibility features of these tools to author their own rules. Tools require developers to

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:20 S. Mehrpour and T. D. LaToza

Fig. 12. PMD Designer [119] enables developers to author design rule AST patterns as XPath queries. Devel-
opers can view the visualization of the AST (B) of the input code fragment (A). They can use this information
to write an XPath query (C) and check the results of executing the query on the input code (D).

author rules in special notations or write program analysis code in general purpose programming
languages. For example, in PMD, developers can author custom rules by writing XPath queries
describing a prohibited code pattern [118]. XPath is a query language for XML data, in this case,
the XML representation of the AST of the code.1 To enable developers to write XPath queries, PMD
provides PMD Designer [119] that, given input code, produces the XML representation, executes
an XPath query on it, and presents the result as code fragments (Figure 12).

7.3.2 Design Rationale Tools. Design rationale tools enable developers to document informa-
tion about design decisions, such as considered alternatives and explanations of their decision
rationale with supporting and opposing arguments (Section 5.3). Design rationale tools may be
model-based or artifact-based, which vary in flexibility and precision. Model-based tools store in-
formation in predefined models (Section 4), limiting flexibility in what can be documented but
supporting extensive detail [29, 40]. Artifact-based tools document design rationale in unstruc-
tured text, offering flexibility but lacking the ability to check that specific information is written
down [157].

In model-based design rationale tools, developers document elements of design rationale,
which is then visualized through diagrams. Depending on the model, developers may document
information such as design choices, alternatives, and relationships between issues or alternatives
(Sections 4 and 5.3). For instance, SEURAT [29] uses the DRL model to document decisions,
alternatives, arguments for and against each alternative, and links to related code fragments in the
codebase.

In artifact-based design rationale tools, tools automatically or through manual steps extract
and annotate relevant information from informal artifacts generated by developers. For example,
CodeLink [157] collects and processes emails sent by developers to extract design rationale, finding
and documenting information such as context and related code snippets from email text.

7.3.3 Design Pattern Catalog Tools. Design pattern catalog tools document design patterns
by documenting properties for each design pattern. They are often preconfigured with stan-
dard design patterns such as the 26 Gang of Four patterns [58]. Tools may be extensible,
enabling developers to document new design patterns by filling out templates. For example,

1https://developer.mozilla.org/en-US/docs/Web/XPath.

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://developer.mozilla.org/en-US/docs/Web/XPath

A Survey of Tool Support for Working with Design Decisions in Code 37:21

SEUART_Architecture [154] offers a template recording name, type (e.g., architectural pattern or
code idiom), description, and consequences.

7.3.4 System Architecture Tools. System architecture tools document architectural design deci-
sions and visualize these through diagrams or matrices. For example, SAVE [78], a reflexion model
tool [108], lets developers author design rules constraining dependencies between components
and visualizes these in a graph (Figure 10). Lattix [5] depicts dependencies between components
using a dependency-structure matrix. Architectural design decisions are documented by setting
constraints on matrix cells that allow or forbid specific dependencies (depicted by the yellow cor-
ner triangles on cells in Figure 11).

7.3.5 Challenges. In offering developers tool support with which they may document a
chosen alternative, the key challenge is motivating developers to choose to document the
decision in the first place. Despite admitting the importance and value of documentation,
many developers report avoiding documenting decisions [53, 142] or documenting decisions
without rationale [47, 51, 106, 141] due to reported barriers with the time, effort, and budget
required [26, 34, 86, 142]. Developers report that they often have limited time and resources,
which creating documentation requires. Many report that they postpone updating documentation,
leading to knowledge vaporization [32, 65, 84]. Developers may be poorly motivated due to the in-
adequate rewards developers receive for creating documentation [65, 89]. Documenting decisions
may be particularly challenging when the act of documenting is disconnected from the process of
making the decision [54]. Developers also report personal reasons to skip documentation, such as
being unaware they made a decision at all [33, 65, 142], concealing decisions and their rationale
to avoid being challenged [33, 142], or believing that they will not reuse the decisions in the
future [33].

Documenting a design rule in a checkable format using static analysis tools brings important
advantages in making it possible to check new code against design rules and notify developers
when their code is inconsistent. But to do so, developers need special knowledge to use specialized
notations with which to write design rules. For example, to write a custom rule in PMD [41],
developers need to translate the intended rule into an XPath query or write program analysis code
in Java (Section 5.2) [105]. Another challenge is formulating the rule itself (specialization) [105].
While developers may have an intuition about the rule and its implications, they may struggle
to transform the rule into an abstract format and formulate it as an AST pattern. To address this
challenge, RulePad offers other representations of design rules, snippet-based templates and semi-
natural language, to help novice and experienced developers author design rules (Figure 13). The
code-based template allows non-expert developers author design rules in templates that resemble
code, and the semi-natural-language authoring allows experienced developers author design rules
as unambiguous and structured textual representations [105].

Takeaways. Once an alternative has been chosen, developers may choose to document infor-
mation about their decision. This can be achieved using various tools, such as static analysis
tools for documenting checkable design rules, design pattern catalog tools for recording design
patterns, or system architecture tools for documenting architectural design decisions. The pri-
mary obstacle in documenting decisions is motivating developers to devote the necessary time,
effort, and resources. To overcome this challenge, tools may provide incentives by offering ben-
efits not just for understanding the decision later but for the process of making the decision,
such as informing developers of code that may violate a decision a developer has just made.

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:22 S. Mehrpour and T. D. LaToza

Fig. 13. RulePad [105] enables developers to document design rules in a checkable format using two bidi-
rectionally connected interfaces. (A) Design rules properties are specified and (B) design rules are written in
code-like template (C) or in a semi-natural language. (D) The tool offers immediate feedback of matches.

7.4 Goal 4: Check Hypothesized Design Decisions against Code
When formulating new design decisions, developers may check these design decisions against
the decisions and code that already exist. Tools may offer support to developers by letting them
compare a hypothesized design decision against those that have already been documented or to test
a design rule associated with a design decision against the code. Despite the existence of tools for
documenting design decisions, design decisions often remain implicit and hidden in the code [84].
In these cases, developers may work to reverse engineer them from code or other artifacts. To
uncover hidden design decisions, developers investigate artifacts such as the code, hypothesize
potential design decisions, and check if these are consistent with the code [138].

7.4.1 Documentation Tools. Using code-based documentation tools, developers may compare
a hypothesized decision to design decisions that have been documented. To the extent that doc-
umentation is correct, contradictions suggest hypotheses may be incorrect. For instance, if a de-
veloper hypothesizes that a set of elements interact through the mediator pattern (one of the GoF
patterns [59]), but documentation indicates events are used instead, then this might indicate the
hypothesis is incorrect. Some code-based documentation tools support developers in finding rele-
vant design decisions. For example, ActiveDocumentation [104] maintains links between code and
design decisions and marks related decisions with tags (corresponding to concepts used in code),
enabling developers to search for decisions related to specific code or concepts in question.

7.4.2 Static Analysis Tools. In documenting and checking design rules, static analysis tools such
as PMD [119] and FindBugs [69] also offer a repository of design rules. As discussed in Section 7.3.1,
extensible static analysis tools enable developers to write new project-specific design rules. In this
way, static analysis tools may be used to test hypothesized design rules against code.

7.4.3 Design Rationale Tools. Design rationale tools may support developers in comparing new
hypothesized decisions against existing documented decisions. Developers may manually check if
a hypothesized decision can be inferred from or is consistent with documented design rationale.

7.4.4 Design Pattern Catalog Tools. By capturing and presenting well-known and project-
specific design patterns in structured formats, developers may use design pattern catalogs to com-
pare potential new decisions against those that have already been made. Like documentation and

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:23

design rationale tools, documented information may help developers identify inconsistencies or
conflicts between decisions.

7.4.5 System Architecture Tools. For decisions that are architectural and reflect constraints on
relationships between elements in a system, system architectural tools may help developers to
understand how existing decisions relate to a new hypothesized decision or even to directly test
decisions for their consistency with existing code. A diagram or matrix representation of depen-
dency structures in a project may help developers see quickly, at a glance, how new hypothesized
decisions relate to those that already exist. For example, a developer hypothesizing that a portion
of the system is implemented as a layered architecture might quickly look for this structure in a
DSM diagram. For tools that implement conformance checks against code, developers may even
go a step further and test a new hypothesized decision against code. A developer might formulate
a new constraint for the layer and then test code for conformance against it.

7.4.6 Software Query Languages and Tools. Software query languages and tools enable devel-
opers to test rules associated with hypothesized decisions by formulating these rules as queries.
Tools support developers by executing them against code and inspecting matching code snippets.
For this purpose, developers need to formulate their proposed design rules in a format executable
by software query languages and tools and examine the snippets that follow or violate the
rules.

7.4.7 Challenges. In cases where documentation is maintained and updated, tools that help
structure and organize this may make it easier for developers to gather relevant information
to check if their newly formulated decisions are consistent with code. However, as discussed in
Section 7.3.5, decisions are often not documented. When documentation is not available, de-
velopers use source code as the primary source of information and reverse engineer design
decisions [84].

Tools can offer important support in testing rules associated with decisions against code. But
they impose several important barriers on developers. As discussed in Section 7.3.5, developers
must translate their newly formulated decisions into checkable formats executable by the tools,
which may require specialized knowledge to write. Another challenge is interpreting the re-
sults. Tools often present the results without sufficient explanation (e.g., CloneDR [19]). Developers
may have difficulty distinguishing accidental patterns from intentional design decisions.

Takeaways. When exploring code, developers often hypothesize design decisions that may
have been made. To verify these hypotheses, developers can compare them against design de-
cisions that have been previously documented in various tools, such as documentation tools,
design rationale tools, design pattern catalog tools, static analysis tools, and system architec-
ture tools. However, the usefulness of these tools is contingent on the existence, accuracy, and
clarity of the information documented within them. To validate their hypotheses, developers
can also inspect the code. They may use tools, such as static analysis tools, system architecture
tools, and software query languages, to search for instances of their hypotheses within the code.
However, to achieve success, developers must possess specialized knowledge to use these tools
to express their hypotheses, as well as to interpret the results.

7.5 Goal 5: Find and Follow Relevant Design Decisions
When writing new code, developers need to make sure that it is consistent with existing design
decisions. To do so, developers must find and follow the design decisions that have already been
made. Failing to find or follow design decisions may lead to developer confusion, decreased com-

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:24 S. Mehrpour and T. D. LaToza

Fig. 14. In ActiveDocumentation [104] developers can find relevant design rules using the labels assigned to
each design rule and the filtration feature that displays related design rules for each class.

prehensibility of code, and code decay [48, 95] as well as defects. New design decisions may di-
verge from the original design (architectural drift) or violate the intended architecture (software
erosion) [60, 61, 146, 155].

Tools may offer support to developers in finding and following design decisions. If documented
(Section 5), then tools may support developers in identifying and following relevant documented
design decisions. If uncaptured, then tools may help developers find and follow decisions by help-
ing to extract decisions from code.

7.5.1 Documentation Tools. Developers can find documented design decisions using search fea-
tures in IDEs or documentation tools. Documentation tools store design rules in specially designed
data stores [41] or JSON files [104]. Design rules can be looked up based on properties such as their
description, scope, or rationale. Documented decisions in comments may be looked up through
IDE search features or other suitable IDE plugins. For instance, CODES [150] generates JavaDoc
for specifications and descriptions of methods inserted in code, which can be looked up by the
same tools used for searching the code.

Documentation tools use a variety of approaches to help developers retrieve relevant design
rules, such as through search or by organizing rules. Developers may search for target design
decisions through keyword queries. Other tools organize decisions to expedite search. For example,
in ActiveDocumentation [104] developers can define labels based on topics applied in code and
mark design rules with relevant labels. The labels and related design rules are accessible in the
tool by clicking on the tags (Figure 14). Many documentation tools connect design decisions to
code to enrich documentation. Maintaining a bidirectional connection between design rules and
code helps developers find relevant design rules more easily (Figure 14).

7.5.2 Static Analysis Tools. By connecting design rules to code, static analysis tools enable de-
velopers to identify design rules simply by writing code and then running the static analysis tool
to check if any design rules have been violated (e.g., PMD [41], FindBugs [69], CheckStyle [2]).
After flagging a design rule violation, some tools also provide additional information about how

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:25

to follow the design rule. For example, ActiveDocumentation [104] lists code snippets that follow
design rules, which developers may then use as an example of how to follow the design rule.

7.5.3 Design Rationale Tools. Design rationale tools capture decisions in structured formats
(model-based tools) or mark relevant information in non-code artifacts (artifact-based tools). Like
documentation tools, model-based design rationale tools provide features for easier retrieval of de-
sign decisions. The structure may assist developers in finding design decisions. In addition, most
tools include search or browse features to find design decisions through keywords or by intent.
Some also connect rationale to code [29], which may support understanding how and where rules
should be followed in code. For instance, using SEURAT [29], developers can find design deci-
sions relevant to a code snippet by following links developers created when documenting design
rationale.

7.5.4 Design Pattern Catalog Tools. Design pattern catalog tools use a structured representation
to collect and categorize design patterns based on properties such as characteristics, jurisdictions,
intents, or the problems they solve (Section 5.4). Many design pattern catalog tools allow devel-
opers to search for design patterns based on their properties and apply them to their code by
following their constraints. Conversely, developers can look up design patterns applied to their
code in design pattern catalog tools using the identifiers used in the code. However, mapping ap-
plied patterns to catalogs may be challenging, due to a potential for vocabulary mismatch between
the terminology in catalogs and terminology used in a project. To address this, some catalog tools
may be customized per-project or explicitly link between catalogs and pattern instances in code.
For example, in SEURAT_Architecture [154], developers can document information of patterns
applied in code and link the patterns to the documentation.

7.5.5 System Architecture Tools. As discussed in Section 7.3.4, design rules on system depen-
dencies may be formulated as constraints over system elements. Developers may study these to
understand architectural design decisions. After editing the code, these tools may also help devel-
opers uncover design rules by flagging new violations of architectural design rules that have been
introduced.

7.5.6 Reverse Engineering Tools. Reverse engineering tools may help developer uncover hid-
den design rules by helping them extract them from code. Most reverse engineering tools detect
repeated code fragments in code according to some predefined frequency threshold and present
them to a developer (e.g., Reference [153]). The developer then evaluates the results and may find
implicit design rules in code. For example, code clone detectors may identify a particular method
call chain for persisting data using API methods in a controller package, which is a design rule
imposed by the API constraining the method call chains for persisting data. By examining these
results, developers may learn about the design rule and the appropriate location in the codebase
for invoking persistence functionality (i.e., the controller package).

7.5.7 Software Query Languages and Tools. Software Query Languages and Tools may be used
to find a design rule and, to some extent, understand how to follow it. Software query languages
and tools enable developers to query the codebase to find design rules. For example, developers can
query for calls to a specific API method to find design rules related to it. This requires developer
to interpret and make sense of these results to uncover hidden implicit design rules.

7.5.8 Challenges. To find and follow relevant design decisions, developers can look to identify
relevant decisions that have been documented through a tool. However, this imposes several
challenges on developers. One key barrier is maintaining documented design decisions. As
discussed in Section 7.3.5, outdated and incomplete documentation misinforms developers,

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:26 S. Mehrpour and T. D. LaToza

leading to software drift and erosion. Some tools like ActiveDocumentation [104] alleviate this
issue by constantly checking rules against code and providing instant feedback. Another related
challenge is the quality and comprehensibility of documented design decisions. To follow design
decisions, developers first need to understand the decisions, their rationale, their constraints, and
their implementation. Unclear descriptions may confuse developers, who may then fail to follow
the decisions. Another obstacle in using tools is motivating developers to adopt and use the tools
to find and follow design decisions. Despite being useful [12], many developers refrain from using
tools for non-development tasks such as finding and following design decisions. For instance,
studies of the usability of static analysis tools suggest that developers have several concerns,
including the presentation of the results, the accuracy of the results (numerous warnings and high
rates of false positives), inadequate information and examples for fixing violations, and separate
workflows for software development and using the tools [38, 73, 128]. Some approaches mitigate
these barriers, such as by supporting tool customization, more structured and detailed presenta-
tions of information, and automating usage of a tool at required development steps, such as Code
Review [73, 128].

In addition to these challenges, using design pattern catalog tools have to find and follow design
decisions imposes additional difficulties. To find relevant design patterns, developers need to map
identifiers in code consistent with the ones used in the catalogs. However, this does not always
occur (Section 7.3.5), forcing developers to manually map identifiers, which is challenging.

Like design pattern catalog tools, system architecture tools require developers to interpret the
models and map them to the source code. Model-based system architecture tools—reflexion models
and dependency-structure matrices—represent the high-level structure of the codebase through
diagrams and matrices. Therefore, if the tools lack enough support in mapping the elements, then
corresponding high-level elements in the diagrams to lower-level code elements can be difficult for
developers. Some tools like Lattix [5] address this issue by visualizing the structure in a hierarchical
presentation that can be expanded to show lower-level elements.

Using reverse engineering tools and software query languages and tools to find and follow
design decisions depends on the efficiency and accuracy of the algorithms used to extract design
decisions and the ability of developers to interpret and analyze the results. Reverse engineering
tools and software query languages and tools potentially suffer from false positives (incorrectly
detected patterns and rules). Some tools support manual or automatic techniques to address this
issue. For example, Rasool et al. [121] used annotations for better retrieval of design patterns
in code. However, it still relies on developers to maintain the annotations. Dong et al. [44]
used behavioral and semantic analysis to eliminate falsely detected candidate design patterns.
Another challenge is the reliance on developers to interpret and analyze the results. Tools
require developers to examine potential design decisions to differentiate accidental patterns from
intended design decisions. Therefore, the form of the presentation of extracted information is
key.

Takeaways. When modifying code, developers must find and follow previously made design
decisions, which may be supported through tools. Documentation tools, design rationale
tools, design pattern catalog tools, and system architecture tools provide access to previously
captured design decisions. These tools may also link documentation to code or check the code
against the decisions. By utilizing these tools, developers may be offered a process to both
find a decision as well as information about how to follow it. Additionally, after a decision has
already been identified, reverse engineering tools and software query languages may assist in
the process of writing new code consistent with a design decision by identifying previously
written code that is consistent with a design decision.

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:27

7.6 Goal 6: Determine why an Alternative Was Selected
Developers look to explain why an alternative was selected (its rationale) when they wish to re-
evaluate or change a decision and understand the impact of these changes [25, 29, 82]. Develop-
ers report that answering questions about rationale is one of their most frequent hard-to-answer
questions about code [83] and one of the most serious problems they face [84]. Tools have been
designed to support developers in answering these questions by capturing rationale information
in free form text or structured models, sometimes in association with design rules.

7.6.1 Documentation Tools. Documentation tools capture information about design decisions,
including design rationale, in model-free representations as text. In code-based documentation
tools like ActiveDocumentation [104], documented design rules may include a field for a descrip-
tion, which may be used to capture design rationale. In on-demand documentation tools like
CODES [150], design rationale information is extracted from non-code artifacts such as Stack Over-
flow discussions.

7.6.2 Static Analysis Tools. Associated with the design rule checked by static analysis tool may
be design rationale that can be used to reason about design decisions. Design rationale may be
captured in tools such as PMD [41] and FindBugs [69] and accessed in data stores as well as the
IDE views of the tools when the design decision is violated.

7.6.3 Design Rationale Tools. Design rationale tools directly focus on documenting design ra-
tionale by recording alternatives, arguments, and other information that may enable reasoning
about rationale (Section 4). Using a diagramatic or tree view of rationale, developers may reason
about what alternatives were considered and why specific ones were chosen. The information
recorded in artifact-based tools may not be as detailed as model-based tools, as these tools do not
enforce or check that specific information has been recorded. To find captured rationale for a code
snippet, developers can query or browse the documented rationale. Tools may also connect design
rationale directly to code (e.g., SEURAT [29]).

7.6.4 Design Pattern Catalog Tools. Design pattern catalog tools often use design rationale in-
formation to describe the intent of a design pattern, describing the motivation of a design pattern,
its consequences, and its rationale [58]. For example, developers may explore the reasoning behind
or the consequences of selecting a design pattern in SEURAT_Architecture [154] or look for the
intent of a design pattern in DRIMER [116].

7.6.5 System Architecture Tools. System architecture tools may also support adding rationale
to explain rules. For example, Structure101 [4] enables developers to add descriptions or rationale
for patterns, constraints, or architectural elements in a free-form textual field (Figure 15).

7.6.6 Challenges. Tools that rely on developers to document design rationale ultimately rely
on developers to first do this. Documenting rationale is considered overhead by many devel-
opers [51], and it is often easy for developers to ignore [142]. Moreover, in most documentation
tools, static analysis tools, and system architecture tools, the information created takes the form of
free-form text. This flexibility may enable developers to neglect documenting rationale, may make
it harder to understand, and may leave it incomplete. The language used in describing rationale
may also be hard to understand. As software evolves, vocabulary may change and the initial vo-
cabulary used to author the rationale may become dated. Design rationale may also be out of date.
Most design rationale tools are stand-alone tools, separated from the code, or provide only one-way
links to code snippets without checking the code or maintaining the links. Developers are respon-
sible for updating documented rationale when the code changes, but this may be challenging.

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:28 S. Mehrpour and T. D. LaToza

Fig. 15. Structure101 [4] supports describing architectural constraints through diagrams.

Takeaways. Tools can assist developers in understanding the rationale behind choosing an
alternative design. Documentation tools, design rationale tools, design pattern catalog tools,
static analysis tools, and system architecture tools can capture information on design decisions,
including the reasoning behind them. When it exists and is up to date, developers may leverage
this information to better comprehend the reasoning behind design decisions.

8 FUTURE RESEARCH DIRECTIONS
In this article, we surveyed seven types of tools that help developers work with design decisions
and six goals developers try to achieve during software development. This survey evaluated how
different types of tools can be employed to achieve each goal and examined the challenges devel-
opers face when using the tools to achieve these goals. While addressing the challenges discussed
in Section 6 paves the way for many future improvements, a number of broader questions and
areas of research remain for exploration, which we also survey in the following.

8.1 Better Support for Documentation
One of the main mechanisms by which tools have been envisioned to assist developers is by facili-
tating the process of working with captured design decisions. Documentation, static analysis, and
design rationale tools all rely on information to be first captured about a design decision at the
point in time when a developer makes a decision. However, this approach brings several challenges,
as discussed in this survey.

First, developers may not be motivated to document alternatives and design decisions explicitly
through tools, as this requires the developer to spend time doing more work. To give developers
more payoff for investing the time needed to create this content in documents, tools should be
carefully designed to incentivize developers to do this work. One key challenge is that tools today
ask developers to do work—write documentation—but only give benefits later—when developers
revisit this documentation in the future to make future changes that are consistent. One way to
address this is to create tools that, while creating documentation, also support the developer at
the point in time when they are making the design decision and doing the work to write the
documentation. For example, when a developer uses ActiveDocumentation [104] to document a
design decision that they are currently making, the tool will immediately give them feedback about
all of the points in the code that either follow or violate this design decision. This may be useful
for the developer as they make the design decision in helping to identify code that they had not

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:29

realized needs to be updated and in reducing the investigation work they may need to do to find
all of the implications of the design decision they had just made.

Second, documenting checkable design rules in tools such as static analysis tools often requires
specialized program analysis knowledge or complex query notations. In practice, developers are
unlikely to have this knowledge and may not be motivated to invest the time necessary to learn
it. As a result, these tools today are rarely used in practice to document project-specific design
rules. Even for developers that have the knowledge necessary to use these tools, existing tools
and notations can make writing design decisions down in the necessary format time-consuming,
further reducing developers’ motivation to document decisions. Tools can play an important role
in addressing this barrier. Instead of requiring specialized knowledge, tools can instead use con-
cepts with which developers are already familiar and provide dedicated tool support not just for
checking design rules but also the process of creating and authoring design rules. For example,
RulePad [105] addresses these issues by using a semi-natural language in which to author design
rules and offering a dedicated editor for crafting design rules.

Third, documentation must be regularly maintained and updated to remain useful and not be-
come outdated. Offering support for updating documentation throughout the life of a software
project is at least as important as supporting initial creation of documentation. One way tools may
assist developers is by identifying cases where the documentation and code have diverged over
time and notifying the developer that these divergences have been created. Particularly if this can
be identified at the point in time in which design decisions are first violated (e.g., when a developer
writes new code), then it may be faster and easier for the developer to rapidly revise the design
decision to reflect their new intent as they are creating a new design decision.

Fourth, tools should be able to capture various types of information, including design rationale.
While many existing tools provide free-form text to document information about design decisions,
this approach can lead to important information being inadvertently left out. To overcome this
issue, tools can use templates that require specific types of information to be recorded for every
decision. Additionally, tools can support information management by linking together related de-
sign decisions. For instance, in design rationale tools like SEURAT [29], developers can link related
alternatives, arguments, and chosen alternatives to help keep track of the decision-making process.
This may aid in faster and more effective searches.

Fifth, it is essential for tools to support linking design decisions to code to ensure that developers
can follow the intended design. By enabling easy access to the relevant documentation to under-
stand the reasoning behind the decisions made during the design phase, developers may make
more informed decisions when modifying code. Moreover, linked documentation is easier to up-
date than disconnected documentation. Changes made to the code can be immediately reflected
in the documentation, ensuring that the documentation is always up-to-date [104].

8.2 Better Support for Reverse Engineering
Tools can also assist developers with design decisions by extracting information from code. Re-
verse engineering tools and software query languages and tools can help find patterns and query
codebases, which can aid in finding alternatives in code, checking hypothesized decisions, and dis-
covering design decisions in code. However, as we discussed in this survey, the results produced by
these tools often contain false positives and require interpretation, which can be time-consuming
and challenging for developers. To overcome these challenges, tools should offer more effective
techniques and present results in a way that is tailored to developers’ work context, making them
easier to understand and apply. For example, tools can prune results only related to the recent
activities of developers [74]. Another challenge is that using software query languages and tools
requires specialized knowledge to write queries. To address this, tools can provide an intermediate

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

37:30 S. Mehrpour and T. D. LaToza

interface or language for writing queries that does not require additional training. For example,
using semi-natural languages to write queries can be helpful for novice developers in greatly re-
ducing the necessary training [105].

8.3 Connecting Software Tools
One of the challenges in using developer tools is that they are often disconnected from other tools.
To achieve their goals, developers must often use multiple tools, which reduces their productivity.
Existing tools offer only full support to developers in achieving one or two goals and only partial
support in achieving other goals. For example, ActiveDocumentation [104] directly supports
developers in documenting and following design decisions but offers only partial support in
reasoning about design decisions. As a result, developers may need to rely on separate tools,
such as specialized tools like SEURAT [29] for reasoning about rationale. As these two tools are
disconnected, using them together today would require the developer to document each design
decision twice, once in the format for each tool. Offering tools that support a broader range of
goals, or at least more integration information sharing between tools, might help increase the
benefits of using tools while dramatically reducing the costs.

8.4 Return on Documentation Investment
To better tailor tools to meeting developers’ goals, further research is needed to better understand
the information needed in achieving developer goals. Developers constantly make choices about
what to document and how much detail to include in documenting it. To the extent that developers
document information that is obvious or fail to document what is not obvious, these choices may
cause issues later. Documented information may help developers achieve later goals, but it comes at
the cost of the time that must be invested to document it, which developers often find demotivating.
Developers may question to what extent all of this documentation is truly worth the effort required,
as modern processes such as agile development often eschew it.

8.5 Documenting vs. Reverse Engineering
There are two main approaches to working with design decisions: explicitly documenting decisions
and reverse engineering tacit decisions from software artifacts. Traditionally, developers have been
encouraged to write and maintain documentation. But a more recent emphasis has been on tools
that support developers in extracting tacit decisions from artifacts. Reverse engineering tools ex-
tract information from software artifacts through mining [11, 94, 97, 125] and querying [75] soft-
ware artifacts. The advantages of using reverse engineering tools to retrieve design decisions are
that developers need only work with the tools at the point of need, when they are trying to under-
stand decisions, rather than invest upfront in documentation effort and the maintenance required
to maintain this documentation.

But, as discussed in this survey, one key challenge in using mining tools is their heavy reliance
on developers to infer decisions from extracted patterns. One may argue that this process is inher-
ently unreliable, and developers should not solely rely on these tools to discover decisions. Better
understanding how this tradeoff works in practice is an important area for future research.

8.6 Usability Issues
Despite their potential usefulness, many tools remain underused due to usability issues. As de-
scribed in this survey, issues such as poor reliability, hard-to-understand results, and disconnected
tools demotivate developers from using tools. Several studies have examined the usability issues
involved with using static analysis tools (e.g., References [38, 73]) and proposed suggestions to
mitigate common issues, such as configuring the priority of errors based on development contexts

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

A Survey of Tool Support for Working with Design Decisions in Code 37:31

(e.g., local programming, continuous integration, or code review) [152], more structured error mes-
sages [14], supporting collaborative environments [112], and offering immediate feedback [144].
But important research remains to more broadly understand the usability issues across the full
range of tools for working with design decisions in code.

9 CONCLUSION
Design decisions are central to software, directly determining its correctness, comprehensibility,
and maintainability. Design decisions progress through a lifecycle during software development;
they may be captured by developers when decisions are made or remain uncaptured. There are
many open areas for future work, including better motivating developers to document decisions,
supporting the process of documenting decisions as well as updating documentation, offering more
information when reverse engineering decisions, improving the usability of tools, and improving
the integration between tools that support different developer goals. In addition, further research
is needed to better understand exactly what information developers require when achieving their
goals, to help refine the information documentation tools ask developers to record as well as the
presentation of information that might be reverse engineered. More broadly, important questions
remain about if and when it is necessary for developers to take the time to document decisions or
the extent to which reverse engineering tools can provide many of the same benefits.

REFERENCES
[1] IEEE. 1990. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990 (1990), 1–84. DOI:https:

//doi.org/10.1109/IEEESTD.1990.101064
[2] Oliver Burn. 2004. CheckStyle. Retrieved from http://checkstyle.sourceforge.net.
[3] BBQ. 2015. Browse-By-Query. Retrieved from http://browsebyquery.sourceforge.net/.
[4] Headway Software Technologies Ltd. 2019. Structure101. Retrieved from https://structure101.com.
[5] Lattix. 2020. Lattix Architect. Retrieved from https://www.lattix.com.
[6] Mohammed Ghazi Al-Obeidallah, Miltos Petridis, and Stelios Kapetanakis. 2016. A survey on design pattern detection

approaches. Int. J. Softw. Eng. 7, 3 (2016), 41–59.
[7] Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: Connecting software architecture to im-

plementation. In International Conference on Software Engineering (ICSE’02). 187–197. DOI:https://doi.org/10.1145/
581339.581365

[8] Zoya Alexeeva, Diego Perez-Palacin, and Raffaela Mirandola. 2016. Design decision documentation: A literature
overview. In European Conference on Software Architecture. 84–101. DOI:https://doi.org/10.1007/978-3-319-48992-6_6

[9] Rana Alkadhi, Jan Ole Johanssen, Emitza Guzman, and Bernd Bruegge. 2017. REACT: An approach for capturing ra-
tionale in chat messages. In International Symposium on Empirical Software Engineering and Measurement (ESEM’17).
175–180. DOI:https://doi.org/10.1109/ESEM.2017.26

[10] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles Sutton. 2018. A survey of machine learning
for big code and naturalness. Comput. Surv. 51, 4 (2018), 81:1–81:37. DOI:https://doi.org/10.1145/3212695

[11] Mohsen Anvaari and Olaf Zimmermann. 2014. Semi-Automated Design Guidance Enhancer (SADGE): A framework
for architectural guidance development. In European Conference on Software Architecture. 41–49. DOI:https://doi.org/
10.1007/978-3-319-09970-5_4

[12] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs fixit. In International Symposium on Software
Testing and Analysis (ISSTA’10). 241–252. DOI:https://doi.org/10.1145/1831708.1831738

[13] Carliss Young Baldwin and Kim B. Clark. 2000. Design Rules: The Power of Modularity. Vol. 1. MIT Press.
[14] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How should compilers explain problems to

developers? In European Software Engineering Conference and International Symposium on the Foundations of Software
Engineering (ESEC/FSE’18). 633–643. DOI:https://doi.org/10.1145/3236024.3236040

[15] Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish Chandra. 2020. Exempla gratis (EG): Code
examples for free. In European Software Engineering Conference and International Symposium on the Foundations of
Software Engineering (ESEC/FSE’20). 1353–1364. DOI:https://doi.org/10.1145/3368089.3417052

[16] Brian Bartman, Christian D. Newman, Michael L. Collard, and Jonathan I. Maletic. 2017. srcQL: A syntax-aware query
language for source code. In International Conference on Software Analysis, Evolution, and Reengineering (SANER’17).
467–471. DOI:https://doi.org/10.1109/saner.2017.7884655

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://doi.org/10.1109/IEEESTD.1990.101064
http://checkstyle.sourceforge.net
http://browsebyquery.sourceforge.net/
https://structure101.com
https://www.lattix.com
https://doi.org/10.1145/581339.581365
https://doi.org/10.1007/978-3-319-48992-6_6
https://doi.org/10.1109/ESEM.2017.26
https://doi.org/10.1145/3212695
https://doi.org/10.1007/978-3-319-09970-5_4
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1145/3368089.3417052
https://doi.org/10.1109/saner.2017.7884655

37:32 S. Mehrpour and T. D. LaToza

[17] Hamid Abdul Basit and Stan Jarzabek. 2009. A data mining approach for detecting higher-level clones in software.
Trans. Softw. Eng. 35, 4 (2009), 497–514. DOI:https://doi.org/10.1109/TSE.2009.16

[18] Ira D. Baxter and Michael Mehlich. 1997. Reverse engineering is reverse forward engineering. In Working Conference
on Reverse Engineering (WCRE’97). 104–113. DOI:https://doi.org/10.1109/WCRE.1997.624581

[19] Ira D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone detection using abstract syntax trees.
In International Conference on Software Maintenance (ICSM’98). 368–377. DOI:https://doi.org/10.1109/ICSM.1998.
738528

[20] Reza Beheshti. 1993. Design decisions and uncertainty. Des. Stud. 14, 1 (1993), 85–95. DOI:https://doi.org/10.1016/
S0142-694X(05)80007-9

[21] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. 1993. The concept assignment problem in program
understanding. In International Conference on Software Engineering (ICSE’93). 482–498. DOI:https://doi.org/10.1109/
ICSE.1993.346017

[22] Joshua Bloch. 2016. Effective Java. Pearson Education India.
[23] Frances M. T. Brazier, Pieter H. G. van Langen, and Jan Treur. 1997. A compositional approach to modelling design

rationale. Artif. Intell. Eng. Des., Anal. Manuf. 11, 2 (1997), 125–139. DOI:https://doi.org/10.1017/S0890060400001918
[24] David C. Brown and Rahul Bansal. 1989. Using design history systems for technology transfer. In Computer-Aided

Cooperative Product Development, MIT-JSME Workshop. 544–559. DOI:https://doi.org/10.1007/BFb0014295
[25] Bernd Bruegge and Allen H. Dutoit. 2009. Object-oriented Software Engineering: Using UML, Patterns and Java (3rd

ed.). Prentice Hall Press.
[26] Janet E. Burge. 2005. Software engineering using design RATionale. Ph.D. Dissertation. Worcester Polytechnic Institute.
[27] Janet E. Burge and David C. Brown. 2000. Reasoning with design rationale. In International Conference on Artificial

Intelligence in Design (AID’00). 611–629. DOI:https://doi.org/10.1007/978-94-011-4154-3_30
[28] Janet E. Burge and David C. Brown. 2004. An integrated approach for software design checking using design rationale.

In Design Computing and Cognition. Springer, 557–575. DOI:https://doi.org/10.1007/978-1-4020-2393-4_29
[29] Janet E. Burge and David C. Brown. 2008. Software engineering using RATionale. J. Syst. Softw. 81, 3 (2008), 395–413.

DOI:https://doi.org/10.1016/j.jss.2007.05.004
[30] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. 1996. Pattern-oriented Soft-

ware Architecture: A System of Patterns. Wiley Publishing.
[31] Bill Buxton. 2010. Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kaufmann.
[32] Rafael Capilla, Juan C. Dueñas, and Francisco Nava. 2010. Viability for codifying and documenting architectural

design decisions with tool support. J. Softw. Maint. Evol.: Res. Pract. 22, 2 (2010), 81–119. DOI:https://doi.org/10.1002/
smr.419

[33] Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali Babar. 2016. 10 years of software
architecture knowledge management: Practice and future. J. Syst. Softw. 116 (2016), 191–205. DOI:https://doi.org/10.
1016/j.jss.2015.08.054

[34] Rafael Capilla, Francisco Nava, and Carlos Carrillo. 2008. Effort estimation in capturing architectural knowledge.
In International Conference on Automated Software Engineering (ASE’08). 208–217. DOI:https://doi.org/10.1109/ASE.
2008.31

[35] Rafael Capilla, Francisco Nava, and Juan C. Dueñas. 2007. Modeling and documenting the evolution of architectural
design decisions. In Workshop on Sharing and Reusing Architectural Knowledge—Architecture, Rationale, and Design
Intent (SHARK/ADI’07). 9. https://doi.org/10.1109/SHARK-ADI.2007.9

[36] Andrea Caracciolo, Mircea Filip Lungu, and Oscar Nierstrasz. 2015. A unified approach to architecture conformance
checking. In Working IEEE/IFIP Conference on Software Architecture (WICSA’15). 41–50. DOI:https://doi.org/10.1109/
wicsa.2015.11

[37] Elliot J. Chikofsky and James H. Cross. 1990. Reverse engineering and design recovery: A taxonomy. IEEE Softw. 7
(1990), 13–17. DOI:https://doi.org/10.1109/52.43044

[38] Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: An empirical
study. In International Conference on Automated Software Engineering (ASE’16). 332–343. DOI:https://doi.org/10.1145/
2970276.2970347

[39] E. Jeffrey Conklin and K. C. Burgess Yakemovic. 1991. A process-oriented approach to design rationale. Hum.–comput.
Interact. 6, 3-4 (1991), 357–391. DOI:https://doi.org/10.1207/s15327051hci0603&4_6

[40] Jeff Conklin and Michael L. Begeman. 1988. gIBIS: A hypertext tool for exploratory policy discussion. Trans. Inf. Syst.
6, 4 (1988), 303–331. DOI:https://doi.org/10.1145/62266.62278

[41] Tom Copeland. 2005. PMD Applied. Centennial Books.
[42] Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjörn Ekman, Neil Ongkingco,

and Julian Tibble. 2008. .QL: Object-oriented Queries Made Easy. Springer Berlin, 78–133. DOI:https://doi.org/10.1007/
978-3-540-88643-3_3

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://doi.org/10.1109/TSE.2009.16
https://doi.org/10.1109/WCRE.1997.624581
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1016/S0142-694X(05)80007-9
https://doi.org/10.1109/ICSE.1993.346017
https://doi.org/10.1017/S0890060400001918
https://doi.org/10.1007/BFb0014295
https://doi.org/10.1007/978-94-011-4154-3_30
https://doi.org/10.1007/978-1-4020-2393-4_29
https://doi.org/10.1016/j.jss.2007.05.004
https://doi.org/10.1002/smr.419
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1109/ASE.2008.31
https://doi.org/10.1109/SHARK-ADI.2007.9
https://doi.org/10.1109/wicsa.2015.11
https://doi.org/10.1109/52.43044
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1207/s15327051hci0603&4_6
https://doi.org/10.1145/62266.62278
https://doi.org/10.1007/978-3-540-88643-3_3

A Survey of Tool Support for Working with Design Decisions in Code 37:33

[43] Coen De Roover, Carlos Noguera, Andy Kellens, and Vivane Jonckers. 2011. The SOUL tool suite for querying
programs in symbiosis with eclipse. In International Conference on Principles and Practice of Programming in Java
(PPPJ’11). 71–80. DOI:https://doi.org/10.1145/2093157.2093168

[44] Jing Dong, Dushyant S. Lad, and Yajing Zhao. 2007. DP-Miner: Design pattern discovery using matrix. In International
Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’07). 371–380. DOI:https://doi.org/10.
1109/ECBS.2007.33

[45] Jing Dong, Yajing Zhao, and Tu Peng. 2009. A review of design pattern mining techniques. Int. J. Softw. Eng. Knowl.
Eng. 19, 06 (2009), 823–855. DOI:https://doi.org/10.1142/s021819400900443x

[46] Zoya Durdik. 2016. Architectural Design Decision Documentation through Reuse of Design Patterns. Vol. 14. KIT Scien-
tific Publishing.

[47] Allen H. Dutoit, Raymond McCall, Ivan Mistrík, and Barbara Paech. 2006. Rationale Management in Software Engi-
neering. Springer Berlin, Chapter Rationale Management in Software Engineering: Concepts and Techniques, 1–48.
DOI:https://doi.org/10.1007/978-3-540-30998-7_1

[48] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus. 2001. Does code decay? Assessing the
evidence from change management data. Trans. Softw. Eng. 27, 1 (2001), 1–12. DOI:https://doi.org/10.1109/32.895984

[49] George Fairbanks. 2010. Just Enough Software Architecture: A Risk-driven Approach. Marshall & Brainerd.
[50] George Fairbanks, David Garlan, and William Scherlis. 2006. Design fragments make using frameworks easier. In

Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’06). 762–763. DOI:https:
//doi.org/10.1145/1167515.1167480

[51] Davide Falessi, Lionel C. Briand, Giovanni Cantone, Rafael Capilla, and Philippe Kruchten. 2013. The value of design
rationale information. Trans. Softw. Eng. Methodol. 22, 3, Article 21 (2013), 32 pages. DOI:https://doi.org/10.1145/
2491509.2491515

[52] Davide Falessi, Giovanni Cantone, Rick Kazman, and Philippe Kruchten. 2011. Decision-making techniques for soft-
ware architecture design: A comparative survey. Comput. Surv. 43, 4 (2011), 33. DOI:https://doi.org/10.1145/1978802.
1978812

[53] Davide Falessi, Giovanni Cantone, and Philippe Kruchten. 2008. Value-based design decision rationale documenta-
tion: Principles and empirical feasibility study. In Working IEEE/IFIP Conference on Software Architecture (WICSA’08).
189–198. DOI:https://doi.org/10.1109/WICSA.2008.8

[54] Gerhard Fischer, Andreas C. Lemke, Raymond McCall, and Anders I. Mørch. 1991. Making argumentation serve
design. Hum.–comput. Interact. 6, 3-4 (1991), 393–419. DOI:https://doi.org/10.1080/07370024.1991.9667173

[55] Scott D. Fleming, Christopher Scaffidi, David Piorkowski, Margaret M. Burnett, Rachel K. E. Bellamy, Joseph
Lawrance, and Irwin Kwan. 2013. An information foraging theory perspective on tools for debugging, refactoring,
and reuse tasks. Trans. Softw. Eng. Methodol. 22, 2 (2013), 14:1–14:41. DOI:https://doi.org/10.1145/2430545.2430551

[56] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co., Inc.
[57] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais. 1987. The vocabulary problem in

human-system communication. Commun. ACM 30, 11 (1987), 964–971. DOI:https://doi.org/10.1145/32206.32212
[58] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1993. Design patterns: Abstraction and reuse of

object-oriented design. In European Conference Object-Oriented Programming (ECOOP’93). 369–378. DOI:https://doi.
org/10.1007/3-540-47910-4_21

[59] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

[60] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. 2013. A comparative analysis of software architecture recovery
techniques. In International Conference on Automated Software Engineering (ASE’13). 486–496. DOI:https://doi.org/
10.1109/ASE.2013.6693106

[61] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, and Yuanfang Cai. 2011. Enhancing architec-
tural recovery using concerns. In International Conference on Automated Software Engineering (ASE’11). 552–555.
DOI:https://doi.org/10.1109/ASE.2011.6100123

[62] David Garlan, Robert Allen, and John Ockerbloom. 2009. Architectural mismatch: Why reuse is still so hard. IEEE
Softw. 26, 4 (2009), 66–69. DOI:https://doi.org/10.1109/MS.2009.86

[63] David Garlan, Robert T. Monroe, and David Wile. 2000. Acme: Architectural Description of Component-based Systems.
Vol. 68. Cambridge University Press, 47–68.

[64] Howard Garland. 1985. A cognitive mediation theory of task goals and human performance. Motivat. Emot. 9,
4 (1985), 345–367. DOI:https://doi.org/10.1007/BF00992205

[65] Neil B. Harrison, Paris Avgeriou, and Uwe Zdun. 2007. Using patterns to capture architectural decisions. IEEE Softw.
24, 4 (2007), 38–45. DOI:https://doi.org/10.1109/MS.2007.124

[66] Andrew Head, Codanda Appachu, Marti A. Hearst, and Björn Hartmann. 2015. Tutorons: Generating context-
relevant, on-demand explanations and demonstrations of online code. In Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’15). 3–12. DOI:https://doi.org/10.1109/vlhcc.2015.7356972

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://doi.org/10.1145/2093157.2093168
https://doi.org/10.1109/ECBS.2007.33
https://doi.org/10.1142/s021819400900443x
https://doi.org/10.1007/978-3-540-30998-7_1
https://doi.org/10.1109/32.895984
https://doi.org/10.1145/1167515.1167480
https://doi.org/10.1145/2491509.2491515
https://doi.org/10.1145/1978802.1978812
https://doi.org/10.1109/WICSA.2008.8
https://doi.org/10.1080/07370024.1991.9667173
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1145/32206.32212
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.1109/ASE.2013.6693106
https://doi.org/10.1109/ASE.2011.6100123
https://doi.org/10.1109/MS.2009.86
https://doi.org/10.1007/BF00992205
https://doi.org/10.1109/MS.2007.124
https://doi.org/10.1109/vlhcc.2015.7356972

37:34 S. Mehrpour and T. D. LaToza

[67] Tom-Michael Hesse and Barbara Paech. 2013. Supporting the collaborative development of requirements and ar-
chitecture documentation. In International Workshop on the Twin Peaks of Requirements and Architecture. 22–26.
DOI:https://doi.org/10.1109/TwinPeaks-2.2013.6617355

[68] Tom-Michael Hesse, Arthur Kuehlwein, and Tobias Roehm. 2016. DecDoc: A tool for documenting design decisions
collaboratively and incrementally. In International Workshop on Decision Making in Software ARCHitecture. 30–37.
DOI:https://doi.org/10.1109/march.2016.9

[69] David Hovemeyer and William Pugh. 2004. Finding bugs is easy. In Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’04). 132–136. DOI:https://doi.org/10.1145/1028664.1028717

[70] Daniel Jackson. 2021. The Essence of Software: Why Concepts Matter for Great Design. Princeton University Press.
DOI:https://doi.org/10.1515/9780691230542

[71] Anton Jansen and Jan Bosch. 2005. Software architecture as a set of architectural design decisions. In Working IEEE/I-
FIP Conference on Software Architecture (WICSA’05). 109–120. DOI:https://doi.org/10.1109/WICSA.2005.61

[72] Anton Jansen, Jan Bosch, and Paris Avgeriou. 2008. Documenting after the fact: Recovering architectural design
decisions. J. Syst. Softw. 81, 4 (2008), 536–557. DOI:https://doi.org/10.1016/j.jss.2007.08.025

[73] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why don’t software develop-
ers use static analysis tools to find bugs? In International Conference on Software Engineering (ICSE’13). 672–681.
DOI:https://doi.org/10.1109/icse.2013.6606613

[74] Mik Kersten and Gail C. Murphy. 2006. Using task context to improve programmer productivity. In International
Symposium on Foundations of Software Engineering (FSE’06). 1–11. DOI:https://doi.org/10.1145/1181775.1181777

[75] Markus Kimmig, Martin Monperrus, and Mira Mezini. 2011. Querying source code with natural language. In In-
ternational Conference on Automated Software Engineering (ASE’11). 376–379. DOI:https://doi.org/10.1109/ase.2011.
6100076

[76] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for Performing Systematic Literature Reviews in Software
Engineering. Technical Report. Keele University and University of Durham.

[77] Anja Kleebaum, Marco Konersmann, Michael Langhammer, Barbara Paech, Michael Goedicke, and Ralf H. Reussner.
2019. Continuous design decision support. In Managed Software Evolution. Springer, 107–139. DOI:https://doi.org/
10.1007/978-3-030-13499-0_6

[78] Jens Knodel and Daniel Popescu. 2007. A comparison of static architecture compliance checking approaches. In
Working IEEE/IFIP Conference on Software Architecture (WICSA’07). 12–12. DOI:https://doi.org/10.1109/wicsa.2007.1

[79] Amy J. Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in collocated software development teams. In
International Conference on Software Engineering (ICSE’07). 344–353. DOI:https://doi.org/10.1109/ICSE.2007.45

[80] Philippe Kruchten. 2004. An ontology of architectural design decisions in software-intensive systems. In Groningen
Workshop on Software Variability Management.

[81] Thomas D. LaToza. 2020. Information needs: Lessons for programming tools. IEEE Softw. 37, 6 (2020), 52–57.
DOI:https://doi.org/10.1109/MS.2020.3014343

[82] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact
finding. In European Software Engineering Conference and International Symposium on the Foundations of Software
Engineering (ESEC/FSE’07). 361–370. DOI:https://doi.org/10.1145/1287624.1287675

[83] Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer questions about code. In Evaluation and Usability of
Programming Languages and Tools (PLATEAU’10). DOI:https://doi.org/10.1145/1937117.1937125

[84] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: A study of developer work
habits. In International Conference on Software Engineering (ICSE’06). 492–501. DOI:https://doi.org/10.1145/1134285.
1134355

[85] Jintae Lee. 1991. Extending the Potts and Bruns model for recording design rationale. In International Conference on
Software Engineering (ICSE’91). 114–125. DOI:https://doi.org/10.1109/ICSE.1991.130629

[86] Jintae Lee. 1997. Design rationale systems: Understanding the issues. IEEE Expert 12, 3 (1997), 78–85. DOI:https:
//doi.org/10.1109/64.592267

[87] Jintae Lee and Kum-Yew Lai. 1991. What’s in design rationale? Hum.–comput. Interact. 6, 3-4 (1991), 251–280.
DOI:https://doi.org/10.1080/07370024.1991.9667169

[88] Jintae Lee and Kum-Yew Lai. 1992. A Comparative Analysis of Design Rationale Representations. Technical Report.
Massachusetts Institute of Technology.

[89] Larix Lee and Philippe Kruchten. 2007. Capturing software architectural design decisions. In Canadian Conference
on Electrical and Computer Engineering. 686–689. DOI:https://doi.org/10.1109/CCECE.2007.176

[90] Larix Lee and Philippe Kruchten. 2008. A tool to visualize architectural design decisions. In International Conference
on the Quality of Software-Architectures (QoSA’08). 43–54. DOI:https://doi.org/10.1007/978-3-540-87879-7_3

[91] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. 2018. A survey on code analysis tools for software mainte-
nance prediction. In International Conference in Software Engineering for Defence Applications. 165–175. DOI:https:

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://doi.org/10.1109/TwinPeaks-2.2013.6617355
https://doi.org/10.1109/march.2016.9
https://doi.org/10.1145/1028664.1028717
https://doi.org/10.1515/9780691230542
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1016/j.jss.2007.08.025
https://doi.org/10.1109/icse.2013.6606613
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1109/ase.2011.6100076
https://doi.org/10.1007/978-3-030-13499-0_6
https://doi.org/10.1109/wicsa.2007.1
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/MS.2020.3014343
https://doi.org/10.1145/1287624.1287675
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1109/ICSE.1991.130629
https://doi.org/10.1109/64.592267
https://doi.org/10.1080/07370024.1991.9667169
https://doi.org/10.1109/CCECE.2007.176
https://doi.org/10.1007/978-3-540-87879-7_3
https://doi.org/10.1007/978-3-030-14687-0_15

A Survey of Tool Support for Working with Design Decisions in Code 37:35

//doi.org/10.1007/978-3-030-14687-0_15
[92] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. 2003. How software engineers use documentation: The

state of the practice. IEEE Softw. 6 (2003), 35–39. DOI:https://doi.org/10.1109/ms.2003.1241364
[93] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner: Finding copy-paste and related bugs

in large-scale software code. Trans. Softw. Eng. 32, 3 (2006), 176–192. DOI:https://doi.org/10.1109/TSE.2006.28
[94] Yan Liang, Ying Liu, Chun-Kit Kwong, and Wing Bun Lee. 2012. Learning the “Whys”: Discovering design rationale

using text mining—An algorithm perspective. Comput.-aid. Des. 44, 10 (2012), 916–930. DOI:https://doi.org/10.1016/
j.cad.2011.08.002

[95] Mikael Lindvall, Roseanne Tesoriero Tvedt, and Patricia Costa. 2002. Avoiding architectural degeneration: An
evaluation process for software architecture. In International Software Metrics Symposium (METRICS’02). 77–86.
DOI:https://doi.org/10.1109/METRIC.2002.1011327

[96] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng, Shaun Burley, Cynthia Bagier Taylor,
Aniket Kittur, and Brad A. Myers. 2019. Unakite: Scaffolding developers’ decision-making using the web. In Sympo-
sium on User Interface Software and Technology (UIST’19). 67–80. DOI:https://doi.org/10.1145/3332165.3347908

[97] Ying Liu, Yan Liang, Chun Kit Kwong, and Wing Bun Lee. 2010. A new design rationale representation model for
rationale mining. J. Comput. Inf. Sci. Eng. 10, 3 (2010). DOI:https://doi.org/10.1115/1.3470018

[98] Edwin A. Locke, Karyll N. Shaw, Lise M. Saari, and Gary P. Latham. 1981. Goal setting and task performance: 1969–
1980. Psychol. Bull. 90, 1 (1981), 125–152. DOI:https://doi.org/10.1037/0033-2909.90.1.125

[99] Allan MacLean, Richard M. Young, Victoria M. E. Bellotti, and Thomas P. Moran. 1991. Questions, options, and
criteria: Elements of design space analysis. Hum.–comput. Interact. 6, 3-4 (1991), 201–250. DOI:https://doi.org/10.
1080/07370024.1991.9667168

[100] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek. 2014. Supporting informal design
with interactive whiteboards. In Conference on Human Factors in Computing Systems (CHI’14). 331–340. DOI:https:
//doi.org/10.1145/2556288.2557411

[101] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek. 2015. How software designers inter-
act with sketches at the whiteboard. Trans. Softw. Eng. 41, 2 (2015), 135–156. DOI:https://doi.org/10.1109/TSE.2014.
2362924

[102] Christian Manteuffel, Paris Avgeriou, and Roelof Hamberg. 2018. An exploratory case study on reusing architecture
decisions in software-intensive system projects. J. Syst. Softw. 144 (2018), 60–83. DOI:https://doi.org/10.1016/j.jss.
2018.05.064

[103] Robert C. Martin. 2002. Agile Software Development: Principles, Patterns, and Practices. Prentice Hall. DOI:https://doi.
org/10.1002/pfi.21408

[104] Sahar Mehrpour, Thomas D. LaToza, and Rahul K. Kindi. 2019. Active documentation: Helping developers follow
design decisions. In Symposium on Visual Languages and Human-Centric Computing (VL/HCC’19). 87–96. DOI:https:
//doi.org/10.1109/vlhcc.2019.8818816

[105] Sahar Mehrpour, Thomas D. LaToza, and Hamed Sarvari. 2020. RulePad: Interactive authoring of checkable design
rules. In European Software Engineering Conference and International Symposium on the Foundations of Software En-
gineering (ESEC/FSE’20). 386–397. DOI:https://doi.org/10.1145/3368089.3409751

[106] Cornelia Miesbauer and Rainer Weinreich. 2013. Classification of design decisions–An expert survey in practice. In
European Conference on Software Architecture. 130–145. DOI:https://doi.org/10.1007/978-3-642-39031-9_12

[107] Thomas P. Moran and John M. Carroll. 1996. Design Rationale: Concepts, Techniques, and Use. CRC Press.
[108] Gail C. Murphy, David Notkin, and Kevin Sullivan. 1995. Software reflexion models: Bridging the gap between source

and high-level models. In Symposium on Foundations of Software Engineering (FSE’95). 18–28. DOI:https://doi.org/10.
1145/222124.222136

[109] Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok Yoon. 2016. Programmers are users too: Human-
centered methods for improving programming tools. Computer 49, 7 (2016), 44–52. DOI:https://doi.org/10.1109/mc.
2016.200

[110] Brad A. Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Amy J. Ko. 2008. How designers design and pro-
gram interactive behaviors. In Symposium on Visual Languages and Human-Centric Computing (VL/HCC’08). 177–184.
DOI:https://doi.org/10.1109/VLHCC.2008.4639081

[111] Jernej Novak, Andrej Krajnc, and Rok Z̆ontar. 2010. Taxonomy of static code analysis tools. In International Conven-
tion on Information, Communication and Electronic Technology (MIPRO’10). 418–422.

[112] Steve Oney, Christopher Brooks, and Paul Resnick. 2018. Creating guided code explanations with chat.codes. Hum.–
comput. Interact. 2, CSCW (2018), 131:1–131:20. DOI:https://doi.org/10.1145/3274400

[113] David Lorge Parnas. 1972. On the criteria to be used in decomposing systems into modules. Commun. ACM 15,
12 (1972), 1053–1058. DOI:https://doi.org/10.1007/978-3-642-48354-7_20

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://doi.org/10.1007/978-3-030-14687-0_15
https://doi.org/10.1109/ms.2003.1241364
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1016/j.cad.2011.08.002
https://doi.org/10.1109/METRIC.2002.1011327
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1115/1.3470018
https://doi.org/10.1037/0033-2909.90.1.125
https://doi.org/10.1080/07370024.1991.9667168
https://doi.org/10.1145/2556288.2557411
https://doi.org/10.1109/TSE.2014.2362924
https://doi.org/10.1016/j.jss.2018.05.064
https://doi.org/10.1002/pfi.21408
https://doi.org/10.1109/vlhcc.2019.8818816
https://doi.org/10.1145/3368089.3409751
https://doi.org/10.1007/978-3-642-39031-9_12
https://doi.org/10.1145/222124.222136
https://doi.org/10.1109/mc.2016.200
https://doi.org/10.1109/VLHCC.2008.4639081
https://doi.org/10.1145/3274400
https://doi.org/10.1007/978-3-642-48354-7_20

37:36 S. Mehrpour and T. D. LaToza

[114] David Lorge Parnas and Paul C. Clements. 1986. A rational design process: How and why to fake it. Trans. Softw.
Eng. SE-12, 2 (1986), 251–257. DOI:https://doi.org/10.1109/tse.1986.6312940

[115] Luca Pascarella and Alberto Bacchelli. 2017. Classifying code comments in Java open-source software systems. In
International Conference on Mining Software Repositories (MSR’17). 227–237. DOI:https://doi.org/10.1109/MSR.2017.63

[116] Feniosky Peña-Mora and Sanjeev Vadhavkar. 1997. Augmenting design patterns with design rationale. AI EDAM 11,
2 (1997), 93–108. DOI:https://doi.org/10.1017/S089006040000189X

[117] Dewayne E. Perry and Alexander L. Wolf. 1992. Foundations for the study of software architecture. Softw. Eng. Notes
17, 4 (1992), 40–52. DOI:https://doi.org/10.1145/141874.141884

[118] PMD. 2020. Writing a Custom Rule PMD Source Code Analyzer. Retrieved from https://pmd.github.io/latest/pmd_
userdocs_extending_writing_pmd_rules.html.

[119] PMD. 2021. PMD Designer. Retrieved from https://pmd.github.io/latest/pmd_userdocs_extending_designer_
reference.html.

[120] Colin Potts and Glenn Bruns. 1988. Recording the reasons for design decisions. In International Conference on Software
Engineering (ICSE’88). 418–427.

[121] Ghulam Rasool, Ilka Philippow, and Patrick Mäder. 2010. Design pattern recovery based on annotations. Adv. Eng.
Softw. 41, 4 (2010), 519–526. DOI:https://doi.org/10.1016/j.advengsoft.2009.10.014

[122] William C. Regli, Xiaochun Hu, Michael Atwood, and Wei Sun. 2000. A survey of design rationale systems: Ap-
proaches, representation, capture and retrieval. Eng. Comput. 16, 3-4 (2000), 209–235. DOI:https://doi.org/10.1007/
pl00013715

[123] Horst W. J. Rittel. 1972. On the planning crisis: Systems analysis of the first and second generations. Bedriftsøkonomen
8 (1972).

[124] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro, Neil Ernst, Marco Aurélio
Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd,
and Edmund Wong. 2017. On-demand developer documentation. In International Conference on Software Maintenance
and Evolution (ICSME). 479–483. https://doi.org/10.1109/icsme.2017.17

[125] Benjamin Rogers, James Gung, Yechen Qiao, and Janet E. Burge. 2012. Exploring techniques for rationale extraction
from existing documents. In International Conference on Software Engineering (ICSE’12). 1313–1316. DOI:https://doi.
org/10.1109/ICSE.2012.6227091

[126] Chanchal Kumar Roy and James R. Cordy. 2007. A Survey on Software Clone Detection Research. Technical Report
115. Queen’s School of Computing TR. 64–68 pages.

[127] Spencer Rugaber, Stephen B. Ornburn, and Richard J. LeBlanc. 1990. Recognizing design decisions in programs. IEEE
Softw. 7, 1 (1990), 46–54. DOI:https://doi.org/10.1109/52.43049

[128] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from build-
ing static analysis tools at Google. Commun. ACM 61, 4 (2018), 58–66. DOI:https://doi.org/10.1145/3188720

[129] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. 2015. Tricorder: Building
a program analysis ecosystem. In International Conference on Software Engineering (ICSE’15). 598–608. DOI:https:
//doi.org/10.1109/icse.2015.76

[130] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. 2005. Using dependency models to manage complex soft-
ware architecture. In Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’05).
167–176. DOI:https://doi.org/10.1145/1103845.1094824

[131] Sandra Schröder and Georg Buchgeher. 2019. Formalizing architectural rules with ontologies—An industrial evalu-
ation. In Asia-Pacific Software Engineering Conference (APSEC’19). 55–62. DOI:https://doi.org/10.1109/APSEC48747.
2019.00017

[132] Arman Shahbazian, Youn Kyu Lee, Duc Le, Yuriy Brun, and Nenad Medvidovic. 2018. Recovering architectural design
decisions. In International Conference on Software Architecture (ICSA’18). 95–9509. DOI:https://doi.org/10.1109/ICSA.
2018.00019

[133] Mary Shaw and David Garlan. 1996. Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall.
[134] Abdullah Sheneamer and Jugal Kalita. 2016. A survey of software clone detection techniques. Int. J. Comput. Applic.

137, 10 (2016), 1–21. DOI:https://doi.org/10.5120/ijca2016908896
[135] Patrick C. Shih, Gina Venolia, and Gary M. Olson. 2011. Brainstorming under constraints: Why software developers

brainstorm in groups. In BCS Conference on Human-Computer Interaction. 74–83. DOI:https://doi.org/10.14236/ewic/
hci2011.30

[136] Simon Buckingham Shum and Nick Hammond. 1994. Argumentation-based design rationale: What use at what cost?
Int. J. Hum.-comput. Stud. 40, 4 (1994), 603–652. DOI:https://doi.org/10.1006/ijhc.1994.1029

[137] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and answering questions during a programming
change task. Trans. Softw. Eng. 34, 4 (2008), 434–451. DOI:https://doi.org/10.1109/TSE.2008.26

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://doi.org/10.1109/tse.1986.6312940
https://doi.org/10.1109/MSR.2017.63
https://doi.org/10.1017/S089006040000189X
https://doi.org/10.1145/141874.141884
https://pmd.github.io/latest/pmd_userdocs_extending_writing_pmd_rules.html
https://pmd.github.io/latest/pmd_userdocs_extending_designer_reference.html
https://doi.org/10.1016/j.advengsoft.2009.10.014
https://doi.org/10.1007/pl00013715
https://doi.org/10.1109/icsme.2017.17
https://doi.org/10.1109/ICSE.2012.6227091
https://doi.org/10.1109/52.43049
https://doi.org/10.1145/3188720
https://doi.org/10.1109/icse.2015.76
https://doi.org/10.1145/1103845.1094824
https://doi.org/10.1109/APSEC48747.2019.00017
https://doi.org/10.1109/ICSA.2018.00019
https://doi.org/10.5120/ijca2016908896
https://doi.org/10.14236/ewic/hci2011.30
https://doi.org/10.1006/ijhc.1994.1029
https://doi.org/10.1109/TSE.2008.26

A Survey of Tool Support for Working with Design Decisions in Code 37:37

[138] Elliot Soloway, Jeannine Pinto, Stanley Letovsky, David C. Littman, and Robin Lampert. 1988. Designing documenta-
tion to compensate for delocalized plans. Commun. ACM 31, 11 (1988), 1259–1267. DOI:https://doi.org/10.1145/50087.
50088

[139] Boya Sun, Gang Shu, Andy Podgurski, and Brian Robinson. 2012. Extending static analysis by mining project-specific
rules. In International Conference on Software Engineering (ICSE’12). 1054–1063. DOI:https://doi.org/10.1109/ICSE.
2012.6227114

[140] Alistair G. Sutcliffe and Michele Ryan. 1998. Experience with SCRAM, a SCenario Requirements Analysis Method.
In International Symposium on Requirements Engineering. 164–171. DOI:https://doi.org/10.1109/ICRE.1998.667822

[141] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad Ali Babar. 2010. A comparative study
of architecture knowledge management tools. J. Syst. Softw. 83, 3 (2010), 352–370. DOI:https://doi.org/10.1016/j.jss.
2009.08.032

[142] Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. 2006. A survey of architecture design rationale. J.
Syst. Softw. 79, 12 (2006), 1792–1804. DOI:https://doi.org/10.1016/j.jss.2006.04.029

[143] Stephen E. Toulmin. 1958. The Uses of Argument. Cambridge University Press.
[144] Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. 2018. JIT feedback: What experienced developers like

about static analysis. In International Conference on Program Comprehension (ICPC’18). 64–73. DOI:https://doi.org/
10.1145/3196321.3196327

[145] Jeff Tyree and Art Akerman. 2005. Architecture decisions: Demystifying architecture. IEEE Softw. 22, 2 (2005), 19–27.
DOI:https://doi.org/10.1109/ms.2005.27

[146] Vassilios Tzerpos and Richard C. Holt. 2000. ACDC: An algorithm for comprehension-driven clustering. In Working
Conference on Reverse Engineering (WCRE’00). 258–267. DOI:https://doi.org/10.1109/WCRE.2000.891477

[147] Jan Salvador van der Ven, Anton G. J. Jansen, Jos A. G. Nijhuis, and Jan Bosch. 2006. Design Decisions: The Bridge
between Rationale and Architecture. Springer Berlin, 329–348. DOI:https://doi.org/10.1007/978-3-540-30998-7_16

[148] Uwe van Heesch and Paris Avgeriou. 2011. Mature architecting—A survey about the reasoning process of pro-
fessional architects. In Working IEEE/IFIP Conference on Software Architecture (WICSA’11). 260–269. DOI:https:
//doi.org/10.1109/WICSA.2011.42

[149] Hans van Vliet and Antony Tang. 2016. Decision making in software architecture. J. Syst. Softw. 117 (2016), 638–644.
DOI:https://doi.org/10.1016/j.jss.2016.01.017

[150] Carmine Vassallo, Sebastiano Panichella, Massimiliano Di Penta, and Gerardo Canfora. 2014. CODES: Mining source
code descriptions from developers discussions. In International Conference on Program Comprehension (ICPC’14). 106–
109. DOI:https://doi.org/10.1145/2597008.2597799

[151] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Harald C. Gall, and Andy Zaidman. 2020.
How developers engage with static analysis tools in different contexts. Empir. Softw. Eng. 25, 2 (2020), 1419–1457.
DOI:https://doi.org/10.1007/s10664-019-09750-5

[152] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy Zaidman, and Harald C. Gall.
2018. Context is king: The developer perspective on the usage of static analysis tools. In International Conference on
Software Analysis, Evolution, and Reengineering (SANER’18). 38–49. DOI:https://doi.org/10.1109/saner.2018.8330195

[153] Vera Wahler, Dietmar Seipel, J. Wolff, and Gregor Fischer. 2004. Clone detection in source code by frequent itemset
techniques. In International Workshop on Source Code Analysis and Manipulation. 128–135. DOI:https://doi.org/10.
1109/SCAM.2004.6

[154] Wei Wang and Janet E. Burge. 2010. Using rationale to support pattern-based architectural design. In ICSE Workshop
on Sharing and Reusing Architectural Knowledge. 1–8. DOI:https://doi.org/10.1145/1833335.1833336

[155] Rainer Weinreich and Iris Groher. 2016. Software architecture knowledge management approaches and their sup-
port for knowledge management activities: A systematic literature review. Inf. Softw. Technol. 80 (2016), 265–286.
DOI:https://doi.org/10.1016/j.infsof.2016.09.007

[156] Yunwen Ye, Gerhard Fischer, and Brent Reeves. 2000. Integrating active information delivery and reuse repository
systems. In International Symposium on Foundations of Software Engineering (FSE’00). 60–68. DOI:https://doi.org/10.
1145/357474.355053

[157] Vera Zaychik and William C. Regli. 2003. Capturing communication and context in the software project lifecycle.
Res. Eng. Des. 14, 2 (2003), 75–88. DOI:https://doi.org/10.1007/s00163-002-0027-8

Received 25 July 2022; revised 8 June 2023; accepted 22 June 2023

ACM Computing Surveys, Vol. 56, No. 2, Article 37. Publication date: September 2023.

https://doi.org/10.1145/50087.50088
https://doi.org/10.1109/ICSE.2012.6227114
https://doi.org/10.1109/ICRE.1998.667822
https://doi.org/10.1016/j.jss.2009.08.032
https://doi.org/10.1016/j.jss.2006.04.029
https://doi.org/10.1145/3196321.3196327
https://doi.org/10.1109/ms.2005.27
https://doi.org/10.1109/WCRE.2000.891477
https://doi.org/10.1007/978-3-540-30998-7_16
https://doi.org/10.1109/WICSA.2011.42
https://doi.org/10.1016/j.jss.2016.01.017
https://doi.org/10.1145/2597008.2597799
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1109/saner.2018.8330195
https://doi.org/10.1109/SCAM.2004.6
https://doi.org/10.1145/1833335.1833336
https://doi.org/10.1016/j.infsof.2016.09.007
https://doi.org/10.1145/357474.355053
https://doi.org/10.1007/s00163-002-0027-8

