
1.  Introduction
Storm surge from tropical cyclones (TCs), also called hurricanes, is one of the most devastating coastal hazards, 
causing millions of dollars in damage and the majority of TC related deaths (Davlasheridze et al., 2019). The 
compounding effects of growing coastal populations, changing TC climatology from warmer oceans, and 
sea-level-rise (SLR) contribute to the increased vulnerability of coastal communities to more intense storm surge 
events (K. A. Emanuel, 2013; Knutson et al., 2020; Lin et al., 2012; Woodruff et al., 2013). Developing effective 
solutions to mitigate TC surge disasters requires understanding the risk of TC surge inundation. Historical TC 
and storm surge records are often too limited, however, to quantify current and future TC risk to local popu-
lations. Prior to the development of reliable satellite tracking in the 1960s, we rely on early aircraft and ship 
log observations over the ocean for historical TCs that only date back to the year 1851. In addition, these early 
observations do not have information on critical storm characteristics, especially storm size, characterized by 
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radius of maximum wind (Rmax) (Knapp et al., 2010). Although recent work has reconstructed storm size for many 
historical TCs, these reconstructions only date back to 1950 (Gori et al., 2023). The short observational records 
of hurricane activity make it difficult to evaluate TC behavior over long time scales and to make accurate future 
projections.

A well practiced approach to modeling TC surge risk is through climatological-hydrodynamic modeling. Most 
TC risk models augment the historical TC records by generating synthetic TCs based on historical observed 
climatology (Scheffner et al., 1996; Toro et al., 2010; Vickery et al., 2000). However, those methods may produce 
storms that are not physically realistic and because they rely on historical data, they cannot capture changes in TC 
climatology induced by climate change. Another approach is to utilize a statistical-deterministic TC risk model 
that is environment-dependent (K. Emanuel et al., 2006). In this method, vortices are randomly seeded over the 
ocean and moved according to the statistics of the environmental wind. The characteristics of synthetic storms 
are modeled deterministically given the atmosphere and oceanic conditions along the storm track. This approach 
generates a very large number of synthetic storms throughout an ocean basin to obtain a representative sample 
of time-varying realistic storms affecting the location of interest. This TC risk model has been combined with 
hydrodynamic models to evaluate local surge risk (Gori et al., 2022; Lin et al., 2012; Marsooli et al., 2019).

The field of paleotempestology has emerged as a new tool for reconstructing long-term TC activity (Brandon 
et  al.,  2013; Donnelly & Woodruff,  2007; Liu & Fearn,  1993,  2000; Tan et  al.,  2023; Tao et  al.,  2021; van 
Hengstum et al., 2014; Yang et al., 2020, 2022). Paleotempestological records identify and date signatures of 
storm landfalls in natural archives (e.g., coarse grains in sediment cores (Donnelly & Woodruff, 2007; Liu & 
Fearn,  1993), increased latewood width in tree cores (Maxwell et  al.,  2021)). These archives then provide a 
record of TC occurrence in a given area that extends back hundreds to thousands of years. Most paleohurri-
cane proxies are sourced from sediment based archives that capture coarse grained sediments that are mobi-
lized and then deposited in coastal basins by high energy waves associated with TCs. McKee and Blumenstock 
were among the pioneers who recognized the potential of using overwash deposits to reconstruct TC events 
(Blumenstock, 1958; McKee, 1959). Over time, researchers have built an extensive network of paleohurricane 
archives across various environments (E. J. Wallace, Dee, & Emanuel, 2021), including lakes (Liu & Fearn, 2000), 
coastal wetlands (Boldt et al., 2010; Donnelly et al., 2001; McCloskey & Keller, 2009), and back-barrier lagoons 
(Davis et al., 1989; Donnelly & Woodruff, 2007). Recent work has expanded paleohurricane research into the 
hurricane-prone tropical Atlantic using sediment records collected from coastal karst basins, including fully 
submerged blue holes (Schmitt et al., 2020; E. Wallace et al., 2019; Winkler et al., 2020) and sub-aerial sinkholes 
(Brandon et al., 2013; Brown et al., 2014; Lane et al., 2011). CKBs are basin-like features found in tropical loca-
tions worldwide that originate from dissolution processes on carbonate platforms (Maloney & Hartmann, 2000; 
van Hengstum et al., 2014). These basins are well suited for producing paleoTC archives because (a) they have 
large accommodation spaces that allow sediment accumulation (Dill, 1970), (b) they have anoxic conditions at 
the bottom which limit bioturbation (Gischler et al., 2008), and (c) they are often surrounded by reefs and tidal 
flats which provide abundant sediment supply (Gischler et al., 2008; Shinn et al., 1996). In particular, paleohur-
ricane records from blue holes (Schmitt et al., 2020; E. Wallace et al., 2021; Winkler et al., 2020) are typically 
very high resolution (annual to near annual) which allows these archives to resolve many different storms from 
the observational records unlike other low resolution archives (McCloskey & Keller, 2009).

It is challenging to interpret these long-term paleohurricane records due to age uncertainties in the sediment 
cores, and limited information about past climate conditions and morphology of the coastline. Despite uncer-
tainties, paleohurricane records still provide useful information for long term TC risk assessment. For instance, 
Lin et al. (2014) used both climatological-hydrodynamic modeling and paleorecords to address TC surge risk for 
northwest Florida. They found that both the synthetic database and paleorecords contain a much higher frequency 
of extreme events than the historical record at Apalachee Bay, FL. In this study, we extend this framework to 
further integrate paleorecords and climatological-hydrodynamic modeling to estimate storm surge risk for Long 
Island blue hole (LIBH) in The Bahamas.

In the spring of 2016, E. Wallace et al. (2021) collected sediment cores from a blue hole on Long Island in The 
Bahamas. The authors identified coarse grained event beds preserved in their cores resulting from TC strikes on 
the island and evaluated the frequency of TC activity over the past 1,050 years. Although paleorecords allow us 
to reconstruct the overall frequency of TCs over hundreds or thousands of years, determining the essential storm 
characteristics of past events from sedimentary deposits can be more challenging as storm surge depends on 
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various parameters, including the track and intensity of the TCs, the site configuration, etc. In addition, age uncer-
tainties in the sediment cores and a lack of observations during storm events make it difficult to exactly pinpoint 
which storm events contributed to the coarse layers. Here, to strengthen paleohurricane interpretations, we use 
hydrodynamic and synthetic TC modeling to identify storms that could produce coarse anomalies in the Long 
Island paleohurricane record and reconstruct unknown characteristics of historical storms based on the sediment 
data. Then, we employ the approach of combining climatological-hydrodynamic modeling with reconstructed 
records to estimate surge risk on Long Island. Finally, we apply the combined modeling to quantify the effects of 
sea level rise (SLR) and TC climatology change (under two carbon emission scenarios SSP2-4.5 and SSP5-8.5) 
on late 21st century surge hazards on Long Island in The Bahamas.

2.  Method
2.1.  Study Site

Long Island is located on the eastern margin of the Great Bahama Bank and is split by the Tropic of Cancer. The 
blue hole (LIBH), 150 m in diameter and 12 m deep, is located 400 m off the northwest shore of Long Island (N 
23.265°, W 75.117°) (E. Wallace et al., 2021) (see Figure 1a). Under ambient conditions, fine-grained sediment 
produced on the surrounding carbonate platform accumulates in the blue hole at a rate of about 1 cm/yr. During 
storm events, on the other hand, coarse grained sediment is transported and deposited into the basin. The near 
annual resolution of the sediment record from LIBH allows for distinguishing sediment layers created by storm 
events that occur within 1–2 years of each other (see Figure 1b).

Since 1851, 34 TCs have passed within 100 km of LIBH. Four major hurricanes (above category 2) passed by Long 
Island since 2010: Matthew 2016, Joaquin 2015, Sandy 2012, and Irene 2011. The close passage of these intense 
hurricanes caused major damage to the island. For example, in 2015, the center of circulation of Hurricane Joaquin 
passed 40 km east of LIBH at Category 4 strength. Power lines were downed, private fresh water wells were 
flooded, and structural damage occurred to homes; approximately 49% of the 413 Bahamian residences destroyed 
were located in Long Island (Virgil, N.D.). Over two-thirds of the island remained inundated with 1.2–1.8 m of 
water for almost a week after impact, blocking coastal roads and damaging the marina (Robbie, 2016). The impact 
of a single storm like Joaquin could be amplified by changing TC climatology and SLR. Long Island itself does 
not have any active tidal gauges. In fact, the only tidal gauge in the entire Bahamas Archipelago is located on the 
most northwestern point of the Grand Bahamas island. The lack of current data collection for the Bahamas area 
emphasizes the importance of using paleorecords along with TC risk modeling for this region.

Coarse-grained deposits in the Long Island paleohurricane archive show that the island has experienced frequent 
storm strikes over the last 1,000 years (E. Wallace et al., 2021) (see Figure 1b). Event beds in the LIBH paleo-
hurricane record were identified by applying a cutoff threshold to the coarse anomaly data (Donnelly et al., 2015; 
E. Wallace et al., 2019). All peaks in coarse anomaly above 5.9% are considered storm event beds. The ages of 
these event beds are estimated using a Bayesian age model (Blaauw & Christen, 2011) combining lead-210 dates, 
pollen evidence of land use activities and radiocarbon dates from terrestrial macrofossils (E. Wallace et al., 2021).

Here, we consider the modern period between 1851 and 2016, when the Best Track information (Knapp 
et al., 2010) of TCs is available. Figure 1b demonstrates that E. Wallace et al. (2021) identified seven event beds 
in the LIBH record whose estimated dates fall between 1851 and 2016. Previously, the authors used the Sea, Lake 
and Overland Surges from Hurricanes (SLOSH) (Jelesnianski, 1992) storm surge model to identify the storm 
events that left deposits at LIBH. However, the SLOSH model does not consider the tidal flow, only adjusting the 
maximum high tide to the initial mean sea level, and also uses a relatively coarse grid (5 × 5 km 2), which reduces 
the accuracy of the model. According to the results from the SLOSH model, the authors could identify a few 
potential hurricanes for each event bed. Here, we utilize the ADvanced CIRCulation (ADCIRC) model (Luettich 
et al., 1992) to more confidently match each event beds to a specific historical TC, taking into account tidal effects 
and operating the simulation on a high-resolution mesh to achieve higher accuracy surge results for Long Island.

The Long Island site is chosen in this study as it captured a large number of modern event beds and most of 
those event beds were well dated with pollen, post-bomb radiocarbon, and lead-210 chronological tie-points 
(E. Wallace et al., 2021). We are only able to validate our ADCIRC experiments using TCs in the time frame of 
1988–2016, so Long Island was the most suitable choice for our analysis given its high frequency of well dated 
modern event beds compared to other records (in neighbor islands including South Andros, Middle Caicos, 
Abaco, Grand Bahama, and Cay Sal). In addition, LIBH (E. Wallace et al., 2021) is well suited for hydrodynamic 
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experiments because the geomorphology of the surrounding carbonate platform is relatively simple compared to 
the other blue hole sites (E. Wallace et al., 2019; E. J. Wallace, Donnelly, et al., 2021; Winkler et al., 2020). Many 
other blue hole records from the neighbor islands are nestled in complex tidal flats (Andros Island (E. Wallace 
et al., 2019), Abaco Island (E. Wallace et al., 2021)) or surrounded by sub-aerial shoals (Caicos Island (E. J. 
Wallace, Donnelly, et al., 2021)) that are difficult to model without detailed topographic or bathymetric data. In 
this paper, we aim to explore the application of hydrodynamic modeling for paloehurricane reconstruction; the 
application to the simple blue hole environments may be scaled up to more complex sites in future work.

2.2.  Hydrodynamic Modeling

Among numerical storm surge models (Begmohammadi et al., 2022; Jelesnianski, 1992; Kennedy et al., 2019; 
Luettich et al., 1992; Roelvink & Van Banning, 1995), ADCIRC is a widely used storm surge model that uses a 

Figure 1.  (a) Map of Long Island, The Bahamas. The larger area shows the unstructured triangular mesh for ADvanced 
CIRCulation. (b) Coarse anomaly plot (solid line) for Long Island blue hole as a function of time (E. Wallace et al., 2021). 
The dashed black line is the event bed threshold of 5.90%. The dashed red line denotes the year of 1850.
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finite element method over unstructured triangular meshes (Luettich et al., 1992). A single mesh can have varying 
resolution throughout its representation of a physical area: up to several kilometers in the open ocean, down to 
meters in small-scale inland areas. ADCIRC describes the physical processes associated with the storm surge, 
and can incorporate the effects of astronomical tide. It also can consider the effects of wind waves when coupled 
with the wave model SWAN (Dietrich et al., 2011). The model has been validated for storm surge along the U.S. 
Gulf and Atlantic coasts (Deb & Ferreira, 2018; Dietrich et al., 2011; Hope et al., 2013; Lin, Smith, et al., 2010; 
Marsooli & Lin, 2018). However, ADCIRC simulations can be computationally expensive, and it is not feasi-
ble to apply ADCIRC for very large numbers of simulations on high-resolution (down to 100 m element size) 
meshes. As a result, relatively coarse meshes (O ≃ 1 km at the coastlines (Marsooli & Lin, 2018)) are often used 
to describe coastal features.

To model storms that pass Long Island, we built two ADCIRC meshes (fine and coarse resolution) with Ocean-
Mesh2D (Roberts et al., 2019) to cover the Gulf of Mexico and the Atlantic Ocean. The higher resolution mesh 
includes 376,814 elements and 221,706 nodes. The minimum resolution of elements is around 0.5 km near the 
coastlines. The coarser mesh consists of 95,920 elements and 54,916 nodes with a minimum resolution of 2 km 
along the coastlines. The bathymetric data were obtained from global bathymetry and topography at one arc sec 
(SRTM15+) (Tozer et al., 2019), which is approximately 0.5 km resolution. All of the historical events are run 
on the high resolution mesh, while the synthetic storms are run on the coarse resolution mesh. Note that these 
meshes are superior to the SLOSH model used by the previous study for this area (E. Wallace et al., 2021) in 
terms of accuracy.

To account for tide, eight tidal constituents enforce ocean boundaries of the mesh to consider the tidal effects in the 
model. Tidal data are obtained from the global model of ocean tides, TPXO8-ATLAS (Egbert & Erofeeva, 2002). 
The timing of the tide is matched with the timing of the observations (Hope et al., 2013; Pringle et al., 2021).

2.3.  Event Attribution and Reconstruction

We can develop a first order understanding of how Long Island sediment proxies respond to various storm events 
by pinpointing the modern storms (from 1850 CE to the present) that have deposited coarse materials in the Blue 
Hole. To do so, we assume that higher surges during hurricane events mobilize and resuspend coarse grained 
benthic sediment on the shallow carbonate platform surrounding the blue hole. Some of that sediment moves 
into the blue hole which acts as a natural settling tube (Winkler et al., 2020). The process of sediment transport 
during storm surges is highly complex, influenced by factors such as sediment grain sizes and local bathymetry. 
Modeling this phenomenon is exceptionally challenging, requiring high-resolution bathymetric data, detailed 
maps of surface sediments, 3-D hydrodynamic models, and the coupling of sediment transport models with 
hydrodynamic models, among other factors. These modeling efforts are computationally expensive. Additionally, 
we are constrained by the lack of high-resolution bathymetric data in this area and limited information about bed 
grain sediment sizes and densities. We also lack information about how the bathymetry of this area has changed 
over time. Due to these constraints, we are unable to establish a relationship between coarse anomalies and surge 
height. However, if we can identify the lowest surge within the time frame 1988–2016 (when all storm track infor-
mation is available) that caused sediment deposition, and we proceed by assuming that surges above this specific 
threshold can also result in deposition at LIBH.

Specifically, to interpret the record of modern storms, we match historical TCs that pass LIBH to the event beds 
in the record. We use the North Atlantic Best Track data set (referred to as best Track) (Knapp et al., 2010) for 
historical records of TC properties. We consider two time windows for our analysis based on availability of TC 
records in the Best Track database. The first window spans from 1988 to 2016 within which TC information for 
the track, minimum pressure of the hurricane center, radius of maximum wind, and maximum wind speed are all 
available. This information enables us to develop a surge threshold for potential TCs to leave a deposit at LIBH, 
in order to attribute the seven event beds to specific historical TC.

For the second time window between 1851 and 1987, radius of maximum wind and minimum pressure of the 
hurricane center observations are unavailable (minimum pressure is available from 1950). To obtain a first 
estimation of the surge level, we use a method based on empirical relationships of hurricane characteristics to 
estimate the radius of maximum wind and minimum central pressure of hurricanes. To approximate the central 
pressure of hurricanes, we apply a simple wind-pressure relationship based on the cyclostrophic balance equation 
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presented by Knaff and Zehr (Knaff & Zehr, 2007). Then, to estimate the radius of maximum wind, we adopt an 
empirical formula proposed by the U.S. Federal Emergency Management Agency ((FEMA), 2012), which is a 
function of the minimum central pressure of hurricanes and latitude. We account for uncertainty in the estimates 
for radius of maximum wind and minimum central pressure by varying the minimum central pressure value by 
±15 mb and then updating the estimation of radius of maximum wind. This pressure range is derived from the 
95% quantile of the differences between actual central pressure and calculated central pressure from the empirical 
formula for TCs between 1988 and 2016.

Having attributed the event beds from 1851 to 2016, we can develop more accurate estimations for radius of maxi-
mum wind and surge levels for deposit-leaving TCs. Given the presence of a historical TC in the paleorecord, 
we can use the shared properties of the synthetic (see next Section 2.4) and historic TCs to estimate unknown 
storm characteristics, in particular storm size (Rmax). For example, historic TCs that passed LIBH prior to 1988 
do not have observed Rmax values. We can group these pre-1988 historical storms with synthetic and post 1988 
historical TCs based on observed properties that are available including intensity and storm track (position and 
direction) to estimate Rmax values for pre-1988 historical storms. We use the K-means clusters (Duda et al., 1973) 
to identify Rmax from the storm properties for deposit-leaving TCs. K-means clustering is a numerical, unsuper-
vised, non-deterministic, iterative method that is both computationally efficient and easy to implement in many 
practical applications (Babatunde et al., 2019; Carvalho et al., 2016). Finally, we use the information obtained 
from this process to estimate the surge level associated with each historical event.

2.4.  Synthetic Storms

We used a statistical-deterministic TC model (K. Emanuel et al., 2006) to generate a large number of synthetic 
TCs. The synthetic storms are generated using gridded atmosphere and ocean data products, including General 
Circulation Models (GCMs) or reanalysis data. Storms are produced in a three step process. First, warm core 
vortices are placed randomly in space and time. Vortices that meet favorable environmental conditions develop 
into TCs. Next, each genesis point is given a track according to the daily large-scale environmental winds in the 
model plus a beta-drift correction (Holland, 1982). Finally, at each time step, TC intensity is predicted based on 
the Coupled Hurricane Intensity Prediction System, which is an axisymmetric vortex model coupled to a 1D 
ocean model (K. Emanuel et al., 2004). To represent historical TC climatology from 1988 to 2016, synthetic 
tracks were generated based on the National Center for Environmental Prediction (NCEP) reanalysis product 
(Kalnay et al., 1996). To represent TC climatology under future possible climate (2070–2100) conditions, two 
emission scenarios from the Shared Socioeconomic Pathways were considered—a moderate (SSP2 4.5) and high 
(SSP5 8.5) scenario. For each future scenario, the synthetic tracks were generated based on each of six CMIP6 
climate models: Canadian Earth System Model, Centre National de Recherches Météorologiques (CNRM), 
EC-Earth Consortium Model (ECEARTH), The Institute Pierre Simon Laplace Climate Model (IPSL), Model 
for Interdisciplinary Research on Climate, and United Kingdom Meteorological Office.

All synthetic storms are run on ADCIRC coarse resolution mesh for 7 days. The model accounts for tides through 
the use of open ocean boundary conditions as well as wind and pressure fields, which are developed based on 
physics-based parametric models. The parametric models take into account the TCs' maximum wind speed Vmax 
and radius of maximum wind Rmax (K. Emanuel & Rotunno, 2011; Holland, 1980) to produce the spatial and 
temporal wind and pressure fields. To account for the asymmetry of the wind field, an empirically estimated 
surface background wind vector by Lin and Chavas (2012) is used.

The generated future TCs from each climate model are likely biased in their intensity and annual frequency 
compared to the NCEP TCs. Consequently, the biases in TCs can lead to biases in hazard estimation, as intensity 
and frequency are dominant drivers impacting coastal storm surge risk. Here, we perform bias correction for TC 
intensity and annual frequency at the storm level.

First, the quantile delta mapping approach (Cannon et al., 2015) is used in order to correct the GCM projected 
TC intensity (VMax) of each TC set. The change between the GCM-projected future (2070–2100) and histori-
cal (1988–2015) downscaled VMax quantiles is added to the NCEP downscaled historical quantiles to create a 
corrected future VMax distribution for each GCM model. Using the ratio of the corrected VMax probability density 
to the GCM projected VMax probability density, the GCM projected storms are weighted and re-sampled (Tokdar 
& Kass, 2010). By doing so, we are able to match the corrected future VMax distribution and consequently generate 
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a new TC set. Second, the bias correction of TC frequency is performed by calculating the ratio of the GCM 
future frequency to the GCM historical frequency and multiplying the ratio by the NCEP historical frequency 
GCM-predicted frequency change to the NCEP-derived frequency (for more details on bias correction see Gori 
et al. (2022)).

We select TCs within a radius of 100 km of LIBH because previous work (E. Wallace et al., 2021) suggests that 
the LIBH sediment record is only sensitive to storms passing within this radius (see Section 3). Overall, there 
are 1244 TCs in the historical time period (NCEP), 3,745 TCs for SSP2-4.5, and 3,848 TCs for SSP5-8.5. We 
perform ADCIRC simulation for all selected storms in the historical period. To reduce the computational cost, 
we sampled 1,200 TCs for each climate scenario so that the sample storms have the same intensity distribution 
as the original data set. The synthetic storms correspond to 1,220 simulation years in the historical climate and 
the sampled future storms correspond to 692 (408) simulation years under the SSP2-4.5 (SSP5-8.5) scenario.

After reconstructing the historical hurricanes between 1851 and 2016, we apply bias correction to the estimated 
surge return levels using the reconstructions from 1851 to 2016 to account for possible biases in the TC and 
hydrodynamic models. We bias correct the frequency by computing the ratio of the NCEP frequency to the 
observed historical frequency and multiplying it by the GCM future frequency. For the historical period, the 
NCEP frequency is simply adjusted to equal the historical observed frequency. We then bias correct the probabil-
ity distribution of peak storm surge through quantile-quantile mapping: the difference between the NCEP storm 
tide and observed storm tide is calculated at each quantile level and these differences are added to the GCM future 
storm tide projections at their corresponding quantiles.

2.5.  Sea Level Rise (SLR) Projection

We incorporate probabilistic, localized SLR projections from Garner et al. (2022) for the end of 21st century 
(2100) considering the SSP2-4.5 and SSP5-8.5 emissions scenarios. In this study, SLR probability distributions 
are generated for tide gauge locations across the globe by considering ice sheet components (Greenland, West 
Antarctic, and East Antarctic), glacier and ice cap surface mass balance, thermal expansion and oceanographic 
processes, water storage on land and other non-climatic factors. Sea-level changes due to thermal expansion and 
oceanographic processes are based on ensemble mean projections from a suite of CMIP6 GCMs. We select the 
nearest tide gauge to LIBH and adopt the probability distribution specified by Garner et al. (2022). The return 
period curves incorporate SLR by convolving the TC-induced stormtide CDF with the SLR probability density 
function (Lin et al., 2016; Marsooli et al., 2019).

3.  Results and Discussions
3.1.  Hydrodynamic Modeling

Validating both meshes for Long Island is challenging because water surface elevation observations are unavail-
able for Long Island and most of The Bahamas. Thus, to validate these meshes, we chose the closest U.S. coastal 
locations with water surface elevation observational data. Eighteen NOAA tides and current stations around Flor-
ida are picked to compare the simulations' results with the historical observation data (tidal gauge locations are 
shown in Appendix A). There are 23 existing NOAA tides and currents stations, but five of those stations around 
Florida, are too far inland, and thus are not considered for the validation.

Based on availability of the observational data and Best Track information, five major hurricanes (1—Rita 2005, 
2—Irene 2011, 3—Sandy 2012, 4—Joaquin 2015, and 5—Matthew 2016) are chosen here to validate the meshes. 
To enforce the historical hurricanes, we use the Generalized Asymmetric Holland Model (GAHM) (Gao, 2018), 
which is a parametric wind and pressure model. It computes wind velocities and surface atmospheric pressures. 
The simulation is run for a total of 7 days on both meshes, with water surface elevations recorded from locations 
in the mesh corresponding to the locations of NOAA tides and currents' gauges (U.S. Geological Survey, Flood 
Event Viewer, N.D.). The maximum high water during these 7 days is extracted from simulations and observa-
tions. Figure 2 shows the observed peak water levels from the NOAA sensors versus the simulated peak water 
levels from ADCIRC on the high resolution mesh. We consider two quantities to measure the model performance: 
(a) root-mean-square error (RMSE), which is a measure of the magnitude of error and (b) coefficient of deter-
mination (R 2) relative to the 1:1 line, which describes how well a regression line fits a data -set. The calculated 
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RMSE value and R 2 value relative to the 1:1 line for all the hurricanes are 
0.07 and 0.94, respectively. It shows that overall the model can capture the 
surge's peak with a reasonable agreement with the observational data.

The simulations have also performed on the coarse mesh. The maximum and 
the minimum errors are ±6% compared to the higher resolution. In addition, 
the ADCIRC model is coupled with SWAN to consider wave effects. The 
coupled model is run on the high resolution mesh for these five cases. The 
high water mark at LIBH is compared for ADCIRC and ADCIRC + SWAN 
models. The results from ADCIRC  +  SWAN are ±2% different from the 
ADCIRC results. However, the computational cost increases by more than two 
times. Therefore, run only ADCIRC. In addition, we compared our ADCIRC 
results with the results of Sahoo et al. (2019), who used ADCIRC + SWAN 
to simulate Hurricane Joaquin in 2015. The results for Long Island are in 
good agreement.

3.2.  Event Attribution

3.2.1.  Event Attribution From 1988 to 2016

We aim to pinpoint recent TCs that left coarse grained deposits in the Long 
Island paleohurricane record. As shown in Figure 1, three event beds in the 
LIBH archive dated between 1988 and 2016. Overall, 13 hurricanes passed 
within a radius of 100 km of LIBH between 1988 and 2016. We used the 
ADCIRC model with a half-kilometer mesh resolution along the coast 

(high-resolution mesh) to simulate all of the 13 events. We applied ADCIRC with the GAHM (Gao, 2018) for 
hurricanes after 2000 due to the availability of Best Track isotach data and use the symmetric Holland vortex 
model (Holland,  1980) for earlier storms. Note that the surge results for the GAHM model and the Holland 
vortex model are very close at LIBH (the difference in the peak is less than 3% at LIBH for five major hurricanes 
mentioned in Section 3.1). The peak of the water surface elevation at LIBH is recorded during all events and 
illustrated in Figure 3.

We assign the three highest LIBH surges to the three modern event beds during 1988–2016 in the paleorecord. 
These three events are Joaquin 2015, Irene 2011, and Lili 1996, respectively, and are consistent with the esti-
mated ages of the samples. Among these three events, Lili 1996 generated the lowest surge, measuring 0.67 m. 
The fourth largest surge of 0.59 m is associated with Hurricane Frances (2004) and is also within the age estima-
tion for the third sample. Because Frances generated a significantly smaller surge, however, we can confidently 
conclude that the third event bed is associated with Lili. Therefore we identify Lili's stormtide height of estimated 
0.67 m to be the minimum water level a storm must generate at LIBH to leave a deposit. We refer to this water 
level as the deposition threshold. Note that this is a conservative choice of surge threshold. We cannot confirm 
whether the events that generate surges ranging between 0.59 and 0.67 m are indeed capable of producing depo-
sition at LIBH.

3.2.2.  Event Attribution From 1851 to 1987

Between 1851 and 1987 there are an additional four events that left coarse grained anomalies at LIBH. We 
assume the surge threshold of 0.67 m to identify these events (events 4, 5, 6, and 7 in Figure 1). Between 1851 and 
1987, 53 hurricanes passed within a radius of 100 km of LIBH and therefore could have left a deposit at LIBH.

To obtain a first estimation of the storm surge from each of the 53 storms, we follow the method presented in 
Section 2.3. First, the central pressure and radius of maximum wind for each event are calculated. Then, we ran 
ADCIRC simulations for ±15 mb of the computed central pressure to account for uncertainty in estimated central 
pressure.

Figure 3 top panel (thick blue lines) demonstrates the range of maximum surge results obtained by varying the 
central pressure and radius of maximum wind. The full surge range (thick blue lines) is only shown for nine 
potential TCs which generated a surge above the deposition threshold established in Section 3.2.1. If the maxi-
mum surge of a storm's surge range is below this threshold, then it is represented by only its maximum surge 
(hollow circle).

Figure 2.  Comparison of observed and predicted peak water levels for the 
high resolution mesh. The blue solid line is 1:1 line.
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To narrow down the nine storms to the four that most likely left deposits, we group them based on the age uncer-
tainty of the event beds. For the oldest event (Figure 1, event 7), there are four candidate hurricanes that lead to 
this coarse anomaly (Figure 3). As it can be seen in Figure 3 top panel (four thick blue lines from left to right), the 
stormtide's height for one of these four events (AL031891) is always above the surge threshold when the mini-
mum central pressure of hurricane is changing (±15). In addition, the stormtide's height for the median central 
pressure for only one event (AL031891) is above the surge threshold. As a result, we can certainly claim the first 
event is hurricane (AL031891), which is a Category 2 hurricane near LIBH.

For the other three events (Figure 1, events 4, 5, and 6), there are six candidates based on the age uncertainty of 
each event and hydrodynamic modeling results (see Figure 3 top panel, six thick blue lines from right to left). The 
stormtide's height for three events is always above the surge threshold when the minimum central pressure of the 
hurricanes varies (±15). By close inspection of the stormtide's height for the median central pressure of hurricane, 
we see that four events can produce stormtides' above the surge threshold. One of these events produced a storm-
tide height slightly less than the surge threshold (0.04 m less than the sure threshold). This event is AL021919 
(the first thick blue line on the left side of AL0111926 in Figure 3). The AL021919 hurricane was a category 1 
or 2 hurricane when it passed the Long Island, which is less intense than the other three events (they are category 
3 and above), thus likely not leaving a deposit. Also, the stormtide's height for the median central pressure of 
hurricane for the AL021919 hurricane is less than other events. As a result, we can claim the AL021919 hurricane 
most likely had a low minimum central pressure and did not lead to sediment transport at LIBH.

Figure 3.  Top panel shows the maximum stormtide height for events from 1851 to 2016. Red dots are the stormtide height 
for events after 1988 that left a deposit at Long Island blue hole (LIBH). Black filled circles are the maximum stormtide for 
events after 1988. Empty black circles show the maximum stormtide height for events when varying the minimum central 
pressure. Blue lines shows the range of estimated peak stormtide when varying minimum central pressure of the storm. The 
yellow dots show the peak stormtide height when the pressure gradient is calculated from the empirical function (Knaff & 
Zehr, 2007). The dashed red line is the surge threshold of 0.67 m. The bottom panel represents the coarse anomaly data for 
the modern interval (1851–2016) from LIBH. The dashed magenta line is the event bed threshold of 5.90%. Starred peaks 
indicate identified event layers. Light blue lines represent the age uncertainty for each events.
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Amongst the nine potential historical TCs that generated surges above the deposition threshold, we attribute 
AL031891, AL011926, AL041928, and AL031932 to the four 1851–1988 event beds. These four storms are also 
the only TCs that have surge ranges entirely above the deposition threshold.

3.3.  Sedimentary Record Interpretation

As seen in Section 3.2, not all storms that impact Long Island are captured in the sedimentary record. Under-
standing the types of storms that lead to sediment deposition at this particular site is critical to interpreting the 
rest of the paleorecord. Linking storm characteristics to sediment deposition in the paleorecord could offer a 
new avenue for estimating unknown storm properties (i.e., radius of maximum wind) for early historic storms 
that have corresponding event beds in the record. As the number of historic storms that left a deposit at LIBH is 
too limited to directly draw conclusions about the ability of different storm characteristics to cause deposition, 
we use the NCEP synthetic storm data from Section 2.4 in addition to historic storms to observe trends in storm 
characteristics.

Figure 4 illustrates key TC properties (maximum wind speed, the radius of maximum wind, and closest passage 
of TCs to LIBH) of the 1244 synthetic storms generated by NCEP reanalysis (see Section 2.4). All historical TCs 
occurring from 1851 onward are included in the figure. While the modeled maximum surge at LIBH (red shad-
ing) increases with higher intensity storms, the sediment record captures storms of a wide range of intensity and 
size. Among all NCEP synthetic storms (see Section 2.4), approximately 6% of storms produced a surge larger 
than the threshold of 0.67 m, which would result in sediment deposition at the LIBH site. Of all the storms that 
produced a surge larger than the threshold of 0.67 m, 3% are Category 5%, 8% are Category 4%, 13% are category 
3%, 16% are category 2%, 21% are category 1%, 36% are tropical storms. Within the intensity categories, storms 
producing the highest surge had a radius of maximum wind on average 33.0 km larger than storms that generated 
surge below the 0.67 m threshold. For example, in Category 5, two storms of high intensity that did not produce a 
high enough surge at LIBH have an average Rmax of 33 km which is almost half of the size other Category 5 storms 
(65 km on average) that generated high enough surge to theoretically cause deposition.

Even so, surge generation above the deposition threshold cannot only be isolated to storm intensity and radius 
of maximum wind. A storm's geographic relationship with the unique geometry and position of Long Island 
also influences deposition. Figure 5a shows the direction of travel and position of closest passage relative to 

Figure 4.  Storm properties of synthetic and historical storms when the storm passed closest to Long Island blue hole (LIBH). 
Storm's closest passage is the minimum distance between LIBH and the storm's path, regardless of which side of the site 
passage occurred. Historic storms are outlined in green and labeled with their names or ID if they are unnamed. Historic 
storms that have unknown values for radius of maximum wind (see Section 3.2.2) are marked by a diamond. Storms that 
generate surge above the deposition threshold of 0.67 m are colored according to their surge magnitude; storms under the 
deposition threshold are gray.
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Long Island and LIBH for historical storms. Storms that left deposits in 
the paleorecord are colored solid green and six intense (above category 2 
within 100 km of Long Island) storms that did not leave deposits are dotted 
in red. The majority of historical storms that did leave deposits passed to the 
east side of the central axis of Long Island (gray dashed line). West passing 
deposit leaving storms cross the axis orthogonally. These observations are 
also consistent across the synthetic storm set, as shown in Figure 5b; storms 
traveling parallel to the island axis must pass on the east side while west 
passing storms must cross the island axis at a steep angle in order to leave 
a deposit. Across the synthetic storms, we see that 76% of deposit leaving 
storms pass within 50 km of LIBH and 72% travel in a northwest direction. 
Conversely, high intensity historical storms moving parallel to Long Island 
on the west side of the axis (dotted red in Figure 5a) likely do not leave depos-
its at LIBH despite having high intensity and passing close to Long Island. 
This impact of side of passage is likely due to the complex L-shape geometry 
of central Long Island. This simple analysis highlights the importance of 
considering travel direction in addition to intensity, size, and proximity for 
sediment deposition at this site.

3.4.  Reconstruction and Estimating Unknown Storm Properties

Figure 6 shows the K-means clusters (Duda et al., 1973) identified from the 
storm properties for deposit-leaving TCs introduced in Figure 4. To avoid 
bias from initial seed randomization, the clustering sequence is conducted 50 
times, and the estimated Rmax range is formed from the results of all iterations 
(Figure 6 is an example of a common clustering result). The Rmax property is 
not considered when clustering as it is the property of interest.

When developing the final range of Rmax estimations in Figure 7 for historic 
TCs, the synthetic storm properties' Euclidean distance from the historical 
reference is used to weight Rmax distributions (i.e., the size of storms closer 
in passage and intensity to a historical TC will impact the estimation more).

This method of estimation is tested on modern historic TCs with known Rmax 
values. The observed Rmax values for Joaquin, Irene and Lili are all captured 
within the middle 90% in the range of the cluster estimate. The observed radii 
of maximum wind for hurricanes Joaquin, Irene, and Lili are captured in local 
peaks of Rmax distribution, within 10 km of the mean Rmax estimation, from 
K-means method (Figure 7a).

Additionally, estimated stormtides from the Rmax distributions are depicted in 
Figure 7 bottom panel. The stormtide values for Irene and Lili are captured 
within the middle 10% in the range of the Rmax cluster estimate. However, 
the stormtide value for Joaquin is captured within the middle 20% in the 
range of the Rmax cluster estimate, likely because Hurricane Joaquin was a 
relatively small hurricane and moved slowly over the Island. More synthetic 
storms are required to train the K-means algorithm to better capture such an 
unusual event.

In Figure 7b, the coarse anomalies and stormtide distribution are shown from 
1851 to 2016. It can be seen that for five out of seven events (hurricanes 

Joaquin [mean stormtide = 1.65 m, mean Rmax = 38 km], Lili [mean stormtide = 0.58 m, mean Rmax = 50.0 km], 
AL031932 [mean stormtide  =  0.85  m, mean Rmax  =  47  km], AL041928 [mean stormtide  =  1.1  m, mean 
Rmax = 38 km], AL031891 [mean stormtide = 0.84 m, mean Rmax = 48 km]), coarse anomaly and stormtide 
height distributions can be correlated. For two events (Irene [mean stormtide = 1.1 m, mean Rmax = 37 km] and 
AL011926 [mean stormtide = 1.35 m, mean Rmax = 38 km]), the coarse anomaly is much less than the simulated 

Figure 5.  (a) Travel direction of historical storms direction at the point of 
closest passage to Long Island blue hole. The head of the arrow shows the 
moving direction the storm advances in the next 2 hr. Arrows are colored 
green if they are present in the paleorecord and red if they did not leave a 
deposit. The gray dashed line shows the central axis through the Long Island. 
(b) Radial histogram of travel directions for synthetic storms. Colors indicate 
which side of the island axis (gray dotted line) the storms passed on, if they 
left a deposit. The counts for all of the storms (gray bars) are scaled by 1/8 for 
figure formatting.
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surge height. The most important factor causing the mismatch is the complexity of sediment transport modeling 
which is not considered here. Without the sediment transport modeling, we cannot establish a specific rela-
tionship between the coarse anomaly and surge height and we assume only that the surges above the identified 
threshold can induce deposits. Thus, the clustering analysis focuses on surge events above the threshold but do not 
account for the variation of the surge heights within these events. The other factors could include storm forward 
speed, which may influence the sediment transport process that is not considered in the K-means clustering anal-
ysis. In addition, there are uncertainties associated with hydrodynamic modeling including the half-kilometer 
resolution mesh on the coastline (more accurate bathymetric data is unavailable), neglecting wave effects, and 
using a symmetric parametric wind model. Furthermore, the limited sample of synthetic storm models introduces 
additional sources of uncertainty. Historical data from earlier storms also contributes to the overall uncertainty. 
In future work, we plan to employ a more advanced modeling approach by coupling a 3-D hydrodynamic model 
with sediment transport and wave models.

3.5.  Surge Risk Estimation

Here, we estimate surge risk in terms of the return period of the surge height for the Long Island. To calculate the 
yearly probability of surge height exceedance, the theoretical distribution assumes Poisson arrival of the storms 
and involves a generalized Pareto distribution to model the surges over a threshold and nonparametric density 
estimation to model the surges smaller than the threshold (Lin, Emanuel, et al., 2010; Lin et al., 2012). Figure 8 
shows the 50, 100, and 500 years spatial variation of the surge level around LIBH (calculated at each grid point) 
in the historical period and under the SSP2-4.5 storm climatology and SSP5-8.5 storm climatology conditions. 
These maps illustrate the regional distribution of storm surge risk, which varies dramatically over relatively small 
distances. For instance, the 500 years surge on the east side of Long Island increases from ≈1.50 m to ≈3.00 m 
for SSP2-4.5 and ≈ 4.75 m for SSP5-8.5. In contrast on the southwest side of Long Island the 500 years surge 
rises from ≈1.20 to ≈1.50 m for SSP2-4.5 and ≈ 1.80 m for SSP5-8.5, which is much less than the east side of the 
Island. The same trends in the surge risk maps can be observed by looking at the 100 and 50 years return periods. 
It demonstrates that the surge risks are controlled by bathymetry and coastline shape in addition to changes in 
TC climatology.

Figure 9 displays the estimated surge risk at LIBH in terms of the return period of the surge height. With only 
12 historical storms passing within a 100 km radius of LIBH in the time frame of 1988–2016 (when observed 

Figure 6.  Clusters of shared storm characteristics (intensity, position, direction) for tropical cyclones (TCs) (synthetic and 
historical) generated surge over the deposition threshold. Color denotes which cluster each storm belongs to and size is the 
Rmax if known. Storms without Rmax observations are denoted by diamonds. All historic TCs are distinguished by a green 
outline. Directional arrows from Figure 5 are included in gray.
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radius of maximum wind is available), it is not feasible to model the extreme surges using a generalized Pareto 
distribution. However, estimating the radius of maximum wind for hurricanes that left a deposit at LIBH between 
1850 and 1988 allows us to approximate the distribution of surge height for these events (see Section 3.4). Conse-
quently, we can use the mean of the stormtide height distributions for the four events that left deposits between 
1851 and 1988 and the approximated maximum stormtide heights for the other 58 events that did not left a 
deposit at LIBH (see Section 3.2) to estimate the return period curve. Green circles in Figure 9 display the surge 
return levels based on the historic storms between 1851 and 2016. The estimated 20, 50, 100, 500, 1,000, and 
5,000 years surge levels are about 0.67, 1.05, 1.30, 1.63, 1.72, and 1.84 m, respectively. The return period for the 
NCEP model (16 years/event) at the surge deposition threshold is close to the modern paleorecords (165 years/7 
events ≈ 24 years/event). This indicates the ability of climatological-hydrodynamic modeling to capture long 
term risk. At more extreme levels, however, the NCEP-simulated return period curve may underestimate the surge 
risk. Thus, we performed the bias correction (see Section 2.4) and include the bias corrected NCEP return period 
curve (red dash curve in Figure 9); the bias corrected estimation of the surge levels for the various return periods 
are similar to those based on the reconstructed historical records.).

Figure 7.  (a) The distribution of Rmax by K-means method for historic tropical cyclones that occurred after and before 1988. 
For post-1988 storms, green markers denote for the observed Rmax values. The blue marks show the median Rmax value and 
the blue areas indicate the distribution and range of Rmax from NCEP storms. (b) The distribution of simulated stormtide for 
various Rmax by K-means method. For post-1988 storms, yellow markers show the observed stormtide values. The red marks 
show the stormtide values for the median Rmax value and the red areas indicate the distribution of stormtide. The coarse 
anomaly values are shown with blue stars.
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Figure 9 also includes the return period curves (bias-corrected, solid blue and black curves) for future storm 
climatology under carbon emission scenarios (SSP2-4.5 and SSP5-8.5). Results indicate that the flood level for 
a given return period substantially increases by the end of the 21st century. For instance, the 100-year surge level 
for SSP2-4.5 and SSP5-8.5 is 2.01 and 2.30 m, which shows a tremendous increase in risk. The very likely esti-
mates (90% statistical confidence interval) of flood levels for a long return period cover a wide range, implying 
considerable statistical uncertainty in such extreme events. The uncertainties are smaller for flood levels with a 
higher probability of occurrence.

Figure 8.  Surge level distribution over Long Island blue hole for 50 (first row), 100 (second row), and 500 (third row) years return period for three scenarios 1—the 
historical period based on NCEP reanalysis data (referred to as NCEP) (first column). 2—SSP4.5 (second column). 3—SSP8.5 (third column). Colorbars are set to cut 
off at 5 m for clarity of figures.
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Furthermore, in Figure 9, the dashed blue line represents the surge return levels considering the SSP2-4.5 storm 
climatology plus the projected SLR and the dashed black line denotes the surge return levels considering the 
SSP5-8.5 storm climatology including the effects of the projected SLR. Under the effects of SLR, the 100-year 
and 500-year surge levels increase from 2.01 and 2.43 m to 2.42 and 2.68 m for the SSP2-4.5 emission scenario 
and from 2.29 and 2.71 m to 2.92 and 3.28 m for SSP5-8.5 emission scenario, which illustrates the tremendous 
increase ofcoastal flood risk at the end of 21st century for this region. In other words, the 100-year flood level 
would occur annually for SSP2-4.5 and SSP5-8.5. The 5,000-year flood level would become a 2-year event 
for SSP5-8.5 and a 6-year event for SSP2-4.5, which shows a tremendous shift in the flood risk of this area. 
The return period of a Hurricane Joaquin level event (stormtide of 1.39 m) is expected to decrease from 145 to 
23 years and 11 years under SSP2-4.5 and SSP5-8.5 storm climatology conditions, respectively. This will further 
reduce to 2 years and 1 year with SLR projections, illustrating how this island could become highly susceptible to 
large surges capable of completely inundating the area under future SLR and storm climatology change.

4.  Conclusions
This work develops a methodology to interpret and leverage paleohurricane records from a site on Long Island in 
The Bahamas to improve long term hazard and risk estimations. The historical TC (TC) data from 1988 to 2016 
at LIBH is insufficient for estimating the surge risk. To address this limitation, we leverage historical event attri-
bution in paleorecords, coupled with synthetic storm modeling, to approximate storm parameters that are often 
missing in observations, such as the radius of maximum wind for storms dating 1851–1988. Then, we recon-
structed surge records over 1851–2016 to verify and bias-correct the results of the climatological-hydrodynamic 
modeling. Finally, we assess and quantify the surge risk at the end of the 21st century by considering two carbon 
emission scenarios (SSP2-4.5 and SSP5-8.5), due to storm climatology and SLR.

The sediment cores from LIBH capture seven event beds during the observational record (1851–2016). A previ-
ous study (E. Wallace et al., 2019) used the SLOSH storm surge model, which does not consider the effect of tidal 
flows (just add the mean high tide to the initial mean sea level), to identify a few possible TCs that correspond 
to each paleorecord event bed. Here, using a state-of-the-art hydrodynamic model (ADCIRC), which uses higher 
resolution bathymetric data and considers tidal effects, we improve interpretation of the paleorecord by identify-
ing these seven event beds specifically.

We develop a representative database of synthetic TCs with 11 times more data than available in the historical 
record alone. With an extended TC set, we identify trends in TC characteristics that would cause high enough 

Figure 9.  Estimated surge level as functions of return period. Solid lines show the best fit with the surge over threshold 
methods. Dashed lines are bias-corrected projection under sea level rise. The red dot dashed line is NCEP fit with bias 
correction using historical data 1851–2015. The shaded area show the 90% statistical confidence interval for SSP5-8.5 
projection. The 90% statistical confidence interval for other curves are similar to this one, but it is not shown to avoid 
confusion in the figure. Green circles denote return period of surge for events between 1851 and 2015. Green bars represent 
the range of surge levels from Figure 7b.
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storm surge to cause deposition at LIBH. Although high intensity storms generate the most extreme surges, large 
surges can be produced from a wide range of storm intensity. Medium-intensity storms (categories 1–3) account 
for over half of storms that can leave deposits at LIBH, outnumbering deposits from intense storms (categories 
4–5, 9% of depositing storms). Low and medium-intensity storms tend to have larger inner wind fields, which can 
create higher and more extensive surges than the more compact wind fields of higher intensity storms. A storm's 
orientation and coastline geometry can significantly determine whether a storm leaves a deposit. We show that six 
historically intense storms that passed within a radius of 100 km to LIBH did not leave deposits at this site due to 
the direction of passage relative to LIBH. More work is required to understand how hydrodynamics and sediment 
transport interact to affect deposition.

By clustering synthetic and historical storms based on these shared characteristics, we estimate the probability 
distribution of Rmax for storms prior to 1988. Observed Rmax values for Hurricanes Joaquin, Irene and Lili are all 
captured within the middle 90% range of the cluster estimation. We use this distribution of Rmax values to generate 
informed probability distribution of stormtide for historical storms at LIBH.

With reconstructed historical stormtide records, we can evaluate and bias correct long term stormtide risk esti-
mated by climatology-hydrodynamic modeling. The 100-year and 500-year events are then calculated to be about 
1.24 and 1.46 m, respectively. The effects of SLR and TC climatology change have not been considered for most 
of the current flood risk mapping in this area. Considering both SLR and TC climatology change, a 100-year, 
500-year, and “worst case” event are estimated to be about 2.02, 2.44, and 2.66 m for the SSP2-4.5 scenario 
and 2.30, 2.72, and 2.65 m for the SSP5-8.5 scenario by the end of the 21st century. An extreme event such as 
Joaquin in 2015 is a 150 years event under the current climate. However, considering TC climatology under the 
two emission scenarios, it becomes a 11-year and 10-year event and evolves to a yearly event under SLR. More 
frequent and more intense extreme events can change the morphology and ecosystem of the area at the end of the 
21st century. We recommend that future flood mapping and flood mitigation planning in this area account for 
the  effects of SLR and TC climatology change.

This study is the first step to reconstruct and integrate the paleoTC information in surge risk assessment. 
Without the assistant of complex sediment transport modeling, we assumed that the surge height above certain 
threshold (identified based on recent observations) can lead to coarse anomaly at LIBH, leading to uncertainties 
in the paleorecord reconstruction (i.e., the estimated surge heights do not match with the coarse anomalies for 
two out of seven events). Future analysis may improve through coupling a sediment transport model with a 3-D 
hydrodynamic and wave model. Nevertheless, we demonstrate the important contribution of reconstructing 
storm characteristics and leveraging paleorecords to improve surge risk estimation under current and future 
climates. The findings have important implications for surge risk assessment, providing valuable insights to 
enhance adaptation and mitigation investments in the study area. Moreover, the methodology employed in 
this study and future improvement regarding sediment transport modeling can be generally applied to other 
locations, offering a framework for improved interpretation of paleorecords and more accurate estimation of 
long-term TC risk.

Appendix A:  Measurement Locations
Table A1

Station ID Name Station ID Name

8729210 Panama City Beach 8725110 Naples

8728690 Apalachicola 8724580 Key West

8727520 Cedar Key 8723970 Vaca Key

8726724 Clearwater Beach 8723214 Virginia Key, Biscayne Bay

8726520 St. Petersburg, Tampa Bay 8722956 South Port Everglades

8726607 Old Port Tampa 8722670 Lake Worth Pier, Atlantic Ocean

Table A1 
Locations and Identifiers NOAA Tides and Currents Stations
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Data Availability Statement
The paleorecord data presented by E. Wallace et  al.  (2021) are available on the websites of the National 
Climatic Data Center at https://www.ncdc.noaa.gov/paleo/study/32134 and the WHOI Coastal Systems Group at 
https://web.whoi.edu/coastal-group/data/. The best track information of historical TCs are presented by Knapp 
et al. (2010) and can be freely downloaded from https://ftp.nhc.noaa.gov/. The downscaled TC track informa-
tion can be freely accessed online within the NSF DesignSafe-CI. This data set is created based on K. Emanuel 
et al. (2006).
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Station ID Name Station ID Name
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