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Abstract Sediment cores from blue holes have emerged as a promising tool for extending the record

of long-term tropical cyclone (TC) activity. However, interpreting this archive is challenging because

storm surge depends on many parameters including TC intensity, track, and size. In this study, we use
climatological-hydrodynamic modeling to interpret paleohurricane sediment records between 1851 and 2016
and assess the storm surge risk for Long Island in The Bahamas. As the historical TC data from 1988 to 2016
is too limited to estimate the surge risk for this area, we use historical event attribution in paleorecords paired
with synthetic storm modeling to estimate TC parameters that are often lacking in earlier historical records
(i.e., the radius of maximum wind for storms before 1988). We then reconstruct storm surges at the sediment
site for a longer time period of 1851-2016 (the extent of hurricane Best Track records). The reconstructed
surges are used to verify and bias-correct the climatological-hydrodynamic modeling results. The analysis
reveals a significant risk for Long Island in The Bahamas, with an estimated 500-year stormtide of around
1.63 + 0.26 m, slightly exceeding the largest recorded level at site between 1988 and 2015. Finally, we apply
the bias-corrected climatological-hydrodynamic modeling to quantify the surge risk under two carbon emission
scenarios. Due to sea level rise and TC climatology change, the 500-year stormtide would become 2.69 + 0.50
and 3.29 + 0.82 m for SSP2-4.5 and SSP5-8.5, respectively by the end of the 21st century.

Plain Language Summary Paleohurricane sediment records can capture tropical cyclone (TC)
landfall and associated storm surge severity over several millennia, providing an extended record to quantify
long-term storm surge risk. Interpretation of these records is difficult because storm surge depends on many
parameters such as TC intensity, track, and size. In this study, we use hydrodynamic modeling to identify
which historical TCs between 1851 and 2016 transported sediment into underwater sinkholes near Long
Island in The Bahamas. Supplementing the historical record with synthetic TCs created by a computer model,
we leverage our interpretation of the paleorecord to approximate the size and surge level for storms prior

to 1988 for which observations are unavailable. Next, we integrate the reconstructed storm surge levels and
climatological-hydrodynamic modeling to estimate long-term storm surge hazards for the area. Finally, we
apply the integrated model to assess storm surge risk for Long Island under future climates (SSP2-4.5 and
SSP5-8.5) and sea level rise and find a significant increase in TC hazard risk for this location by the end of the
century.

1. Introduction

Storm surge from tropical cyclones (TCs), also called hurricanes, is one of the most devastating coastal hazards,
causing millions of dollars in damage and the majority of TC related deaths (Davlasheridze et al., 2019). The
compounding effects of growing coastal populations, changing TC climatology from warmer oceans, and
sea-level-rise (SLR) contribute to the increased vulnerability of coastal communities to more intense storm surge
events (K. A. Emanuel, 2013; Knutson et al., 2020; Lin et al., 2012; Woodruff et al., 2013). Developing effective
solutions to mitigate TC surge disasters requires understanding the risk of TC surge inundation. Historical TC
and storm surge records are often too limited, however, to quantify current and future TC risk to local popu-
lations. Prior to the development of reliable satellite tracking in the 1960s, we rely on early aircraft and ship
log observations over the ocean for historical TCs that only date back to the year 1851. In addition, these early
observations do not have information on critical storm characteristics, especially storm size, characterized by
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radius of maximum wind (R, )
historical TCs, these reconstructions only date back to 1950 (Gori et al., 2023). The short observational records

(Knapp et al., 2010). Although recent work has reconstructed storm size for many

of hurricane activity make it difficult to evaluate TC behavior over long time scales and to make accurate future
projections.

A well practiced approach to modeling TC surge risk is through climatological-hydrodynamic modeling. Most
TC risk models augment the historical TC records by generating synthetic TCs based on historical observed
climatology (Scheffner et al., 1996; Toro et al., 2010; Vickery et al., 2000). However, those methods may produce
storms that are not physically realistic and because they rely on historical data, they cannot capture changes in TC
climatology induced by climate change. Another approach is to utilize a statistical-deterministic TC risk model
that is environment-dependent (K. Emanuel et al., 2006). In this method, vortices are randomly seeded over the
ocean and moved according to the statistics of the environmental wind. The characteristics of synthetic storms
are modeled deterministically given the atmosphere and oceanic conditions along the storm track. This approach
generates a very large number of synthetic storms throughout an ocean basin to obtain a representative sample
of time-varying realistic storms affecting the location of interest. This TC risk model has been combined with
hydrodynamic models to evaluate local surge risk (Gori et al., 2022; Lin et al., 2012; Marsooli et al., 2019).

The field of paleotempestology has emerged as a new tool for reconstructing long-term TC activity (Brandon
et al., 2013; Donnelly & Woodruff, 2007; Liu & Fearn, 1993, 2000; Tan et al., 2023; Tao et al., 2021; van
Hengstum et al., 2014; Yang et al., 2020, 2022). Paleotempestological records identify and date signatures of
storm landfalls in natural archives (e.g., coarse grains in sediment cores (Donnelly & Woodruff, 2007; Liu &
Fearn, 1993), increased latewood width in tree cores (Maxwell et al., 2021)). These archives then provide a
record of TC occurrence in a given area that extends back hundreds to thousands of years. Most paleohurri-
cane proxies are sourced from sediment based archives that capture coarse grained sediments that are mobi-
lized and then deposited in coastal basins by high energy waves associated with TCs. McKee and Blumenstock
were among the pioneers who recognized the potential of using overwash deposits to reconstruct TC events
(Blumenstock, 1958; McKee, 1959). Over time, researchers have built an extensive network of paleohurricane
archives across various environments (E. J. Wallace, Dee, & Emanuel, 2021), including lakes (Liu & Fearn, 2000),
coastal wetlands (Boldt et al., 2010; Donnelly et al., 2001; McCloskey & Keller, 2009), and back-barrier lagoons
(Davis et al., 1989; Donnelly & Woodruff, 2007). Recent work has expanded paleohurricane research into the
hurricane-prone tropical Atlantic using sediment records collected from coastal karst basins, including fully
submerged blue holes (Schmitt et al., 2020; E. Wallace et al., 2019; Winkler et al., 2020) and sub-aerial sinkholes
(Brandon et al., 2013; Brown et al., 2014; Lane et al., 2011). CKBs are basin-like features found in tropical loca-
tions worldwide that originate from dissolution processes on carbonate platforms (Maloney & Hartmann, 2000;
van Hengstum et al., 2014). These basins are well suited for producing paleoI'C archives because (a) they have
large accommodation spaces that allow sediment accumulation (Dill, 1970), (b) they have anoxic conditions at
the bottom which limit bioturbation (Gischler et al., 2008), and (c) they are often surrounded by reefs and tidal
flats which provide abundant sediment supply (Gischler et al., 2008; Shinn et al., 1996). In particular, paleohur-
ricane records from blue holes (Schmitt et al., 2020; E. Wallace et al., 2021; Winkler et al., 2020) are typically
very high resolution (annual to near annual) which allows these archives to resolve many different storms from
the observational records unlike other low resolution archives (McCloskey & Keller, 2009).

It is challenging to interpret these long-term paleohurricane records due to age uncertainties in the sediment
cores, and limited information about past climate conditions and morphology of the coastline. Despite uncer-
tainties, paleohurricane records still provide useful information for long term TC risk assessment. For instance,
Lin et al. (2014) used both climatological-hydrodynamic modeling and paleorecords to address TC surge risk for
northwest Florida. They found that both the synthetic database and paleorecords contain a much higher frequency
of extreme events than the historical record at Apalachee Bay, FL. In this study, we extend this framework to
further integrate paleorecords and climatological-hydrodynamic modeling to estimate storm surge risk for Long
Island blue hole (LIBH) in The Bahamas.

In the spring of 2016, E. Wallace et al. (2021) collected sediment cores from a blue hole on Long Island in The
Bahamas. The authors identified coarse grained event beds preserved in their cores resulting from TC strikes on
the island and evaluated the frequency of TC activity over the past 1,050 years. Although paleorecords allow us
to reconstruct the overall frequency of TCs over hundreds or thousands of years, determining the essential storm
characteristics of past events from sedimentary deposits can be more challenging as storm surge depends on
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various parameters, including the track and intensity of the TCs, the site configuration, etc. In addition, age uncer-
tainties in the sediment cores and a lack of observations during storm events make it difficult to exactly pinpoint
which storm events contributed to the coarse layers. Here, to strengthen paleohurricane interpretations, we use
hydrodynamic and synthetic TC modeling to identify storms that could produce coarse anomalies in the Long
Island paleohurricane record and reconstruct unknown characteristics of historical storms based on the sediment
data. Then, we employ the approach of combining climatological-hydrodynamic modeling with reconstructed
records to estimate surge risk on Long Island. Finally, we apply the combined modeling to quantify the effects of
sea level rise (SLR) and TC climatology change (under two carbon emission scenarios SSP2-4.5 and SSP5-8.5)
on late 21st century surge hazards on Long Island in The Bahamas.

2. Method
2.1. Study Site

Long Island is located on the eastern margin of the Great Bahama Bank and is split by the Tropic of Cancer. The
blue hole (LIBH), 150 m in diameter and 12 m deep, is located 400 m off the northwest shore of Long Island (N
23.265°, W 75.117°) (E. Wallace et al., 2021) (see Figure 1a). Under ambient conditions, fine-grained sediment
produced on the surrounding carbonate platform accumulates in the blue hole at a rate of about 1 cm/yr. During
storm events, on the other hand, coarse grained sediment is transported and deposited into the basin. The near
annual resolution of the sediment record from LIBH allows for distinguishing sediment layers created by storm
events that occur within 1-2 years of each other (see Figure 1b).

Since 1851, 34 TCs have passed within 100 km of LIBH. Four major hurricanes (above category 2) passed by Long
Island since 2010: Matthew 2016, Joaquin 2015, Sandy 2012, and Irene 2011. The close passage of these intense
hurricanes caused major damage to the island. For example, in 2015, the center of circulation of Hurricane Joaquin
passed 40 km east of LIBH at Category 4 strength. Power lines were downed, private fresh water wells were
flooded, and structural damage occurred to homes; approximately 49% of the 413 Bahamian residences destroyed
were located in Long Island (Virgil, N.D.). Over two-thirds of the island remained inundated with 1.2-1.8 m of
water for almost a week after impact, blocking coastal roads and damaging the marina (Robbie, 2016). The impact
of a single storm like Joaquin could be amplified by changing TC climatology and SLR. Long Island itself does
not have any active tidal gauges. In fact, the only tidal gauge in the entire Bahamas Archipelago is located on the
most northwestern point of the Grand Bahamas island. The lack of current data collection for the Bahamas area
emphasizes the importance of using paleorecords along with TC risk modeling for this region.

Coarse-grained deposits in the Long Island paleohurricane archive show that the island has experienced frequent
storm strikes over the last 1,000 years (E. Wallace et al., 2021) (see Figure 1b). Event beds in the LIBH paleo-
hurricane record were identified by applying a cutoff threshold to the coarse anomaly data (Donnelly et al., 2015;
E. Wallace et al., 2019). All peaks in coarse anomaly above 5.9% are considered storm event beds. The ages of
these event beds are estimated using a Bayesian age model (Blaauw & Christen, 2011) combining lead-210 dates,
pollen evidence of land use activities and radiocarbon dates from terrestrial macrofossils (E. Wallace et al., 2021).

Here, we consider the modern period between 1851 and 2016, when the Best Track information (Knapp
et al., 2010) of TCs is available. Figure 1b demonstrates that E. Wallace et al. (2021) identified seven event beds
in the LIBH record whose estimated dates fall between 1851 and 2016. Previously, the authors used the Sea, Lake
and Overland Surges from Hurricanes (SLOSH) (Jelesnianski, 1992) storm surge model to identify the storm
events that left deposits at LIBH. However, the SLOSH model does not consider the tidal flow, only adjusting the
maximum high tide to the initial mean sea level, and also uses a relatively coarse grid (5 X 5 km?), which reduces
the accuracy of the model. According to the results from the SLOSH model, the authors could identify a few
potential hurricanes for each event bed. Here, we utilize the ADvanced CIRCulation (ADCIRC) model (Luettich
et al., 1992) to more confidently match each event beds to a specific historical TC, taking into account tidal effects
and operating the simulation on a high-resolution mesh to achieve higher accuracy surge results for Long Island.

The Long Island site is chosen in this study as it captured a large number of modern event beds and most of
those event beds were well dated with pollen, post-bomb radiocarbon, and lead-210 chronological tie-points
(E. Wallace et al., 2021). We are only able to validate our ADCIRC experiments using TCs in the time frame of
1988-2016, so Long Island was the most suitable choice for our analysis given its high frequency of well dated
modern event beds compared to other records (in neighbor islands including South Andros, Middle Caicos,
Abaco, Grand Bahama, and Cay Sal). In addition, LIBH (E. Wallace et al., 2021) is well suited for hydrodynamic
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Figure 1. (a) Map of Long Island, The Bahamas. The larger area shows the unstructured triangular mesh for ADvanced
CIRCulation. (b) Coarse anomaly plot (solid line) for Long Island blue hole as a function of time (E. Wallace et al., 2021).
The dashed black line is the event bed threshold of 5.90%. The dashed red line denotes the year of 1850.

experiments because the geomorphology of the surrounding carbonate platform is relatively simple compared to
the other blue hole sites (E. Wallace et al., 2019; E. J. Wallace, Donnelly, et al., 2021; Winkler et al., 2020). Many
other blue hole records from the neighbor islands are nestled in complex tidal flats (Andros Island (E. Wallace
et al., 2019), Abaco Island (E. Wallace et al., 2021)) or surrounded by sub-aerial shoals (Caicos Island (E. J.
Wallace, Donnelly, et al., 2021)) that are difficult to model without detailed topographic or bathymetric data. In
this paper, we aim to explore the application of hydrodynamic modeling for paloehurricane reconstruction; the
application to the simple blue hole environments may be scaled up to more complex sites in future work.

2.2. Hydrodynamic Modeling

Among numerical storm surge models (Begmohammadi et al., 2022; Jelesnianski, 1992; Kennedy et al., 2019;
Luettich et al., 1992; Roelvink & Van Banning, 1995), ADCIRC is a widely used storm surge model that uses a
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finite element method over unstructured triangular meshes (Luettich et al., 1992). A single mesh can have varying
resolution throughout its representation of a physical area: up to several kilometers in the open ocean, down to
meters in small-scale inland areas. ADCIRC describes the physical processes associated with the storm surge,
and can incorporate the effects of astronomical tide. It also can consider the effects of wind waves when coupled
with the wave model SWAN (Dietrich et al., 2011). The model has been validated for storm surge along the U.S.
Gulf and Atlantic coasts (Deb & Ferreira, 2018; Dietrich et al., 2011; Hope et al., 2013; Lin, Smith, et al., 2010;
Marsooli & Lin, 2018). However, ADCIRC simulations can be computationally expensive, and it is not feasi-
ble to apply ADCIRC for very large numbers of simulations on high-resolution (down to 100 m element size)
meshes. As a result, relatively coarse meshes (O ~ 1 km at the coastlines (Marsooli & Lin, 2018)) are often used
to describe coastal features.

To model storms that pass Long Island, we built two ADCIRC meshes (fine and coarse resolution) with Ocean-
Mesh2D (Roberts et al., 2019) to cover the Gulf of Mexico and the Atlantic Ocean. The higher resolution mesh
includes 376,814 elements and 221,706 nodes. The minimum resolution of elements is around 0.5 km near the
coastlines. The coarser mesh consists of 95,920 elements and 54,916 nodes with a minimum resolution of 2 km
along the coastlines. The bathymetric data were obtained from global bathymetry and topography at one arc sec
(SRTM15+) (Tozer et al., 2019), which is approximately 0.5 km resolution. All of the historical events are run
on the high resolution mesh, while the synthetic storms are run on the coarse resolution mesh. Note that these
meshes are superior to the SLOSH model used by the previous study for this area (E. Wallace et al., 2021) in
terms of accuracy.

To account for tide, eight tidal constituents enforce ocean boundaries of the mesh to consider the tidal effects in the
model. Tidal data are obtained from the global model of ocean tides, TPXO8-ATLAS (Egbert & Erofeeva, 2002).
The timing of the tide is matched with the timing of the observations (Hope et al., 2013; Pringle et al., 2021).

2.3. Event Attribution and Reconstruction

We can develop a first order understanding of how Long Island sediment proxies respond to various storm events
by pinpointing the modern storms (from 1850 CE to the present) that have deposited coarse materials in the Blue
Hole. To do so, we assume that higher surges during hurricane events mobilize and resuspend coarse grained
benthic sediment on the shallow carbonate platform surrounding the blue hole. Some of that sediment moves
into the blue hole which acts as a natural settling tube (Winkler et al., 2020). The process of sediment transport
during storm surges is highly complex, influenced by factors such as sediment grain sizes and local bathymetry.
Modeling this phenomenon is exceptionally challenging, requiring high-resolution bathymetric data, detailed
maps of surface sediments, 3-D hydrodynamic models, and the coupling of sediment transport models with
hydrodynamic models, among other factors. These modeling efforts are computationally expensive. Additionally,
we are constrained by the lack of high-resolution bathymetric data in this area and limited information about bed
grain sediment sizes and densities. We also lack information about how the bathymetry of this area has changed
over time. Due to these constraints, we are unable to establish a relationship between coarse anomalies and surge
height. However, if we can identify the lowest surge within the time frame 19882016 (when all storm track infor-
mation is available) that caused sediment deposition, and we proceed by assuming that surges above this specific
threshold can also result in deposition at LIBH.

Specifically, to interpret the record of modern storms, we match historical TCs that pass LIBH to the event beds
in the record. We use the North Atlantic Best Track data set (referred to as best Track) (Knapp et al., 2010) for
historical records of TC properties. We consider two time windows for our analysis based on availability of TC
records in the Best Track database. The first window spans from 1988 to 2016 within which TC information for
the track, minimum pressure of the hurricane center, radius of maximum wind, and maximum wind speed are all
available. This information enables us to develop a surge threshold for potential TCs to leave a deposit at LIBH,
in order to attribute the seven event beds to specific historical TC.

For the second time window between 1851 and 1987, radius of maximum wind and minimum pressure of the
hurricane center observations are unavailable (minimum pressure is available from 1950). To obtain a first
estimation of the surge level, we use a method based on empirical relationships of hurricane characteristics to
estimate the radius of maximum wind and minimum central pressure of hurricanes. To approximate the central
pressure of hurricanes, we apply a simple wind-pressure relationship based on the cyclostrophic balance equation

BEGMOHAMMADI ET AL.

5of 19

9SULOITT SUOWIWO)) dANEAL)) d[qedl|dde oYy £q pauIoA0S aie 991 YO (ash JO Sa[nI 10J AIeIqIT SuI[uQ AJ[IA\ UO (SUOIIPUOI-PUE-SULI)/W0D KI[1M AIeIqI[aul[uo//:sd)iy) SUonIpuoy) pue Sud [, 2y} 39S "[$707/20/#0] uo Areiqr aurjuQ L[IM ‘tSE0T0DIET0T/6T01 01/10p/wod Kapim Krelqiaurjuo sqndnSe//:sdiy woiy papeojumod ‘1 ‘470T ‘16266917



A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Oceans 10.1029/2023JC020354

presented by Knaff and Zehr (Knaff & Zehr, 2007). Then, to estimate the radius of maximum wind, we adopt an
empirical formula proposed by the U.S. Federal Emergency Management Agency ((FEMA), 2012), which is a
function of the minimum central pressure of hurricanes and latitude. We account for uncertainty in the estimates
for radius of maximum wind and minimum central pressure by varying the minimum central pressure value by
+15 mb and then updating the estimation of radius of maximum wind. This pressure range is derived from the
95% quantile of the differences between actual central pressure and calculated central pressure from the empirical
formula for TCs between 1988 and 2016.

Having attributed the event beds from 1851 to 2016, we can develop more accurate estimations for radius of maxi-
mum wind and surge levels for deposit-leaving TCs. Given the presence of a historical TC in the paleorecord,
we can use the shared properties of the synthetic (see next Section 2.4) and historic TCs to estimate unknown
storm characteristics, in particular storm size (R, ). For example, historic TCs that passed LIBH prior to 1988
do not have observed R, values. We can group these pre-1988 historical storms with synthetic and post 1988
historical TCs based on observed properties that are available including intensity and storm track (position and
direction) to estimate R, values for pre-1988 historical storms. We use the K-means clusters (Duda et al., 1973)
to identify R,
vised, non-deterministic, iterative method that is both computationally efficient and easy to implement in many
practical applications (Babatunde et al., 2019; Carvalho et al., 2016). Finally, we use the information obtained
from this process to estimate the surge level associated with each historical event.

from the storm properties for deposit-leaving TCs. K-means clustering is a numerical, unsuper-

max

2.4. Synthetic Storms

We used a statistical-deterministic TC model (K. Emanuel et al., 2006) to generate a large number of synthetic
TCs. The synthetic storms are generated using gridded atmosphere and ocean data products, including General
Circulation Models (GCMs) or reanalysis data. Storms are produced in a three step process. First, warm core
vortices are placed randomly in space and time. Vortices that meet favorable environmental conditions develop
into TCs. Next, each genesis point is given a track according to the daily large-scale environmental winds in the
model plus a beta-drift correction (Holland, 1982). Finally, at each time step, TC intensity is predicted based on
the Coupled Hurricane Intensity Prediction System, which is an axisymmetric vortex model coupled to a 1D
ocean model (K. Emanuel et al., 2004). To represent historical TC climatology from 1988 to 2016, synthetic
tracks were generated based on the National Center for Environmental Prediction (NCEP) reanalysis product
(Kalnay et al., 1996). To represent TC climatology under future possible climate (2070-2100) conditions, two
emission scenarios from the Shared Socioeconomic Pathways were considered—a moderate (SSP2 4.5) and high
(SSP5 8.5) scenario. For each future scenario, the synthetic tracks were generated based on each of six CMIP6
climate models: Canadian Earth System Model, Centre National de Recherches Météorologiques (CNRM),
EC-Earth Consortium Model (ECEARTH), The Institute Pierre Simon Laplace Climate Model (IPSL), Model
for Interdisciplinary Research on Climate, and United Kingdom Meteorological Office.

All synthetic storms are run on ADCIRC coarse resolution mesh for 7 days. The model accounts for tides through
the use of open ocean boundary conditions as well as wind and pressure fields, which are developed based on
physics-based parametric models. The parametric models take into account the TCs' maximum wind speed V.

and radius of maximum wind R _,, (K. Emanuel & Rotunno, 2011; Holland, 1980) to produce the spatial and

temporal wind and pressure fields. To account for the asymmetry of the wind field, an empirically estimated
surface background wind vector by Lin and Chavas (2012) is used.

The generated future TCs from each climate model are likely biased in their intensity and annual frequency
compared to the NCEP TCs. Consequently, the biases in TCs can lead to biases in hazard estimation, as intensity
and frequency are dominant drivers impacting coastal storm surge risk. Here, we perform bias correction for TC
intensity and annual frequency at the storm level.

First, the quantile delta mapping approach (Cannon et al., 2015) is used in order to correct the GCM projected
TC intensity (Vy,,,) of each TC set. The change between the GCM-projected future (2070-2100) and histori-
cal (1988-2015) downscaled V,,,. quantiles is added to the NCEP downscaled historical quantiles to create a
corrected future V,, -

to the GCM projected V. probability density, the GCM projected storms are weighted and re-sampled (Tokdar

distribution for each GCM model. Using the ratio of the corrected V,,, probability density

& Kass, 2010). By doing so, we are able to match the corrected future V,,, distribution and consequently generate
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a new TC set. Second, the bias correction of TC frequency is performed by calculating the ratio of the GCM
future frequency to the GCM historical frequency and multiplying the ratio by the NCEP historical frequency
GCM-predicted frequency change to the NCEP-derived frequency (for more details on bias correction see Gori
et al. (2022)).

We select TCs within a radius of 100 km of LIBH because previous work (E. Wallace et al., 2021) suggests that
the LIBH sediment record is only sensitive to storms passing within this radius (see Section 3). Overall, there
are 1244 TCs in the historical time period (NCEP), 3,745 TCs for SSP2-4.5, and 3,848 TCs for SSP5-8.5. We
perform ADCIRC simulation for all selected storms in the historical period. To reduce the computational cost,
we sampled 1,200 TCs for each climate scenario so that the sample storms have the same intensity distribution
as the original data set. The synthetic storms correspond to 1,220 simulation years in the historical climate and
the sampled future storms correspond to 692 (408) simulation years under the SSP2-4.5 (SSP5-8.5) scenario.

After reconstructing the historical hurricanes between 1851 and 2016, we apply bias correction to the estimated
surge return levels using the reconstructions from 1851 to 2016 to account for possible biases in the TC and
hydrodynamic models. We bias correct the frequency by computing the ratio of the NCEP frequency to the
observed historical frequency and multiplying it by the GCM future frequency. For the historical period, the
NCEP frequency is simply adjusted to equal the historical observed frequency. We then bias correct the probabil-
ity distribution of peak storm surge through quantile-quantile mapping: the difference between the NCEP storm
tide and observed storm tide is calculated at each quantile level and these differences are added to the GCM future
storm tide projections at their corresponding quantiles.

2.5. Sea Level Rise (SLR) Projection

We incorporate probabilistic, localized SLR projections from Garner et al. (2022) for the end of 21st century
(2100) considering the SSP2-4.5 and SSP5-8.5 emissions scenarios. In this study, SLR probability distributions
are generated for tide gauge locations across the globe by considering ice sheet components (Greenland, West
Antarctic, and East Antarctic), glacier and ice cap surface mass balance, thermal expansion and oceanographic
processes, water storage on land and other non-climatic factors. Sea-level changes due to thermal expansion and
oceanographic processes are based on ensemble mean projections from a suite of CMIP6 GCMs. We select the
nearest tide gauge to LIBH and adopt the probability distribution specified by Garner et al. (2022). The return
period curves incorporate SLR by convolving the TC-induced stormtide CDF with the SLR probability density
function (Lin et al., 2016; Marsooli et al., 2019).

3. Results and Discussions
3.1. Hydrodynamic Modeling

Validating both meshes for Long Island is challenging because water surface elevation observations are unavail-
able for Long Island and most of The Bahamas. Thus, to validate these meshes, we chose the closest U.S. coastal
locations with water surface elevation observational data. Eighteen NOAA tides and current stations around Flor-
ida are picked to compare the simulations' results with the historical observation data (tidal gauge locations are
shown in Appendix A). There are 23 existing NOAA tides and currents stations, but five of those stations around
Florida, are too far inland, and thus are not considered for the validation.

Based on availability of the observational data and Best Track information, five major hurricanes (1—Rita 2005,
2—Irene 2011, 3—Sandy 2012, 4—Joaquin 2015, and 5—Matthew 2016) are chosen here to validate the meshes.
To enforce the historical hurricanes, we use the Generalized Asymmetric Holland Model (GAHM) (Gao, 2018),
which is a parametric wind and pressure model. It computes wind velocities and surface atmospheric pressures.
The simulation is run for a total of 7 days on both meshes, with water surface elevations recorded from locations
in the mesh corresponding to the locations of NOAA tides and currents' gauges (U.S. Geological Survey, Flood
Event Viewer, N.D.). The maximum high water during these 7 days is extracted from simulations and observa-
tions. Figure 2 shows the observed peak water levels from the NOAA sensors versus the simulated peak water
levels from ADCIRC on the high resolution mesh. We consider two quantities to measure the model performance:
(a) root-mean-square error (RMSE), which is a measure of the magnitude of error and (b) coefficient of deter-
mination (R?) relative to the 1:1 line, which describes how well a regression line fits a data -set. The calculated
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RMSE value and R? value relative to the 1:1 line for all the hurricanes are

@ Rita 2005

@ Irene 2011

® Sandy 2012
Joaquin 2015

® Matthew 2016

0.07 and 0.94, respectively. It shows that overall the model can capture the

surge's peak with a reasonable agreement with the observational data.

Q The simulations have also performed on the coarse mesh. The maximum and
the minimum errors are +6% compared to the higher resolution. In addition,

=
«
T

Model Peak Value (m)
[~

o
n

0 i

' the ADCIRC model is coupled with SWAN to consider wave effects. The
coupled model is run on the high resolution mesh for these five cases. The
high water mark at LIBH is compared for ADCIRC and ADCIRC + SWAN
models. The results from ADCIRC + SWAN are +2% different from the
ADCIRC results. However, the computational cost increases by more than two
times. Therefore, run only ADCIRC. In addition, we compared our ADCIRC
results with the results of Sahoo et al. (2019), who used ADCIRC + SWAN
to simulate Hurricane Joaquin in 2015. The results for Long Island are in
good agreement.

RMSE = 0.07
R%=0.94 1

3.2. Event Attribution

A A

0 0.5

1

1.5 2 3.2.1. Event Attribution From 1988 to 2016

Measured Peak Value (m)

Figure 2. Comparison of observed and predicted peak water levels for the
high resolution mesh. The blue solid line is 1:1 line.

We aim to pinpoint recent TCs that left coarse grained deposits in the Long
Island paleohurricane record. As shown in Figure 1, three event beds in the
LIBH archive dated between 1988 and 2016. Overall, 13 hurricanes passed
within a radius of 100 km of LIBH between 1988 and 2016. We used the
ADCIRC model with a half-kilometer mesh resolution along the coast
(high-resolution mesh) to simulate all of the 13 events. We applied ADCIRC with the GAHM (Gao, 2018) for
hurricanes after 2000 due to the availability of Best Track isotach data and use the symmetric Holland vortex
model (Holland, 1980) for earlier storms. Note that the surge results for the GAHM model and the Holland
vortex model are very close at LIBH (the difference in the peak is less than 3% at LIBH for five major hurricanes
mentioned in Section 3.1). The peak of the water surface elevation at LIBH is recorded during all events and
illustrated in Figure 3.

We assign the three highest LIBH surges to the three modern event beds during 1988-2016 in the paleorecord.
These three events are Joaquin 2015, Irene 2011, and Lili 1996, respectively, and are consistent with the esti-
mated ages of the samples. Among these three events, Lili 1996 generated the lowest surge, measuring 0.67 m.
The fourth largest surge of 0.59 m is associated with Hurricane Frances (2004) and is also within the age estima-
tion for the third sample. Because Frances generated a significantly smaller surge, however, we can confidently
conclude that the third event bed is associated with Lili. Therefore we identify Lili's stormtide height of estimated
0.67 m to be the minimum water level a storm must generate at LIBH to leave a deposit. We refer to this water
level as the deposition threshold. Note that this is a conservative choice of surge threshold. We cannot confirm
whether the events that generate surges ranging between 0.59 and 0.67 m are indeed capable of producing depo-
sition at LIBH.

3.2.2. Event Attribution From 1851 to 1987

Between 1851 and 1987 there are an additional four events that left coarse grained anomalies at LIBH. We
assume the surge threshold of 0.67 m to identify these events (events 4, 5, 6, and 7 in Figure 1). Between 1851 and
1987, 53 hurricanes passed within a radius of 100 km of LIBH and therefore could have left a deposit at LIBH.

To obtain a first estimation of the storm surge from each of the 53 storms, we follow the method presented in
Section 2.3. First, the central pressure and radius of maximum wind for each event are calculated. Then, we ran
ADCIRC simulations for +15 mb of the computed central pressure to account for uncertainty in estimated central
pressure.

Figure 3 top panel (thick blue lines) demonstrates the range of maximum surge results obtained by varying the
central pressure and radius of maximum wind. The full surge range (thick blue lines) is only shown for nine
potential TCs which generated a surge above the deposition threshold established in Section 3.2.1. If the maxi-
mum surge of a storm's surge range is below this threshold, then it is represented by only its maximum surge
(hollow circle).

BEGMOHAMMADI ET AL.

8 of 19

9SULOITT SUOWIWO)) dANEAL)) d[qedl|dde oYy £q pauIoA0S aie 991 YO (ash JO Sa[nI 10J AIeIqIT SuI[uQ AJ[IA\ UO (SUOIIPUOI-PUE-SULI)/W0D KI[1M AIeIqI[aul[uo//:sd)iy) SUonIpuoy) pue Sud [, 2y} 39S "[$707/20/#0] uo Areiqr aurjuQ L[IM ‘tSE0T0DIET0T/6T01 01/10p/wod Kapim Krelqiaurjuo sqndnSe//:sdiy woiy papeojumod ‘1 ‘470T ‘16266917



A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Oceans 10.1029/2023JC020354

1.6 -

AL041928 Joaquin 2015
1.4f AL011926 iI @

Irene 2011
1k

it |AL031932
Surge Threshold |

0:8 v . Lili 1996

Storm tide (m)

N N w
o (4] o
T T T
L L L

Coarse Anomaly
(=1
(%)
T
‘l>
L

6 > |

=
o
T

:- AA b WY A pan A/I\»KMJ -

1860 1880 1900 1920 1940 1960 1980 2000 2020

Figure 3. Top panel shows the maximum stormtide height for events from 1851 to 2016. Red dots are the stormtide height
for events after 1988 that left a deposit at Long Island blue hole (LIBH). Black filled circles are the maximum stormtide for
events after 1988. Empty black circles show the maximum stormtide height for events when varying the minimum central
pressure. Blue lines shows the range of estimated peak stormtide when varying minimum central pressure of the storm. The
yellow dots show the peak stormtide height when the pressure gradient is calculated from the empirical function (Knaff &
Zehr, 2007). The dashed red line is the surge threshold of 0.67 m. The bottom panel represents the coarse anomaly data for
the modern interval (1851-2016) from LIBH. The dashed magenta line is the event bed threshold of 5.90%. Starred peaks
indicate identified event layers. Light blue lines represent the age uncertainty for each events.

To narrow down the nine storms to the four that most likely left deposits, we group them based on the age uncer-
tainty of the event beds. For the oldest event (Figure 1, event 7), there are four candidate hurricanes that lead to
this coarse anomaly (Figure 3). As it can be seen in Figure 3 top panel (four thick blue lines from left to right), the
stormtide's height for one of these four events (AL031891) is always above the surge threshold when the mini-
mum central pressure of hurricane is changing (+15). In addition, the stormtide's height for the median central
pressure for only one event (AL031891) is above the surge threshold. As a result, we can certainly claim the first
event is hurricane (AL031891), which is a Category 2 hurricane near LIBH.

For the other three events (Figure 1, events 4, 5, and 6), there are six candidates based on the age uncertainty of
each event and hydrodynamic modeling results (see Figure 3 top panel, six thick blue lines from right to left). The
stormtide's height for three events is always above the surge threshold when the minimum central pressure of the
hurricanes varies (+15). By close inspection of the stormtide's height for the median central pressure of hurricane,
we see that four events can produce stormtides' above the surge threshold. One of these events produced a storm-
tide height slightly less than the surge threshold (0.04 m less than the sure threshold). This event is AL021919
(the first thick blue line on the left side of AL0111926 in Figure 3). The AL021919 hurricane was a category 1
or 2 hurricane when it passed the Long Island, which is less intense than the other three events (they are category
3 and above), thus likely not leaving a deposit. Also, the stormtide's height for the median central pressure of
hurricane for the AL021919 hurricane is less than other events. As a result, we can claim the ALL021919 hurricane
most likely had a low minimum central pressure and did not lead to sediment transport at LIBH.
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Figure 4. Storm properties of synthetic and historical storms when the storm passed closest to Long Island blue hole (LIBH).
Storm's closest passage is the minimum distance between LIBH and the storm's path, regardless of which side of the site
passage occurred. Historic storms are outlined in green and labeled with their names or ID if they are unnamed. Historic
storms that have unknown values for radius of maximum wind (see Section 3.2.2) are marked by a diamond. Storms that
generate surge above the deposition threshold of 0.67 m are colored according to their surge magnitude; storms under the
deposition threshold are gray.

Amongst the nine potential historical TCs that generated surges above the deposition threshold, we attribute
AL031891, AL011926, AL041928, and AL031932 to the four 1851-1988 event beds. These four storms are also
the only TCs that have surge ranges entirely above the deposition threshold.

3.3. Sedimentary Record Interpretation

As seen in Section 3.2, not all storms that impact Long Island are captured in the sedimentary record. Under-
standing the types of storms that lead to sediment deposition at this particular site is critical to interpreting the
rest of the paleorecord. Linking storm characteristics to sediment deposition in the paleorecord could offer a
new avenue for estimating unknown storm properties (i.e., radius of maximum wind) for early historic storms
that have corresponding event beds in the record. As the number of historic storms that left a deposit at LIBH is
too limited to directly draw conclusions about the ability of different storm characteristics to cause deposition,
we use the NCEP synthetic storm data from Section 2.4 in addition to historic storms to observe trends in storm
characteristics.

Figure 4 illustrates key TC properties (maximum wind speed, the radius of maximum wind, and closest passage
of TCs to LIBH) of the 1244 synthetic storms generated by NCEP reanalysis (see Section 2.4). All historical TCs
occurring from 1851 onward are included in the figure. While the modeled maximum surge at LIBH (red shad-
ing) increases with higher intensity storms, the sediment record captures storms of a wide range of intensity and
size. Among all NCEP synthetic storms (see Section 2.4), approximately 6% of storms produced a surge larger
than the threshold of 0.67 m, which would result in sediment deposition at the LIBH site. Of all the storms that
produced a surge larger than the threshold of 0.67 m, 3% are Category 5%, 8% are Category 4%, 13% are category
3%, 16% are category 2%, 21% are category 1%, 36% are tropical storms. Within the intensity categories, storms
producing the highest surge had a radius of maximum wind on average 33.0 km larger than storms that generated
surge below the 0.67 m threshold. For example, in Category 5, two storms of high intensity that did not produce a
high enough surge at LIBH have an average R |
(65 km on average) that generated high enough surge to theoretically cause deposition.

o Of 33 km which is almost half of the size other Category 5 storms

Even so, surge generation above the deposition threshold cannot only be isolated to storm intensity and radius
of maximum wind. A storm's geographic relationship with the unique geometry and position of Long Island
also influences deposition. Figure 5a shows the direction of travel and position of closest passage relative to
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deposit leaving storms cross the axis orthogonally. These observations are
Ww also consistent across the synthetic storm set, as shown in Figure 5b; storms
traveling parallel to the island axis must pass on the east side while west
passing storms must cross the island axis at a steep angle in order to leave
a deposit. Across the synthetic storms, we see that 76% of deposit leaving
storms pass within 50 km of LIBH and 72% travel in a northwest direction.
Conversely, high intensity historical storms moving parallel to Long Island
on the west side of the axis (dotted red in Figure 5a) likely do not leave depos-
its at LIBH despite having high intensity and passing close to Long Island.

1 1 L 1

Longit:
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Travel Direction of St?\:ms that Left Deposits

Deposit Leaving Storms
West Side
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Al Synthetic Storms (1/8 scale)

Figure 5. (a) Travel direction of historical

782 78 58 756 158 52 95 748 48 744 742 This impact of side of passage is likely due to the complex L-shape geometry

ude of central Long Island. This simple analysis highlights the importance of
considering travel direction in addition to intensity, size, and proximity for
sediment deposition at this site.

3.4. Reconstruction and Estimating Unknown Storm Properties

Figure 6 shows the K-means clusters (Duda et al., 1973) identified from the
storm properties for deposit-leaving TCs introduced in Figure 4. To avoid
bias from initial seed randomization, the clustering sequence is conducted 50
times, and the estimated R range is formed from the results of all iterations
(Figure 6 is an example of a common clustering result). The R, property is
not considered when clustering as it is the property of interest.

When developing the final range of R___estimations in Figure 7 for historic

max
TCs, the synthetic storm properties' Euclidean distance from the historical
reference is used to weight R, distributions (i.e., the size of storms closer

in passage and intensity to a historical TC will impact the estimation more).

This method of estimation is tested on modern historic TCs with known R,
values. The observed R, values for Joaquin, Irene and Lili are all captured
within the middle 90% in the range of the cluster estimate. The observed radii
of maximum wind for hurricanes Joaquin, Irene, and Lili are captured in local
peaks of R, distribution, within 10 km of the mean R _,, estimation, from

K-means method (Figure 7a).

Additionally, estimated stormtides from the R___distributions are depicted in
storms direction at the point of Figure 7 bottom panel. The stormtide values for Irene and Lili are captured

max

closest passage to Long Island blue hole. The head of the arrow shows the within the middle 10% in the range of the R_, cluster estimate. However,

moving direction the storm advances in the next 2 hr. Arrows are colored
green if they are present in the paleorecord and red if they did not leave a

deposit. The gray dashed line shows the ce
(b) Radial histogram of travel directions fo

the stormtide value for Joaquin is captured within the middle 20% in the
ntral axis through the Long Island range of the R__ cluster estimate, likely because Hurricane Joaquin was a
r synthetic storms. Colors indicate relatively small hurricane and moved slowly over the Island. More synthetic

max

which side of the island axis (gray dotted line) the storms passed on, if they storms are required to train the K-means algorithm to better capture such an

left a deposit. The counts for all of the stor
figure formatting.

ms (gray bars) are scaled by 1/8 for unusual event.

In Figure 7b, the coarse anomalies and stormtide distribution are shown from

1851 to 2016. It can be seen that for five out of seven events (hurricanes
Joaquin [mean stormtide = 1.65 m, mean R, = 38 km], Lili [mean stormtide = 0.58 m, mean R_,, = 50.0 km],
AL031932 [mean stormtide = 0.85 m, mean R, = 47 km], AL041928 [mean stormtide = 1.1 m, mean
R« = 38 km], AL031891 [mean stormtide = 0.84 m, mean R, = 48 km]), coarse anomaly and stormtide
= 37 km] and
ALO011926 [mean stormtide = 1.35 m, mean R, = 38 kmy]), the coarse anomaly is much less than the simulated

height distributions can be correlated. For two events (Irene [mean stormtide = 1.1 m, mean R,
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Figure 6. Clusters of shared storm characteristics (intensity, position, direction) for tropical cyclones (TCs) (synthetic and
historical) generated surge over the deposition threshold. Color denotes which cluster each storm belongs to and size is the
R_ .. if known. Storms without R ___observations are denoted by diamonds. All historic TCs are distinguished by a green
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outline. Directional arrows from Figure 5 are included in gray.

surge height. The most important factor causing the mismatch is the complexity of sediment transport modeling
which is not considered here. Without the sediment transport modeling, we cannot establish a specific rela-
tionship between the coarse anomaly and surge height and we assume only that the surges above the identified
threshold can induce deposits. Thus, the clustering analysis focuses on surge events above the threshold but do not
account for the variation of the surge heights within these events. The other factors could include storm forward
speed, which may influence the sediment transport process that is not considered in the K-means clustering anal-
ysis. In addition, there are uncertainties associated with hydrodynamic modeling including the half-kilometer
resolution mesh on the coastline (more accurate bathymetric data is unavailable), neglecting wave effects, and
using a symmetric parametric wind model. Furthermore, the limited sample of synthetic storm models introduces
additional sources of uncertainty. Historical data from earlier storms also contributes to the overall uncertainty.
In future work, we plan to employ a more advanced modeling approach by coupling a 3-D hydrodynamic model
with sediment transport and wave models.

3.5. Surge Risk Estimation

Here, we estimate surge risk in terms of the return period of the surge height for the Long Island. To calculate the
yearly probability of surge height exceedance, the theoretical distribution assumes Poisson arrival of the storms
and involves a generalized Pareto distribution to model the surges over a threshold and nonparametric density
estimation to model the surges smaller than the threshold (Lin, Emanuel, et al., 2010; Lin et al., 2012). Figure 8
shows the 50, 100, and 500 years spatial variation of the surge level around LIBH (calculated at each grid point)
in the historical period and under the SSP2-4.5 storm climatology and SSP5-8.5 storm climatology conditions.
These maps illustrate the regional distribution of storm surge risk, which varies dramatically over relatively small
distances. For instance, the 500 years surge on the east side of Long Island increases from ~1.50 m to %3.00 m
for SSP2-4.5 and ~ 4.75 m for SSP5-8.5. In contrast on the southwest side of Long Island the 500 years surge
rises from ~1.20 to ~1.50 m for SSP2-4.5 and ~ 1.80 m for SSP5-8.5, which is much less than the east side of the
Island. The same trends in the surge risk maps can be observed by looking at the 100 and 50 years return periods.
It demonstrates that the surge risks are controlled by bathymetry and coastline shape in addition to changes in
TC climatology.

Figure 9 displays the estimated surge risk at LIBH in terms of the return period of the surge height. With only
12 historical storms passing within a 100 km radius of LIBH in the time frame of 1988-2016 (when observed
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Figure 7. (a) The distribution of R, . by K-means method for historic tropical cyclones that occurred after and before 1988.
For post-1988 storms, green markers denote for the observed R, ,, values. The blue marks show the median R, ,, value and

the blue areas indicate the distribution and range of R, from NCEP storms. (b) The distribution of simulated stormtide for
various R, by K-means method. For post-1988 storms, yellow markers show the observed stormtide values. The red marks

show the stormtide values for the median R, ,, value and the red areas indicate the distribution of stormtide. The coarse
anomaly values are shown with blue stars.
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radius of maximum wind is available), it is not feasible to model the extreme surges using a generalized Pareto
distribution. However, estimating the radius of maximum wind for hurricanes that left a deposit at LIBH between
1850 and 1988 allows us to approximate the distribution of surge height for these events (see Section 3.4). Conse-
quently, we can use the mean of the stormtide height distributions for the four events that left deposits between
1851 and 1988 and the approximated maximum stormtide heights for the other 58 events that did not left a
deposit at LIBH (see Section 3.2) to estimate the return period curve. Green circles in Figure 9 display the surge
return levels based on the historic storms between 1851 and 2016. The estimated 20, 50, 100, 500, 1,000, and
5,000 years surge levels are about 0.67, 1.05, 1.30, 1.63, 1.72, and 1.84 m, respectively. The return period for the
NCEP model (16 years/event) at the surge deposition threshold is close to the modern paleorecords (165 years/7
events ~ 24 years/event). This indicates the ability of climatological-hydrodynamic modeling to capture long
term risk. At more extreme levels, however, the NCEP-simulated return period curve may underestimate the surge
risk. Thus, we performed the bias correction (see Section 2.4) and include the bias corrected NCEP return period
curve (red dash curve in Figure 9); the bias corrected estimation of the surge levels for the various return periods
are similar to those based on the reconstructed historical records.).
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Figure 8. Surge level distribution over Long Island blue hole for 50 (first row), 100 (second row), and 500 (third row) years return period for three scenarios 1—the
historical period based on NCEP reanalysis data (referred to as NCEP) (first column). 2—SSP4.5 (second column). 3—SSP8.5 (third column). Colorbars are set to cut

off at 5 m for clarity of figures.

Figure 9 also includes the return period curves (bias-corrected, solid blue and black curves) for future storm
climatology under carbon emission scenarios (SSP2-4.5 and SSP5-8.5). Results indicate that the flood level for
a given return period substantially increases by the end of the 21st century. For instance, the 100-year surge level
for SSP2-4.5 and SSP5-8.5 is 2.01 and 2.30 m, which shows a tremendous increase in risk. The very likely esti-
mates (90% statistical confidence interval) of flood levels for a long return period cover a wide range, implying
considerable statistical uncertainty in such extreme events. The uncertainties are smaller for flood levels with a
higher probability of occurrence.
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Figure 9. Estimated surge level as functions of return period. Solid lines show the best fit with the surge over threshold
methods. Dashed lines are bias-corrected projection under sea level rise. The red dot dashed line is NCEP fit with bias
correction using historical data 1851-2015. The shaded area show the 90% statistical confidence interval for SSP5-8.5
projection. The 90% statistical confidence interval for other curves are similar to this one, but it is not shown to avoid
confusion in the figure. Green circles denote return period of surge for events between 1851 and 2015. Green bars represent
the range of surge levels from Figure 7b.

Furthermore, in Figure 9, the dashed blue line represents the surge return levels considering the SSP2-4.5 storm
climatology plus the projected SLR and the dashed black line denotes the surge return levels considering the
SSP5-8.5 storm climatology including the effects of the projected SLR. Under the effects of SLR, the 100-year
and 500-year surge levels increase from 2.01 and 2.43 m to 2.42 and 2.68 m for the SSP2-4.5 emission scenario
and from 2.29 and 2.71 m to 2.92 and 3.28 m for SSP5-8.5 emission scenario, which illustrates the tremendous
increase ofcoastal flood risk at the end of 21st century for this region. In other words, the 100-year flood level
would occur annually for SSP2-4.5 and SSP5-8.5. The 5,000-year flood level would become a 2-year event
for SSP5-8.5 and a 6-year event for SSP2-4.5, which shows a tremendous shift in the flood risk of this area.
The return period of a Hurricane Joaquin level event (stormtide of 1.39 m) is expected to decrease from 145 to
23 years and 11 years under SSP2-4.5 and SSP5-8.5 storm climatology conditions, respectively. This will further
reduce to 2 years and 1 year with SLR projections, illustrating how this island could become highly susceptible to
large surges capable of completely inundating the area under future SLR and storm climatology change.

4. Conclusions

This work develops a methodology to interpret and leverage paleohurricane records from a site on Long Island in
The Bahamas to improve long term hazard and risk estimations. The historical TC (TC) data from 1988 to 2016
at LIBH is insufficient for estimating the surge risk. To address this limitation, we leverage historical event attri-
bution in paleorecords, coupled with synthetic storm modeling, to approximate storm parameters that are often
missing in observations, such as the radius of maximum wind for storms dating 1851-1988. Then, we recon-
structed surge records over 1851-2016 to verify and bias-correct the results of the climatological-hydrodynamic
modeling. Finally, we assess and quantify the surge risk at the end of the 21st century by considering two carbon
emission scenarios (SSP2-4.5 and SSP5-8.5), due to storm climatology and SLR.

The sediment cores from LIBH capture seven event beds during the observational record (1851-2016). A previ-
ous study (E. Wallace et al., 2019) used the SLOSH storm surge model, which does not consider the effect of tidal
flows (just add the mean high tide to the initial mean sea level), to identify a few possible TCs that correspond
to each paleorecord event bed. Here, using a state-of-the-art hydrodynamic model (ADCIRC), which uses higher
resolution bathymetric data and considers tidal effects, we improve interpretation of the paleorecord by identify-
ing these seven event beds specifically.

We develop a representative database of synthetic TCs with 11 times more data than available in the historical
record alone. With an extended TC set, we identify trends in TC characteristics that would cause high enough
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storm surge to cause deposition at LIBH. Although high intensity storms generate the most extreme surges, large
surges can be produced from a wide range of storm intensity. Medium-intensity storms (categories 1-3) account
for over half of storms that can leave deposits at LIBH, outnumbering deposits from intense storms (categories
4-5, 9% of depositing storms). Low and medium-intensity storms tend to have larger inner wind fields, which can
create higher and more extensive surges than the more compact wind fields of higher intensity storms. A storm's
orientation and coastline geometry can significantly determine whether a storm leaves a deposit. We show that six
historically intense storms that passed within a radius of 100 km to LIBH did not leave deposits at this site due to
the direction of passage relative to LIBH. More work is required to understand how hydrodynamics and sediment
transport interact to affect deposition.

By clustering synthetic and historical storms based on these shared characteristics, we estimate the probability
distribution of R, for storms prior to 1988. Observed R, values for Hurricanes Joaquin, Irene and Lili are all

captured within the middle 90% range of the cluster estimation. We use this distribution of R, values to generate
informed probability distribution of stormtide for historical storms at LIBH.

With reconstructed historical stormtide records, we can evaluate and bias correct long term stormtide risk esti-
mated by climatology-hydrodynamic modeling. The 100-year and 500-year events are then calculated to be about
1.24 and 1.46 m, respectively. The effects of SLR and TC climatology change have not been considered for most
of the current flood risk mapping in this area. Considering both SLR and TC climatology change, a 100-year,
500-year, and “worst case” event are estimated to be about 2.02, 2.44, and 2.66 m for the SSP2-4.5 scenario
and 2.30, 2.72, and 2.65 m for the SSP5-8.5 scenario by the end of the 21st century. An extreme event such as
Joaquin in 2015 is a 150 years event under the current climate. However, considering TC climatology under the
two emission scenarios, it becomes a 11-year and 10-year event and evolves to a yearly event under SLR. More
frequent and more intense extreme events can change the morphology and ecosystem of the area at the end of the
21st century. We recommend that future flood mapping and flood mitigation planning in this area account for
the effects of SLR and TC climatology change.

This study is the first step to reconstruct and integrate the paleoT'C information in surge risk assessment.
Without the assistant of complex sediment transport modeling, we assumed that the surge height above certain
threshold (identified based on recent observations) can lead to coarse anomaly at LIBH, leading to uncertainties
in the paleorecord reconstruction (i.e., the estimated surge heights do not match with the coarse anomalies for
two out of seven events). Future analysis may improve through coupling a sediment transport model with a 3-D
hydrodynamic and wave model. Nevertheless, we demonstrate the important contribution of reconstructing
storm characteristics and leveraging paleorecords to improve surge risk estimation under current and future
climates. The findings have important implications for surge risk assessment, providing valuable insights to
enhance adaptation and mitigation investments in the study area. Moreover, the methodology employed in
this study and future improvement regarding sediment transport modeling can be generally applied to other
locations, offering a framework for improved interpretation of paleorecords and more accurate estimation of
long-term TC risk.

Appendix A: Measurement Locations

Table Al

Table A1

Locations and Identifiers NOAA Tides and Currents Stations

Station ID Name Station ID Name

8729210 Panama City Beach 8725110 Naples

8728690 Apalachicola 8724580 Key West

8727520 Cedar Key 8723970 Vaca Key

8726724 Clearwater Beach 8723214 Virginia Key, Biscayne Bay

8726520 St. Petersburg, Tampa Bay 8722956 South Port Everglades

8726607 Old Port Tampa 8722670 Lake Worth Pier, Atlantic Ocean
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Table A1

Continued

Station ID Name Station ID Name

8726674 East Bay 8721604 Trident Pier

8726384 Port Manatee 8720218 Mayport (Bar Pilots Dock)

8725520 Fort Myers 8720030 Fernandina Beach
Data Availability Statement
The paleorecord data presented by E. Wallace et al. (2021) are available on the websites of the National
Climatic Data Center at https://www.ncdc.noaa.gov/paleo/study/32134 and the WHOI Coastal Systems Group at
https://web.whoi.edu/coastal-group/data/. The best track information of historical TCs are presented by Knapp
et al. (2010) and can be freely downloaded from https://ftp.nhc.noaa.gov/. The downscaled TC track informa-
tion can be freely accessed online within the NSF DesignSafe-CI. This data set is created based on K. Emanuel
et al. (2006).
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