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ABSTRACT: High-throughput molecular simulations and machine learning (ML) have been implemented to adequately screen a
large number of metal—organic frameworks (MOFs) for applications involving adsorption. Grand canonical Monte Carlo (GCMC)
simulations have proven effective in calculating the adsorption capacity at given pressures and temperatures, but they can require
expensive computational resources. While they can be resource-efficient, ML models can require large datasets, creating a need for
algorithms that can efficiently characterize adsorption; active learning (AL) can play a very important role in this regard. In this
work, we make use of Gaussian process regression (GPR) to model pure component adsorption of nitrogen at 77 K from 107° to 1
bar, methane at 298 K from 10 ~> to 100 bar, carbon dioxide at 298 K from 10~ to 100 bar, and hydrogen at 77 K from 1073 to 100
bar on PCN-61, MgMOE-74, DUT-32, DUT-49, MOF-177, NU-800, UiO-66, ZIF-8, IRMOF-1, IRMOF-10, and IRMOF-16. The
GPR model requires an initial training of the model with an initial dataset, the prior one, and, in this study of evaluating AL, we make
use of three different prior selection schemes. Each prior scheme is updated with a sampling point resulting from the GP model
uncertainties. This protocol continues until a maximum GPR relative error of 2% is attained. We make a recommendation on the
best prior selection scheme for the total 44 adsorbate—adsorbent pairs primarily making use of the mean absolute error and the total
amount of points required for convergence of the model. To further evaluate the AL framework, we apply the BET consistency
criteria on the simulated and GP nitrogen isotherms and compare the resulting surface areas.

Bl INTRODUCTION loading (uptake) can be calculated using Monte Carlo
Metal—organic frameworks (MOFs) are nanoporous hybrid simulations. Grand canonical Monte Carlo (GCMC) has
solids composed of organic ligands linked together by metal shown great effectiveness in the simulation of adsorption
ions or clusters (nodes). Their modular design allows for isotherms of several materials.'* "¢

extensive synthetic tunability and, thus, precise chemical and Machine learning (ML) techniques are being used to
structural control. Porosity, stability, particle shape, and estimate the adsorption loading for many MOFs in response to
conductivity are just a few of the qualities that may be the researchers’ need for faster and efficient data access. Over

customized for specific purposes via an innovative synthetic
design. The tuneability makes these materials attractive to
meet the demands of energy storage technologies, catalysis,
drug delivery, lithium-ion batteries, etc.'”®

Over the years, there have been tens of thousands of MOFs
synthesized and over hundreds of thousands of MOFs
predicted to be synthesized since the studies that gave rise
to the synthesis of MOF-S and others.”™"" Because of the
control over the pore chemistry and diversity, MOFs have been
studied in applications that involve adsorption. Adsorption

the past years, ML has been used in material science research'’
for a variety of reasons, including polymer property
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prediction,'® zeolite structure categorization,'” crystal structure
prediction,” etc. The estimation of gas storage capacity has
been predicted using ML,*'™** as well as predicting the
oxidation state of MOFs, optimizing the swing adsorption
process conditions with MOFs, and assigning partial charges to
MOF atoms.'”** The high-throughput screening of MOFs for
hydrogen separation have also been studied using ML.***°

The rule of thumb is that ML requires a large set of data for
the proper training of the model, but given the high cost of
running many molecular simulations, there is need for an
alternative. Several authors have developed ML models to
predict isotherms;”’~>” however, a large dataset is required to
train these models. Built on the principle of ML is a method
referred to as “active learning” (AL). As a subset of the ML, the
AL algorithm actively chooses the subset of instances from the
pool of unlabeled data that will be labeled next. The basic tenet
of the active learner algorithm notion is that, if given the
freedom to select the labels it wants to learn, an ML algorithm
could be able to achieve a greater degree of accuracy while
utilizing fewer training points. Santos and his co-workers
investigated as a dataset construction method because big
databases of molecular dynamics (MD) calculations are
expensive to produce. They demonstrate that the method
requires a tenth of the MD calculations, compared to the
production of random datasets and produces accurate models
that generalize to actual scanning electron microscopy
geometries. Their method is to create and train deep neural
network models based on physics by learning from a database
of MD computations. By foreseeing the statistical distribution
of gas inside nanopores, the model explains the adsorption
process.”’

In the context of adsorption in MOFs, Mukherjee and co-
workers®' worked on using AL to predict the isotherms of
methane and carbon dioxide in HKUST'-1, while navigating the
pressure and temperature phase space simultaneously. In this
paper, we also present the use of AL (otherwise known as
sequential design) to predict the adsorption isotherms of
various gaseous molecules across several MOFs while not
relying on a large dataset. MOFs of diverse surface areas,”” >*
topologies,”> ™" and pore size distributions**~** were selected
for this work. Our choice of structures is derived from previous
works that seek to estimate the surface area of MOFs across a
diverse set of structures.’

As AL continues to become an important tool, the purpose
of this study is to develop and evaluate AL frameworks to
generate the adsorption of gas molecules for numerous MOFs
at different temperatures and pressures. In this study, we
evaluated different AL approaches for predicting the pure
component adsorption isotherms for nitrogen (N,), carbon
dioxide (CO,), methane (CH,), and hydrogen (H,) in a
diverse set of MOFs. We then calculated the surface area of
those MOFs from the AL predicted uptake and compared it to
the BET surface area from the GCMC N, isotherms. As part of
our analysis of the AL procedure for the chosen molecules in
several MOFs, we take a deep look to observe any consistency
in the posterior points added generated from the AL method
for every adsorbate—adsorbent pair. We also analyze the use of
different kernels for the GP and make recommendations for
different priors, depending on the structure under study.

2.0. METHODS

2.1. Grand Canonical Monte Carlo. Nitrogen isotherms
at 77 K, carbon dioxide isotherms at 298 K, methane isotherms

at 298 K, and hydrogen isotherms at 77 K were all simulated
using the RASPA code.”’ The pressure ranges used in this
work were 107° to 1 bar for nitrogen and 10~ to 100 bar for
methane, carbon dioxide, and hydrogen. All adsorbents were
modeled using the Universal Force Field (UFF)** and the
adsorbates were modeled using TraPPE,** except for hydro-
gen. Hydrogen was modeled using the Feynman—Hibbs
corrections to account for quantum effects. ™% It was
modeled using a Lennard-Jones parameter at the center of
mass and charges at the center of mass and nuclei’' ™’
Lorentz—Berthelot mixing rules were employed for cross-term
interactions.”* 50 000 production cycles and 10 000 equilibra-
tion cycles were employed in these GCMC simulations.
GCMC simulations moves included the random movement of
a randomly chosen molecule, the insertion of a solute particle
at a randomly determined site, the deletion of a randomly
chosen molecule, and rotation.'” The adsorbents of interest in
this study were IRMOF-1,”> IRMOF-10,>® IRMOF-16," NU-
800, Ui0-66,"” ZIF-8,>° DUT-32,”” DUT-49,° MOF-177,"'
PCN-61,°” and Mg—MOF74.63 MOF atoms were held fixed at
crystallographic positions. The charges on the MOFs were not
considered.

2.2. Active Learning. In this study, the AL process is
configured to train and fit certain historical data (prior) to a
model. The posterior point in this approach that has the
biggest associated relative error in the predictions updates the
prior, which is used to refit the model. This procedure is
repeated until the predicted relative error is <2%.

This AL protocol makes use of the Gaussian process
regressor (GPR). The mean and covariance functions of a
Gaussian process (GP) provide a complete description of the
process.’* This is mathematically described as

f~ GP(m(x), K(x, x')) )

In eq 1, the function f has a GP distribution with a mean (m)
function and covariance function (K).

The GP model was implemented using several GPR kernels
which include the rational quadratic (RQ) kernel,>~%* radial
basis function (RBF),””° and the Matern kernel.”"”*

The RBF kernel also known as the squared exponential
kernel has the form of

K(x, x') = exp{—%}

)
The RBF kernel is characterized by I, which is the length scale
that accounts for the variance, while x — x’ is the Euclidean

distance between x and x'.
The RQ kernel is of the form

: CRTIn N
K(x, x) = |1 + —5
2al (3)
The RQ_kernel is equivalent to the summation of many RBF
kernels, and it is characterized by x — ', which is the

Euclidean distance between x and " ; [ is the length scale, and
a controls the weighting of large-scale and small-scale
fluctuations.

The Matern kernel has the following mathematical form:

. [mcﬂu, >]k(ﬂz—”

r2 '\ L

K(x, x") = .

d(x, x’)]
(4)
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In eq 4, d(x, x") represents the Euclidean distance, k,
represents the modified Bessel function, and I" represents the
gamma function. The symbol v is an additional parameter that
represents the smoothness of the function. As v tends to
infinity, this kernel becomes equivalent to the RBF kernel, and
when v is 0.5, it becomes like the exponential kernel.

Based on the work done by Mukherjee and colleagues,”"
prior to running the data through the GP process, we take the
logarithm (base 10) of all the data (pressure and adsorption
loading) and standardize the input feature (pressure). For this
work, we select the posterior point from the unseen array of
test-data points, which has the highest corresponding GPR
relative error. Once the prior has been updated with this
posterior pressure point and its corresponding GCMC
simulation uptake, the GP is then retrained, and the isotherms
are predicted. This process continues until the GPR relative
error of <2% is achieved. Scikit-learn library is used for the GP
implementation.”

For this work, the AL method is used to determine the next
point of GCMC simulation based on the GP uncertainty in the
pressure test array data and thus predict the full isotherm
within the pressure range. This eliminates the need to simulate
many computationally intensive data points in that pressure
but rather few points (referred to as the prior) and the next
points for GCMC simulations, until the AL convergence policy
is met. This saves computational resources. However, to
evaluate the best prior schemes, we conducted 46 GCMC
simulations for N, for the pressure range, and 64 GCMC
simulations for CH,, CO,, and H, for their pressure ranges.
The priors were selected from these points, as explained in
section 2.2.1. Also, we compared the isotherms from the GP
model to the resulting isotherms from these GCMC data
points, as seen in the Results and Discussion section.

It is important to note that this AL technique is applicable to
any MOF, gas type, and mixtures, as well as thermodynamic
conditions (pressure and temperature).

2.2.1. Prior Selection. Three prior selection schemes were
employed in this research: the boundary-informed, log-spaced,
and two-data prior selection for the AL on all the molecules of
interest. The prior points for the different adsorbates are
shown in Table SI in the Supporting Information (SI). Briefly,
the boundary-informed prior contains points at low and high
pressures, the log-spaced is logarithmically spaced in pressure,
and the two-data prior contains only the lowest and highest
pressures.

2.2.2. Error Calculations. In this AL framework, we
calculate the following errors:

(1) GPR Predicted Relative Error: This is the ratio of the
GP predicted uncertainty (ogp) to the predicted
adsorption (Ygp_pdir) from the chosen model. This is
the relative error we set to decrease below 2%.

This can also be described mathematically using eq S:

o,
GPR relative error = GP

YGP-predict (5)

(2) Mean Relative Error (MRE): The MRE is used to check
the agreement between the AL-based model and the
ground truth. As shown below, MRE compares the GP
predicted adsorption to the ground truth GCMC results.

The mathematical formula is

YGP»predict('xi) - YGCMC('xi)

YGCMC(xi)

MRE (in %) = [Z
i=1
100

| |

n (6)

(3) Mean Absolute Error (MAE): The MAE measures the
average absolute difference between the GP-predicted
value and actual output from ground truth. The
mathematical formula is of the form

1 n
MAE = ; Z lYGP—predict - YGCMC'
=1 (7)
In egs 6 and 7, n represents the total data points.

(4) Surface Area True Relative Error: This is the true
relative error between the GP results’ computed surface
area and the GCMC results’ computed surface areas.
The mathematical form is

ISAcp — SAgemd « 100
SAgeme (8)

2.3. BET Surface Area Calculations from N, GCMC
and AL Results. The BET theory is based on the physical
adsorption of gas molecules on a solid surface to form
multilayers,”””> and it is typically used to characterize MOF
surface area using N, isotherms at 77 K. In this work, we apgly
the Rouquerol et al. consistency theory to the BET theory "
to calculate the surface area of 11 MOFs for both the GCMC
and AL results using the BETSI code.”®

The AL algorithm produced its isotherms of the test dataset,
which is passed into the BETSI algorithm to calculate the
surface area. The BETSI algorithm is responsible for selecting
the data points that match Rouquerol et al. consistency theory.

TRE (in %) =

3.0. RESULTS AND DISCUSSION

We first performed GCMC simulations for all 11 MOFs of
varying surface area values (PCN-61, MgMOEF-74, DUT-32,
DUT-49, MOEF-177, NU-800, UiO-66, ZIF-8, IRMOF-1,
IRMOF-10, and IRMOF-16) for nitrogen, methane, carbon
dioxide, and hydrogen adsorption. These results will be
considered the ground truth when compared against the
GPR from the AL. We first use nitrogen adsorption to test the
various kernels and choose the best performer. The chosen
kernel will then be used for the rest of the adsorbates. We then
discuss the AL results for all molecules by selecting the results
of two adsorbents for each adsorbate. Other MOFs’ results for
each molecule are shown in the Supporting Information (SI).
The AL protocols for the various adsorbate—adsorbent
combinations were evaluated based on the MAE values, and
the prior scheme with the lowest MAE was selected as the best
performing prior scheme. In the case of similar performance,
we looked at the number of iterations the AL took to reach a
2% predicted error. We also report the true mean relative error
to show the observed agreement between the AL and GCMC
simulations.

3.1. Nitrogen Isotherms. We Eerformed GCMC simu-
lations using the RASPA code®™ as described in the
methodology. The isotherms generated are shown in Figure
S1 in the SIL The simulation was performed at 77 K with
pressure values ranging from 107° to 1 bar, consisting of 46
data points. These isotherms are later compared to the GPR
results from the AL procedure. We applied the AL protocol
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Figure 1. Nitrogen uptake comparison between GCMC simulation and GP in IRMOF 1 using the RQ kernel for three different priors: (a)
boundary-informed prior, (b) log-spaced prior, and (c) two-data prior.
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Figure 2. Nitrogen uptake comparison between GCMC simulation and GP in IRMOF 1 using the RBF kernel for three different priors: (a)

boundary-informed prior, (b) log-spaced prior, and (c) two-data prior.

using the three prior selection schemes described in section
2.1: boundary-informed, log-spaced, and two-data. Various
kernels of interest and approaches as described in section 2.2
were used to evaluate the AL protocol and its predictions. On
determining the GCMC generated isotherms, we apply the
BET ST algorithm”® to calculate the surface area of each MOF.
After determining the predicted loadings from various prior

13012

selection schemes and the best kernel choice, we also calculate
the surface areas using the same algorithm and compare the
results.

3.1.1. Ny AL in IRMOF-1. Figure 1 shows the AL procedure
and the resulting fits with three different prior strategies using
the RQ kernel for nitrogen adsorption in IRMOEF-1. The
results show that the AL with the boundary-informed and log-

https://doi.org/10.1021/acs.iecr.3c01589
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spaced priors sampled the same point and converged to within
2% relative error in one iteration. The two-data prior, however,
sampled eight additional points taking the total training data
points to ten. The MREs of all of the prior schemes are
reported in the SI. The GP predicted isotherm for the
boundary-informed and the log-spaced prior shows a bad fit
from relative pressures of ~107> to 1, while the AL added
priors for the two-data prior allowed some fitting of the
isotherm between those same relative pressure ranges and
generally gave better predictions from the isotherms as seen in
Figure Ic. In these figures, the blue marker line represents the

13013

GCMC ground truth, the orange marker line is the final GP
model, the blue crosses are the initial data or prior, and the red
triangles are the added data to the GP during the AL
procedure.

Using the RQ kernel, the boundary-informed and log-spaced
prior performed underwhelmingly as compared with the two-
data prior selection scheme, as shown in Figure 1. We start to
see significant deviations at relative pressure of 107> to 1 for
both the boundary-informed and log-spaced prior schemes,
and lesser deviations were observed for the two-data prior.
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To further analyze the choice of kernel, we decided to
evaluate the RBF kernel on this system, and the results are
shown in Figure 2. The boundary-informed, log-spaced, and
the two-data prior all show significant deviations in the
isotherms, as seen in the figures. The two-data prior performs
badly at relative pressure between 107> and 107/, as a result of
the AL algorithm failing to pick and sample pressure points in
that region. The GP model performs poorly in this region due
to insufficient starting prior data points in the high-pressure
region. The boundary-informed and log-spaced prior per-
formed better than the two-data prior but resulted in
significant deviations in the isotherms because the AL
algorithm did not sample more points.

Generally, these results show that the RQ_kernel performed
better than the RBF kernel.

Figure 3 shows the implementation of the Matern kernel;
the isotherms generated were better compared to the RQ and
RBF kernels, but a lot of data points were required due to the
underconfidence of the matern kernel. Oversampling of many
points to update the prior was one of the situations we looked
to avoid in this work. The boundary-informed prior sampled
34 more points, making a total of 40 points to completely train
the model from a total of 46 data points. The log-spaced prior
resulted in a total of 42 data points and the two-data prior
required a total of 39 data-points.

Based on the analysis of the isotherms, MREs (see the SI),
MAE and the total amount of points needed to converge the
model, we concluded that the RQ kernel meets all our criteria.
Hence, this kernel was chosen as the default kernel for other
MOFs and adsorbents in this paper. The RQ kernel has also
been used for other ML studies of MOFs.*' To further support
the use of the RQ kernel, we show better performance of the
RQ to the RBF kernel for IRMOF-10 in Figures S9i and S9ii,
respectively, in the SI. The isotherms from the RQ kernel were
better than those from the RBF kernel. We generally observed
good fits from this decision, as seen in the next sections and in
the SL

3.1.2. N, AL in MOF-177. For the RQ kernel, the boundary-
informed converged within a 2% GP relative error with one
iteration for the boundary-informed and log-spaced prior
schemes. The two-data prior scheme required three iterations.
Figure 4 shows the comparison between the predicted and
actual isotherms.

For the boundary-informed prior, we observed deviations in
the predictions from ~107> to 1 bar (high-pressure region).
These deviations are experienced due to no sampling of the
high-pressure regions by the GP model. None of these
deviations were observed for the log-spaced prior scheme due
to the sampling of more points in the high-pressure region as
required by this prior scheme. The two-data prior resulted in
poor predictions, as shown in Figure 4c.

The fits of the three prior schemes for the other MOFs
(using the RQ_kernel) are all shown in the S Based on the
best performing prior, a comparison between the ground truth
and GP predicted isotherm is shown for some select MOFs in
Figure 5. We see a good comparison between the GP model
(symbols) and the ground truth data (lines). Noticeable
deviations in the predictions are observed at pressure ranges of
1073 to 1072 bar. However, overall, the fits show that the AL
algorithm produces good results, despite the limited number of
simulations.

The total sampling points (required training data), prior
schemes, resulting MAE, and recommendation for all 11
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Figure S. Comparison of GP and GCMC nitrogen isotherms for some
select MOFs.

MOFs of interest are provided in Table 1. From Table 1, we
can see that the log-space prior selection scheme is most

Table 1. Nitrogen AL Summary Showing Errors, MAE, and
Recommended Prior Selection Scheme for All 11 MOFs”

MAE [cm?®/gr framework] for
different priors

Total data points for
different priors

MOF BI LS TD BI LS TD
PCN-61 7 11 6 11.98 5.88 11.54
MgMOE-74 11 12 11 4.36 3.48 4.62
DUT 32 7 12 4 27.6 16.76 26.88
DUT 49 7 11 S 34.14 22 27.54
MOF 177 7 11 S 26.88 10.7 32.58
NU-800 7 11 8 10.26 13.98 43.76
Ui0-66 7 11 4 2.08 1.26 5.28
ZIF-8 11 12 15 3.9 3.4 1.9
IRMOFEF-1 7 11 10 38.3 33.34 23.96
IRMOEF-10 7 11 N 58.12 43.68 63.3
IRMOEF-16 7 11 S 10S8.3 53.18 89.56

““LS” represents log-spaced, “BI” represents boundary-informed, and
“TD” represents two-data priors. Bolded values represent the
recommended prior for the relevant MOF.

popular among the recommendations due to a lower MAE
value than others. Thus, the log-spaced prior is the
recommended prior for N, studies at 77 K.

3.2. Surface Area Calculations from N, GCMC and GP
Isotherms. We computed N, isotherms at 77 K to calculate
the surface area (SA) in m*/g of several MOFs. On using the
BET SI ::1lgorithm,78 and to further evaluate the AL results, we
obtained the surface areas from the GCMC and the AL results
for the three prior schemes. These results are reported in Table
2, and the values in parentheses represent the percentage
surface area true relative error (TRE). Based on the TREs, we
see a consistent lower TRE for the prior scheme selected in
Table 1. This further proves that recommendations of the prior
for selection are majorly dependent on the MAE, followed by
the number of data points required to converge the model to
the set AL protocol of 2% GP relative error.

3.3. Methane Isotherms. CH, isotherms across the same
set of MOFs described in section 3.1 were calculated using the
RASPA code.* The isotherms for the several MOFs are shown
in Figure S11 in the SI For the sake of visualization, we show
the isotherms in the order of low-pressure ranges, high-
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Table 2. Computed Surface Areas from Ground Truth and
Results from All Prior Schemes”

GCMC SA  BI prior SA LS prior SA  TD Prior SA

MOF (m?/g) m’/g) (m’/g) (m®/g)
PCN-61 3416 3552 (3.98) 3383 (0.97) 3536 (3.51)
MgMOF- 1806 1797 (0.95) 1807 (0.06) 1809 (0.17)

74
DUT 32 4725 4719 (0.13) 4829 (2.2) 4572 (3.24)
DUT 49 4847 4656 (3.94) 4754 (1.92) 4210 (13.14)
MOF 177 5011 5294 (5.65) 4982 (0.58) 4966 (0.9)
NU-800 3491 3478 (0.37) 3394 (2.78) 3441 (1.43)
Ui0-66 1313 1305 (0.61) 1305 (0.61) 1297 (1.22)
ZIE-8 1402 1405 (0.21) 1403 (0.07) 1403 (0.07)
IRMOF-1 3455 3588 (3.85) 3450 (0.14) 3454 (0.03)
IRMOF-10 6333 6588 (4.03) 6230 (1.63) 4729 (25.33)
IRMOF-16 5376 5196 (3.35) 5499 (2.29) 6533 (21.52)

“The values in parentheses represent the surface area true relative
error relative to the GCMC surface area.

pressure ranges, and altogether. The simulations were done at
298 K with pressure values ranging from 107> to 10> bar,
consisting of 64 data points.

The boundary-informed prior, log-spaced prior, and two-
point prior selection were also used for all the MOFs using the
RQ_kernel as described in section 2.2. The results for the
adsorbate—adsorbent pair as shown in the next few subsections
were analyzed in the same manner as the nitrogen predictions;
the MAE, and in the case of equal or significantly close MAE
then we use the total amount of data points required to fully
train the model within a convergence of 2% GP relative error.
In the case of methane, the total amount of data points in the
ground-truth was 64. The boundary-informed prior contains 8
pressure points while that of the log-spaced prior contains 12
data points out of the sixty-four data points total points. The
two-data prior still has two points which are the lowest and

highest pressures from the GCMC simulation. In the
subsequent sections, we show and discuss two adsorbents
(others are shown in the SI).

3.3.1. CH, in MgMOF-74. With five iterations, the lowest
MAE across all the prior schemes was the logarithmically
spaced prior with a value of 1.56 (cm®(stp)/gr framework).
The boundary informed prior with two iterations resulted in a
MAE of 3.44 (cm®(stp)/gr framework), and the two-data prior
finished in four iterations with a MAE of 2.1 (cm’(stp)/gr
framework). Figure 6 shows that the logarithmically spaced
prior gave the best fit compared to the boundary-informed and
two-data priors. From the fits, we see that the boundary-
informed prior performed fits were good, until high pressures
of 10—100 bar where fluctuations are observed. The log-spaced
prior gave good fits at all pressure ranges while the two-data
prior performed well up until pressures of 1—100 bar. Based on
the performance of all the fits (MAE), we recommend the use
of the logarithmically spaced prior regardless of having the
most sampled points in addition to the initial prior data points.

3.3.2. CH, in IRMOF-16. All fits as seen in Figures 7 were
good using all of the prior selection schemes. A total of nine
data points gave a MAE of 3.6 (cm®(stp)/gr framework) using
the boundary-informed prior, while with 20 data points to train
the model, the MAE of the log-spaced prior was 1.92
(cm®(stp)/gr framework). The two-data prior with six total
points resulted in a MAE of 2.14 (cm’(stp)/ gr framework).
We immediately noted that the log-spaced prior sampled a lot
of points (~41% of the available dataset), and this is
something we would like to avoid. The two-data prior required
~9% of the total data, and with a very close MAE to that of the
log-spaced prior, we recommend the use of the two-data prior
scheme for this absorbent.

The fits of the three prior schemes for the other MOFs are
all shown in the SI. The results for some MOFs are listed in
Figure 8. On comparing these results, we can see that the AL
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Figure 6. Methane uptake comparison between GCMC simulation and GP in MgMOF-74 using the RQ kernel for three different priors: (a)

boundary-informed prior, (b) log-spaced prior, and (c) two-data prior.
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Figure 7. Methane uptake comparison between GCMC simulation and GP in IRMOF-16 using the RQ kernel for three different priors: (a)
boundary-informed prior, (b) log-spaced prior, and (c) two-data prior.
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protocol works well for methane using a small amount of data
points required for simulations. Here, we see an excellent
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comparison between the GP model (symbols) and the ground-
truth (lines) with limited simulation data. No noticeable
deviations were present in the comparisons.

Table 3 shows a summary of all of the MOFs discussed for
the methane AL study. We generally see that the log-spaced

Table 3. Methane AL Summary Showing Errors, MAE and
Recommended Prior Selection Scheme for All 11 MOFs®

Total Data Points for

MAE [cm®/gr framework] for
different priors

different priors

MOF BI LS TD BI LS TD
PCN-61 9 18 6 1.7 1.76 2.3
MgMOE-74 9 17 6 3.44 1.56 2.1
DUT 32 9 13 S 3.04 1.16 S5.18
DUT 49 9 17 6 2.56 2.18 2.02
MOF 177 9 16 26 S.1 2.18 1.96
NU-800 9 21 10 2.02 1.92 2.12
Ui0-66 9 14 S 0.94 0.72 0.74
ZIF-8 9 18 6 1.62 0.88 1.56
IRMOEF-1 9 18 6 1 1.44 2.3
IRMOE-10 9 17 8 4.52 242 3.3
IRMOEF-16 9 20 6 3.6 1.92 2.04

*“LS” represents log-spaced, “BI” represents boundary-informed, and
“TD” represents two-data priors. Values shown in bold font represent
the recommended prior for the relevant MOF.

prior resulted in more iterations than boundary-informed or
the two-data priors. Based on the resulting MAEs, four of the
MOFs were better modeled with the boundary-informed prior
and four of the MOFs were also better modeled with the log-
spaced prior. This similarity makes inferring a generic prior for
other MOFs being studied in this work; however, from Table

3, it is obvious that the boundary-informed prior all resulted in
a lesser number of iterations than the log-spaced prior, and
thus picking the boundary-informed prior will be recom-
mended as the generic prior.

The preference for the selection of the best prior scheme has
always been the prior scheme with the lowest MAE; however,
it was observed that, for MOFs such as the MOF-177, NU-
800, UiO-66, and IROF-16, the MAE value between the lowest
and the next lowest prior scheme MAEs were close. There
were significant differences in the total amount of points
required to converge to the 2% maximum GP relative error;
hence, for these MOFs, we selected the best prior scheme
using the total amount of data points required.

3.4. Carbon Dioxide Isotherms. Like methane isotherms,
the CO, isotherms were generated via GCMC using RASPA in
the same set of MOFs at 298 K. Figure S43 in the SI shows
adsorption from experiments and GCMC simulations in Mg-
MOF-74, showing good agreement. The pressure points of
interest in the CO, isotherms and AL range from 107° to 10°
bar, consisting of 64 data points. The isotherms generated are
shown in Figure S21 in the SI. On applying the same sets of
prior schemes are applied to test for the best one when
carrying out AL on CO, in the various MOFs in the next
subsections. Once again, we evaluate their performance using
the same metrics as described for AL in methane and thus
recommend the best prior selection per MOF using the RQ
kernel.

3.4.1. CO, in DUT-32. The two-data prior was the chosen
prior for this adsorbate—adsorbent pair with the lowest MAE
of 6.3 (cm®(stp)/gr framework) while requiring a total of 10
data points to satisfy the AL protocol. The next lowest prior
scheme was the log-spaced prior with 6.38 (cm®(stp)/gr
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Figure 9. Carbon dioxide uptake comparison between GCMC simulation and GP in DUT-32 using the RQ kernel, for three different priors: (a)

boundary-informed prior, (b) log-spaced prior, and (c) two-data prior.
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Figure 10. Carbon dioxide uptake comparison between GCMC simulation and GP in UiO-66 using the RQ kernel for three different priors: (a)
boundary-informed prior, (b) log-spaced prior, and (c) two-data prior.
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Figure 11. Comparison of the GP and GCMC carbon dioxide isotherms for some select MOFs. For visualization purposes, we show three different
pressure ranges for the isotherms: (a) the low-pressure region, (b) the high-pressure regions, and (c) all the pressure ranges used for carbon

dioxide.

framework), and the highest was the boundary-informed prior

with a MAE of 21.9 (cm*(stp)/gr framework. Figure 9a shows
a significant deviation in the isotherms from pressures of 10 to

100 bar. The isotherms for the log-spaced prior in Figures 9b
and 9c show less deviations.
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3.4.2. CO, in UiO-66. For UiO-66, the preferred prior
scheme will be the boundary-informed prior because we
observed a MAE of 1 (cm?(stp)/gr framework using just nine
total data points, as opposed to the log-spaced prior which
produced a MAE of 0.96 (cm®(stp)/gr framework), using 17
total data points. The MAEs as seen are close, hence resulting
in picking the best prior scheme based on the total number of
data points. The isotherms in Figure 10b using the log-spaced
prior are almost perfect, while that of the two-data prior has
deviations at high pressures, with a MAE of 2.7 (cm®(stp)/gr
framework.

The fits of the three prior schemes for the other MOFs are
all shown in the SI. In Figure 11, we show the resulting GP
predicted isotherms using the best prior (symbols) against the
GCMC isotherms (lines) for some select MOF. The
comparison between the GP model and the ground-truth is
excellent, especially considering the limited number of
simulations required for AL. However, for the DUT-49
MOF, we see noticeable deviations in the high-pressure range.

Table 4 shows a summary of all of the MOFs discussed for
the carbon dioxide AL study. From Table 4, the most common

Table 4. Carbon Dioxide AL Summary Showing Errors,
MAE, and Recommended Prior Selection Scheme for All 11
MOFs“

Total Data Points for
different priors

MAE [cm?®/gr framework] for
different priors

MOF BI LS TD BI LS TD
PCN-61 9 17 6 12.26 3.76 7.5
MgMOEF-74 9 13 6 8.18 3.22 9.62
DUT 32 9 15 10 21.9 6.38 6.3
DUT 49 9 13 6 6.18 6.56 15.18
MOF 177 9 15 S 17.7 8.06 12
NU-800 9 18 8 7.86 4.74 7.88
Ui0-66 9 17 S 1 0.96 2.7
ZIF-8 9 17 6 422 1.64 5.66
IRMOF-1 9 17 13 10.58 4.86 4.46
IRMOEF-10 9 18 9 26.2 13.44 13.28
IRMOEF-16 9 17 14 43.2 17.04 10.6

““LS” represents log-spaced, “BI” represents boundary-informed, and

“TD” represents two-data priors. Values shown in bold font represent
the recommended prior for the relevant MOF.

recommendation for prior scheme was the LS prior with five of
the MOFs best modeled with this prior. It is also important to
note the LS prior resulted in more iterations than the
boundary-informed prior, but the primary choice for
recommendation of prior scheme remains the MAE. Despite
this, the results suggest the LS prior is a good choice for other
MOFs studied that may be studied for CO, adsorption not
discussed in this work.

3.5. Hydrogen Isotherms. The hydrogen isotherms were
generated from the GCMC simulations by using the RASPA
code. These simulations were done at 77 K. The pressure
range used in the simulations and both the AL protocol were
from 1075 to 10? bar, consisting of 64 data points. The same
moves and cycles as described in the methodology apply here.
Due to the cwo§enic temperature, we use the Feynman-—
Hibbs correction.” The isotherms generated from the Monte
Carlo simulations are shown in Figure S31 in the SI, in the
order of low, high, and all pressure ranges. Like the AL work
done on previous adsorbates in the various MOFs, we evaluate

their performance using the same metrics as described for AL
in CO, and thus recommend the best prior selection per MOF.
Given the good fits experienced in the previous sections, we
also stick to the use of the RQ kernel for all of the MOFs and
prior schemes.

3.5.1. H, in NU-800. On sampling one additional point to
make seven total data points by the boundary-informed prior
AL protocol, the resulting MAE was S5.58 (cm’(stp)/gr
framework). The two-data prior required a total of five data
points to give a MAE of 30.16 (cm®(stp)/gr framework); this
is backed up from the very significant deviations in the
isotherms at high pressures. The log-spaced prior resulted in a
MAE of 6.1 (cm?(stp)/gr framework) requiring 17 total data
points. Figure 12 shows good fits for the boundary-informed
and the log-spaced priors and a large deviation at pressures of
1—-100 bar for the two-data prior.

3.5.2. Hy in ZIF-8. The isotherms generated from the GP
model are shown in Figure 13. Figure 13a has the boundary-
informed prior showing a significant deviation in the isotherms
from 10 to 100 bar, resulting in a MAE of 5.54 (cm’(stp)/gr
framework). With a MAE of 3.72 (cm’(stp)/gr framework),
the isotherms for the log-spaced prior in Figure 13b were much
better. Very high deviations occur in Figure 13c, and this is
supported by the MAE of 11.58 (cm?(stp)/gr framework). For
this adsorbate—adsorbent pair, we recommend the use of the
log-spaced prior.

We also show the GP predicted uptake, compared with the
GCMC isotherms for some select MOFs in Figure 14. Like our
findings for the GP models for N,, CH,, and CO,, we observe
accurate predictions from the GP models for H, when
compared with the ground-truth data. The recommendations
and outcomes for all the MOFs are discussed in this paper and
in the SI are presented in Table 5. We observe that the
boundary-informed prior was the most frequently recom-
mended selection scheme. Thus, this is a recommended
prerequisite for H, adsorption in MOFs.

Table S shows a summary of all of the MOFs discussed for
the hydrogen AL study. The isotherms for 10 other MOFs are
shown in the SI. From Table 5, the most common
recommendation for the prior scheme was the BI prior and
thus is a safe prior choice for all other MOFs studied for
hydrogen adsorption not discussed in this study.

4. CONCLUSIONS

As shown by the results from the adsorbate—adsorbent pairs
discussed in this paper, the AL method proves to be an
efficient way of selecting which GCMC simulations to perform
to construct surrogate models using GPs. For nitrogen, we
found that the highest number of data points required to
accurately describe and predict isotherms across a range of
MOFs is 15 out of 46 total data points, using the two data
points prior in ZIF-8. Similarly, for methane, the highest
number of data points was 26 out of 64, using the two-data
prior in MOF-177; however, the recommended prior selection
scheme for this MOF only required 16 total data points. The
highest number of data points for carbon dioxide isotherms
was 18 out of 64. The isotherms prove that with ~20%—30%
of GCMC simulations as intelligently selected by the AL
criteria, we can generate almost perfect isotherms compared to
the ground-truth data of larger GCMC simulation data-points
generated (46 in the case of N, and 64 in the case of CH,,
CO,, and H,).
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Figure 12. Hydrogen uptake comparison between GCMC simulation and GP in NU-800 using the RQ kernel for three different priors: (a)
boundary-informed prior, (b) log-spaced prior, and (c) two-data prior.
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Figure 13. Hydrogen uptake comparison between GCMC simulation and GP in ZIF-8 using the RQ kernel, for three different priors: (a)
boundary-informed prior, (b) log-spaced prior, and (c) two-data prior.
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Table 5. Hydrogen AL Summary Showing Errors, MAE, and
Recommended Prior Selection Scheme for All 11 MOFs”

Total Data Points for ~ MAE [cm?®/gr framework] for

different priors different priors

MOEF BI LS TD BI LS TD
PCN-61 9 15 S 9.34 5.04 17.84
MgMOE-74 9 13 S 5.32 5.6 25.2
DUT 32 9 14 N 6.18 7.02 15.22
DUT 49 9 14 7 10.02 6.62 6.52
MOF 177 9 14 11 6.96 7.32 7.64
NU-800 9 17 N 5.58 6.3 30.16
UiO-66 9 27 6 2.04 2.08 20.48
ZIF-8 9 13 6 5.54 3.72 11.58
IRMOF-1 9 18 9 11.78 6.62 21.64
IRMOE-10 9 15 9 7.52 6.22 6.08
IRMOEF-16 9 13 9 16.46 14.18 9.84

a«

LS” represents log-spaced, “BI” represents boundary-informed, and
“TD” represents two-data priors. Values shown in bold font represent
the recommended prior for the relevant MOF.

With AL, computational resources can be effectively saved as
the GP model assists in identifying the specific pressure points
necessary to carry out the GCMC simulation. AL enables the
selection of informative data points that contribute the most to
reducing uncertainty in the predictions. By intelligent selection
of these pressure points, the need for extensive and
computationally expensive GCMC simulations across the
entire pressure range can be minimized. This targeted
approach optimizes computational resources by focusing on
the most informative regions of the pressure space, resulting in
more efficient and accurate predictions of the adsorption
behavior in MOFs.

Our results for nitrogen indicate that the AL schemes are
effective and can be applied to determine the surface areas of
various types of MOFs. It is important to note that only three

13021

prior selection schemes were used in this study; thus, further
exploration of different schemes and AL kernels is recom-
mended. Future research will also focus on other sets of MOFs,
and isotherm types not examined in this study. However, from
this study, we can infer that the boundary informed, or log
space prior scheme, will be a good starting point for these
cases.
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Data Availability Statement

The code, algorithms, and adsorption data can be accessed at
the following GitHub link: https://github.com/theOsaro]/
ActivelearningforMOFs. In addition to the MOF AL algorithm
process, the repository also contains data from simulations that
were conducted as well as the data generated by the AL
algorithm for the recommended prior scheme.
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