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Abstract

This work is devoted to the analysis of a numerical approximation to a general
multi-dimensional kinetic Fokker–Planck (FP) equation with reaction and source terms
and subject to specular reflection boundary conditions. This numerical approxima-
tion is based on splitting the kinetic FP model into a transport equation in space
and a FP diffusive model in the velocity coordinates. The former is discretized by a
Kurganov-Tadmor finite-volume scheme, while the latter is approximated by a gen-
eralized Chang & Cooper finite-volume method. Time integration is performed by a
strong stability-preserving Runge-Kutta method where the reaction and source terms
are accommodated with a Strang splitting technique and the use of a Magnus inte-
grator. It is proved that the resulting numerical solution method is conservative and
positive preserving, in the case where the continuous model has these properties, and it
is second-order accurate in time and in phase space in the L1-norm, subject to a CFL
condition. Results of numerical experiments are reported that validate these theoretical
results.
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1 Introduction
The kinetic Fokker–Planck (FP) model is a fundamental building block in kinetic the-

ory and a central topic, in combination with other equations, in plasma physics simulation.
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Therefore it is important to develop approximation schemes for the FP equation with guaran-
teed accuracy that are valid in realistic settings that include boundary conditions of relevance
in applications.

The purpose of this work is to investigate a class of approximation schemes for a large
family of kinetic FP equations with the following structure

∂t f + v · ∇x f = ∇v · (A∇vf) + B · ∇vf + C f + S, (1)

for the density function f = f(x, v, t), with (x, v, t) ∈ Ω×Rd× (0, T ), where Ω is a bounded
domain in Rd with boundary ∂Ω ∈ C1,1, and T > 0. Further, we have A = A(x, v, t) ∈ Rd×d

is a real symmetric positive-definite differentiable matrix function, B = B(x, v, t) ∈ Rd is a
real differentiable vector function, and C = C(x, v, t) and S = S(x, v, t) are smooth scalar
functions.

In order to formulate the boundary conditions of interest, we make the following prepara-
tion. We assume

∫
Ω
x dx = 0. Let νx denote the unit outward vector of ∂Ω at x. We denote

with O = Ω × Rd the phase-space domain and Ξ = ∂Ω × Rd is the phase-space boundary.
We split Ξ = Ξ+ ∪ Ξ− ∪ Ξ0, where Ξ+ and Ξ− represent the outgoing and incoming part of
the phase boundary, respectively, and Ξ0 denotes the grazing part as follows:

Ξ± = {(x, v) ∈ ∂Ω× Rd : ± νx · v > 0}, (2)
Ξ0 = {(x, v) ∈ ∂Ω× Rd : νx · v = 0}. (3)

Further, we define Σ±
T = Ξ± × [0, T ] and OT = O × [0, T ].

Specular reflection boundary conditions are defined as follows:

f(x, v, t) = f(x, v − 2 (νx · v) νx, t), in Σ−
T . (4)

Next, we report the main results of a recent work by Y. Zhu [36] concerning well-posedness
and regularity of solutions to initial-value problems governed by (1) with boundary conditions
(4). Following [36], we define the function ⟨·⟩ = (1+ | · |2)1/2, and assume that there is some
constant Λ > 1 such that, in Ω× Rd × (0, T ), it holds

Λ−1|χ|2 ≤ Aχ · χ ≤ Λ|χ|2, χ ∈ Rd ; |B|+ |C| ≤ Λ. (5)

We have the following result [36, Theorem 1.1]:

Theorem 1.1. Let the domain Ω be bounded with ∂Ω ∈ C1,1, and assume that (5) holds.
Then

• (Well-posedness) For any integer m ≥ 0, we have some constant l > 0 depending
only on d, m such that, for any given functions f0, S, satisfying ⟨v⟩l f0 ∈ L∞(O),
⟨v⟩l S ∈ L∞(OT ), there exists a unique bounded weak solution f to (1) such that
f(x, v, 0) = f0(x, v) and satisfying the boundary conditions (4). Moreover, there is
some constant c > 0 depending only on d, T,Λ,m,Ω such that the following holds

∥ ⟨v⟩m f∥L∞(OT ) ≤ c
(
∥ ⟨v⟩l S∥L∞(OT ) + ∥ ⟨v⟩l f0∥L∞(O)

)
;
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• (Hölder regularity) If, additionally, f0 ∈ Cβ(O) with β ∈ (0, 1], and f0 satisfies (4),
then there are some constants α ∈ (0, 1) and c′ > 0, depending only on d, T,Λ,m,Ω, β
such that the following holds

∥ ⟨v⟩m f∥L∞(OT ) + [f ]Cα(OT ) ≤ c′
(
∥ ⟨v⟩l S∥L∞(OT ) + ∥ ⟨v⟩l f0∥L∞(O) + [f0]Cβ(O)

)
.

We also refer to [2, 35, 36] for a review and up-to-date list of references concerning the
analysis and properties of the kinetic FP equation. In particular, we mention the fact that
(1) with sufficiently regular coefficients has the hypoellipticity property.

We remark the novelty of our work in formulating a class of approximation schemes for
a general multi-dimensional kinetic Fokker–Planck (FP) equation with reaction and source
terms and subject to specular reflection boundary conditions, and in proving second-order
accuracy of the proposed scheme together with its ability, in the appropriate setting, to
preserve positivity and conservativeness. In comparison, previous related results, mentioned
below, have limited applicability for various reasons: the absence of one set of phase space
coordinates, simpler boundary conditions, or no theoretical convergence proofs.

In the next section, we give an account of applications that correspond to different choices
of the functions A, B, C and S defining our FP model. In Section 3, we provide a review
of recent works on analysis of approximation methods for similar models, pointing out the
larger applicability of our results. In Section 4, we define a finite-volume method with
Kurganov-Tadmor (KT) flux for the advection-in-space term of the kinetic FP equation.
Section 5 is devoted to the development and analysis of a generalized Chang & Cooper (CC)
finite-volume method for approximation of the differential operator in the velocity space. In
Section 6, we illustrate a strong stability-preserving Runge-Kutta method and the use of a
Strang splitting (SP) technique and Magnus integration to implement reaction and source
terms. Section 7 presents the complete numerical analysis of the proposed strong stability-
preserving Runge-Kutta method of second order (SSPRK2), with KT space and CC velocity
fluxes and Strang splitting technique that we call the SSPRK2-KT-CC-SP method. We prove
that this method is conservative and positive preserving in the appropriate cases. Further,
we prove that subject to a CFL condition, the accuracy of the approximation provided by
the SSPRK2-KT-CC-SP is stable and second-order accurate in time and in phase space. In
Section 8, we present results of experiments demonstrating the validity of the theoretical
results presented in this paper. A section of conclusion completes this work.

2 Applications
The kinetic Fokker–Planck equation (1) includes many specific cases of great interest.

In particular, choosing B = µ v, C = µ, A = σ2/2 with the appropriate choice of the
parameters µ and σ (we write the case d = 1), we obtain the Fokker–Planck equation
with Lenard–Bernstein collision operator [25]. A similar FP model is obtained following P.
Langevin [24] approach to write the dynamics of a particle subject to a conservative force
F (x), linear drag −µ v, and to a random complementary force known as Brownian noise. In
modern notation, we have the following stochastic differential equation (SDE):

dX(t) = V (t) dt,

dV (t) = [F (X(t))− µV (t)] dt+ σ dW (t),
(6)
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where W (t) denotes the Wiener process satisfying < W (t)W (t′) >= min(t, t′). This SDE
model is also an instance of stochastic dissipative Hamiltonian systems; see, e.g., [21].

In correspondence to the stochastic process modelled by (6), f represents the probability
density function (PDF) of the dynamical state of a particle in the phase space. In this case,
the evolution of f is governed by the following FP equation:

∂t f + v · ∇x f + F (x) · ∇vf = µ∇v(v f) +
σ2

2
∇2

vf. (7)

Notice that this FP equation (7) satisfies the positivity property: if f(x, 0) ≥ 0 then
f(x, v, t) ≥ 0, for all t > 0; and the property of conservation of total probability, that
is,
∫
O f(x, v, t) dvdx =

∫
O f(x, v, 0) dvdx, for all t > 0. Also, if F corresponds to the

minus gradient of a potential, F (x) = −∇xU(x), and if U is a confining potential such
as U(x) ≥ c1|x|2 − c2, for some c1, c2 > 0, then the solution to (7) with σ =

√
2 in the

unbounded phase space converges exponentially fast in time to the stationary equilibrium
solution:

feq(x, v) = c exp
[
− µ

(
|v|2

2
+ U(x)

)]
, (8)

where c is a normalization constant; see, e.g., [18] for more details.
In the case of bounded Ω, the convergence to equilibrium of FP solutions has been

analysed in [1, 7] in the case of periodic and of specular reflection boundary conditions. For
this latter case, we can consider the FP equation (7) with U(x) = 1

2
k x2, and recognize that

(8) is the equilibrium solution.
Another important motivation for our numerical analysis of the general kinetic FP model

given by (1) is that it includes the case of adjoint FP models arising in optimal control prob-
lems with ensemble cost functionals [3, 4, 5, 9, 10]. An ensemble cost functional corresponds
to an expected value functional in statistical mechanics as follows:

J(f, u) :=

∫ T

0

∫
O
ℓ(t, x, v, u) f(x, v, t) dx dv dt+

∫
O
γ(x, v)f(x, v, T ) dx dv, (9)

where ℓ and γ are appropriately chosen functions depending on the purpose and cost of
the control function u = u(x, v, t), which may enter as a force in the drift and/or as a
modulating function of the diffusion coefficient in the governing FP model. This is the
setting that appears in, e.g., stochastic linear-quadratic optimal control problems [34].

3 Approximation methods
In order to facilitate our discussion, we rewrite (1) in a different form by overloading the

function C as (C − ∇v · B) of the functions of the original formulation. With this setting,
our FP model is given by

∂t f = ∇v ·
(
A∇vf +B f

)
+∇x ·

(
− v f

)
+ C f + S. (10)

We see that if a stationary equilibrium solution exists that fulfils the given boundary con-
ditions, assuming that C and S do not depend on time, then it must be a solution of the
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hypoelliptic equation resulting from (10) by dropping the time derivative term; see [1]. We
have

−∇v ·
(
A∇vf +B f

)
+∇x ·

(
v f
)
= C f + S, (x, v) ∈ O, (11)

with specular reflection boundary conditions (4).
The analysis of steady states plays an important role in the development of approximation

schemes that have the well balanced (WB) property, that is, the ability to achieve and
maintain these states with some level of accuracy. Concerning the diffusive part of the
kinetic FP equation, it has been shown that approximation schemes with the WB property
can be formulated based on the exponential fitting approach [28]. Among them, we find the
class of numerical schemes proposed in [12, 19, 30]. We refer to [17] for a detailed discussion
of these schemes in a larger context of multi-scale approximation methods for kinetic models.

However, while the construction of exponential fitting schemes is well understood in dif-
fusive FP models, this approach does not cover the full phase-space kinetic case, where the
desired scheme should provide a uniformly accurate approximation of the hypoelliptic prob-
lem (11). This is a challenging topic on itself with a scarce literature of only few contribution
in numerical analysis, see, e.g., [11, 27], where it is clearly shown that monotonicity is an
essential property in order to construct convergent schemes. In particular, based on [11, 12]
one can proceed with the construction of monotone and well balanced schemes based on
operator splitting techniques where our kinetic FP equation is decomposed into two equa-
tions: a transport equation in space and a diffusive FP model in velocity. In fact, this is
a standard approach in plasma physics simulation [32]; see, in particular, [6] for an early
contribution in this field that combines the Chang & Cooper exponential fitting scheme [12]
with a semi-lagrangian approach [14]. Nowadays, semi-lagrangian schemes appear to be
the method of choice in the solution of the Vlasov equation, and many contribution in the
theoretical analysis and application in this field can be found; see, e.g., [13, 33] and refer-
ences therein. On the other hand, already in [11], we find a finite-volume approach to the
advection term of an hypoelliptic equation. In fact, semi-lagrangian schemes and eulerian
finite-volume schemes have many similarities and produce similar results [23], and in both
frameworks one can achieve the desired properties of monotonicity, positivity, and higher
than first-order accuracy.

We focus on a finite-volume scheme for the advection term in the space coordinates
∇x ·

(
− v f

)
in (10), and on a generalized Chang & Cooper finite-volume scheme for the

advection-diffusion term in the velocity coordinates. Further, we treat the term C f + S as
a source and follow a Strang splitting approach for its approximation. Notice that we can
solve (10) also using the finite-volume method proposed in [22].

We remark that, similar to [22], a finite volume scheme for nonlinear degenerate diffusive
models in one set of coordinates in a bounded domain is discussed in [8]. Also in this refer-
ence, we find a comparison with the Scharfetter-Gummel scheme (equivalent to the Chang
& Cooper scheme) showing that the two approaches have almost identical computational
performance if the advection-diffusion term is not degenerate. Specifically, second-order
convergence in the L1 norm is demonstrated numerically, but no theoretical proof is given
for this result. In [8] homogeneous Neumann, Dirichlet, and periodic boundary conditions
are considered.

We also would like to mention the work [15], where a one-dimensional kinetic FP equation
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with constant coefficients is analyzed with a focus on exponential convergence to equilibrium
solutions. In this case, a first-order finite-volume approximation is considered. In [15] pe-
riodic boundary conditions in space are chosen, whereas the velocity domain is a bounded
symmetric interval of the form (−vmax, vmax) for some vmax > 0, and flux-zero boundary
conditions are imposed in this direction. In our numerical analysis and in numerical ex-
periments, we also consider a bounded symmetric velocity domain and flux-zero boundary
conditions. This choice seems consistent with the purpose of guaranteeing convergence to
equilibrium solutions of our model that are, in the cases considered in our work, similar to
(8).

In our numerical analysis, we consider (10) in OT = Ω×Θ×[0, T ], where Ω = Πd
i=1(−Li, Li)

and Θ = Πd
j=1(−Vj, Vj) are rectangular domains in Rd for the space and velocity coordi-

nates, respectively; we denote x = (x1, . . . , xd) and v = (v1, . . . , vd). Further, we partition
Ω̄ and Θ̄ in elementary hyper-cells assuming uniform subdivisions of size dxi = 2Li/Ni

and dvj = 2Vj/Mj, Ni and Mj positive even integers, i, j = 1, . . . , d, in the space and ve-
locity coordinates, respectively. We also introduce the multi-indexes i = (i1, . . . , id) and
j = (j1, . . . , jd); however, where no confusion may arise, we use the indexes i and j to denote
any of the ik and jk, k = 1, . . . , d.

In each coordinate direction xi, we have Ni subdivisions that define the edges of the
cells that partition our computational domain. The cell centres have coordinates xni

i =
−Li + (ni + 1/2) dxi, ni = 0, . . . , Ni − 1, and similarly in the velocity coordinates we have
v
mj

j = −Vj+(mj+1/2) dvj, mj = 0, . . . ,Mj−1. We define the multi-indexes n = (n1, . . . , nd)
and m = (m1, . . . ,md) and focus on cell-centred finite-volume schemes, where the cell with
multi-indexes n, m is the cell given by

ωn,m :=
{
xn ∈ Ω, vm ∈ Θ

∣∣∣ xn ∈ Πd
i=1 [x

ni
i − dxi/2, x

ni
i + dxi/2] ,

vm ∈ Πd
j=1

[
v
mj

j − dvj/2, v
mj

j + dvj/2
] }
. (12)

The volume of this cell is given by |ωn,m| = Πd
i=1dxi Π

d
j=1dvj.

Further, the time interval [0, T ] is divided in Nt > 1 subintervals of length dt and the
points tk are given by

tk := k dt, k = 0, . . . , Nt, ∆t :=
T

Nt

.

In this setting, the cell average of a function f defined on the phase space, on the cell
ωn,m at time tk, is given by

fk
n,m =

1

|ωn,m|

∫
ωn,m

f(x, v, tk) dx dv. (13)

We use this notation to represent numerical solutions on our computational grid made by
the ordered union of all cells.

4 A finite-volume method for advection
For (10), we discuss a finite-volume scheme for the advection term

∇x ·
(
− v f

)
. (14)
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In order to ease notation, we consider (14) at a point of phase space (xn, vm, t) fixed,
and define a numerical approximation in the direction of the xi coordinates. In the direction
xi, the resulting scheme involves the intervals

[
xni−1
i , xni−1

i + dxi
]

and [xni
i , x

ni
i + dxi]. For

simplicity, in the following we write in short fi,ni+1 = f(xni
i +dxi, v, t) and fi,ni

= f(xni
i , v, t).

We define the flux function H = −vf . Then the finite-volume approximation to (14) at
(x, v, t) can be written as follows:

∇x ·
(
− v f

)
≈

d∑
i=1

1

dxi

[
Hi,ni+1/2 −Hi,ni−1/2

]
,

where in the right-hand side the differences of flux at cell faces appear. Specifically, we use
the following flux by Kurganov and Tadmor (KT) [22] for H as follows:

Hi,ni+1/2(f
+, f−; t) :=

vmi
i (f+

i,ni+1/2 + f−
i,ni+1/2)

2
−

Vi,ni+1/2

2

[
f+
i,ni+1/2 − f−

i,ni+1/2

]
. (15)

The so-called local speed Vi,ni+1/2 is given by

Vi,ni+1/2(t) = | vmi
i | . (16)

Further, in (15), the approximation of f at the cell edges is given by the intermediate values
obtained with the following formulas

f+
i,ni+1/2 := fi,ni+1 −

dxi
2

(fxi
)i,ni+1, f−

i,ni+1/2 := fi,ni
+
dxi
2

(fxi
)i,ni

, (17)

where (fxi
) denotes the approximation to the partial derivative ∂xi

f obtained with the min-
mod function as follows:

(fxi
)i,ni

(t) = minmod
(
θ
fi,ni

− fi,ni−1

dxi
,
fi,ni+1 − fi,ni−1

2dxi
, θ
fi,ni+1 − fi,ni

dxi

)
, (18)

where θ ∈ [1, 2].
The computation of fluxes for the advection term (14) involves the boundary conditions

on ∂Ω. Let Ξ−
x = {(xn, vm) ∈ ∂Ω×Θ : νx(x

n) · vm < 0} be the part of the inflow boundary,
where νx(xn) is the unit outward normal at xn ∈ ∂Ω. Then the numerical specular boundary
condition is given by

fi,ni
(t) = fi,n′

i
(t), on Ξ−

x × (0, T ), (19)

where fi,n′
i
(t) is the numerical solution at the point (xni

i , v
m − 2νx(x

ni
i )νx(x

ni
i ) · vm) for all t.

5 A generalized Chang & Cooper method
In this section, we develop a generalized Chang & Cooper finite-volume scheme for the

advection-diffusion term in the velocity coordinates. For this purpose, we focus on the
following equation

∂t f = ∇v ·
(
A∇vf +B f

)
. (20)

In this case, a stationary equilibrium configuration would solve the equation A∇vf+B f = 0.
From this equation, we obtain ∇vf = −A−1B f , which holds componentwise in the sense that
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∂vjf = −
(
A−1B

)
j
f . Notice that, in order to ease notation, we consider (20) at a point of

phase space (xn, vm, t) fixed, and discuss a numerical approximation in the direction of any of
the vj coordinates, and considering the intervals

[
v
mj−1
j , v

mj−1
j + dvj

]
and

[
v
mj

j , v
mj

j + dvj
]
.

In this setting, by integration and using midpoint quadrature, we obtain an estimate of the
variation of f along the vj coordinate as follows:

f(xn, v
mj

j + dvj, t) = f(xn, v
mj

j , t) exp
(
−
(
A−1B

)mj+1/2

j
dvj
)
. (21)

For simplicity, in the following we write in short fj,mj+1 = f(xn, v
mj

j + dvj, t) and fj,mj
=

f(xn, v
mj

j , t).
In the unsteady case, by defining the flux function F = A∇vf + B f , we can write the

semidiscrete finite-volume approximation to (20) at (x, v, t) as follows:

∂t f ≈
d∑

j=1

1

dvj

[
Fj,mj+1/2 − Fj,mj−1/2

]
,

where in the right-hand side the differences of fluxes at cell faces appear.
Next, we discuss how to approximate these fluxes. For this purpose, notice the difficulty

of evaluating A∇vf at the cell face mj + 1/2 in all velocity directions but one. Therefore
we proceed with a splitting of A that allows to consider only ∂vjf at the cell face mj + 1/2.
Let A = D +N where D represents the diagonal part of A. We have

F = A∇vf +B f = D∇vf +N ∇vf +B f.

Next, we use the relation that is valid at equilibrium, i.e. ∇vf = −A−1B f , and obtain

F = D∇vf + (I −N A−1)B f = D∇vf +DA−1B f.

In the following, we denote Γ = DA−1B.
Now, we can write the flux at the cell face mj + 1/2 as follows

Fj,mj+1/2 = Dj,mj+1/2 ∂vjf + Γj,mj+1/2 fj,mj+1/2,

where we define fj,mj+1/2 = (1− δj,mj
) fj,mj+1 + δj,mj

fj,mj
, as in [12]. Further, we introduce

the following second-order approximation

∂vjf ≈
fj,mj+1 − fj,mj

dvj
.

Consequently, we obtain

Fj,mj+1/2 =

(
Dj,mj+1/2

dvj
+ Γj,mj+1/2 (1− δj,mj

)

)
fj,mj+1 −

(
Dj,mj+1/2

dvj
− Γj,mj+1/2 δj,mj

)
fj.

(22)
From this result, by requiring that the numerical flux is zero at equilibrium, we obtain

fj,mj+1

fj,mj

=

(Dj,mj+1/2

dvj
− Γj,mj+1/2 δj,mj

)
(Dj,mj+1/2

dvj
+ Γj,mj+1/2 (1− δj,mj

)
) .
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On the other hand, at a continuous level, we have obtained
fj,mj+1 = fj,mj

exp
(
−
(
A−1B

)mj+1/2

j
dvj
)
. Therefore by comparison, we have(

Dj,mj+1/2

dvj
− Γj,mj+1/2 δj,mj

)
(

Dj,mj+1/2

dvj
+ Γj,mj+1/2 (1− δj,mj

)
) = exp

(
−
(
A−1B

)mj+1/2

j
dvj
)
.

Further elaboration gives

1−
(
A−1B

)mj+1/2

j
dvj δj,mj

1 +
(
A−1B

)mj+1/2

j
dvj (1− δj,mj

)
= exp

(
−
(
A−1B

)mj+1/2

j
dvj
)
.

We can simplify this result by defining wj,mj
=
(
A−1B

)mj+1/2

j
dvj. We obtain

1− wj,mj
δj,mj

1 + wj,mj
(1− δj,mj

)
= exp

(
− wj,mj

)
,

from which we derive the value of δj as follows

δj,mj
=

1

wj,mj

− 1

ewj,mj − 1
. (23)

This result is formally identical to that given in [12] apart from the fact that wj,mj
is now

defined for the multidimensional case with a general diffusion matrix.
In the present setting, we implement flux-zero boundary conditions that guarantee, in

the absence of reaction and source terms, conservativeness of the total probability. Let
Ξvj = {(xn, vm) ∈ Ω × ∂Θ}. Then the flux-zero boundary condition in the vj direction is
implemented as follows:

Fj,mj+1/2(t) = 0 on Ξvj × (0, T ). (24)

6 Time integration and Strang splitting
In this section, we describe the time discretization scheme to solve our complete kinetic

FP model (10). We start illustrating the case with the kinetic FP model (10) without the
reaction-source term Cf + S. We denote with fk

n,m the corresponding numerical solution at
the grid point (xn, vm, tk).

Our choice of time-integration scheme is the strong stability-preserving Runge-Kutta
method of second order (SSPRK2). In our approach, this method combines the contribution
for the time evolution of the density due to space and velocity fluxes that approximated by
the KT and CC discretization schemes. The result is a fully discrete scheme to solve (10),
which we call the SSPRK2-KT-CC method. This method is given in Algorithm 1.
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Algorithm 1 SSPRK2-KT-CC method
Require: f 0

n,m, n = (n1, · · · , nd), m = (m1, · · · ,md)
Ensure: Solve the FP equation in f as follows
1: Set k = 0
2: while 0 ≤ k < Nt do
3: for 0 < ni < Ni − 1, 0 < mj < Mj − 1, i, j = 1, · · · , d do
4: In (tk, tk+1), compute

f (1)
n,m = fk

n,m +∆t
d∑

i=1

1

dxi

[
Hk

i,ni+1/2 −Hk
i,ni−1/2

]
+∆t

d∑
j=1

1

dvj

[
F k
j,mj+1/2 − F k

j,mj−1/2

]
with initial condition fk

n,m, where Hk
i,ni+1/2, F

k
j,mj+1/2 are computed using (15)-(19)

and (22)-(24), respectively, with fk
n,m at tk.

5: In (tk, tk+1), compute

f (2)
n,m = f (1)

n,m +∆t
d∑

i=1

1

dxi

[
H

(1)
i,ni+1/2 −H

(1)
i,ni−1/2

]
+∆t

d∑
j=1

1

dvj

[
F

(1)
j,mj+1/2 − F

(1)
j,mj−1/2

]
with initial condition f

(1)
n,m, where H(1)

i,ni+1/2, F
(1)
j,mj+1/2 are computed using (15)-(19)

and (22)-(24), respectively, with f
(1)
n,m at tk.

6: Time step update: fk+1
n,m = 1

2
fk
n,m + 1

2
f
(2)
n,m.

7: end for
8: k = k + 1
9: end while

10: return fk

Next, we consider the presence of the reaction-source term C f + S and use a Strang
splitting approach for its approximation. Without loss of generality, we denote fk

n,m to be
the numerical solution of the kinetic FP model (10) at the grid point (xn, vm, tk). The
splitting scheme starts with the application of one step of Algorithm 1 to numerically solve

∂t f = ∇v ·
(
A∇vf +B f

)
+∇x ·

(
− v f

)
(25)

in (tk, tk+1/2) with initial condition fk
n,m. We denote this solution as f [1]

n,m. Thereafter, in the
second step, we solve

∂t f = Cf + S, (26)

in (tk, tk+1), with the initial condition f
[1]
n,m. For the solution of this equation, we use a

Magnus-type exponential integrator [16]:

f [2]
n,m = exp(∆t Ck+1/2

n,m ) f [1]
n,m +∆t ϕ(∆t Ck+1/2

n,m )Sk+1/2
n,m (27)

where Ck+1/2
n,m , S

k+1/2
n,m are the functions C, S evaluated at the numerical grid point (xn, vm, tk+

∆t/2) and

ϕ(∆t Ck+1/2
n,m ) =

1

∆t

∫ ∆t

0

exp[(∆t− s)Ck+1/2
n,m )] ds.

10



In the third final step, we again solve (25) using Algorithm 1 in (tk+1/2, tk+1) with the initial
condition f

[2]
n,m, to obtain fk+1

n,m . The complete algorithm, called SSPRK2-KT-CC Strang
splitting (SSPRK2-KT-CC-SP) method is presented in Algorithm 2.

Algorithm 2 SSPRK2-KT-CC-SP method
Require: f 0

n,m, n = (n1, · · · , nd), m = (m1, · · · ,md)
Ensure: Solve FP equation in f
1: k = 0
2: while 0 ≤ k < Nt do
3: for 0 < ni < Ni − 1, 0 < mj < Mj − 1, i, j = 1, · · · , d do
4: Apply one temporal step of Algorithm 1 to solve (25) in (tk, tk+1/2), with input fk

n,m.
Denote the solution f

[1]
n,m.

5: In (tk, tk+1), solve (26), with input f [1]
n,m, using a Magnus-type integrator (27). De-

note the solution as f [2]
n,m.

6: Apply one temporal step of Algorithm 1 to solve (25) in (tk+1/2, tk+1), with input
f
[2]
n,m. Denote the solution fk+1

n,m .
7: end for
8: k = k + 1
9: end while

10: return fk

We remark that Algorithm 2 refers to a Strang splitting scheme comprising of three
time-step updates. In two of those steps, we use Algorithm 1 for the implementation of the
SSPRK2-KT-CC scheme, which uses 2 time-step updates. This is why we have a different
notation for the outputs f (1) from Algorithm 1 and f [1] from Algorithm 2.

7 Analysis of the SSPRK2-KT-CC-SP method
In this section, we discuss some properties of the SSPRK2-KT-CC-SP method for solving

the following kinetic FP problem:

∂t f = ∇v ·
(
A∇vf +B f

)
+∇x ·

(
− v f

)
+ C f + S, in Ω×Θ× (0, T ),

f(x, v, 0) = f0(x, v), in Ω×Θ,

f(x, v, t) = f(x, v − 2 (νx · v) νx, t), on Ξ−
x × (0, T ),

A (∇vf · νv) + (B · νv) f = 0 on Ξvj × (0, T ).

(28)

We remark that our kinetic FP model without the reaction-source term corresponds to a
general linear FP equation governing the evolution of the PDF of a stochastic drift-diffusion
model. Therefore, in this setting, we need to prove that our SSPRK2-KT-CC-SP method
guarantees conservativeness of the total probability and non-negativity of the numerical
solution in the case when C = 0, S = 0, provided that the initial data is a PDF. These
properties are stated in the following lemmas.
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Lemma 7.1 (Conservativeness). The SSPRK2-KT-CC-SP scheme is conservative for (28)
when C = 0, S = 0 in the sense that the following holds:∑

n∈N

∑
m∈M

fk
n,m =

∑
n∈N

∑
m∈M

f 0
n,m,

where N = {0, · · · , N1−1}×· · · {0, · · · , Nd−1}, M = {0, · · · ,M1−1}×· · · {0, · · · ,Md−1},
and thus, the summations are taken over all possible d− tuplets for n,m.

Proof. Notice that, in the case C = 0 and S = 0, the SSPRK2-KT-CC-SP reduces to the
SSPRK2-KT-CC scheme given in Algorithm 1. Summing over all n,m in Step 4 of Algorithm
1, we obtain

∑
n

∑
m

f
(1)
n,m − fk

n,m

∆t

=
∑
n

∑
m

(
d∑

i=1

1

dxi

[
Hk

i,ni+1/2 −Hk
i,ni−1/2

])
+
∑
n

∑
m

(
d∑

j=1

1

dvj

[
F k
j,mj+1/2 − F k

j,mj−1/2

])
,

=
∑
m

(∑
n

d∑
i=1

1

dxi

[
Hk

i,ni+1/2 −Hk
i,ni−1/2

])
+
∑
n

(∑
m

d∑
j=1

1

dvj

[
F k
j,mj+1/2 − F k

j,mj−1/2

])
,

=
∑
m

(
d∑

i=1

∑
ni

1

dxi

[
Hk

i,ni+1/2 −Hk
i,ni−1/2

])
+
∑
n

 d∑
j=1

∑
mj

1

dvj

[
F k
j,mj+1/2 − F k

j,mj−1/2

] ,

=
∑
m

(
d∑

i=1

∑
ni

1

dxi

[
Hk

i,ni+1/2 −Hk
i,ni−1/2

])
, (by the no-flux bc in (24)) ,

=
∑
m

(
d∑

i=1

1

dxi

[
Hk

i,Ni−1/2 −Hk
i,−1/2

])
(29)

Now, consider ∑
m

Hk
i,−1/2 =

∑
m:νx(x0

i )·vm<0

Hk
i,−1/2 +

∑
m:νx(x0

i )·vm>0

Hk
i,−1/2,

where Hk
i,−1/2 is evaluated at (xni

i , v
m, tk). Let (vm)′ = vm − 2νx(x

ni
i )νx(x

ni
i ) · vm. Since

v
mj

j = −(vmj)′j, the discrete specular boundary conditions imply that Hk
i,−1/2 = −Hk

i,(−1/2)′

for all m : νx(x
0
i ) · vm < 0, where Hk

i,(−1/2)′ is evaluated at (xni
i , (v

m)′, tk). We also have∑
m:νx(x0

i )·vm>0

Hk
i,−1/2 =

∑
m:νx(x0

i )·vm<0

Hk
i,(−1/2)′ .

This implies
∑

mH
k
i,−1/2 = 0. In a similar way,

∑
mH

k
i,Ni−1/2 = 0. This gives us∑

n

∑
m

f (1)
n,m =

∑
n

∑
m

fk
n,m. (30)
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In a similar way, ∑
n

∑
m

fk+1
n,m =

∑
n

∑
m

f (1)
n,m. (31)

Thus, we have ∑
n

∑
m

fk+1
n,m =

∑
n

∑
m

fk
n,m, k = 0, . . . , Nt − 1, (32)

which proves that the SSPRK2-KT-CC scheme is conservative.

Next, we show that the SSPRK2-KT-CC-SP scheme is positive preserving under the
assumption that S ≥ 0. For the discussion that follows, we define

λxi
=

∆t

dxi
, λvj =

∆t

dvj

We assume that the time-step size ∆t satisfies the following CFL conditions:

λxi
∥v∥L∞

T (L∞(Ω))d ≤
1

4d
, (33)

λvj
∥D∥∞
dvj

[
max
mj ,k

(
wj,mj ,k

exp(wj,mj ,k)− 1

)
+max

mj ,k

(
wj,mj ,k exp(wj,mj ,k)

exp(wj,mj ,k)− 1

)]
≤ 1

2d
.

Lemma 7.2 (Positivity). Let the discrete initial condition f 0
n,m ≥ 0 and S ≥ 0. Then the

numerical solution fk
n,m of (28), obtained using the SSPRK2-KT-CC-SP scheme, is nonneg-

ative for all n ∈ N , m ∈ M, k = 1, · · · , Nt, under the CFL condition (33).

Proof. For a fixed 0 ≤ k < Nt, let fk
n,m ≥ 0. We need to show that fk+1

n,m ≥ 0 for all
n ∈ N , m ∈ M. Notice that the SSPRK2-KT-CC-SP scheme, given in Algorithm 2, is a
combination of the SSPRK2-KT-CC scheme, given in Algorithm 1, and the Magnus-type
integrator scheme, given in (27). We will show that the solution obtained using both these
schemes are nonnegative. To show the positivity of the SSPRK2-KT-CC scheme, we again
note that it comprises of a two-step Euler scheme. In the first step, we obtain f (1) from fk

and in the next step, we obtain fk+1 from f (1). Thus, it is enough to show that the solution
from the first Euler step, given by f (1) is nonnegative. A similar analysis will follow for the
second step to conclude that fk+1 is non-negative.

Now, using the fact that

fk
n,m =

d∑
i=1

1

2d
fk
n,m +

d∑
j=1

1

2d
fk
n,m,

the first Euler step of the SSPRK2-KT-CC scheme can be written as follows:

f (1)
n,m =

d∑
i=1

(
1

2d
fk
n,m + λxi

[
Hk

i,ni+1/2 −Hk
i,ni−1/2

])
+

d∑
j=1

(
1

2d
fk
n,m + λvj

[
F k
j,mj+1/2 − F k

j,mj−1/2

])
.
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For each 1 ≤ i, j ≤ d, we have
1

2d
fk
n,m+λxi

[
Hk

i,ni+1/2 −Hk
i,ni−1/2

]
=
λxi

2

(
|vmi

i | − vmi
i

)
f+
i,ni+1/2,k +

λxi

2

(
|vmi

i |+ vmi
i

)
f−
i,ni−1/2,k[ 1

4d
− λxi

2

(
|vmi

i |+ vmi
i

)]
f−
i,ni+1/2,k +

[ 1

4d
− λxi

2

(
|vmi

i | − vmi
i

)]
f+
i,ni−1/2,k,

(34)
and

1

2d
fk
n,m + λvj

[
F k
j,mj+1/2 − F k

j,mj−1/2

]
= λvj

[
Dj,mj+1/2,k

dvj
+ Γj,mj+1/2,k(1− δj,mj ,k)

]
fj,mj+1,k

+

(
1

2d
− λvj

[
Dj,mj+1/2,k

dvj
− Γj,mj+1/2,kδj,mj ,k +

Dj,mj−1/2,k

dvj
+ Γj,mj−1/2,k(1− δj,mj−1,k)

])
fj,mj ,k

+λvj

[
Dj,mj−1/2,k

dvj
− Γj,mj−1/2,kδj,mj−1,k

]
fj,mj−1,k,

(35)
where all discrete quantities on the right-hand side of these equalities are considered at the
timestep tk.

One can see that the first four terms of the right-hand side in (34) are always nonnegative
provided that f±

i,ni±1/2,j ≥ 0. To show that f±
i,ni±1/2,j ≥ 0, we consider each of the expressions

for (fxi
)i,ni,k in the direction of xi given as in (18). First, we assume that (fxi

)i,ni,k
=

fi,ni,k
−fi,ni−1,k

dxi
, which is one of the possible values of the minmod limiter in (18). This implies

f+
i,ni+1/2,k =

(
1− 1

2

)
fi,ni+1,k +

1

2
fi,ni,k,

which is nonnegative, since fi,ni,k ≥ 0. Next, we have f−
i,ni+1/2,k = fi,ni,k+

dxi

2

[
fi,ni,k

−fi,ni−1,k

dxi

]
.

When fi,ni,k
−fi,ni−1,k

dxi
> 0, we have f−

i,ni+1/2,k > 0. If fi,ni,k
−fi,ni−1,k

dxi
< 0, then by the definition

of the minmod limiter, we have fi,ni,k
−fi,ni−1,k

dxi
≥ fi,ni+1,k−fi,ni,k

dxi
and therefore

f−
i,nii+1/2,k ≥ fi,ni,k +

dxi
2

[
fi,ni+1,k − fi,ni

dxi

]
=
fi,ni+1,k + fi,ni,k

2
≥ 0.

The other cases for the value of (fx)i,ni,k ̸= 0 follow analogously. If (fx)i,ni,k = 0, then
f±
i,ni+1/2,k = fi,ni+1,k ≥ 0. This shows that the first four terms of the right-hand side of (34)

are nonnegative.
To show that the last three terms on the right-hand side of (35) are nonnegative, we first

let η =
Dj,mj+1/2,k

dvj
+ Γj,mj+1/2,k(1− δj,mj ,k). Then we obtain

η =
1

dvj
Dj,mj+1/2,k + Γj,mj+1/2,k

(
1− 1

wj,mj ,k

+
1

exp(wj,mj ,k)− 1

)
,

=
1

dvj
Dj,mj+1/2,k + Γj,mj+1/2,k

1− 1(
A−1B

)mj+1/2,k

j
dvj

+
1

exp(wj,mj ,k)− 1

 ,

=Γj,mj+1/2,k

(
exp(wj,mj ,k)

exp(wj,mj ,k)− 1

)
.
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If Γj,mj+1/2,k > (<)0, exp(wj,mj ,k) − 1 > (<)0, which implies η > 0. If Γj,mj+1/2,k = 0, we

have lim
Γj,mj+1/2,k→0

η =
1

dvj
Γj,mj+1/2,k > 0.

Let γ =
Dj,mj−1/2,k

dvj
− Γj,mj−1/2,kδj,mj ,k. Then we obtain

γ =
Dj,mj−1/2,k

dvj
− Γj,mj−1/2,k

(
1

wj,mj−1,k

− 1

exp(wj,mj−1,k)− 1

)
,

=
Dj,mj−1/2,k

dvj
− Γj,mj−1/2,k

 1(
A−1B

)mj−1/2,k

j
dvj

− 1

exp(wj,mj−1,k)− 1

 ,

=Γj,mj−1/2,k

(
1

exp(wj,mj−1,k)− 1

)
,

which is again positive by similar arguments as provided above.
Finally, we obtain

1

2d
− λvj

[
Dj,mj+1/2,k

dvj
− Γj,mj+1/2,kδj,mj ,k +

Dj,mj−1/2,k

dvj
+ Γj,mj−1/2,k(1− δj,mj−1,k)

]
=

1

2d
− λvj

[
Γj,mj+1/2,k

(
1

exp(wj,mj ,k)− 1

)
+ Γj,mj−1/2,k

(
exp(wj,mj−1,k)

exp(wj,mj−1,k)− 1

)]
.

Notice that x/(exp(x)−1) and x exp(x)/(exp(x)−1) are nonnegative functions for all x ∈ R,
strictly positive if x ̸= 0, and their limiting value is 1 as x goes to 0. We also have

0 ≤
wj,mj ,k

exp(wj,mj ,k)− 1
≤ max

mj ,k

(
wj,mj ,k

exp(wj,mj ,k)− 1

)
and

0 ≤
wj,mj−1,k exp(wj,mj−1,k)

exp(wj,mj−1,k)− 1
≤ max

mj ,k

(
wj,mj ,k exp(wj,mj ,k)

exp(wj,mj ,k)− 1

)
,

for i, j. This fact implies

0 ≤ Γj,mj+1/2,k

(
1

exp(wj,mj ,k)− 1

)
+ Γj,mj−1/2,k

(
exp(wj,mj−1,k)

exp(wj,mj−1,k)− 1

)
≤ 1

dvj minmj ,k

(
D−1

)mj+1/2,k

j

[
max
mj ,k

(
wj,mj ,k

exp(wj,mj ,k)− 1

)
+max

mj ,k

(
wj,mj ,k exp(wj,mj ,k)

exp(wj,mj ,k)− 1

)]
.

Under the CFL condition (33), we have

1

2d
− λvj

[
Dj,mj+1/2,k

dvj
− Γj,mj+1/2,kδj,mj ,k +

Dj,mj−1/2,k

dvj
+ Γj,mj−1/2,k(1− δj,mj−1,k)

]
≥ 0.

Thus, f (1)
n,m is nonnegative. In a similar way, fk+1

n,m is nonnegative. Thus the solution obtained
with the SSPRK2-KT-CC scheme is nonnegative.

15



Notice that the solution obtained with the Magnus-type integrator scheme is also non-
negative provided that S ≥ 0. This is clear since the right-hand side of (27) comprises of
exponentials and the S function, which are nonnegative. All together, it results that the
solution obtained with the SSPRK2-KT-CC-SP scheme is nonnegative.

Next, we aim at estimating the accuracy of the SSPRK2-KT-CC-SP scheme in the L1

norm. The strategy of this analysis is to decompose into three parts the solution error given
by the difference between the solution f to (28) and the numerical solution fk

n,m given by
the SSPRK2-KT-CC-SP scheme, on the space-time grid Ωk

n,m = ∪n,m,k

(
ωn,m, tk

)
; see (12).

In our approach, the first part represents the difference between f and the solution fKTCC

of the semi-discretized (in space) FP problem. The second part represents the difference
between fKTCC and fSP , the latter obtained solving the same semi-discretized FP problem
by repeatedly applying the Strang-Splitting scheme in subsequent time intervals of size ∆t
as in Algorithm 2, but with exact time integration. The third part takes into account the
difference between fSP and fk.

In this framework, the function fKTCC(t) represents the solution to the following system
of ordinary differential equations:

(∂tf)n,m (t) =
d∑

i=1

1

dxi

[
Hi,ni+1/2(t)−Hi,ni−1/2(t)

]
+

d∑
j=1

1

dvj

[
Fj,mj+1/2(t)− Fj,mj−1/2(t)

]
+C(xn, vm, t) fn,m(t) + S(xn, vm, t),

(36)
with initial condition fn,m(0) = f 0

n,m, n ∈ N , m ∈ M, and H and F represent the KT and
CC fluxes, respectively. The KT flux is computed as specified in the following remark.

Remark 7.1. We remark that for the KT flux in (36) we take the derivative stencil for
fxi

corresponding to the choice of the minmod function (18) based on the full numerical
approximation fk

n,m.
For example, consider the full numerical solution at time level k, and given phase-space

grid point, and assume that the following holds:

(fk
xi
)i,ni

= minmod
(
θ
fk
i,ni

− fk
i,ni−1

dxi
,
fk
i,ni+1 − fk

i,ni−1

2dxi
, θ
fk
i,ni+1 − fk

i,ni

dxi

)
,

= θ
fk
i,ni

− fk
i,ni−1

dxi
,

for the chosen θ.
Then, the resulting stencil (fk

xi
)i,ni

= θ
fk
i,ni

−fk
i,ni−1

dxi
will be used for the time interval

(tk−1, tk] and the specific phase-space grid point for computing the KT fluxes of fKTCC and
of fSP .

Based on the decomposition in auxiliary solutions, we focus on the following inequality∥∥f(·, ·, tk)− fk
·,·
∥∥
1,h

≤
∥∥f(·, ·, tk)− fKTCC(t

k)
∥∥
1,h

+
∥∥fKTCC(t

k)− fSP (t
k)
∥∥
1,h

+
∥∥fSP (tk)− fk

·,·
∥∥
1,h
, (37)
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which considers all differences at the time step tk.
We now analyze the individual error terms on the right-hand side of (37), starting with∥∥f(·, ·, tk)− fKTCC(t

k)
∥∥
1,h

. For this purpose, we define the following time-continuous quan-
tities:

T 1
n,m(t) := ∂tf(x

n, vm, t)−
d∑

i=1

1

dxi

[
Hi,ni+1/2(t)−Hi,ni−1/2(t)

]
−

d∑
j=1

1

dvj

[
Fj,mj+1/2(t)− Fj,mj−1/2(t)

]
− Cn,m(t) f(·, ·, t)− Sn,m(t), (38)

e1n,m(t) := f(xn, vm, t)− fKTCC |n,m(t). (39)

We have the following consistency error estimate.

Lemma 7.3. Let f ∈ C1([0, T ];C3(Ω)) be the exact solution of the FP equation (28). Then
the consistency error T 1

n,m(t) satisfies the following estimate

T 1
n,m(t) =

∑
i,j

O(dx2i + dv2j ),

except at the points of extrema of f where T 1
n,m(t) is first order accurate.

Proof. Substituting ∂tf(xn, vm, t) from (28) in the expression of T 1
n,m(t), we obtain

T 1
n,m(t) = ∇v ·

(
A(xn, vm, t)∇vf(x

n, vm, t) + B(xn, vm, t) f(xn, vm, t)
)
+∇x ·

(
− vm f(xn, vm, t)

)
−

d∑
i=1

1

dxi

[
Hi,ni+1/2(t)−Hi,ni−1/2(t)

]
−

d∑
j=1

1

dvj

[
Fj,mj+1/2(t)− Fj,mj−1/2(t)

]
.

Now, using the accuracy result for the KT scheme given by Lemma 3.1 in [4] and the MUSCL
reconstruction error given in Equation (60) in [26, Section 4.4] for the case when κ = 0 (in
this reference), we have

∇x ·
(
− vm f(xn, vm, t)

)
−

d∑
i=1

1

dxi

[
Hi,ni+1/2 −Hi,ni−1/2

]
=

d∑
i=1

O(dx2i ), t > 0

except at the points of the extrema of f , where we have first order accuracy. Furthermore,
the CC scheme accuracy result in [29, Lemma 4.2], gives us the following estimate

∇v ·
(
A(xn, vm, t)∇vf(x

n, vm, t) + B(xn, vm, t) f(xn, vm, t)
)
−

d∑
j=1

1

dvj

[
Fj,mj+1/2(t)− Fj,mj−1/2(t)

]
=

d∑
j=1

O(dv2j ), t > 0.

This proves the claim.
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Now, we can state the following error estimate.

Proposition 1. Let f ∈ C1([0, T ];C3(Ω)) be the exact solution of the FP equation (28) and
let fKTCC be the solution of (36). Then it holds∥∥fKTCC(t

k)− f(·, ·, tk)
∥∥
1,h

=
∑
i,j

O(dx2i + dv2j ),

except at the points of extrema of f , where first-order accuracy holds.

Proof. Notice that, by the definition, e1n,m(t) satisfies

∂te
1
n,m(t) =

d∑
i=1

1

dxi

[
He1

i,ni+1/2(t)−He1

i,ni−1/2(t)
]

+
d∑

j=1

1

dvj

[
F e1

j,mj+1/2(t)− F e1

j,mj−1/2(t)
]
+ Ce1n,m(t) + T 1

n,m(t),

where He1 , F e1 are the continuous time KT and CC fluxes evaluated with e1n,m.
Now, the KT flux H, given in (15), can be written as a combination of the monotonicity

preserving Rusanov flux and the monotonicity preserving MUSCL reconstruction, under the
CFL condition (33). This implies that H is a monotone flux [20]. Moreover, we have that
the two-point CC flux F e1 is a monotone flux, since

∂F e1

∂e1j,mj+1(t)
=
Dj,mj+1/2,k

dvj
+ Γj,mj+1/2,k(1− δj,mj ,k) ≥ 0,

F e1

∂e1j,mj
(t)

= −
Dj,mj+1/2,k

dvj
− Γj,mj+1/2,kδj,mj ,k ≤ 0,

using Lemma 7.2. Thus, we have the following discrete-in-space entropy inequality for the
specific Kruzkov entropy pair (|e1|, sgn(e1)) (see [31, Lemma 2.4]):

∂t|e1n,m(t)| ≤ −
d∑

i=1

1

dxi

(
ΨH,e1

i,ni+1/2(t)−ΨH,e1

i,ni−1/2(t)
)
−

d∑
j=1

1

dvj

(
ΨF,e1

j,mj+1/2(t)−ΨF,e1

j,mj−1/2(t)
)

+C|e1n,m(t)|+ sgn(e1n,m(t)) T 1
n,m(t),

(40)
where ΨH,e1

·,· (t), ΨF,e1

·,· (t) are the conservative entropy fluxes defined as follows

ΨH,e1

i,ni+1/2(t) =
He1

i,ni+1/2(max(e1+(t), 0),max(e1−(t), 0))−He1

i,ni+1/2(min(e1+(t), 0),min(e1−(t), 0))

2

+
He1

i,ni+1/2,j(max(e1+(t), 0),max(e1−(t), 0))−He1

i,ni+1/2(min(e1+(t), 0),min(e1−(t), 0))

2
,

ΨF,e1

j,mj+1/2 =
F e1

j,mj+1/2(max(e1+(t), 0),max(e1−(t), 0))− F e1

j,mj+1/2(min(e1+(t), 0),min(e1−(t), 0))

2

+
F e1

j,mj+1/2(max(e1+(t), 0),max(e1−(t), 0))− F e1

j,mj+1/2(min(e1+(t), 0),min(e1−(t), 0))

2
.
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Summing up over all n,m and because of the corresponding specular and no-flux boundary
conditions on f , we have

∂t
∥∥e1·,·(t)∥∥1,h ≤ ∥C(·, ·, t)∥1,h

∥∥e1·,·(t)∥∥1,h + ∥∥T 1
·,·(t)

∥∥
1,h
.

By the Grönwall inequality, we have∥∥e1·,·(t)∥∥1,h ≤ exp

(∫ t

0

∥C(·, ·, s)∥1,h ds

)∥∥e1·,·(0)∥∥1,h + ∫ t

0

[
exp

(∫ t

s

∥C(·, ·, r)∥1,h dr

)]∥∥T 1
·,·(s)

∥∥
1,h

ds,

≤ DT
∥∥e1·,·(0)∥∥1,h +DT 2

∥∥T 1
·,·(s)

∥∥
1,h
,

where
D = max

t∈[0,T ]
exp(∥C(·, ·, t)∥1,h).

Assuming that
∥∥e1·,·(0)∥∥1,h = 0, this implies∥∥e1·,·(t)∥∥1,h =

∑
i,j

O(dx2i + dv2j ).

for all t ∈ [0, T ]. Choosing t = tk proves the proposition.

Next, we focus on estimating the second term
∥∥fKTCC(t

k)− fSP (t
k)
∥∥
1,h

in the right-hand
side of (37). We recall that fSP (tk) is the solution obtained solving the following subproblems
in (tk−1, tk) using the Strang-splitting method:

1.

{
f ′
1(t) = LKCf1(t), t ∈ (tk−1, tk−1/2),

f1(t
k−1) = fSP (t

k−1).

2.

{
f ′
2(t) = Cf2(t) + S(t), t ∈ (tk−1, tk),

f2(t
k−1) = f1(t

k−1/2).

3.


f ′
3(t) = LKCf3(t), t ∈ (tk−1/2, tk),

f3(t
k−1/2) = f2(t

k),

fSP (t
k) = f3(t

k),

(41)

where LKC represent the discretized spatial derivative operator involving the KT and CC
fluxes at the point (xn, vm) as in (36) (recall Remark 7.1). We have

LKCf(t) =
d∑

i=1

1

dxi

[
Hi,ni+1/2(t)−Hi,ni−1/2(t)

]
+

d∑
j=1

1

dvj

[
Fj,mj+1/2(t)− Fj,mj−1/2(t)

]
=: LH

KCf(t) + LF
KCf(t).

Notice that, by Remark 7.1, LKC is linear in (tk−1, tk−1/2) and (tk−1/2, tk). Now, define
the operator

Φ := exp

(
∆t

2
LKC

)
exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
exp

(
∆t

2
LKC

)
.
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Applying the ODE variation of constant method to solve (41), we obtain

fSP |n,m(tk) =[ΦfSP (t
k−1)]|n,m

+exp

(
∆t

2
LKC

)
exp

(∫ tk

tk−1

Cn,m(τ)dτ

)∫ ∆t

0

exp

(
−
∫ s+tk−1

tk−1

Cn,m(τ)dτ

)
S(tk−1 + s) ds.

(42)
We define the following quantities:

T 2
n,m,k :=fKTCC |n,m(tk)− [ΦfKTCC(t

k−1)]|n,m

− exp

(
∆t

2
LKC

)
exp

(∫ tk

tk−1

Cn,m(τ)dτ

)∫ ∆t

0

exp

(
−
∫ s+tk−1

tk−1

Cn,m(τ)dτ

)
S(tk−1 + s) ds.

e2n,m,k :=fKTCC |n,m(tk)− fSP (t
k).

(43)
We have the following accuracy result.

Proposition 2. Let S ∈ C1([0, T ];C3(Ω)). Then it holds∥∥fKTCC(t
k)− fSP (t

k)
∥∥
1,h

= O(∆t2).

Proof. Subtracting (42) from the first equation of (43), we obtain

e2n,m,k = Φ e2n,m,k−1 + T 2
n,m,k.

Recursively, this implies

e2n,m,k =
k∑

r=0

Φk−r T 2
n,m,r.

since e2n,m,0 = 0. Thus, we have

∥∥e2n,m,k

∥∥
1,h

≤
k∑

r=0

∥∥Φk−r
∥∥
1,h

∥∥T 2
n,m,r

∥∥
1,h
.

To estimate T 2
k , we have that fKTCC |n,m satisfies the following equation

f ′(t) = (LKC + C)f(t) + S(t), t ∈ (tk−1, tk),

f(tk) = fKTCC |n,m(tk−1).
(44)

Applying the variation of constant method to (44), we obtain

fKTCC |n,m(tk) =

[
exp (∆tLKC) exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
fKTCC |n,m(tk−1)

]

+exp (∆tLKC) exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
∫ ∆t

0

exp (−sLKC) exp

(
−
∫ s+tk−1

tk−1

Cn,m(τ)dτ

)
S(tk−1 + s) ds.
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Substituting back in the expression of T 2
n,m,k in (43), we have

T 2
n,m,k

=

[
exp (∆tLKC) exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
− exp

(
∆t

2
LKC

)
exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
exp

(
∆t

2
LKC

)]
fKTCC(t

k−1)|n,m

+ exp (∆tLKC) exp

(∫ tk

tk−1

Cn,m(τ)dτ

)∫ ∆t

0

exp (−sLKC) exp

(
−
∫ s+tk−1

tk−1

Cn,m(τ)dτ

)
S(tk−1 + s) ds

− exp

(
∆t

2
LKC

)
exp

(∫ tk

tk−1

Cn,m(τ)dτ

)∫ ∆t

0

exp

(
−
∫ s+tk−1

tk−1

Cn,m(τ)dτ

)
S(tk−1 + s) ds.

Using a standard exponential Taylor series expansion and consistency of the mid-point rule
of integration, we have the following relations

exp (∆tLKC) exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
− exp

(
∆t

2
LKC

)
exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
exp

(
∆t

2
LKC

)
= O(∆t3),

exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
= exp(∆t Ck−1/2

n,m ) exp(O(∆t3)),

∫ ∆t

0

exp (−sLKC) exp

(
−
∫ s+tk−1

tk−1

Cn,m(τ)dτ

)
S(tk−1 + s) ds

= exp

(
−∆t

2
LKC

)
Sk−1/2
n,m

∫ ∆t

0

exp[−sCk−1/2
n,m )] ds+O(∆t3).

The aforementioned relations give us∥∥T 2
n,m,k

∥∥
1,h

= O(∆t3).

This result implies ∥∥e2n,m,k

∥∥
1,h

≤
k∑

r=0

∥∥Φk−r
∥∥
1,h

O(∆t3).

Further, we have
∥Φ∥1,h ≤ ∥exp (∆tLKC)∥1,h ∥exp (∆tC)∥1,h ,

and
∥exp (∆tC)∥1,h ≤ µ(Ω) exp(∆t ∥C∥1,h),

where µ(Ω) is the measure of Ω. Now, we consider the inequality

|LKCf(t)| ≤|LH
KCf(t)|+ |LF

KCf(t)|.
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We estimate the first term on the right-hand side of this inequality as follows:

|LH
KCf(t)| ≤

1

∆t

d∑
i=1

∣∣∣∣∆tdxi [Hi,ni+1/2(t)−Hi,ni−1/2(t)
]
+

1

2d
fi,ni

(t)− 1

2d
fi,ni

(t)

∣∣∣∣
≤ 1

∆t

d∑
i=1

∣∣∣∣∆tdxi [Hi,ni+1/2(t)−Hi,ni−1/2(t)
]
+

1

2d
fi,ni

(t)

∣∣∣∣+ 1

∆t

d∑
i=1

∣∣∣∣ 12dfi,ni
(t)

∣∣∣∣
=

1

∆t

d∑
i=1

(
∆t

dxi

[
Hi,ni+1/2(t)−Hi,ni−1/2(t)

]
+

1

2d
fi,ni

(t)

)
+

1

∆t

d∑
i=1

∣∣∣∣ 12dfi,ni
(t)

∣∣∣∣
by Lemma 7.2 under the CFL condition (33). Summing up over all n,m and using specular
reflection boundary conditions, we obtain

∥∥LH
KCf(t)

∥∥
1,h

≤ 1

2
∥f(t)∥1,h

d∑
i=1

1

∆t
.

In a similar way, ∥∥LF
KCf(t)

∥∥
1,h

≤ 1

2
∥f(t)∥1,h

d∑
j=1

1

∆t
.

Therefore,

∥LKCf(t)∥1,h ≤ 1

2
∥f(t)∥1,h

(
d∑

i=1

1

∆t
+

d∑
j=1

1

∆t

)
.

This result implies

∥LKC∥1,h ≤ sup
∥f(t)∥1,h ̸=0

∥LKCf(t)∥1,h
∥f(t)∥1,h

≤ 1

2

(
d∑

i=1

1

∆t
+

d∑
j=1

1

∆t

)
.

We obtain the estimate

∥∆tLKC∥1,h ≤ 1

2

(
d∑

i=1

1 +
d∑

j=1

1

)
= d.

Thus, we have

∥exp (∆tLKC)∥1,h ≤ µ(Ω) exp ∥(∆tLKC)∥1,h ≤ µ(Ω) exp(d),

where µ(Ω) is the measure of Ω. This result implies∥∥e2n,m,k

∥∥
1,h

≤ O(∆t2).
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We finally focus on estimating the third term
∥∥fSP (tk)− fk

·,·
∥∥
1,h

in the right-hand side of
(37). For this purpose, we write a compact form of the solution obtained using the SSPRK2-
KT-CC-SP method as presented in Algorithm 2. Using the assumption in Remark 7.1, the
SSPRK2-KT-CC-SP method can be written as follows:

fk−1/2
·,· = fk−1

·,· +
∆t

2
LKC

(
fk−1
·,· +

∆t

2
LKCf

k−1
·,·

)
,

f (k−1/2)∗

·,· = exp(∆t Ck−1/2
·,· )fk−1/2

·,· +∆tϕ(∆t Ck−1/2
·,· )Sk−1/2

·,· ,

fk
·,· = f (k−1/2)∗

·,· +
∆t

2
LKC

(
f (k−1/2)∗

·,· +
∆t

2
LKCf

(k−1/2)∗

·,·

)
,

(45)

where

ϕ(∆t Ck+1/2
n,m ) =

1

∆t

∫ ∆t

0

exp[(∆t− s)Ck+1/2
n,m )] ds.

and LKC represents the discretized spatial derivative operator involving the KT and CC
fluxes at the point (xn, vm). Then, we have

fk =

(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
exp(∆t Ck−1/2)

(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
fk−1

+

(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
∆tϕ(∆t Ck−1/2)Sk−1/2.

(46)

We remark that the matrix
(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
is non-singular and positive under

the CFL condition (33). We now define the following quantities:

T 3
n,m,k :=fSP |n,m(tk)

−
(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
exp(∆t Ck−1/2

n,m )

(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
fSP |n,m(tk−1)

−
(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
∆tϕ(∆t Ck−1/2

n,m )Sk−1/2
n,m .

e3n,m,k :=fSP |n,m(tk)− fk
n,m.

(47)

Lemma 7.4. Let f ∈ C1([0, T ];C3(Ω)) be the exact solution of the FP equation (28). Then
under the CFL condition (33), the consistency error T 3

n,m,k satisfies the following estimate

T 3
n,m,k = O(∆t3).

Proof. Inserting the expression of fSP |n,m(tk), given in (42), into T 3
n,m,k, we obtain

T 3
n,m,k :=

[
Φ−

(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
exp(∆t Ck−1/2

n,m )

(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)]
fSP |n,m(tk−1)

+ exp

(
∆t

2
LKC

)
exp

(∫ tk

tk−1

Cn,m(τ)dτ

)∫ ∆t

0

exp

(
−
∫ s+tk−1

tk−1

Cn,m(τ)dτ

)
S(tk−1 + s) ds

−
(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
Sk−1/2
n,m

∫ ∆t

0

exp[(∆t− s)Ck−1/2
n,m )] ds,
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with

Φ := exp

(
∆t

2
LKC

)
exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
exp

(
∆t

2
LKC

)
.

We obtain the following relations using Taylor-series expansion and consistency of the mid-
point rule of integration:

exp

(
∆t

2
LKC

)
−
(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
= O(∆t2),

exp

(∫ tk

tk−1

Cn,m(τ)dτ

)
= exp(∆t Ck−1/2

n,m ) exp(O(∆t3)),

∫ ∆t

0

exp

(
−
∫ s+tk−1

tk−1

Cn,m(τ)dτ

)
S(tk−1 + s) ds = Sk−1/2

n,m

∫ ∆t

0

exp[−sCk−1/2
n,m )] ds+O(∆t3).

These relations prove that
T 3
n,m,k = O(∆t3)

for all (xn, vm).

We finally prove the following accuracy result.

Proposition 3. Let S ∈ C1([0, T ];C3(Ω)). Then, under the CFL condition (33), it holds∥∥fKTCC(t
k)− fSP (t

k)
∥∥
1,h

= O(∆t2).

Proof. Subtracting (46) from (47), we obtain

e3n,m,k = Re3n,m,k−1 + T 3
n,m,k,

where

R =

(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
exp(∆t Ck−1/2)

(
I +

∆t

2
LKC +

∆t2

4
L2

KC

)
Recursively, this result implies

e3n,m,k =
k∑

r=0

Rk−rT 3
n,m,r.

since e3n,m,0 = 0. Thus, we have

∥∥e3n,m,k

∥∥
1,h

≤
k∑

r=0

∥R∥k−r
1,h

∥∥T 3
n,m,r

∥∥
1,h
.
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Now, notice that∥∥∥∥I + ∆t

2
LKC +

∆t2

4
L2

KC

∥∥∥∥
1,h

≤ 1 +
∆t√
2
∥LKC∥1,h +

∆t2

4
∥LKC∥1,h ≤ exp

(
∆t√
2
∥LKC∥1,h

)
,∥∥exp(∆t Ck−1/2)

∥∥
1,h

≤ µ(Ω) exp
(
∆t

∥∥Ck−1/2
∥∥
1,h

)
,

where µ(Ω) is the measure of Ω. This result implies

∥∥e3n,m,k

∥∥
1,h

≤ exp

(
T√
2
∥LKC∥1,h + T max

t∈[0,T ]
∥C·,·(t)∥1,h

) k∑
r=0

∥∥T 3
n,m,r

∥∥
1,h

= O(∆t2).

We collect the aforementioned results in the Propositions 1,2, and 3, in the following
theorem that states our main convergence result for the SSPRK2-KT-CC-SP method:

Theorem 7.1. Let f ∈ C1([0, T ];C3(Ω)) be the exact solution of the FP problem (28) and
S ∈ C1([0, T ];C3(Ω)). Let fk

n,m be the numerical solution of (28), obtained with the SSPRK2-
KT-CC-SP method, implemented in Algorithm 2. Then, under the CFL condition (33), the
following error estimate holds:∥∥f(·, ·, tk)− fk

·,·
∥∥
1,h

= O(∆t2) +
∑
i,j

O(dx2i + dv2j ),

except at the points of extrema of f , where first-order accuracy holds.

8 Numerical validation
In this section, we present results of numerical experiments that demonstrate the conver-

gence properties of our SSPRK2-KT-CC-SP method applied to the following FP model:

∂t f = ∇v ·
(
A∇vf +B f

)
+∇x ·

(
− v f

)
+ C f + S, in Ω×Θ× (0, T ),

f(x, v, 0) = f0(x, v), in Ω×Θ,

f(x, v, t) = f(x, v − 2 (νx · v) νx, t), on Ξ−
x × (0, T ),

A (∇vf · νv) + (B · νv) f = 0 on Ξvj × (0, T ),

(48)

where x, v ∈ R. The computational domain is given by OT = Ω × Θ × [0, T ], where Ω =
(−L,L), L = 5, and Θ = (−V, V ), V = 5. We choose A = σ2/2 with σ =

√
2 and B = µ v+x,

µ > 0. This setting corresponds to a potential U(x) = x2/2 so that F (x) = −x in (7). The
corresponding stationary equilibrium solution is given by

feq(x, v) = c exp
[
−µ
2

(
v2 + x2

)]
,

where c is a normalization constant.
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Based on this result, we construct an exact solution satisfying the given boundary con-
ditions. We choose S(x, v, t) = ψ(t) feq(x, v), and use a separation of variables technique to
define an exact solution as follows:

fexact(x, v, t) = φ(t) feq(x, v). (49)

Replacing this equation in (48), we obtain the equation for φ as follows:

∂t φ(t) = C(t)φ(t) + ψ(t), (50)

where we assume that C is only time dependent. We can integrate this equation in (0, T )
for a given initial condition φ0 by using the variation of constant method. We have

φ(t) = eP (t) φ0 + eP (t)

∫ t

0

e−P (s) ψ(s) ds,

where P (t) =
∫ t

0
C(s) ds. Assuming that the initial condition for (48) is given by f0 = feq,

we have φ0 = 1.
In our first numerical experiment, we set C(t) = 1.0, ψ(t) = t/1000, c = 1.0 and µ = 0.5.

With this choice, we obtain the following exact solution to (48). We have

fexact(x, v, t) =

[(
1 +

ψ(t)

C(t)

)
exp(C(t) t)− L(t)

C(t)

]
c exp

[
−µ
2

(
v2 + x2

)]
,

=

[(
1 +

t

1000

)
exp(t)− t

1000

]
exp

[
−1

4

(
v2 + x2

)]
.

Next, we set the numerical parameters: Nt = 500, whereas the number of divisions
N1,M1 for (x, v) vary as 20, 40, 80. The number of temporal subdivisions is kept constant
because results of further experiments show that the leading error in accuracy depends on
the phase space discretization.

In order to demonstrate the order of accuracy, we define the relative discrete L1 error
norm as follows:

∥fk
·,·∥relL1

h
=

∥fk
·,· − fexact(·, ·, tk)∥L1

h

∥fexact(·, ·, tk)∥L1
h

,

where f is the numerical solution obtained using the SSPRK2-KT-CC-SP scheme, and

∥fk
·,·∥L1

h
=

N1∑
i=0

M1∑
j=0

|fk
i,j|.

In Table 1, we present convergence rates comparing results with different spatial dis-
cretizations. One can see from this table that the SSPRK2-KT-CC-SP scheme is second-
order accurate.
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Table 1: Convergence rates of the SSPRK2-KT-CC-SP method.

N1 M1 Relative L1 error Order

20 20 0.107 -

40 40 0.025 2.09

80 80 0.0063 1.99

In our second numerical experiment, we set a time-dependent C(t) = t/100, ψ(t) = 0.0,
c = 1.0 and µ = 0.5. With this choice, we have the following exact solution

fexact(x, v, t) = exp

(
t2

200

)
exp

[
−1

4

(
v2 + x2

)]
.

In Table 2, we present the convergence rates with the different spatial discretizations that
also demonstrate second-order accuracy of the SSPRK2-KT-CC-SP scheme.

Table 2: Convergence rates of the SSPRK2-KT-CC-SP method.

N1 M1 Relative L1 error Order

20 20 0.105 -

40 40 0.021 2.32

80 80 0.0053 1.99

In our third numerical experiment, we consider a setting where an initial Gaussian density
is centered in a point of the phase space with positive velocity. Therefore in this case the
density is transported towards the right-hand space boundary where it bounces back with a
negative velocity. Specifically, our Gaussian is centered at (3, 1), and is given by

f 0(x, v) =
1

2πγ2
exp

[
(x− 3.0)2 + (v − 1.0)2

2γ2

]
,

where γ = 0.3. Further, in our FP model, we choose B = 0, and set C(t) = t/1000,
ψ(t) = 0.0, c = 1.0 and µ = 0.5. In Figure 1, we depict the resulting PDF at different
instants of time.
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(a) t = 0.0 (b) t = 1.25 (c) t = 2.51

(d) t = 3.76 (e) t = 5.0

Figure 1: Plots of the PDF at different times.

For this setup, we do not have an exact solution. However, for the purpose of computing
the convergence rates, we implement the SSPRK2-KT-CC-SP scheme with N1 = M1 =
321 points and consider the solution obtained on this finer grid as the exact solution for
comparison with solutions obtained on coarser meshes. Based on this approach, in Table
3, we present the convergence rates obtained on meshes of different resolution. We can see
that also in this case, involving the reflecting boundary conditions, second-order accuracy is
obtained as predicted by the theory.

Table 3: Convergence rates of the SSPRK2-KT-CC-SP method.

N1 M1 Relative L1 error Order

20 20 0.56 -

40 40 0.23 1.28

80 80 0.05 2.2

160 160 0.012 2.06
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9 Conclusion
The analysis of a Runge-Kutta finite-volume discretization of a general multi-dimensional

kinetic Fokker–Planck (FP) equation with reaction and source terms and subject to specular
reflection boundary conditions was presented. It was proved that the proposed approxima-
tion method called SSPRK2-KT-CC-SP is conservative and positive preserving. Further-
more, subject to a CFL condition, it was proved that the SSPRK2-KT-CC-SP method is
second-order accurate in time and in phase space in the L1-norm.

The methodology and results presented in this work can be applied to kinetic Fokker-
Planck equations appearing in different applications ranging from stochastic processes to
kinetic theory and in the optimal control of these systems.
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