Flexible Scheduling of Transactional Memory on Trees'

Costas Busch?, Bogdan S. Chlebus?, Maurice Herlihy®, Miroslav Popovic®, Pavan
Poudel?, Gokarna Sharma®

aAugusta University, Augusta, Georgia, USA
bBrown University, Providence, Rhode Island, USA
CUniversity of Novi Sad, Novi Sad, Serbia
dATGWORK, Norcross, Georgia, USA
€Kent State University, Kent, Ohio, USA

Abstract

We study the eciency of executing transactions in a distributed transactional mem-ory
system. The system is modeled as a static network with the topology of a tree.
Contrary to previous approaches, we allow the flexibility for both transactions and
their requested objects to move simultaneously among the nodes in the tree. Given a
batch of transactions and shared objects, the goal is to produce a schedule of
executing the transactions that minimizes the cost of moving the transactions and
the objects in the tree. We consider both techniques for accessing a remote object
with respect to a transaction movement. In the first technique, instead of moving,
transactions send control messages to remote nodes where the requested objects are
gathered. In the second technique, the transactions migrate to the remote nodes
where the objects are gathered to access them. When all the transactions use a
single object, we give an oine algorithm that produces optimal schedules for both
techniques. For the general case of multiple objects per transaction, in the first tech-
nique, we obtain a schedule with a constant-factor approximation of optimal. In the
second technique, with transactions migrating, we give a k factor approximation
where k is the maximum number of objects per transaction.

Keywords: Distributed system, transactional memory, shared object, network,
communication cost

"'A preliminary version of this article appears in the Proceedings of SS5’22 [1].
Corresponding author. Tel.: +1 800 551 7943
Email addresses: kbusch@augusta.edu (Costas Busch), bchlebus@augusta.edu (Bogdan
S. Chlebus), herlihy@cs.brown.edu (Maurice Herlihy),
miroslav.popovic@rt-rk.uns.ac.rs (Miroslav Popovic), poudelpavan@gmail.com (Pavan
Poudel), gsharma2 @kent.edu (Gokarna Sharma)

Preprint submitted to Theoretical Computer Science February 15, 2024

+ 1. Introduction

2 Threads executed concurrently require synchronization to prevent inconsisten-s
cies while accessing shared objects. Traditional low-level thread synchronization 4
mechanisms such as locks and barriers are prone to deadlock and priority inversion, s
among multiple vulnerabilities. The concept of transactional memory has emergeds as
a high-level abstraction of the functionality of distributed systems; see Herlihy - and
Moss [2] and Shavit and Touitou [3]. The idea is to designate blocks of pro-s gram
code as transactions to be executed atomically. Several commercial proces-s sors
support transactional memory in hardware, for example, Haswell of Intel [4],

10 Blue Gene/Q of IBM [5], zEnterprise EC12 of IBM [6], and Power8 of IBM [7].

1 Transactions are executed speculatively, in the sense that if a transaction aborts 1.
due to synchronization conflicts or failures then the transaction’s execution is rolled 1
back to be restarted later. A transaction commits if there are no conflicts or failures, 1
and its eects become visible to all processes. If multiple transactions concurrently is
attempt to access the same object, then this creates a conflict for access and could 16
trigger aborting some of the involved transactions. Scheduling transactions to min-
imize conflicts for access to shared objects improves the system’s performance.

18 The processing units of a distributed transactional memory system are the nodes 1
of a communication network, which is an integral part of the system. A transac-» tion
executing at a node may want to access shared memory objects residing in2. other
nodes. This could be implemented such that the transaction coordinates ac-2 cess to
the needed shared objects with the nodes hosting the objects. Such systems s were
studied by Herlihy and Sun [8], Sharma and Busch [9], and Siek and Wo0j-x
ciechowski [10]. The eciency of executing a specific transaction may reflect the
topology of the communication network that is part of a distributed system. For 2
example, the amount of communication needed to execute a transaction interacting 2
with some objects could be proportional to the distances in the network between all 2
the nodes hosting the transaction and the objects.

2 To improve eciency of processing transactions on shared objects, we may pre-:
emptively move objects and transactions among the nodes to schedule their pres-s:
ence at specific nodes at specific times. Moving transactions or program code s
among network nodes is currently used in several real-world applications. For s
example, Erlang Open Telecom Platform aids dynamic code upgrade by support-
ing transactional servers with hot code swapping whose call-back modules may be s
changed on the fly [11]. A job management system for a computer cluster may s
migrate a job to a dierent node, if the target node’s load is below the migration s
threshold and the migration overhead is acceptable, in order to achieve better load s
balancing among the nodes, see Hwang et al. [12]. A related system that uses live s
virtual machine migration to support autonomic adaptation of virtual computation

1 environments is described by Ruth et al. [13].

2 Coordinating accessing objects to execute transactions may involve relocation
s of objects or transactions. Eciency of such coordination may depend on additional
model’s specification which determines the very feasibility of moving transactions s
and objects across the network. In the data-flow model, transactions are static and
objects move from one node to another to reach the nodes hosting transactions that -
require interacting with them; see Tilevich and Smaragdakis [14] and Herlihy and =
Sun [8]. In that model, a transaction initially requests the objects it needs, and s
executes after assembling them. After a transaction commits, it releases its ob-1
jects, possibly forwarding them to pending transactions. In the control-flow model, 1
objects are static and transactions move from one node to another to access the ob-1.
jects. Control-flow allows transactions to send control requests, in a manner similar s
to remote procedure calls, to the nodes where the required objects are located; see

1 Arnold et al. [15] and Saad and Ravindran [16].

15 1.1. Contributions

16 We consider a flexible scheduling approach that combines the benefits of the 1
data-flow and control-flow models. We study the dual-flow model that allows for s
both transactions and objects to move among the nodes to synchronize transactions s
and objects. This model combines the functionality of the data-flow and control-x
flow models. Assessing the cost of synchronizing transactions with objects in the 2
dual-flow model takes into account the communication cost of relocating objects, 2
and the communication cost of relocating transactions or the cost of sending control 2
messages from nodes hosting transactions to nodes hosting objects.

2 We consider distributed systems whose networks interpreted as graphs have 2
static tree topologies. This represents many real-world networks. For example, s the
internet cloud consists of the cloud network, representing a root, the fog net-» work
gateways and/or the edge network gateways, as internal nodes, and the 10T 2= devices
as leaves, see Comer [17].

2 We study the eciency of executing transactions by a distributed system repre-so
sented as a tree in the dual-flow model. The eciency is measured by the cost of s
communication. Scheduling transactions is considered in a batch setting, in which s all
the transactions are given at the outset, subject to the constraint that each node sz s
assigned at most one original transaction. The initial position of shared objectss are
distributed arbitrarily among the nodes. We consider scheduling transactions in s the
general case of arbitrarily many shared objects, and also in a special case of ass single
shared object that needs to be accessed by all the transactions. Given a batch »» of
transactions and objects residing at nodes of the system, the goal is to produce a ss
schedule of executing transactions that minimizes the cost of moving transactions s
and objects among the nodes and sending control messages to facilitate executing

1 the transactions. Such a schedule is computed by a centralized oine algorithm -
to be executed by the distributed system. We develop a centralized algorithm find-s
ing an optimal schedule in the case when all the transactions use a single object. 4
The general case of multiple objects is studied in two models that determine if ex-s
ecuting a transaction may involve sending control messages. For multiple shared s
objects and with transactions sending control messages, we give a centralized algo--
rithm that finds a schedule with a constant-factor approximation of communication s
cost with respect to an optimal schedule. For multiple shared objects and with trans-s
actions migrating and not using control messages, we give a centralized algorithm 1
that finds a schedule approximating an optimal one by a factor k that equals the
1 maximum number of shared objects requested by a transaction.

1 1.2. Related work

13 We discuss related work on data-flow, control-flow, and the dual-flow models. 14
Attiya et al. [18], Busch et al. [19, 20, 21], and Sharma and Busch [9, 22] considered 1s
transaction scheduling with provable performance bounds in the data-flow model. s
Saad and Ravindran [16], Palmieri et al. [23], Siek and Wojciechowski [24, 10] -
studied scheduling transactions in the control-flow model. Palmieri et al. [23] also s
gave a comparative study of data-flow versus control-flow models for distributed 1o
transactional memory. A prototype distributed transactional memory system de-x
scribed by Saad and Ravindran [25] supports experimentation for both data-flow 2
and control-flow models. Bocchino et al. [26] considered the dual-flow model by 2
allowing programmers to either bring the data to the code of computation (transac-:s
tion) or send the code of computation to the data. Hendler et al. [27] studied a lease 24
based dual-flow model which dynamically determines whether to migrate transac-z
tions to the nodes that own the leases or to demand the acquisition of these leases2s by
the node that originated the transaction.

27 Transaction scheduling in a distributed system with the goal of minimizing ex-2s
ecution time was first considered by Zhang et al. [28]. Busch et al. [19] consid-s ered
minimizing both the execution time and communication cost simultaneously. o They
showed that it is impossible to simultaneously minimize execution time and =
communication cost for all the scheduling problem instances in arbitrary graphs s
even in the oine setting. Specifically, Busch et al. [19] demonstrated a tradeo s
between minimizing execution time and communication cost and provided oine ss
algorithms optimizing execution time and communication cost separately. Buschss et
al. [21] considered transaction scheduling tailored to specific popular topologies s and
provided oine algorithms that minimize simultaneously execution time and 7
communication cost. In a follow-up work, Poudel and Sharma [29] provided an s
evaluation framework for processing transactions in distributed systems. Busch et al.
[20] studied online algorithms to schedule transactions arriving continuously.

4

1+ Distributed directory protocols have been designed by Herlihy and Sun [8], Sharma .
and Busch [9], and Zhang et al. [28], with the goal to optimize communication costs in
scheduling transactions. A distributed directory protocol has been designed by . Rai
et al. [30] in the data-flow model that reduces processing load of network nodes s in
addition to communication cost.

6 Alternative approaches to distributed transactional memory systems have been
; proposed in the literature by way of replicating transactional memory on multiple
s nodes and providing means to guarantee consistency of replicas. This includes work
s by Couceiro et al. [31], Hirve et al. [32], Kobus et al. [33], Manassiev et al. [34],
10 Peluso et al. [35], and Peluso et al. [36]. In this work, we use a single copy of each
1 object. Replicas of objects help to improve reliability of the systems rather than
12 decrease the communication overhead. Other systems extend non-distributed trans-
1z actional memory with a communication layer, for example, the system presented
1 by Kotselidis et al. [37] extends the system described by Herlihy et al. [38] with
s distributed coherence protocols.
16 Transaction scheduling has been widely-studied in shared memory multi-core 17
systems. Scheduling algorithms with provable upper bounds, along with lower i
bounds and impossibility results were given by Attiya et al. [39], Dragojevic et 1
al. [40], Guerraoui et al. [41], Sharma and Busch [42, 43]. Several other schedul-» ing
algorithms were evaluated only experimentally, like the ones given in Yoo and .: Lee
[44], Baldassin et al. [45], Manassiev et al. [46], and Kolli et al. [47].

2> 2. Technical Preliminaries

2 A distributed system consists of processing nodes with some pairs of nodes 2
connected by links. It is represented as a graph G = (V; E). There are n vertices in s
the set V, each representing a processing node. Edges in the set E V'V represent 2
communication links between nodes. The function w : E | Z* assigns a weight to »
each edge representing a communication delay. We let dist(u; v) denote the shortest 2
path distance between two vertices u and v.

2 The initial configuration of the distributed system consists of a set of transac-z=
tions and shared objects distributed among the nodes. Each node hosts at most one s
transaction. During executing transactions, both shared objects and transactions s
can move among the nodes of a network, which we call the dual-flow model. If a s
transaction requests access to an object, that object may move to a dierent node, :
possibly closer to the requesting transaction. At the same time, the transaction can ss
also migrate to the object’s new location, or send a control message to that new s
location to access the object. The combined cost of executing a transaction is mea-s
sured with relation to the distances traversed by the shared objects, transaction and .
control messages.

1 In the dual-flow model, objects may not move to every transaction’s node. In-;
stead some transactions may need to access some objects at remote nodes. A trans-s
action that performs multiple updates to a remote object iterates communication ex-s
changes between the transaction’s node and the object’s node. In this case, migrat-s ing
the transaction closer to the object’s node decreases communication costs. To
provide a formal framework for such situations, we consider the following two spe--
cializations of the dual-flow model for remote object access: (i) Control-message =
technique, where a transaction sends a control message to access the remote object. -
The control-message technique is motivated by a scenario in which each transaction

10 performs a number of updates to an object bounded by a constant, with each update 1.
requiring a control message, for a total of a constant number of such messages. (ii) =
Transaction-migration technique, in which a transaction moves to the node where 1s
objects are located and no control messages are sent. This technique is motivated . by
the scenarios in which a transaction may issue a variable number of requests to s an
object, in which case it is advantageous to migrate the transaction to the object
location to avoid potentially unbounded communication overhead.

17 We parameterize the costs of transmitting messages that carry transactions, ob-1
jects, or control instructions. The cost of moving an object of size over a unit 1
weight edge is denoted by . We denote the cost of sending a control message over .o a
unit weight edge by . The cost of moving a transaction over a unit weight edge .. s
denoted by .

2 A scheduling algorithm determines a schedule to execute transactions, including 2s
movements of objects and transactions. A centralized algorithm takes as input a 2
configuration of transactions and objects in the system as arranged at the outset. s We
assume that each node has this input available so that it can execute it locally. s A
schedule E of executing transactions is a sequence of transactions Tq;T,;::: that »
specifies for each transaction when to execute. Each transaction T; is processed at 2z its
turn from the schedule E by accessing the required objects for T;.

2 The communication cost of executing such a schedule is the sum of distances s
traversed by the shared objects, control messages, and transactions according to the s
schedule, weighted by the corresponding parameters , , and . The following .
example illustrates the cost of executing transactions in each of the three models s
and how dual-flow model minimizes total communication cost compared to the s
data-flow and control-flow models.

35 Consider a tree G with six nodes fvy; vy;:::; veg with the topology as shown in s
Figure 1. Let each edge of G has weight 1 and each node is assigned with one s
transaction requiring a single shared object o initially positioned at v;. Let thess size
of object o be 4 and size of a control message be 2, which means = 4 ands = 2.
In the data-flow model, object o needs to visit each node of G to provide s« access to
the transactions. The object may traverse the route (vi;Vs; Vs3; Va; Vs; Ve)

NA——— 4=-——

@ (iii)
Figure 1: Illustration of communication overhead in (i) data-flow, (ii) control-flow, and (iii) dual-
flow model.

1 to allow the transactions at each node to execute; see part (i) in Figure 1. The
. total communication cost becomes 4 + 4 + 8 + 8 + 4 = 28, as the object moves
s twice in the edges between vs;v4 and vs;vs. In the control-flow model, the object
4 resides at v; and all the transactions send control messages to v; to access o; see
s part (ii) in Figure 1. The total communication cost for executing all six transactions
s becomesO0+ 2+ 4+ 6+ 6+ 6= 24. In the dual-flow model, object o may move up
; to node vz following the route (vi; Vv,; v3). The transactions at vy, v, and v3 execute
s as soon as o arrives at each node. The remaining transactions at v4, vs and vg
s send control messages to vs to access object o; see part (iii) in Figure 1, where
10 blue dashed arrows denote the movements of object and green dashed arrow denote
1 the control messages sent by the transactions. The total communication cost for
12 executing all six transactions in the dual-flow model becomes4+4+2+2+2 = 14
1z Which is less compared to that in both the data-flow and control-flow models.

1 3. A Single Object

15 We assume a single shared object o of size > 1 positioned at the root node of 1
a tree G. Note that G is a static tree with a fixed set of nodes and links, and each 1
node has a global view of the system. We develop an optimal scheduling algorithm s
denoted as Single-Object in the dual-flow model considering both techniques for 1
accessing a remote object: control-message and transaction-migration. The algo-
rithm is called Single-Object, and its pseudocode is given as Algorithm 1.

21 3.1. Control-Message Technique

2 A general idea of the algorithm in the control-message technique is as follows. 2
First we find a set of intermediate nodes in G to move the object o to. These nodes .. are
referred to as supernodes. An intermediate node v becomes a supernode if the .s cost
of moving o from v to one of its children is greater than the cost of sending

1 control messages from the transactions contained by the sub-tree of that child to v.
> Each supernode contains a set of transactions in its sub-tree which send control
s messages to that supernode to access object 0. These transactions are added to
« the local execution schedule of the supernode following an iterative pre-order tree
s traversal in the sub-tree. We determine a subtree P containing paths in G that reach
s the supernodes from the root of G. Starting from the root, object o travels all the
7 supernodes following the iterative pre-order tree traversal of P. Any transaction
s that lies along the path is added to the execution schedule E as soon as o reaches the
s respective node. When o reaches some supernode, the transactions from its local
10 execution schedule get added to E in the respective order. The execution ends when
1 all the transactions have been added to E. The algorithm can be modified as follows
1 if performed in the transaction-migration technique: (i) Determine supernodes with
s respect to transaction migration cost rather than control messages cost; and (ii)
1 Migrate transactions to the corresponding supernodes instead of sending control
15 messages to access the object. These modifications result in creating an algorithm
16 of a comparable communication performance.

17 Remember that each node has a global view of the system which helps to deter-s
mine whether a given node is a supernode or not by comparing the possible cost of 1
control messages vs. object movement. During the computation of supernodes, no
object or transaction is moved or a control message is sent, thus there is no com-a
munication cost involved. The actual communication cost will occur during the 2
execution of transactions following the respective algorithm. We elaborate on the 2
details of the algorithm next.

2 The cost of moving o over an edge of unit length is . Let represents the =
control message cost for a transaction to access object o atone unitawayand > . Let T
= fT1;Ty;::: Tog be the set of n transactions issued to the nodes of G, one »» at each
node. The first objectives are to determine the walk the object traverses and .= to find
transaction execution schedule. Intuitively, since it costs more to move the s object
across a link than to send a control message through the link, we strive tosx move the
object minimally, only when this pays, and this approach is captured by s the concept
of supernodes. The object o first travels from the root up to a supernode. s> Transactions
that lie along the path the object traverses execute as soon as the object s reaches the
respective nodes. The remaining transactions beyond that supernode s« and towards
the leaves (i.e., in the sub-tree of the supernode) send control messages s to the
supernode to access the object. Observe that the control messages are sentss only up
to the supernode and the transactions will execute at that supernode after the s; object
reaches there. When all the transactions that have sent control messages to s the
current supernode finish their executions, object o moves to the next supernode ss and
the remaining transactions get executed following a similar approach.

a0 The communication cost of an execution of the algorithm is determined by the

1 location of supernodes. The set of supernodes is selected by referring to transaction .
counts and transaction loads at all nodes, which are defined as follows. A transac-s
tion count at node v, denoted txnum(v), is the total number of transactions contained s in
the sub-tree of node v, including v (Line 4 of Algorithm 1). A transaction load of s a
node v, denoted txload(v), is the sum of distances from v to the positions of trans-s
actions contained in the sub-tree of v, including v (Lines 9-15 of Algorithm 1). -
The transaction load of v represents the cost of sending control messages due to the =
transactions contained in its sub-tree, assuming o is moved to v.

0 To identify supernodes, we start from the leaves of G and work through the an-.
cestors towards the root (Lines 16—24 of Algorithm 1). Let vq, be a leaf node u:
and Vpext be the parent of vg,. During the computation of supernodes, we can =
assume that the object is at the parent node vnex and check if it pays to move s the
object down to v, since object moves away from the root. Let txload(vcy) 1« denote
the control message cost incurred by the txnum(ve,) number of transac-is tions
contained in the sub-tree of vg, including v,. If the object o moves to s veyur, the
transactions contained in the sub-tree of v., can access o at ver and v the cost
becomes txload(vey) + dist(Veur; Viext)- Here, dist(Veur; Viext) 1S 1s
the cost incurred by the movement of object o from Vpex to Vveur. Otherwise,
1s these transactions send control messages to Vpext t0 access o and the cost becomes 2
txload(veyr) + tXnum(veyr) dist(Veur; Viext). Object o will move to vy from vpeyi22 only
if the control message cost from v¢,r to Vhex, due to the transactions contained .. in the
sub-tree of v, is more than or equal to the object movement cost from Vpex2s t0 Veyr.
This has been checked in Lines 19-23 of Algorithm 1.

2 After reaching a supernode, object o may need to move back to the root or in-2s
termediate nodes to visit other supernodes. To account for this and simplify the
argument, we assume that the object moves over each edge twice, but this assump-2
tion will be revisited when we optimize the algorithm (Line 25 of Algorithm 1). If s the
following inequality holds:

txload(veur) + 2 dist(Veur; Viext) txload(veur) + txnum(veyr) dist(Veur; Vext) ;

2o then we choose v, as a supernode. Otherwise, if v is not the root, a new pair s
of Veur and viex is checked such that current vpex becomes new v, and the parents: of
current Vpext becomes a new node Vpey. If veur is the root, then it becomes a s
supernode (Line 24 of Algorithm 1).

33 Let P denote the pruned tree, which contains only the supernodes and nodes that ss
need to be traversed on the way from the root to a supernode. Tree P is rooted at the s
root of G. Figure 2 illustrates such a tree P. The object o is originally located at the 6
root, from which it moves to the supernodes in a pre-order traversal manner. The 7
transactions are executed along the way of the object’s movement. Transactions at

Figure 2: Identification of supernodes by algorithm Single-Object. The tree on the left is G. The
tree on the right is the same G after determining the status of nodes. Supernodes are colored blue.
Nodes on the path from the root to a blue node are colored black. The dashed line delineates P
obtained from G by pruning G of vertices beyond the supernodes, which are colored orange.

1 the nodes beyond the pruned tree P, marked by color orange in Figure 2, either send .
control messages or move to access o to their closest supernodes. When object o s
reaches the respective supernode, these transactions are executed in order.

+« Lemma 1. If a node v does not belong to the pruned tree P, then the total number
s of transactions contained in the sub-tree of v is less than 2.

s Proof. This follows from the specification of the nodes that make P and how -
supernodes are determined, while we assume that the object moves over each edge =
twice.

° After computing the set of supernodes, the object performs a pre-order tree 1
traversal starting from the root to visit all the supernodes. The transaction execution
schedule E is computed as follows. First add transaction at the root to E. During the =
pre-order tree traversal to visit the supernodes, if E does not contain the transaction 1z at
a visited node v, then add it to E. If the visited node v is a supernode, add to E the
transactions that sent control messages to v from the subtree rooted at v. Lines 27— 31
of Algorithm 1 represent how each transaction is added into the schedule E i
following the pre-order tree traversal.

17 Next we show how to refine this approach, which is based on the assumption s
that during the computation of supernodes if the object moves from some parent 1
node to the child node, then it will ultimately move back from that child node to the 2
parent. When the object reaches the last supernode, it does not move back because 2
there is no any other supernode remained to visit. A pseudocode to accomplish this .. is
given as Algorithm 2.

23 We define a one-way path to be such a path from v, to the last supernode vi,st, 24
all the edges of which the object traverses only once. This vj;t must be chosen2 in
such a way that the total communication cost is minimized. A condition for 2
computing a supernode is:

2 dist(Veur; Vnext) > txnum(veyr) dist(Veur; Viext) (1)

10

Algorithm 1: Single-Object
Input : Tree graph G of n nodes containing T transactions
Output: Transaction execution schedule E
1 Voot oot of G at which o lies initially;
2 L setof leaves of G;
3 ; cost of moving o and a control message over a unit weight edge of G, respectively;
4 txnum(vi) transactions contained in the sub-tree of v;;
s txload(vi) sum of distances from v;j to transactions in sub-tree of vi ; // initialize Os
S set of supernodes ; // initialize fg7z
C(vi) child nodes of v; 2 S towards which object o does not move further;
s D(vi) setof candidates for the last supernode that are descendants of v 2 S;
/* Compute txload(vi) iteratively */
9 for each transaction T; 2 T do

10 vi current node of G at which T; is positioned;

11 Veur Vi; txnum(vi) + +;

12 while veur , Vroot do

13 Vhext parent node of veyr in G; tXnUM(Vnext) + +;
14 txload(Vnext) txload(Vnext) + dist(Vi; Vnext);

15 Veur Vhext,

/* Compute set of supernodes */
16 for each nodev 2 L do

17 Veur V; Vprev null; Veand null;

18 Vnext parent node of veyr in G;

19 while (Veur , Vroot) * (txload(veyr) + 2 dist(Veur; Vnext) >
txload(veur) + txnum(veur) dist(Veur; Vnext)) do

20 if > txnum(veyr) then

21 Vcand Veur; add Vprev 1O C(veur);

22 Vprev Veur; Veur Vnext;

23 Vnext parent node of Vpext in G;

24 add veur to' S; add Vprev to C(Veur); @dd Veand to D(Veur)

/* Find last supernode to visit optimizing total cost */
25 Viast FindLastSuperNode(S; D; C);
26 reorder G so that each node on path from vroot to Viast becomes the last child of parent;
27 perform a pre-order tree traversal on G starting at Vroot;

28 if a visited node vc,r is a supernode then

29 move the object o to veyr;

30 add transactions in the sub-tree of each node v 2 C(vcyr) to E;
31 add transaction at veur to E, unless added already;

1 Inequality 1 accounts for the object traversing each edge twice, which is not re-:
quired for vizt. The object can move further down until the following holds:

diSt(chr; Vnext) > txnum(vcur) diSt(chr; Vnext) (2)

s We find the last supernode vi55t and the one-way path as follows. Let S be the initial
« set of supernodes computed considering that the object moves twice on each edge

11

V2 '
’ S3 ¥\

S) S1=Viast

Figure 3: lllustration of computatiorgl)of Viast. (i) Before; and (i(ili)After computing viast and rearrang-
ing G.

1 up to the supernode. In a one-way path, the object may move further down towards
. the leaf node satisfying the condition in Inequality (2). For each node v 2 S, if the
s sub-tree of v contains multiple branches, there could be a number of possible paths
o for the object to move. There will always be a unique one-way path that minimizes
s the total cost. In each sub-tree of v 2 S, we find the set of nodes D(v) that are
¢ candidates for vj,5; using the condition in Inequality (2) (Lines 20, 21 and 24 of
7 Algorithm 1). Then the dierence between the cost of selecting v as a supernode =
and vj 2 D(v) as a supernode is computed (Lines 2—-9 of Algorithm 2). Among »
these dierences for every v 2 S, the one with the highest dierence is chosen as .o the
last supernode vi,s: (Line 10 of Algorithm 2). Let vier 2 S and vi 2 D(Vrer) be 1n the
set of two nodes that provided the highest dierence. Then vy becomes v|;; and 12 is
added to S. The path from v ot to V|55t becomes the one-way-path and is visited 1z at
last following the pre-order tree traversal. Moreover, if a node between v,er and
Viast (including vier) in the one-way-path contains transactions in its sub-tree other s
than the one-way-path branch, it becomes a supernode to serve control requests to s
the transactions in those branches and is added to S (Lines 11-18 of Algorithm 2). 1
Figure 3 illustrates the computation of vi,5 and rearrangement of G for the pre-order

15 tree traversal.

1 Lemma 2. If vis a descendant of v, then the total number of transactions con-
20 tained in the sub-tree of v is always less than .

2 Proof. This follows from the specification of the nodes that make P and how the 2.
last supernode v, is determined. We assume that the object traverses only once on 2

each link in the path from the root to v, that is not needed for backtracking.

.2 Lemma 3. For any transaction, the corresponding supernode for accessing the ob-
»s ject always lies at or above its position along the path towards the root of G.

26 Proof. To compute a supernode in G, we start from a leaf node and proceed towards
27 the root node following the shortest path.

12

Algorithm 2: FindLastSuperNode(S; D; C)

1 Viast null; vres null; di 0;

2 foreachnodev2S do

3 ctrl(v) cost of control messages sent to v;

4 twowaycost 2 dist(Vroot; V) + ctrl(v);

5 for each node vj 2 D(v) do

6 onewaycost dist(Vroot; Vj) + ctrl(vj); 7
if twowaycost onewaycost > di then

8 di twowaycost onewaycost;

9 Vlast Vj; Vref v;

10 add Viast t0 S Veur Viast; S€t Vnext t0 the parent of viast;
11 Wh”e chr , Vref dO

12 if Vnext has more children than veyr then

13 add Vpext t0 S ;

14 for each child node vk , Veur Of Vhext do
15 add vk to C(Vnext);

16 if Vhext == Vref then

17 remove Veyr from C(Vnext);

18 Veur Vnext; S€t Vnext t0 the parent of vpext;

19 return Viast;

1 Theorem 1. Algorithm Single-Object schedules transactions with the optimal
> communication cost.

s Proof. Let S be the set of supernodes found for a tree G with respect to object o. 4
We will show that any other selection of supernodes gives strictly higher communi-s
cation cost and hence, S provides optimal communication cost.
6 To simplify the problem, without loss of generality, we assume that each edge of
7 G hasweight1, = 1and > . Let P be the pruned tree containing nodes only up =
to the supernodes starting from the root of G. Let viat 2 S be the last supernode for s
object o to visit. Let C be the total communication cost of Algorithm Single-Object. 1
Let v 2 S be a supernode in G, v, be an ancestor of v with distance dist(vp;v) 1,1
and v, be a descendant of v with dist(v; vq) 1. Based on the positions of v and vy,
12 it can have one of the following three cases:
1z Case (a): v = via. Then, by Lemma 2, we have that

txnum(vp) txnum(v) > txnum(vg) (3)

1 Case (b): v, Vias, Vq < P, and the path from v to v, contains no other supernode, in s
that v is the bottommost supernode in the current branch. Then, by Lemma 1, we 1
have

txnum(vp) txnum(v) 2 > txnum(vg) (4)

v Case (c): Either vq 2 P or vq < P and the path from v to v4 contains at least one

13

1 other supernode. Let z 1 be the transactions that send control messages to v to
access o.

3 We have following four subcases with respect to each supernodev 2 S:
« (i) Choosing an ancestor of v as a supernode instead of v increases communication:
s Let S, be the set of nodes contained between v and v, (excluding both). Suppose

s Vp be selected as a supernode instead of v. Then in Case (a) and Case (b), o moves
7 only up to vy, and in addition to the transactions issued to the sub-tree of v, all
s the transactions between v and v, send control messages to v,. But, in Case (c),
s since the sub-tree of v (excluding v) still contains another supernode v¢ 2 S, o still
10 moves to vy passing through v. When v was the supernode, z 1 transactions could 1
access o at v. Now, since v, is selected as the supernode instead of v, all those z 1
transactions send control messages to v, to access o. So, the total communication 1
cost C,, of selecting v, as a supernode compared to that of selecting v in each case

12 becomes:

8C dist(vp; p) + txnum(v) dist(v,; v)
+ yas, (txnum(vi) txnum(v)); Case (a)
Cv, = C 2 dist(vy; p) + txnum(v) dist(vy;v)
+ yas, (xnum(ve) txnum(v)); Case (b)
PC+z dist(vp; v); Case (c)

s In Case (a), from Inequality (3), since txnum(v) , C,, > C. In Case (b), from i

Inequality (4), since txnum(v) 2, C,, > C. Also, in case (c), C,, > C.

17 (ii) Choosing a descendant of v as a supernode instead of v increases communica-

1 tion:

19 Now, we analyze the communication cost of selecting a descendant node v as 2o
a supernode instead of v 2 S. Let S, be the set of nodes contained between v and vq =
(excluding both). As vq is a new supernode, object moves up to it. So, in Case (a) . and
Case (b), to get the change in total communication cost compared to C, we have s to add
object movement cost of o from v to vq and subtract the control message cost 2« for the
transactions between v and v4. Moreover, the transactions in the sub-tree of s vq will
also send control messages only up to vq. Thus, the total communication 2 costC,,
of selecting node v4 as a supernode compared to C in Case (a) and Case (b) . becomes:

8
C + dist(v;vq) txnum(vg) dist(v;vg)
2 szsq(txnum(vk) txnum(vy)); Case (a)

C. =
va C + 2 dist(v;vq) txnum(vg) dist(v;vq)

> vas, (xnum(vi) txnum(vg)); Case (b)

14

1 Let dist(v; vq) = k where k 1. In Case (a), from Inequality (3), txnum(vq) < .. Let

txnum(vq) = j, 1 j< . Following Lemma 2, the nodes between vand vqs (i.e., Sq)
contain at most j number of transactions. The control message cost sent. to v due to
these transactions is: szsq(txnum(vk) txnum(vq)) < j k. Thus,

C\,>C+ k (j)k jk>C:

s In Case (b), txnum(vg) < 2 by the Inequality (4). Let txnum(vq) = 2 |, fors 1 |
< 2. By Lemma 1, there are at most | transactions between v and v,, and» control
message cost sent to v due to them is: P v2s (txnum(vy) txnum(vg)) < Ik. s
Thus £l

Chp>C+2k (2)k Tk>C:
o Now, we analyze Case (c). Based on the position of v, it has two sub-cases:
10 Case (c.1): vq 2 P. There is no extra movement of o and the z 1 number 1

of transactions that previously depend on v now send control messages to vq to 1
access 0. So, the total communication cost Cy, compared to C becomes: Cpy =1 CH+
z dist(v; vq) > C.
14 Case (c.2): vq < P but the path from v to v, contains at least one other supernode 1s
in S. The node v, lies below the bottommost supernode of current branch. Let s Vit
2 S be the bottommost supernode in the path between v and vq. When vq is 7 selected
as a supernode, there will be extra movement of object o from vpet Up tO Vg. 18 I Vot =
Viast, and 0 moves up to vq. Otherwise, object o also needs to return back 1s at vpor. Let
M represents the cost due to the movement of object o between vy, and 20 vg, then, M
> dist(Vpot; Vq). Thus, the total communication cost C,, compared to. C in this case
becomes: C,, = C + z dist(v;vq) + M > C.
22 (iii) Merging multiple supernodes at some ancestor node increases communication: s
Consider two supernodes v;;vs 2 S have a common ancestor vy. Instead of v; 2
and vs, let v, be chosen as a supernode. Since v, is ancestor of both v, and vs, 2
following argument (i), total communication cost C,, of selecting v, as a supernode 2
instead of v, and v; is more compared to C.
27 (iv) Splitting any supernode into multiple supernodes increases communication:
28 Consider a supernode vj 2 S. Let vy; v, be two descendant nodes of v;j at two 2s
dierent sub-branches. Let v, and v, are chosen as two dierent supernodes instead o of v;j.
Since both v, and v, are descendants of vj, following argument (ii), total costa: C,,, of
selecting vy; v, as supernodes instead of vj is more compared to C.
32 The set of supernodes S computed in algorithm Single-Object is unique. If any s
new node is added to S or any node in S is removed or replaced by another node, sa the
total communication cost increases. It implies that scheduling by algorithm ss
Single-Object provides the optimal communication cost.

15

1 Theorem 2. Algorithm Single-Object provides 2-approximation in communication
> cost without optimization.

s Proof. The algorithm in its optimized version has object o traverse each edge along «
the path from v,oo t0 viae ONly once. The algorithm without optimization does not s
identify and leverage the last supernode v, for object o to visit and reorder G s
accordingly. Without the optimization, object o still visits each edge along the path -
from vyoot to the supernode(s) at most twice.

s 3.2. Transaction-Migration Technique

9 Next we consider the transaction-migration technique. Let be the cost of mov-w
ing a transaction over a unit weight edge of G. Consider algorithm Single-Object 1
modified such that transactions are moved instead of sending control messages to 1.
the supernodes and the cost of moving transaction replaces the cost of sending con-is
trol messages, in that we use the parameter instead of . After these modifications .« in
algorithm Single-Object and its analysis, we obtain optimality similarly as stated s in
Theorem 1.

s 4. Multiple Objects

17 We provide two scheduling algorithms for multiple shared objects, which ex-is
tend the single object algorithm above. For the control-message technique, we 1
present the algorithm denoted as MultipleObjects-CtrIMsg, which provides an 2
O(1)-approximation. For the transaction-migration technique, our algorithm is de-x
noted as MultipleObjects-TxMigr, which provides O(k)-approximation, where k is 2
the maximum number of shared objects accessed by a transaction.

2 The idea in the version MultipleObjects-CtrIMsg is as follows: first, we com-2
pute separate sets of supernodes with respect to each object in O and the transactions 2
accessing that object. Each transaction will have a list of supernodes at which re-
quired objects can be accessed with the minimum cost. We select arandom node of » G
as the virtual root (v,,;) of G. After that, transactions are added to the execution 2
schedule E by following the iterative pre-order tree traversal algorithm in G rooted > at
Vioor- Objects will then move to the respective supernodes following the iterative so pre-
order tree traversal in G. Particularly, a transaction T; is scheduled to execute ats: time
step t(T;) in such a way that the objects required by T; are also reached at the s
respective supernodes where T; accesses them at time step t(T;). When an objects: o;
2 O reaches a supernode vs, it stays there until all the transactions that access s« object
o0 at v; finish their executions. Object o then moves to the next supernode in s order
where other transactions are waiting for it. The algorithm ends when all the s
transactions are added to the schedule E.

16

1 In algorithm MultipleObjects-TxMigr), if all the objects are positioned at the -
same node initially, we assume that node as the virtual root (v,.,) ©f G. Otherwise, s if
objects are at arbitrary nodes of G initially, we find the virtual root of G with 4
respect to the initial positions of objects in O and the positions of transactions ac-s
cessing those objects. We then move the objects to v,,,,. ¥We compute separate setss of
supernodes with respect to each object o; 2 O positioned at v,,,; of G. Then,, ifa
transaction requires multiple objects, it may have a set of dierent supernodes = to
access each of them. Among them, we select a single supernode (called com-s mon
supernode) at which all the required objects for that transaction are gathered

10 together and the transaction is also migrated during the execution. We find a com-u
mon supernode for each transaction T 2 T. At the common supernode, objects 1.
required by T (i.e., objs(T)) wait for each other like threads wait for each other at a 13
barrier. Then, we find a pruned tree P containing the nodes only up to the common 1.
supernodes starting from the virtual root in G. We perform an iterative pre-order s
tree traversal in P to move objects from one common supernode to the next. At each s
common supernode v; 2 P, the transactions which have chosen v, as the common 1
supernode are scheduled for execution following the iterative pre-order tree traver-1s sal
in the sub-tree of v;. As previously, at each common supernode vs, object 01 stays
until all the transactions requiring object o at v finish their executions. Ob-» ject o
then moves to the next common supernode. The algorithm terminates once .. all the
transactions get scheduled.

22 We consider a set of shared objects O = foq;0,;:::; 0g initially positioned at
s arbitrary nodes of G. We assume that each object has size . Each transactionin T 2
accesses a subset of objects in O. Let objs(T;) O be the set of objects accessed 2

by transaction T;. We assume that each object has a single copy and home(o;) 2 V 2
represents the home node at which object o; is originally positioned. The owner-2;
ship of an object is also transferred with the movement of that object. Similarly, 2
home(T;) 2 V represents the node at which transaction T; is positioned.

2 The idea in the algorithms is to provide synchronized accesses to the objects 0
with minimum cost while executing the transactions in order. We achieve this ex-
tending the techniques used in algorithm Single-Object. In particular, we compute s
supernodes w.r.t. each object and the transactions requiring those objects. We then s
perform iterative pre-order tree traversal to move each object to the respective su-sa
pernodes and execute transactions in order.

35 For brevity, let T; be a transaction that requires objects in objs(T;) = foy;:::; 0,8.

the same time so that T; can access them by sending control messages. This

17

1 approach is used in the control-message technique. The other way is to gather all -
the objects in objs(T;) at a single node sv(T;) (i.e., common supernode for T;) and s
access them at that node by migrating T;. This approach is used in the transaction-s
migration technique.

5 We now describe how transactions are executed in order and the objects are s
moved from one supernode to the next minimizing the communication cost. As in -
algorithm Single-Object, this can be achieved using iterative pre-order tree traversal =
algorithm in G, provided that there is a single reference point, i.e., root node. We s
find a virtual root (v,.,) of tree G as a single reference point.

10 In the control-message technique, any node of G can be selected as the virtual s
root (V,,..f. In the transaction-migration technique, if all the objects are initially 1
positioned at the same node, that node is selected as the virtual root of G. If objects:s are
positioned at dierent nodes initially, we compute the virtual root with respect .« to the
initial positions (home nodes) of transactions and the objects they access. s The
virtual root of tree G is the node in G from which the sum of distances to home 1« nodes
of all the transactions and the objects they access is the minimum, that is,

Voot = Vit W(vi) = min W(v); (5)
v2Vv
17 Where,) X
W (v) = X dist(v; home(Tj)) + dist(v; home(o)):
j=1 020bjs(Tj)
18 To compute the virtual root of G, we take into account both the initial positions s

of transactions and the initial positions of objects. This is needed since we want to
minimize the distances from initial positions of objects to the virtual root as well as 2
the distances from virtual root to the transactions.

22 4.1. Multiple Objects with Control Messages

2 The algorithm for multiple objects in the control-message technique is named 2.
MultipleObjects-CtrIMsg, and the pseudocode is given in Algorithm 3. The algo-
rithm runs in two phases.

s Phase 1: We compute sets of supernodes S (0;) with respect to each object 0; 2 O

individually following algorithm Single-Object without optimization. For each o;, 2

home(o;) is assumed as the root of G during the computation of respective supern-

odes S(oj). If a transaction T; requires an object oj, T; accesses 0j at supernode zo
sv(Ti(oj)) 2 S(oj).

a1 Phase 2: We find transaction execution schedule E and paths of movement for each
;2 object 0; 2 O along their respective supernodes. For this, let a random node in G be

18

Algorithm 3: MultipleObjects-CtrIMsg

Input : Tree graph G of n nodes containing T transactions and O objects positioned at
arbitrary nodes
Output: Transaction execution schedule E
1\ . virtual root of G;
/* Phase 1: Find set of supernodes for each object in O following
algorithm Single-Object without optimization */
2 for each object 0; 2 O do
3 S(oj) set of supernodes with respect to o computed using algorithm Single-Object
without optimization and assuming home(o;) as the root of G;
4 S S[S(oi);
/* Phase 2: Pre-order tree traversal on G */
perform pre-order tree traversal on G rooted at V%,
Veur current visited node on G;
if veur is @ supernode with respect to o then
move object 0 to Veur;
add transaction at veyur to E, if not added previously;

©w 0 N o u

1 selected as the virtual root \£ ., of G. We perform an iterative pre-order tree traversal
2 in G starting from V.. During the traversal, if there is a transaction T at current s
node veyr, Tjis added to the schedule E. Each object ok required by T; (in notation, » o
2 objs(T;)) is scheduled to move to the respective supernode svj(ox). When the s
traversal of G completes, all the transactions get scheduled and the execution ends.

s Lemma 4. An object o may traverse an edge along the path from home(o;) to v ¢,
7 at most three times.

s Proof. Let G be a tree and ., be the virtual root of G. Let the shared objects
s O = foy;:::;0g be positioned at arbitrary nodes of G. Then, with respect to each w
object 0; 2 O, a set of supernodes S (0;) is computed using algorithm Single-Object. ..
LetS = Si:l S (0i) be the union of all supernodes and P be the pruned tree contain-i.
ing all the nodes in S starting from v,,g. Transactions are scheduled following an s
iterative pre-order tree traversal in G rooted at v, .5 and objects are moved from one

supernode to the next in S following the iterative pre-order tree traversal in P rooted 15
at V,gr- We start from v, q,,. For the transaction T assigned at v, if V,q IS @ SUpern-s

ode with respect to some object 0; 2 objs(T), then object o moves from home(o;) s
tO Vropt- Otherwise, 0; 2 objs(T) moves to the respective supernode sv(T (0;)) below 1=
Vrogt: By Lemma 3, the supernode for transaction T at Vrog for accessing object 0 1
is always at Vrgpt OF below Vrgpt towards home(o;). After this, thanks to the proper-x
ties of the pre-order tree traversal that each edge of P is visited no more than twice 2
and hence each object o; 2 O also traverses each edge along the path from v, 2
to sv(T(o;)) in P at most two times. home(o;) itself can be one of the supernodes 2
sv(T(o;)) for T with respect to object o in P. Thus, in total, object o can traverse .. at

most 3 times along the path from home(0;) to v, ..
C

19

1 Theorem 3. Algorithm MultipleObjects-CtrIMsg provides a 3-approximation of
> communication cost.

s Proof. Let S(o;) be the set of supernodes computed with respect to object o; 2 O
» following algorithm Single-Object without optimization. Let P; be the pruned tree
s containing nodes only up to the supernodes S (o;) starting from home(o;) in G. Let
s Copj denotes the cost of moving object o; at each edge inside P; only once and Ccyf
; denotes the communication cost incurred due to the control messages sent from
s transactions beyond P; in G. By the analysis of algorithm Single-Object , o; visits
s each edge of P; at most twice during the execution. Theorem 1 shows that the set of
10 supernodes computed in algorithm Single-Object provides the minimum commu-
1 nication cost and Theorem 2 shows that algorithm Single-Object without optimiza-
12 tion provides 2-approximation. Thus, if Copt(0;) be the optimal communication
1z cost for accessing o; by a set of transactions T, then,

Cobj + Cetrl COPT(Oi) 2(Cobj + Cctrl) (6)

1 and Copr = Poizo Copr(0i).

15 The algorithm in MultipleObjects-CtrIMsg uses the same set of supernodes is
S (0j) computed in algorithm Single-Object without optimization and object o; does 17
not move beyond the pruned tree P;. So, Cc, for MultipleObjects-CtrIMsg re-is
mains the same. From Lemma 4, object o; may traverse an edge inside P; at most 1
3times. Thus, if Caig(0;) represents the total communication cost for accessing 0;20 by
a set of transactions T, then,

Catc(0i) 3Copj + Cetri (7)
21 Inequalities (6) and (7) imply
Caig(0i) 3 Copr(0y) (8)
22 This gives the estimate x
Calg = Cata(0i) (3 Copt(0i)) 3 Copr ;
0;20 0;20

23 Where Cag represents the total communication cost in MultipleObjects-CtrIMsg 2
for executing all the transactions accessing multiple objects and Copr represents »s
that of any optimal algorithm.

s 4.2. Multiple Objects with Migration of Transactions

27 The algorithm for multiple objects implemented in the transaction-migration s
model is named MultipleObjects-TxMigr. First, we discuss the algorithm assum-z
ing all the objects are initially positioned at the same node (i.e., home(o;) for each

20

Algorithm 4: MultipleObjects-TxMigr

Input: Tree graph G of n nodes containing T transactions and O objects
Output: Transaction execution schedule E
1\ . virtual root of G;

/* Phase 1: Compute supernodes */
2 for each object 0; 2 O do
3 if home(0i), Wyt then move o; to Wooi; S(0i) set of supernodes of oj;

/* Phase 2: Find common supernode */
4 for each transaction T 2 T do

for each object o; 2 objs(T) do
sv(T(0i)) nodein S(oj) where T accesses 0;;

5
6
7 v the node in sv(T(0j)); 0j 2 objs(T); which has the minimum dist(sv(T (0;)); V%oo1);
8
9

sv(T) v; numtxs(sv(T)) + +;
for each object 0; 2 objs(T) do
10 sv(T(0i)) v;objs(sv(T)) objs(sv(T)) [oj;
11 txs(sv(T)(oi)) txs(sv(T)(oi)) [T;
/* Phase 3: Finalize supernodes */
12 L set of leaf nodes in G;

13 repeat

14 for each nodev 2 L do

15 while numtxs == 0 do v parent of vin G;

16 if numtxs(v) < 2 jobjs(v)j then

17 for each object o; 2 objs(v) do

18 while v, Voot * jtxs(v(oi))j < 2 do 19

p parent node of v in G;

20 txs(v(oi)) txs(v(oi)) [txs(p(o))); v p;
21 for each transaction T in txs(v(0i)) do sv(T) v;

22 Finalsv fg;
23 for each transaction T 2 T do FinalSV FinalSV [sv(T);

24 P pruned tree containing nodes up to FinalSV starting from V2. in G;
25 L leaf nodes of P;
26 for each nodev 2 L do if jnumtxs(v)j 2 then exit repeat; /*
Phase 4: Find execution schedule */
27 perform iterative pre-order tree traversal on P;
28 if current node veyr 2 FinalSV then
29 move each object 0 2 objs(vcur) t0 Veur;
30 addeach T 2 T, where sv(T) = veur, to E;

1 0; 2 Ois the same) which is the virtual root v$,, of G. Later, we relax the algorithm »
where objects can be positioned initially at arbitrary nodes in G. A pseudocode is s
given as Algorithm 4.

4 The algorithm works in four phases. In Phase 1, we compute sets of supernodes s
with respect to individual object 0; 2 O. In Phase 2, we find a common supernodes for
each transaction T 2 T where all the required objects for T can be gathered -
together. In Phase 3, we finalize the set of common supernodes. Finally, in Phase 4, s
we perform iterative pre-order tree traversal on G to create transaction execution

21

1 schedule and object movement paths along the respective common supernodes. We
> describe each phase in detail next.

s Phase 1: In this phase, we compute supernodes with respect to each object 0; 2 O
» using algorithm Single-Object without optimization where control message cost s
over an edge is replaced with the transaction migration cost . Let S (0;) be the set
of supernodes with respect to object o; 2 O and sv(T(o;)) 2 S(o;) represents the -
supernode for transaction T at which T accesses o;. After this, each transaction =
T; 2T has a set of respective supernodes sv(T j(0;)) to access each required object
0; 2 objs(T;). Since all the objects in objs(T;) need to gather at a single node, a 1
common supernode sv(T;) for transaction T; is selected out of all sv(T;(o;)) in the

1 next phase.

12 Observation 1. For atransaction T, all the supernodes sv(T (0;)), for o; 2 objs(T);
1z lie on the same path towards the root.

1 Proof. All the objects are initially positioned at the same node \«_,, so it suces s
to refer to Lemma 3.

1« Phase 2: In this phase, we find a common supernode of objects sv(T) for each 1
transaction T 2 T. The objective of selecting a common supernode for atransaction s is
to allow all the required objects for that transaction to gather together at the 1
common supernode. After that, the transaction is also migrated at the common 2
supernode and all the required objects are accessed locally. For a transaction T,2. if
all the supernodes sv(T(0;)), 0i 2 objs(T); computed in Phase 1 are the same, it 2
automatically becomes the common supernode for T. If they are dierent, then we 2
select the one among sv(T (0;)); 0; 2 objs(T); which is the closest from v,;.¢

2 Theorem 4. For atransaction T 2 T, selecting the topmost node among sv(T (0;)), 2
0; 2 objs(T), as a common supernode provides the minimum communication cost 2
during the execution of T.

7 Proof. Consider a tree graph G rooted at v, Let T be a transaction requiring.s a

22

1 move up to node sv, and T also moves to sv, to execute. Thus, total cost for exe-:
cuting T becomes Copj + 2 jobjs(T)j dist(svy; svy) + dist(home(T); svz). Ons the one
hand, since o; moves below sv;, from the argument (ii) of Theorem 1, the .
communication cost increases. On the other hand, object movement cost increasess by
2jobjs(T)jdist(sv1; sva2) which is more than the decrease in transaction move-s ment
(i.e., dist(svy; sv2)). Thus, in any case, communication cost for executing T- at sv, by
selecting it as a common supernode is more compared to that by selecting s SVq
as a common supernode. Arguing similarly, selecting any descendant of sv; ass a
common supernode for executing T increases the communication cost than that

10 With sv;. Let us also see what happens if we select an ancestor sv; as a common
supernode. Note here that, during the merging of supernodes up to sv;, there is no =
extra cost due to the movement of transaction since sv; already accounts for the is
transaction movement cost up to it. If some ancestor of sv; is selected as a common .
super for executing T instead of sv;, T needs to move further upward up to that s
ancestor node, and from the argument (i) of Theorem 1, the communication cost s
increases. Hence, the theorem follows.

17 Optimization. By the end of Phase 2, each transaction T 2 T has a corresponding s
common supernode sv(T) at which T can migrate for accessing all the required 1
objects and execute. Since some of the initially computed supernodes with respect o to
individual objects are now merged together at some ancestor node, some common 2
supernodes may contain fewer transactions and instead of moving objects to those 2
common supernodes, moving the transactions upward may further decrease the total 2
communication cost.

24 For example, let u and v be the two inner nodes of a tree rooted at v ot SUCh 2s
that u = parent(v). Let = 1 and > . Let sub-tree of node v contains 2 + 2 1
transactions where + 1 transactions access two objects a;b and remaining »
transactions access only object a. Let the sub-tree of node u contains 2+ 1 number s of
transactions requiring both objects a; b, that is, extra transactions requiring s the
object b. From Phase 1, since the sub-tree of v contains 2 + 1 number of s
transactions accessing object a, it becomes a supernode with respect to a. Since the s
sub-tree of v contains only number of transactions requiring object b, it cannots. be a
supernode with respect to b. The sub-tree of node u contains 2 + 1 number s of
transactions requiring object b and number of transactions not included in thess sub-
tree of v requiring object a. Thus u becomes the supernode with respect to bothss a and
b. In Phase 2, the 2 + 1 number of transactions requiring both objects a;bss selectu
as a common supernode and remaining number of transactions requiring s only object
a select vas a common supernode. When object a is moved from node uss to vand again
back to u, the object movement cost is 2. Instead, if we move those s number of
transactions from v to u and execute at u, transaction movement cost

23

1 will increase by reducing object movement cost by 2. That means it minimizes .
the total cost by .
3 We provide such optimization in Phase 3 of the algorithm.

2 Phase 3: In this phase, we compute the final set of supernodes FinalSV in G where s
respective transactions and the required objects are gathered together. From Phases 2,
we have a set of common supernodes sv(T) for each transaction T 2 T. For each
common supernode v 2 sv(), the following information is maintained separately:

8 — numtxs(v): total number of transactions that have selected v as a common
5 supernode.
10 — objs(v): set of objects with respect to which the node v is a supernode.

[
-

— txs(v(0j)); 0; 2 objs(v): set of transactions requiring object o; that have se-
2 lected v as the common supernode.

i

1z Let P be the pruned tree containing the nodes of G only up to the common supern-.
odes moving down from v,,..2 Starting from every leaf node of P towards v, ., we 1s
check at each node how many transactions have selected it as a common supernode. 1
Particularly, if v 2 P is a leaf node in P and is selected as a common supernode with 17
respect to the set of objects objs(v), then, we check if numtxs(v) 2jobjs(v)j. If = the
condition is satisfied, v belongs to FinalSV with respect to all objects in objs(v).
Otherwise, for each object o; 2 objs(v), we check how many transactions requiring
the object o; have selected v as the common supernode in Phase 2. Let txs(v(0;)) be2: the
set of transactions requiring object o; that have selected v as a common supern- ode.
If jtxs(v(oi))j] 2, v belongs to FinalSV. But if jtxs(v(o;))] < 2, wea visit its parent
node parent(v), find the set of transactions txs(parent(v)(0;)) requir-2s ing object o; that
have selected parent(v) as the common supernode. At the parents node parent(v), we
again check if (jtxs(v(o;))j + jtxs(parent(v)(0;))j) 2. Ifthe2s conditionis met, parent(v)
belongs to FinalSV and all the transactions in txs(v(o;)) > that previously selected node
v as the common supernode now select parent(v) as 2 the common supernode.
Otherwise, if the condition is not met, we repeat the same2s procedure by selecting the
parent of parent(v) and so on until the inequality

(jtxs(v(0y))j + jtxs(parent(v)(oy))j+ :::) 2

5o is satisfied or reach at v{. We apply this approach recursively until at each leaf s:

node v 2 P, numtxs(v) 2 where P is the pruned tree containing nodes only s> up to
final set of common supernodes FinalSV starting from v, . ¢

sz Phase 4: In this phase, we find the transaction execution schedule E and the paths
.2 of movement for each object o; 2 O along their respective supernodes. We find

24

1 the pruned tree P containing the nodes up to the common supernodes in FinalSV
. starting from ;. Then we perform iterative pre-order traversal on P starting from
s Voo At each current visited node v, if v 2 FinalSV, then all the transactions which
+ have selected v as their common supernode (i.e., sv(T) = v) are added to the execu-s
tion schedule E. Additionally, the objects in O for which v is a common supernode
(i.e., objs(v)) are scheduled to move at v. An object ox 2 objs(v) remains at v until »
all the transactions that require ok finish their executions. After all the transactions =
that require object o, 2 objs(v) finish their executions, o, can move to the next com-s
mon supernode in the order where other transactions are waiting for it. When the 1
traversal of P completes, all the transactions get scheduled and the algorithm ends.

1 Theorem 5. Algorithm MultipleObjects-TxMigr provides k-approximation in
communication cost, where k is the maximum number of objects accessed by a i
transaction.

1 Proof. After computing the final set of common supernodes FinalSV, at the bottom-1s
most common super v 2 FinalSV in each branch of G, the number of transactions s
that require object o are at least 2. These 2 number of transactions in the sub-1; tree of
v may require k number of objects in O. Thus node v can be a common s supernode
for all those 2 transactions with respect to k objects. During the ex-1s ecution, these k
objects are moved from v, to v and the cost és k 2dist(v,o; V). 20 Instead, if we move
those 2 transactions up towards some closest common su-: pernode v; that contains at
least k 2 number of transactions, then the cost due to.» transaction migration increases
by 2dist(v;; v) reducing the object movement cost.s by k 2 dist(vj; v). That means the
total cost may increase by at most a k factor .. from optimal.

s Arbitrary Initial Positions of Objects. Here, we discuss algorithm
s MultipleObjects-TxMigr with the relaxed setting where objects are positioned at 2
arbitrary nodes of G initially. In this case, before Phase 1, we compute the virtual 2
root v, ©f G using Equation 5. All the objects in O are then moved to v,,3. After »
this, algorithm continues with Phase 1 to Phase 4 as it is. There is an extra cost s
incurred before Phase 1 due to the movements of objects from their home nodes to =
the virtual root. Let Ceyra represents this extra cost due to the movements of objects s
from their home nodes to Voot Which is:
X
CeXtra = diSt(home(oi);Vroot) ‘ (9)
0i20

;3 Let FinalSV be the finalized set of common supernodes computed in Phase 3 of
s algorithm MultipleObjects-TxMigr after moving all objects in O to . Let Croy

25

1 be the total cost due to the movements of objects from v{,., to their respective com-.
mon supernodes in FinalSV following the iterative pre-order tree traversal. Now, s let
S(o;) be the sets of supernodes computed with respect to each object o; 2 O
positioned at the respective home node and using algorithm Single-Object without s
optimization. Let Copt mov denotes the total cost due to the movements of objects in s
their respective supernodes in S (o) following iterative pre-order tree traversal. By -
Theorem 2, we have that Copt mov is asymptotically optimal with respect to the ob-s
jects movement cost. If Cexira +Cmov kCopt mov then algorithm MultipleObjects-s
TxMigr has performance as in Theorem 5 in the relaxed setting as well.

10 On the other hand, consider a case where objects are already on the respec-u
tive common supernodes during the initial configuration. Then since there are »
total objects, from Equation 5, algorithm MultipleObjects-TxMigr provides:s O(
D)-approximation in the relaxed setting where D is the diameter of tree G and
dist(home(0); V,oot) D.°

15 5. Conclusion

16 In this paper, we studied transaction scheduling problem on trees to minimize 1,
communication cost in the dual-flow model where both data and transactions are is
mobile. When transactions access the same single shared object, we provided an s
optimal schedule for executing the transactions. Extending it for multiple shared 2
objects, we provided algorithms that are within k factor away from the optimal, 2
where k is the maximum number of shared objects requested by a transaction.

2 In the future work, it will be interesting to study the dynamic online setting of s
the scheduling problem in the dual-flow model. It will also be interesting to con-zs
sider other kinds of graph or extend the algorithms towards the general networks. s
Consideration of other performance metrics such as execution time and congestion 2 is
also a probable future direction.

2 References

s [1] C. Busch, B. S. Chlebus, M. Herlihy, M. Popovic, P. Poudel, G. Sharma, Flexible 2
scheduling of transactional memory on trees, in: Stabilization, Safety, and Security of
Distributed Systems - 24th International Symposium, SSS 2022, Clermont-Ferrand, s
France, November 15-17, 2022, Vol. 13751 of LNCS, Springer, 2022, pp. 146-163.

2 [2] M. Herlihy, J. E. B. Moss, Transactional memory: Architectural support for lock-3
free data structures, in: Proceedings of the 20th Annual International Symposium on ss
Computer Architecture, ACM, 1993, pp. 289-300.

s [3] N. Shavit, D. Touitou, Software transactional memory, Distributed Computing 10 (2)
36 (1997) 99-116.

26

1 [4] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. G. Hallnor, H. Jiang, .
M. G. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal, s
R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza, 4
T. Burton, Haswell: The fourth-generation Intel core processor, |IEEE Micro 34 (2) s
(2014) 6-20.

¢ [5] R. A. Haring, M. Ohmacht, T. W. Fox, M. Gschwind, D. L. Satterfield, K. Sugavanam, -
P. Coteus, P. Heidelberger, M. A. Blumrich, R. W. Wisniewski, A. Gara, G. L. Chiu, s P.
A. Boyle, N. H. Christ, C. Kim, The IBM blue gene/q compute chip, IEEE Micros 32(2)
(2012) 48-60.

10 [6] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, H. Tomari, Quantitative com-u1
parison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12, Intel =
Core, and POWERS, in: Proceedings of the 42nd Annual International Symposium 13 on
Computer Architecture, ACM, 2015, pp. 144-157.

1a [7] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, H. Q. Le, Robust archi-is
tectural support for transactional memory in the power architecture, in: Proceedings 1s of
the 40th Annual International Symposium on Computer Architecture (ISCA 2013), 1
ACM, 2013, pp. 225-236.

18 [8] M. Herlihy, Y. Sun, Distributed transactional memory for metric-space networks, Dis-
19 tributed Computing 20 (3) (2007) 195-208.

20 [9] G. Sharma, C. Busch, Distributed transactional memory for general networks, Dis-
21 tributed Computing 27 (5) (2014) 329-362.

22 [10] K. Siek, P. T. Wojciechowski, Atomic RMI: A distributed transactional memory
23 framework, International Journal of Parallel Programming 44 (3) (2016) 598-619.

24 [11] J. Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic
25 Bookshelf, 2007.

26 [12] K. Hwang, J. Dongarra, G. C. Fox, Distributed and Cloud Computing: From Parallel
27 Processing to the Internet of Things, Morgan Kaufmann Publishers, 2011.

s [13] P. Ruth, J. Rhee, D. Xu, R. Kennell, S. Goasguen, Autonomic live adaptation of vir-2
tual computational environments in a multi-domain infrastructure, in: Proceedings o
of the 3rd International Conference on Autonomic Computing (ICAC 2006), IEEE s
Computer Society, 2006, pp. 5-14.

;2 [14] E. Tilevich, Y. Smaragdakis, J-Orchestra: Automatic java application partitioning, 33
in: Proceedings of the 16th European Conference on Object-Oriented Programming sa
(ECOOP 2002), Vol. 2374 of LNCS, Springer, 2002, pp. 178-204.

27

12

15

18

19

20

21

22

26

27

28

32

[15]

K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, A. Wollrath, Jini Specification,
Addison-Wesley Longman Publishing, 1999.

[16] M. M. Saad, B. Ravindran, Snake: Control flow distributed software transactional 4

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

(26]

memory, in: Proceedings of the 13th International Symposium on Stabilization, s
Safety, and Security of Distributed Systems (SSS 2011), Vol. 6976 of LNCS, Springer, ¢
2011, pp. 238-252.

D. E. Comer, The Cloud Computing Book: The Future of Computing Explained,
Chapman and Hall/CRC, 2021.

H. Attiya, V. Gramoli, A. Milani, Directory protocols for distributed transactional 1o
memory, in: Transactional Memory. Foundations, Algorithms, Tools, and Applica-1
tions, Vol. 8913 of LNCS, Springer, 2015, pp. 367—-391.

C. Busch, M. Herlihy, M. Popovic, G. Sharma, Time-communication impossibility 13
results for distributed transactional memory, Distributed Computing 31 (6) (2018) 14
471-487.

C. Busch, M. Herlihy, M. Popovic, G. Sharma, Dynamic scheduling in distributed 1c
transactional memory, in: Proceedings of the 2020 IEEE International Parallel and 17
Distributed Processing Symposium (IPDPS 2020), IEEE, 2020, pp. 874—883.

C. Busch, M. Herlihy, M. Popovic, G. Sharma, Fast scheduling in distributed transac-
tional memory, Theory of Computing Systems 65 (2) (2021) 296-322.

G. Sharma, C. Busch, A load balanced directory for distributed shared memory ob-
jects, Journal of Parallel and Distributed Computing 78 (2015) 6-24.

R. Palmieri, S. Peluso, B. Ravindran, Transaction execution models in partially repli-2s
cated transactional memory: The case for data-flow and control-flow, in: Trans-aa
actional Memory. Foundations, Algorithms, Tools, and Applications, Vol. 8913 of s
LNCS, Springer, 2015, pp. 341-366.

K. Siek, P. T. Wojciechowski, Atomic RMI 2: Highly parallel pessimistic distributed
transactional memory, CoRR abs/1606.03928.

M. M. Saad, B. Ravindran, HyFlow: a high performance distributed software trans-zs
actional memory framework, in: Proceedings of the 20th ACM International Sympo-zo
sium on High Performance Distributed Computing (HPDC 2011), ACM, 2011, pp. =
265-266.

R. L. Bocchino Jr., V. S. Adve, B. L. Chamberlain, Software transactional memory ss
for large scale clusters, in: Proceedings of the 13th ACM SIGPLAN Symposium ss
on Principles and Practice of Parallel Programming (PPOPP 2008), ACM, 2008, pp. ss
247-258.

28

13

16

20

21

22

26

[27]

(28]

[29]

(30]

(31]

[32]

[33]

D. Hendler, A. Naiman, S. Peluso, F. Quaglia, P. Romano, A. Suissa, Exploiting local-2
ity in lease-based replicated transactional memory via task migration, in: Proceedings s
of the 27th International Symposium on Distributed Computing (DISC 2013), Vol. 4
8205 of LNCS, Springer, 2013, pp. 121-133.

B. Zhang, B. Ravindran, R. Palmieri, Distributed transactional contention manage-s
ment as the traveling salesman problem, in: Proceedings of the 21st International -
Colloguium on Structural Information and Communication Complexity (SIROCCO s
2014), Vol. 8576 of LNCS, Springer, 2014, pp. 54—67.

P. Poudel, G. Sharma, GraphTM: An ecient framework for supporting transactional 1
memory in a distributed environment, in: Proceedings of the 21st International Con-11
ference on Distributed Computing and Networking (ICDCN 2020), ACM, 2020, pp. 12
11:1-11:10.

S. Rai, G. Sharma, C. Busch, M. Herlihy, Load balanced distributed directories, in: 1
Proceedings of the 20th International Symposium on Stabilization, Safety, and Secu-1s
rity of Distributed Systems (SSS 2018), LNCS, Springer, 2018, pp. 221-238.

M. Couceiro, P. Romano, N. Carvalho, L. E. T. Rodrigues, D2STM: dependable dis-17
tributed software transactional memory, in: Proceedings of the 15th IEEE Pacific Rim 1s
International Symposium on Dependable Computing (PRDC 2009), IEEE Computer 1o
Society, 2009, pp. 307-313.

S. Hirve, R. Palmieri, B. Ravindran, Hipertm: High performance, fault-tolerant trans-
actional memory, Theoretical Computer Science 688 (2017) 86—102.

T. Kobus, M. Kokocinski, P. T. Wojciechowski, Hybrid replication: State-machine-zs
based and deferred-update replication schemes combined, in: Proceedings of the IEEE 24
33rd International Conference on Distributed Computing Systems (ICDCS 2013), s
IEEE Computer Society, 2013, pp. 286—296.

[34] K. Manassiev, M. Mihailescu, C. Amza, Exploiting distributed version concurrency in 2

[35]

[36]

a transactional memory cluster, in: Proceedings of the ACM SIGPLAN Symposium zs
on Principles and Practice of Parallel Programming (PPOPP 2006), ACM, 2006, pp. 2
198-208.

S. Peluso, P. Romano, F. Quaglia, SCORe: A scalable one-copy serializable partial s:
replication protocol, in: Proceedings of ACM/IFIP/USENIX 13th International Mid-s.
dleware Conference (Middleware 2012), Vol. 7662 of LN CS, Springer, 2012, pp. 456—ss
475.

S. Peluso, P. Ruivo, P. Romano, F. Quaglia, L. E. T. Rodrigues, When scalability ss
meets consistency: Genuine multiversion update-serializable partial data replication, ss
in: Proceedings of the 2012 IEEE 32nd International Conference on Distributed Com-s;
puting Systems, IEEE Computer Society, 2012, pp. 455-465.

29

10

11

15

18

19

20

21

22

25

29

30

33

[37] C. Kotselidis, M. Ansari, K. Jarvis, M. Lujan, C. C. Kirkham, |. Watson, DiSTM: A

(38]

(39]

(40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

software transactional memory framework for clusters, in: Proceedings of the 2008 s
International Conference on Parallel Processing (ICPP 2008), IEEE Computer Soci-a
ety, 2008, pp. 51-58.

M. Herlihy, V. Luchangco, M. Moir, A flexible framework for implementing software s
transactional memory, in: Proceedings of the 21th Annual ACM SIGPLAN Confer-7
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOP-s
SLA 2006), ACM, 2006, pp. 253-262.

H. Attiya, L. Epstein, H. Shachnai, T. Tamir, Transactional contention management
as a non-clairvoyant scheduling problem, Algorithmica 57 (1) (2010) 44-61.

A. Dragojevic, R. Guerraoui, A. V. Singh, V. Singh, Preventing versus curing: avoid-1.
ing conflicts in transactional memories, in: Proceedings of the 28th Annual ACM 13
Symposium on Principles of Distributed Computing, (PODC 2009), ACM, 2009, pp. 14
7-16.

R. Guerraoui, M. Herlihy, B. Pochon, Toward a theory of transactional contention s
managers, in: Proceedings of the Twenty-Fourth Annual ACM Symposium on Prin-17
ciples of Distributed Computing (PODC 2005), ACM, 2005, pp. 258-264.

G. Sharma, C. Busch, A competitive analysis for balanced transactional memory
workloads, Algorithmica 63 (1-2) (2012) 296-322.

G. Sharma, C. Busch, Window-based greedy contention management for transactional
memory: theory and practice, Distributed Computing 25 (3) (2012) 225-248.

R. M. Yoo, H.S. Lee, Adaptive transaction scheduling for transactional memory sys-2
tems, in: Proceedings of the 20th Annual ACM Symposium on Parallelism in Algo-24
rithms and Architectures (SPAA 2008), ACM, 2008, pp. 169-178.

A. Baldassin, R. Murari, J. P. L. de Carvalho, G. Araujo, D. Castro, J. Barreto, P. Ro-26
mano, NV-PhTM: an ecient phase-based transactional system for non-volatile mem-2;
ory, in: Proceedings of the 26th International Conference on Parallel and Distributed 2=
Computing (Euro-Par 2020), Vol. 12247 of LNCS, Springer, 2020, pp. 477-492.

M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, J. Ren, DudeTM: building
durable transactions with decoupling for persistent memory, in: Proceedings of the s:
Twenty-Second International Conference on Architectural Support for Programming .
Languages and Operating Systems (ASPLOS 2017), ACM, 2017, pp. 329-343.

A. Kolli, S. Pelley, A. G. Saidi, P. M. Chen, T. F. Wenisch, High-performance transac-za
tions for persistent memories, in: Proceedings of the Twenty-First International Con-ss
ference on Architectural Support for Programming Languages and Operating Systems ss
(ASPLOS 2016), ACM, 2016, pp. 399-411.

30

