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Providing educators with understandable, actionable, and trustworthy insights drawn from large-

scope heterogeneous learning data is of paramount importance in achieving the full potential of 

artificial intelligence (AI) in educational settings. Explainable AI (XAI)—contrary to the 

traditional "black-box" approach—helps fulfilling this important goal. We present a case study of 

building prediction models for undergraduate students’ learning achievement in a Computer 

Science course, where the development process involves the course instructor as a co-designer, 

and with the use of XAI technologies to explain the underlying reasoning of several machine 

learning predictions. The explanations enhance the transparency of the predictions and open the 

door for educators to share their judgments and insights. It further enables us to refine the 

predictions by incorporating the educators’ contextual knowledge of the course and of the 

students. Through this human-AI collaboration process, we demonstrate how to achieve a more 

accountable understanding of students' learning and drive towards transparent and trustworthy 

student learning achievement prediction by keeping instructors in the loop. Our study highlights 

that trustworthy AI in education should emphasize not only the interpretability of the predicted 

outcomes and prediction process, but also the incorporation of subject-matter experts throughout 

the development of prediction models. 

Additional Key Words and Phrases: Student learning achievement prediction, Transparent and 

trustworthy AI, Explainable AI (XAI), Human-centered AI, Learning analytics, Co-design 
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1 INTRODUCTION 

In the transition to a digital era, artificial intelligence (AI) has been applied in divergent 

applications in education. These applications include examining the student learning process for 

providing personalized and timely interventions in support of online learning practices (Kim, 

2020; Zhang, 2020), modeling student learning process for the identification of at-risk students 

who might drop out of the courses at an early stage (Goel, 2020; Kloft, 2014), and tracing 

student historical learning paths for providing individualized learning recommendations 

(Takami , 2022; Heras, 2020; Ndiyae, 2019). Practically, other applications, like AI-powered 

augmented and virtual reality (AR/VR) (Rong, 2022), wearable devices (Ciolacu, 2021), speech-

to-text and text-to-speech applications (Azeta, 2009), etc. have also been implemented to 

actually help students with either hearing or visual impairments. Despite the effectiveness as well 

as the potential benefits of AI in education, most of these applications are still at a nascent, 

experimental stage rather than a systematic level (Vincent-Lancrin, 2020; Szafir, 2013). While 

the reasons limiting the use of AI education can be various, studies have shown that the 

trustworthiness of the results from AI algorithms and the transparency of the prediction process, 

especially in sometimes high-stake situations, have been the major factors that undermine the 

realization of the full potential of AI in educational settings (Anwar, 2021). 

Understanding the behaviors of AI, as well as promoting the trustworthiness and transparency of 

AI in education, becomes more important, especially since education is undergoing a 

transformation currently with the increasing incorporation of digital technologies. Specifically, in 

education, trustworthy and transparent AI has multiple dimensions. On the one hand, AI might 

be considered trustworthy when it does what it is supposed to do and generates insights that align 
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with human values. For example, AI-powered learning analytic systems identify at-risk students 

through profiling student learning patterns based on recorded learning activities in the online 

learning systems. If the effectiveness of the algorithms is limited by recognizing students who 

spent less time on assignments as the ones who might drop out of the course, merely relying on 

this insight will mislead the future teaching and instructional practices in the large population 

considering struggling students who spent more time on assignments as proficient ones. On the 

other hand, trustworthy AI algorithms characterize student learning processes accurately and, at 

the same time, provide interpretations of the results for instructors. Currently, inconsistencies 

have been identified by multiple research in terms of the purposes of AI algorithm designers and 

the requirements of the actual situations (Conati, 2018; Mahbooba, 2021). Most current AI 

algorithms focus on the accuracy of predictions, which always leads to sometimes complicated 

and unexplainable black-box models. However, these models seem meaningless for practices in 

educational settings that require actionable insights to really help students’ learning rather than 

accurately predict which students will fail in the end. These dimensions suggest that it is 

necessary to unpack the black-box of educational AI applications and incorporate them with 

subjective contextual knowledge as well as human perceptions to make them more aligned with 

the needs in real settings. 

The Explainable AI (XAI) is gaining popularity due to the capabilities of automatically 

providing interpretations about how the predictions were achieved and which factors had the 

most significant correlation with the predictions based on the built models. This provides an 

important interface between the abstract and complex AI algorithms with the end-users (e.g., 

learners, educators, administrators) who are domain experts but might have no or limited 

background knowledge regarding AI technologies. In fact, researchers have explored various 
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approaches for generating interpretable and understandable predictions based on the architecture 

of current AI systems. At the very early stage, the explainable techniques are mainly those AI 

model-specific, such as Decision Tree, Linear Regression, Bayesian Networks, and so on. More 

recently, model-agnostic approaches have been proposed for generalizing interpretation 

techniques to all machine learning models. SHapley Additive exPlanations (SHAP) is such a 

model-agnostic approach (Lundberg, 2017). It uses the classic Shapley values from game theory 

and their related extensions to explain the contributions of each feature to model predictions (Li, 

2022). Compared to other explainable approaches, the useful properties such as efficiency, 

summary, and additivity make the SHAP framework appealing to various applications from 

financial to medical (Lu, 2021; Mokhtari, 2019). 

Our case study explores the potential of using the SHAP framework, while involving instructors' 

contextual insights in the development of a prediction model, to promote trustworthy and 

transparent predictions of students' learning achievement. Unlike most of the existing student 

success prediction practices in which students are classified into dichotomy classes (i.e., Pass or 

Failure), our study employs different regression machine learning models to predict students' 

performance in the final exam because it depicts a more complete picture of students' learning. 

Moreover, we employ the Kernel SHAP method to explain how the models derive the 

predictions by examining the contribution and impact of each feature on the prediction 

outcomes. In doing so, our study has two contributions: (1) We demonstrate how to enhance the 

prediction's transparency by explaining the underlying reasoning of various machine learning 

models. The explanation allows the end-users of the models to judge the prediction outcomes 

and share their contextual insights. (2) We explicitly incorporate the instructor as a co-designer 

of the prediction models, therefore incorporating his contextual knowledge as well as his 
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perceptions of the reasoning behind the prediction. As a result, our case study presents the initial 

step toward transparent and trustworthy prediction of student learning achievement by 

combining the XAI technologies and the instructor's contextual insights. 

2 RELATED WORK 

With the increasing applications of AI in various fields, trust has become a central component in 

Human and AI interactions. Trustworthy interactions can promote the incorporation of AI into 

society in a safer manner (Shneiderman, 2020). It is often interlinked with interpretations and 

quality of results and is associated with the inclusion of supportive information to boost 

trustworthiness. Currently, most applications focus on building high-accuracy predictive AI 

models to accurately reflect student learning from large heterogeneous data, with few 

considering the trustworthiness of these models (Murdoch, 2019). Therefore, improving the 

trustworthiness of AI, especially in high-stake contexts, has become a major focus of the most 

recent research. 

Promoting trustworthiness in using AI can be beneficial in facilitating and sustaining 

collaborative relationships between end-users and AI developers to generate more informed 

decision-making processes (Thornton, 2021). For example, collective insights about student 

learning status rely not only on the analytical results from large-scale learning data using some 

AI models but also on instructors’ domain knowledge about the difficulties of the current 

learning contents as well as the perceptions about students’ historical learning status. Without a 

mechanism to facilitate educators with different knowledge backgrounds about AI to trust the 

predictions from the seemingly “black-box” AI algorithms, it is difficult to inject the contextual 

knowledge from instructors into the objective predictions from models to generate a 

comprehensive understanding of students’ learning. Additionally, there is also a huge potential 
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that the incorrect levels of trust in the predictions could lead to misuse, abuse, and disuse of AI 

technology in making decisions in some high-stake situations (Jacovi, 2021). Floridi et al. (2018) 

explored non-maleficence principles to promote the development, deployment, and use of AI for 

human well-being. By investigating core opportunities and risks of AI in society as well as 

identifying several ethical considerations that should undergird the development and adoption of 

AI, the principle specifically concerns the aspects of human privacy, security, and safety. 

Achieving trust in human-AI collaboration in education can be challenging (Nazaretsky, 2022). 

On the one hand, most of the current AI-powered models are always built on highly complex, 

multi-scale, and interconnected environmental data to generate higher accuracy predictive 

models, making it difficult to identify the aspects of trust and further explore assessment metrics 

(Thornton, 2021). Particularly in education settings, teaching and learning practices are often 

complex processes involving multiple, nonlinear interactions between instructional strategies and 

different learning dimensions measured in terms of both cognitive and physical aspects. 

Consequently, there are variegated assemblage learning data in terms of structured or 

unstructured data at different levels of variety and veracity. As such, much research (Al-

Shabandar, 2019; Kurdi, 2020) mainly focuses on extracting learning patterns and building 

automatic models from these data to predict students’ performance, which leads to high-

complexity AI models with less interpretability. On the other hand, there is currently limited 

understanding of trust interactions with AI, given the multiple dimensions in both individual and 

group interactions (Jacovi, 2021). Considering the interdisciplinary and dynamic properties of 

Human-AI interactions (Thiebes, 2021), previous research characterized the trust of interactions 

from both individual and public levels. Jacovi et al. (2021), focusing on individual interactions 

with AI, defined the major properties of trust as the vulnerability of the user and the ability to 
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anticipate the impact of models’ decisions. The authors explicitly discussed the conditions under 

which trust occurs and the prerequisites that trust goals could be achieved. Additionally, 

Knowles and Richards (2019) further provided an overview of the theoretical framework to 

foster public trust in AI. The authors specifically distinguished the expert trust and public trust in 

AI by correcting the general misunderstandings of trust in AI. 

These studies provided the definitions of trustworthiness and transparency as well as explored 

the characteristics of technologies that promote accountable use of AI for a general purpose 

(Jacovi, 2021). However, few of them explicitly explore trustworthy AI situated in educational 

settings and examine how trustworthiness can be used to better support real teaching and 

learning practices. Currently, XAI has been widely used to justify the reliability and 

trustworthiness of AI algorithms based on the data in a particular context. Mahbooba et al. 

(2021) employed XAI in combination with the Decision Tree (DT) model to support human 

experts in understanding malicious data and detecting the intrusions of a system by providing the 

reasoning process of the DT model used in the intrusion detection context. Moreover, Khosravi 

et al. (2022) and Swamy et al. (2022) explicitly investigated XAI in educational settings. 

Specifically, an XAI-ED framework was developed by Khosravi et al. (2022) to support the 

explainability of AI models applied in education as well as present the benefits and pitfalls of 

providing explanations within such context. Swamy et al. (2022) compared the explanatory 

results of 5 different XAI models (i.e., LIME, PermutatsionSHAP, KernelSHAP, DiCE, CEM) in 

the situation of applying Deep learning approaches to predict student learning. The results 

suggest that the explanations of results can be associated with the choice of explanatory models. 

These studies provided interfaces and proxies for end-users to understand the underlying causal 

reasoning of AI models in a specific context. Few of them further explored the real impacts of 
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the explanations on end-users and how the new insights generated from end-users can be used to 

refine AI models. Indeed, involving stakeholders as co-designers of learning analytics is still in 

its infancy (Sarmiento & Wise, 2022). To bridge these gaps, our study first explores the potential 

of utilizing the SHAP framework to explain the reasoning behind various machine learning 

models. We then investigate how to leverage the instructor's contextual insights to refine the 

predictions, make them more trustworthy, and gain a more accountable understanding of student 

learning. Formally, we attempt to address the following two research questions: 

• RQ1. How do we enhance the transparency of black-box predictive models by explaining 

their predictions? 

• RQ2. How do we incorporate instructors’ contextual knowledge to improve the 

trustworthiness of predictions and generate more plausible insights about student 

learning? 

3 METHOD 

3.1 Study Context and Data Collection 

The case study was conducted on a Fundamentals of Computing course offered in Fall 2021 at a 

midwestern university in the United States. The course lasted for 15 weeks and had 131 students 

enrolled in it. The course is required for all computer science and computer engineering students. 

It aims to help students develop basic proficiency in the C programming language and formulate 

algorithms to solve computational problems in different domains. The course consisted of 11 

labs, nine exercise assignments, and three exams. The labs were submitted electronically, and for 

each lab, we collected the timestamp of students’ last submission attempts. The lab attendance 

was graded. The exercise assignments were conducted in zyBooks, an interactive digital 

textbooks platform, and we collected the time duration that students spent on those exercises. 
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The first and second exams were conducted during the 7th and 11th weeks of the course, and the 

final exam was conducted in the last week, i.e., the 15th week. 

3.2 Feature Extraction and Model Development 

One of our goals was to identify the potentially low-performing students. Many previous studies 

used the course pass or failure status as an indicator of students’ learning achievement and built 

machine learning models to predict the binary label (Li, 2022; Lee, 2015; Macfadyen, 2010; 

Romero, 2013; Syed, 2019). We found that approach has limitations because the binary label 

does not completely depict a student’s mastery of the course content. After discussing with the 

instructor, we decided to predict students’ performance in the final exam (FinalExamScore) 

because it assesses students’ mastery of all the topics covered in the course and therefore is a 

more comprehensive indicator of their learning achievement. To predict students’ 

FinalExamScore, we first extracted a set of students’ performance and learning behaviors 

features that are commonly used to predict students’ learning achievement in the literature 

(Rotelli , 2022; Duan, 2022; Marras, 2021; Matcha, 2019). We normalized each feature using the 

MinMax scaling so all the features are on the same scale. Then we split the data randomly into 

training and testing sets to train four machine learning models, including LinearRegression, 

RandomForestRegressor, StochasticGradientDescentRegressor (SGDRegressor), and 

SupportVectorMachineRegressor (SVR). The ratios for the training and testing sets are 70% and 

30%, respectively. After performing hyperparameter tuning on the models and evaluating their 

performance on the testing set with different combinations of the features, we settled on the list 

of features described in Table 1 because they resulted in the best performance in terms of the 

lowest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Those features 

reflect both students’ learning behavior and course performance. 
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Table 1. Features Name and Description 

Name Description Category 
Exam1Score A student’s Exam1 score Course performance 
Exam2Score A student’s Exam2 score Course performance 
ExerciseScore The sum of a student’s 9 exercise assignment 

scores 
Course performance 

ExerciseTime The total time in minutes a student spent on the 
exercise assignment 

Learning behavior 

LabScore The sum of a student’s 11 lab scores Course performance 
LabAttendanceScore The sum of a student’s 10 lab attendance scores Learning behavior 
The resulting MAE and RMSE of each model are described in Table 2. As it shows, 

LinearRegression has the lowest MAE and RMSE rates. 

Table 2. Model Performance Metrics 

 LinearRegression RandomForestRegressor SGDRegressor SVR 
MAE 7.74 8.37 8.22 9.96 
RMSE 12.17 12.51 12.58 16.15 
 
3.3 Model Explanation 

To enhance the model’s transparency, we used the Kernel SHAP method (Lundberg, 2017) to 

explain how the model made the prediction at both the global and local levels. Kernel SHAP 

uses a special weighted linear regression to compute the Shapley values based on the coalitional 

game theory. The Shapley values calculated using the conditional expectations are called SHAP 

(SHapley Additive exPlanation) values. They describe feature importance with the consideration 

of different feature subsets and their effects on the model's predictions. A feature’s SHAP value 

represents its significance in the model prediction and is computed via formula (1): 

∅! =	 $
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|! -𝑓"∪{!}/𝑥"∪{!}1 − 𝑓"(𝑥")2
"	⊆({!}

																																																												(1) 

where ∅! is the SHAP value for feature 𝑖, 𝑆 is a subset of all features 𝐹, and 𝑥" represents the 

values of the input features in the subset 𝑆. A model 𝑓"∪{!}/𝑥"∪{!}1 is trained with the feature 𝑖 
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and another model 𝑓"(𝑥") is trained without the feature 𝑖. 𝑓"∪{!}/𝑥"∪{!}1 − 𝑓"(𝑥")  is the 

difference of the two models’ predictions on the current input. It is then computed for all the 

possible subsets 𝑆	 ⊆ 𝐹{𝑖} because the effect of withholding a feature depends on other features. 

The SHAP value ∅! , i.e., feature 𝑖’s significance, is a weighted average of all the possible 

differences. This approach has become the preferred method for model-agnostic SHAP value 

calculation (Lundberg, 2017). 

At the global level, we showed the features’ overall significance and their impact on the 

prediction. A feature’s overall significance is calculated by averaging its absolute SHAP value in 

each prediction. A feature’s impact is derived by examining its contribution to the prediction 

given its value. The higher the value, the greater the impact. At the local level, we explained how 

a model predicted for an individual student by showing each feature’s SHAP value. The positive 

SHAP value indicates the feature contributes positively to the prediction, while a negative SHAP 

value indicates it contributes negatively to the prediction. A SHAP value of zero indicates the 

feature has little to no significance to the prediction.  

4 RESULTS 

4.1 Enhancing Prediction’s Transparency 

To address our first research question, i.e., enhancing the transparency of the prediction, we 

uncovered the features’ overall significance and their impacts on the prediction. We also 

revealed how the individual prediction was derived. 

4.1.1 Uncovering the features’ overall significance and their impacts on the prediction 

The overall significance of each feature in the prediction is described in Fig. 1. As it shows, the 

LinearRegression and RandomForestRegressor models agree that Exam2Score is the most 
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significant feature for predicting FinalExamScore. However, SGDRegressor and SVR disagree 

with that. The most significant feature in SGDRegressor and SVR are the LabScore and 

Exam1Score, respectively. For the least significant feature, LinearRegression and SGDRegressor 

agree on ExerciseTime, while RandomForestRegressor and SVR points to LabAttendanceScore 

and ExerciseScore, respectively. 

Fig. 1. Features’ significance to the prediction. The most and least significant values are depicted 
in red and blue color, respectively. 
To uncover the impact of each feature on the prediction, we visualized the relationship between 

the feature value and its contribution to the prediction, as illustrated in Fig. 2. The color of a dot 

denotes the value of its represented feature. The bluer the color, the lower the value. The redder 

the color, the higher the value. The horizontal distance between a dot and the vertical zero-line 

depicts the contribution to the prediction made by the feature value represented by the dot. 

Because there are many instances of duplicated feature values, we jittered the graph to avoid 

clutter. As Fig. 2 shows, all the models agree that Exam1Score, Exam2Score, 

LabAttendanceScore, and LabScore have a positive impact on the prediction, meaning that the 

higher the value of those features, the higher the predicted FinalExamScore. However, the 

models disagree on the impact of ExercisesScore and ExerciseTime. ExercisesScore negatively 

impacts the prediction in LinearRegression, RandomForestRegressor, and SGDRegressorut it 
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exhibits a positive impact on the SVR’s prediction. ExerciseTime negatively impacts the 

prediction in RandomForestRegressor, SGDRegressor, and SVR, but it exhibits a positive impact 

on the LinearRegression’s prediction. 

 

Fig. 2. Features’ impact on the prediction in each model. 

To further examine this observation, we visualized the relationship between the ExerciseScore 

and ExerciseTime values and their contributions to the prediction in scatterplots, as shown in 

Fig. 3. Those plots confirm our observations in Fig. 2. 

 

Fig. 3 ExerciseScore vs its contribution and ExerciseTime vs its contribution to the prediction. 



 14 

After sharing these results with the instructor, he found the negative impact of ExerciseTime on 

the prediction acceptable. He commented it is not uncommon that high-performing students can 

complete the exercises in less time than low-performing students. However, he was puzzled by 

the negative impact of ExerciseScore on the prediction demonstrated in three out of four models. 

His previous experience has shown that a higher exercise score indicates better mastery of the 

course content. Therefore, it is counterintuitive that the higher exercise score contributes less to 

the prediction and the lower exercise score contributes more to the prediction. This feedback 

prompted us to investigate the prediction for individual students. 

4.1.2 Revealing how the prediction for individual students was made 

We revealed how each model made the prediction for individual students by explaining the 

contribution of each feature to that particular prediction, that is, at the instance level. In this 

section, we illustrate how the model works at the instance level, that is, for individual students. 

This will be demonstrated on two random students that were chosen from the testing set, namely, 

Student1 and Student7. Table 3 describes their true FinalExamScore and predicted scores. For 

Student1, LinearRegression’s prediction (86.18) is the closest to the true score (85). For 

Student7, RandomForestRegressor’s prediction (80.79) is the closest to the true score (82). 

                     Table 3. Student1 and Student7’s True and Predicted 
FinalExamScore 

 TrueScore LinearRegression RandomForestRegressor SGDRegressor SVR 
Student1 85 86.18 83.14 86.40 86.20 
Student7 82 88.35 80.79 87.76 86.07 
 

Fig. 4 illustrates each feature’s contribution to the predicted FinalExamScore for Student1 and 

Student7 in each model. The green Gantt bars mark the value of each feature. The horizontal bars 

represent the contribution of each feature to the prediction, with the red color denoting positive 
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contribution and the blue color denoting negative contribution. For example, Student1’s 

ExerciseScore (1) contributed -1.36, -2.19, -0.69, and 0.13 to the LinearRegression, 

RandomForestRegressor, SGDRegressor, and SVR’s prediction, respectively. This student’s 

ExerciseTime (0.371) contributed -0.06, -0.29, 0.29, and 0.50 to the LinearRegression, 

RandomForestRegressor, SGDRegressor, and SVR’s prediction, respectively. Student 7’s 

ExerciseScore (0.831) contributed 2.17, 1.32, 1.10, and -0.12 to the LinearRegression, 

RandomForestRegressor, SGDRegressor, and SVR’s prediction, respectively. This student’s 

ExerciseTime (0.491) contributed 0.07, -1.31, -0.34, and -0.23 to the LinearRegression, 

RandomForestRegressor, SGDRegressor, and SVR’s prediction, respectively. 

 

Fig. 4. Feature contribution to the predicted FinalExamScore for Student1 and Student7. 

Fig. 5 compares the contributions of ExerciseTime and ExerciseScore to the predicted 

FinalExamScore for Student1 and Student7. As it shows, Student7’s lower ExerciseScore (0.831) 

had a more positive contribution to the prediction than Student1’s higher ExerciseScore (11) did 

in all the models except for SVR. Additionally, Student7’s higher ExerciseTime (0.491) had a 

more negative contribution to the prediction than Student1’s lower ExerciseTime (0.371) did in 

all the models except for LinearRegression. These results are consistent with the overall negative 

impact of ExerciseTime and ExerciseScore on the prediction described in the previous section. 
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After sharing them with the instructor, he did not voice concern over the negative impact of 

ExerciseTime on the prediction. However, he could not be convinced that ExerciseScore hurts 

students’ final exam performance. He was concerned about the potential harm it can cause 

students when presenting them with a lower predicted FinalExamScore given they have higher 

ExerciseScore. Therefore, he suspected that those models could be used to identify potential low-

performing students in real-world settings. His concern and suspicion drove us to pursue the 

second research question. 

 

Fig. 5. Comparison of ExerciseTime and ExerciseScore’s contribution to the predicted 
FinalExamScore for Student1 and Student7. 

4.2 Improve Prediction’s Trustworthiness 

To address our second research question, i.e., improving the trustworthiness of the prediction, we 

first investigated the cause of the negative impact of ExerciseScore on the prediction and then 

took proper actions to mitigate it. 

4.2.1 Investigating the cause of the negative impact 

We grouped students by their FinalExamScore, ranked the groups, and compared the average 

and median ExerciseScore and ExercisesTime between the groups. As the results show in Table 

4, the average ExerciseScore of both the very high and high FinalExamScore groups is lower 

than that of the fair FinalExamScore group. Likewise, the average ExerciseScore of both the high 

and acceptable groups is lower than that of the low FinalExamScore group. Formally, 

ExcerciseScore and FinalExamScore do not exhibit a positive correlation. This data bias explains 
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the negative contribution of ExerciseScore to the prediction in three of our four models. Table 4 

also shows that the higher ranked a group’s FinalExamScore, the less time the group spent on the 

exercises on average. The only exception is the very low FinalExamScore group which spent the 

least amount of time on average. This confirms the instructor’s hypothesis that the high-

performing students can complete the exercises in less time than the low-performing group.  

Table 4. Average ExerciseScore and ExerciseTime of Students Grouped by FinalExamScore 
FinalExamScore Group Student Count ExerciseScore Mean (std) ExerciseTime Mean (std) 
50 or below (very low) 5 293 (74.11) 200 (99.64) 
51 - 60 (low) 6 380.33 (17.95) 445.50 (175.97) 
61 - 70 (acceptable) 16 357.38 (59.49) 367.88 (135.24) 
71 - 80 (fair) 22 388 (14.61) 359.95 (88.32) 
81 - 90 (high) 42 373.21 (63.29) 331.64 (121.82) 
91 - 100 (very high) 40 382.38 (28.73) 294.95 (95.75) 
 

4.2.2 Mitigating the data bias and improving prediction’s trustworthiness.  

We first log-scaled the ExerciseScore and followed our previous process to train the predictive 

models. The log scale reduced the overall impact of ExerciseScore on the prediction but did not 

change its negative contribution. Next, together with the instructor, we re-evaluated our features, 

aiming at finding features that could better reflect student learning achievement. His domain 

knowledge and teaching experience led us to generate a new feature by dividing ExerciseScore 

by ExerciseTime. This new feature measures students’ learning gains while considering the time 

they dedicated to the exercies and may better reflect their effort or efficacy. We named the new 

feature ExerciseScorePerMin and replaced ExerciseScore and ExerciseTime with it to train the 

LinerRegression, RandomForestRegression, SGDRegressor, and SVR models. The performance 

metrics are described in Table 5. Compared to the metrics resulting from using the ExerciseScore 

and ExerciseTime features, we can see the new ExerciseScorePerMin feature improves the 

performance of LinearRegression, RandomForestRegressor, and SGDRegressor. In more detail, 
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the LinearRegression’s RMSE decreased from 12.17 to 11.88. The RandomForestRegressor’s 

RMSE decreased from 12.51 to 11.79. The SGDRegressor’s RMSE decreased from 12.58 to 

12.43. SVR is the only exception, and its RMSE increased slightly from 16.15 to 16.26. The new 

result also suggests that RandomForestRegressor has the best performance. 

Table 5. Model Performance Metrics After Replacing ExerciseScore and ExerciseTime with  
ExerciseScorePerMin 

 

We also examined how the change of feature influenced the overall features’ significance and 

their impact on the prediction. As the results show in Fig. 6, the most important feature stays the 

same in all models as it was before the transformation (compare with Fig. 1). The least important 

feature of LinearRegression and SGDRegressor becomes ExerciseScorePerMin. In 

RandomForestRegressor, LabAttendanceScore remains the least important feature. The SVR 

model agrees with that now. 

 

Fig. 6. Features’ significance to the prediction after replacing ExerciseScore and ExerciseTime 
with ExerciseScorePerMin. 

 LinearRegression RandomForestRegressor SGDRegressor SVR 
MAE 7.54 7.50 8.03 9.99 
RMSE 11.88 11.79 12.43 16.26 
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The features’ impact on prediction after replacing ExerciseScore and ExerciseTime with 

ExerciseScorePerMin is illustrated in Fig. 7. As it shows, all the models agree that all the 

features now positively impact the prediction.  

 

Fig. 7. Features’ impact on the prediction after replacing ExerciseScore and ExerciseTime with 
ExerciseScorePerMin. 

We further examined the impact of the new ExerciseScorePerMin feature on the prediction. As 

shown in Fig. 8, it is positive in all the models now. 

Fig. 8. Relationship between ExerciseScorePerMin value and its contributions to the prediction. 

Additionally, we investigated how the new feature influenced the models’ prediction for 

individual students. We continued to use Student1 and Student7 as the testbed. Table 6 describes 
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the new prediction of their FinalExamScore. For Student1, RandomForestRegressor’s prediction 

(85.31) is the closest to the true score (85). It is an improvement compared to the best prediction 

(86.18) resulting from using the ExerciseScore and ExerciseTime features. For Student7, 

RandomForestRegressor’s prediction (81.78) is the closest to the true score (82). It is an 

improvement compared to the best prediction (80.79) due to using the ExerciseScore and 

ExerciseTime features.  

Table 6. Student1 and Student7’s True and Predicted FinalExamScore after Replacing 
ExerciseScore and ExerciseTime with ExerciseScorePerMin. 

 True 
Score 

LinearRegression RandomForestRegressor SGDRegressor SVR 

Student1 85 87.118 85.31 86.55 85.88 
Student7 82 85.16 81.78 86.69 84.89 
 
Fig. 9 illustrates how the predictions for Student1 and Student7 were formed after replacing 

ExerciseScore and ExerciseTime with ExerciseScorePerMin. As it shows, Student1’s 

ExerciseScorePerMin (0.362) contributed 0.04, 0.04, 0.04, and 0.58 to the predictions in 

LinearRegression, RandomForestRegressor, SGDRegressor, and SVR, respectively. Student7’s 

ExerciseScorePerMin (0.15) contributed -0.14, -1.01, -0.14, and -1.17 to the predictions in 

LinearRegression, RandomForestRegressor, SGDRegressor, and SVR, respectively. 

 

Fig. 9. Feature Contribution to the predicted FinalExamScore for Student1 and Student7 after 
replacing ExerciseScore and ExerciseTime with ExerciseScorePerMin. 
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Comparing ExerciseScorePerMin’s contribution to the predictions for Student1 and Student7, it 

is obvious that the higher value contributed more to the prediction, and the lower value 

contributed less to the prediction in all the models. The instructor found this new result more 

intuitive. He commented that ExerciseScorePerMin was a better feature for predicting students’ 

FinalExamScore, leading to more trustworthy predictions. 

5 DISCUSSION 

Machine learning models have been increasingly used in educational settings to identify 

potentially at-risk students and trigger proper interventions aimed to help them achieve academic 

success. However, the models’ complex structures and hidden decision-making mechanisms 

made it difficult for end-users to interpret and trust their predictions. In this case study, we 

demonstrated how to enhance the transparency of various machine learning models (RQ1). More 

specifically, we applied the SHAP framework to uncover the features’ overall significance and 

their impact on the prediction of students’ learning achievement. 

As shown in our results, the features’ importance and their impact on the prediction vary across 

models. For example, students’ grades on the course exercises exhibited a negative impact on the 

prediction in some regression models (LinearRegression, RandomForestRegressor, and 

SGDRegressor), but a positive impact in another (SVR); similarly, the time students dedicated to 

course exercises demonstrated a negative impact in some regression models 

(RandomForestRegressor, SGDRegressor, and SVR), but a positive impact in another 

(LinearRegression ). The instructor found these results puzzling. Our study showcased how to 

leverage the instructor’s contextual knowledge to solve the puzzle. It has been shown in previous 

studies that time dedicated to course exercises can be negatively associated with course grade 

(De Jong, 2000; Kitsantas, 2011; Trautwein, 2007). As the more time a student dedicates to 
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exercises, the less proficient, efficient, or motivated this student may be, which may impact 

negatively their final grades. However, exercise score’s negative impact on the prediction was 

more counterintuitive, and not in line with the literature (Cheema, 2015, Fan, 2017; Fernández-

Alonso, 2015), which had led us to discover a bias in the data. We mitigated this bias by 

conducting feature engineering through a co-design process with the instructor. His contextual 

knowledge informed us to generate a new feature which takes the ratio of students’ learning 

gains in exercises over the time they dedicated, to better reflect effort or efficiency. It was 

previously shown that this variable still captures contextual behavior and is not fixed 

(Hershkovitz & Nachmias, 2009), and indeed it has been used to measure and study learning in 

various settings (e.g., Ben-Zadok, Leiba, & Nachmias, 2010; Hänsch et al., 2018; Pejić & Stanić 

Molcer,2021; Zhang, Guo, & Lius, 2021). The new feature was indeed found to have a positive 

impact on students’ predicted learning achievement. Additionally, not only that this new feature 

improved the predictions of most of our models, but its relationship with the target variable was 

aligned with the instructor’s teaching experience and domain knowledge. Therefore, the 

instructor found the predictions more trustworthy and became more comfortable with using it to 

identify the low-performing students (RQ2). This co-design process, which resulted in an 

improved, more trustworthy prediction model, demonstrates the power of expert feature 

engineering; indeed, it was suggested that when wishing to predict students’ behavior in an easy-

to-interpret way, expert feature engineering has an important role, and therefore it should be 

incorporated into machine learning-based model building (Botelho, Baker, & Heffernan, 2019; 

Levin, 2021; Jiang et al., 2018). 

An important implication of our study is that AI has the potential to assist educators with their 

effort in course design improvement. In our case study, we observed that high-performing 
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students received lower exercise scores and spent less time on them. In comparison, low-

performing students received higher exercise scores by spending more time on them. These 

findings open the opportunity for instructors to reassess the course and exercise design. The 

high-performing students might find the exercises less challenging and were not motivated to 

spend more effort on it. When encountering this situation, instructors could add more 

challenging exercises and allocating more points to the challenging questions to motivate the 

high-performing students. The low-performing students might have trouble applying the 

knowledge they have gained through the exercises to solve more advanced problems. When 

facing this challenge, instructors could tailor the lecture toward demoing how to synthesize the 

various topics and apply them to solve more comprehensive problems. Our study also highlights 

the importance of improving the alignment of course exercises and the final exam. While 

exercises typically focus on individual concepts, the final exam assesses students' comprehensive 

understanding of the course material. Therefore, some students who excel in individual concepts 

may struggle to combine them and perform poorly in the final exam. To better prepare students 

for the final exam, instructors could help them practice applying and combining different topics 

to solve more advanced problems. Additionally, instructors could ensure that exercises cover all 

the topics assessed in the final exam and conduct item analysis to improve the quality of the 

exam so it is inclusive and equitable for all students. These types of actionable insights can 

benefit educators as they are increasingly confronted with complex challenges and motivate them 

to practice data-informed decision-making. As a result, student learning may be improved. So 

far, prediction models were indeed used for producing such actionable insights for either 

instructors or students, and XAI was used along with the final product (e.g., Afzaal et al., 2021; 

Er et al., 2020; Jang, Choi, & Kim, 2022). We went an important step forward and suggested to 
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involve stakeholders as an integral part of the design of the prediction models. Engaging 

stakeholders in the development process of prediction models may improve the models by 

adding their knowledge and expertise (Hershkovitz & Ambrose, 2022). It can also reciprocally 

promote the engaged stakeholders, as they would better understand how prediction models work, 

and how such models could improve their teaching, which in turn can enhance their trust in the 

models. We did so by including the instructor as an integral, equal partner in the development of 

the prediction model, hence taking a co-design approach to prediction model construction. This 

approach is in line with the emerging practice of participatory design in learning analytics (often 

referred to as human-centered learning analytics) (Dollinger et al., 2019; Prieto-Alvarez, 

Martinez-Maldonado, & Dirndorfer Anderson, 2018). A recent review of such approaches 

(Sarmiento & Wise, 2022) revealed that co-design was carried out before or after the learning 

analytics design in most cases. It also showed co-design was mostly implemented as a means for 

generation ideas or evaluating early ideas even when it was done during the design process. The 

review found only a few cases in which co-design was implemented as a co-development of 

learning analytics, but those cases didn’t employ co-design at the model construction level. 

Therefore, our co-design approach is novel and unique, and we encourage other learning 

analytics endeavors to implement it. 

Our study demonstrated how to open the black-box predictive models and invite the end-users of 

those models to share their judgments of the prediction. By involving those who are experts both 

in the subject matter and in teaching, such as instructors and learning scientists, in evaluating the 

prediction, we overcame the limitations of the conventional evaluation metrics. Traditionally, the 

regression models are evaluated by merely aggregative accuracy metrics, like MAE or RMSE. 

However, as demonstrated in our study, such metrics don’t consider the course context under 
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which learning occurs and therefore are not sufficient in determining the validity of predictive 

models in educational settings. It is essential to consider educators’ judgment of the models’ 

outputs. By leveraging educators’ judgment and expertise, we can not only enhance the 

performance of the predictive models but also improve their trustworthiness to the end users, 

which may optimize the teaching effort and improve the learning outcome. 

We believe that besides these lessons for researchers, our findings also have some meaningful 

implications for both instructors and students. First, instructors should pay closer attention to the 

heterogeneity in their classrooms, and to the fact that seemingly obvious measures—like course 

exercise scores—are not necessarily fully aligned with student learning and understanding. High-

performing and low-performing students may respond very differently towards course exercise 

and still demonstrate similar (low) performance; therefore, whether an exercise is “easy” or 

“difficult” is not to be determined merely by its scores, and instructors should be aware to it. A 

possible solution to this is to provide students with a host of exercises and to allow them some 

degree of choice, in a way that will enable every student to practice successfully and to thrive. 

For students, our findings suggest the need to reflect on their learning process throughout it, and 

to pay close attention to the way they respond to various challenges in which they tackle; these 

challenges may be related to, e.g., content, skills, problem presentation, or self-motivation, and 

they should be encouraged to look up close on their learning and to make such distinctions. 

Following this recognition, they should be encouraged to seek help addressing their main 

challenges, and therefore to better their learning, and to improve themselves as learners. At large, 

these modifications of teaching and learning will help in improving education. 
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6 LIMITATIONS AND FUTURE WORK 

Our study provides an initial step to explore the trustworthiness and transparency of AI in 

educational settings based on XAI in combination with instructors' contextual knowledge for 

modeling student learning prediction processes. We employed the Kernel SHAP method to 

explain how the model made the prediction at both the global and local levels. The SHAP value 

calculation can become computationally intractable for larger feature sets given the number of 

possible coalitions increases exponentially with the number of features. Its time complexity 

becomes 𝑂(𝑘𝑀2)) when taking the average of k samples of M features. Despite the limitations 

of the relatively small sample size, this study presents a holistic analytical process in terms of 

explaining the underlying reasoning of AI models' predictions and incorporating instructors' 

contextual knowledge to improve the models' performance and trustworthiness. This whole 

process has significant practical implications in terms of guiding instructors to investigate and 

better apply the insights generated from AI models in their instructional processes and 

researchers in the corresponding field to conduct complementary research to generalize the 

findings in our study. Furthermore, with a specific focus on AI trustworthiness and transparency, 

our research can also have the potential to improve confidence in employing AI technologies in 

some high-stakes areas other than education, such as healthcare and biomedical engineering 

domains. 

To better realize the potential of AI in education, it is important to evaluate the AI models in 

actual working environments constrained by various protocols, which need a deeper level of 

human-machine interaction and collaboration. As such, the future research direction lies in the 

following two directions: (1) exploring technologies to support more interactive human and AI 

interactions for achieving trustworthy and transparent AI in educational settings; (2) exploring 
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explainable AI technologies that are capable of dynamically incorporating subject-matter experts' 

contextual insights during the learning process for generating more accountable interventions 

aimed to help students accomplish their learning goals. It is hoped that the research in these 

aspects will further promote the applications of AI in education to enhance student learning 

experience and improve their learning outcomes. 
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