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Providing educators with understandable, actionable, and trustworthy insights drawn from large-
scope heterogeneous learning data is of paramount importance in achieving the full potential of
artificial intelligence (Al) in educational settings. Explainable Al (XAI)—contrary to the
traditional "black-box" approach—helps fulfilling this important goal. We present a case study of
building prediction models for undergraduate students’ learning achievement in a Computer
Science course, where the development process involves the course instructor as a co-designer,
and with the use of XAl technologies to explain the underlying reasoning of several machine
learning predictions. The explanations enhance the transparency of the predictions and open the
door for educators to share their judgments and insights. It further enables us to refine the
predictions by incorporating the educators’ contextual knowledge of the course and of the
students. Through this human-AlI collaboration process, we demonstrate how to achieve a more
accountable understanding of students' learning and drive towards transparent and trustworthy
student learning achievement prediction by keeping instructors in the loop. Our study highlights
that trustworthy Al in education should emphasize not only the interpretability of the predicted
outcomes and prediction process, but also the incorporation of subject-matter experts throughout

the development of prediction models.
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1 INTRODUCTION

In the transition to a digital era, artificial intelligence (Al) has been applied in divergent
applications in education. These applications include examining the student learning process for
providing personalized and timely interventions in support of online learning practices (Kim,
2020; Zhang, 2020), modeling student learning process for the identification of at-risk students
who might drop out of the courses at an early stage (Goel, 2020; Kloft, 2014), and tracing
student historical learning paths for providing individualized learning recommendations
(Takami , 2022; Heras, 2020; Ndiyae, 2019). Practically, other applications, like Al-powered
augmented and virtual reality (AR/VR) (Rong, 2022), wearable devices (Ciolacu, 2021), speech-
to-text and text-to-speech applications (Azeta, 2009), etc. have also been implemented to
actually help students with either hearing or visual impairments. Despite the effectiveness as well
as the potential benefits of Al in education, most of these applications are still at a nascent,
experimental stage rather than a systematic level (Vincent-Lancrin, 2020; Szafir, 2013). While
the reasons limiting the use of Al education can be various, studies have shown that the
trustworthiness of the results from Al algorithms and the transparency of the prediction process,
especially in sometimes high-stake situations, have been the major factors that undermine the

realization of the full potential of Al in educational settings (Anwar, 2021).

Understanding the behaviors of Al, as well as promoting the trustworthiness and transparency of
Al in education, becomes more important, especially since education is undergoing a
transformation currently with the increasing incorporation of digital technologies. Specifically, in
education, trustworthy and transparent Al has multiple dimensions. On the one hand, Al might

be considered trustworthy when it does what it is supposed to do and generates insights that align



with human values. For example, Al-powered learning analytic systems identify at-risk students
through profiling student learning patterns based on recorded learning activities in the online
learning systems. If the effectiveness of the algorithms is limited by recognizing students who
spent less time on assignments as the ones who might drop out of the course, merely relying on
this insight will mislead the future teaching and instructional practices in the large population
considering struggling students who spent more time on assignments as proficient ones. On the
other hand, trustworthy Al algorithms characterize student learning processes accurately and, at
the same time, provide interpretations of the results for instructors. Currently, inconsistencies
have been identified by multiple research in terms of the purposes of Al algorithm designers and
the requirements of the actual situations (Conati, 2018; Mahbooba, 2021). Most current Al
algorithms focus on the accuracy of predictions, which always leads to sometimes complicated
and unexplainable black-box models. However, these models seem meaningless for practices in
educational settings that require actionable insights to really help students’ learning rather than
accurately predict which students will fail in the end. These dimensions suggest that it is
necessary to unpack the black-box of educational Al applications and incorporate them with
subjective contextual knowledge as well as human perceptions to make them more aligned with

the needs in real settings.

The Explainable Al (XAI) is gaining popularity due to the capabilities of automatically
providing interpretations about how the predictions were achieved and which factors had the
most significant correlation with the predictions based on the built models. This provides an
important interface between the abstract and complex Al algorithms with the end-users (e.g.,
learners, educators, administrators) who are domain experts but might have no or limited

background knowledge regarding Al technologies. In fact, researchers have explored various



approaches for generating interpretable and understandable predictions based on the architecture
of current Al systems. At the very early stage, the explainable techniques are mainly those Al
model-specific, such as Decision Tree, Linear Regression, Bayesian Networks, and so on. More
recently, model-agnostic approaches have been proposed for generalizing interpretation
techniques to all machine learning models. SHapley Additive exPlanations (SHAP) is such a
model-agnostic approach (Lundberg, 2017). It uses the classic Shapley values from game theory
and their related extensions to explain the contributions of each feature to model predictions (L1,
2022). Compared to other explainable approaches, the useful properties such as efficiency,
summary, and additivity make the SHAP framework appealing to various applications from

financial to medical (Lu, 2021; Mokhtari, 2019).

'

Our case study explores the potential of using the SHAP framework, while involving instructors
contextual insights in the development of a prediction model, to promote trustworthy and
transparent predictions of students' learning achievement. Unlike most of the existing student
success prediction practices in which students are classified into dichotomy classes (i.e., Pass or
Failure), our study employs different regression machine learning models to predict students'
performance in the final exam because it depicts a more complete picture of students' learning.
Moreover, we employ the Kernel SHAP method to explain how the models derive the
predictions by examining the contribution and impact of each feature on the prediction
outcomes. In doing so, our study has two contributions: (1) We demonstrate how to enhance the
prediction's transparency by explaining the underlying reasoning of various machine learning
models. The explanation allows the end-users of the models to judge the prediction outcomes
and share their contextual insights. (2) We explicitly incorporate the instructor as a co-designer

of the prediction models, therefore incorporating his contextual knowledge as well as his



perceptions of the reasoning behind the prediction. As a result, our case study presents the initial
step toward transparent and trustworthy prediction of student learning achievement by

combining the XAl technologies and the instructor's contextual insights.

2 RELATED WORK

With the increasing applications of Al in various fields, trust has become a central component in
Human and Al interactions. Trustworthy interactions can promote the incorporation of Al into
society in a safer manner (Shneiderman, 2020). It is often interlinked with interpretations and
quality of results and is associated with the inclusion of supportive information to boost
trustworthiness. Currently, most applications focus on building high-accuracy predictive Al
models to accurately reflect student learning from large heterogeneous data, with few
considering the trustworthiness of these models (Murdoch, 2019). Therefore, improving the
trustworthiness of Al, especially in high-stake contexts, has become a major focus of the most

recent research.

Promoting trustworthiness in using Al can be beneficial in facilitating and sustaining
collaborative relationships between end-users and Al developers to generate more informed
decision-making processes (Thornton, 2021). For example, collective insights about student
learning status rely not only on the analytical results from large-scale learning data using some
Al models but also on instructors’ domain knowledge about the difficulties of the current
learning contents as well as the perceptions about students’ historical learning status. Without a
mechanism to facilitate educators with different knowledge backgrounds about Al to trust the
predictions from the seemingly “black-box™ Al algorithms, it is difficult to inject the contextual
knowledge from instructors into the objective predictions from models to generate a

comprehensive understanding of students’ learning. Additionally, there is also a huge potential



that the incorrect levels of trust in the predictions could lead to misuse, abuse, and disuse of Al
technology in making decisions in some high-stake situations (Jacovi, 2021). Floridi et al. (2018)
explored non-maleficence principles to promote the development, deployment, and use of Al for
human well-being. By investigating core opportunities and risks of Al in society as well as
identifying several ethical considerations that should undergird the development and adoption of

Al the principle specifically concerns the aspects of human privacy, security, and safety.

Achieving trust in human-Al collaboration in education can be challenging (Nazaretsky, 2022).
On the one hand, most of the current Al-powered models are always built on highly complex,
multi-scale, and interconnected environmental data to generate higher accuracy predictive
models, making it difficult to identify the aspects of trust and further explore assessment metrics
(Thornton, 2021). Particularly in education settings, teaching and learning practices are often
complex processes involving multiple, nonlinear interactions between instructional strategies and
different learning dimensions measured in terms of both cognitive and physical aspects.
Consequently, there are variegated assemblage learning data in terms of structured or
unstructured data at different levels of variety and veracity. As such, much research (Al-
Shabandar, 2019; Kurdi, 2020) mainly focuses on extracting learning patterns and building
automatic models from these data to predict students’ performance, which leads to high-
complexity Al models with less interpretability. On the other hand, there is currently limited
understanding of trust interactions with Al, given the multiple dimensions in both individual and
group interactions (Jacovi, 2021). Considering the interdisciplinary and dynamic properties of
Human-Al interactions (Thiebes, 2021), previous research characterized the trust of interactions
from both individual and public levels. Jacovi et al. (2021), focusing on individual interactions

with Al defined the major properties of trust as the vulnerability of the user and the ability to



anticipate the impact of models’ decisions. The authors explicitly discussed the conditions under
which trust occurs and the prerequisites that trust goals could be achieved. Additionally,
Knowles and Richards (2019) further provided an overview of the theoretical framework to
foster public trust in Al. The authors specifically distinguished the expert trust and public trust in

Al by correcting the general misunderstandings of trust in Al

These studies provided the definitions of trustworthiness and transparency as well as explored
the characteristics of technologies that promote accountable use of Al for a general purpose
(Jacovi, 2021). However, few of them explicitly explore trustworthy Al situated in educational
settings and examine how trustworthiness can be used to better support real teaching and
learning practices. Currently, XAl has been widely used to justify the reliability and
trustworthiness of Al algorithms based on the data in a particular context. Mahbooba et al.
(2021) employed XAI in combination with the Decision Tree (DT) model to support human
experts in understanding malicious data and detecting the intrusions of a system by providing the
reasoning process of the DT model used in the intrusion detection context. Moreover, Khosravi
et al. (2022) and Swamy et al. (2022) explicitly investigated XAl in educational settings.
Specifically, an XAI-ED framework was developed by Khosravi et al. (2022) to support the
explainability of Al models applied in education as well as present the benefits and pitfalls of
providing explanations within such context. Swamy et al. (2022) compared the explanatory
results of 5 different XAI models (i.e., LIME, PermutatsionSHAP, KernelSHAP, DiCE, CEM) in
the situation of applying Deep learning approaches to predict student learning. The results
suggest that the explanations of results can be associated with the choice of explanatory models.
These studies provided interfaces and proxies for end-users to understand the underlying causal

reasoning of Al models in a specific context. Few of them further explored the real impacts of



the explanations on end-users and how the new insights generated from end-users can be used to
refine Al models. Indeed, involving stakeholders as co-designers of learning analytics is still in
its infancy (Sarmiento & Wise, 2022). To bridge these gaps, our study first explores the potential
of utilizing the SHAP framework to explain the reasoning behind various machine learning
models. We then investigate how to leverage the instructor's contextual insights to refine the
predictions, make them more trustworthy, and gain a more accountable understanding of student

learning. Formally, we attempt to address the following two research questions:

e RQI1. How do we enhance the transparency of black-box predictive models by explaining
their predictions?

e RQ2. How do we incorporate instructors’ contextual knowledge to improve the
trustworthiness of predictions and generate more plausible insights about student

learning?

3 METHOD

3.1 Study Context and Data Collection

The case study was conducted on a Fundamentals of Computing course offered in Fall 2021 at a
midwestern university in the United States. The course lasted for 15 weeks and had 131 students
enrolled in it. The course is required for all computer science and computer engineering students.
It aims to help students develop basic proficiency in the C programming language and formulate
algorithms to solve computational problems in different domains. The course consisted of 11
labs, nine exercise assignments, and three exams. The labs were submitted electronically, and for
each lab, we collected the timestamp of students’ last submission attempts. The lab attendance
was graded. The exercise assignments were conducted in zyBooks, an interactive digital

textbooks platform, and we collected the time duration that students spent on those exercises.



The first and second exams were conducted during the 7th and 11th weeks of the course, and the

final exam was conducted in the last week, i.e., the 15th week.

3.2 Feature Extraction and Model Development

One of our goals was to identify the potentially low-performing students. Many previous studies
used the course pass or failure status as an indicator of students’ learning achievement and built
machine learning models to predict the binary label (Li, 2022; Lee, 2015; Macfadyen, 2010;
Romero, 2013; Syed, 2019). We found that approach has limitations because the binary label
does not completely depict a student’s mastery of the course content. After discussing with the
instructor, we decided to predict students’ performance in the final exam (FinalExamScore)
because it assesses students’ mastery of all the topics covered in the course and therefore is a
more comprehensive indicator of their learning achievement. To predict students’
FinalExamScore, we first extracted a set of students’ performance and learning behaviors
features that are commonly used to predict students’ learning achievement in the literature
(Rotelli , 2022; Duan, 2022; Marras, 2021; Matcha, 2019). We normalized each feature using the
MinMax scaling so all the features are on the same scale. Then we split the data randomly into
training and testing sets to train four machine learning models, including LinearRegression,
RandomForestRegressor, StochasticGradientDescentRegressor (SGDRegressor), and
SupportVectorMachineRegressor (SVR). The ratios for the training and testing sets are 70% and
30%, respectively. After performing hyperparameter tuning on the models and evaluating their
performance on the testing set with different combinations of the features, we settled on the list
of features described in Table 1 because they resulted in the best performance in terms of the
lowest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Those features

reflect both students’ learning behavior and course performance.



Table 1. Features Name and Description

Name Description Category

ExamlScore A student’s Exam1 score Course performance

Exam2Score A student’s Exam2 score Course performance

ExerciseScore The sum of a student’s 9 exercise assignment  Course performance
scores

ExerciseTime The total time in minutes a student spent on the Learning behavior
exercise assignment

LabScore The sum of a student’s 11 lab scores Course performance

LabAttendanceScore The sum of a student’s 10 lab attendance scores Learning behavior
The resulting MAE and RMSE of each model are described in Table 2. As it shows,

LinearRegression has the lowest MAE and RMSE rates.

Table 2. Model Performance Metrics

LinearRegression RandomForestRegressor SGDRegressor SVR
MAE 7.74 8.37 8.22 9.96
RMSE 12.17 12.51 12.58 16.15

3.3 Model Explanation

To enhance the model’s transparency, we used the Kernel SHAP method (Lundberg, 2017) to
explain how the model made the prediction at both the global and local levels. Kernel SHAP
uses a special weighted linear regression to compute the Shapley values based on the coalitional
game theory. The Shapley values calculated using the conditional expectations are called SHAP
(SHapley Additive exPlanation) values. They describe feature importance with the consideration
of different feature subsets and their effects on the model's predictions. A feature’s SHAP value

represents its significance in the model prediction and is computed via formula (1):
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where @; is the SHAP value for feature i, S is a subset of all features F, and x; represents the

values of the input features in the subset S. A model fSU{i}(xSU{i}) is trained with the feature i
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and another model fs(xs) is trained without the feature i. fSU{i}(xSU{i}) — fs(xs) isthe
difference of the two models’ predictions on the current input. It is then computed for all the
possible subsets S € F{i} because the effect of withholding a feature depends on other features.
The SHAP value @, , i.e., feature i’s significance, is a weighted average of all the possible
differences. This approach has become the preferred method for model-agnostic SHAP value

calculation (Lundberg, 2017).

At the global level, we showed the features’ overall significance and their impact on the
prediction. A feature’s overall significance is calculated by averaging its absolute SHAP value in
each prediction. A feature’s impact is derived by examining its contribution to the prediction
given its value. The higher the value, the greater the impact. At the local level, we explained how
a model predicted for an individual student by showing each feature’s SHAP value. The positive
SHAP value indicates the feature contributes positively to the prediction, while a negative SHAP
value indicates it contributes negatively to the prediction. A SHAP value of zero indicates the

feature has little to no significance to the prediction.

4 RESULTS

4.1 Enhancing Prediction’s Transparency

To address our first research question, i.e., enhancing the transparency of the prediction, we
uncovered the features’ overall significance and their impacts on the prediction. We also

revealed how the individual prediction was derived.
4.1.1 Uncovering the features’ overall significance and their impacts on the prediction

The overall significance of each feature in the prediction is described in Fig. 1. As it shows, the

LinearRegression and RandomForestRegressor models agree that Exam2Score is the most
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significant feature for predicting FinalExamScore. However, SGDRegressor and SVR disagree
with that. The most significant feature in SGDRegressor and SVR are the LabScore and
ExamlScore, respectively. For the least significant feature, LinearRegression and SGDRegressor
agree on ExerciseTime, while RandomForestRegressor and SVR points to LabAttendanceScore

and ExerciseScore, respectively.

Feature 2 LinearRegression RandomForestRegressor SGDRegressor SVR
Examl1Score 2.45 2.68 2.53 1.67
Exam2Score 412 5.62 2.43 0.50
ExerciseScore 1.35 1.33 0.68 0.14
ExerciseTime 0.14 0.61 0.64 0.74
LabAttendanceScore 1.14 0.27 0.94 0.14
LabScore 2.79 3.09 3.19 0.65

Fig. 1. Features’ significance to the prediction. The most and least significant values are depicted
in red and blue color, respectively.

To uncover the impact of each feature on the prediction, we visualized the relationship between
the feature value and its contribution to the prediction, as illustrated in Fig. 2. The color of a dot
denotes the value of its represented feature. The bluer the color, the lower the value. The redder
the color, the higher the value. The horizontal distance between a dot and the vertical zero-line
depicts the contribution to the prediction made by the feature value represented by the dot.
Because there are many instances of duplicated feature values, we jittered the graph to avoid
clutter. As Fig. 2 shows, all the models agree that Exam1Score, Exam2Score,
LabAttendanceScore, and LabScore have a positive impact on the prediction, meaning that the
higher the value of those features, the higher the predicted FinalExamScore. However, the
models disagree on the impact of ExercisesScore and ExerciseTime. ExercisesScore negatively

impacts the prediction in LinearRegression, RandomForestRegressor, and SGDRegressorut it
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exhibits a positive impact on the SVR’s prediction. ExerciseTime negatively impacts the
prediction in RandomForestRegressor, SGDRegressor, and SVR, but it exhibits a positive impact

on the LinearRegression’s prediction.
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Fig. 2. Features’ impact on the prediction in each model.

To further examine this observation, we visualized the relationship between the ExerciseScore
and ExerciseTime values and their contributions to the prediction in scatterplots, as shown in

Fig. 3. Those plots confirm our observations in Fig. 2.
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Fig. 3 ExerciseScore vs its contribution and ExerciseTime vs its contribution to the prediction.
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After sharing these results with the instructor, he found the negative impact of ExerciseTime on
the prediction acceptable. He commented it is not uncommon that high-performing students can
complete the exercises in less time than low-performing students. However, he was puzzled by
the negative impact of ExerciseScore on the prediction demonstrated in three out of four models.
His previous experience has shown that a higher exercise score indicates better mastery of the
course content. Therefore, it is counterintuitive that the higher exercise score contributes less to
the prediction and the lower exercise score contributes more to the prediction. This feedback

prompted us to investigate the prediction for individual students.
4.1.2 Revealing how the prediction for individual students was made

We revealed how each model made the prediction for individual students by explaining the
contribution of each feature to that particular prediction, that is, at the instance level. In this
section, we illustrate how the model works at the instance level, that is, for individual students.
This will be demonstrated on two random students that were chosen from the testing set, namely,
Student] and Student7. Table 3 describes their true FinalExamScore and predicted scores. For
Studentl1, LinearRegression’s prediction (86.18) is the closest to the true score (85). For

Student7, RandomForestRegressor’s prediction (80.79) is the closest to the true score (82).

Table 3. Studentl and Student7’s True and Predicted

FinalExamScore
TrueScore LinearRegression RandomForestRegressor SGDRegressor SVR
Studentl 85 86.18 83.14 86.40 86.20
Student7 82 88.35 80.79 87.76 86.07

Fig. 4 illustrates each feature’s contribution to the predicted FinalExamScore for Studentl and
Student7 in each model. The green Gantt bars mark the value of each feature. The horizontal bars

represent the contribution of each feature to the prediction, with the red color denoting positive
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contribution and the blue color denoting negative contribution. For example, Student1’s
ExerciseScore (1) contributed -1.36, -2.19, -0.69, and 0.13 to the LinearRegression,
RandomForestRegressor, SGDRegressor, and SVR’s prediction, respectively. This student’s
ExerciseTime (0.371) contributed -0.06, -0.29, 0.29, and 0.50 to the LinearRegression,
RandomForestRegressor, SGDRegressor, and SVR’s prediction, respectively. Student 7’s
ExerciseScore (0.831) contributed 2.17, 1.32, 1.10, and -0.12 to the LinearRegression,
RandomForestRegressor, SGDRegressor, and SVR’s prediction, respectively. This student’s
ExerciseTime (0.491) contributed 0.07, -1.31, -0.34, and -0.23 to the LinearRegression,

RandomForestRegressor, SGDRegressor, and SVR’s prediction, respectively.
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Fig. 4. Feature contribution to the predicted FinalExamScore for Student] and Student7.

Fig. 5 compares the contributions of ExerciseTime and ExerciseScore to the predicted
FinalExamScore for Studentl and Student7. As it shows, Student7’s lower ExerciseScore (0.831)
had a more positive contribution to the prediction than Student1’s higher ExerciseScore (11) did
in all the models except for SVR. Additionally, Student7’s higher ExerciseTime (0.491) had a
more negative contribution to the prediction than Student!’s lower ExerciseTime (0.371) did in
all the models except for LinearRegression. These results are consistent with the overall negative

impact of ExerciseTime and ExerciseScore on the prediction described in the previous section.
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After sharing them with the instructor, he did not voice concern over the negative impact of
ExerciseTime on the prediction. However, he could not be convinced that ExerciseScore hurts
students’ final exam performance. He was concerned about the potential harm it can cause
students when presenting them with a lower predicted FinalExamScore given they have higher
ExerciseScore. Therefore, he suspected that those models could be used to identify potential low-
performing students in real-world settings. His concern and suspicion drove us to pursue the

second research question.
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Fig. 5. Comparison of ExerciseTime and ExerciseScore’s contribution to the predicted
FinalExamScore for Student] and Student7.
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4.2 Improve Prediction’s Trustworthiness
To address our second research question, i.e., improving the trustworthiness of the prediction, we
first investigated the cause of the negative impact of ExerciseScore on the prediction and then

took proper actions to mitigate it.

4.2.1 Investigating the cause of the negative impact

We grouped students by their FinalExamScore, ranked the groups, and compared the average
and median ExerciseScore and ExercisesTime between the groups. As the results show in Table
4, the average ExerciseScore of both the very high and high FinalExamScore groups is lower
than that of the fair FinalExamScore group. Likewise, the average ExerciseScore of both the high
and acceptable groups is lower than that of the low FinalExamScore group. Formally,

ExcerciseScore and FinalExamScore do not exhibit a positive correlation. This data bias explains
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the negative contribution of ExerciseScore to the prediction in three of our four models. Table 4
also shows that the higher ranked a group’s FinalExamScore, the less time the group spent on the
exercises on average. The only exception is the very low FinalExamScore group which spent the
least amount of time on average. This confirms the instructor’s hypothesis that the high-
performing students can complete the exercises in less time than the low-performing group.

Table 4. Average ExerciseScore and ExerciseTime of Students Grouped by FinalExamScore
FinalExamScore Group Student Count ExerciseScore Mean (std) ExerciseTime Mean (std)

50 or below (very low) 5 293 (74.11) 200 (99.64)

51 - 60 (low) 6 380.33 (17.95) 445.50 (175.97)
61 - 70 (acceptable) 16 357.38 (59.49) 367.88 (135.24)
71 - 80 (fair) 22 388 (14.61) 359.95 (88.32)
81 - 90 (high) 42 373.21 (63.29) 331.64 (121.82)
91 - 100 (very high) 40 382.38 (28.73) 294.95 (95.75)

4.2.2 Mitigating the data bias and improving prediction’s trustworthiness.

We first log-scaled the ExerciseScore and followed our previous process to train the predictive
models. The log scale reduced the overall impact of ExerciseScore on the prediction but did not
change its negative contribution. Next, together with the instructor, we re-evaluated our features,
aiming at finding features that could better reflect student learning achievement. His domain
knowledge and teaching experience led us to generate a new feature by dividing ExerciseScore
by ExerciseTime. This new feature measures students’ learning gains while considering the time
they dedicated to the exercies and may better reflect their effort or efficacy. We named the new
feature ExerciseScorePerMin and replaced ExerciseScore and ExerciseTime with it to train the
LinerRegression, RandomForestRegression, SGDRegressor, and SVR models. The performance
metrics are described in Table 5. Compared to the metrics resulting from using the ExerciseScore
and ExerciseTime features, we can see the new ExerciseScorePerMin feature improves the

performance of LinearRegression, RandomForestRegressor, and SGDRegressor. In more detail,
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the LinearRegression’s RMSE decreased from 12.17 to 11.88. The RandomForestRegressor’s
RMSE decreased from 12.51 to 11.79. The SGDRegressor’s RMSE decreased from 12.58 to
12.43. SVR is the only exception, and its RMSE increased slightly from 16.15 to 16.26. The new

result also suggests that RandomForestRegressor has the best performance.

Table 5. Model Performance Metrics After Replacing ExerciseScore and ExerciseTime with

ExerciseScorePerMin
LinearRegression RandomForestRegressor SGDRegressor SVR
MAE 7.54 7.50 8.03 9.99
RMSE 11.88 11.79 12.43 16.26

We also examined how the change of feature influenced the overall features’ significance and
their impact on the prediction. As the results show in Fig. 6, the most important feature stays the
same in all models as it was before the transformation (compare with Fig. 1). The least important
feature of LinearRegression and SGDRegressor becomes ExerciseScorePerMin. In
RandomForestRegressor, LabAttendanceScore remains the least important feature. The SVR

model agrees with that now.

Feature LinearRegression RandomForestRegressor SGDRegressor SVR
Exam1Score 244 2.79 2.62 1.61
Exam2Score 4.36 491 2.37 0.49
ExerciseScorePerMin 0.13 0.59 0.13 1.00
LabAttendanceScore 0.52 0.36 0.68 0.09
LabScore 2.51 290 297 0.64

Fig. 6. Features’ significance to the prediction after replacing ExerciseScore and ExerciseTime
with ExerciseScorePerMin.
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The features’ impact on prediction after replacing ExerciseScore and ExerciseTime with
ExerciseScorePerMin is illustrated in Fig. 7. As it shows, all the models agree that all the

features now positively impact the prediction.
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Fig. 7. Features’ impact on the prediction after replacing ExerciseScore and ExerciseTime with
ExerciseScorePerMin.

We further examined the impact of the new ExerciseScorePerMin feature on the prediction. As

shown in Fig. 8, it is positive in all the models now.
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Fig. 8. Relationship between ExerciseScorePerMin value and its contributions to the prediction.

Additionally, we investigated how the new feature influenced the models’ prediction for

individual students. We continued to use Student] and Student7 as the testbed. Table 6 describes
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the new prediction of their FinalExamScore. For Student1, RandomForestRegressor’s prediction
(85.31) is the closest to the true score (85). It is an improvement compared to the best prediction
(86.18) resulting from using the ExerciseScore and ExerciseTime features. For Student7,
RandomForestRegressor’s prediction (81.78) is the closest to the true score (82). It is an
improvement compared to the best prediction (80.79) due to using the ExerciseScore and

ExerciseTime features.

Table 6. Student1 and Student7’s True and Predicted FinalExamScore after Replacing
ExerciseScore and ExerciseTime with ExerciseScorePerMin.

True LinearRegression RandomForestRegressor SGDRegressor SVR

Score
Student1 85 87.118 85.31 86.55 85.88
Student7 82 85.16 81.78 86.69 84.89

Fig. 9 illustrates how the predictions for Studentl and Student7 were formed after replacing
ExerciseScore and ExerciseTime with ExerciseScorePerMin. As it shows, Student1’s
ExerciseScorePerMin (0.362) contributed 0.04, 0.04, 0.04, and 0.58 to the predictions in
LinearRegression, RandomForestRegressor, SGDRegressor, and SVR, respectively. Student7’s
ExerciseScorePerMin (0.15) contributed -0.14, -1.01, -0.14, and -1.17 to the predictions in

LinearRegression, RandomForestRegressor, SGDRegressor, and SVR, respectively.
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Fig. 9. Feature Contribution to the predicted FinalExamScore for Studentl and Student7 after
replacing ExerciseScore and ExerciseTime with ExerciseScorePerMin.
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Comparing ExerciseScorePerMin’s contribution to the predictions for Studentl and Student7, it
is obvious that the higher value contributed more to the prediction, and the lower value
contributed less to the prediction in all the models. The instructor found this new result more
intuitive. He commented that ExerciseScorePerMin was a better feature for predicting students’

FinalExamScore, leading to more trustworthy predictions.

5 DISCUSSION

Machine learning models have been increasingly used in educational settings to identify
potentially at-risk students and trigger proper interventions aimed to help them achieve academic
success. However, the models’ complex structures and hidden decision-making mechanisms
made it difficult for end-users to interpret and trust their predictions. In this case study, we
demonstrated how to enhance the transparency of various machine learning models (RQ1). More
specifically, we applied the SHAP framework to uncover the features’ overall significance and

their impact on the prediction of students’ learning achievement.

As shown in our results, the features’ importance and their impact on the prediction vary across
models. For example, students’ grades on the course exercises exhibited a negative impact on the
prediction in some regression models (LinearRegression, RandomForestRegressor, and
SGDRegressor), but a positive impact in another (SVR); similarly, the time students dedicated to
course exercises demonstrated a negative impact in some regression models
(RandomForestRegressor, SGDRegressor, and SVR), but a positive impact in another
(LinearRegression ). The instructor found these results puzzling. Our study showcased how to
leverage the instructor’s contextual knowledge to solve the puzzle. It has been shown in previous
studies that time dedicated to course exercises can be negatively associated with course grade

(De Jong, 2000; Kitsantas, 2011; Trautwein, 2007). As the more time a student dedicates to
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exercises, the less proficient, efficient, or motivated this student may be, which may impact
negatively their final grades. However, exercise score’s negative impact on the prediction was
more counterintuitive, and not in line with the literature (Cheema, 2015, Fan, 2017; Fernandez-
Alonso, 2015), which had led us to discover a bias in the data. We mitigated this bias by
conducting feature engineering through a co-design process with the instructor. His contextual
knowledge informed us to generate a new feature which takes the ratio of students’ learning
gains in exercises over the time they dedicated, to better reflect effort or efficiency. It was
previously shown that this variable still captures contextual behavior and is not fixed
(Hershkovitz & Nachmias, 2009), and indeed it has been used to measure and study learning in
various settings (e.g., Ben-Zadok, Leiba, & Nachmias, 2010; Hénsch et al., 2018; Peji¢ & Stanié¢
Molcer,2021; Zhang, Guo, & Lius, 2021). The new feature was indeed found to have a positive
impact on students’ predicted learning achievement. Additionally, not only that this new feature
improved the predictions of most of our models, but its relationship with the target variable was
aligned with the instructor’s teaching experience and domain knowledge. Therefore, the
instructor found the predictions more trustworthy and became more comfortable with using it to
identify the low-performing students (RQ2). This co-design process, which resulted in an
improved, more trustworthy prediction model, demonstrates the power of expert feature
engineering; indeed, it was suggested that when wishing to predict students’ behavior in an easy-
to-interpret way, expert feature engineering has an important role, and therefore it should be
incorporated into machine learning-based model building (Botelho, Baker, & Heffernan, 2019;

Levin, 2021; Jiang et al., 2018).

An important implication of our study is that Al has the potential to assist educators with their

effort in course design improvement. In our case study, we observed that high-performing
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students received lower exercise scores and spent less time on them. In comparison, low-
performing students received higher exercise scores by spending more time on them. These
findings open the opportunity for instructors to reassess the course and exercise design. The
high-performing students might find the exercises less challenging and were not motivated to
spend more effort on it. When encountering this situation, instructors could add more
challenging exercises and allocating more points to the challenging questions to motivate the
high-performing students. The low-performing students might have trouble applying the
knowledge they have gained through the exercises to solve more advanced problems. When
facing this challenge, instructors could tailor the lecture toward demoing how to synthesize the
various topics and apply them to solve more comprehensive problems. Our study also highlights
the importance of improving the alignment of course exercises and the final exam. While
exercises typically focus on individual concepts, the final exam assesses students' comprehensive
understanding of the course material. Therefore, some students who excel in individual concepts
may struggle to combine them and perform poorly in the final exam. To better prepare students
for the final exam, instructors could help them practice applying and combining different topics
to solve more advanced problems. Additionally, instructors could ensure that exercises cover all
the topics assessed in the final exam and conduct item analysis to improve the quality of the
exam so it is inclusive and equitable for all students. These types of actionable insights can
benefit educators as they are increasingly confronted with complex challenges and motivate them
to practice data-informed decision-making. As a result, student learning may be improved. So
far, prediction models were indeed used for producing such actionable insights for either
instructors or students, and XAI was used along with the final product (e.g., Afzaal et al., 2021;

Er et al., 2020; Jang, Choi, & Kim, 2022). We went an important step forward and suggested to
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involve stakeholders as an integral part of the design of the prediction models. Engaging
stakeholders in the development process of prediction models may improve the models by
adding their knowledge and expertise (Hershkovitz & Ambrose, 2022). It can also reciprocally
promote the engaged stakeholders, as they would better understand how prediction models work,
and how such models could improve their teaching, which in turn can enhance their trust in the
models. We did so by including the instructor as an integral, equal partner in the development of
the prediction model, hence taking a co-design approach to prediction model construction. This
approach is in line with the emerging practice of participatory design in learning analytics (often
referred to as human-centered learning analytics) (Dollinger et al., 2019; Prieto-Alvarez,
Martinez-Maldonado, & Dirndorfer Anderson, 2018). A recent review of such approaches
(Sarmiento & Wise, 2022) revealed that co-design was carried out before or after the learning
analytics design in most cases. It also showed co-design was mostly implemented as a means for
generation ideas or evaluating early ideas even when it was done during the design process. The
review found only a few cases in which co-design was implemented as a co-development of
learning analytics, but those cases didn’t employ co-design at the model construction level.
Therefore, our co-design approach is novel and unique, and we encourage other learning

analytics endeavors to implement it.

Our study demonstrated how to open the black-box predictive models and invite the end-users of
those models to share their judgments of the prediction. By involving those who are experts both
in the subject matter and in teaching, such as instructors and learning scientists, in evaluating the
prediction, we overcame the limitations of the conventional evaluation metrics. Traditionally, the
regression models are evaluated by merely aggregative accuracy metrics, like MAE or RMSE.

However, as demonstrated in our study, such metrics don’t consider the course context under
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which learning occurs and therefore are not sufficient in determining the validity of predictive
models in educational settings. It is essential to consider educators’ judgment of the models’
outputs. By leveraging educators’ judgment and expertise, we can not only enhance the
performance of the predictive models but also improve their trustworthiness to the end users,

which may optimize the teaching effort and improve the learning outcome.

We believe that besides these lessons for researchers, our findings also have some meaningful
implications for both instructors and students. First, instructors should pay closer attention to the
heterogeneity in their classrooms, and to the fact that seemingly obvious measures—Ilike course
exercise scores—are not necessarily fully aligned with student learning and understanding. High-
performing and low-performing students may respond very differently towards course exercise
and still demonstrate similar (low) performance; therefore, whether an exercise is “easy” or
“difficult” is not to be determined merely by its scores, and instructors should be aware to it. A
possible solution to this is to provide students with a host of exercises and to allow them some
degree of choice, in a way that will enable every student to practice successfully and to thrive.
For students, our findings suggest the need to reflect on their learning process throughout it, and
to pay close attention to the way they respond to various challenges in which they tackle; these
challenges may be related to, e.g., content, skills, problem presentation, or self-motivation, and
they should be encouraged to look up close on their learning and to make such distinctions.
Following this recognition, they should be encouraged to seek help addressing their main
challenges, and therefore to better their learning, and to improve themselves as learners. At large,

these modifications of teaching and learning will help in improving education.
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6 LIMITATIONS AND FUTURE WORK

Our study provides an initial step to explore the trustworthiness and transparency of Al in
educational settings based on XAl in combination with instructors' contextual knowledge for
modeling student learning prediction processes. We employed the Kernel SHAP method to
explain how the model made the prediction at both the global and local levels. The SHAP value
calculation can become computationally intractable for larger feature sets given the number of
possible coalitions increases exponentially with the number of features. Its time complexity
becomes 0(kM2M) when taking the average of k samples of M features. Despite the limitations
of the relatively small sample size, this study presents a holistic analytical process in terms of
explaining the underlying reasoning of Al models' predictions and incorporating instructors'
contextual knowledge to improve the models' performance and trustworthiness. This whole
process has significant practical implications in terms of guiding instructors to investigate and
better apply the insights generated from Al models in their instructional processes and
researchers in the corresponding field to conduct complementary research to generalize the
findings in our study. Furthermore, with a specific focus on Al trustworthiness and transparency,
our research can also have the potential to improve confidence in employing Al technologies in
some high-stakes areas other than education, such as healthcare and biomedical engineering

domains.

To better realize the potential of Al in education, it is important to evaluate the Al models in
actual working environments constrained by various protocols, which need a deeper level of
human-machine interaction and collaboration. As such, the future research direction lies in the
following two directions: (1) exploring technologies to support more interactive human and Al

interactions for achieving trustworthy and transparent Al in educational settings; (2) exploring
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explainable Al technologies that are capable of dynamically incorporating subject-matter experts
contextual insights during the learning process for generating more accountable interventions
aimed to help students accomplish their learning goals. It is hoped that the research in these
aspects will further promote the applications of Al in education to enhance student learning

experience and improve their learning outcomes.
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