Computers & Graphics (2023)

journal homepage: www.elsevier.com/locate/cag

Contents lists available at ScienceDirect

Computers & Graphics

&GRAPHICS

STSR-INR: Spatiotemporal Super-Resolution for Multivariate Time-Varying Volumetric

Data via Implicit Neural Representation

Kaiyuan Tang?, Chaoli Wang?

“Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States

ARTICLE INFO ABSTRACT

Article history:
Received November 26, 2023

Keywords: Spatiotemporal super-resolu-
tion, implicit neural representation, mul-
tivariate time-varying data

Implicit neural representation (INR) has surfaced as a promising direction for solving
different scientific visualization tasks due to its continuous representation and flexi-
ble input and output settings. We present STSR-INR, an INR solution for generating
simultaneous spatiotemporal super-resolution for multivariate time-varying volumetric
data. Inheriting the benefits of the INR-based approach, STSR-INR supports unsu-
pervised learning and permits data upscaling with arbitrary spatial and temporal scale
factors. Unlike existing GAN- or INR-based super-resolution methods, STSR-INR fo-
cuses on tackling variables or ensembles and enabling joint training across datasets of
various spatiotemporal resolutions. We achieve this capability via a variable embedding
scheme that learns latent vectors for different variables. In conjunction with a modu-
lated structure in the network design, we employ a variational auto-decoder to optimize
the learnable latent vectors to enable latent-space interpolation. To combat the slow
training of INR, we leverage a multi-head strategy to improve training and inference
speed with significant speedup. We demonstrate the effectiveness of STSR-INR with
multiple scalar field datasets and compare it with conventional tricubic+linear interpo-
lation and state-of-the-art deep-learning-based solutions (STNet and CoordNet).

(© 2023 Elsevier B.V. All rights reserved.

1. Introduction

tion), the STSR task aims to upsample the sequence to a high-
resolution one (e.g., 150 timesteps with 5123 spatial resolution).

In many applications, domain scientists run large-scale simu-
lations to generate spatiotemporal multivariate volumetric data
for analyzing the corresponding physical or chemical processes.
These simulations often come with various conditions, settings,
or configurations, leading to multiple runs. The resulting multi-
variate or ensemble data are different but usually share a similar
structural appearance. Analyzing and visualizing such high-
dimensional spatiotemporal data requires enormous disk and
memory storage for post hoc analysis, presenting a significant
challenge to domain experts and visualization researchers.

One way to tame the high storage cost is to save only down-
sampled low-resolution data and then apply spatiotemporal
super-resolution (STSR) techniques to recover their high-
resolution counterparts. For instance, given a downsampled
volume sequence (e.g., 50 timesteps with 128° spatial resolu-

Over the past few years, we have witnessed a surge of deep-
learning-based solutions for accomplishing many scientific vi-
sualization tasks, including super-resolution generation [1]. For
the end-to-end STSR generation, STNet [2] and STSRNet [3]
are state-of-the-art examples that upscale volumetric scalar and
vector data, respectively. Nevertheless, both works suffer sig-
nificant limitations.

First, these solutions are based on convolutional neural net-
works (CNNs) and generative adversarial networks (GANs).
Due to their discrete, resolution-dependent network designs,
CNN and GAN-based STSR solutions demand ground-truth
(GT) high-resolution data during training in a supervised man-
ner. They cannot interpolate arbitrarily-resolved spatial or tem-
poral resolution.

20

21

22

23

24

25

26

27

28

29

30

31

32


http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

2 K. Tang et al./ Computers & Graphics (2023)

Second, neither STSR method provides sound guidance for
training multivariate or ensemble datasets. They tackle each
variable or ensemble sequence as an independent training pro-
cess, making similar structure learning redundant. One straight-
forward way to achieve multivariate STSR is to expand the net-
work’s output, i.e., inferring multiple variables simultaneously.
This calls for an increased network capacity, which may not
always be desirable. Moreover, the variation of variable or en-
semble distributions could negatively impact each other during
training, leading to performance degradation.

Third, moving from different variables to different datasets,
both STNet and STSRNet do not permit joint training of dif-
ferent datasets of various spatiotemporal resolutions. For flex-
ibility and efficiency, it is ideal that the same network trains
multiple datasets simultaneously without sacrificing inference
quality. However, such a joint training scheme has not been
thoroughly studied in scientific visualization for the STSR task.

To respond, we design STSR-INR, spatiotemporal super-
resolution via implicit neural representation. Unlike CNN or
GAN, INR ingests coordinates and predicts quantities of inter-
est via a neural network, commonly in the form of multilayer
perceptrons (MLPs) or fully-connected network (FCN). With
INR, the memory required to parameterize the signal depends
on its complexity rather than resolution. We leverage such an
FCN to learn a continuous representation from discrete data
samples. Doing so brings two benefits. First, it can achieve
unsupervised learning, which does not need seeing low- and
high-resolution volume pairs for training. Second, it supports
upsampling the input low-resolution volume sequence to an ar-
bitrary spatial or temporal scale without modifying network
structure or retraining.

To help the network learn multivariate sequences, we design
a variable embedding scheme along with a modulated structure
to optimize each variable independently while utilizing their
shared structural appearance for training. Variable embedding
models each variable or ensemble sequence as a learnable la-
tent vector, enabling the network to capture more detailed vari-
able variations. To better utilize the latent vector, we devise a
modulated structure consisting of a modulator network and a
synthesis network. The modulator network will provide the la-
tent vector with more control over the feature map in the synthe-
sis network and, thus, could improve the quality of synthesized
spatiotemporal volumes. This embedding structure is highly
flexible and can support the joint training of different datasets
of various spatiotemporal resolutions within the same network.
Furthermore, our variable embedding is learned with a varia-
tional auto-decoder, which optimizes the latent vector, allow-
ing us to conduct latent-space interpolation. Finally, INR-based
solutions are notoriously slow in training as an entire feedfor-
ward pass through the network must be computed for each sam-
ple. We utilize a multi-head strategy to boost the training and
inference speed of STSR-INR significantly.

We experiment with STSR-INR on several multivariate or
ensemble scalar field datasets and compare it against tricu-
bic+linear interpolation, GAN-based STNet [2], and INR-based
CoordNet [4]. The results demonstrate that STSR-INR achieves
competitive quality on most datasets using data-, image-, and

feature-level metrics. The contribution of this paper is as fol-
lows. First, we present the design of STSR-INR, a novel INR-
based solution to achieve STSR for multivariate or ensemble
spatiotemporal volume data. Second, we experiment with the
multi-head strategy to effectively tackle the issue of slow train-
ing with INR. Third, we investigate the utility of our embed-
ding structure via joint training, latent-space interpolation, and
network analysis. Fourth, we show the advantages of STSR-
INR over the state-of-the-art STSR solutions based on GAN
and INR. Finally, we investigate two key network settings for
STSR-INR and study their impacts on performance.

2. Related work

This section discusses related works of deep learning for sci-
entific visualization, super-resolution generation, and INR tech-
niques.

2.1. Deep Learning for Scientific Visualization

There is an exciting trend of leveraging deep-learning-based
methods for solving scientific visualization tasks, including
data generation, visualization generation, prediction, object
detection and segmentation, and feature learning and extrac-
tion [1]. Among them, the task most relevant to this work is
data generation, which aims to infer or reconstruct new ver-
sions of data from existing versions or their reduced visual
representations. The most popular form of data generation
is super-resolution generation, which uses downsampled low-
resolution data to produce high-resolution versions [5]. For
instance, Han and Wang designed SSR-TVD [6], which ap-
plies a GAN to upscale the low-resolution 3D volumetric se-
quences into high-resolution ones. Another form of data gener-
ation is data reconstruction, which infers the original data from
their visual representations. For example, Gu et al. [7] con-
sidered the problem of reconstructing unsteady flow data from
their reduced visual forms: a set of representative streamlines.
Their VFR-UFD solution can recover high-quality vector data
from these compact streamlines via a diffusion step followed by
deep-learning-based denoising. The third form of data genera-
tion is data translation. i.e., ingesting one variable or ensemble
sequence to infer another sequence, commonly called variable-
to-variable (V2V) translation [8]. For instance, Scalar2Vec [9]
translates one scalar field to its corresponding velocity vector
field using the k-complete bipartite translation network.

In this work, we focus on spatiotemporal super-resolution
generation. Given low spatial and temporal resolution volume
sequences, we aim to upscale them to high spatial and temporal
resolution ones in an end-to-end fashion, similar to STNet [2].
Unlike vector field STSR model STSRNet [3], STSR-INR is
designed for scalar field multivariate time-varying data and
does not upscale vector field data or include motion estimation
for flow field reconstruction. One of the concurrent works is
FFEINR [10], which employs INR to achieve STSR for flow
field data with fast training and inference speed. In contrast to
FFEINR, which utilizes an encoder to extract the downscaled
data features, our STSR-INR embeds features through a series
of learnable latent vectors and thus could maintain a relatively
lightweight architecture.

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

%

95

96

97

98

929

100

101

102

103

104

105

106

107

108

109

110

1

112



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

K. Tang et al./ Computers & Graphics (2023) 3

2.2. Super-Resolution Generation

Super-resolution techniques transform low-resolution data
into high-resolution versions, including spatial super-resolution
(SSR), temporal super-resolution (TSR), and STSR. Exam-
ples of deep-learning-based SSR works are SRCNN [11],
SRFBN [12], and SwinIR [13], which solve the inference of
high-resolution details in the spatial domain. TSR takes sub-
sampled time sequences to interpolate intermediate timesteps
with the same spatial resolution. Example works include phase-
based interpolation [14], SepConv [15], and SloMo [16]. SSR
and TSR only focus on the spatial or temporal domain, but
not both. STSR addresses both spatial and temporal super-
resolution simultaneously. Compared with conventional inter-
polation methods, deep-learning-based methods can reconstruct
more accurate results because of their ability to fit complex
global patterns of the target data.

Our work falls into the STSR category. Previous methods,
like STNet [2], can only upsample the input data with a fixed
spatial or temporal scale factor. On the contrary, our STSR-INR
can upscale the input low-resolution data to an arbitrary scale,
thanks to the continuous neural representation of spatial and
temporal domains. Moreover, STSR-INR accomplishes spatial
and temporal upscaling in an unsupervised manner. This means
that, unlike STNet, STSR-INR does not keep low- and high-
resolution volume pairs or the complete subsequence of early
timesteps for training optimization.

2.3. INR-Based Techniques

Recent works have investigated utilizing MLPs or FCNs to
learn the continuous INR from discrete data samples. The most
notable works are neural radiance field (NeRF) and sinusoidal
representation network (SIREN). Mildenhall et al. [17] intro-
duced NeRF, which applies an FCN with position encoding
to learn the continuous volumetric scene and synthesize novel
views. Sitzmann et al. [18] proposed SIREN that leverages the
periodic activation function to help the MLPs learn the com-
plex data signals more accurately. In scientific visualization,
INR-based examples include neurcomp for neural compression
of volume data [19], fV-SRN, a fast version of a scene repre-
sentation network for volume rendering [20], neural flow map
for particle trajectory prediction [21], and instant neural repre-
sentation for interactive volume rendering [22].

Researchers have extracted feature information and injected
it into the INR model’s input to improve the performance and
generalization ability. A direction is utilizing an encoder to ex-
tract latent features from subsampled data, often called the auto-
encoder architecture. Example works in this direction include
VideoINR [23] and ArSSR [24]. However, volumetric data are
massive 4D space-time data, often demanding excessive GPU
memory consumption when applying an encoder for feature
extraction. Instead of using the auto-encoder architecture, we
leverage the auto-decoder architecture, which derives the fea-
ture information by assigning each type of signal (e.g., variable
or ensemble) a learnable latent vector and optimizing the latent
vector together with deep network parameters in the training
process. Works such as DeepSDF [25] and DyNeRF [26] fall
into this category.

The work most closely related to our work is CoordNet [4],
which leverages INR to achieve data generation (i.e., SSR and
TSR) and visualization generation (i.e., view synthesis and am-
bient occlusion prediction) tasks. Our STSR-INR work also
targets super-resolution generation via INR. However, it tackles
SSR and TSR simultaneously. We make significant changes to
the baseline CoordNet framework to efficiently and effectively
handle super-resolution generation for multiple variables or en-
sembles, which has never been explored. Furthermore, instead
of training each model to learn the representation of individual
datasets, our work can train the same model to learn across mul-
tiple datasets with various spatiotemporal resolutions. A recent
concurrent work that also adopts CoordNet is HyperINR [27],
which employs hypernetwork to produce the weights of an INR.
However, HyperINR mainly focuses on the TSR of one scalar
dataset, while our STSR-INR processes STSR on a single mul-
tivariate dataset or across multiple datasets.

o T Ve
st — @R v,
e
(l)em }z""l —>
o« e e té Vei+1

Fig. 1: Overview of STSR-INR. The network predicts the corresponding voxel
value by inputting the variable-specific latent vector and space-time coordi-
nates.

learnable latent vectors

3. STSR-INR

3.1. Overview

Let D = {D,,,D,,,...,D,,} be a set of n multivariate
volume sequences, where D,, is the volume sequence for
variable or ensemble ¢; and e = {ej,ez,...,e,}. D, =
{C,,,V,,;} contains a set of input space-time coordinates C,, =
{2y ), (5, vy .25 157),. ..} and their corresponding
values V,, = {v{',v5",...}. As sketched in Figure 1, to achieve
simultaneous training over multiple variables, we design vari-
able embedding that assigns each variable sequence D, a learn-
able latent vector ®,,. During training, we aim to learn the
mapping from C,, conditioned on &, to V,, by updating both
®,, and network parameters ©. That is,

Fo:(C;D) =V, 1

where C = {C,,,C,,,...,C,,}, ® = {P,,,P,,...,P,,}, and
V={V,,V,,,..., V. }. Once the network is trained, given the
optimized latent vector ®,,, STSR-INR can predict V., from
unseen intermediate spatial and temporal coordinates. For the
STSR task, given the spatial and temporal upscale factors ug; and
u;, it can reconstruct volume sequences with higher spatial and
temporal resolutions by inference on a scaled spatiotemporal
grid.

3.2. Network Architecture

SIREN and skip-connection. As illustrated in the left of
Figure 2, our STSR-INR is a SIREN-based [18] network which

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

4 K. Tang et al./ Computers & Graphics (2023)

P(®e)~N(pe, 03) Modulator | 25664 (64.128) (128,256) (256,256) (256,256) (256,256) (256,256)

network
‘“ ——> P> |Sine | "She | “|Sne | " RB | " RB | " RB ::: RB8

latent vector
distribution

X6

¥

o g
e b e O Sre O S0 O+ FB O B —O— FB - FB

synthesis

network (4.64) (64,128)

vz

sampled coordinates

(128,256) (256,256) (256,256) (256,256) (256,256)

———

— @ | residual skip connection
' block

|

| |

N | in A out |
| Sine —» Sine —»{ avg —» |

|

(256,256) (256,128) (128,64) ©4.1)

Fig. 2: Network structure of STSR-INR. Left: Overview of STSR-INR. The modulator network takes the sampled latent vector, and the synthesis network takes
coordinates as input. The modulator then modulates the synthesis activations using dot products. Finally, each head in the multi-head structure reconstructs a
subvolume of the same size in the whole volume. During training, we jointly optimize network and variable-specific latent vector distribution parameters. Top-right:
Detailed structure of the residual block. Bottom-right: Detailed structure of the network’s head part.

consists of fully-connected layers and the Sine activation func-
tion. Compared with other activation functions like ReLU
or Tanh, employing Sine helps the network fit complex sig-
nals, especially high-frequency parts, more quickly and accu-
rately. Moreover, if the input and output dimensions are con-
sistent, we add skip-connection between every two consecutive
SIREN layers to improve the network’s capacity. These skip-
connection blocks are referred to as residual blocks. Figure 2
top-right shows how the residual block is constructed. Fol-
lowing CoordNet [4], we also apply average operations on the
residual block. For example, let the input of the residual block
be x, and f(x) be the activation after two SIREN layers. The
output of the residual block is 0.5(x + f(x)). By multiplying
0.5 on the skip-connection result, the output range of one resid-
ual block stays in [-1,1] (which is the same as the input range)
instead of [-2,2]. This treatment can stabilize network training.

Variable embedding. Training each variable with a sep-
arate neural network is not flexible or efficient in achieving
STSR for a single multivariate dataset. Ideally, we want the
network to support joint training even for different multivariate
datasets with various spatiotemporal resolutions while utilizing
their shared structural information to speed up network training.
By supporting joint training of multivariate datasets end-to-end
with one model, we can simplify the training pipeline and avoid
storing duplicate models for different variables.

Inspired by temporal embedding for video synthesis [26], we
devise variable embedding representing the reconstruction con-
text of different variables under the joint training scenario. It
embeds each variable sequence via a real-valued optimizable la-
tent vector ®,, € R!, where [ denotes the latent vector’s length.
When we train on the STSR task, we jointly optimize variable-
specific latent vectors @ and network parameters ©.

In Equation 1, even though all latent vectors & have the
same length of [, each e; can have its own input coordinates
C,,. Therefore, denoted by JFg, the network can train variables
with different spatial or temporal resolutions jointly. One in-
tuitive way to encode the reconstruction task’s context infor-
mation for each variable is to apply one-hot vector. Such a
vector has a fixed length containing n bits of 0 and 1. For the
one-hot vector of e;, only the i-th bit is 1, and the rest are 0.
Compared to one-hot vectors, our variable embedding offers
the following benefits. First, one-hot vectors are a disentangled
form of representation, but our learnable latent vectors are dis-
tributed. The length of our latent vectors does not increase as
the number of variables increases. Second, one-hot vectors can

only be orthogonal to each other, but our learnable latent vec-
tors are updated during training to implicitly encode differenti-
ations among variables. Once trained, variable embedding can
describe the distribution difference between variables. Third,
variable embedding has the potential to provide an operable la-
tent space, where interpolating between these optimized latent
vectors can infer novel results with an appropriate decoder.

Modulated structure. Unlike CoordNet, STSR-INR needs
to embed variable information into different variable-specific
latent vectors. To this end, designing a way to condition the
network output with different latent vectors is necessary. An
intuitive way to condition learnable latent vectors on the gen-
erative network is to concatenate the latent vectors with coor-
dinates as input to the INR model. Works like DeepSDF [25]
follow this path. However, as pointed out by Mehta et al. [28],
the concatenation approach is less expressive compared with
a modulation approach. Concatenating the latent vectors with
input only changes the phase of the feature map, while modu-
lation allows the latent vectors to control the phase, frequency,
and amplitude of the feature maps. Therefore, we present a
modulated structure that consists of a modulator network and a
synthesis network. The modulator network ingests the variable
embedding latent vector information and modulates the synthe-
sis network via dot product the activations of each block in the
two networks. Instead of using ReLU in the modulator net-
work [28], we utilize Sine as the non-linear function and keep
the same network structure for both networks. As a result, each
layer’s input and output ranges in the synthesis network remain
[-1,1]. This adaptation leads to fast and stable network training.

Variational auto-decoder. During training, we jointly op-
timize network parameters ® and conditioned learnable latent
vectors @. After that, the INR model can take trained & to
reconstruct variable sequences. In this case, ® can be consid-
ered dimensionality reduction resulting from a representation
learning process of high-dimensional multivariate data. We can
leverage the optimized & to generate new latent vectors and
infer results through the network or analyze the difference be-
tween variable sequences.

As such, we leverage variational auto-decoder (VAD) [29]
that employs a strong regularization on variable embedding.
VAD brings two benefits. First, the learned latent space could
be more compact as it follows a standard normal distribution.
Second, we can use sampled unseen latent vectors to infer
smoother novel results due to the continuous and probabilistic
nature of the VAD latent space. Similar to variational auto-

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

al

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

K. Tang et al./ Computers & Graphics (2023) 5

encoder (VAE) [30], for variable e;, instead of using one non-
random vector, we sample latent vector ®,, through its opti-
mizable posterior distribution N(,,, Ggi). The distribution of
®,, cannot be optimized directly, so we apply the reparameteri-
zation trick [30]: ®,, = ., + o,; O €, where € is sampled from
€ ~ N(0,I) and I is the identity matrix. Then we can optimize
the distribution of ®,; by optimizing U, and o,,. However, our
experiment shows that the optimizable o,; could lead to unsta-
ble training. Therefore, we only make L, learnable and set o,
close to a constant unit vector. Such an adaptation stabilizes
the training of VAD. We remove the random component in ®,,
during inference and use [, to represent each variable. The
key motivation for sampling latent vectors during training is to
ensure the input latent space of the decoder is a continuous rep-
resentation instead of a discrete one like auto-decoder (AD).
By sampling latent vectors and optimizing their distributions in
the latent space, interpolated latent vectors are less likely to fall
out of the continuous latent space that the decoder can decode,
leading to a more meaningful reconstruction.

Multi-head training. INR methods consisting of only the
MLP structure usually suffer in the speeds of training and infer-
ence. This is because the model needs to iterate all the samples
sequentially. One way to solve this problem is to replace part
of the fully-connected layers in INR with several convolutional
layers so the network output can be a whole volume/image in-
stead of a single voxel/pixel. Works like NeRV [31] follow this
route. However, according to the experimental results in [4],
utilizing CNNs directly in the reconstruction task yields blurry
and noisy prediction results. Inspired by the multi-head struc-
ture proposed by Aftab et al. [32], we leverage a multi-head
strategy to significantly speed up the training without losing
much of the reconstruction ability. Specifically, we partition the
spatial volume into blocks of equal size and feed the network
with local coordinates. These coordinates can be mapped to the
voxel values of corresponding positions within each block. As
sketched in the left of Figure 2, after applying multiple heads
at the end of the network structure, each network’s feedforward
pass can output all values corresponding to the same local co-
ordinate across all these spatial partitions. This strategy dra-
matically reduces the necessary floating point operations for
reconstructing the whole signal. Furthermore, y considering
the difference of volume blocks in each partition, each head
of our network utilizes its independent parameters to process
the shared features output by the modulator and synthesis net-
works. This treatment ensures that the network can fit the vol-
ume sequence efficiently. Figure 2 bottom-right shows how the
head part is constructed. Compared to the standard one-head
training, our network requires proportionally fewer feedforward
passes as the number of heads increases.

3.3. Optimization

In the training process, we jointly optimize network param-
eters ® and learnable latent vectors ®. The objective function
consists of two parts: reconstruction loss and Kullback-Leibler
divergence (KLD) loss [33]. The total loss £ is given by

L = Lrpc + ALkiD, 2

where Lrece and Lgpp are the reconstruction and KLD losses,
and A € [0, 1] controls the weight of the KLD term.
Reconstruction loss. Given the input coordinates and latent
vectors, the network predicts the corresponding voxel values
Vpre. Let the ground-truth voxel values be Vgt (in our case,
low-resolution volumes), and the reconstruction loss is defined
as
Lrec = || Vere — Varl|2- 3)

KLD loss. Like VAE [30], we add a KLD term to regularize
the variable latent space and secure plausible interpolation re-
sults among various latent vectors. Let the prior distribution of
the latent vector @, be g(®,,|D,). The KLD term is defined as

n
Lxip = Z KLD (Q(q)e,- ‘De,-) | |p(Dei ‘q)ei)) : “
i=1
In the following experiment, we set our prior distribution
q(®.,|D,,;) as the Gaussian distribution where p(D,, |®.,) is the
distribution of sampled latent vector. Therefore, the expanded
form of Equation 4 then becomes

LxLp = (0f +us—1-logo,). 5)

| —
.M=

i=1

For stable training, we do not optimize o,,; and only update y,,.
The value of y,, is randomly initialized and the constant value
of o, is set by making log 0'62[, =1073. As such, the effect of the
KLD loss is to regulate the different latent vector distributions
to be close in the latent space. This ensures that the interpolated
latent vector among them is less likely to fall outside the mean-
ingful latent space region the decoder can decode. However, the
decoder may suffer in the optimization process when different
distributions are too close. Therefore, we introduce A in Equa-
tion 2 to control the strength of KLD regulation. Algorithm 1
outlines the STSR-INR training process.

Algorithm 1 STSR-INR training algorithm

Input: Dataset D = {(C,,V)}l,, target training
epochs T, distribution variances of latent vectors
o> ={c},02,...,02} KLD loss weight 1

Randomly initialize network parameters @ and distribution
means of latent vectors it = {l,, , e, - -, Me, }
for j=1...T do
for all (C,,,V,;) € D do
®,, U, + 0., O, where € ~ N(0,I)
Calculate Vprg <+ ?@(Cei;q)ei)
Compute Lrpc following Equation (3)
Update (O, 1) based on Lrgc
end for
Compute Lkip following Equation (5)
Update u based on A Lk1 p
end for

4. Results and Discussion

4.1. Datasets and Network Training
Datasets. Table 1 lists the datasets used in our experi-
ments. The variable set of the combustion dataset [34] includes

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67



20

21

22

23

24

25

26

27

28

6 K. Tang et al./ Computers & Graphics (2023)

o
s ) | svet

Lht ok Cooraet/| 40
so/| | W W W WAWAV; \ vV STSRINR

PSNR (dB)

Time Step

LS 0.08
STNet

05 CoordNet
STSRINR 0.06]

20 40 60 8 20 a0
Time Step

T
30 SThet

I CoordNet
25| STSRANR

20 a0 60 80 20 40
Time Step

(a) combustion (HR, MF, VTM, YOH)

(b) half-cylinder (VLM: 160, 320, 640, 6400)

LS 25 T

STNet STNet

CoordNet | 40.0/ = CoordNet

STSRANR STSRINR
315

350

SNR (dB)

£325

300

215

80 20 a0 60 EY

60
Time Step Time Step

s n

STNet STNet
CoordNet CoordNet
STSRINR STSRINR

60 8 20 a0 60 EY

Time Step Time Step

n LS
SThet STNet

CoordNet 2 CoordNet
STSRINR STSRINR

80 20 a0 60 80
Time Step

(c) ionization (T, PD, H2, H+)

Fig. 3: Average PSNR (dB, top row), LPIPS (middle row), and CD (bottom row) values over the experimented variables of the three datasets.

2 a0 60 80 20
Time Step.

(a) PSNR

160 | 160
320 320

6400 6400

60 40
Time Step Time Step

(b) LPIPS

(c)CD

Fig. 4: PSNR (dB), LPIPS, and CD values for individual ensemble members of the half-cylinder (VLM) dataset using STSR-INR.

heat release (HR), mixture fraction (MF), vorticity magnitude
(VTM), and OH mass fraction (YOH). The half-cylinder en-
semble dataset [35] was produced from a fluid simulation under
different Reynolds numbers (160, 320, 640, 6400). We use ve-
locity magnitude (VLM). The ionization dataset [36] was pro-
duced from 3D radiation hydrodynamical calculations of the
ionization front instabilities, and we use five variables: gas tem-
perature (T), total particle density (PD), and mass abundances
of H+, H2, and He. The Tangaroa dataset [37] has four vari-
ables: acceleration (ACC), divergence (DIV), VLM, and VTM.
Finally, we also use three single-variable datasets: five-jet, tor-
nado, and vortex, for additional experiments. Their variables
are energy (E), VLM, and VTM.

Network training. The training and inference were per-
formed on a single NVIDIA Tesla P100 graphics card with 16
GB of memory. The input spatial and temporal coordinates and
target volume values were normalized to [—1,1]. The mod-
ulator network and synthesis network both have five residual
blocks. We leverage 8-head in our network structure to achieve
a trade-off between quality and speed (refers to Section 4.5).
The network parameters were initialized following Sitzmann et
al. [18]. Note that when applying the multi-head strategy to
our STSR-INR model, we set the hyperparameter @y = 5 ac-
cording to Yiice et al. [38]. This is to avoid utilizing aliased
higher-frequency components for volume reconstruction with
a low-sampling frequency. We set the batch size as 8000 to-
tal sampling points across all variables. We used Adam with
a learning rate of 107>, B; = 0.9, B, = 0.999, and L, weight

decay of 1076, The weight of KLD loss A was setto 1073. We 2
trained STSR-INR for 600 epochs to converge. 30

Table 1: Variables and resolution of each dataset.

variables or ensembles
HR, MF, VTM, YOH
VLM: 160, 320, 640, 6400
T, PD, H+, H2, He
ACC, DIV, VLM, VTM

dataset
combustion [34]
half-cylinder [35]
ionization [36]
Tangaroa [37]

resolution (x X y X z X t)
480 x 720 x 120 x 100
640 x 240 x 80 x 100
600 x 248 x 248 x 100
300 x 180 x 120 x 150

five-jet E 128 x 128 x 128 x 2000
tornado [39] VLM 128 x 128 x 128 x 48
vortex [40] VTM 128 x 128 x 128 x 90

Table 2: Average PSNR (dB), LPIPS, and CD values for training across multi-
ple variables and all timesteps. We list the experimented variables and chosen
isovalues for computing CD. u; = 4 and u; = 3. The best quality performances
are shown in bold.

dataset method PSNR 1 LPIPS | CDh |
TL 29.10 0.195 7.81
combustion STNet 28.97 0.387 9.65
(HR, MF, VTM, YOH) CoordNet 34.43 0.165 4.20
(v=0.3,0.0,0.0,0.0) STSR-INR  34.68 0.158 3.42
TL 30.79 0.043 5.68
half-cylinder STNet 36.19 0.028 1.98
(VLM: 160, 320, 640, 6400) CoordNet 36.87 0.022 2.02
(v=10.0,0.0,0.0,0.0) STSR-INR  38.59 0.029 1.77
TL 33.16 0.224 5.76

ionization STNet 29.72 0.264 10.63
(T, PD, H2, H+) CoordNet 40.85 0.167 1.87
(v=10.0,0.0,—0.7,-0.3) STSR-INR  39.62 0.172 3.00

4.2. Baselines and Evaluation Metrics 31

Baselines. We compare our STSR-INR with three baseline 32
solutions: 3



K. Tang et al./ Computers & Graphics (2023) 7

_ R e e cnal “M““f{" -
s I © ST Y aumd

[ i

w.: ry

(a) TL (b) STNet

D b Bl : ~ S -
< TR & </ Ak

(c) CoordNet

(d) STSR-INR (e) GT

Fig. 5: Super-resolution: comparing volume rendering results. Top to bottom: combustion (YOH), half-cylinder (VLM: 320), and ionization (H+).

Table 3: Total training and inference time (hours) and the model size (MB) for
the ionization (T, PD, H2, H+) dataset. u;, = 4 and u, = 3.

method training  inference  model

STNet 25.9 1.5 62.56
CoordNet 19.6 5.5 5.67
STSR-INR 229 3.7 5.41

e TL applies tricubic interpolation on the spatial domain,
followed by linear interpolation on the temporal domain to
upscale volumes in space and time, respectively, to achieve
STSR.

e STNet [2] is a end-to-end GAN-based STSR model. We
train one STNet on all variables to handle multivari-
ate datasets simultaneously to achieve multivariate STSR
learning. The network structure of STNet remains the
same, and it does not differentiate variables. We treat vol-
umes of different variables as additional samples for train-
ing and inference.

e CoordNet [4] is a general INR network for data generation
and visualization generation tasks. For STSR, the network
takes spatiotemporal coordinates as input and outputs cor-
responding voxel values. We modify CoordNet by chang-
ing the last output layer from inferring the voxel value of
one variable to those of multiple variables.

The training epochs for STNet (including pre-training and
fine-tuning) and CoordNet follow the suggestions given in Han
et al. [2] and Han and Wang [4], and we empirically found
those hyperparameter work well on most datasets. Note that

STNet can only upscale the input dataset with fixed spatial and
temporal upscale factors (us and u,). It requires low- and high-
resolution volume pairs for supervised training. In contrast, Co-
ordNet and STSR-INR support arbitrary u, and i, and they can
train the network in an unsupervised manner. However, when
training on STSR tasks for multivariate or ensemble datasets,
CoordNet can only work with multiple datasets of the same spa-
tiotemporal resolution in the same network. Unlike CoordNet,
STSR-INR can train and infer multiple multivariate datasets of
different spatiotemporal resolutions in the same network.

Evaluation metrics. We evaluate our reconstruction results
based on three metrics. We utilize peak signal-to-noise ra-
tio (PSNR) at the data level, learned perceptual image patch
similarity (LPIPS) [41] at the image level, and chamfer dis-
tance (CD) [42] at the surface level. The calculation is based
on the data, volume rendering images, and isosurfaces coming
from the original data and their corresponding version gener-
ated from one of the methods.

4.3. Results

Quantitative results. Table 2 reports the quantitative results
of the four methods across three metrics over three datasets,
given the spatial and temporal upscale factors of 4 and 3. STNet
performs the worst for the combustion dataset, followed by TL
and CoordNet. STSR-INR achieves the best results. TL per-
forms the worst for the half-cylinder (VLM) dataset, while the
other three methods get similar results, with STSR-INR yield-
ing the best results for PSNR and CD values. STNet gets the

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48



8 K. Tang et al./ Computers & Graphics (2023)

0.3

=85,v

t

=0.0

85, v

t

(a) TL (b) STNet

(c) CoordNet

(d) STSR-INR

Fig. 6: Super-resolution: comparing isosurface rendering results. Top to bottom: combustion (HR), half-cylinder (VLM: 160), and ionization (T).

(c) STSR-INR

(a) input (b) TL

Fig. 7: Unsupervised training: comparing volume rendering and isosurface ren-
dering of the vortex dataset. u; = 1.75 and u; = 2.5.

worst results for the ionization dataset, followed by TL. Coord-
Net outperforms STSR-INR. Overall, we can summarize that
CoordNet and STSR-INR are the two top methods among these
four, and STSR-INR has a slight edge over CoordNet, consid-
ering the parameters size of STSR-INR is slightly smaller than
CoordNet (as described in Table 3). We attribute STNet’s infe-
rior performance to the simultaneous training of multiple vari-
ables with various structural appearances, which negatively im-
pacts the discernibility of its temporal discriminator. On the

other hand, the interpolation of TL only leverages local neigh-
boring voxel values instead of the global pattern, which leads to
a less accurate reconstruction.

In Figure 3, we plot the three metrics over time averaged
across the variables for these three datasets. The periodical rises
and falls on each performance curve are due to the setting of
temporal upscale factor u, = 3. The timesteps used for training
are {1,5,9,...,} (high performance) and the synthesized ones
are {2,3,4,6,7,8,..., } (low performance). In Figure 4, we plot
the three metrics for each ensemble of the half-cylinder (VLM)
dataset. As expected, the higher the Reynolds number, the more
turbulent or complex the underlying flow, and the worse the per-
formance.

Qualitative results. Figure 5 shows volume rendering re-
sults generated from data produced by these four methods and
GT data using combustion (YOH), half-cylinder (VLM: 320),
and ionization (T) datasets. To pinpoint the differences, we
compute the pixel-wise difference images (i.e., the Euclidean
distance in the CIELUV color space) between each method and
GT. Noticeable differences are mapped to purple, blue, green,
yellow, and red, showing low to high pixel-wise differences (re-
fer to the top-left image of Figure 5 for the colormap legend). In
addition, we also highlight a zoom-in region for a closer com-
parison. These visual comparison results confirm that Coord-
Net and STSR-INR are better than TL and STNet. Between
CoordNet and STSR-INR, STSR-INR leads to rendering results
closer to GT renderings.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36



20

21

22

K. Tang et al./ Computers & Graphics (2023) 9

(a) CoordNet (b) CoordNet*  (c) STSR-INR (d) STSR-INR*

(e) CoordNet

=457
e But

V1
(h) STSR-INR*

4

(f) CoordNet*

(2) STSR-INR

Fig. 8: Joint training of datasets with the same resolution: comparing volume rendering and isosurface rendering results for the same spatial and temporal upscale
factors. Top to bottom: five-jet, tornado, and vortex. CoordNet* and STSR-INR* denote separate training.

(b) STSR-INR

=0.0

=89,v

N7

t

o

L i L
_a fi o 1 &
5 PP 22 mﬁ)%‘
™ @A ,/f?"“
= AR

“«

B A
sz

é‘?\n A
| \l/
-*1&3 .

‘\‘4~ SR\ ! ”34:?1&:\\
N = M P\ : %‘ . — ‘P‘\ ‘\
(d) TL (e) STSR-INR (f) GT

Fig. 9: Joint training of datasets with different resolutions: comparing volume rendering and isosurface rendering results for different spatial and temporal upscale

factors. Top to bottom: ionization (He), Tangaroa (VLM), and vortex.

In Figure 6, we show isosurface rendering results generated
from these methods using the same datasets as Figure 5 but with
different variables. Although the difference images reveal more
subtle rendering deviations from GT, the zoom-in regions all
indicate that STSR-INR yields isosurfaces most similar to GT
while keeping the overall rendering image difference small. Co-
ordNet leads to non-smooth surfaces with clear visual artifacts
for the half-cylinder (VLM: 160) dataset. The same can be ob-
served for TL and STNet of the combustion (HR) dataset and
TL and CoordNet of the ionization (T) dataset.

Timing and model size. In Table 3, we report the train-
ing and inference time of the STSR task and the model size
on the ionization dataset for the three deep learning methods:
STNet, CoordNet, and STSR-INR. In terms of training, Coord-
Net achieves the fastest convergence speed. On the other hand,
due to the use of multi-head training, STSR-INR takes more
time to approximate its optimal parameters for each head (re-
fer to Section 4.5 for an additional performance tradeoff study
of STSR-INR with different head settings). STNet requires the
most training time because of its larger model size and compli-
cated training pipeline. For inference, the CNN- and LSTM-
based STNet requires the shortest time. STSR-INR achieves a

faster inference speed than CoordNet as the multi-head struc-
ture enables the model to effectively decrease the number of
necessary feedforward passes to reconstruct the whole dataset.
As for the mode size, STNet has the largest size due to its CNN
network structure. CoordNet and STSR-INR have an order of
magnitude smaller model size thanks to their MLP structure.

4.4. Unsupervised Training and Joint Training

Unsupervised training. The INR-based solutions allow us
to perform unsupervised spatiotemporal super-resolution train-
ing where the trained resolution is at the original resolution.
We aim to upscale the data to higher-resolution ones with no
GT data available for training and comparison. To evaluate un-
supervised training of STSR-INR, we compare TL and STSR-
INR using the vortex dataset. To demonstrate that STSR-
INR permits data upscaling with arbitrary scale factors, we
use non-integer upscale factors u; = 1.75 and u; = 2.5, up-
scaling the original resolution from 128 x 128 x 128 x 90 to
224 x 224 x 224 x 225.

Figure 7 shows the zoomed-in volume rendering and isosur-
face rendering results. The input low-resolution reveals the
jaggy surface boundary in the isosurface rendering. TL and

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

42

43



10 K. Tang et al./ Computers & Graphics (2023)

(a) 4-head

(b) 8-head (c) 16-head

(d) 64-head

o w
iy, S
(e) 4-head (f) 8-head (g) 16-head (h) 64-head

Fig. 10: Multi-head training: comparing volume rendering (VTM, t = 74) and isosurface rendering (ACC, t = 61, v = —0.7) of the Tangaroa dataset.

< o4

e WS ¢i&)

R

(a) AD interpolation, VLM: 160 (leftmost), VLM: 320 (rightmost)

Nﬁngi \ﬁﬁﬂqb wﬁ“‘!’

55

\N&; )

-«

\ﬁﬁé?ﬁﬁgwﬁgé@smﬁffég

(b) VAD interpolation, VLM: 160

(leftmost), VLM: 320 (rightmost)

Py
"

—
W,

L =

AT

<

T~
‘ Hqgu
\ =
N

e

(c) AD interpolation, VLM: 320 (leftmost), VLM: 640 (rightmost)

¢ Lo ( ,;;:5 ) &~ /",
o S, oo T RPN =5 PRPL 24 . a3
QBTSN | Qe T \41‘.*?:}3 o) T aSE \u‘r»’-"
W SN W a' G

(d) VAD interpolation, VLM: 320 (leftmost), VLM: 640 (rightmost)

Fig. 11: Latent-space interpolation: comparing volume rendering and isosurface rendering of the half-cylinder (VLM) dataset. t =49 and v = 0.3.

Table 4: Average PSNR (dB), LPIPS, and CD values for joint training datasets
of the same (top part) and different (bottom part) resolutions. CoordNet* and
STSR-INR* denote separate training (only the better ones of CoordNet and
STSR-INR are bolded).

dataset method PSNR1  LPIPS | CD |
CoordNet 36.84 0.181 2.65
five-jet CoordNet* 38.46 0.140 1.51
(ug =2, u, =3,v=0.0) STSR-INR 39.33 0.103 1.08
STSR-INR* 39.72 0.079 0.99
T T T T T T T T T CoordNet ~ 37.19° ~ 0.081 ~— ~ 120 ~
tornado CoordNet* 39.05 0.076 0.68
(ug =2, u, =3,v=0.0) STSR-INR 40.19 0.091 0.54
STSR-INR* 39.75 0.092 0.71
T T T T T T T T T CoordNet ~ 31.96  ~ 0.099 ~ ~ 126 ~
vortex CoordNet* 37.25 0.065 0.87
(ug =2, u, =3,v=0.0) STSR-INR 35.25 0.076 1.04
STSR-INR* 37.06 0.070 0.89
ionization (He) TL 25.27 0.195 3.03
(ug =4, u, =5,v=0.0) STSR-INR 33.40 0.113 0.97
"7 Tangaroa (VLM) ~— ~ ~ TTL T 2929 0.2 = 431
(ug=5,u,=7,v=0.0) STSR-INR 32.23 0.129 2.89
T T vortex T T T T TL~ ~ " 3016 ~ 0.000 ~ 205
(ug =2, u, =3,v=0.0) STSR-INR 3717 0.064 0.79

STSR-INR give smooth boundaries. However, as the arrows
indicate, the super-resolution results of STSR-INR are closer to
input than TL. TL introduces non-existing artifacts (red arrows
in the volume rendering images) or misses a surface component
(red arrows in the isosurface rendering images) due to its lack
of ability to extract the global pattern from low-resolution data.
This demonstrates the advantage of STSR-INR over straight-
forward TL.

Joint training of datasets with the same resolution. Due
to their network differences, in each training epoch, CoordNet
“sees” all the variables’ values at a specific spatiotemporal co-
ordinate while we only allow STSR-INR to update the param-
eters of one variable. Therefore, CoordNet fits datasets where

Table 5: Average PSNR (dB), LPIPS, CD values, model sizes (MB), train-
ing time (hours), and speed-ups with STSR-INR for the Tangaroa (ACC, DIV,
VLM, VIM) dataset. u; =4, u; =3, and v=(—0.7,—0.9,0.1,—0.8). A similar
GPU memory size is used for all these cases during training.

# heads PSNRT LPIPS| CDJ| model  training  speed-up
1 3591 0.124 2.31 5.41 43.75 Ix

4 35.55 0.129 2.70 5,41 9.83 4.5x%

8 35.56 0.128 2.55 5.41 5.95 7.4x

16 35.58 0.132 2.68 5.41 4.42 9.9%

64 33.11 0.187 5.90 5.41 3.38 12.9%
512 30.29 0.302 1553 553 13.25 3.3x%

Table 6: Average PSNR (dB), LPIPS, and CD values with STSR-INR for the
half-cylinder (VLM: 160, 320, 640, 6400) dataset. us =4, u; = 3, and v =0.3.

scheme PSNRT LPIPS| CD|
AD 33.02 0.022 567
VAD 3859 0.029 6.59

the variables share similar appearances better than STSR-INR
because CoordNet spends less effort identifying the relation-
ship between different variables (refer to the performance re-
sults of the ionization dataset shown in Table 2). However, the
performance could drop when tackling datasets where the vari-
ables exhibit diverse appearances. Still, STSR-INR is robust in
handling this scenario. Here, we conduct a comparative study
on three variables from different datasets (five-jet, tornado, and
vortex), and these variables have no relationship. Each variable
has a spatial resolution of 128 x 128 x 128. Because CoordNet
can only train and infer on datasets with the same spatiotem-
poral resolution, we select a subset of timesteps for five-jet and
vortex datasets to match the temporal resolution (48 timesteps)
of the tornado dataset.

As shown in the top part of Table 4, between CoordNet and
STSR-INR, STSR-INR is the winner of eight out of nine met-

20

21

22

23

24

25

26

27

28

29



© ® N o o & W N =

46

47

48

49

50

51

52

53

54

55

56

57

K. Tang et al./ Computers & Graphics (2023) 11

rics across the three variables from different datasets. To better
demonstrate the performance drop of CoordNet, we evaluate the
performance of separate training for both CoordNet and STSR-
INR, denoted as CoordNet* and STSR-INR*. Compared with
joint training, STSR-INR and STSR-INR* have a small per-
formance gap for the five-jet and tornado datasets and a drop
of 1.81dB in PSNR for the vortex dataset. However, Coord-
Net suffers a large drop for all three datasets, especially for the
vortex dataset, where a drop of 5.29dB in PSNR is reported.
Figure 8 shows the rendering results. For volume rendering,
STSR-INR yields closer results than CoordNet for five-jet and
vortex, only losing to CoordNet at the top region of the tor-
nado while better preserving the overall shape. For isosurface
rendering, STSR-INR beats CoordNet for all three datasets. Be-
tween STSR-INR and STSR-INR*, STSR-INR produces results
of better quality for tornado (volume rendering and isosurface
rendering), slightly worse quality for five-jet (isosurface render-
ing) and vortex (volume rendering and isosurface rendering),
and worse quality for five-jet (volume rendering). Again, the vi-
sual differences are marginal in all cases. For all three datasets,
the visual quality of CoordNet is inferior to that of CoordNet*.
By comparing the performance differences between CoordNet
and CoordNet*, as well as STSR-INR and STSR-INR*, we ob-
serve robust reconstruction of STSR-INR even though the vari-
ables exhibit diverse differences. This also suggests that joint
training for STSR-INR only incurs slight performance drops,
which makes it a feasible alternative to separate training.

Joint training of datasets with different resolutions. Un-
like CoordNet and STNet, a significant advantage of STSR-
INR is that it permits joint training across multivariate datasets
with different spatiotemporal resolutions and upscale factors.
We use ionization (He), Tangaroa (VLM), and vortex datasets
with varying u; and u; to evaluate the joint-training perfor-
mance of STSR-INR. For network training, the input spatiotem-
poral resolutions of these datasets are 150 x 62 x 62 x 17,
60 x 36 x 24 x 19, and 64 x 64 X 64 x 23, respectively.

The bottom part of Table 4 shows that STSR-INR beats TL
for eight out of nine metrics across the three variables from dif-
ferent datasets. Figure 9 gives the rendering results. For volume
rendering, STSR-INR beats TL for ionization (He) and vortex
and falls behind TL slightly for Tangaroa (VLM). For isosur-
face rendering, STSR-INR leads to closer results than TL for
ionization (He) and vortex and produces isosurfaces of simi-
lar quality for Tangaroa (VLM), while the average CD over all
timesteps is still better than TL.

4.5. Network Analysis

To analyze STSR-INR, we conduct network analysis on two
key settings: multi-head and VAD. In the appendix, we study
the impact of network depth, latent vector length, and ReLU vs.
Sine modulator activation function on network performance.

Multi-head analysis. The multi-head design serves as a
speed-up option for STSR-INR. However, when implement-
ing this scheme, we need to concatenate the output of different
heads to produce the reconstruction results, which could impact
the downstream rendering quality. Here, we use the Tangaroa
dataset to evaluate the relationship of head numbers with re-
construction quality, model size, and speed-up. We experiment

with five head settings (4, 8, 16, 64, and 512). For 8-head, 64-
head, and 512-head, we partition the volume along the x, y, and
z axes once, twice, and thrice, respectively. For 4-head, we only
partition along the x and y axes once, as the z dimension has the
lowest resolution. For 16-head, we further partition along the
x axis once based on the 8-head partition result because the x
dimension has the highest resolution.

Table 5 reports the quantitative results. We observe that the
speed-up of STSR-INR does not always increase linearly as the
number of increases. The increasing head-branching structure
incurs additional memory access costs for each head’s output.
When the number of heads increases to a large number (64 or
512), the memory access costs can be rather high, which leads
to a decline in the speed-up performance. Figure 10 shows the
rendering results for selective cases. The difference images are
with respect to the 1-head rendering results. The quality re-
mains similar for volume rendering and isosurface rendering
with 4-, 8-, and 16-head settings. With 64-head, the results de-
teriorate tremendously. For quality, speed, and generalization
tradeoffs, we recommend the 8-head setting for STSR-INR, and
all results for STSR-INR reported in this paper use this setting.

VAD analysis. To validate the effectiveness of VAD, we train
the half-cylinder (VLM) dataset with and without using VAD.
For the model without VAD, STSR-INR simply uses an AD
to optimize the variable-specific latent vectors & that are ran-
domly initialized, and there is no sampling process and KLD
loss computation. Thus, the training gets easier. After training,
we interpolate the optimized latent vectors to produce interme-
diate volumes.

Even though Table 6 shows that metric-wise, AD and VAD
have slight differences, the VAD-interpolated results lead to
smoother and more realistic intermediate renderings than those
obtained using AD, as shown in Figure 11. Note that the ren-
derings displayed at both ends of the figure are not identical due
to the model’s use of AD or VAD. The highlighted ellipses indi-
cate that VAD captures the evolution of volumetric and surface
components, while AD yields inconsistent interpolation results.
This analysis suggests that compared with AD, the training
pipeline of VAD preserves more meaningful “semantic” infor-
mation about the encoded variables. Note that our latent-space
interpolation is different from the surrogate model [43, 44] that
takes simulation parameters as input. Latent-space interpola-
tion implicitly models the relationship among different vari-
ables, which is less powerful and cannot be treated as a replace-
ment for a surrogate model.

4.6. Limitations

Even though STSR-INR can efficiently reconstruct
spatiotemporally-resolved multivariate volume sequences
with good quality and support latent-space interpolation, it
still faces several limitations. First, STSR-INR can utilize a
multi-head strategy to speed up the training and inference pro-
cess, but its inference speed is still slower than the CNN-based
STNet method (refer to Table 3). Meanwhile, the multi-head
strategy lacks scalability due to the performance drop as the
number of heads increases (refer to Table 5). Second, when
different variables in the dataset share similar appearances,

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

52

12 K. Tang et al./ Computers & Graphics (2023)

STSR-INR could struggle to identify the value relationships
among them, leading to a lower reconstruction accuracy than
CoordNet (refer to the ionization case in Table 2). Third,
for datasets with subtle temporal fluctuation (e.g., five-jet),
STSR-INR might not capture such temporal variation when u,
is large or happens to match the fluctuation frequency (refer to
the accompanying video showing joint training of datasets with
the same resolution). We observe this regardless of whether
joint training or separate training is employed. Fourth, like
CoordNet, STSR-INR performs training and inference on the
normalized data and, therefore, cannot recover the data to its
original range. This might impede domain scientists’ data
examination in certain specialized use cases.

5. Conclusions and Future Work

We have presented STSR-INR, a new deep-learning solution
for generating simultaneous spatiotemporal super-resolution for
multivariate time-varying datasets. Using VAD and a modu-
lated structure, STSR-INR focuses on the variable dimension
and supports joint training of variables from datasets with the
same or even different spatiotemporal resolutions and upscale
factors. This sets STSR-INR apart from state-of-the-art deep
learning methods (STNet and CoordNet). We also leverage a
multi-head training strategy to significantly boost the training
and inference speed of STSR-INR with only a slight down-
grade in quality performance. The experimental results show
the advantages of STSR-INR over conventional and existing
deep-learning-based solutions: it not only achieves the over-
all best quality performance but also offers the most flexibility
regarding arbitrary upscaling, joint training, and unsupervised
training.

For future work, we would like to further explore the latent-
space interpolation. The VAD analysis reported in Section 4.5
indicates the promise of our solution in synthesizing simulation
data from unseen ensemble members. We will verify this with
ensemble simulation applications. Moreover, STSR-INR en-
codes variable information into latent vectors. We can leverage
the learned latent vectors to interpret the relationship between
different variables. Finally, our current solution only trains one
network from scratch at once. Domain scientists usually gen-
erate new simulation outputs based on past ones. Thus, it can
be efficient if the training on the newly added data can be per-
formed on a previously-trained neural network incrementally.

Acknowledgements

This research was supported in part by the U.S. National
Science Foundation through grants IIS-1955395, I1S-2101696,
OAC-2104158, and the U.S. Department of Energy through
grant DE-SC0023145. The authors would like to thank the
anonymous reviewers for their insightful comments.

References

[1] Wang, C, Han, J. DL4SciVis: A state-of-the-art survey on deep learn-
ing for scientific visualization. IEEE Transactions on Visualization and
Computer Graphics 2023;29(8):3714-3733.

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Han, J, Zheng, H, Chen, DZ, Wang, C. STNet: An end-to-end
generative framework for synthesizing spatiotemporal super-resolution
volumes. IEEE Transactions on Visualization and Computer Graphics
2022;28(1):270-280.

An, Y, Shen, HW, Shan, G, Li, G, Liu, J. STSRNet: Deep joint
space-time super-resolution for vector field visualization. IEEE Computer
Graphics and Applications 2021;41(6):122-132.

Han, J, Wang, C. CoordNet: Data generation and visualization
generation for time-varying volumes via a coordinate-based neural net-
work. IEEE Transactions on Visualization and Computer Graphics
2023;29(12):4951-4963.

Zhou, Z, Hou, Y, Wang, Q, Chen, G, Lu, J, Tao, Y, et al. Volume up-
scaling with convolutional neural networks. In: Proceedings of Computer
Graphics International. 2017, p. 38:1-38:6.

Han, J, Wang, C. SSR-TVD: Spatial super-resolution for time-varying
data analysis and visualization. IEEE Transactions on Visualization and
Computer Graphics 2022;28(6):2445-2456.

Gu, P, Han, J, Chen, DZ, Wang, C. Reconstructing unsteady flow
data from representative streamlines via diffusion and deep learning based
denoising. IEEE Computer Graphics and Applications 2021;41(6):111—
121.

Han, J, Zheng, H, Xing, Y, Chen, DZ, Wang, C. V2V: A deep learning
approach to variable-to-variable selection and translation for multivariate
time-varying data. IEEE Transactions on Visualization and Computer
Graphics 2021;27(2):1290-1300.

Gu, P, Han, J, Chen, DZ, Wang, C. Scalar2Vec: Translating scalar
fields to vector fields via deep learning. In: Proceedings of IEEE Pacific
Visualization Symposium. 2022, p. 31-40.

Jiao, C, Bi, C, Yang, L. FFEINR: Flow feature-enhanced implicit
neural representation for spatio-temporal super-resolution. arXiv preprint
arXiv:230812508 2023;.

Dong, C, Loy, CC, He, K, Tang, X. Image super-resolution using
deep convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 2016;38(2):295-307.

Li, Z, Yang, J, Liu, Z, Yang, X, Jeon, G, Wu, W. Feedback net-
work for image super-resolution. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition. 2019, p. 3862-3871.

Liang, J, Cao, J, Sun, G, Zhang, K, Van Gool, L, Timofte, R. SwinIR:
Image restoration using swin transformer. In: Proceedings of IEEE Con-
ference on Computer Vision Workshops. 2021, p. 1833-1844.

Meyer, S, Wang, O, Zimmer, H, Grosse, M, Sorkine-Hornung, A.
Phase-based frame interpolation for video. In: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition. 2015, p. 1410—
1418.

Niklaus, S, Mai, L, Liu, F. Video frame interpolation via adaptive
separable convolution. In: Proceedings of IEEE International Conference
on Computer Vision. 2017, p. 261-270.

Jiang, H, Sun, D, Jampani, V, Yang, MH, Learned-Miller, E, Kautz,
J. Super SloMo: High quality estimation of multiple intermediate frames
for video interpolation. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition. 2018, p. 9000-9008.

Mildenhall, B, Srinivasan, PP, Tancik, M, Barron, JT, Ramamoorthi,
R, Ng, R. NeRF: Representing scenes as neural radiance fields for view
synthesis. In: Proceedings of European Conference on Computer Vision.
2020, p. 405-421.

Sitzmann, V, Martel, JNP, Bergman, AW, Lindell, DB, Wetzstein, G.
Implicit neural representations with periodic activation functions. In: Pro-
ceedings of Advances in Neural Information Processing Systems. 2020,.
Lu, Y, Jiang, K, Levine, JA, Berger, M. Compressive neural
representations of volumetric scalar fields. Computer Graphics Forum
2021;40(3):135-146.

Weiss, S, Hermiiller, P, Westermann, R. Fast neural representations
for direct volume rendering. Computer Graphics Forum 2022;41(6):196—
211.

Han, M, Sane, S, Johnson, CR. Exploratory Lagrangian-based particle
tracing using deep learning. Journal of Flow Visualization and Image
Processing 2022;29(3):73-96.

Wu, Q, Bauer, D, Doyle, MJ, Ma, KL. Interactive volume visualization
via multi-resolution hash encoding based neural representation. IEEE
Transactions on Visualization and Computer Graphics 2023;Accepted.
Chen, Z, Chen, Y, Liu, J, Xu, X, Goel, V, Wang, Z, et al. VideoINR:
Learning video implicit neural representation for continuous space-time

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
7
95
%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124



© © N O oA W N =

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

K. Tang et al./ Computers & Graphics (2023) 13

super-resolution. In: Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition. 2022, p. 2037-2047.

Wu, Q, Li, Y, Sun, Y, Zhou, Y, Wei, H, Yu, J, et al. An arbi-
trary scale super-resolution approach for 3D MR images via implicit neu-
ral representation. IEEE Journal of Biomedical and Health Informatics
2022;27(2):1004-1015.

Park, JJ, Florence, P, Straub, J, Newcombe, R, Lovegrove, S.
DeepSDF: Learning continuous signed distance functions for shape rep-
resentation. In: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition. 2019, p. 165-174.

Li, T, Slavcheva, M, Zollhofer, M, Green, S, Lassner, C, Kim, C,
et al. Neural 3D video synthesis from multi-view video. In: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition. 2022,
p. 5511-5521.

Wu, Q, Bauer, D, Chen, Y, Ma, KL. HyperINR: A fast and predictive
hypernetwork for implicit neural representations via knowledge distilla-
tion. arXiv preprint arXiv:230404188 2023;.

Mehta, I, Gharbi, M, Barnes, C, Shechtman, E, Ramamoorthi, R,
Chandraker, M. Modulated periodic activations for generalizable local
functional representations. In: Proceedings of IEEE International Confer-
ence on Computer Vision. 2021, p. 14194-14203.

Zadeh, A, Lim, YC, Liang, PP, Morency, LP. Variational auto-decoder:
A method for neural generative modeling from incomplete data. arXiv
preprint arXiv:190300840 2013;.

Kingma, DP, Welling, M. Auto-encoding variational Bayes. arXiv
preprint arXiv:13126114 2013;.

Chen, H, He, B, Wang, H, Ren, Y, Lim, SN, Shrivastava, A. NeRV:
Neural representations for videos. In: Proceedings of Advances in Neural
Information Processing Systems. 2021, p. 21557-21568.

Aftab, A, Morsali, A, Ghaemmaghami, S. Multi-head ReLU implicit
neural representation networks. In: Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing. 2022, p. 2510—
2514.

Wang, C, Ma, KL. A statistical approach to volume data quality as-
sessment. IEEE Transactions on Visualization and Computer Graphics
2008;14(3):590-602.

Hawkes, ER, Sankaran, R, Sutherland, JC, Chen, JH. Scalar mixing
in direct numerical simulations of temporally evolving plane jet flames
with skeletal CO/H2 kinetics. Proceedings of the Combustion Institute
2007;31(1):1633-1640.

Rojo, IB, Giinther, T. Vector field topology of time-dependent flows in
a steady reference frame. IEEE Transactions on Visualization and Com-
puter Graphics 2019;26(1):280-290.

Whalen, D, Norman, ML. Ionization front instabilities in primordial H
II regions. The Astrophysical Journal 2008;673:664—675.

Popinet, S, Smith, M, Stevens, C. Experimental and numerical study of
the turbulence characteristics of airflow around a research vessel. Journal
of Atmospheric and Oceanic Technology 2004;21(10):1575-1589.

Yiice, G, Ortiz-Jiménez, G, Besbinar, B, Frossard, P. A structured
dictionary perspective on implicit neural representations. In: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition. 2022,
p. 19206-19216.

Crawfis, RA, Max, N. Texture splats for 3D scalar and vector field
visualization. In: Proceedings of IEEE Visualization Conference. 1993,

p. 261-267.
Silver, D, Wang, X. Tracking and visualizing turbulent 3D fea-
tures. IEEE Transactions on Visualization and Computer Graphics

1997;3(2):129-141.

Zhang, R, Isola, P, Efros, AA, Shechtman, E, Wang, O. The unreason-
able effectiveness of deep features as a perceptual metric. In: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition. 2018,
p. 586-595.

Barrow, HG, Tenenbaum, JM, Bolles, RC, Wolf, HC. Parametric
correspondence and chamfer matching: Two new techniques for image
matching. In: Proceedings of International Joint Conference on Artificial
Intelligence. 1977, p. 659-663.

He, W, Wang, J, Guo, H, Wang, KC, Shen, HW, Raj, M, et al. InSi-
tuNet: Deep image synthesis for parameter space exploration of ensemble
simulations. IEEE Transactions on Visualization and Computer Graphics
2019;26(1):23-33.

Shi, N, Xu, J, Li, H, Guo, H, Woodring, J, Shen, HW. VDL-Surrogate:
A view-dependent latent-based model for parameter space exploration of

ensemble simulations. IEEE Transactions on Visualization and Computer
Graphics 2022;29(1):820-830.

73
74



Authors / Computers & Graphics (2023) 1

Appendix

Besides the multi-head and VAD analysis investigated in the
paper, we study three parameters influencing STSR-INR train-
ing: network depth, latent vector length, and modulator activa-
tion function.

Network depth. To determine the optimal network depth,
namely, the number of residual blocks d for STSR-INR to
achieve the best performance, we conduct a parameter study on
the half-cylinder (VIM: 640 and 6400) dataset. The results are
presented in Table 1. We observe that for multivariate STSR,
the network’s generalization capability is crucial in achieving
high accuracy. Overfitting becomes a significant issue as d in-
creases beyond five, leading to a big drop in accuracy. On the
other hand, when there are no residual blocks, the model suffers
from underfitting, as shown in Figure 1. To balance the gener-
alization and fitting capabilities. we utilize five residual blocks
for our STSR-INR.

Table 1: Average PSNR (dB), LPIPS, and model size (MB) for STSR-INR
with different numbers of residual blocks d for the half-cylinder (VIM: 640
and 6400) dataset. uy; = 4 and u, = 3.

d PSNR1  LPIPS|  model
0 36.69 0.215 0.39
5 38.43 0.205 5.41
10 36.53 0.193 10.43

(c)d=10

(d) GT

Fig. 1: Network depth: comparing volume rendering of half-cylinder (VIM:
640) dataset. u; = 4 and u; = 3.

Latent vector length. To assess the impact of the latent vec-
tor length /, we conduct a parameter study on the Tangaroa
(VLM and ACC) dataset. The results are summarized in Ta-
ble 2. We observe that varying / does not significantly influ-
ence the reconstruction result, as shown in Figure 2. Although
[ = 1024 achieves the best result, we find that a length of 256
achieves a similar level of accuracy while utilizing fewer pa-
rameters. Therefore, we choose [ = 256 for our STSR-INR.

Table 2: Average PSNR (dB) and LPIPS for STSR-INR with different latent
vector lengths for the Tangaroa (VLM and ACC) dataset. u; = 5 and u; = 3.

latent vector length PSNR 1 LPIPS |
64 33.25 0.201
256 33.29 0.199
512 33.27 0.211
1024 33.40 0.226

Modulator activation function. Mehta et al. [1] applied the
ReLU activation function for their modulator network. Nev-
ertheless, applying a Sine activation to the modulator network
could stabilize network training as the input and output ranges

(d)l=1024

(e) GT

Fig. 2: Latent vector length: comparing volume rendering of the Tangaroa
(VLM) dataset. ug = 5 and u, = 3.

in the synthesis network remain [-1, 1]. We conduct a compar-
ative study on the ReLU or Sine modulator activation function
to demonstrate this. The results shown in Table 3 and Figure 3
suggest that the modulator with Sine activation can achieve a
significantly higher reconstruction accuracy than ReLU.

Table 3: Average PSNR (dB) and LPIPS for STSR-INR with different modula-
tor activation functions for the half-cylinder (VITM: 160 and 320). u; = 4 and
u = 3.

activation function ~ PSNR1  LPIPS |
ReLU 27.08 0.039
Sine 41.11 0.015

P2y )

PN

(a) ReLU

“ . < o

O L SN S
(b) Sine

\. <P

W
(¢)GT

Fig. 3: Modulator activation function: comparing volume rendering of half-
cylinder (VLM: 160) dataset. u; =4 and u, = 3.

References

[1] Mehta, I, Gharbi, M, Barnes, C, Shechtman, E, Ramamoorthi, R, Chan-
draker, M. Modulated periodic activations for generalizable local func-
tional representations. In: Proceedings of IEEE International Conference
on Computer Vision. 2021, p. 14194-14203.



	template-final
	Introduction
	Related work
	Deep Learning for Scientific Visualization
	Super-Resolution Generation
	INR-Based Techniques

	STSR-INR
	Overview
	Network Architecture
	Optimization

	Results and Discussion
	Datasets and Network Training
	Baselines and Evaluation Metrics
	Results
	Unsupervised Training and Joint Training
	Network Analysis
	Limitations

	Conclusions and Future Work

	appendix

