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A B S T R A C T

Implicit neural representation (INR) has surfaced as a promising direction for solving
different scientific visualization tasks due to its continuous representation and flexi-
ble input and output settings. We present STSR-INR, an INR solution for generating
simultaneous spatiotemporal super-resolution for multivariate time-varying volumetric
data. Inheriting the benefits of the INR-based approach, STSR-INR supports unsu-
pervised learning and permits data upscaling with arbitrary spatial and temporal scale
factors. Unlike existing GAN- or INR-based super-resolution methods, STSR-INR fo-
cuses on tackling variables or ensembles and enabling joint training across datasets of
various spatiotemporal resolutions. We achieve this capability via a variable embedding
scheme that learns latent vectors for different variables. In conjunction with a modu-
lated structure in the network design, we employ a variational auto-decoder to optimize
the learnable latent vectors to enable latent-space interpolation. To combat the slow
training of INR, we leverage a multi-head strategy to improve training and inference
speed with significant speedup. We demonstrate the effectiveness of STSR-INR with
multiple scalar field datasets and compare it with conventional tricubic+linear interpo-
lation and state-of-the-art deep-learning-based solutions (STNet and CoordNet).

c© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

In many applications, domain scientists run large-scale simu-2

lations to generate spatiotemporal multivariate volumetric data3

for analyzing the corresponding physical or chemical processes.4

These simulations often come with various conditions, settings,5

or configurations, leading to multiple runs. The resulting multi-6

variate or ensemble data are different but usually share a similar7

structural appearance. Analyzing and visualizing such high-8

dimensional spatiotemporal data requires enormous disk and9

memory storage for post hoc analysis, presenting a significant10

challenge to domain experts and visualization researchers.11

One way to tame the high storage cost is to save only down-12

sampled low-resolution data and then apply spatiotemporal13

super-resolution (STSR) techniques to recover their high-14

resolution counterparts. For instance, given a downsampled15

volume sequence (e.g., 50 timesteps with 1283 spatial resolu-16

tion), the STSR task aims to upsample the sequence to a high- 17

resolution one (e.g., 150 timesteps with 5123 spatial resolution). 18

Over the past few years, we have witnessed a surge of deep- 19

learning-based solutions for accomplishing many scientific vi- 20

sualization tasks, including super-resolution generation [1]. For 21

the end-to-end STSR generation, STNet [2] and STSRNet [3] 22

are state-of-the-art examples that upscale volumetric scalar and 23

vector data, respectively. Nevertheless, both works suffer sig- 24

nificant limitations. 25

First, these solutions are based on convolutional neural net- 26

works (CNNs) and generative adversarial networks (GANs). 27

Due to their discrete, resolution-dependent network designs, 28

CNN and GAN-based STSR solutions demand ground-truth 29

(GT) high-resolution data during training in a supervised man- 30

ner. They cannot interpolate arbitrarily-resolved spatial or tem- 31

poral resolution. 32

http://www.sciencedirect.com
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Second, neither STSR method provides sound guidance for1

training multivariate or ensemble datasets. They tackle each2

variable or ensemble sequence as an independent training pro-3

cess, making similar structure learning redundant. One straight-4

forward way to achieve multivariate STSR is to expand the net-5

work’s output, i.e., inferring multiple variables simultaneously.6

This calls for an increased network capacity, which may not7

always be desirable. Moreover, the variation of variable or en-8

semble distributions could negatively impact each other during9

training, leading to performance degradation.10

Third, moving from different variables to different datasets,11

both STNet and STSRNet do not permit joint training of dif-12

ferent datasets of various spatiotemporal resolutions. For flex-13

ibility and efficiency, it is ideal that the same network trains14

multiple datasets simultaneously without sacrificing inference15

quality. However, such a joint training scheme has not been16

thoroughly studied in scientific visualization for the STSR task.17

To respond, we design STSR-INR, spatiotemporal super-18

resolution via implicit neural representation. Unlike CNN or19

GAN, INR ingests coordinates and predicts quantities of inter-20

est via a neural network, commonly in the form of multilayer21

perceptrons (MLPs) or fully-connected network (FCN). With22

INR, the memory required to parameterize the signal depends23

on its complexity rather than resolution. We leverage such an24

FCN to learn a continuous representation from discrete data25

samples. Doing so brings two benefits. First, it can achieve26

unsupervised learning, which does not need seeing low- and27

high-resolution volume pairs for training. Second, it supports28

upsampling the input low-resolution volume sequence to an ar-29

bitrary spatial or temporal scale without modifying network30

structure or retraining.31

To help the network learn multivariate sequences, we design32

a variable embedding scheme along with a modulated structure33

to optimize each variable independently while utilizing their34

shared structural appearance for training. Variable embedding35

models each variable or ensemble sequence as a learnable la-36

tent vector, enabling the network to capture more detailed vari-37

able variations. To better utilize the latent vector, we devise a38

modulated structure consisting of a modulator network and a39

synthesis network. The modulator network will provide the la-40

tent vector with more control over the feature map in the synthe-41

sis network and, thus, could improve the quality of synthesized42

spatiotemporal volumes. This embedding structure is highly43

flexible and can support the joint training of different datasets44

of various spatiotemporal resolutions within the same network.45

Furthermore, our variable embedding is learned with a varia-46

tional auto-decoder, which optimizes the latent vector, allow-47

ing us to conduct latent-space interpolation. Finally, INR-based48

solutions are notoriously slow in training as an entire feedfor-49

ward pass through the network must be computed for each sam-50

ple. We utilize a multi-head strategy to boost the training and51

inference speed of STSR-INR significantly.52

We experiment with STSR-INR on several multivariate or53

ensemble scalar field datasets and compare it against tricu-54

bic+linear interpolation, GAN-based STNet [2], and INR-based55

CoordNet [4]. The results demonstrate that STSR-INR achieves56

competitive quality on most datasets using data-, image-, and57

feature-level metrics. The contribution of this paper is as fol- 58

lows. First, we present the design of STSR-INR, a novel INR- 59

based solution to achieve STSR for multivariate or ensemble 60

spatiotemporal volume data. Second, we experiment with the 61

multi-head strategy to effectively tackle the issue of slow train- 62

ing with INR. Third, we investigate the utility of our embed- 63

ding structure via joint training, latent-space interpolation, and 64

network analysis. Fourth, we show the advantages of STSR- 65

INR over the state-of-the-art STSR solutions based on GAN 66

and INR. Finally, we investigate two key network settings for 67

STSR-INR and study their impacts on performance. 68

2. Related work 69

This section discusses related works of deep learning for sci- 70

entific visualization, super-resolution generation, and INR tech- 71

niques. 72

2.1. Deep Learning for Scientific Visualization 73

There is an exciting trend of leveraging deep-learning-based 74

methods for solving scientific visualization tasks, including 75

data generation, visualization generation, prediction, object 76

detection and segmentation, and feature learning and extrac- 77

tion [1]. Among them, the task most relevant to this work is 78

data generation, which aims to infer or reconstruct new ver- 79

sions of data from existing versions or their reduced visual 80

representations. The most popular form of data generation 81

is super-resolution generation, which uses downsampled low- 82

resolution data to produce high-resolution versions [5]. For 83

instance, Han and Wang designed SSR-TVD [6], which ap- 84

plies a GAN to upscale the low-resolution 3D volumetric se- 85

quences into high-resolution ones. Another form of data gener- 86

ation is data reconstruction, which infers the original data from 87

their visual representations. For example, Gu et al. [7] con- 88

sidered the problem of reconstructing unsteady flow data from 89

their reduced visual forms: a set of representative streamlines. 90

Their VFR-UFD solution can recover high-quality vector data 91

from these compact streamlines via a diffusion step followed by 92

deep-learning-based denoising. The third form of data genera- 93

tion is data translation. i.e., ingesting one variable or ensemble 94

sequence to infer another sequence, commonly called variable- 95

to-variable (V2V) translation [8]. For instance, Scalar2Vec [9] 96

translates one scalar field to its corresponding velocity vector 97

field using the k-complete bipartite translation network. 98

In this work, we focus on spatiotemporal super-resolution 99

generation. Given low spatial and temporal resolution volume 100

sequences, we aim to upscale them to high spatial and temporal 101

resolution ones in an end-to-end fashion, similar to STNet [2]. 102

Unlike vector field STSR model STSRNet [3], STSR-INR is 103

designed for scalar field multivariate time-varying data and 104

does not upscale vector field data or include motion estimation 105

for flow field reconstruction. One of the concurrent works is 106

FFEINR [10], which employs INR to achieve STSR for flow 107

field data with fast training and inference speed. In contrast to 108

FFEINR, which utilizes an encoder to extract the downscaled 109

data features, our STSR-INR embeds features through a series 110

of learnable latent vectors and thus could maintain a relatively 111

lightweight architecture. 112
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2.2. Super-Resolution Generation1

Super-resolution techniques transform low-resolution data2

into high-resolution versions, including spatial super-resolution3

(SSR), temporal super-resolution (TSR), and STSR. Exam-4

ples of deep-learning-based SSR works are SRCNN [11],5

SRFBN [12], and SwinIR [13], which solve the inference of6

high-resolution details in the spatial domain. TSR takes sub-7

sampled time sequences to interpolate intermediate timesteps8

with the same spatial resolution. Example works include phase-9

based interpolation [14], SepConv [15], and SloMo [16]. SSR10

and TSR only focus on the spatial or temporal domain, but11

not both. STSR addresses both spatial and temporal super-12

resolution simultaneously. Compared with conventional inter-13

polation methods, deep-learning-based methods can reconstruct14

more accurate results because of their ability to fit complex15

global patterns of the target data.16

Our work falls into the STSR category. Previous methods,17

like STNet [2], can only upsample the input data with a fixed18

spatial or temporal scale factor. On the contrary, our STSR-INR19

can upscale the input low-resolution data to an arbitrary scale,20

thanks to the continuous neural representation of spatial and21

temporal domains. Moreover, STSR-INR accomplishes spatial22

and temporal upscaling in an unsupervised manner. This means23

that, unlike STNet, STSR-INR does not keep low- and high-24

resolution volume pairs or the complete subsequence of early25

timesteps for training optimization.26

2.3. INR-Based Techniques27

Recent works have investigated utilizing MLPs or FCNs to28

learn the continuous INR from discrete data samples. The most29

notable works are neural radiance field (NeRF) and sinusoidal30

representation network (SIREN). Mildenhall et al. [17] intro-31

duced NeRF, which applies an FCN with position encoding32

to learn the continuous volumetric scene and synthesize novel33

views. Sitzmann et al. [18] proposed SIREN that leverages the34

periodic activation function to help the MLPs learn the com-35

plex data signals more accurately. In scientific visualization,36

INR-based examples include neurcomp for neural compression37

of volume data [19], fV-SRN, a fast version of a scene repre-38

sentation network for volume rendering [20], neural flow map39

for particle trajectory prediction [21], and instant neural repre-40

sentation for interactive volume rendering [22].41

Researchers have extracted feature information and injected42

it into the INR model’s input to improve the performance and43

generalization ability. A direction is utilizing an encoder to ex-44

tract latent features from subsampled data, often called the auto-45

encoder architecture. Example works in this direction include46

VideoINR [23] and ArSSR [24]. However, volumetric data are47

massive 4D space-time data, often demanding excessive GPU48

memory consumption when applying an encoder for feature49

extraction. Instead of using the auto-encoder architecture, we50

leverage the auto-decoder architecture, which derives the fea-51

ture information by assigning each type of signal (e.g., variable52

or ensemble) a learnable latent vector and optimizing the latent53

vector together with deep network parameters in the training54

process. Works such as DeepSDF [25] and DyNeRF [26] fall55

into this category.56

The work most closely related to our work is CoordNet [4], 57

which leverages INR to achieve data generation (i.e., SSR and 58

TSR) and visualization generation (i.e., view synthesis and am- 59

bient occlusion prediction) tasks. Our STSR-INR work also 60

targets super-resolution generation via INR. However, it tackles 61

SSR and TSR simultaneously. We make significant changes to 62

the baseline CoordNet framework to efficiently and effectively 63

handle super-resolution generation for multiple variables or en- 64

sembles, which has never been explored. Furthermore, instead 65

of training each model to learn the representation of individual 66

datasets, our work can train the same model to learn across mul- 67

tiple datasets with various spatiotemporal resolutions. A recent 68

concurrent work that also adopts CoordNet is HyperINR [27], 69

which employs hypernetwork to produce the weights of an INR. 70

However, HyperINR mainly focuses on the TSR of one scalar 71

dataset, while our STSR-INR processes STSR on a single mul- 72

tivariate dataset or across multiple datasets. 73

STSR-INR
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Fig. 1: Overview of STSR-INR. The network predicts the corresponding voxel
value by inputting the variable-specific latent vector and space-time coordi-
nates.

3. STSR-INR 74

3.1. Overview 75

Let D = {De1 ,De2 , . . . ,Den} be a set of n multivariate
volume sequences, where Dei is the volume sequence for
variable or ensemble ei and e = {e1,e2, . . . ,en}. Dei =
{Cei ,Vei} contains a set of input space-time coordinates Cei =
{(xei

1 ,y
ei
1 ,z

ei
1 , t

ei
1 ),(x

ei
2 ,y

ei
2 ,z

ei
2 , t

ei
2 ), . . .} and their corresponding

values Vei = {v
ei
1 ,v

ei
2 , . . .}. As sketched in Figure 1, to achieve

simultaneous training over multiple variables, we design vari-
able embedding that assigns each variable sequence Dei a learn-
able latent vector Φei . During training, we aim to learn the
mapping from Cei conditioned on Φei to Vei by updating both
Φei and network parameters Θ. That is,

FΘ : (C;Φ)→ V, (1)

where C = {Ce1 ,Ce2 , . . . ,Cen}, Φ = {Φe1 ,Φe2 , . . . ,Φen}, and 76

V = {Ve1 ,Ve2 , . . . ,Ven}. Once the network is trained, given the 77

optimized latent vector Φei , STSR-INR can predict Vei from 78

unseen intermediate spatial and temporal coordinates. For the 79

STSR task, given the spatial and temporal upscale factors us and 80

ut , it can reconstruct volume sequences with higher spatial and 81

temporal resolutions by inference on a scaled spatiotemporal 82

grid. 83

3.2. Network Architecture 84

SIREN and skip-connection. As illustrated in the left of 85

Figure 2, our STSR-INR is a SIREN-based [18] network which 86
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Fig. 2: Network structure of STSR-INR. Left: Overview of STSR-INR. The modulator network takes the sampled latent vector, and the synthesis network takes
coordinates as input. The modulator then modulates the synthesis activations using dot products. Finally, each head in the multi-head structure reconstructs a
subvolume of the same size in the whole volume. During training, we jointly optimize network and variable-specific latent vector distribution parameters. Top-right:
Detailed structure of the residual block. Bottom-right: Detailed structure of the network’s head part.

consists of fully-connected layers and the Sine activation func-1

tion. Compared with other activation functions like ReLU2

or Tanh, employing Sine helps the network fit complex sig-3

nals, especially high-frequency parts, more quickly and accu-4

rately. Moreover, if the input and output dimensions are con-5

sistent, we add skip-connection between every two consecutive6

SIREN layers to improve the network’s capacity. These skip-7

connection blocks are referred to as residual blocks. Figure 28

top-right shows how the residual block is constructed. Fol-9

lowing CoordNet [4], we also apply average operations on the10

residual block. For example, let the input of the residual block11

be x, and f (x) be the activation after two SIREN layers. The12

output of the residual block is 0.5(x+ f (x)). By multiplying13

0.5 on the skip-connection result, the output range of one resid-14

ual block stays in [-1,1] (which is the same as the input range)15

instead of [-2,2]. This treatment can stabilize network training.16

Variable embedding. Training each variable with a sep-17

arate neural network is not flexible or efficient in achieving18

STSR for a single multivariate dataset. Ideally, we want the19

network to support joint training even for different multivariate20

datasets with various spatiotemporal resolutions while utilizing21

their shared structural information to speed up network training.22

By supporting joint training of multivariate datasets end-to-end23

with one model, we can simplify the training pipeline and avoid24

storing duplicate models for different variables.25

Inspired by temporal embedding for video synthesis [26], we26

devise variable embedding representing the reconstruction con-27

text of different variables under the joint training scenario. It28

embeds each variable sequence via a real-valued optimizable la-29

tent vector Φei ∈ Rl , where l denotes the latent vector’s length.30

When we train on the STSR task, we jointly optimize variable-31

specific latent vectors Φ and network parameters Θ.32

In Equation 1, even though all latent vectors Φ have the33

same length of l, each ei can have its own input coordinates34

Cei . Therefore, denoted by FΘ, the network can train variables35

with different spatial or temporal resolutions jointly. One in-36

tuitive way to encode the reconstruction task’s context infor-37

mation for each variable is to apply one-hot vector. Such a38

vector has a fixed length containing n bits of 0 and 1. For the39

one-hot vector of ei, only the i-th bit is 1, and the rest are 0.40

Compared to one-hot vectors, our variable embedding offers41

the following benefits. First, one-hot vectors are a disentangled42

form of representation, but our learnable latent vectors are dis-43

tributed. The length of our latent vectors does not increase as44

the number of variables increases. Second, one-hot vectors can45

only be orthogonal to each other, but our learnable latent vec- 46

tors are updated during training to implicitly encode differenti- 47

ations among variables. Once trained, variable embedding can 48

describe the distribution difference between variables. Third, 49

variable embedding has the potential to provide an operable la- 50

tent space, where interpolating between these optimized latent 51

vectors can infer novel results with an appropriate decoder. 52

Modulated structure. Unlike CoordNet, STSR-INR needs 53

to embed variable information into different variable-specific 54

latent vectors. To this end, designing a way to condition the 55

network output with different latent vectors is necessary. An 56

intuitive way to condition learnable latent vectors on the gen- 57

erative network is to concatenate the latent vectors with coor- 58

dinates as input to the INR model. Works like DeepSDF [25] 59

follow this path. However, as pointed out by Mehta et al. [28], 60

the concatenation approach is less expressive compared with 61

a modulation approach. Concatenating the latent vectors with 62

input only changes the phase of the feature map, while modu- 63

lation allows the latent vectors to control the phase, frequency, 64

and amplitude of the feature maps. Therefore, we present a 65

modulated structure that consists of a modulator network and a 66

synthesis network. The modulator network ingests the variable 67

embedding latent vector information and modulates the synthe- 68

sis network via dot product the activations of each block in the 69

two networks. Instead of using ReLU in the modulator net- 70

work [28], we utilize Sine as the non-linear function and keep 71

the same network structure for both networks. As a result, each 72

layer’s input and output ranges in the synthesis network remain 73

[-1,1]. This adaptation leads to fast and stable network training. 74

Variational auto-decoder. During training, we jointly op- 75

timize network parameters Θ and conditioned learnable latent 76

vectors Φ. After that, the INR model can take trained Φ to 77

reconstruct variable sequences. In this case, Φ can be consid- 78

ered dimensionality reduction resulting from a representation 79

learning process of high-dimensional multivariate data. We can 80

leverage the optimized Φ to generate new latent vectors and 81

infer results through the network or analyze the difference be- 82

tween variable sequences. 83

As such, we leverage variational auto-decoder (VAD) [29] 84

that employs a strong regularization on variable embedding. 85

VAD brings two benefits. First, the learned latent space could 86

be more compact as it follows a standard normal distribution. 87

Second, we can use sampled unseen latent vectors to infer 88

smoother novel results due to the continuous and probabilistic 89

nature of the VAD latent space. Similar to variational auto- 90
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encoder (VAE) [30], for variable ei, instead of using one non-1

random vector, we sample latent vector Φei through its opti-2

mizable posterior distribution N(µei ,σ
2
ei
). The distribution of3

Φei cannot be optimized directly, so we apply the reparameteri-4

zation trick [30]: Φei = µei +σei

⊙
ε , where ε is sampled from5

ε ∼ N(0,I) and I is the identity matrix. Then we can optimize6

the distribution of Φei by optimizing µei and σei . However, our7

experiment shows that the optimizable σei could lead to unsta-8

ble training. Therefore, we only make µei learnable and set σei9

close to a constant unit vector. Such an adaptation stabilizes10

the training of VAD. We remove the random component in Φei11

during inference and use µei to represent each variable. The12

key motivation for sampling latent vectors during training is to13

ensure the input latent space of the decoder is a continuous rep-14

resentation instead of a discrete one like auto-decoder (AD).15

By sampling latent vectors and optimizing their distributions in16

the latent space, interpolated latent vectors are less likely to fall17

out of the continuous latent space that the decoder can decode,18

leading to a more meaningful reconstruction.19

Multi-head training. INR methods consisting of only the20

MLP structure usually suffer in the speeds of training and infer-21

ence. This is because the model needs to iterate all the samples22

sequentially. One way to solve this problem is to replace part23

of the fully-connected layers in INR with several convolutional24

layers so the network output can be a whole volume/image in-25

stead of a single voxel/pixel. Works like NeRV [31] follow this26

route. However, according to the experimental results in [4],27

utilizing CNNs directly in the reconstruction task yields blurry28

and noisy prediction results. Inspired by the multi-head struc-29

ture proposed by Aftab et al. [32], we leverage a multi-head30

strategy to significantly speed up the training without losing31

much of the reconstruction ability. Specifically, we partition the32

spatial volume into blocks of equal size and feed the network33

with local coordinates. These coordinates can be mapped to the34

voxel values of corresponding positions within each block. As35

sketched in the left of Figure 2, after applying multiple heads36

at the end of the network structure, each network’s feedforward37

pass can output all values corresponding to the same local co-38

ordinate across all these spatial partitions. This strategy dra-39

matically reduces the necessary floating point operations for40

reconstructing the whole signal. Furthermore, y considering41

the difference of volume blocks in each partition, each head42

of our network utilizes its independent parameters to process43

the shared features output by the modulator and synthesis net-44

works. This treatment ensures that the network can fit the vol-45

ume sequence efficiently. Figure 2 bottom-right shows how the46

head part is constructed. Compared to the standard one-head47

training, our network requires proportionally fewer feedforward48

passes as the number of heads increases.49

3.3. Optimization50

In the training process, we jointly optimize network param-
eters Θ and learnable latent vectors Φ. The objective function
consists of two parts: reconstruction loss and Kullback-Leibler
divergence (KLD) loss [33]. The total loss L is given by

L= LREC +λLKLD, (2)

where LREC and LKLD are the reconstruction and KLD losses, 51

and λ ∈ [0,1] controls the weight of the KLD term. 52

Reconstruction loss. Given the input coordinates and latent
vectors, the network predicts the corresponding voxel values
VPRE. Let the ground-truth voxel values be VGT (in our case,
low-resolution volumes), and the reconstruction loss is defined
as

LREC = ‖VPRE−VGT‖2. (3)

KLD loss. Like VAE [30], we add a KLD term to regularize
the variable latent space and secure plausible interpolation re-
sults among various latent vectors. Let the prior distribution of
the latent vector Φei be q(Φei |Dei). The KLD term is defined as

LKLD =
n

∑
i=1

KLD(q(Φei |Dei)||p(Dei |Φei)) . (4)

In the following experiment, we set our prior distribution
q(Φei |Dei) as the Gaussian distribution where p(Dei |Φei) is the
distribution of sampled latent vector. Therefore, the expanded
form of Equation 4 then becomes

LKLD =
1
2

n

∑
i=1

(σ2
ei
+µ

2
ei
−1− logσ

2
ei
). (5)

For stable training, we do not optimize σei and only update µei . 53

The value of µei is randomly initialized and the constant value 54

of σei is set by making logσ2
ei
= 10−3. As such, the effect of the 55

KLD loss is to regulate the different latent vector distributions 56

to be close in the latent space. This ensures that the interpolated 57

latent vector among them is less likely to fall outside the mean- 58

ingful latent space region the decoder can decode. However, the 59

decoder may suffer in the optimization process when different 60

distributions are too close. Therefore, we introduce λ in Equa- 61

tion 2 to control the strength of KLD regulation. Algorithm 1 62

outlines the STSR-INR training process. 63

Algorithm 1 STSR-INR training algorithm

Input: Dataset D = {(Cei ,Vei)}n
i=1, target training

epochs T , distribution variances of latent vectors
σ2 = {σ2

e1
,σ2

e2
, . . . ,σ2

en}, KLD loss weight λ

Randomly initialize network parameters Θ and distribution
means of latent vectors µ = {µe1 ,µe2 , . . . ,µen}
for j = 1 . . .T do

for all (Cei ,Vei) ∈ D do
Φei ← µei +σei

⊙
ε , where ε ∼ N(0,I)

Calculate VPRE← FΘ(Cei ;Φei)
Compute LREC following Equation (3)
Update (Θ,µ) based on LREC

end for
Compute LKLD following Equation (5)
Update µ based on λLKLD

end for

4. Results and Discussion 64

4.1. Datasets and Network Training 65

Datasets. Table 1 lists the datasets used in our experi- 66

ments. The variable set of the combustion dataset [34] includes 67
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(a) combustion (HR, MF, VTM, YOH) (b) half-cylinder (VLM: 160, 320, 640, 6400) (c) ionization (T, PD, H2, H+)

Fig. 3: Average PSNR (dB, top row), LPIPS (middle row), and CD (bottom row) values over the experimented variables of the three datasets.

(a) PSNR (b) LPIPS (c) CD

Fig. 4: PSNR (dB), LPIPS, and CD values for individual ensemble members of the half-cylinder (VLM) dataset using STSR-INR.

heat release (HR), mixture fraction (MF), vorticity magnitude1

(VTM), and OH mass fraction (YOH). The half-cylinder en-2

semble dataset [35] was produced from a fluid simulation under3

different Reynolds numbers (160, 320, 640, 6400). We use ve-4

locity magnitude (VLM). The ionization dataset [36] was pro-5

duced from 3D radiation hydrodynamical calculations of the6

ionization front instabilities, and we use five variables: gas tem-7

perature (T), total particle density (PD), and mass abundances8

of H+, H2, and He. The Tangaroa dataset [37] has four vari-9

ables: acceleration (ACC), divergence (DIV), VLM, and VTM.10

Finally, we also use three single-variable datasets: five-jet, tor-11

nado, and vortex, for additional experiments. Their variables12

are energy (E), VLM, and VTM.13

Network training. The training and inference were per-14

formed on a single NVIDIA Tesla P100 graphics card with 1615

GB of memory. The input spatial and temporal coordinates and16

target volume values were normalized to [−1,1]. The mod-17

ulator network and synthesis network both have five residual18

blocks. We leverage 8-head in our network structure to achieve19

a trade-off between quality and speed (refers to Section 4.5).20

The network parameters were initialized following Sitzmann et21

al. [18]. Note that when applying the multi-head strategy to22

our STSR-INR model, we set the hyperparameter ω0 = 5 ac-23

cording to Yüce et al. [38]. This is to avoid utilizing aliased24

higher-frequency components for volume reconstruction with25

a low-sampling frequency. We set the batch size as 8000 to-26

tal sampling points across all variables. We used Adam with27

a learning rate of 10−5, β1 = 0.9, β2 = 0.999, and L2 weight28

decay of 10−6. The weight of KLD loss λ was set to 10−3. We 29

trained STSR-INR for 600 epochs to converge. 30

Table 1: Variables and resolution of each dataset.
dataset variables or ensembles resolution (x× y× z× t)

combustion [34] HR, MF, VTM, YOH 480×720×120×100
half-cylinder [35] VLM: 160, 320, 640, 6400 640×240×80×100

ionization [36] T, PD, H+, H2, He 600×248×248×100
Tangaroa [37] ACC, DIV, VLM, VTM 300×180×120×150

five-jet E 128×128×128×2000
tornado [39] VLM 128×128×128×48
vortex [40] VTM 128×128×128×90

Table 2: Average PSNR (dB), LPIPS, and CD values for training across multi-
ple variables and all timesteps. We list the experimented variables and chosen
isovalues for computing CD. us = 4 and ut = 3. The best quality performances
are shown in bold.

dataset method PSNR ↑ LPIPS ↓ CD ↓
TL 29.10 0.195 7.81

combustion STNet 28.97 0.387 9.65
(HR, MF, VTM, YOH) CoordNet 34.43 0.165 4.20
(v = 0.3,0.0,0.0,0.0) STSR-INR 34.68 0.158 3.42

TL 30.79 0.043 5.68
half-cylinder STNet 36.19 0.028 1.98

(VLM: 160, 320, 640, 6400) CoordNet 36.87 0.022 2.02
(v = 0.0,0.0,0.0,0.0) STSR-INR 38.59 0.029 1.77

TL 33.16 0.224 5.76
ionization STNet 29.72 0.264 10.63

(T, PD, H2, H+) CoordNet 40.85 0.167 1.87
(v = 0.0,0.0,−0.7,−0.3) STSR-INR 39.62 0.172 3.00

4.2. Baselines and Evaluation Metrics 31

Baselines. We compare our STSR-INR with three baseline 32

solutions: 33
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Fig. 5: Super-resolution: comparing volume rendering results. Top to bottom: combustion (YOH), half-cylinder (VLM: 320), and ionization (H+).

Table 3: Total training and inference time (hours) and the model size (MB) for
the ionization (T, PD, H2, H+) dataset. us = 4 and ut = 3.

method training inference model
STNet 25.9 1.5 62.56

CoordNet 19.6 5.5 5.67
STSR-INR 22.9 3.7 5.41

• TL applies tricubic interpolation on the spatial domain,1

followed by linear interpolation on the temporal domain to2

upscale volumes in space and time, respectively, to achieve3

STSR.4

• STNet [2] is a end-to-end GAN-based STSR model. We5

train one STNet on all variables to handle multivari-6

ate datasets simultaneously to achieve multivariate STSR7

learning. The network structure of STNet remains the8

same, and it does not differentiate variables. We treat vol-9

umes of different variables as additional samples for train-10

ing and inference.11

• CoordNet [4] is a general INR network for data generation12

and visualization generation tasks. For STSR, the network13

takes spatiotemporal coordinates as input and outputs cor-14

responding voxel values. We modify CoordNet by chang-15

ing the last output layer from inferring the voxel value of16

one variable to those of multiple variables.17

The training epochs for STNet (including pre-training and18

fine-tuning) and CoordNet follow the suggestions given in Han19

et al. [2] and Han and Wang [4], and we empirically found20

those hyperparameter work well on most datasets. Note that21

STNet can only upscale the input dataset with fixed spatial and 22

temporal upscale factors (us and ut ). It requires low- and high- 23

resolution volume pairs for supervised training. In contrast, Co- 24

ordNet and STSR-INR support arbitrary us and ut , and they can 25

train the network in an unsupervised manner. However, when 26

training on STSR tasks for multivariate or ensemble datasets, 27

CoordNet can only work with multiple datasets of the same spa- 28

tiotemporal resolution in the same network. Unlike CoordNet, 29

STSR-INR can train and infer multiple multivariate datasets of 30

different spatiotemporal resolutions in the same network. 31

Evaluation metrics. We evaluate our reconstruction results 32

based on three metrics. We utilize peak signal-to-noise ra- 33

tio (PSNR) at the data level, learned perceptual image patch 34

similarity (LPIPS) [41] at the image level, and chamfer dis- 35

tance (CD) [42] at the surface level. The calculation is based 36

on the data, volume rendering images, and isosurfaces coming 37

from the original data and their corresponding version gener- 38

ated from one of the methods. 39

4.3. Results 40

Quantitative results. Table 2 reports the quantitative results 41

of the four methods across three metrics over three datasets, 42

given the spatial and temporal upscale factors of 4 and 3. STNet 43

performs the worst for the combustion dataset, followed by TL 44

and CoordNet. STSR-INR achieves the best results. TL per- 45

forms the worst for the half-cylinder (VLM) dataset, while the 46

other three methods get similar results, with STSR-INR yield- 47

ing the best results for PSNR and CD values. STNet gets the 48
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Fig. 6: Super-resolution: comparing isosurface rendering results. Top to bottom: combustion (HR), half-cylinder (VLM: 160), and ionization (T).
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Fig. 7: Unsupervised training: comparing volume rendering and isosurface ren-
dering of the vortex dataset. us = 1.75 and ut = 2.5.

worst results for the ionization dataset, followed by TL. Coord-1

Net outperforms STSR-INR. Overall, we can summarize that2

CoordNet and STSR-INR are the two top methods among these3

four, and STSR-INR has a slight edge over CoordNet, consid-4

ering the parameters size of STSR-INR is slightly smaller than5

CoordNet (as described in Table 3). We attribute STNet’s infe-6

rior performance to the simultaneous training of multiple vari-7

ables with various structural appearances, which negatively im-8

pacts the discernibility of its temporal discriminator. On the9

other hand, the interpolation of TL only leverages local neigh- 10

boring voxel values instead of the global pattern, which leads to 11

a less accurate reconstruction. 12

In Figure 3, we plot the three metrics over time averaged 13

across the variables for these three datasets. The periodical rises 14

and falls on each performance curve are due to the setting of 15

temporal upscale factor ut = 3. The timesteps used for training 16

are {1,5,9, . . . ,} (high performance) and the synthesized ones 17

are {2,3,4,6,7,8, . . . ,} (low performance). In Figure 4, we plot 18

the three metrics for each ensemble of the half-cylinder (VLM) 19

dataset. As expected, the higher the Reynolds number, the more 20

turbulent or complex the underlying flow, and the worse the per- 21

formance. 22

Qualitative results. Figure 5 shows volume rendering re- 23

sults generated from data produced by these four methods and 24

GT data using combustion (YOH), half-cylinder (VLM: 320), 25

and ionization (T) datasets. To pinpoint the differences, we 26

compute the pixel-wise difference images (i.e., the Euclidean 27

distance in the CIELUV color space) between each method and 28

GT. Noticeable differences are mapped to purple, blue, green, 29

yellow, and red, showing low to high pixel-wise differences (re- 30

fer to the top-left image of Figure 5 for the colormap legend). In 31

addition, we also highlight a zoom-in region for a closer com- 32

parison. These visual comparison results confirm that Coord- 33

Net and STSR-INR are better than TL and STNet. Between 34

CoordNet and STSR-INR, STSR-INR leads to rendering results 35

closer to GT renderings. 36
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Fig. 8: Joint training of datasets with the same resolution: comparing volume rendering and isosurface rendering results for the same spatial and temporal upscale
factors. Top to bottom: five-jet, tornado, and vortex. CoordNet? and STSR-INR? denote separate training.
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Fig. 9: Joint training of datasets with different resolutions: comparing volume rendering and isosurface rendering results for different spatial and temporal upscale
factors. Top to bottom: ionization (He), Tangaroa (VLM), and vortex.

In Figure 6, we show isosurface rendering results generated1

from these methods using the same datasets as Figure 5 but with2

different variables. Although the difference images reveal more3

subtle rendering deviations from GT, the zoom-in regions all4

indicate that STSR-INR yields isosurfaces most similar to GT5

while keeping the overall rendering image difference small. Co-6

ordNet leads to non-smooth surfaces with clear visual artifacts7

for the half-cylinder (VLM: 160) dataset. The same can be ob-8

served for TL and STNet of the combustion (HR) dataset and9

TL and CoordNet of the ionization (T) dataset.10

Timing and model size. In Table 3, we report the train-11

ing and inference time of the STSR task and the model size12

on the ionization dataset for the three deep learning methods:13

STNet, CoordNet, and STSR-INR. In terms of training, Coord-14

Net achieves the fastest convergence speed. On the other hand,15

due to the use of multi-head training, STSR-INR takes more16

time to approximate its optimal parameters for each head (re-17

fer to Section 4.5 for an additional performance tradeoff study18

of STSR-INR with different head settings). STNet requires the19

most training time because of its larger model size and compli-20

cated training pipeline. For inference, the CNN- and LSTM-21

based STNet requires the shortest time. STSR-INR achieves a22

faster inference speed than CoordNet as the multi-head struc- 23

ture enables the model to effectively decrease the number of 24

necessary feedforward passes to reconstruct the whole dataset. 25

As for the mode size, STNet has the largest size due to its CNN 26

network structure. CoordNet and STSR-INR have an order of 27

magnitude smaller model size thanks to their MLP structure. 28

4.4. Unsupervised Training and Joint Training 29

Unsupervised training. The INR-based solutions allow us 30

to perform unsupervised spatiotemporal super-resolution train- 31

ing where the trained resolution is at the original resolution. 32

We aim to upscale the data to higher-resolution ones with no 33

GT data available for training and comparison. To evaluate un- 34

supervised training of STSR-INR, we compare TL and STSR- 35

INR using the vortex dataset. To demonstrate that STSR- 36

INR permits data upscaling with arbitrary scale factors, we 37

use non-integer upscale factors us = 1.75 and ut = 2.5, up- 38

scaling the original resolution from 128× 128× 128× 90 to 39

224×224×224×225. 40

Figure 7 shows the zoomed-in volume rendering and isosur- 41

face rendering results. The input low-resolution reveals the 42

jaggy surface boundary in the isosurface rendering. TL and 43



10 K. Tang et al. / Computers & Graphics (2023)

(a) 4-head (b) 8-head (c) 16-head (d) 64-head (e) 4-head (f) 8-head (g) 16-head (h) 64-head

Fig. 10: Multi-head training: comparing volume rendering (VTM, t = 74) and isosurface rendering (ACC, t = 61, v =−0.7) of the Tangaroa dataset.

(a) AD interpolation, VLM: 160 (leftmost), VLM: 320 (rightmost)

(b) VAD interpolation, VLM: 160 (leftmost), VLM: 320 (rightmost)

(c) AD interpolation, VLM: 320 (leftmost), VLM: 640 (rightmost)

(d) VAD interpolation, VLM: 320 (leftmost), VLM: 640 (rightmost)

Fig. 11: Latent-space interpolation: comparing volume rendering and isosurface rendering of the half-cylinder (VLM) dataset. t = 49 and v = 0.3.

Table 4: Average PSNR (dB), LPIPS, and CD values for joint training datasets
of the same (top part) and different (bottom part) resolutions. CoordNet? and
STSR-INR? denote separate training (only the better ones of CoordNet and
STSR-INR are bolded).

dataset method PSNR ↑ LPIPS ↓ CD ↓
CoordNet 36.84 0.181 2.65

five-jet CoordNet? 38.46 0.140 1.51
(us = 2, ut = 3, v = 0.0) STSR-INR 39.33 0.103 1.08

STSR-INR? 39.72 0.079 0.99
CoordNet 37.19 0.081 1.20

tornado CoordNet? 39.05 0.076 0.68
(us = 2, ut = 3, v = 0.0) STSR-INR 40.19 0.091 0.54

STSR-INR? 39.75 0.092 0.71
CoordNet 31.96 0.099 1.26

vortex CoordNet? 37.25 0.065 0.87
(us = 2, ut = 3, v = 0.0) STSR-INR 35.25 0.076 1.04

STSR-INR? 37.06 0.070 0.89
ionization (He) TL 25.27 0.195 3.03

(us = 4, ut = 5, v = 0.0) STSR-INR 33.40 0.113 0.97
Tangaroa (VLM) TL 29.29 0.124 4.31

(us = 5, ut = 7, v = 0.0) STSR-INR 32.23 0.129 2.89
vortex TL 30.16 0.090 2.05

(us = 2, ut = 3, v = 0.0) STSR-INR 37.17 0.064 0.79

STSR-INR give smooth boundaries. However, as the arrows1

indicate, the super-resolution results of STSR-INR are closer to2

input than TL. TL introduces non-existing artifacts (red arrows3

in the volume rendering images) or misses a surface component4

(red arrows in the isosurface rendering images) due to its lack5

of ability to extract the global pattern from low-resolution data.6

This demonstrates the advantage of STSR-INR over straight-7

forward TL.8

Joint training of datasets with the same resolution. Due9

to their network differences, in each training epoch, CoordNet10

“sees” all the variables’ values at a specific spatiotemporal co-11

ordinate while we only allow STSR-INR to update the param-12

eters of one variable. Therefore, CoordNet fits datasets where13

Table 5: Average PSNR (dB), LPIPS, CD values, model sizes (MB), train-
ing time (hours), and speed-ups with STSR-INR for the Tangaroa (ACC, DIV,
VLM, VTM) dataset. us = 4, ut = 3, and v= (−0.7,−0.9,0.1,−0.8). A similar
GPU memory size is used for all these cases during training.

# heads PSNR ↑ LPIPS ↓ CD ↓ model training speed-up
1 35.91 0.124 2.31 5.41 43.75 1×
4 35.55 0.129 2.70 5,41 9.83 4.5×
8 35.56 0.128 2.55 5.41 5.95 7.4×
16 35.58 0.132 2.68 5.41 4.42 9.9×
64 33.11 0.187 5.90 5.41 3.38 12.9×
512 30.29 0.302 15.53 5.53 13.25 3.3×

Table 6: Average PSNR (dB), LPIPS, and CD values with STSR-INR for the
half-cylinder (VLM: 160, 320, 640, 6400) dataset. us = 4, ut = 3, and v = 0.3.

scheme PSNR ↑ LPIPS ↓ CD ↓
AD 38.02 0.022 5.67

VAD 38.59 0.029 6.59

the variables share similar appearances better than STSR-INR 14

because CoordNet spends less effort identifying the relation- 15

ship between different variables (refer to the performance re- 16

sults of the ionization dataset shown in Table 2). However, the 17

performance could drop when tackling datasets where the vari- 18

ables exhibit diverse appearances. Still, STSR-INR is robust in 19

handling this scenario. Here, we conduct a comparative study 20

on three variables from different datasets (five-jet, tornado, and 21

vortex), and these variables have no relationship. Each variable 22

has a spatial resolution of 128×128×128. Because CoordNet 23

can only train and infer on datasets with the same spatiotem- 24

poral resolution, we select a subset of timesteps for five-jet and 25

vortex datasets to match the temporal resolution (48 timesteps) 26

of the tornado dataset. 27

As shown in the top part of Table 4, between CoordNet and 28

STSR-INR, STSR-INR is the winner of eight out of nine met- 29
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rics across the three variables from different datasets. To better1

demonstrate the performance drop of CoordNet, we evaluate the2

performance of separate training for both CoordNet and STSR-3

INR, denoted as CoordNet? and STSR-INR?. Compared with4

joint training, STSR-INR and STSR-INR? have a small per-5

formance gap for the five-jet and tornado datasets and a drop6

of 1.81dB in PSNR for the vortex dataset. However, Coord-7

Net suffers a large drop for all three datasets, especially for the8

vortex dataset, where a drop of 5.29dB in PSNR is reported.9

Figure 8 shows the rendering results. For volume rendering,10

STSR-INR yields closer results than CoordNet for five-jet and11

vortex, only losing to CoordNet at the top region of the tor-12

nado while better preserving the overall shape. For isosurface13

rendering, STSR-INR beats CoordNet for all three datasets. Be-14

tween STSR-INR and STSR-INR?, STSR-INR produces results15

of better quality for tornado (volume rendering and isosurface16

rendering), slightly worse quality for five-jet (isosurface render-17

ing) and vortex (volume rendering and isosurface rendering),18

and worse quality for five-jet (volume rendering). Again, the vi-19

sual differences are marginal in all cases. For all three datasets,20

the visual quality of CoordNet is inferior to that of CoordNet?.21

By comparing the performance differences between CoordNet22

and CoordNet?, as well as STSR-INR and STSR-INR?, we ob-23

serve robust reconstruction of STSR-INR even though the vari-24

ables exhibit diverse differences. This also suggests that joint25

training for STSR-INR only incurs slight performance drops,26

which makes it a feasible alternative to separate training.27

Joint training of datasets with different resolutions. Un-28

like CoordNet and STNet, a significant advantage of STSR-29

INR is that it permits joint training across multivariate datasets30

with different spatiotemporal resolutions and upscale factors.31

We use ionization (He), Tangaroa (VLM), and vortex datasets32

with varying us and ut to evaluate the joint-training perfor-33

mance of STSR-INR. For network training, the input spatiotem-34

poral resolutions of these datasets are 150× 62× 62 × 17,35

60×36×24×19, and 64×64×64×23, respectively.36

The bottom part of Table 4 shows that STSR-INR beats TL37

for eight out of nine metrics across the three variables from dif-38

ferent datasets. Figure 9 gives the rendering results. For volume39

rendering, STSR-INR beats TL for ionization (He) and vortex40

and falls behind TL slightly for Tangaroa (VLM). For isosur-41

face rendering, STSR-INR leads to closer results than TL for42

ionization (He) and vortex and produces isosurfaces of simi-43

lar quality for Tangaroa (VLM), while the average CD over all44

timesteps is still better than TL.45

4.5. Network Analysis46

To analyze STSR-INR, we conduct network analysis on two47

key settings: multi-head and VAD. In the appendix, we study48

the impact of network depth, latent vector length, and ReLU vs.49

Sine modulator activation function on network performance.50

Multi-head analysis. The multi-head design serves as a51

speed-up option for STSR-INR. However, when implement-52

ing this scheme, we need to concatenate the output of different53

heads to produce the reconstruction results, which could impact54

the downstream rendering quality. Here, we use the Tangaroa55

dataset to evaluate the relationship of head numbers with re-56

construction quality, model size, and speed-up. We experiment57

with five head settings (4, 8, 16, 64, and 512). For 8-head, 64- 58

head, and 512-head, we partition the volume along the x, y, and 59

z axes once, twice, and thrice, respectively. For 4-head, we only 60

partition along the x and y axes once, as the z dimension has the 61

lowest resolution. For 16-head, we further partition along the 62

x axis once based on the 8-head partition result because the x 63

dimension has the highest resolution. 64

Table 5 reports the quantitative results. We observe that the 65

speed-up of STSR-INR does not always increase linearly as the 66

number of increases. The increasing head-branching structure 67

incurs additional memory access costs for each head’s output. 68

When the number of heads increases to a large number (64 or 69

512), the memory access costs can be rather high, which leads 70

to a decline in the speed-up performance. Figure 10 shows the 71

rendering results for selective cases. The difference images are 72

with respect to the 1-head rendering results. The quality re- 73

mains similar for volume rendering and isosurface rendering 74

with 4-, 8-, and 16-head settings. With 64-head, the results de- 75

teriorate tremendously. For quality, speed, and generalization 76

tradeoffs, we recommend the 8-head setting for STSR-INR, and 77

all results for STSR-INR reported in this paper use this setting. 78

VAD analysis. To validate the effectiveness of VAD, we train 79

the half-cylinder (VLM) dataset with and without using VAD. 80

For the model without VAD, STSR-INR simply uses an AD 81

to optimize the variable-specific latent vectors Φ that are ran- 82

domly initialized, and there is no sampling process and KLD 83

loss computation. Thus, the training gets easier. After training, 84

we interpolate the optimized latent vectors to produce interme- 85

diate volumes. 86

Even though Table 6 shows that metric-wise, AD and VAD 87

have slight differences, the VAD-interpolated results lead to 88

smoother and more realistic intermediate renderings than those 89

obtained using AD, as shown in Figure 11. Note that the ren- 90

derings displayed at both ends of the figure are not identical due 91

to the model’s use of AD or VAD. The highlighted ellipses indi- 92

cate that VAD captures the evolution of volumetric and surface 93

components, while AD yields inconsistent interpolation results. 94

This analysis suggests that compared with AD, the training 95

pipeline of VAD preserves more meaningful “semantic” infor- 96

mation about the encoded variables. Note that our latent-space 97

interpolation is different from the surrogate model [43, 44] that 98

takes simulation parameters as input. Latent-space interpola- 99

tion implicitly models the relationship among different vari- 100

ables, which is less powerful and cannot be treated as a replace- 101

ment for a surrogate model. 102

4.6. Limitations 103

Even though STSR-INR can efficiently reconstruct 104

spatiotemporally-resolved multivariate volume sequences 105

with good quality and support latent-space interpolation, it 106

still faces several limitations. First, STSR-INR can utilize a 107

multi-head strategy to speed up the training and inference pro- 108

cess, but its inference speed is still slower than the CNN-based 109

STNet method (refer to Table 3). Meanwhile, the multi-head 110

strategy lacks scalability due to the performance drop as the 111

number of heads increases (refer to Table 5). Second, when 112

different variables in the dataset share similar appearances, 113



12 K. Tang et al. / Computers & Graphics (2023)

STSR-INR could struggle to identify the value relationships1

among them, leading to a lower reconstruction accuracy than2

CoordNet (refer to the ionization case in Table 2). Third,3

for datasets with subtle temporal fluctuation (e.g., five-jet),4

STSR-INR might not capture such temporal variation when ut5

is large or happens to match the fluctuation frequency (refer to6

the accompanying video showing joint training of datasets with7

the same resolution). We observe this regardless of whether8

joint training or separate training is employed. Fourth, like9

CoordNet, STSR-INR performs training and inference on the10

normalized data and, therefore, cannot recover the data to its11

original range. This might impede domain scientists’ data12

examination in certain specialized use cases.13

5. Conclusions and Future Work14

We have presented STSR-INR, a new deep-learning solution15

for generating simultaneous spatiotemporal super-resolution for16

multivariate time-varying datasets. Using VAD and a modu-17

lated structure, STSR-INR focuses on the variable dimension18

and supports joint training of variables from datasets with the19

same or even different spatiotemporal resolutions and upscale20

factors. This sets STSR-INR apart from state-of-the-art deep21

learning methods (STNet and CoordNet). We also leverage a22

multi-head training strategy to significantly boost the training23

and inference speed of STSR-INR with only a slight down-24

grade in quality performance. The experimental results show25

the advantages of STSR-INR over conventional and existing26

deep-learning-based solutions: it not only achieves the over-27

all best quality performance but also offers the most flexibility28

regarding arbitrary upscaling, joint training, and unsupervised29

training.30

For future work, we would like to further explore the latent-31

space interpolation. The VAD analysis reported in Section 4.532

indicates the promise of our solution in synthesizing simulation33

data from unseen ensemble members. We will verify this with34

ensemble simulation applications. Moreover, STSR-INR en-35

codes variable information into latent vectors. We can leverage36

the learned latent vectors to interpret the relationship between37

different variables. Finally, our current solution only trains one38

network from scratch at once. Domain scientists usually gen-39

erate new simulation outputs based on past ones. Thus, it can40

be efficient if the training on the newly added data can be per-41

formed on a previously-trained neural network incrementally.42
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Appendix

Besides the multi-head and VAD analysis investigated in the
paper, we study three parameters influencing STSR-INR train-
ing: network depth, latent vector length, and modulator activa-
tion function.

Network depth. To determine the optimal network depth,
namely, the number of residual blocks d for STSR-INR to
achieve the best performance, we conduct a parameter study on
the half-cylinder (VTM: 640 and 6400) dataset. The results are
presented in Table 1. We observe that for multivariate STSR,
the network’s generalization capability is crucial in achieving
high accuracy. Overfitting becomes a significant issue as d in-
creases beyond five, leading to a big drop in accuracy. On the
other hand, when there are no residual blocks, the model suffers
from underfitting, as shown in Figure 1. To balance the gener-
alization and fitting capabilities. we utilize five residual blocks
for our STSR-INR.

Table 1: Average PSNR (dB), LPIPS, and model size (MB) for STSR-INR
with different numbers of residual blocks d for the half-cylinder (VTM: 640
and 6400) dataset. us = 4 and ut = 3.

d PSNR ↑ LPIPS ↓ model
0 36.69 0.215 0.39
5 38.43 0.205 5.41

10 36.53 0.193 10.43

(a) d = 0 (b) d = 5

(c) d = 10 (d) GT

Fig. 1: Network depth: comparing volume rendering of half-cylinder (VTM:
640) dataset. us = 4 and ut = 3.

Latent vector length. To assess the impact of the latent vec-
tor length l, we conduct a parameter study on the Tangaroa
(VLM and ACC) dataset. The results are summarized in Ta-
ble 2. We observe that varying l does not significantly influ-
ence the reconstruction result, as shown in Figure 2. Although
l = 1024 achieves the best result, we find that a length of 256
achieves a similar level of accuracy while utilizing fewer pa-
rameters. Therefore, we choose l = 256 for our STSR-INR.

Table 2: Average PSNR (dB) and LPIPS for STSR-INR with different latent
vector lengths for the Tangaroa (VLM and ACC) dataset. us = 5 and ut = 3.

latent vector length PSNR ↑ LPIPS ↓
64 33.25 0.201

256 33.29 0.199
512 33.27 0.211
1024 33.40 0.226

Modulator activation function. Mehta et al. [1] applied the
ReLU activation function for their modulator network. Nev-
ertheless, applying a Sine activation to the modulator network
could stabilize network training as the input and output ranges

(a) l = 64 (b) l = 256 (c) l = 512

(d) l = 1024 (e) GT

Fig. 2: Latent vector length: comparing volume rendering of the Tangaroa
(VLM) dataset. us = 5 and ut = 3.

in the synthesis network remain [-1, 1]. We conduct a compar-
ative study on the ReLU or Sine modulator activation function
to demonstrate this. The results shown in Table 3 and Figure 3
suggest that the modulator with Sine activation can achieve a
significantly higher reconstruction accuracy than ReLU.

Table 3: Average PSNR (dB) and LPIPS for STSR-INR with different modula-
tor activation functions for the half-cylinder (VTM: 160 and 320). us = 4 and
ut = 3.

activation function PSNR ↑ LPIPS ↓
ReLU 27.08 0.039
Sine 41.11 0.015

(a) ReLU

(b) Sine

(c) GT

Fig. 3: Modulator activation function: comparing volume rendering of half-
cylinder (VLM: 160) dataset. us = 4 and ut = 3.
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