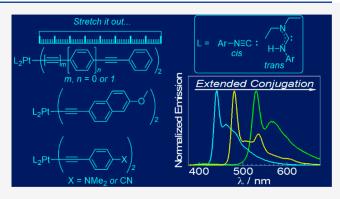
Inorganic Chemistry

pubs.acs.org/IC Article

Luminescent Platinum Complexes with π -Extended Aryl Acetylide Ligands Supported by Isocyanides or Acyclic Diaminocarbenes

Juan Carlos López-López, Yennie H. Nguyen, Chenggang Jiang, and Thomas S. Teets*

Cite This: Inorg. Chem. 2023, 62, 17843-17850


ACCESS I

III Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: In this work, we present a series of luminescent platinum acetylide complexes with acetylides that are electronically modified and/or π -extended. Six isocyanide-supported complexes with the general formula cis-[Pt(CNAr)₂(C \equiv CR)₂] and six acyclic diaminocarbene (ADC) complexes of the form trans-[Pt-(ADC)₂(C \equiv CR)₂], all using the same five acetylide ligands, are described. The compounds are characterized by multinuclear NMR, FT-IR, and single-crystal X-ray diffraction. In most cases, the phosphorescence arises from an acetylide-centered $^3(\pi \rightarrow \pi^*)$ excited state, although in one of the isocyanide compounds there is evidence for a charge-transfer excited state. The photoluminescence wavelength depends strongly on the substitution pattern and extent of the π conjugation on the acetylide, with maxima spanning

the range of ca. 460–540 nm. Most photoluminescence lifetimes are long, beyond 50 μ s, and quantum yields are low to moderate, 0.043–0.27. The photoluminescence quantum yields and lifetimes in these compounds do not systematically improve in the ADC complexes compared to the isocyanide versions, suggesting the neutral ligand σ -donor character does not play a large role in the excited-state dynamics when the triplet excited state is delocalized over a large π system.

■ INTRODUCTION

Several classes of organoplatinum compounds have intriguing photophysical properties, including cyclometalated platinum complexes^{1–4} and platinum acetylide complexes;^{5–14} sometimes those two motifs are combined in the same molecular platform. Common structure types for platinum acetylide compounds are summarized in Figure 1, and they can exhibit a

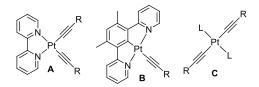


Figure 1. Structures of three common classes of platinum acetylide complexes.

variety of excited states depending on the choice of ligands. In compounds where acetylides are paired with diimines or other highly conjugated chromophoric ligands (**A** and **B** in Figure 1), the low-energy triplet excited state is often a metal-to-ligand charge transfer (3 MLCT) state, and the acetylide ligands play a minor role in the excited-state frontier orbitals. Compounds from class **B** in Figure 1 are also prone to aggregation through Pt···Pt and/or π -stacking interactions, on in condensed phases, metal—metal interactions can play a role in the

luminescent excited states. However, in many other classes of platinum acetylide complexes, e.g., C in Figure 1, a conjugated aryl acetylide is paired with a phosphine or N-heterocyclic carbene ligand that is not chromophoric, allowing the lowenergy triplet state to be an acetylide-centered $^3(\pi \to \pi^*)$ excited state. $^{8-10,12-14}$ In this case, the substitution and conjugation of the aryl acetylide ligands are the primary determinants of the phosphorescence profile.

When phenylacetylide is used, complexes from class C in Figure 1 typically have deep blue phosphorescence, making them appealing for optoelectronic applications relevant to color displays. In any blue-phosphorescent organometallic compound, a persistent challenge is presented by the ligand-field, d–d excited states that lie near or below the emissive triplet state (T_1), introducing nonradiative decay and photo-dissociation pathways. ^{17,18} As a result, some of the best-performing blue-phosphorescent compounds from the platinum bis-acetylide, ^{8-10,12-14} cyclometalated iridium, ^{17,19-22} and cyclometalated platinum ^{2,23-25} families feature strongly

Received: July 30, 2023 Published: October 16, 2023

 σ -donating N-heterocyclic carbene (NHC) ligands, capable of destabilizing the d-d excited states and improving both the efficiency and stability of blue phosphorescence. Wishing to enhance the neutral ligand σ -donor strength and improve blue phosphorescence to an even greater extent, our group has introduced luminescent platinum acetylide complexes supported by acyclic diaminocarbene (ADC) ligands, known to be stronger σ -donors than NHCs.²⁶ In our first effort we showed that the conversion of a single isocyanide ligand in bluephosphorescent cis-[Pt(CNAr)₂(C≡CPh)₂] precursors to an ADC via amine nucleophilic addition results in a significant increase in photoluminescence quantum yield $(\Phi_{\rm PL})$ and lifetime (τ) .²⁷ In a subsequent study on the same structure type, we showed that electronically modifying substituents on the phenylacetylide ligands engendered modest red shifts in the phosphorescence, while generalizing the outcome that the ADC complexes have higher quantum yields and longer lifetimes than the bis-isocyanide precursors.²⁸ In our most recent work, we introduced a complementary synthetic strategy that gives access to blue-phosphorescent compounds with two ADC ligands with the general formula trans- $[Pt(ADC)_2(C \equiv CR)_2]$ and found a further increase in Φ_{PL} and τ in these compounds compared to those that have a single ADC.29

These latter efforts motivated us to pursue bis-ADC platinum acetylide complexes with electronically modified or π -extended acetylide ligands. In such complexes the acetylidelocalized triplet state would be lower in energy than those of the previous blue-phosphorescent analogues, and it was not clear if the strongly σ -donating ADC ligands would have the same beneficial effect when the luminescence was outside the blue region and the T₁ excited state was delocalized over a larger π system. In this work, we describe a series of such complexes with the general formula trans- $[Pt(ADC)_2(C)]$ CR)2], where the acetylide is either a substituted phenylacetylide with a strongly electron-donating dimethylamino or electron-withdrawing cyano group, a naphthyl acetylide with a polycyclic aromatic moiety, or one of two linearly conjugated diynes. These compounds are compared to isocyanide-ligated compounds of the type cis- $[Pt(CNAr)_2(C \equiv CR)_2]$, which are constructed with the same set of conjugated acetylides. We find that the photoluminescence profiles are largely determined by the acetylide ligand and, in most cases, similar for the bisisocyanide and bis-ADC analogues. Unlike previously studied blue-phosphorescent compounds from the same class, the quantum yields and lifetimes seem to not systematically depend on the neutral "L" ligand (ADC or isocyanide), suggesting that the ligand σ -donor strength plays less of a role in the photoluminescence dynamics when the $^3(\pi \to \pi^*)$ excited state is more delocalized and lower in energy.

■ RESULTS AND DISCUSSION

Synthesis and Characterization. Two classes of platinum bis-acetylide complexes were prepared for this study using the same set of aryl acetylide ligands. Scheme 1 describes the synthesis of the bis-isocyanide complexes, which have the general formula cis-[Pt(CNAr)₂(C \equiv CR)₂] (1). The synthesis follows a general strategy that we had developed previously^{27,28} and involves the initial installation of the acetylide ligands onto [Pt(COD)(C \equiv CR)₂] (COD = 1,5-cyclooctadiene) precursors, followed by substitution of the aryl isocyanide ligands. The acetylide ligands used are *para*-substituted phenyl acetylide ligands with electron-donating

Scheme 1. Synthesis of Bis-Isocyanide Complexes (1)

(1a, R = NMe₂) or electron-withdrawing (1b, R = CN) groups, a methoxy-substituted naphthyl acetylide (1c), a 4-phenyl-1,3-butadiynyl acetylide (1d), and a phenylene-spaced diynyl acetylide (1e). Aryl isocyanide ligands were exclusively used since they are required in the precursors that lead to the bis-ADC complexes (see below), and in most cases, 2,6-dimethylphenyl isocyanide was the choice. However, the poor solubility of the diynyl complex 1d and its bis-ADC analogue (see below) motivated us to also prepare the complex $1d^{\rm OMe}$, which uses 4-methoxyphenyl isocyanide and is easier to characterize on account of higher solubility.

The identity and purity of bis-isocyanide complexes 1a-1e were readily established by 1H and $^{13}C\{^1H\}$ NMR spectroscopy (Figures S1 and S12) in combination with infrared spectroscopy (Figures S23–S28). The 1H NMR spectra clearly show peaks for both the aryl isocyanide and acetylide ligands and reveal that the two ligands are present in a 1:1 ratio on the complex. In the IR spectra, the $C \equiv C$ (acetylide, $\tilde{v}_{C \equiv C} = 2078-2131$ cm $^{-1}$) and $C \equiv N$ (isocyanide, $\tilde{v}_{C \equiv N} = 2183-2221$ cm $^{-1}$) stretches occur in a similar spectral region, and while only a single $C \equiv C$ stretch is resolved, the observation of two distinct $C \equiv N$ stretches from the isocyanide ligands is consistent with a *cis* geometry and approximate C_{2v} symmetry. In the diynyl complex 1e, a second $C \equiv C$ stretch is observed, and 4-cyanophenylacetylide complex 1b shows an additional $C \equiv N$ stretch for the cyano substituent.

The molecular structures of two of the bis-isocyanide complexes, **1a** and **1c**, were determined by single-crystal X-ray diffraction. The structures are depicted in Figure 2, and the crystallographic data are summarized in Table S1. The *cis* geometry of the complexes is confirmed in the crystal

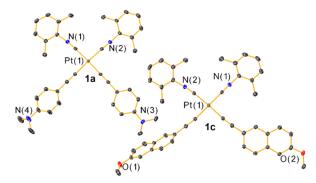
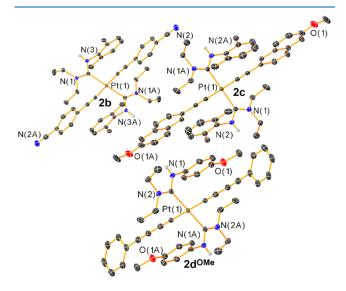


Figure 2. Molecular structures of 1a and 1c, determined by single-crystal X-ray diffraction. Ellipsoids are shown at the 50% probability level, with hydrogen atoms and solvent molecules omitted. In 1a, only one of the two crystallographically independent molecules is shown.

structures, and in **1a** all four ligands are nearly coplanar, whereas in **1c** one of the naphthyl rings twists out of the coordination plane to accommodate a nearby CH_2Cl_2 solvent molecule. Despite their flat structures, **1a** and **1c** appear to be devoid of any obvious $Pt\cdots Pt$ and π -stacking packing interactions in the solid state. The nearly linear $Pt-C \equiv C$ and $Pt-C \equiv N$ bond angles, coupled with the short $C \equiv C$ (1.207(3)–1.209(2) Å) and $C \equiv N$ (1.152(3)–1.154(2) Å) distances, are consistent with little π backbonding and formal triple bonds in the ligands.


To synthesize the ADC-supported complexes of the *trans*- $[Pt(ADC)_2(C \equiv CR)_2]$ structure type (2), a complementary synthetic approach was used, as summarized in Scheme 2. We

Scheme 2. Synthesis of Bis-ADC Complexes

previously introduced this route to synthesize analogous bluephosphorescent compounds with phenylacetylide ligands or substituted variants,²⁹ and we show here it can be adapted to a wide variety of acetylide ligands. The trans- $[Pt(CNAr)_2(I)_2]$ precursors are only obtainable with aryl isocyanides, but once in hand, they can be converted to the bis-ADC, bis-acetylide complexes via a one-pot procedure. Stirring the iodo precursors with excess diethylamine and 2.5 equiv of the alkyne proligand in the presence of 5 mol % CuI furnishes the desired compounds in moderate to good yields after purification. The base acts as a nucleophile to generate the ADCs from the isocyanide precursors while also promoting the copper-catalyzed transmetalation reaction that installs the acetylides. The same acetylides used to prepare the bisisocyanide complexes (Scheme 1) were used in the bis-ADC analogues, giving a suite of complexes which differ only in respect to the "L" ligands (isocyanides or ADCs) and the stereochemistry (cis vs trans).

The bis-ADC complexes were likewise characterized by ^1H and $^{13}\text{C}\{^1\text{H}\}$ NMR (Figures S13–S22), except for 2a and 2d, which were too insoluble to obtain satisfactory $^{13}\text{C}\{^1\text{H}\}$ NMR data. The NMR spectra clearly show the NEt₂ groups that were installed via nucleophilic addition with two distinct chemical environments on account of the hindered rotation of the ADCs. Moreover, the ^1H NMR spectra show N–H proton resonance, near 6.5 ppm in most cases, with well-defined ^{195}Pt satellite coupling. The IR spectra (Figures S29–S34) are also consistent with the trans-[Pt(ADC)₂(C \equiv CR)₂] structure, with the C \equiv N isocyanide stretch no longer observed. In 2a–2c and 2e, a single C \equiv C IR stretch is observed, consistent with the trans orientation, and in diynyl complexes 2d and $2d^{\text{OMe}}$, two such stretches are noted.

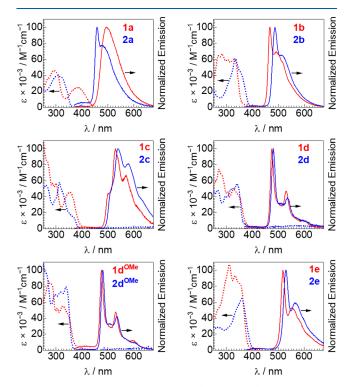
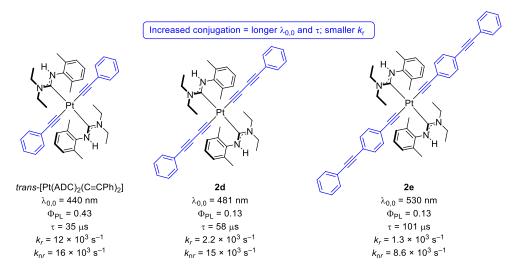

Single-crystal X-ray diffraction validates three of the bis-ADC structures: **2b**, **2c**, and **2d**^{OMe} (Figure 3). In addition to confirming the *trans* geometry and approximate C_{2h} symmetry, the structures reveal many of the features we have seen in several other platinum acetylide complexes supported by ADCs.^{27–29} The ADC ligands adopt an *anti* conformation relative to one another and rotate out of the coordination plane to avoid unfavorable steric interactions with the

Figure 3. Molecular structures of **2b**, **2c**, and **2d**^{OMe}, determined by single-crystal X-ray diffraction. Ellipsoids are shown at a 50% probability level with carbon-bound hydrogen atoms omitted.

acetylides. This nearly perpendicular arrangement of the PtC₄ coordination plane and the ADC mean plane blocks the complexes from any notable stacking interactions in the solid state. The C \equiv C bond lengths proximal to the Pt center, 1.202(6)–1.214(4) Å, are not significantly different than those of the bis-isocyanide complexes (see above), and in $2d^{OMe}$ the distal C \equiv C distance is 1.199(4) Å, only slightly shorter. The ADC N–C–N bond angles span the range of 116.2(2)–117.1(2)°, consistent with sp² hybridization and similar to many other ADC structures we have reported.

Photophysical Properties. UV—vis absorption spectra in a CH_2Cl_2 solution and photoluminescence spectra in 2 wt % poly(methyl methacrylate) (PMMA) films were recorded for all complexes and are shown in Figure 4. Spectra for bis-

Figure 4. Overlaid UV—vis absorption (dotted lines) and normalized photoluminescence spectra (solid lines) of all platinum acetylide complexes. Spectra for bis-isocyanide (1a-1e, red) and bis-ADC (2a-2e, blue) are overlaid as a function of the acetylide ligand. Absorption spectra were recorded in CH_2Cl_2 at room temperature, and PL spectra were recorded in 2 wt % PMMA films at room temperature.


isocyanide compounds (1a-1e) are in red, and those for bis-ADC compounds (2a-2e) are in blue. Absorption spectra are shown as dotted lines, and PL spectra are shown as solid lines in Figure 4. PL spectra for the bis-ADC complexes (2) were also recorded in a CH_2Cl_2 solution at room temperature, and they are collected in Figures S35–S40. In all cases, the spectra in the two media are nearly identical, and the discussion in this article will focus on the data recorded in PMMA.

In most cases, except for 1a and 2a, for a given acetylide ligand the photoluminescence spectra for the bis-isocyanide compounds and bis-ADC compounds are very similar, with the respective peak maxima separated by 20 nm or less (880 cm⁻¹) and with nearly identical vibronic structure. These are all consistent with luminescence arising from an acetylidecentered $^3(\pi \to \pi^*)$ excited state, as is normally the case for

platinum acetylide compounds with nonchromophoric ancillary ligands. However, in 1a and 2a, which use 4dimethylaminophenylacetylide, the peak maxima differ by a larger amount (35 nm, 1550 cm⁻¹), and the bis-isocyanide complex 1a is completely devoid of vibronic structure in its photoluminescence. We propose that in 1a, the lowest-energy excited state is a charge-transfer state. Consistent with this supposition, the UV-vis absorption spectrum of 1a (Figure 4) shows an additional featureless band near 400 nm, absent in all other complexes, and its lifetime ($\tau = 11 \mu s$) and radiative rate constant $(k_r = 2.2 \times 10^4 \text{ s}^{-1})$ are respectively a factor of 3 smaller and a factor of 5 larger than any other compound, consistent with PL that originates from a charge-transfer state rather than ${}^3(\pi \to \pi^*)$. Also worth noting is that the Φ_{PL} value in NMe2-substituted 2a is significantly lower than that of cyano-substituted 2b, despite both having similar excited-state character, ${}^{3}(\pi \to \pi^{*})$, and broadly similar peak wavelengths (458 nm in 2a and 487 nm in 2b). One of the origins of this difference is likely electron-transfer quenching by the dimethylamino group, which has been observed in other classes of platinum acetylide chromophores^{30,31} and would be consistent with the much higher k_{nr} value in 2a vs 2b.

The photoluminescence profiles for the compounds presented here are all in the blue-green to yellow regions, substantially red-shifted from those of related compounds with phenylacetylide ligands, which emit in the blue region.^{27,29} There is one other key difference between the variants presented here and previous blue-phosphorescent analogues.² In most of the compounds presented here, the neutral donor ligand, isocyanide or ADC, has minimal impacts on the photoluminescence quantum yields and lifetimes. In contrast, the blue-phosphorescent analogues all show substantially higher Φ_{PL} and au values when supported by stronger σ donor ADCs instead of isocyanides. For example, Φ_{PL} is 7.4 times higher and τ is 12 times longer in trans-[Pt(ADC)₂(C \equiv CPh)₂] compared to cis-[Pt(CNAr^{dmp})₂(C≡CPh)₂] (CNAr^{dmp} = 2,6-dimethylphenylisocyanide, and the ADC is the same as all compounds here except 2d^{OMe}). Computational analysis attributed this large change to the destabilization of higher-lying, deleterious ligand-field (d-d) excited states by the strong σ -donor ADC. ²⁹ In the compounds presented here, the ADCs seemingly have no beneficial effect on the photoluminescence. In some cases (1a/2a, 1c/2c, and 1e/ 2e), Φ_{PL} is noticeably lower in the bis-ADC complex, acknowledging the change in the nature of the excited state in 1a/2a. In the rest, not only do the PL spectra change little between the bis-isocyanide and bis-ADC congeners but quantum yields and lifetimes are quite similar as well. This suggests that the nature of the L donor ligand and the relative energy of the higher-lying ligand-field excited states matter little when the emissive ${}^{3}(\pi \to \pi^{*})$ state is more delocalized and lower in energy.

The three acetylides with extended π conjugation used in this work (c-e, see Schemes 1 and 2), have been occasionally used in other platinum bis-acetylide complexes. 10,13,14 The greater π conjugation on the acetylides has the effect of redshifting the photoluminescence, as noted above, and leads to considerably longer lifetimes. To better visualize the effect of increasing π conjugation, Figure 5 compares trans-[Pt-(ADC)₂(C=CPh)₂] with complexes 2d and 2e, which have increasingly longer conjugations on the acetylides. Unsurprisingly, the $\lambda_{0,0}$ value shifts to progressively longer wavelengths as the π conjugation increases, shifting from 440 to 481 nm

Figure 5. Comparison of the key photoluminescence properties of a series of bis-ADC complexes with increasing π conjugation on the acetylides.

Table 1. Summary of Photoluminescence Data, Recorded at Room Temperature in 2 wt % PMMA Films

compound	λ (nm)	$\Phi_{ ext{PL}}$	τ (μs)	$k_{\rm r} \times 10^3 \; ({\rm s}^{-1})$	$k_{\rm nr} \times 10^3 \; ({\rm s}^{-1})$
	Substituted Phenyl Ac	etylide [C≡C(4-	-X-C ₆ H ₄)]		
cis - $[Pt(CNAr^{dmp})_2(C \equiv CPh)_2]^{27} (X = H)$	435	0.058	2.8	21	330
$1a (X = NMe_2)$	493	0.24	11	22	69
1b (X = CN)	467, 492	0.27	58	4.7	13
trans- $[Pt(ADC)_2(C \equiv CPh)_2]^{29} (X = H)$	440	0.43	35	12	16
$2a (X = NMe_2)$	458, 476	0.087	58	1.5	16
2b (X = CN)	487, 511	0.26	89	2.9	8.3
	6-Methoxy-2-	naphthyl Acetylid	le		
1c	499, 529, 570	0.14	96	1.5	9.0
2c	538, 578	0.043	104	0.41	9.2
	4-Phenyl-1,3-b	utadiynyl Acetyli	de		
1d	476, 530	0.13	34	3.8	26
2d	481, 536	0.13	58	2.2	15
1d ^{OMe}	475, 530, 593	0.14	35	4.0	25
2d ^{OMe}	480, 534	0.17	48	3.5	17
	Phenylene-Spac	ed Diynyl Acetyl	ide		
1e	518, 552	0.21	85	2.5	9.3
2e	530, 563	0.13	101	1.3	8.6

moving from the phenylacetylide complex to $2\mathbf{d}$, and another 49 nm (to 530 nm) going from $2\mathbf{d}$ to $2\mathbf{e}$ with the introduction of a phenyl spacer into the diyne. The most notable change in the excited-state dynamics is in k_r , which decreases across the series, spanning almost an order of magnitude between the extremes. The nonradiative rate constant $k_{\rm nr}$ is less affected, and the net result is an increasing lifetime across the series, going from $35~\mu{\rm s}$ in the phenylacetylide analogue to $58~\mu{\rm s}$ in $2\mathbf{d}$ and to $101~\mu{\rm s}$ in $2\mathbf{e}$. The extended conjugation in $2\mathbf{b}$ and $2\mathbf{c}$ also leads to substantially longer lifetimes than the parent phenylacetylide complex (see Table 1), showing that the exceptionally long lifetimes we obtain with longer π -conjugated acetylide ligands are a generalizable phenomenon.

CONCLUSIONS

In this work, we introduced isocyanide and ADC-supported platinum bis-acetylide complexes with substituted and π -extended acetylide ligands. The two classes of compounds are prepared via complementary routes, with the isocyanide compounds adopting a *cis* geometry and the ADC compounds a *trans* geometry. All compounds are photoluminescent,

occurring in almost every case via phosphorescence from an acetylide-centered $^3(\pi \to \pi^*)$ excited state. That said, in one case, the dimethylamino-substituted bis-isocyanide complex 1a, the appearance of the absorption and PL spectra suggest the presence of a low-lying charge-transfer state. Nevertheless, the electronically modifying substituents or extended π conjugation in the acetylide ligands used here result in significant bathochromic shifts in PL relative to analogous compounds crafted from phenylacetylide ligands. Unlike those of these previous blue-phosphorescent analogues, the PL quantum yield and lifetime in the compounds described here are not systematically increased in the ADC complexes relative to the isocyanide analogues. In most cases, the values are very similar for a given acetylide, and in a couple of cases, $\Phi_{\rm pl}$ is noticeably lower in the ADC versions. We propose that this is mainly a reflection of the lower-energy ${}^3(\pi \to \pi^*)$ excited states in these compounds lying further below the deleterious ligand-field states such that the destabilization of the latter states by the ADC ligands does not result in measurable improvements. This work does show that compounds of this type can have exceptionally long PL lifetimes, up to 10⁻⁴ s,

with the substitution pattern and π conjugation of the acetylide offering a convenient means of tuning the spectral profile.

EXPERIMENTAL SECTION

Materials. The precursors $[Pt(COD)(C = CR)_2]$ (COD = 1,5-cyclooctadiene)²⁸ were prepared analogously to our previous report, and the *trans*- $[Pt(CNAr)_2(I)_2]$ precursors are also available from a previously disclosed synthesis.³² All alkynes are commercially available except buta-1,3-diynylbenzene, which was prepared as previously described.¹⁴ The solvents for the reactions and photophysical experiments were sparged with argon and dried by passing through dual alumina columns on a Grubbs-type solvent purification system, and the NMR solvents were dried by storage over molecular sieves.

Physical Methods. ¹H and ¹³C{¹H}NMR spectra were recorded at room temperature using a JEOL ECA-400 or JEOL ECA-500 spectrometer. Infrared (IR) spectra were obtained by using a Thermo Nicolet Avatar FT-IR spectrometer with a diamond ATR. UV-vis absorption spectra were recorded in dichloromethane in screw-capped 1 cm quartz cuvettes using an Agilent Cary 8454 UV-vis spectrophotometer. Steady-state emission spectra were recorded using a Horiba FluoroMax-4 spectrofluorometer. Air-free solution samples for emission spectra were prepared in a nitrogen-filled glovebox by using dry, deoxygenated solvents. Measurements in solution were housed in 1 cm quartz cuvettes with septum-sealed screw caps. To prepare doped PMMA films for PL measurements, a solution of PMMA (98 mg, 35 kDa) in dichloromethane (1.0 mL) was prepared at room temperature inside a nitrogen-filled glovebox. Then, the respective platinum complex (2 mg, 2 wt %) was added to the solution and stirred until the solution became clear. The solution was then drop-coated onto a quartz substrate and dried at room temperature overnight prior to use. The quantum yields of the complexes doped into the poly(methyl methacrylate) (PMMA) thin films were recorded using a Spectralon-coated integrating sphere (3.2 in., Horiba). Phosphorescence lifetimes were measured on a Horiba DeltaFlex Lifetime System using 330 nm excitation.

X-ray Crystallography Details. Crystals were mounted on a Bruker Apex II three-circle diffractometer using $MoK\alpha$ radiation (λ = 0.71073 Å). The data were collected at 123(2) K and were processed and refined within the APEXII software. Structures were solved by intrinsic phasing in SHELXT and refined by standard difference Fourier techniques in OLEX-2. Hydrogen atoms bonded to carbon were placed in calculated positions using the standard riding model and refined isotropically; all non-hydrogen atoms were refined anisotropically. N–H hydrogen atoms were located in the difference map and refined isotropically, restraining the N–H bond distance to 0.88 Å and constraining the isotropic displacement parameter to be 1.2 times that of the N atom it is bonded to.

General Method for the Preparation of the *cis*-[Pt-(CNAr)₂(C≡CR)₂] Complexes (1). The bis-isocyanide complexes were prepared in a similar fashion as previously described by our group, ^{27,28} treating the respective [Pt(COD)(C≡CAr)₂] precursor (COD = 1,5-cyclooctadiene) with 2.5 equiv of aryl isocyanide (2,6-dimethylphenyl isocyanide, CNAr^{dmp}; or 4-methoxyphenyl isocyanide, CNAr^{OMe}) in dichloromethane at room temperature. After the solution was concentrated, the product was precipitated by the addition of diethyl ether, and the collected solid was washed with diethyl ether before drying in vacuo.

cis-[Pt(CNAr^{dmp})₂(C≡C(4-NMe₂-C₆H₄)₂] (1a). Prepared from [Pt(COD)(C≡C(4-NMe₂-C₆H₄)₂] (60 mg, 0.10 mmol) and 2.5 equiv of CNAr^{dmp}. Yield: 78% (59 mg, 0.079 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 8.8 Hz, 4H, Ar \underline{H}), 7.26 (t, J = 7.6 Hz, 2H, Ar \underline{H}), 7.13 (d, J = 7.6 Hz, 4H, Ar \underline{H}), 6.60 (d, J = 8.8 Hz, 4H, Ar \underline{H}), 2.93 (s, 12H, N(C \underline{H} ₃)₂), 2.52 (s, 12H, Ar-C \underline{H} ₃). ¹³C{¹H} NMR (100.5 MHz, CDCl₃): δ 148.8, 136.0, 133.2, 129.8, 128.2, 126.5 (br, \underline{C} ≡NAr^{dmp}), 115.5, 112.0, 108.1 (s, Pt-C≡ \underline{C} -Ar), 88.6 (s, Pt- \underline{C} ≡C-Ar), 40.6 (N(\underline{C} H₃)₂), 18.9 (Ar- \underline{C} H₃). FT-IR (cm⁻¹): 2205 (ν _{C≡N}), 2183 (ν _{C≡N}), 2127 (ν _{C≡C}).

cis-[Pt(CNAr^{dmp})₂(C≡C(4-CN-C₆H₄)₂] (1b). Prepared from [Pt-(COD)(C≡C(4-CN-C₆H₄)₂] (70 mg, 0.13 mmol) and 2.5 equiv of CNAr^{dmp}. Yield: 66% (60 mg, 0.083 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.45 (AA'BB' multiplet, 8H, Ar \underline{H}), 7.31 (t, J = 7.6 Hz, 2H, Ar \underline{H}), 7.16 (d, J = 7.6 Hz, 4H, Ar \underline{H}), 2.49 (s, 12H, Ar-C \underline{H} ₃). ¹³C{¹H} NMR (100.5 MHz, CDCl₃): δ 136.0, 132.4, 132.0, 131.8, 130.5, 128.5, 125.8 (br, \underline{C} ≡NAr^{dmp}), 119.4, 109.1, 106.3 (s, Pt-C≡ \underline{C} -Ar), 98.0 (s, Pt- \underline{C} ≡C-Ar), 18.8 (Ar- \underline{C} H₃). FT-IR (cm⁻¹): 2223 ($\bar{\nu}_{C}$ =N), 2211 ($\bar{\nu}_{C}$ =N), 2193 ($\bar{\nu}_{C}$ =N), 2131 ($\bar{\nu}_{C}$ =C-C-C

 $\begin{array}{l} (\tilde{\nu}_{C\equiv N}),\ 2211\ (\tilde{\nu}_{C\equiv N}),\ 2193\ (\tilde{\nu}_{C\equiv N}),\ 2131\ (\tilde{\nu}_{C\equiv C}). \\ cls-[Pt(CNAr^{dmp})_2(C\equiv C(6\text{-}OMe\text{-}C_{10}H_6)_2]\ (1c).\ \ Prepared\ \ from\ \ [Pt-(COD)(C\equiv C(6\text{-}OMe\text{-}C_{10}H_6)_2]\ (118\ \ mg,\ 0.315\ \ mmol)\ \ and\ \ 2.5\ \ equiv\ \ of\ \ CNAr^{dmp}.\ \ Yield:\ 72\%\ (150\ \ mg,\ 0.226\ \ mmol).\ ^1H\ \ NMR\ (400\ \ MHz,\ CDCl_3):\ \delta\ 7.89\ (s,\ 2H,\ Ar\underline{H}),\ 7.66-7.53\ (m,\ 6H,\ Ar\underline{H}),\ 7.28\ (t,\ J=7.6\ \ Hz,\ 2H,\ Ar\underline{H}),\ 7.18-7.05\ (m,\ 8H,\ Ar\underline{H}),\ 3.90\ (s,\ 6H,\ O-C\underline{H}_3),\ 2.54\ (s,\ 12H,\ Ar-C\underline{H}_3).\ ^{13}C\{^1H\}\ \ NMR\ (100.5\ \ MHz,\ CDCl_3):\ \delta\ 157.5,\ 136.0,\ 133.1,\ 130.84,\ 130.81,\ 130.1,\ 129.2,\ 128.8,\ 128.3,\ 126.3\ \ (br,\ \underline{C}\equiv NAr^{dmp}),\ 126.1,\ 122.6,\ 118.7,\ 107.9\ (s,\ Pt-C\equiv\underline{C}-Ar),\ 105.8,\ 91.3\ (s,\ Pt-\underline{C}\equiv C-Ar),\ 55.4\ (O-\underline{CH}_3),\ 18.9\ (Ar-\underline{CH}_3).\ FT-IR\ (cm^{-1}):\ 2203\ (\tilde{\nu}_{C\equiv N}),\ 2178\ (\tilde{\nu}_{C\equiv N}),\ 2122\ (\tilde{\nu}_{C\equiv C}). \end{array}$

cis-[Pt(CNAr^{dmp})₂(C≡C-C≡CPh)₂] (1d). Prepared from [Pt-(COD)(C≡C-C≡CPh)₂] (60 mg, 0.11 mmol) and 2.5 equiv of CNAr^{dmp}. Yield: 54% (42 mg, 0.059 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.41 (m, 4H, Ar \underline{H}), 7.32-7.23 (m, 8H, Ar \underline{H}), 7.16 (d, J = 7.6 Hz, 4H, Ar \underline{H}), 2.51 (s, 12H, Ar-C \underline{H} ₃). ¹³C{¹H} NMR (125.7 MHz, CDCl₃): δ 136.3, 132.6, 130.4, 128.4, 128.2, 127.9, 125.8 (br, C≡NAr^{dmp}), 123.7, 89.7, 89.6, 72.5, 18.8 (Ar-CH₃). FT-IR (cm⁻¹): 2212 ($\tilde{\nu}_{C\equiv N}$), 2184 ($\tilde{\nu}_{C\equiv N}$), 2085 ($\tilde{\nu}_{C\equiv C}$).

cis-[Pt(CNAr^{OMe})₂(C≡C-C≡CPh)₂] (1d^{OMe}). Prepared from [Pt-(COD)(C≡C-C≡CPh)₂] (60 mg, 0.11 mmol) and 2.5 equiv of CNAr^{OMe}. Yield: 62% (42 mg, 0.067 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.4 Hz, 4H, Ar \underline{H}), 7.46-7.37 (br, m, 4H, Ar \underline{H}), 7.30-7.20 (m, overlapped with residual solvent peak, 6H, Ar \underline{H}), 6.91 (d, J = 8.4 Hz, 4H, Ar \underline{H}), 3.80 (s, 6H, O-C \underline{H} ₃). ¹³C{¹H} NMR (100.5 MHz, CDCl₃): δ 161.1, 132.6, 128.8, 128.2, 127.9, 123.7, 115.0, 102.9, 93.5, 90.2, 88.9, 55.8 (O- \underline{C} H₃). FT-IR (cm⁻¹): 2221 ($\tilde{\nu}$ _{C≡N}), 2188 ($\tilde{\nu}$ _{C≡N}), 2078 ($\tilde{\nu}$ _{C≡C}).

cis-[Pt(CNAr^{dmp})₂(C≡CC₆H₄C≡CPh)₂] (1e). Prepared from [Pt(COD)(C≡CC₆H₄C≡CPh)₂] (70 mg, 0.10 mmol) and 2.5 equiv of CNAr^{dmp}. Yield: 79% (68 mg, 0.079 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.54−7.49 (m, 4H, Ar<u>H</u>), 7.54−7.37 (m, 8H, Ar<u>H</u>), 7.37−7.25 (m, 8H, Ar<u>H</u>), 7.15 (d, J = 8.0 Hz, 4H, Ar<u>H</u>), 2.51 (s, 12H, Ar-C<u>H</u>₃). ¹³C{¹H} NMR (100.5 MHz, CDCl₃): δ 136.0, 132.0, 131.7, 131.2, 130.2, 128.44, 128.38, 128.2, 127.4, 126.1 (br, $C = NAr^{dmp}$), 123.6, 120.6, 118.7, 107.4 (s, Pt-C≡C-Ar), 94.3 (s, Pt-C≡C-Ar), 90.2, 90.0, 18.8 (Ar- $C = NAr^{dmp}$). FT-IR (cm⁻¹): 2208 ($E = NAr^{dmp}$), 2191 ($E = NAr^{dmp}$), 2158 ($E = NAr^{dmp}$), 2191 ($E = NAr^{dmp}$), 2158 ($E = NAr^{dmp}$).

General Method for the Preparation of the *trans*-[Pt-(ADC)₂(C=CR)₂] Complexes (2). The bis-ADC complexes were prepared in a similar fashion as previously described by our group. They were obtained from the reaction of the respective *trans*-[Pt(CNAr)₂(I)₂] complex with the corresponding acetylene (2.5 equiv) in the presence of CuI (5% mol) and 3 mL of diethylamine, using CH₂Cl₂ (5 mL) as the solvent. The mixture was prepared and stirred for 24 h inside of the glovebox. After that, CH₂Cl₂ was added to the mixture until complete dissolution of the precipitated solid was achieved, and the solution was extracted with deionized water four times, collecting the organic layer and drying it over MgSO₄. The solvent was evaporated, and a solid was precipitated by the addition of Et₂O/pentane. This solid was recrystallized from CH₂Cl₂/Et₂O, collected by filtration, and vacuum-dried to obtain the desired product.

trans-[Pt(ADC^{dmp})₂(C≡C(4-NMe₂-C₆H₄)₂] (2a). Prepared from trans-[Pt(CNAr^{dmp})₂I₂] (100 mg, 0.141 mmol) and 2.5 equiv of HC≡C(4-NMe₂-C₆H₄). As a slight modification, the product was recrystallized an additional time from CH₂Cl₂ at ca. −20 °C. Yield: 60% (70 mg, 0.078 mmol). ¹H NMR (500 MHz, CDCl₃): δ 7.11−6.98 (m, 10H, Ar \underline{H}), 6.61 (d, J = 8.5 Hz, 4H, Ar \underline{H}), 6.48 (br, s with ¹⁹⁵Pt satellites, ³J_{Pt−H} = 60 Hz, 2H, N \underline{H}), 3.56 (br, s, 4H, NC \underline{H} ₂CH₃), 3.27 (br, m, 4H, NC \underline{H} ₂CH₃), 2.89 (s, 12H, N(C \underline{H} ₃)₂), 2.56 (s, 12H, Ar−C \underline{H} ₃), 1.20 (br, m, 6H, NCH₂C \underline{H} ₃), 0.98 (br, s, 6H, NCH₂C \underline{H} ₃).

This compound was too insoluble for $^{13}C\{^1H\}$ NMR analysis. FT-IR (cm^{-1}) : 2090 $(\tilde{\nu}_{0}, c)$

(cm⁻¹): $\dot{2}090$ ($\tilde{\nu}_{C \equiv C}$). $trans-[Pt(ADC^{dmp})_2[C \equiv C(4-CN-C_6H_4)_2]$ (**2b**). Prepared from $trans-[Pt(CNAr^{dmp})_2I_2]$ (100 mg, 0.141 mmol) and 2.5 equiv of $HC \equiv C(4-CN-C_6H_4)$. Yield: 60% (72 mg, 0.088 mmol). ¹H NMR (500 MHz, CDCl₃): δ 7.43 (d, J=8.0 Hz, 4H, Ar \underline{H}), 7.17 (d, J=8.5 Hz, 4H, Ar \underline{H}), 7.12 (t, J=7.5 Hz, 2H, Ar \underline{H}), 7.03 (d, J=7.5 Hz, 4H, Ar \underline{H}), 6.54 (br, s with ¹⁹⁵Pt satellites, ³ $J_{Pt-H}=66$ Hz, 2H, N \underline{H}), 3.52 (br, q, J=7.5 Hz, 4H, NC \underline{H}_2 CH₃), 3.32 (br, q, J=6.5 Hz, 4H, NC \underline{H}_2 CH₃), 2.44 (s, 12H, Ar \underline{CH}_3), 1.21 (br, t, J=7.2 Hz, 6H, NCH₂C \underline{H}_3), 0.97 (br, t, J=7.0 Hz, 6H, NCH₂C \underline{H}_3). ¹³C{¹H} NMR (125.7 MHz, CDCl₃): δ 194.5, 138.4, 138.0, 135.2, 131.7, 131.1, 127.9, 127.4, 120.2, 106.2, 106.1, 51.7, 40.3, 19.9, 13.5, 12.7. FT-IR (cm⁻¹): 2222 ($\tilde{\nu}_{C \equiv N}$), 2216 ($\tilde{\nu}_{C \equiv N}$), 2083 ($\tilde{\nu}_{C \equiv C}$).

 $(\tilde{\nu}_{C\equiv N})$, 2216 $(\tilde{\nu}_{C\equiv N})$, 2083 $(\tilde{\nu}_{C\equiv C})$. $trans-[Pt(ADC^{dmp})_2(C\equiv C(6-OMe-C_{10}H_6)_2]$ (2c). Prepared from $trans-[Pt(CNAr^{dmp})_2I_2]$ (100 mg, 0.141 mmol) and 2.5 equiv of $HC\equiv C(6-OMe-C_{10}H_6)$. Yield: 63% (85 mg, 0.088 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J=8.4 Hz, 2H, Ar \underline{H}), 7.57–7.50 (m, 4H, Ar \underline{H}), 7.28 (dd, J=8.4 Hz, 1.6 Hz, 2H, Ar \underline{H}), 7.16–7.10 (m, 2H, Ar \underline{H}), 7.09–7.03 (m, 8H, Ar \underline{H}), 6.55 (br, s with ¹⁹⁵Pt satellites, ³ $J_{Pt-H}=66$ Hz, 2H, N \underline{H}), 3.90 (s, 6H, O-C \underline{H}_3) 3.62 (br, s, 4H, NC \underline{H}_2 CH₃), 3.32 (br, q, J=7.6 Hz, 4H, NC \underline{H}_2 CH₃), 2.58 (s, 12H, Ar-C \underline{H}_3), 1.24 (br, t, J=6.8 Hz, 6H, NCH $_2$ C \underline{H}_3), 1.05 (br, s, 6H, NCH $_2$ C \underline{H}_3). ¹³C{¹H} NMR (125.7 MHz, CDCl₃): δ 195.9, 156.7, 138.8, 138.4, 131.8, 130.7, 129.3, 128.7, 128.2, 127.8, 127.1, 126.1, 125.9, 118.4, 105.9, 55.4, 51.9, 40.3, 20.2, 13.6, 12.8. FT-IR (cm⁻¹): 2085 ($\tilde{\nu}_{C\equiv C}$).

trans-[Pt(ADC^{dmp})₂(C≡C-C≡CPh)₂] (2d). Prepared from trans-[Pt(CNAr^{dmp})₂I₂] (100 mg, 0.141 mmol) and 2.5 equiv of HC≡C-C≡CPh. In a slight modification of the general procedure, the product precipitated during the reaction was collected by filtration and washed several times with CH₂Cl₂. Yield: 67% (80 mg, 0.088 mmol). ¹H NMR (500 MHz, CD₂Cl₂): δ 7.46–7.36 (m, 4H, Ar \underline{H}), 7.30–7.20 (m, 6H, Ar \underline{H}), 7.15–7.06 (m, 6H, Ar \underline{H}), 6.70 (br, s with ¹95Pt satellites, ³ J_{Pt-H} = 66 Hz, 2H, N \underline{H}), 3.46 (q, J = 7.0 Hz, 4H, NC \underline{H} ₂CH₃), 3.37 (q, J = 7.2 Hz, 4H, NC \underline{H} ₂CH₃), 2.48 (s, 12H, Ar-C \underline{H} ₃), 1.26 (t, J = 7.2 Hz, 6H, NCH₂C \underline{H} ₃), 1.01 (t, J = 7.2 Hz, 6H, NCH₂C \underline{H} ₃). This compound was too insoluble for ¹³C{¹H} NMR analysis. FT-IR (cm⁻¹): 2167 ($\tilde{\nu}$ _{C≡C}), 2049 ($\tilde{\nu}$ _{C≡C}). trans-[Pt(ADC^{OMe})₂(C≡C-C≡CPh)₂] (2d^{OMe}). Prepared from

trans-[Pt(ADC^{OME})₂[C≡C−C≡CPh)₂] (2**d**^{OME}). Prepared from trans-[Pt(CNAr^{OME})₂I₂] (100 mg, 0.141 mmol) and 2.5 equiv of HC≡C−C≡CPh. In a slight modification of the general procedure, after workup the crude product was purified by column chromatography using silica gel as the stationary phase and eluting with CH₂Cl₂/hexane (2:1). Yield: 29% (35 mg, 0.041 mmol). ¹H NMR (500 MHz, CDCl₃): δ 7.48−7.41 (m, 4H, Ar<u>H</u>), 7.26−7.18 (m, 6H, Ar<u>H</u>), 7.05 (br, s with ¹⁹⁵Pt satellites, ${}^{3}J_{Pt-H}$ = 56 Hz, 2H, N<u>H</u>), 6.88 (d, J = 9.0 Hz, 4H, Ar<u>H</u>), 3.82 (s, 6H, O−C<u>H</u>₃), 3.50 (br, q, J = 7.5 Hz, 4H, NC<u>H</u>₂CH₃), 3.31 (q, J = 7.2 Hz, 4H, NC<u>H</u>₂CH₃), 1.25 (t, J = 7.2 Hz, 6H, NCH₂C<u>H</u>₃), 1.00 (t, J = 7.2 Hz, 6H, NCH₂C<u>H</u>₃). 13 C{ 1 H} NMR (127.7 MHz, CDCl₃): δ 193.0, 158.0, 133.9, 132.4, 130.2, 128.1, 126.9, 125.1, 113.6, 109.5, 85.2, 80.1, 66.7, 55.6, 51.4, 40.4, 13.7, 12.5. FT-IR (cm⁻¹): 2164 ($\tilde{V}_{C≡C}$), 2044 ($\tilde{V}_{C≡C}$).

trans-[Pt(ADC^{dmp})₂(C≡CC₆H₄C≡CPh)₂] (**2e**). Prepared from trans-[Pt(CNAr^{dmp})₂I₂] (95 mg, 0.13 mmol) and 2.5 equiv of HC≡CC₆H₄C≡CPh. Yield: 67% (90 mg, 0.088 mmol). ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, J = 6.5 Hz, 4H, Ar \underline{H}), 7.36−7.29 (m, 10H, Ar \underline{H}), 7.16−7.09 (m, 6H, Ar \underline{H}), 7.04 (d, J = 7.5 Hz, 4H, Ar \underline{H}), 6.53 (br, s, ¹95Pt satellites poorly resolved, 2H, N \underline{H}), 3.56 (br, s, 4H, NC \underline{H} ₂CH₃), 3.31 (br, s, 4H, NC \underline{H} ₂CH₃), 2.51 (s, 12H, Ar−C \underline{H} ₃), 1.22 (br, s, 6H, NCH₂C \underline{H} ₃), 0.99 (br, s, 6H, NCH₂C \underline{H} ₃). ¹³C{¹H} NMR (127.7 MHz, CDCl₃): 195.4, 138.7, 138.3, 131.6, 131.2, 130.8, 130.7, 028.4, 128.0, 127.8, 127.2, 123.9, 117.9, 117.1, 90.6, 89.4, 51.8, 40.3, 20.1, 13.5, 12.7. FT-IR (cm⁻¹): 2089 ($\tilde{\nu}$ C≡C).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c02641.

X-ray crystallography summary tables, NMR spectra, IR spectra, and additional photoluminescence data (PDF)

Accession Codes

CCDC 2234160-2234164 contain the supplemental crystallographic data for this paper. The data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, 583 Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Thomas S. Teets — University of Houston, Department of Chemistry, Houston, Texas 77204-5003, United States; orcid.org/0000-0002-7471-8467; Email: tteets@uh.edu

Authors

Juan Carlos López-López – University of Houston,
Department of Chemistry, Houston, Texas 77204-5003,
United States; Departamento de Química Inorgánica,
Facultad de Química, Universidad de Murcia, 30100 Murcia,
Spain

Yennie H. Nguyen — University of Houston, Department of Chemistry, Houston, Texas 77204-5003, United States; orcid.org/0000-0002-4474-6176

Chenggang Jiang — University of Houston, Department of Chemistry, Houston, Texas 77204-5003, United States;
ocid.org/0000-0002-2240-831X

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.3c02641

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the Welch Foundation (Grant E-1887) for funding this work and the National Science Foundation (Grant CHE-1846831) for partial support. J.C.L.-L. thanks the Universidad de Murcia for a predoctoral fellowship.

REFERENCES

- (1) Brooks, J.; Babayan, Y.; Lamansky, S.; Djurovich, P. I.; Tsyba, I.; Bau, R.; Thompson, M. E. Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes. *Inorg. Chem.* **2002**, *41* (12), 3055–3066.
- (2) Strassner, T. Phosphorescent Platinum(II) Complexes with C^C* Cyclometalated NHC Ligands. *Acc. Chem. Res.* **2016**, 49 (12), 2680–2689.
- (3) Chakraborty, A.; Yarnell, J. E.; Sommer, R. D.; Roy, S.; Castellano, F. N. Excited-State Processes of Cyclometalated Platinum-(II) Charge-Transfer Dimers Bridged by Hydroxypyridines. *Inorg. Chem.* **2018**, *57* (3), 1298–1310.
- (4) Bossi, A.; Rausch, A. F.; Leitl, M. J.; Czerwieniec, R.; Whited, M. T.; Djurovich, P. I.; Yersin, H.; Thompson, M. E. Photophysical Properties of Cyclometalated Pt(II) Complexes: Counterintuitive Blue Shift in Emission with an Expanded Ligand π System. *Inorg. Chem.* **2013**, *52*, 12403–12415.
- (5) Hissler, M.; Connick, W. B.; Geiger, D. K.; McGarrah, J. E.; Lipa, D.; Lachicotte, R. J.; Eisenberg, R. Platinum Diimine Bis(Acetylide) Complexes: Synthesis, Characterization, and Luminescence Properties. *Inorg. Chem.* **2000**, *39*, 447–457.
- (6) Castellano, F. N. Altering Molecular Photophysics by Merging Organic and Inorganic Chromophores. *Acc. Chem. Res.* **2015**, 48 (3), 828–839.

- (7) Hua, F.; Kinayyigit, S.; Cable, J. R.; Castellano, F. N. Platinum(II) Diimine Diacetylides: Metallacyclization Enhances Photophysical Properties. *Inorg. Chem.* **2006**, *45* (11), 4304–4306.
- (8) Bullock, J. D.; Valandro, S. R.; Sulicz, A. N.; Zeman, C. J.; Abboud, K. A.; Schanze, K. S. Blue Phosphorescent *Trans* -N-Heterocyclic Carbene Platinum Acetylides: Dependence on Energy Gap and Conformation. *J. Phys. Chem. A* **2019**, 123 (42), 9069–9078.
- (9) Bullock, J. D.; Salehi, A.; Zeman, C. J.; Abboud, K. A.; So, F.; Schanze, K. S. In Search of Deeper Blues: *Trans*-N-Heterocyclic Carbene Platinum Phenylacetylide as a Dopant for Phosphorescent OLEDs. ACS Appl. Mater. Interfaces 2017, 9 (47), 41111–41114.
- (10) Bullock, J. D.; Xu, Z.; Valandro, S.; Younus, M.; Xue, J.; Schanze, K. S. *Trans-N*-(Heterocyclic Carbene) Platinum(II) Acetylide Chromophores as Phosphors for OLED Applications. *ACS Appl. Electron. Mater.* **2020**, 2 (4), 1026–1034.
- (11) McCarthy, J. S.; McCormick, M. J.; Zimmerman, J. H.; Hambrick, H. R.; Thomas, W. M.; McMillen, C. D.; Wagenknecht, P. S. Role of the Trifluoropropynyl Ligand in Blue-Shifting Charge-Transfer States in Emissive Pt Diimine Complexes and an Investigation into the PMMA-Imposed Rigidoluminescence and Rigidochromism. *Inorg. Chem.* 2022, 61 (29), 11366–11376.
- (12) Zhang, Y.; Garg, J. A.; Michelin, C.; Fox, T.; Blacque, O.; Venkatesan, K. Synthesis and Luminescent Properties of *Cis Bis-N*-Heterocyclic Carbene Platinum(II) Bis-Arylacetylide Complexes. *Inorg. Chem.* **2011**, *50* (4), 1220–1228.
- (13) Zhang, Y.; Blacque, O.; Venkatesan, K. Highly Efficient Deep-Blue Emitters Based on Cis and Trans N-Heterocyclic Carbene PtII Acetylide Complexes: Synthesis, Photophysical Properties, and Mechanistic Studies. *Chem. Eur. J.* 2013, *19* (46), 15689–15701.
- (14) He, R.; Xu, Z.; Valandro, S.; Arman, H. D.; Xue, J.; Schanze, K. S. High-Purity and Saturated Deep-Blue Luminescence from *Trans* -NHC Platinum(II) Butadiyne Complexes: Properties and Organic Light Emitting Diode Application. *ACS Appl. Mater. Interfaces* **2021**, 13 (4), 5327–5337.
- (15) Lu, W.; Mi, B.-X.; Chan, M. C. W.; Hui, Z.; Che, C.-M.; Zhu, N.; Lee, S.-T. Light-Emitting Tridentate Cyclometalated Platinum(II) Complexes Containing σ -Alkynyl Auxiliaries: Tuning of Photo- and Electrophosphorescence. *J. Am. Chem. Soc.* **2004**, *126*, 4958–4971.
- (16) Li, B.; Li, Y.; Chan, M. H.-Y.; Yam, V. W.-W. Phosphorescent Cyclometalated Platinum(II) Enantiomers with Circularly Polarized Luminescence Properties and Their Assembly Behaviors. *J. Am. Chem. Soc.* **2021**, *143* (51), 21676–21684.
- (17) Lee, J.; Chen, H.-F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Deep Blue Phosphorescent Organic Light-Emitting Diodes with Very High Brightness and Efficiency. *Nat. Mater.* **2016**, *15* (1), 92–98.
- (18) Na, H.; Cañada, L. M.; Wen, Z.; I-Chia Wu, J.; Teets, T. S. Mixed-Carbene Cyclometalated Iridium Complexes with Saturated Blue Luminescence. *Chem. Sci.* **2019**, *10* (25), *6*254–6260.
- (19) Sajoto, T.; Djurovich, P. I.; Tamayo, A. B.; Oxgaard, J.; Goddard, W. A.; Thompson, M. E. Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes. *J. Am. Chem. Soc.* **2009**, *131* (28), 9813–9822.
- (20) Pal, A. K.; Krotkus, S.; Fontani, M.; Mackenzie, C. F. R.; Cordes, D. B.; Slawin, A. M. Z.; Samuel, I. D. W.; Zysman-Colman, E. High-Efficiency Deep-Blue-Emitting Organic Light-Emitting Diodes Based on Iridium(III) Carbene Complexes. *Adv. Mater.* **2018**, *30* (50), 1804231.
- (21) Chang, C.-F.; Cheng, Y.-M.; Chi, Y.; Chiu, Y.-C.; Lin, C.-C.; Lee, G.-H.; Chou, P.-T.; Chen, C.-C.; Chang, C.-H.; Wu, C.-C. Highly Efficient Blue-Emitting Iridium(III) Carbene Complexes and Phosphorescent OLEDs. *Angew. Chem., Int. Ed.* **2008**, 47 (24), 4542–4545.
- (22) Yan, J.; Xue, Q.; Yang, H.; Yiu, S.-M.; Zhang, Y.-X.; Xie, G.; Chi, Y. Regioselective Syntheses of Imidazo[4,5-b]Pyrazin-2-Ylidene-Based Chelates and Blue Emissive Iridium(III) Phosphors for Solution-Processed OLEDs. *Inorg. Chem.* 2022, 61 (23), 8797–8805.
- (23) Pinter, P.; Soellner, J.; Strassner, T. Sky-Blue Triplet Emitters with Cyclometalated Imidazopyrazine-Based NHC-Ligands and

- Aromatic Bulky Acetylacetonates. Chem. Eur. J. 2019, 25, 14495-14499.
- (24) Soellner, J.; Pinter, P.; Stipurin, S.; Strassner, T. Platinum(II) Complexes with Bis(Pyrazolyl)Borate Ligands: Increased Molecular Rigidity for Bidentate Ligand Systems. *Angew. Chem., Int. Ed.* **2021**, *60* (7), 3556–3560.
- (25) Hang, X.-C.; Fleetham, T.; Turner, E.; Brooks, J.; Li, J. Highly Efficient Blue-Emitting Cyclometalated Platinum(II) Complexes by Judicious Molecular Design. *Angew. Chem., Int. Ed.* **2013**, 52 (26), 6753–6756.
- (26) Herrmann, W. A.; Öfele, K.; v. Preysing, D.; Herdtweck, E. Metal Complexes of Acyclic Diaminocarbenes: Links between N-Heterocyclic Carbene (NHC)- and Fischer-Carbene Complexes. *J. Organomet. Chem.* **2003**, 684 (1–2), 235–248.
- (27) Wu, Y.; Wen, Z.; Wu, J. I.; Teets, T. S. Efficient Deep Blue Platinum Acetylide Phosphors with Acyclic Diaminocarbene Ligands. *Chem. Eur. J.* **2020**, 26 (68), 16028–16035.
- (28) Nguyen, Y. H.; Soares, J. V.; Nguyen, S. H.; Wu, Y.; Wu, J. I.; Teets, T. S. Platinum(II)-Substituted Phenylacetylide Complexes Supported by Acyclic Diaminocarbene Ligands. *Inorg. Chem.* **2022**, *61* (22), 8498–8508.
- (29) Nguyen, Y. H.; Dang, V. Q.; Soares, J. V.; Wu, J. I.; Teets, T. S. Efficient Blue-Phosphorescent *Trans*-Bis(Acyclic Diaminocarbene) Platinum(II) Acetylide Complexes. *Chem. Sci.* **2023**, *14* (18), 4857–4862.
- (30) Whittle, C. E.; Weinstein, J. A.; George, M. W.; Schanze, K. S. Photophysics of Diimine Platinum(II) Bis-Acetylide Complexes. *Inorg. Chem.* **2001**, *40*, 4053–4062.
- (31) Wong, K. M.-C.; Tang, W.-S.; Lu, X.-X.; Zhu, N.; Yam, V. W.-W. Functionalized Platinum(II) Terpyridyl Alkynyl Complexes as Colorimetric and Luminescence pH Sensors. *Inorg. Chem.* **2005**, 44 (5), 1492–1498.
- (32) Kaharu, T.; Tanaka, T.; Sawada, M.; Takahashi, S. Liquid-Crystalline Palladium- and Platinum-Isonitrile Complexes: Synthesis, Mesomorphic Properties and Molecular Structure. *J. Mater. Chem.* **1994**, *4* (6), 859–865.