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Abstract

Adjoint methods efficiently compute gradients for systems with many inputs and have been widely used for
large-scale gradient-based optimization in fluid mechanics. To ensure optimization’s numerical robustness,
we need to develop an adjoint solution algorithm that has a similar, if not the same, convergence rate as
the primal flow solver at each optimization iteration. This consistent primal-adjoint convergence behavior
is also called duality-preserving (DP). Existing DP adjoint methods are mostly for fully coupled Navier–
Stokes (NS) solvers with compressible flows. However, few DP adjoints have been proposed for segregated
NS solvers, e.g., the semi-implicit method for pressure-linked equations (SIMPLE) algorithm solvers
widely used for incompressible flow simulations. This study will fill this gap by deriving a fixed-point
segregated adjoint formulation that fully preserves the convergence behavior of primal solvers. We first
rewrite the steady-state segregated NS primal solution process into a fully coupled left-preconditioned
Richardson format. Then, we transpose the preconditioner matrix to obtain a DP iterative adjoint
formulation. In addition to algebraic derivation, we create a new graph representation that significantly
streamlines the DP adjoint development for new segregated solvers. We prove that the proposed graph
representation is equivalent to primal and adjoint solutions and guarantees duality. We evaluate our
proposed algorithm using three cases with increasing complexity: a miniature-sized problem, an airfoil,
and a wing. To quantify duality, we compare the eigenvalues between the primal and adjoint solutions
and observe excellent agreements. We also evaluate to what extent various numerical settings (e.g., inner
iteration tolerances and non-dual preconditioner) impact the eigenvalue distributions. Our proposed
adjoint achieves machine-precision accurate gradient computation with competitive speed. Finally, we
incorporate our adjoint solver into a large-scale gradient-based optimization framework and demonstrate
its capability for wing aerodynamic shape optimization. The proposed fixed-point adjoint approach has
the potential to make the adjoint solution more robust and efficient for any segregated NS solvers.

Keywords: Duality-preserving discrete adjoint, segregated Navier–Stokes solvers, fixed-point iteration,
gradient-based optimization, eigenvalues

1. Introduction

Computing gradients is fundamental to many numerical analyses and simulations in fluid mechanics,
such as design optimization [1–3], gradient-enhanced surrogate models [4–6], inverse problems [7–9], and
error estimation [10–12]. There are various options for computing gradients, including analytical, finite-
difference, complex-step, and adjoint approaches. The adjoint method’s gradient computation cost is
independent of the number of inputs, making it efficient for optimization problems with a large number
of design variables.

The adjoint method was first introduced to fluid dynamics by Pironneau [13] and then extended
to gradient-based optimal design by Jameson [14]. In gradient-based optimization, we must run the
adjoint solver for each iteration, so a failed or diverged adjoint may abort the entire optimization. It is
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highly desirable to develop an adjoint algorithm that has a similar, if not the same, convergence rate as
governing-equation (primal) solvers. This consistent primal-adjoint convergence behavior is also called
duality preserving (DP) in the literature [15–20]. To this end, adjoint implementations must be tailored to
specific partial differential equations (PDEs) and primal solvers to ensure duality. Developing DP adjoint
methods for various primal PDE solvers has been an active research area in the design optimization
community.

The adjoint method can be implemented in two ways: continuous and discrete [21–23]. This paper
focuses on the discrete adjoint method because of its superior performance in accuracy. The original
adjoint equation derived in Jameson [14] is a large-scale linear equation, and the most intuitive imple-
mentation is to solve it directly while maintaining duality. For example, Kenway et al. [21] developed
a Jacobian-free Krylov adjoint method for an open-source computational fluid dynamics (CFD) solver
ADflow [24]. The authors directly solved the adjoint linear equation using a generalized minimal residual
(GMRES) method with an incomplete lower-upper factorization (ILU) preconditioner. Because ADflow
used a Newton-Krylov method to solve the flow, the Krylov adjoint inherits the convergence of the primal
solver. Similar duality was achieved by Hicken and Zingg [25] and Osusky et al. [26], who developed a
Krylov adjoint method for a Newton-Krylov CFD solver. Dwight and Brezillon [27] developed a Krylov
adjoint equation solution method and implemented it for an unstructured CFD solver, also known as the
German Aerospace Center (DLR) TAU-Code [28].

Directly solving the large-scale adjoint equation (often ill-conditioned) requires a large amount of
memory. To reduce the memory cost, one can rewrite the adjoint equation into a fixed-point iteration
format to drive the adjoint residual to zero. In addition to reducing memory cost, the fixed-point adjoint
can preserve duality if the primal solver also uses a fixed-point iteration scheme. For example, Giles et al.
[29, 30] derived a fixed-point adjoint method with a carefully formulated left-preconditioned matrix to
ensure duality. Nielsen et al. [20] then used a similar approach to develop a fixed-point adjoint solver for
FUN3D, a CFD solver developed at the National Aeronautics and Space Administration (NASA). The
authors demonstrated that the convergence rates between the primal and adjoint solvers were identical.
Mavriplis [19] developed a left-preconditioned DP adjoint for their in-house unstructured CFD solver
NSU3D. Xu et al. [31] developed a Jacobian-Trained Krylov-Implicit-Runge-Kutta algorithm to stabilize
fixed-point adjoint iterations and implemented it into an open-source solver called STAMPS [32]. Fleis-
chli et al. [16] proposed a fixed-point adjoint formulation for an in-house coupled pressure-based CFD
solver. Albring et al. [18] developed a right-preconditioned fixed-point iteration adjoint approach and
implemented it into an open-source CFD solver SU2 [33]. Recently, Gomes and Palacios [15] analyzed the
impact of various numerical settings (e.g., linear equation convergence tolerance and their initial values)
on the fixed-point adjoint for both left- and right-preconditioned methods.

All the above DP adjoint methods were developed for Navier–Stokes (NS) solvers that use a coupled
solution strategy, i.e., flow variables are updated simultaneously within a time step. However, for incom-
pressible flow, a segregated solution strategy is commonly used instead, e.g., the semi-implicit method
for pressure-linked equations (SIMPLE) algorithm [34]. In this case, the flow variables are updated se-
quentially within a time step. Simply applying the above coupled-solver adjoint algorithms to segregated
solvers no longer preserves duality. For example, adjoint methods have been implemented for segregated
NS solvers in a few previous studies [35, 36], including our previous implementation in DAFoam [37, 38],
an open-source discrete adjoint approach for OpenFOAM [39]. Nevertheless, the primal and adjoint con-
vergence was inconsistent in these studies because they used linear solvers to directly solve the adjoint
equation, while the primal solvers used a segregated, fixed-point iteration scheme. Akbarzadeh et al. [40]
was perhaps the first to develop fixed-point iteration adjoint methods for segregated NS solvers. They
rewrote the SIMPLE algorithm as a pressure-Schur-Complement scheme and derived a fixed-point adjoint
formulation for laminar NS equations. In our previous work, we developed a preliminary version of DP
adjoint methods for steady-state segregated Reynolds-averaged Navier–Stokes (RANS) solvers [41]. In
addition to steady-state segregated NS solver, a discrete adjoint approach was proposed by Wang et al.
[42] for unsteady flow solvers using the segregated fractional time step method [43]. In the above studies
(and all the DP adjoint studies cited in the last paragraph), the duality was only theoretically proved
or qualitatively analyzed by comparing the residual convergence rates between the primal and adjoint
solutions. However, the residual convergence rate can only reflect the dominant real eigenvalue for an
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iterative solution process. Without evaluating the entire eigenvalue spectrum, it is unclear: (1) to what
extent these adjoint methods truly preserve the duality at the discretized level, and (2) to what degree
simplifications and assumptions made in these adjoint algorithms degrade the duality.

To fill this gap, this study derives a fixed-point adjoint formulation for steady-state segregated NS
solvers and quantifies the duality between the primal and adjoint solvers. We first rewrite the segregated
primal solution process into a fully coupled left-preconditioned Richardson format. Then, we transpose the
preconditioner matrix to obtain a fixed-point iterative adjoint formulation that fully preserves the primal’s
convergence. We compare the eigenvalue distributions between the primal and adjoint solutions and
quantitatively confirm the duality at the implementation level. We also evaluate to what extent various
numerical settings (e.g., inner iteration tolerances and non-dual preconditioner) impact the eigenvalue
distributions. In addition to algebraic derivation, we develop a new graph representation of the DP
adjoint formulation that can be easily generalized for other primal segregated solvers. We will evaluate
the duality, accuracy, speed, and memory usage of the proposed adjoint method using three cases with
increasing complexity: a miniature-sized problem, a two-dimensional (2D) airfoil, and a three-dimensional
(3D) wing. To demonstrate its robustness, we will implement our adjoint method into DAFoam to conduct
wing aerodynamic shape optimization. This paper’s new graph representation and eigenvalue analyses
are two major steps forward compared with our previous work [41].

Note that this paper focuses on developing a duality-preserving, discrete adjoint method for steady-
state, segregated finite-volume NS solvers. The term “duality-preserving” refers to the consistent con-
vergence behavior between the primal and adjoint solvers. In other words, we aim to develop an adjoint
solver that has the same convergence rate as the primal solver. Duality preserving is different from an-
other important adjoint property called “consistency”. Consistent adjoint methods develop formulations
and discretization schemes for the primal and adjoint equations and their boundary conditions such that
the gradients computed by the adjoint solver agree with those computed by the primal solver. Many ex-
isting adjoint studies have discussed consistency in their formulations and discretization schemes [44–50].
As will be shown in Sec 3, our proposed DP adjoint method exhibits excellent consistency.

The rest of the paper is organized as follows. In Section 2, we describe the mathematical background
of the proposed adjoint approach. The adjoint performance evaluation is presented and discussed in
Section 3 and we summarize our findings in Section 4.

2. Method

In this section, we first explain the segregated NS solver for primal flow simulations, followed by a
general formulation for discrete adjoint gradient computation. Next, we discuss a general DP fixed-point
adjoint formulation for coupled NS solvers. Then, we extend DP adjoint formulations for segregated NS
solvers, which require a significant amount of algebraic work. To streamline the DP adjoint development,
we propose a new graph representation approach and prove that it is equivalent to primal and adjoint
solutions and guarantees duality. We also present a non-dual adjoint formulation derived based on
intuition instead of rigorous math, which serves as a sanity check for our proposed adjoint.

2.1. Segregated RANS solvers for incompressible turbulent flows

The primal flow simulation is conducted by using OpenFOAM’s simpleFoam solver, which solves
steady turbulent flows governed by the incompressible NS equations:

∇ ·U = 0, (1)

∇ · (UU) +
1

ρ
∇p−∇ · νeff(∇U +∇UT ) = 0, (2)

where U = [u, v, w] is the velocity vector, p is the pressure, ρ is the density, νeff = ν + νt with ν and νt
being the kinematic and turbulent eddy viscosity, respectively.
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To connect the turbulent viscosity to the mean flow variables and close the system, we use the Spalart–
Allmaras (SA) turbulence model:

∇ · (U ν̃)− 1

σ
{∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2} − βCb1S̃ν̃ + Cw1fw

(
ν̃

d

)2

= 0, (3)

where ν̃ is the modified viscosity, which can be related to the turbulent eddy viscosity via

νt = ν̃
χ3

χ3 + C3
v1

, χ =
ν̃

ν
. (4)

Refer to Spalart and Allmaras [51] for a more detailed description of the terms and parameters in the SA
model.

Next, we discuss how the above governing equations are solved numerically using OpenFOAM’s im-
plementation of the SIMPLE algorithm (simpleFoam) as an example, although it can be generalized for
other solvers. We follow the general steps described in Uroić [52]. Note that this paper focuses on the
primal-adjoint duality, so we assume all the computations to be in serial. In the future, we will extend
the DP-adjoint implementation to parallel using OpenFOAM’s built-in message-passing interface (MPI).
We expect it to have reasonably good scalability, similar to our previous Krylov-adjoint implementation
[21, 37].

At the discretized level, the first step within an iteration of the SIMPLE algorithm is to calculate an
intermediate velocity U∗ by solving an under-relaxed momentum equation:

AUU
∗ = bU − F grad

p p(n), (5)

where F grad
p is the pressure gradient linear operator, i.e., fvc::grad(p) in simpleFoam. The AU matrix

is a function of φ(n) and ν̃(n), but it does not depend on U (n). The bU vector results from the non-
orthogonal correction, under-relaxation, and boundary contribution. Note that from this point onward,
we deal with discretized equations and variables. Therefore, variables such as p and ν̃ are treated as
discrete vectors.

The second step is to calculate a pseudo-velocity variable Û and its flux φ̂, i.e. HbyA and phiHbyA in
simpleFoam. Note that Û has the same the boundary conditions as U , and we calculate Û by performing
a standard Jacobi iteration:

Û = D−1
U (bU −QUU

∗), (6)

where DU is the diagonal of the under-relaxed matrix AU , and QU is the off-diagonal part of AU . The

flux φ̂ is then calculated as:
φ̂ = F flux

U Û + cbc
U , (7)

where F flux
U is the flux function linear operator, i.e., fvc::flux(HbyA). This equation requires special

attention because the left-hand side φ̂ is defined at the mesh face center, and it contains boundary fields.
However, the right-hand-side Û is defined at the mesh cell center, and it does not include boundary fields.
To make this equation valid, we need to include the contribution of Neumann boundary conditions, such
as zeroGradient, in the F flux

U operator. In addition, we need to include the contribution of Dirichlet
boundary conditions, such as fixedValue, in the constant vector cbc

U . This is typically done by calling
functions to update boundary values, i.e., the correctBoundaryConditions() function. We use a similar
treatment for other flux functions.

The third step is to calculate an intermediate pressure variable p∗ by solving the pressure equation:

App
∗ = bp + F div

φ φ̂, (8)

where F div
φ is the divergence function linear operator on a face-stored flux, i.e., fvc::div(phiHbyA).

The fourth step is the calculation of the next iteration φ(n+1) as:

φ(n+1) = φ̂− (F flux
p p∗ + cbc

p ), (9)
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where F flux
p is the flux function linear operator on a p-like field variable, i.e., pEqn.flux().

The fifth step is the explicit under-relaxation on the intermediate pressure p∗, which leads to the next
iteration pressure p(n+1):

p(n+1) = p(n) + αp(p
∗ − p(n)), (10)

where αp = 0.3 is the under-relaxation factor for p.

The sixth step is the correction of the pseudo-velocity Û by using the under-relaxed pressure p(n+1),
which leads to the next iteration velocity U (n+1):

U (n+1) = Û −D−1
U F

grad
p p(n+1). (11)

Once all mean-flow variables are updated, we update the turbulence variable ν̃ by solving:

Aν̃ ν̃
(n+1) = bν̃ , (12)

where bν̃ arises from all the explicitly treated terms in the Spalart–Allmaras model, and Aν̃ depends on
U (n+1), φ(n+1), and ν̃(n). The turbulence viscosity νt is then corrected using the latest ν̃(n+1), which is
strictly for the preparation for the next iteration, and the current primal iteration is now complete.

In outer iterations of the SIMPLE algorithm, we sequentially solve the above equations (5) to (12).
Note that some of the above equations require inner iterations by solving a linear system, such as inverting
the matrixAU in Eq. (5). We will discuss the impact of the inner iteration tolerance on the primal-adjoint
duality in Sec. 2.5.

A more detailed description of OpenFOAM’s SIMPLE implementation can be found in Uroić [52].
The above equations (5, 6, 7, 8, 9, 10, and 11) correspond to Eqs. (2.11, 2.13, 2.14, 2.16, 2.17, 2.18, and
2.19) in [52].

2.2. General discrete adjoint formulation for computing gradients

In general, regardless of the underlying governing equations or particular primal solver, the discretized
equations for the primal solver can be written in the residual form, which is a function of both design
variable x ∈ Rnx and state variable w ∈ Rnw :

R(x,w) = 0. (13)

Here the design variable is in a general form, and it can be the volume mesh coordinates, boundary
conditions, parameters, or source terms in the above discrete residual equations.

The objective function of interest f depends not only on the design variables, but also on the state
variables that are determined by the solution of governing equations, that is:

f = f(x,w). (14)

To obtain the total derivative df/ dx for gradient-based optimization, we apply the chain rule as
follows:

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

+
∂f

∂w︸︷︷︸
1×nw

dw

dx︸︷︷︸
nw×nx

, (15)

where the partial derivatives ∂f/∂x and ∂f/∂w are relatively cheap to evaluate because they only involve
explicit computations. The total derivative dw/ dx matrix, on the other hand, is expensive, because w
and x are implicitly determined by the residual equations R(w,x) = 0.

To solve for dw/ dx, we can apply the chain rule for R. We then use the fact that the governing
equations should always hold, independent of the values of design variables x. Therefore, the total
derivative dR/ dx must be zero:

dR

dx
=
∂R

∂x
+
∂R

∂w

dw

dx
= 0. (16)
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Rearranging the above equation, we get the linear system

∂R

∂w︸︷︷︸
nw×nw

· dw

dx︸︷︷︸
nw×nx

= − ∂R

∂x︸︷︷︸
nw×nx

. (17)

We can then substitute the solution for dw/ dx from Eq. (17) into Eq. (15) to get

df

dx︸︷︷︸
1×nx

=
∂f

∂x︸︷︷︸
1×nx

−

ψT︷ ︸︸ ︷
∂f

∂w︸︷︷︸
1×nw

∂R

∂w

−1

︸ ︷︷ ︸
nw×nw

∂R

∂x︸︷︷︸
nw×nx

. (18)

Now we can transpose the Jacobian and solve with [∂f/∂w]T as the right-hand side, which yields the
adjoint equation,

∂R

∂w

T

︸ ︷︷ ︸
nw×nw

· ψ︸︷︷︸
nw×1

=
∂f

∂w

T

︸ ︷︷ ︸
nw×1

, (19)

where ψ is the adjoint state vector .
Then, we can compute the total derivative by substituting the adjoint state vector into Eq. (18):

df

dx
=
∂f

∂x
−ψT ∂R

∂x
. (20)

If we have multiple objective functions, for each one of them, we need to solve the adjoint equations
only once, because the design variable is not explicitly present in Eq. (19). Therefore, its computa-
tional cost is independent of the number of design variables but proportional to the number of objective
functions. This approach is also known as the adjoint method and is advantageous for practical design
optimization because we typically have only a few objective functions of interest but may use hundreds
or even more design variables (e.g., topology optimization).

2.3. Duality-preserving adjoint formulations for segregated NS solvers

As mentioned above, directly solving the adjoint linear equation (19) accurately and efficiently is no
small endeavor. The sheer size of nw makes it impractical to solve this linear system exactly, therefore
an iterative method is preferred. Here we algebraically derive a fixed-pointed DP adjoint formulation for
the segregated NS solvers. To this end, we first rewrite the segregated primal solution process into a fully
coupled left-preconditioned Richardson format. Then, we transpose the preconditioner matrix to obtain
an iterative adjoint formulation.

2.3.1. Left-preconditioned Richardson iteration

Based on the fixed-point DP discrete adjoint framework in [29, 30], we consider a general non-linear
fixed-point primal solver written as a left-preconditioned Richardson iteration:

w(n+1) = w(n) +XR(w(n)), (21)

where w(n) is the state variable at the nth iteration, R(w(n)) is the primal residual for w = w(n), and X
is the primal preconditioner. In the context of segregated NS solvers, X may have a sub-block structure.
Each sub-block of X can be a long string of matrix operators and may also involve matrix inverses that
need to be solved approximately (e.g., inner iterations). Once the primal solver in Eq. (21) becomes
sufficiently close to convergence, with Taylor Expansion at the true solution w∗, it can be linearized as:

w(n+1) −w∗ ≈ (I +X
∂R

∂w
)(w(n) −w∗), (22)
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thus the primal iteration matrix is I +X
∂R

∂w
, and its eigenvalues govern the asymptotic convergence of

the primal solver.
Using a simple transpose of X, we can derive a DP fixed-point adjoint solver as:

ψ(n+1) = ψ(n) +XT R̂(ψ(n)), (23)

where ψ(n) is the adjoint state vector at the nth iteration, and the adjoint residual R̂(ψ) is defined as:

R̂(ψ) =
∂R

∂w

T

ψ − ∂f

∂w

T

. (24)

Just like X, XT can also have sub-blocks that involve long strings of operators and matrix inverse. To
obtain its iteration matrix, the DP adjoint solver in Eq. (23) and Eq. (24) can be rewritten as:

ψ(n+1) −ψ∗ = (I +XT ∂R

∂w

T

)(ψ(n) −ψ∗), (25)

where ψ∗ is the true solution for the adjoint equation. The DP adjoint’s iteration matrix is then

I +XT ∂R

∂w

T

, which shares an identical set of eigenvalues with the primal iteration matrix I +X
∂R

∂w
.

Therefore, the primal and DP adjoint solvers theoretically share the same asymptotic convergence, al-
beit as we will see in a later subsection, the approximate nature of the inner iterations leads to a small
deviation from the true primal-adjoint duality.

The theoretical primal-adjoint duality in Eq. (23) is advantageous. The adjoint solver runs after the
convergence of the primal solver and copies the primal asymptotic convergence behavior, thus a successful
primal convergence would also lead to a successful adjoint convergence. However, achieving strict primal-
adjoint duality is challenging in practice because many numerical configurations and conditions (e.g.,
poor primal convergence) may degrade the duality, as will be discussed in Sec. 2.5 and shown in Sec. 3.
The degraded duality may make some adjoint-eigenvalues extremely close to one or slightly outside the
unit circle, diverging the adjoint fixed-point iteration. To avoid this, researchers have proposed various
methods that can stabilize the adjoint equation solution, such as the recursive projection [53, 54], selective
frequency damping [55, 56], and BoostConv methods [57, 58]. See a comprehensive review on this topic
by Xu et al. [59]. We would like to highlight that the adjoint stabilization method complements the
DP-adjoint solution, instead of replacing it. This is because adjoint stabilization methods work best if
the eigenvalues between the primal and adjoint solutions are as close as possible, and there are only a
small amount of eigenvalues outside the unit circle. In other words, adjoint stabilization methods may
not apply to severely non-dual adjoint algorithms where massive adjoint-eigenvalues are outside the unit
circle [59]. Developing an effective adjoint stabilization method is outside the scope of this study and will
be conducted in our future work.

The adjoint formulation in Eqs. (21) and (23) has been mentioned in Gomes and Palacios [15], and it
is called the left-preconditioned fixed-point adjoint formulation. But in that work, the primal solvers are

fully coupled, and the primal and adjoint preconditioners (expressed approximately as M̃
−1

and M̃
−T

)
can be applied in one go, albeit with inner iterations for approximately inverting matrices. However, for
a segregated primal solver such as the SIMPLE algorithm, the relationship between the current iteration
and the next iteration is buried beneath the intermediate variables and sequential corrections. Therefore,
we need to reformat the segregated primal solver into a left-preconditioned residual-based form outlined
in Eq. (21), which requires substantial algebraic work.

2.3.2. Derivation of left preconditioner X for segregated solvers

We demonstrate how to reformat the discretized, segregated primal solution process into a left-
preconditioned residual-based form. Within a primal iteration, there are no back-and-forth corrections
between the mean-flow variables and the turbulence variable, we can treat the two parts separately. The
primal preconditioner X in Eq. (21) will have a block-diagonal structure as follows:
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[
w

(n+1)
m

w
(n+1)
t

]
=

[
w

(n)
m

w
(n)
t

]
+

[
Xm(w

(n)
m ,w

(n)
t ) 0

0 Xt(w
(n+1)
m ,w

(n)
t )

][
R(n)
m (w

(n)
m ,w

(n)
t )

R
(n)
t (w

(n+1)
m ,w

(n)
t )

]
, (26)

where the subscripts m and t denote the mean-flow and turbulence components, respectively. Both Xm

and R(n)
m depend on the current iteration state variables w

(n)
m and w

(n)
t , while both Xt and R

(n)
t depend

on the next iteration mean-flow w
(n+1)
m and the current iteration turbulence w

(n)
t . This is because the

mean-flow variables are updated first, and the turbulence variable is updated afterward within a primal
iteration. Within the scope of this study, the mean-flow wm consists of U , p, and φ, while the turbulence
wt is ν̃ for the Spalart–Allmaras model.

For the discretized and segregated primal solver described in Sec. 2.1 (simpleFoam), we can define the
velocity residual RU for the current iteration as:

R
(n)
U = RU (U (n),p(n),φ(n), ν̃(n)) = bU − F grad

p p(n) −AUU
(n), (27)

By combing Eqs. (5) and (27), we can rewrite the intermediate U∗ in a residual-based form:

U∗ = U (n) +A−1
U R

(n)
U . (28)

By substituting Eq. (27), Eq. (28) and the relationship AU = DU +QU into Eq. (6), we can rewrite

the pseudo-velocity Û as:

Û = U (n) +A−1
U R

(n)
U +D−1

U F
grad
p p(n). (29)

To avoid the need to solve a linear system in our p residual definition, we mimic Eq. (6) and Eq. (7)
and introduce Ū and φ̄ as:

Ū = D−1
U (bU −QUU

(n)), (30)

φ̄ = F flux
U Ū + cbc

U . (31)

Then, we define the pressure residual Rp for the current iteration as:

R(n)
p = Rp(U

(n),p(n),φ(n), ν̃(n)) = bp + F div
φ φ̄−App

(n). (32)

By substituting the respective definitions of R(n)
p , Û , φ̂, Ū , and φ̄ into Eq. (8), we have the intermediate

pressure p∗ rewritten in a residual-based form as:

p∗ = p(n) −A−1
p F

div
φ F flux

U D−1
U QUA

−1
U R

(n)
U +A−1

p R
(n)
p . (33)

We can now define the φ residual for the current iteration as:

R
(n)
φ = Rφ(U (n),p(n),φ(n), ν̃(n)) = φ̄− (F flux

p p(n) + cbc
p )− φ(n). (34)

By substituting the respective expressions for R
(n)
φ , φ̂, φ̄, and p∗ into Eq. (8), we have φ(n+1) rewritten

in a residual-based form as:

φ(n+1) = φ(n) + (F flux
p A−1

p F
div
φ − I)F flux

U D−1
U QUA

−1
U R

(n)
U − F flux

p A−1
p R

(n)
p +R

(n)
φ . (35)

Substituting p∗ in Eq. (10) with Eq. (33), we can rewrite p(n+1) in a residual-based form:

p(n+1) = p(n) − αpA−1
p F

div
φ F flux

U D−1
U QUA

−1
U R

(n)
U + αpA

−1
p R

(n)
p . (36)

By substituting the above Û and p(n+1) with Eq. (29) and Eq. (36), respectively, we have U (n+1)

rewritten in a residual-based form:

U (n+1) = U (n) + (D−1
U F

grad
p αpA

−1
p F

div
φ F flux

U D−1
U QU + I)A−1

U R
(n)
U −D−1

U F
grad
p αpA

−1
p R

(n)
p . (37)
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Combining Eq. (37), Eq. (36) and Eq. (35) into a matrix form, we have:U (n+1)

p(n+1)

φ(n+1)

 =

U (n)

p(n)

φ(n)

+

X11 X12 0
X21 X22 0
X31 X32 I


︸ ︷︷ ︸

Xm

R
(n)
U

R(n)
p

R
(n)
φ

 , (38)

where:
X11 = (D−1

U F
grad
p αpA

−1
p F

div
φ F flux

U D−1
U QU + I)A−1

U

X12 = −D−1
U F

grad
p αpA

−1
p

X21 = −αpA−1
p F

div
φ F flux

U D−1
U QUA

−1
U

X22 = αpA
−1
p

X31 = (F flux
p A−1

p F
div
φ − I)F flux

U D−1
U QUA

−1
U

X32 = −F flux
p A−1

p .

(39)

Note that we still solve the seemingly fully-coupled primal equation (38) in a segregated manner.
Then we can define the turbulence residual for the current iteration as:

R
(n)
ν̃ = Rν̃(U (n+1),φ(n+1), ν̃(n)) = bν̃ −Aν̃ ν̃

(n), (40)

and we can rewrite ν̃(n+1) in a residual-based form as:

ν̃(n+1) = ν̃(n) +A−1
ν̃ R

(n)
ν̃ , (41)

thus the turbulence portion of the primal preconditioner in Eq. (26), is simply Xt = A−1
ν̃ .

2.3.3. Duality-preserving adjoint as a precondition matrix transpose

Given the block-diagonal structure of the primal preconditioner in Eq. (26), we can simply transpose
the preconditioner to obtain the DP adjoint formulation :[

ψ(n+1)
m

ψ
(n+1)
t

]
=

[
ψ(n)
m

ψ
(n)
t

]
+

[
XT
m 0

0 XT
t

] [
R̂

(n)

m

R̂
(n)

t

]
, (42)

where the adjoint residual R̂
(n)

= R̂(ψ(n)) follows the definition in Eq. (24), and the subscripts m and t
denote the mean-flow and turbulence components, respectively.

Recall that in the primal formulation in Eq. (26), Xm and R(n)
m depend on w

(n)
m and w

(n)
t while

Xt and R
(n)
t depend on w

(n+1)
m and w

(n)
t . The adjoint solver starts after the convergence of the primal

solver, which implies w
(n+1)
m = w

(n)
m . Hence we utilize the converged state variables w

(n)
m and w

(n)
t for

the adjoint formulation and forgo w
(n+1)
m . We will discuss the effects and handling of such discrepancies

between the primal and adjoint solvers in detail in Sec. 2.5.
By applying the transpose of Xm, we obtain the mean-flow portion of the DP fixed-point adjoint:ψ

(n+1)
U

ψ(n+1)
p

ψ
(n+1)
φ

 =

ψ
(n)
U

ψ(n)
p

ψ
(n)
φ

+

XT
11 XT

21 XT
31

XT
12 XT

22 XT
32

0 0 I


R̂

(n)

U

R̂
(n)

p

R̂
(n)

φ

 , (43)

and the turbulence portion of the DP adjoint solver is:

ψ
(n+1)
ν̃ = ψ

(n)
ν̃ + Ã

−T
ν̃ R̂

(n)

ν̃ , (44)
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where Ãν̃ is an approximate version of Aν̃ constructed from the converged U (n), φ(n) and ν̃(n) instead
of U (n+1), φ(n+1) and ν̃(n).

We now have a complete and explicitly expressed formulation of a DP fixed-point adjoint solver for the
SIMPLE algorithm with Eq. (43) and Eq. (44). The seemingly fully-coupled expression in Eq. (43) can
then be broken down into sequential steps similar to those of the original primal solver, albeit this process
can be tedious and time-consuming. The sequential steps of a DP adjoint iteration will be shown in the
next subsection when we develop an equivalent but more streamlined graph representation approach for
DP adjoint formulation and implementation.

2.4. Duality-preserving adjoint as a reverse graph (DARG)

The DP adjoint formulation derived in the last subsection treats the segregated and sequential primal
solver and its DP adjoint as seemingly fully coupled. It first packs all sequential steps of a primal iteration
into a large and highly complex preconditioner matrix X. Then, it unpacks the equally large and complex
matrix transpose XT and breaks it down into sequential steps again for DP adjoint implementation. This
pack-then-unpack procedure, while having the merit of explicitly ensuring that the adjoint is duality-
preserving, can be quite tedious and time-consuming for the DP adjoint implementation. Thus, in this
subsection, we present an equivalent but more streamlined approach called duality-preserving adjoint as
a reverse graph (DARG). This approach takes advantage of the segregated and sequential nature and
can directly produce a segregated DP adjoint solver from its segregated primal counterpart without the
above tedious pack-and-unpack procedure. A similar graph representation approach was proposed for
evaluating the direct and adjoint linearized dynamics of compressible flow solvers by De Pando et al. [60],
and a rigorous mathematical proof for the validity of such a graph representation method can be found
in their Appendix A.

Recall that for each iteration, the original segregated primal solver in Eqs. (5) to (11) sequentially
solves for a series of intermediate variables before arriving at the updated state variables. Hence, the
primal preconditioner X in Eq. (21) should also be understood as a process of sequentially applying
intermediate operators leading to a series of intermediate variables that we have not identified at this
point. Once X is properly interpreted as an aforementioned sequential process, we can accordingly
construct a graph representation for X. Then, the reverse graph of X with transposed intermediate
operators is equivalent to the XT operator. The DP adjoint implementation as sequential steps can be
directly read off from the XT graph. In the following, we will elaborate on the proposed DARG approach.

We first show the prerequisite algebraic work that interprets X as a sequential process. In essence, we
identify intermediate variables that the linear mapping X propagates through by performing rudimentary
operations. These operations subtract the original primal equations from their reformatted residual
definitions. For example, subtracting Eq. (5) with Eq. (27) leads to:

βpri = A−1
U R

(n)
U , (45)

where the newly identified intermediate variable βpri = U∗ −U (n) is calculated from the U -component

of the input R(n). Note that X is essentially a linear mapping from the primal residuals R(n) = R(w(n))
to the update on the state variables ∆w = w(n+1) − w(n). Therefore, we expect all the intermediate
variables to be also written as ∆ operators. Similarly, subtracting Eq. (6) with Eq. (30) gives us:

γpri = −D−1
U QUβpri, (46)

where γpri = Û − Ū results from the upstream βpri. Unlike in the last subsection, here we do not
substitute the right-hand side βpri in Eq. (46) with Eq. (45). This is because we want to preserve the
relationship between γpri and βpri, which will be reflected in the graph representation of X.

We will continue this process of deriving equations in which the left-hand sides are newly identified ∆
intermediate variables that can be calculated from the right-hand side upstream variables. By subtracting
Eq. (7) with Eq. (31), we have:

δpri = F flux
U γpri, (47)
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Table 1: The terms in the primal preconditioner X in Eq. (39) match the paths in the DARG graph (Fig. 1 left) one-to-one.

Terms in matrix Paths in graph
X11 RU → βpri → ωpri → ∆U

RU → βpri → γpri → δpri → εpri → ηpri → κpri → ωpri → ∆U
X12 Rp → εpri → ηpri → κpri → ωpri → ∆U
X21 RU → βpri → γpri → δpri → εpri → ηpri → κpri → ∆p
X22 Rp → εpri → ηpri → κpri → ∆p
X31 RU → βpri → γpri → δpri → ξpri → ∆φ

RU → βpri → γpri → δpri → εpri → ηpri → ξpri → ∆φ
X32 Rp → εpri → ηpri → ξpri → ∆φ
I Rφ → ξpri → ∆φ

where δpri = φ̂− φ̄. Subtracting Eq. (8) with Eq. (32) leads to:

ηpri = A−1
p εpri, (48)

where ηpri = p∗−p(n), and the right-hand-side term εpri = F div
φ δpri +R(n)

p . By subtracting Eq. (9) with
Eq. (34), we have:

ξpri = δpri − F flux
p ηpri +R

(n)
φ , (49)

where ξpri = φ(n+1) − φ(n). Rearranging terms in Eq. (10) leads to:

κpri = αpηpri, (50)

where κpri = p(n+1) − p(n). By plugging Eq. (5), Eq. (6), and the relationship AU = DU + QU into
Eq. (11), we have:

ωpri = βpri −D
−1
U F

grad
p κpri (51)

where ωpri = U (n+1) −U (n). For the turbulence portion of the primal solver, subtracting Eq. (12) with
Eq. (40) leads to:

ν̃(n+1) − ν̃(n) = A−1
ν̃ R

(n)
ν̃ . (52)

When viewed together, Eqs. (45) to (52) reveal how the primal preconditioner X sequentially applies
linear operators to propagate intermediate variables within each primal iteration.

We can then construct a graph representation for X, as shown in Fig. 1 left. Each vertex in the
graph represents a variable encountered during the propagation by X. The linear mapping X’s input
and output are R(n) and ∆w, respectively. The other vertices are the aforementioned intermediate
variables. As shown above, we rename the intermediate variables to Greek symbols with the subscript
“pri”. Each directed edge carries an aforementioned intermediate linear operator; it points from the
upstream variable that the intermediate operator applies to, and it points to the resulting downstream
variable. Each non-input variable shown in the graph is calculated as the summation of all of its adjacent
upstream operator-variable products. Thus, this graph representation is equivalent to the sequential
calculations in Eqs. (45) to (52). Furthermore, as shown in Table 1, the directed paths starting from
input variables and ending at output variables also match the terms in Eq. (39) one-to-one. This indicates
that the graph representation for X is truly equivalent to its matrix form counterpart.

The graph representation for the DP adjoint preconditioner XT can then be easily constructed as the
reverse graph with transposed intermediate operators (see Fig. 1 right). We also rename the DP adjoint’s
intermediate variables and change the subscript to “adj”. Note that while the primal preconditioner’s
intermediate variables arise from equations with physical significance, their DP adjoint counterparts are
purely mathematical.
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ΔU Δp ΔΦ

RU Rp RΦ

βpri

Rν~

Δν~

ωpri

γpri

κpri

δpri

εpri

ηpri

ξpri

Primal

AU
-1

+1

+1

DU QU
-1-

FU flux

DU Fp
grad- -1

+1

αp

FΦ
div

+1

Ap
-1

+1

Fp 
flux-

+1

+1 Aν
-1
~ βadj

ωadj

γadj

κadj

δadj

εadj

ηadj

ξadj

Adjoint

+1

+1

FU flux

+1

αp

FΦ
div

+1

Ap
-T

+1

Fp 
flux-

+1

+1 Aν
-T
~

RU
^ Rp

^ RΦ
^ Rν~

^

ΔψU Δψp ΔψΦ Δψν~

AU
-T

QU DU
-1- T

T

T

T

Fp     DU
grad- -1T

~

Figure 1: Duality-preserving adjoint as a reverse graph (DARG). Shown on the left is the graph representation for the
primal preconditioner X which results from a rudimentary algebraic reformat of the segregated primal solver (execution
order: top to bottom). On the right is the graph representation for the DP adjoint preconditioner XT , which is constructed
as the reverse graph of X with transposed intermediate operators (execution order: bottom to top). A sequential DP
adjoint implementation can be readily read off from the graph for XT .

As shown in Fig. 1 right, a DP adjoint iteration begins with the evaluation of the adjoint residuals

R̂
(n)

U , R̂
(n)

p , R̂
(n)

φ , R̂
(n)

ν̃ using reverse-mode automatic differentiation (AD). It then applies the DP adjoint

preconditioner XT which leads to the update on the adjoint state vector ∆ψU , ∆ψp, ∆ψφ, ∆ψν̃ .
Note that the below DARG representations use top-to-bottom and bottom-to-top execution orders of
the intermediates vertices for the primal and adjoint solutions, respectively. To implement the DARG
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representation into actual adjoint code, we use the following sequential steps:

1 : ωadj = R̂
(n)

U ,

2 : ξadj = R̂
(n)

φ ,

3 : ∆ψφ = ξadj,

4 : κadj = R̂
(n)

p − F grad
p

T
D−1
U ωadj,

5 : ηadj = αpκadj − F flux
p

T
ξadj,

6 : εadj = A−Tp ηadj,

7 : ∆ψp = εadj,

8 : δadj = F div
φ

T
εadj + ξadj,

9 : γadj = F flux
U

T
δadj,

10 : βadj = ωadj −QT
UD

−1
U γadj,

11 : ∆ψU = A−TU βadj,

12 : ∆ψν̃ = Ã
−T
ν̃ R̂

(n)

ν̃ .

(53)

The transposed operators that arise from the left-hand side coefficients, including QT
U , AT

p , AT
U , and

Ã
T

ν̃ , are constructed by swapping the upper and lower coefficient arrays. The matrix inverse for A−Tp ,

A−TU , and Ã
−T
ν̃ is then handled by OpenFOAM’s built-in Gauss–Seidel solver. The rest of the transposed

operator-variable products above (e.g. F flux
p

T
ξadj) are evaluated with reverse-mode AD. Note that the

DARG adjoint solution uses exactly the same number of numerical operators as the primal solution.
Therefore, we expect that the adjoint’s computational speed will be similar to the primal’s.

Our DARG method for DP adjoint formulation can be generalized for any segregated NS solvers and
turbulence models. It can be summarized as the following major steps:

1. Reformat the segregated primal solver through rudimentary algebraic operations. This interprets
the primal preconditioner X as a sequential process of applying intermediate operators.

2. Construct the graph representation for X.

3. Reverse the graph for X and transpose the intermediate operators on the edges. This produces the
graph representation for the DP adjoint preconditioner XT .

4. Read off the sequential calculations from the graph for XT . This produces the sequential imple-
mentaion for the DP adjoint.

2.5. Special considerations for primal-adjoint duality and adjoint accuracy

Although the proposed DP adjoint solver is derived from the transpose of the primal solver, several
sources of minor discrepancies in their asymptotic convergence behaviors do exist.

The first source is the non-linearity in the primal solvers. As shown in Eq. (22), we use the linear
portion of Taylor’s expansion when deriving the corresponding adjoint solver. The effects of higher-order
terms may not be negligible if the primal solver has not sufficiently converged, e.g., a relative tolerance
of greater than 10−5 for the primal residuals. Thus the convergence level of the primal solver affects
the asymptotic convergence behavior of the proposed adjoint solver. This effect vanishes to zero as the
primal solver converges tightly, e.g., a relative tolerance of less than 10−10 for the primal residuals.

The second source of discrepancies comes from the treatment of the turbulence residual and left-hand

side matrix. As mentioned earlier, we use R̃
(n)

ν̃ = Rν̃(U (n),φ(n), ν̃(n)) and Ãν̃(U (n),φ(n), ν̃(n)) instead

of R
(n)
ν̃ = Rν̃(U (n+1),φ(n+1), ν̃(n)) and Aν̃(U (n+1),φ(n+1), ν̃(n)) when formulating the adjoint solver.

This deviation once again depends on the primal solver’s convergence tolerance, and it will also vanish
to zero as the primal solver converges tightly.
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In this study, we focus on flow problems of academic interest that can converge tightly. Therefore, the
two sources of discrepancies mentioned above are inconsequential within the scope of the current work.
However, flow problems encountered in industrial applications may not converge tightly and may exhibit
limit cycle oscillations (LCO), and in those scenarios, the two aforementioned sources of discrepancies
may become significant. The topic of LCO and the related techniques to converge the adjoint solver are
beyond the scope of this study, and a more detailed discussion can be found in [31].

The third source of discrepancy is due to the inner linear iterations. Note that Gomes and Palacios [15]
discussed the impact of inner iteration on primal-adjoint consistency for left- and right-preconditioned
adjoint methods. They suggested that a tight inner iteration is needed for right-preconditioned adjoint
methods (e.g., the one used in SU2 [18]) to ensure consistency. However, the choice of inner iteration
tolerance has little impact on the consistency for left-preconditioned adjoint methods (e.g., the one
proposed in this paper). However, they did not further discuss whether the inner iteration tolerance
impacts the primal-adjoint duality. A similar fixed-point left-preconditioned adjoint formulation was
proposed by Nielsen et al. [20] for coupled NS solvers; however, the impact of inner iteration tolerance on
primal-adjoint duality was not analyzed. Here we demonstrate why the primal-adjoint duality discrepancy
is challenging to avoid in practice, and why a particular choice of internal initial guess can avoid or lead
to an additional source of error in adjoint accuracy. We also show that with the correct choice of
internal initial guess, solving internal linear equations iteratively leads to a perturbation on the left-
preconditioner matrix. Therefore, it has no effect on the adjoint accuracy, but it causes a deviation in
asymptotic convergence.

We use the Gauss-Seidel method as an example, and the same framework can also work with other
iterative methods. Consider a generic, possibly non-linear iteration:

Mw(n+1) = Mw(n) −R(w(n))︸ ︷︷ ︸
b

, (54)

or equivalently in a left-preconditioned Richardson form:

w(n+1) = w(n) −M−1R(w(n)). (55)

We normally treat Eq. (54) as a linear equation Mw = b, and solve it with an iterative method, e.g.
Gauss-Seidel, using v(0) as the initial guess. In general, after Ni internal iterations, the approximate
solution is:

v(Ni) = v∗ +GNi(v(0) − v∗), (56)

where v∗ is the true solution, G is the iteration matrix, and in the case of Gauss-Seidel, G = −(DM +
LM )−1UM , and DM , LM and UM are the diagonal, lower, and upper breakdown of the left-hand side
matrix M . Plugging v(0) = w(n), v∗ = w(n) −M−1R(w(n)), and v(Ni) = w(n+1) into Eq. (56), we get:

w(n+1) = w(n) − (I −GNi)M−1R(w(n)). (57)

Thus the internal iterations effectively perturb the true left-preconditioner M−1 as (I − GNi)M−1.
They add a small perturbation to the asymptotic convergence behavior, which only vanishes to zero if
the internal iteration number Ni goes to infinity, but they do not introduce any error to the converged
solution.

However, for a residual-based solver outlined in Eq. (55), such as the reformatted primal solver and
the proposed DP adjoint solver in this study, we first approximately solve M−1R(w(n)) as the solution
to Mx = −R(w(n)) then add w(n) to get w(n+1). Therefore, the use of v(0) = w(n) as the initial guess
for the internal iterations would lead to:

w(n+1) = w(n) − (I −GNi)M−1R(w(n))−GNiw(n), (58)

which includes an additional error term −GNiw(n) that only vanishes to zero when the internal iteration
number Ni goes to infinity, and this is highly undesirable.

Instead of using v(0) = w(n) as the initial guess for the internal iterations, we choose v(0) = 0, and
this leads to the exact same expression in Eq. (57) thus avoiding the additional error term in Eq. (58). To
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validate the mathematical derivation shown above, we compare the unmodified SIMPLE solver that uses
v(0) = w(n) as the internal initial guess to its reformatted residual-based equivalent that uses v(0) = 0
as the internal initial guess, and they share an identical convergence history (not shown in this paper).

With the correct choice of internal initial guess, the inner iterations for the primal and adjoint solvers
will not lead to an additional source of error. Instead, they will lead to a small perturbation in the
asymptotic convergence behavior. It is generally not possible to make the perturbation terms in the
primal and adjoint solvers match in a way that also makes the above perturbation consistent, as shown in
Eq. (57). In theory, if we allow the internal linear solver to converge tightly, then the deviation caused by
the perturbation terms can be negligible, but this would incur a high computational cost with no benefit
to accuracy (see a detailed discussion in Sec. 3.4). Thus, empirically, we ask the primal and adjoint’s
internal iterations to converge loosely to a relative tolerance of 10−2. We will evaluate the impact of
inner iteration convergence on the primal and adjoint’s eigenvalue spectrum and computational speed in
the results section.

2.6. Non-dual adjoint for segregated solvers

To demonstrate the necessity of carefully formulating the DP adjoint preconditioner, we use a non-dual
fixed-point adjoint formulation as a sanity check. Instead of rigorously deriving the left-preconditioner
matrix to preserve duality, we use the primal equations’ left-hand side coefficient matrices to form a
block-diagonal matrix as its substitute. Then, we transpose this block-diagonal matrix to get the non-
dual adjoint preconditioner (XT

nd), as shown in Eq. (59).
AT
U

AT
p

−Iφ
Ã
T

ν̃


︸ ︷︷ ︸

XT
nd

∆ψ = −∂R
∂w

T

ψ +
∂f

∂w

T

, (59)

where ∆ψ has four components ∆ψU , ∆ψp, ∆ψφ, and ∆ψν̃ . AU , AT
p , and Ã

T

ν̃ are the discretization
matrices defined in Eqs. (5), (8), and (12). We solve Eq. (59) using the block Gauss-Seidel method. To
stabilize the solution, we use an under-relaxation factor of 0.3 for updating the pressure adjoint variable.
No under-relaxation is used for the other variables.

This non-dual adjoint formulation is simple and requires much less effort for its implementation than
the proposed DP adjoint. A similar adjoint preconditioner formulation was used in a fully coupled NS
solver [19]. However, we will demonstrate in the result section that this non-dual adjoint formulation may
diverge due to the inconsistent eigenvalue spectrum between the adjoint and segregated primal solvers,
although it can converge for simple cases.

3. Results and Discussion

We present four distinct cases to evaluate the proposed DP adjoint solver. We start with a miniature-
sized problem that validates the theoretical primal-adjoint duality. We then show a 2D airfoil case and
proceed to a more challenging 3D wing case. We evaluate the adjoint’s duality, accuracy, speed, and
memory usage. The duality is quantified by comparing the eigenvalue distributions between the primal
and adjoint, and we use the Arnoldi method (see Appendix for details) to extract the iteration matrix
eigenvalues. Finally, we conduct a complete wing aerodynamic shape optimization with the proposed
DP adjoint and then compare the optimization result to that obtained from the well-established Krylov-
adjoint approach to demonstrate its robustness.

3.1. A miniature-sized flow problem: primal-adjoint duality validation

We first validate the theoretical primal-adjoint duality using a simple 2D channel flow case. The
flow is incompressible and turbulent. The channel is square-shaped, the left side is the inlet, the right
side is the outlet, and both the top and the bottom are no-slip walls. We use only 3 cells in both the
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Figure 2: Eigenvalue distributions for the miniature-sized problem. Left: comparison between the primal and duality-
preserving adjoint. Right: comparison between the primal and non-dual adjoint. The representative eigenvalues are labeled
and shown in Table 2. We observe excellent agreement between the primal and duality-preserving adjoint, while the non-dual
adjoint has discernible discrepancies.

Table 2: Three representative eigenvalues for the primal, duality-preserving adjoint, and non-dual adjoint solvers (refer
to Fig. 2 for their locations). A complex conjugate pair of eigenvalues count as one eigenvalue. The proposed duality-
preserving adjoint matches the primal for almost all eight significant digits (max relative error: <0.01%). However, the
non-dual adjoint matches only one significant digit (max relative error: 5.5%).

Label Primal Duality-preserving adjoint Non-dual adjoint
1 0.72444132 ± 0.22944547 i 0.72444132 ± 0.22944546 i 0.70808883 ± 0.24211570 i
2 0.59491033 ± 0.44624963 i 0.59491033 ± 0.44624963 i 0.56102889 ± 0.46904806 i
3 −0.03107663 ± 0.00000000 i −0.03107663 ± 0.00000000 i −0.03078003 ± 0.00000000 i

streamwise and vertical directions. We let the primal and adjoint inner iterations converge tightly to
about 1× 10−14. For the outer iteration, the primal and adjoint converge to 1 × 10−10 when the change
in the state variables between two iterations is negligible. To measure the inner iteration convergence,
we use the L2 norm of linear system residuals, i.e., Eqs. (5), (8), and (12). For the outer iterations, we
use the L2 norm of the flow residuals, i.e., Eqs. (27), (32), (34), and (40), to measure convergence.

This miniature-sized problem is desirable for two reasons. First, the inner and outer iterations can
easily converge tightly to machine precision, thus effectively removing the small deviations as contributing
factors to the primal-adjoint duality (refer to Sec. 2.5). Secondly, the Arnoldi method can retrieve all
eigenvalues of the iteration matrix after less than 100 iterations. Therefore, the eigenvalues for this case
can be considered as the exact eigenvalues instead of approximate ones.

As shown in Fig. 2 left, the eigenvalue distributions for the primal and DP adjoint solvers visually
overlap with no discernible deviation. Furthermore, as seen in Table 2, the highlighted 3 representative
eigenvalues also have about 8 matching digits. This excellent agreement is practically all one can hope
for with the use of the finite difference in the linearized primal Arnoldi iterations (refer to the Appendix).

The residual convergence plots for the primal and adjoint solvers, shown in Fig. 3, are also consistent
with the findings on the iteration matrix eigenvalues. The overall slopes of the convergence trajectories
are visually similar between the primal (Fig. 3 top) and DP adjoint (Fig. 3 mid). This indicates that the
dominant eigenvalues for the two solvers should have close values of modulus, see Table 2. Additionally,
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Figure 3: Convergence history of primal and adjoint residuals for the miniature-sized problem. Top: primal. Mid: duality-
preserving adjoint. Bot: non-dual adjoint. Tight inner iteration convergence case. Both duality-preserving and non-dual
adjoint have a similar convergence rate as the primal solver.

for both primal and DP adjoint, the convergence trajectories always oscillate, which is indicative of a
non-real dominant eigenvalue conjugate pair, consistent with that shown in Table 2.

As for the non-dual adjoint, its iteration matrix eigenvalue distribution deviates from that of the
primal solver, but it still converges for this problem (Fig. 3 bot). As shown in Fig. 2 right, there are
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Figure 4: Left: the structured mesh generated by pyHyp and free-form deformation (FFD) points (denoted in red). Right:
the pressure distribution for the airfoil case.

discernible discrepancies between the eigenvalue distributions for the primal and non-dual adjoint, but
the overall patterns are still visually similar. According to Table 2, the highlighted 3 representative
eigenvalues for the non-dual adjoint share only 1 matching digit with their primal counterparts, and the
max relative error is 5.5%.

In summary, we demonstrate that the proposed DP adjoint fully preserves the eigenvalue spectrum of
the primal solver using a miniature-sized problem. Although the non-dual adjoint’s residual convergence
rate is similar to the primal solver, its eigenvalues can match only one significant digit.

3.2. NACA0012 airfoil: 2D aerodynamics

We now consider 2D flow over the NACA0012 airfoil, which is of common academic interest but
still relatively simple. The flow is incompressible and turbulent. The Reynolds number is 1.0 × 104,
and the angle of attack is 3 degrees. Fig. 4 shows the mesh and free-form deformation (FFD) control
points for this case. We use the pyHyp package [61] to generate a structured mesh with 4, 000 cells. The
computational domain extends 20 chord lengths. The average y+ is 1.3, therefore a wall function is not
used. The functions of interest are the drag (CD) and lift (CL) coefficients. We use the FFD approach
to parameterize the airfoil geometry, and the design variable is the twist angle (γ). The twist is changed
by rotating all the FFD control points using the pyGeo package [62].

We quantify the level of primal-adjoint duality by evaluating the iteration matrix eigenvalues obtained
through the Arnoldi method. In the previous miniature-sized flow problem, we can compute exact
eigenvalues after a small number of Arnoldi iterations. However, in this airfoil case, exact eigenvalue
extraction is no longer viable; thus, we run the Arnoldi method for only 1000 iterations which results in
1000 approximate eigenvalues for the airfoil problem. We ensure that the outskirt of the 1000 approximate
eigenvalues has well converged by visually and quantitatively comparing them to those obtained from the
first 500 Arnoldi iterations. In particular, we check the numerical values of the representative eigenvalues
to make sure that they have at least 10 matching digits between the 1000-Arnoldi-iteration and 500-
Arnoldi-iteration results. The primal and adjoint outer iterations are allowed to converge tightly to
10−10, thus only the inner iterations remain as a contributing factor to the level of primal-adjoint duality.
Therefore, we investigate the asymptotic convergence for two scenarios: 1) the inner iterations converge
tightly to 10−14, and 2) the inner iterations converge loosely to a relative tolerance of 10−2. The tight inner
convergence scenario is adherent to the theoretical primal-adjoint duality, thus it serves as a benchmark.
For the more practical loose inner convergence scenario, some deviation from the true primal-adjoint
duality is inevitable.

As shown in Fig. 5 left, the outskirts of iteration matrix eigenvalue distributions visually overlap
between the primal and DP adjoint. This can be further confirmed in Table 3, where the representative
eigenvalues have 4 to 7 matching digits. This is a high-level agreement given that we use finite differences
in the linearized primal Arnoldi iterations. For the loose inner convergence case (Fig. 6 left), the eigenvalue
distributions have visual discrepancies between the primal and DP adjoint solvers, as expected. However,
the overall patterns are still close between the two, and they also differ slightly from the pattern of the tight
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Figure 5: Eigenvalue distributions for the 2D airfoil problem with tight inner iteration tolerance. Left: comparison between
the primal and duality-preserving adjoint. Right: comparison between the primal and non-dual adjoint. The representative
eigenvalues are labeled and shown in Table 3. We observe excellent agreement between the primal and duality-preserving
adjoint, while the non-dual adjoint has large discrepancies, especially in the Re(λ) < 0 region.

Table 3: Five representative eigenvalues for the primal, duality-preserving adjoint, and non-dual adjoint solvers with tight
inner iteration tolerance (2D airfoil; refer to Fig. 5 for their locations). A complex conjugate pair of eigenvalues count as
one eigenvalue. The proposed duality-preserving adjoint matches the primal for 4 to 7 significant digits (max relative error:
<0.01%). However, the non-dual adjoint has significantly different eigenvalues (max relative error: >100%).

Primal Duality-preserving adjoint Non-dual adjoint
1 0.96573819 ± 0.03282698 i 0.96573832 ± 0.03282674 i 0.96494297 ± 0.03345844 i
2 0.85518127 ± 0.40500358 i 0.85517800 ± 0.40500457 i 0.87393316 ± 0.42276886 i
3 0.47847839 ± 0.72265136 i 0.47847805 ± 0.72265158 i 0.58696326 ± 0.72275575 i
4 0.18867190 ± 0.59983501 i 0.18867222 ± 0.59983552 i 0.36456250 ± 0.81131675 i
5 −0.05411324 ± 0.00000000 i −0.05411324 ± 0.00000000 i −0.51482627 ± 0.00000000 i

Table 4: Five representative eigenvalues for the primal, duality-preserving adjoint, and non-dual adjoint solvers with loose
inner iteration tolerance (2D airfoil; refer to Fig. 6 for their locations). A complex conjugate pair of eigenvalues count as one
eigenvalue. Both duality-preserving and non-dual adjoint eigenvalues deviate from the primal’s, but the duality-preserving
adjoint has a better agreement. The max relative errors for the DP- and non-dual adjoint solutions are 18.4% and >100%.

Primal Duality-preserving adjoint Non-dual adjoint
1 0.96678151 ± 0.03071720 i 0.96669765 ± 0.03237728 i 0.96545747 ± 0.03322350 i
2 0.84966219 ± 0.41005026 i 0.85062451 ± 0.40055657 i 0.85310765 ± 0.43768112 i
3 0.50949257 ± 0.73771737 i 0.66705557 ± 0.69006810 i 0.66665597 ± 0.69208577 i
4 0.18966167 ± 0.60305324 i 0.19952557 ± 0.60278607 i 0.18706726 ± 0.70946428 i
5 −0.05471746 ± 0.00000000 i −0.05411095 ± 0.00000000 i −0.51561329 ± 0.00000000 i

inner convergence scenario shown in Fig. 5 left. Furthermore, Table 4 indicates that the representative
eigenvalues for the loose inner convergence scenario may still share up to 2 matching digits between the
primal and adjoint, but the level of agreement varies. The max relative error for the loose tolerance case
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Figure 6: Eigenvalue distributions for the 2D airfoil problem with loose inner iteration tolerance. Left: comparison between
the primal and duality-preserving adjoint. Right: comparison between the primal and non-dual adjoint. The representative
eigenvalues are labeled and shown in Table 4. The duality-preserving adjoint’s eigenvalue distribution only slightly differs
from the primal, while the non-dual adjoint has large discrepancies, especially in the Re(λ) < 0 region.

Table 5: Verification of adjoint gradient accuracy (airfoil case). γ is the twist angle. The adjoint derivatives match the
reference values (forward-mode AD) by 10 digits. All the gradients have been multiplied by 103.

Case Gradients Reference Adjoint
Airfoil dCD/dγ 2.918037335493 2.918037335604

dCL/dγ 30.26037720144 30.26037720387

is 18.4%. As expected, the convergence rates between the primal and DP adjoint (loose inner convergence
scenario) are similar, as shown in Fig. 7 top and mid.

The intuitively formulated non-dual adjoint solver still converges successfully for the airfoil case in
both the tight and loose inner convergence scenarios (Fig. 7 bot). As shown in Fig. 5 right and Fig. 6
right, the eigenvalue distributions for the non-dual adjoint still share visual similarities with the primal
references. However, they have some extra clusters of eigenvalues (e.g., in the Re(λ) < 0 region), which
turn out to be inconsequential because they are well within the unit circle. Table 3 and Table 4 indicate
that in both scenarios, the largest positive real eigenvalues for the non-dual adjoint have 3 matching
digits with the respective primal references. However, its other representative eigenvalues may hardly
match a representative primal eigenvalue. The overall similarity and noticeable difference between the
non-dual adjoint and primal eigenvalue distributions are expected because it is meant to somewhat mimic
the asymptotic convergence of the primal solver rather than replicating it.

The adjoint gradient computation accuracy is a critical aspect of design optimization. It is highly
desirable to have accurate adjoint gradient computation that is consistent with the primal solver, a feature
also known as consistent adjoint [46, 63]. Inaccurate or inconsistent gradients may mislead the optimizer
in finding new search directions, which results in suboptimal or infeasible designs. We verify the accuracy
of the proposed DP adjoint for the NACA0012 airfoil case. We allow both the primal and adjoint solvers
to converge tightly to a relative tolerance of 10−14, and the inner convergence for both the primal and
adjoint is 10−2 (relative tolerance). After the primal convergence, the adjoint solver solves the adjoint
equation and calculates an intermediate gradient of the objective function, i.e. the drag coefficient (CD),
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Figure 7: Convergence history of flow (top), duality-preserving adjoint (mid), and non-dual adjoint (bot) residuals for the
airfoil case. The inner iteration converges loosely to a relative tolerance of 10−2. Both duality-preserving and non-dual
adjoint have a similar convergence rate as the primal solver.

with respect to the vertex coordinates of the volume mesh (xv). This intermediate gradient (dCD/ dxv) is
then passed to the pyGeo [62] and IDWarp [61] modules to calculate the final gradient with respect to the
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Table 6: Comparison of computational and memory cost between the primal and adjoint solvers (airfoil case). The adjoint
computation is faster than the flow simulation and its memory cost is about six times higher.

Speed (s) Memory (GB)
Primal 16.9 0.06
Adjoint 12.4 0.35
Adjoint/Primal 0.73 5.8

design variable, i.e. the twist angle (γ). pyGeo uses the free-form deformation method to parameterize
the design surface geometry and computes the gradient of the surface mesh coordinates with respect
to the design variable (e.g., dxs/ dγ). IDWarp uses an inverse-distance weighted approach to deform
the volume mesh coordinates smoothly and computes the gradient of the volume mesh coordinates with
respect to the surface mesh coordinates (i.e., dxv/ dxs). In other words, the adjoint solver, IDWarp,
and pyGeo compute dCD/ dxv, dxv/ dxs, and dxs/ dγ, respectively, and the final gradient is computed
as dCD/ dγ = [dCD/ dxv][dxv/ dxs][dxs/ dγ]. A similar approach is used to compute gradients for CL.
The final gradient is then compared with the forward-mode AD reference value for the verification of
adjoint accuracy, and as indicated in Table 5, the adjoint gradients match the reference values by 10
digits. It indicates that our adjoint gradient computation algorithm is fully consistent with the primal
solution process. Note that our DP adjoint uses a residual-based formulation and is more accurate than
non-residual-based adjoint methods for coupled [18] and segregated [40] NS solvers.

We also evaluate the relative computational cost of the proposed DP adjoint solver. We first allow
the primal solver to converge to a relative tolerance of 10−10, then we make the DP adjoint converge to
a relative tolerance of 10−5. This is a typical setup in design optimization because the computational
cost of tight adjoint convergence significantly outweighs the benefit of more accurate gradients. In other
words, decreasing the adjoint convergence from 1 × 10−5 to 1 × 10−10 will practically have the same
optimization results; however, the computational cost may increase by one-fold. The inner convergence
for both the primal and adjoint is 10−2 (relative tolerance). The computation is performed on a local
workstation with an Intel Xeon W-1370 CPU, and the primal and adjoint solvers are run in serial. As
indicated in Table 6, the runtime and memory usage ratios between the adjoint and primal are 0.73 and
5.8, respectively. As mentioned before, our DP adjoint has the exact same number of numerical operators
as the primal. Therefore, the computational speeds are similar between the primal and adjoint solvers.
Our adjoint needs more memory than primal for two reasons: (1) we use a discrete adjoint approach
which is known to requires a relatively large amount of memory than continuous adjoints, e.g., it needs to
compute matrix-vector products using AD [21]. (2) we use an operator overloading tool called CoDiPack
[64] to differentiate the primal solver OpenFOAM. The operator overloading is known to require more
memory than other AD tools such as source code transformation. Overall, the memory ratio is acceptable
given that most of modern computers are equipped with sufficient memory for large-scale optimization.

In summary, we demonstrate our proposed DP adjoint fully preserves the duality for a more complex
case (airfoil). Moreover, it computes machine-precision accurate gradients with a competitive speed.
The non-dual adjoint still converges for this case, although its eigenvalue distribution exhibits noticeable
discrepancies from the primal.

3.3. ADODG3 wing: 3D aerodynamics

Next, we consider a 3D wing case, which is significantly more complex than the previous 2D airfoil
case. Figure 8 shows the numerical mesh, FFD control points, and pressure distribution. The geometry is
an unswept rectangular wing with a NACA0012 airfoil cross-section and an aspect ratio of 6.12, obtained
from the AIAA aerodynamic design optimization discussion group case 3 (ADODG-3). The flow condition
is incompressible and turbulent, with the Reynolds number being 6.7 × 104 and the pitch angle being 3
degrees. The computational domain extends 20 chords from the wing surface, and we simulate only half
of the wing geometry along with the symmetrical boundary condition. The structured mesh has 100, 000
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Figure 8: On the left is the structured hexahedral mesh for ADODG-3, a Low-speed rectangular wing. The red dots are
the FFD control points that parameterize the wing geometry. On the right is the pressure distribution.

Table 7: Five representative eigenvalues for the primal, duality-preserving adjoint, and non-dual adjoint solvers with tight
inner iteration tolerance (3D wing; refer to Fig. 9 for their locations). A complex conjugate pair of eigenvalues count as
one eigenvalue. The proposed duality-preserving adjoint matches the primal for six to seven significant digits (max relative
error: <0.01%). However, the non-dual adjoint has significantly different eigenvalues (max relative error: 55.7%).

Label Primal Duality-preserving adjoint Non-dual adjoint
1 0.96527383 ± 0.00000000 i 0.96527341 ± 0.00000000 i 1.1143630 ± 0.33342687 i
2 0.90056594 ± 0.31844184 i 0.90056594 ± 0.31844184 i 0.56887082 ± 0.73420516 i
3 0.51604036 ± 0.68033669 i 0.51604034 ± 0.68033673 i 0.19560927 ± 0.87869942 i
4 0.23404422 ± 0.69349890 i 0.23404417 ± 0.69349893 i −0.08291052 ± 0.90756559 i
5 −0.97844034 ± 0.00000000 i −0.97844034 ± 0.00000000 i −0.96855333 ± 0.00000000 i

cells. The average y+ is 1.2, therefore a wall function is not used. The functions of interest are CD or
CL, and the design variables are six twist angles along the wing spanwise locations.

Again, we investigate the level of primal-adjoint duality for the DP adjoint by studying the iteration
matrix eigenvalues obtained through the Arnoldi method. The numerical setup for the Arnoldi method
is the same as the airfoil case. Similar to what we found for the airfoil case, the outskirts of eigenvalue
distributions visually overlap (Fig. 9 left) for the wing case with tight inner convergence. In addition, the
representative eigenvalues have at least 6 matching digits (Table 7). The loose inner convergence scenario
(Fig. 10 left), on the other hand, demonstrates that the eigenvalue distributions exhibit only minor visual
discrepancies between the primal and adjoint solvers. Their overall patterns are also visually close to
that of the tight inner convergence scenario shown in Fig. 9 left. Furthermore, Table 8 indicates that the
representative eigenvalues for the loose inner convergence scenario may still share up to 3 matching digits
between the primal and adjoint, but the level of agreement varies. The max relative error is 9.7% for
the loose tolerance case. The residual convergence rates are similar between the primal and DP adjoint
(Fig. 11 top and mid).

Although the DP adjoint converges well for this case, outlier scenarios may exist when the primal’s
dominant eigenvalue is extremely close to one or slightly above one. These scenarios can happen when the
primal’s convergence is poor due to complex flow conditions (e.g., large flow separation). The DP adjoint’s
eigenvalues (perturbed by loose inner convergence) may lie outside of the unit circle. In practical design
optimization, we typically backtrack the line search step and re-run the primal to avoid these extreme
cases. Another option is to use stabilization methods [59] for fixed-point iteration, as mentioned above.
The DP adjoint stabilization is outside the scope of this paper and will be implemented in our future
work.

Unlike in the previous 2D airfoil case, the intuitively formulated non-dual adjoint solver fails to
converge for the ADODG-3 wing case in both the tight and loose inner convergence scenarios (Fig. 11
bot). As shown in Fig. 9 right and Fig. 10 right, the eigenvalue distribution for the non-dual adjoint
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Figure 9: Eigenvalue distributions for the 3D wing problem with tight inner iteration tolerance. Left: comparison between
the primal and duality-preserving adjoint. Right: comparison between the primal and non-dual adjoint. The representative
eigenvalues are labeled and shown in Table 7. We observe excellent agreement between the primal and duality-preserving
adjoint, while the non-dual adjoint has eigenvalues outside of the unit circle.

has only a small part of its outskirt matching the respective primal reference. However, it has multiple
clusters of large eigenvalues that significantly deviate from the primal reference. Some of those clusters lie
outside of the unit circle, which is the root cause of the divergence. Table 7 and Table 8 also qualitatively
confirm the graphical observation as there is indeed one representative eigenvalue pair that has a modulus
larger than one. Combining the observations for all three cases, we conclude that our proposed adjoint
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Figure 10: Eigenvalue distributions for the 3D wing problem with loose inner iteration tolerance. Left: comparison between
the primal and duality-preserving adjoint. Right: comparison between the primal and non-dual adjoint. The representative
eigenvalues are labeled and shown in Table 8. The duality-preserving adjoint’s eigenvalue distribution only slightly differs
from the primal, while the non-dual adjoint has eigenvalues outside of the unit circle.
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Table 8: Five representative eigenvalues for the primal, duality-preserving adjoint, and non-dual adjoint solvers with loose
inner iteration tolerance (3D wing; refer to Fig. 10 for their locations). A complex conjugate pair of eigenvalues count as
one eigenvalue. The proposed duality-preserving adjoint’s eigenvalues deviate from the primal’s (max relative error: 9.7%).
However, the non-dual adjoint has significantly different eigenvalues (max relative error: 52.1%).

Label Primal Duality-preserving adjoint Non-dual adjoint
1 0.98186665 + 0.00000000 i 0.96614630 + 0.00000000 i 1.1209257 ± 0.32474444 i
2 0.89721952 ± 0.32020700 i 0.89822099 ± 0.32127935 i 0.60884086 ± 0.72370287 i
3 0.51656571 ± 0.68592093 i 0.60003196 ± 0.68175256 i 0.19577796 ± 0.88245046 i
4 0.36225654 ± 0.73516467 i 0.37263817 ± 0.72283739 i −0.07802425 ± 0.92629808 i
5 −0.97807130 + 0.00000000 i −0.97842716 + 0.00000000 i −0.96856232 + 0.00000000 i

Table 9: Verification of adjoint gradient accuracy (wing case). γ is the twist angle, and the subscript denotes the spanwise
twist section. The adjoint derivatives match the reference values (forward-mode AD) by eight to ten digits. All the gradients
have been multiplied by 103.

Case Gradient Reference Adjoint
Wing dCD/dγ1 0.20523085809 0.20523085818

dCD/dγ2 0.29254555514 0.29254555526
dCD/dγ3 0.32973600328 0.32973600344
dCD/dγ4 0.32509347007 0.32509347015
dCD/dγ5 0.26357778101 0.26357778104
dCD/dγ6 0.11375193254 0.11375193254
dCL/dγ1 11.2133034230 11.2133034308
dCL/dγ2 15.6691363611 15.6691363760
dCL/dγ2 16.8094293381 16.8094293518
dCL/dγ2 15.3426677083 15.3426677152
dCL/dγ2 11.1072840966 11.1072840998
dCL/dγ2 4.25863393980 4.25863394066

Table 10: Comparison of computational and memory cost between the primal and adjoint solvers (wing case). The adjoint
is only slightly slower than the primal, but its memory cost is much higher.

Speed (s) Memory (GB)
Primal 162 0.22
Adjoint 352 4.7
Adjoint/primal 2.2 21

algorithm fully preserves the segregated primal solver’s eigenvalue spectrum and converges robustly, while
a non-dual adjoint formulation may diverge for complex flow cases.

Finally, we verify the gradient computation accuracy of the proposed DP adjoint. The numerical setup
is the same as the one used in the airfoil case. The adjoint gradients match the reference value by 8 to
10 digits for the ADODG-3 wing case, as shown in Table 9. We also evaluate the relative computational
and memory cost of the proposed DP adjoint solver, as shown in Table 10. The runtime and memory
ratio between the adjoint and primal are 2.2 and 21, respectively.

3.4. Balance between the duality and speed

As shown in the previous two subsections, our proposed adjoint algorithm preserves the duality well
when a tight inner iteration tolerance (10−14) is used. However, the primal-adjoint duality degrades

25



0 200 400 600
Iterations

10 12

10 9

10 6

10 3

100

Fl
ow

…
R

es
id

ua
ls

Primal

u
v
w
p

0 200 400 600
Iterations

10 12

10 9

10 6

10 3

100

A
dj

oi
nt

…
R

es
id

ua
ls

Duality-preserving…adjoint

u

v

w

p

0 200 400 600
Iterations

10 2

100

102

104

106

108

1010

1012

A
dj

oi
nt

…
R

es
id

ua
ls

Non-dual…adjoint

u

v

w

p

Figure 11: Convergence history of primal and adjoint residuals for the 3D wing case. Top: primal. Mid: duality-preserving
adjoint. Bot: non-dual adjoint. Loose inner iteration convergence case. The duality-preserving has a similar convergence
rate as the primal solver. However, the non-dual adjoint diverges.

if a loose inner iteration tolerance (10−2) is used instead. Although it provides benefits in duality, a
tight inner iteration tolerance is not necessary because it will increase the computational cost for both
primal and adjoint solvers. In practice, one should always use a loose inner tolerance as the default for
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Table 11: Primal and adjoint runtime with various relative tolerances for inner iterations.

Case Tolerance Runtime, s Extra cost Runtime, s Extra cost
(Primal) (Primal) (Adjoint) (Adjoint)

Airfoil 10−2 16.9 – 12.4 –
10−4 18.0 6.5% 13.3 7.3%
10−6 18.7 10.7% 15.4 24.2%
10−8 19.0 12.4% 18.4 48.4%

Wing 10−2 162 – 352 –
10−4 237 46.3% 548 55.7%
10−6 285 75.9% 857 143.5%
10−8 313 93.2% 1190 237.5%

the DP-adjoint solution. However, it is possible that the primal solver converges but the adjoint solver
diverges, due to the duality discrepancy caused by the loose inner tolerance. In this case, one needs to
trade the adjoint speed for duality by tightening the inner tolerance, such that the adjoint solver can
better preserve the convergence behavior of the primal solver. This section discusses the balance between
duality and speed of the proposed adjoint algorithm.

To quantify the balance, we ran primal and adjoint simulations with various relative tolerances for
inner iterations (10−2 to 10−8). The absolute tolerance of inner iterations is set to 10−10 for all the
cases. In addition, we require the outer iteration to converge to 10−10 for all simulations. We then
record the runtime for both the airfoil and wing cases, and the data are shown in Table 11. As expected,
both the primal and adjoint runtime increases when the inner iteration tolerance is tightened. For the
airfoil case, the extra computational cost to maintain duality is relatively low. For example, the inner
tolerance of 10−4 requires only 6.5% more runtime than the 10−2 case. However, for the wing case,
the extra computational cost for tightening the inner iteration tolerance is significantly higher. 55.7%
more runtime is needed when tightening the inner iteration tolerance from 10−2 to 10−4. This high
extra computational cost is mainly caused by the rapid increase in the number of inner iterations for the
pressure linear equation solver. In this study, we use OpenFOAM’s built-in Gauss-Seidel (GS) coupled
with the generalized geometric-algebraic multi-grid (GAMG) method as the linear equation solver for the
pressure and pressure-adjoint variables. For the wing case, the GAMG+GS solver needs 20, 130, and 250
iterations to converge the pressure equation residual by 2, 4, and 6 orders of magnitudes, respectively.
We speculate this issue is not shown in the airfoil case because of the smaller mesh size and 2D nature of
the flow. To alleviate the above issue, we can use a Krylov method to solve the pressure equation instead.
Krylov solvers converge quadratically and are expected to perform better when a tight inner iteration
tolerance is required; however, this topic is beyond the scope of this study.

Another observation from Table 11 is that the extra computational cost for the primal solver is much
lower than that for the adjoint solver when tightening the inner iteration tolerance. This is mainly
because the primal inner solver uses the flow solutions from the previous outer iteration as the initial
guess. Therefore, the initial residual for the primal inner iteration decreases as the simulation goes
on, and the inner iterations reach the absolute tolerance threshold before reaching the relative tolerance
threshold, especially near the end of the simulations. Our proposed DP-adjoint solver cannot benefit from
the above because it always uses a zero initial guess for the inner iteration (see the detailed discussion
for this choice in Sec. 2.5). Therefore, the adjoint inner iteration needs to always satisfy the prescribed
relative tolerance.

3.5. Incorporating the DP adjoint into gradient-based wing aerodynamic optimization

To further evaluate the proposed DP adjoint’s numerical robustness, we incorporate it into a gradient-
based optimization framework and conduct wing aerodynamic optimization. The goal is to evaluate
whether the DP adjoint can robustly converge when the geometry and flow conditions change during the
optimization.
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Table 12: Formulation of the wing optimization problem. We use 126 design variables and 80 constraints.

Function/Variable Description Quantity
Minimize CD Drag coefficient of the wing

with respect to 0 ≤ α ≤ 10 Angle of attack 1
−10 ≤ γ ≤ 10 Twists of each non-root FFD sections 5
−1.0 ≤ ∆y ≤ 1.0 Vertical displacements of FFD points 120

Total Design Variables 126

subject to CL = 0.375 Lift constraint 1
Vbl ≤ V Minimum volume constraint 1
0.5 · tbl ≤ t ≤ 3 · tbl Minimum thickness constraint 60
∆yLE, upper = −∆yLE, lower Fixed leading edge constraint 6
∆yTE, upper = −∆yTE, lower Fixed trailing edge constraint 6
0.8 · rLE, bl ≤ rLE ≤ 3 · rLE, bl Leading edge radius constraint 6

Total Constraint Functions 80

Table 13: Summary of the wing aerodynamic shape optimization results. The DP- and Krylov-adjoint methods reduce the
drag by 9.7% and 9.9%, respectively, and all constraints are satisfied.

Baseline Design Optimized Design Optimized Design
(DP-adjoint) (Krylov-adjoint)

CD 0.02187 0.01975 0.01970
CL 0.3750 0.3750 0.3751
α 5.021◦ 3.499◦ 3.668◦

Optimality 1.7× 10−3 8.9× 10−5 7.5× 10−5

Feasibility 1.8× 10−6 8.2× 10−6 7.9× 10−5

We use the ADODG-3 wing geometry as the baseline design. The flow is incompressible and turbulent
with the Reynolds number being 6.7× 104. Table 12 shows the detailed optimization configuration. The
objective function is CD. The design variables are the angle of attack (α), the wing twist angles (γ) at
the five spanwise FFD sections (the wing root is fixed), and the vertical displacement (∆y) of the 120
FFD points. We have 126 design variables in total. In terms of constraints, we maintain a fixed target
CL of 0.375. Moreover, we fix the leading and trailing edges of the wing by constraining the relevant
FFD control point movement. To ensure a practical design, we also apply geometric constraints on the
wing’s volume, thickness, and leading-edge radius. We implement our proposed DP adjoint into the
DAFoam gradient computation toolbox [37, 38] and couple it with the OpenMDAO/Mphys framework
[65] for aerodynamic optimization. We use the sparse nonlinear optimizer (SNOPT) in the pyOptSparse
[66] module, and we deploy pyGeo and IDWarp modules to handle the geometry parameterization and
volume mesh deformation during optimization. As a comparison, we also run an optimization with the
exact same setup except that we use the DAFoam’s default Krylov adjoint method [21] to compute
gradients.

A comprehensive analysis of the optimization result is beyond the scope of this paper, so we provide
only a brief summary here. Table 13 shows the summary of optimization results. We first analyze the
optimization results from the DP-adjoint approach. The wing optimization converges after 16 major
iterations, and the objective function (CD) drops by 9.7% while the target CL is maintained at 0.375.
The baseline design’s optimality and feasibility are 1.7 × 10−3 and 1.6 × 10−6, respectively. For the
optimized design, the optimality drops to 8.9 × 10−5 and the feasibility remains at a low level. This
indicates that the optimization converges well. Moreover, the angle of attack reduces from 5.021◦ to
3.499◦. The optimization reduces the angle of attack and creates a cambered airfoil shape to reduce
the aerodynamic drag, which can be seen more clearly in Fig. 12. The cambered shape moves the peak
pressure load afterward and makes the pressure distribution more evenly distributed along the chord.
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Figure 12: Comparison of Cp distribution and airfoil shape at different wing spanwise sections between the baseline and
optimized designs. Top left: 3% span. Top right: 31% span. Bottom left: 63% span. Bottom right: 94% span. The
baseline, DP-adjoint optimized, and Krylov-adjoint optimized designs are denoted in red, blue, and green, respectively.

This trend is consistent with our previous aerodynamic optimization results that used a Krylov-based
adjoint solver [37, 38, 67]. To further confirm this, we compare the optimization results obtained from
the DP- and Krylov-adjoint approaches. The Krylov-adjoint approach achieves a slightly higher drag
reduction (9.9%; Table 13) and slightly different pressure distributions (Fig. 12) than the DP-adjoint
approach. However, the optimized sectional airfoil geometries are practically the same between the DP-
and Krylov-adjoint approaches. Overall, the optimization results between the DP- and Krylov-adjoint
approaches are similar.

4. Conclusion

This paper derives a duality-preserving (DP) adjoint formulation that shares the same asymptotic
convergence with the primal segregated Navier–Stokes solvers. The adjoint formulation derivation starts
with rewriting the segregated primal solution process into a fully coupled left-preconditioned Richardson
format. Then, we transpose the preconditioner matrix to obtain a fixed-point adjoint formulation for the
segregated primal solver. The transpose operation maintains the iteration matrix eigenvalues and thus
preserves the duality.

In addition to the algebraic derivation, we create a new graph representation called duality-preserving
adjoint as a reverse graph (DARG). DARG uses vertices and edge-directed operators to represent the
segregated numerical computation processes for the primal solver. Then, it reverses the graph with
transposed operators to construct the DP adjoint. We proved that the DARG representation is equivalent
to the above preconditioner transpose approach, and its implementation is much more streamlined and
generalizable.
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We analyze the impact of various numerical settings on the adjoint duality and accuracy, and find
the initial values of the inner iteration require special attention. Naively using non-zero initial values
from a previous outer iteration will introduce errors to the adjoint state vector and deteriorate the adjoint
accuracy. To avoid this, we should always use zero initial values for inner iterations. Moreover, we observe
that true duality can only be achieved if the inner iteration converges tightly. However, in practice, we
allow the primal and adjoint inner iterations to converge only to a relative tolerance of 10−2 or 10−3,
which introduces additional perturbations to the preconditioner matrix.

To quantify the duality, we use the Arnoldi method to compute the iteration matrix eigenvalues
for the primal and DP adjoint solvers. As a sanity check, we also use a non-dual adjoint formulation
derived based on intuition instead of rigorous math. We consider three benchmark cases with increasing
complexity: a miniature-sized problem, a 2D airfoil, and a 3D wing. We find that the DP adjoint’s
eigenvalue distributions agree reasonably well with the primal for all three cases. Using a loose inner
iteration tolerance perturbs the eigenvalue distributions by a small amount; however, all the perturbed
eigenvalues are still within the unit circle, and the DP adjoint converges well for all three cases. Although
the convergence rate of the non-dual adjoint is similar to the primal for the miniature-sized and airfoil
problems, its eigenvalues significantly differ from the primal solver. For the most complicated wing case,
the non-dual adjoint diverges, and parts of its eigenvalues lie outside the unit circle. The eigenvalue tests
demonstrate that the proposed DP adjoint formulation can robustly preserve the duality and converge
the adjoint.

In addition to the duality, we evaluate the accuracy, speed, and memory usage of the DP adjoint
algorithm. Our proposed adjoint exhibits accurate gradient computation that matches the forward-mode
automatic differentiation references by eight to ten significant digits. This accurate gradient is critical
for design optimization because it allows optimization to converge tightly and robustly. Moreover, the
proposed adjoint algorithm exhibits competitive speed, with the adjoint-primal runtime ratio being less
than 2.2. The DP-adjoint solution requires up to 21 times more memory than the primal solution, which
is primarily caused by the use of an operator overloading AD tool to compute matrix-vector products.
However, such memory usage is still acceptable because most modern workstations or high-performance
computing (HPC) systems are equipped with sufficient memory. To further demonstrate the robustness
of the DP adjoint computation, we incorporate it into a gradient-based optimization framework and
conduct a wing aerodynamic shape optimization. The optimization converges well, and the objective
function (drag) reduces by 9.7%.

The proposed fixed-point adjoint approach has the potential to make the adjoint solution more robust
and memory efficient for any segregated NS solvers. In the future, we will extend the adjoint approach
for unsteady flow problems.
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Appendix: Computing eigenvalues using the Arnold method

Suppose we have a general square matrix operator A, which can be the iteration matrix for the
primal, DP adjoint, or non-dual adjoint solvers. The Arnoldi process starts with a vector v and builds
an orthogonal basis for the Krylov subspace Km(A,v), where m is the number of Arnoldi iterations. As
a by-product, this process generates an upper Hessenberg matrix H ∈ Rm×m, whose eigenvalues (also
known as Ritz values) can approximate those of A. If the number of Arnoldi iterations m equals the
size of A, all eigenvalues of A can be obtained as the Ritz values. However, for most practical cases,
m is much smaller than the size of A, and the Ritz value distribution tends to capture the outskirt
of the eigenvalue distribution for A. This behavior is suitable for our analysis because the asymptotic
convergence of a specific solver is governed by the outskirt eigenvalues of its iteration matrix, and the
interior eigenvalues are inconsequential.
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With the Arnoldi method, the aforementioned matrix operatorA does not need to be treated explicitly,
and we can view it as a linear operator. Suppose the linear operatorA takes a vector input x and generates
a vector output y, i.e., y = Ax, where A is the respective iteration matrix. Just like the state variable
w and the adjoint state vector ψ, x or y has 4 components that correspond to U , p, φ, and ν̃. Thus
we name the 4 components of x accordingly as xU , xp, xφ, and xν̃ ; similarly, y has 4 components yU ,
yp, yφ, and yν̃ . This linear operation is performed once for every Arnoldi iteration, and we can use the
existing code of the respective solver for its implementation in the Arnoldi process.

For the primal solver, the iteration matrix is A = I + X̃
∂R

∂w
, where X̃ is the perturbed version of

the theoretical primal preconditioner X due to the inner iterations (see Sec. 2.5). If the inner iteration
converges tightly, X̃ = X. Then, the linear operation y = Ax becomes:

y = x+ X̃
∂R

∂w
x. (60)

We use central finite difference to evaluate the matrix-vector product
∂R

∂w
x:

∂R

∂w
x ≈ 1

2ε
(R(w + εx)−R(w − εx)), (61)

where ε = 1 × 10−6 is the step size. The components of the state variable w, i.e., U , p, φ, and ν̃,
can have drastically different scales, thus to effectively perturb w as w ± εx in Eq. 61, we introduce an
appropriate diagonal matrix scaling Dα to both x and y, i.e., x = Dαx

′ and y = Dαy
′. The scaling

factors for U , p, φ, and ν̃ are U0, 0.5U0
2, U0Sf , and ν̃0, respectively. Here the superscript 0 denotes the

free-stream condition, and Sf is the surface area for each mesh face.
The scaling introduced above effectively changes the linear operation y = Ax into y′ = D−1

α ADαx
′,

which still retains the same set of eigenvalues. Thus after the scaling, the linear operation in Eq. 60
becomes:

y′ = x′ +D−1
α X̃

∂R

∂w
Dαx

′, (62)

where X̃ is a linear operator (perturbed preconditioner) similar to the primal solution process from Eq. 45

to Eq. 52. The only difference is that, we use
∂R

∂w
x as the input instead of R.

For the DP adjoint solver, the iteration matrix is A = I + X̃T ∂R

∂w

T

, where X̃T is the perturbed

version of the DP adjoint preconditioner XT due to inner iterations. Then, the linear operation y = Ax
becomes:

y = x+ X̃T ∂R

∂w

T

x. (63)

We do not apply any scaling to the linear operation in Eq. 63. The matrix-vector product
∂R

∂w

T

x is

computed using the reverse-mode AD. Similarly, X̃T represents the adjoint solution process in Eq. 53.

Note that we fix the number of inner iterations in X̃ and X̃T , instead of letting the inner iteration
converge to a prescribed tolerance. This treatment ensures the linear operator A (iteration matrix) is
identical for each Arnoldi iteration. Also, note that we apply the Arnoldi method to the reformatted
primal solver, instead of the original SIMPLE solver. This is because the original, segregated SIMPLE
algorithm is not readily compatible with the Arnoldi method for iteration matrix eigenvalue extraction.
We use a similar Arnoldi iteration approach for the non-dual adjoint solver. Algorithm 1 summarizes the
Arnoldi iteration process.

The Arnoldi processes for all three aforementioned solvers use an all-one vector as the starting vector.
Once an Arnoldi process is completed and a corresponding upper Hessenberg matrix is generated, we use
MATLAB’s standard QR algorithm to find all Ritz values.
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Algorithm 1 Arnoldi process

Input: Arbitrary starting vector v
Output: Upper Hessenberg matrix H

1: Initialize H ∈ Rm×m as an all-zero matrix
2: x1 = v/ ‖ v ‖
3: for i = 1 : m do
4: y = Axi
5: for j = 1 : i do
6: Hj,i = xTi y
7: y = y −Hj,ixj

8: if i < m then
9: Hi+1,i =‖ y ‖

10: xi+1 = y/Hi+1,i
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