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Abstract

We consider the question of Gaussian mean testing, a fundamental task in high-dimensional distri-
bution testing and signal processing, subject to adversarial corruptions of the samples. We focus on
the relative power of different adversaries, and show that, in contrast to the common wisdom in robust
statistics, there exists a strict separation between adaptive adversaries (strong contamination) and obliv-
ious ones (weak contamination) for this task. Specifically, we resolve both the information-theoretic
and computational landscapes for robust mean testing. In the exponential-time setting, we establish the
tight sample complexity of testing A/(0, I) against N'(aw, I), where ||v]]2 = 1, with an e-fraction of
adversarial corruptions, to be
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while the complexity against adaptive adversaries is

which is strictly worse for a large range of vanishing €, .. To the best of our knowledge, ours is the first
separation in sample complexity between the strong and weak contamination models.

In the polynomial-time setting, we close a gap in the literature by providing a polynomial-time al-
gorithm against adaptive adversaries achieving the above sample complexity ©(max(v/d/a?, de?/a?)),
and a low-degree lower bound (which complements an existing reduction from planted clique) suggest-
ing that all efficient algorithms require this many samples, even in the oblivious-adversary setting.
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1 Introduction

Among all high-dimensional distribution testing (i.e., hypothesis testing) problems, Gaussian mean testing
is one of the most basic, with connections to signal processing where it corresponds to signal detection under

white noise. Given n independent samples X1, ..., X,, € RY, the goal is to decide between two hypotheses:
Hy: X3, ..., X, were drawn from N (0, I'), an origin-centered identity-covariance Gaussian.
H;: Xi,..., X, were drawn from N (i, I) for some vector z with ||u|l, > cv.

The following simple tester uses only ©(v/d/a?) samples, the information-theoretic optimum: reject the
null iff the norm of the empirical mean H% A XZ-H2 is larger than some well-chosen threshold. The
number of samples scales as the square root of the dimension: in contrast, ©(d/a?) samples (linear in the
dimension) are needed to learn the mean p of a Gaussian N (u, I) up to £o error «v. This d-vs-v/d gap is a
prime example of a core theme in the literature on distribution testing: testing requires fewer samples than
learning.

This simple tester is not robust to even a small fraction of adversarially corrupted samples. Concretely,
suppose that an e-fraction of the samples X7,..., X, are chosen by a malicious adversary. Even after
preprocessing the dataset by removing obvious outliers — say, X; such that || X;||, > E| X;||, ~ v/d — the
simple tester with @(\/& /a?) samples can be fooled by just a single corrupted sample.

Robust distribution testing has been extensively studied in robust statistics (the sub-field of statistics
dealing with adversarially-corrupted data) [DKS17; DK23], and yet basic questions about robust mean
testing remain open. Most importantly: what is the sample-optimal robust mean tester? As we show, the
answer to this question is intimately intertwined with another unanswered question in robust statistics: how
much does it matter if the adversary sees the uncorrupted portion of the dataset?

We find the latter question interesting for (at least) two reasons. First, it is a foundational question about
the power of statistical adversaries — since modeling assumptions can have a strong effect on algorithm
design, it is important to understand the consequences of basic assumptions. We are not the first to ask the
question from this perspective; see also recent work of Blanc, Lange, Malik, and Tan [BLMT22]. Second,
the question is pertinent to data poisoning attacks in machine learning [DGJ+21; GTX+22], where an
adversary injects a small amount of malicious training data into a machine learning pipeline. Such attacks
can be feasible in practice and hence are a significant concern [KNL+20]. If an oblivious adversary is
strictly less powerful than an adaptive one, then keeping the training data secret is a potential (partial)
defense against data poisoning.

It turns out that oblivious and adaptive adversaries have equal power for robust mean testing’s close (and
intensely studied [DK23]) cousin, robust mean estimation." Here, the goal is to estimate . up to ¢, error «
— in both adaptive and oblivious cases this requires @(a%) samples. Indeed, this appears to be the case for a
range of robust estimation problems, including covariance estimation and linear regression. This suggests a
conventional wisdom in robust statistics: adaptivity does not buy statistical adversaries additional power.

Returning to robust mean testing, recent work by Narayanan [Nar22] shows that the sample complexity
of robust mean testing against an adaptive adversary is © (max(v/d/a?, de?/a*)).> This brings us to:

Main Question: What is the optimal robust mean tester against an oblivious adversary? Are the sample

"Here we mean that the sample complexity of robust mean estimation is insensitive to details of the adversary’s power. However,
some separations are known, for instance between additive versus additive and subtractive adversaries in the polynomial-time
setting [DKK+18]. See Section 1.3 for further discussion.

*Narayanan’s work focuses on differentially private mean testing, but this result can be extracted using known reductions
between robustness and privacy.



complexities of testing against adaptive and oblivious adversaries the same, as they are in robust
estimation?

We answer this question by showing that the common wisdom — being resilient to stronger adversaries
comes essentially “for free” — does not extend to mean testing, where being robust against an oblivious
adversary is strictly easier than against a fully adaptive one (Theorem 1.4)! In fact, we resolve (up to log
factors) the sample complexity of robust Gaussian mean testing in the presence of an oblivious adversary,
by designing a new robust mean tester and proving a nearly-matching information-theoretic lower bound.

To make the landscape even more interesting, we also show that this separation vanishes when one re-
quires the tester to be computationally efficient. We first give a polynomial-time (in fact, quadratic time)
variant of Narayanan’s tester, and then we obtain a lower bound against a large class of efficient algorithms
(“low-degree algorithms™) which shows a matching sample complexity against both oblivious and adaptive
adversaries (Theorem 1.7). (This complements a reduction from planted clique by Brennan and Bresler
[BB20] which also suggests that efficient algorithms require %2 samples even against oblivious adver-
saries.) One consequence is a new statistical-computational gap for robust mean testing against an oblivious
adversary.

In order to discuss our results in more detail, we describe in the next section the standard adversarial
corruption models we consider in our work, and how they relate. Then we state our results and provide an
overview of the new techniques and ideas that underlie our proofs and algorithms.

1.1 Types of Adversaries

We focus on two main types of adversarial corruptions: namely, the adaptive (strong) and oblivious corrup-
tion models. These have a long history in Statistics and Algorithmic Robust Statistics; see [DK19; DK23]
for a more thorough discussion. In what follows, we assume that the corruption rate ¢ is provided to the
algorithm. Note that this is without loss of generality, as, given d, «, and the expressions of the sample com-
plexities, the algorithm can compute the largest value of ¢ it can tolerate for a given number n of samples.

The first corruption model allows an adaptive adversary to look at the samples, and choose an e-fraction
of them to alter arbitrarily. Which subset of the samples was corrupted is unknown to the algorithm.

Definition 1.1 (Strong contamination model). In the strong contamination model, n i.i.d. samples X7/, ..., X/,
are drawn from the underlying unknown distribution D. The adversary, upon observing X7i,..., X},
chooses en indices i1, . . . , ic, and values X", ..., X" . The algorithm then receives the sequence X7, ..., X,

where X;, = X}’ forall j € [en], and X; = X7 otherwise. Crucially, both the en indices and the values X7’
can depend on the “uncorrupted” samples X1, ..., X/,.

In contrast, in the oblivious contamination model, the adversary must commit to which fraction of the
samples it will corrupt, and how, before observing the actual realization of the samples. (It is, however,
allowed knowledge of both the specification of the algorithm and the underlying distribution.)

Definition 1.2 (Oblivious contamination model). The adversary chooses en indices i1, ..., is, and values
X, ..., X" . Thenniid. samples X1,...,X] are drawn from the underlying unknown distribution D,
and the algorithm is provided with the sequence X1, ..., X}, as in Definition 1.1.

This definition does allow the corrupted samples to be chosen in a correlated fashion; however, they
cannot depend on the realizations of the uncorrupted points themselves. This oblivious model can be further
weakened, leading to what is known as the Huber contamination model where the corrupted data points
themselves must be chosen independently of each other:



Definition 1.3 (Huber contamination model). In the Huber contamination model, the adversary chooses
a corruption distribution D (possibly a function of the algorithm and underlying unknown distribution D).
Then n i.i.d. samples X1, ..., X, are drawn from the mixture (1 —e)D+ €D, and provided to the algorithm.

While the focus of our work is on the adaptive and oblivious contamination models, some of our lower
bounds apply even to the weaker Huber contamination model.

1.2  Our Results

Our main result settles the sample complexity of robust mean testing under oblivious contamination, and es-
tablishes a strict separation between oblivious and adaptive contamination models. In what follows, O, ©, Q2
hide polylogarithmic factors in the argument, and we always assume® a < O(1) and £ < o/ (logn)°™")
(except in Theorem 1.6), which is information-theoretically necessary, up to the factor (log n)O(l).

Theorem 1.4 (Obliviously-robust mean testing (Informal; see Theorems 4.1, 5.1 and 6.1)). In the oblivious
contamination model, there is a mean tester which is robust to e-contamination, which uses
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samples in the oblivious contamination model, and this is information-theoretically tight up to logarithmic
Vd de?

factors. Moreover, (max (;, o )) samples are needed even in the weaker Huber contamination model.

We offer a little interpretation of the (surprisinglg/ complex) expression (1). If d dominates the other
parameters, i.e., d > 1/poly(a),1/poly(e), then C;% is the dominant term. But if d,1/c,1/e are within
small polynomial factors, any of the four terms in (1) can dominate.

Figure 1: The various phases of the sample com-
plexity of robust mean testing in the oblivious
) contamination model, as stated in Theorem 1.4:
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To see that Theorem 1.4 implies a strict separation between the oblivious and adaptive models, we recall:

3We note that, for identity-covariance Gaussian distributions, mean ¢» distance « corresponds (for small «) to total variation
(TV) distance O (). Thus, £2 mean testing corresponds to TV testing, which motivates the regime o < 1 as of particular interest.



Theorem 1.5 ([Nar22], see also Theorem 7.1). [n the adaptive contamination model, the optimal sample
complexity of e-robust mean testing is
~ d de?
) <max<\f2, i)) )
o’ «

The sample complexity (1) is strictly smaller than (2) for a range of vanishing ¢, «, e.g., with e = Q (ﬁ)

For completeness, in Section 7 we show explicitly how to obtain Theorem 1.5 by combining Narayanan’s
result on differentially-private mean testing with known robust-privacy equivalence results (as in e.g. [GH22;
HKMN?22; AUZ23]). We further conjecture that a similar separation holds between the oblivious and Hu-
ber contamination models; to establish such a separation, it would be enough to prove a (non-efficient)
O(max(Vd/a?,de® /a*)) sample complexity upper bound in the latter, which in light of Theorem 1.4
would be nearly tight. We leave this as an interesting open problem.

A subtle difference between our strong and oblivious contamination models concerns which “good”
samples are removed by the adversary. In the strong model, the adversary chooses adaptively which of the
good samples to remove, whereas the oblivious adversary can only choose good samples to remove at ran-
dom. Thus, the oblivious adversary could be equivalently defined as merely adding samples and doing no
removals at all. One might ask whether the separation in sample complexities we establish between adap-
tive and oblivious adversaries actually arises from the ability of the adaptive adversary to remove samples,
rather than from adaptivity itself.* We show in Section 7 that the lower bound of Theorem 1.5 actually
holds even against adaptive adversaries that may only add data points, meaning that the sample complexity
separation between adaptive and oblivious adversaries really is caused by the difference in addaptivity for
the added samples. This extension to additive-only adaptive adversaries also readily follows from results
proven in [Nar22].

Turning now to efficient algorithms, we provide the first polynomial-time algorithm which nearly matches
the optimal sample complexity in the adaptive model. Prior to our work, the best polynomial-time approach
was to learn the mean using O(d/a?) samples, or to apply a polynomial-time algorithm of Narayanan [Nar22]
which works only when & < o - d~ /4.

Theorem 1.6 (Adaptively-robust efficient mean testing (Informal; see Theorem 8.1)). In the adaptive con-
tamination model, there is a quadratic-time algorithm for c-robust mean testing with sample complexity

O(max(%, %‘i)) as long as a > O(e+/log(1/¢)).

This computationally efficient analogue of Theorem 1.5 raises the question of whether a similar analogue
of Theorem 1.4 is possible. (The tester described in Theorem 1.4 relies on a computationally inefficient
“filtering step”; see Section 1.4). Our next result shows strong evidence that this is not possible, and that
the separation between adaptive and oblivious contamination models vanishes when restricting oneself to
computationally efficient algorithms.

Theorem 1.7 (Computational lower bound (Informal; see Theorem 9.1)). In the oblivious contamination
model, any e-robust low-degree mean testing algorithm in the Huber contamination model has sample

complexity
2
Q<max<@di>) 3)
o’ «

*For instance, one could consider an oblivious adversary which is allowed to replace the good distribution D with D conditioned
on any event of probability 1 — ¢, thus obliviously “removing” part of D. We thank Guy Blanc for pointing this out.




Theorem 1.7 complements a reduction from planted clique [BB20] which suggests that nf1o8n) time is
required to beat i—iz samples, even in the Huber model. The quantitative version of our result (Theorem 9.1)
suggests something stronger (albeit for a restricted class of algorithms, rather than via reduction) — namely,
that exp(n®())) time is needed to use (Cé—ef)l_ﬂ(l) samples, even in the Huber model. We hope that our
results, by uncovering a richer landscape in robust statistics than previously known and showing that the
choice of contamination setting is much less innocuous than commonly believed, will spark interest in
revisiting these modelling assumptions for various other tasks.

1.3 Related Work

Gaussian Mean Testing. Gaussian mean testing is known in statistics as the Gaussian sequence model [Erm91;
Bar02; IIS03]; the understanding that it is possible to use fewer samples than dimensions appears relatively
recent [SDOS]. A recent influential work, [DKS17], records the sample-optimal mean tester and the “folk-
lore” Q(\/& /o) lower bound, and initiates the study of the complexity of robust mean testing. More recent
work focuses on variants such as mean testing under a sparsity assumption [GC22], testing with unknown
covariance [CCK+21; DKP23], testing subject to differential privacy [CKM+20; Nar22], robustly testing the
covariance [DK21], or (distributed) testing giving partial observations from each sample [ACT20; SVZ22].

(Algorithmic) Robust Statistics. Algorithmic robust statistics, especially in high dimensions, has experi-
enced a recent renaissance following a range of algorithmic breakthroughs; see the book [DK23]. Robust
mean estimation has played a fundamental role; the quest for efficient algorithms for robust mean estimation
led to the invention of the filter technique [DKK+19].

Connection to (Differential) Privacy. A recent line of work [GH22; HKMN22; AUZ23] established a
(two-way) correspondence between adversarially robust and differentially private algorithms for a range
of tasks, a connection we use to obtain Theorem 1.5. Importantly, this correspondence applies to adap-
tive adversaries, and does not, to the best of our knowledge, differentiate between oblivious and adaptive
adversaries.

Noise Models in Statistics and Learning. Many developments in computational learning theory have been
guided by the mission to design algorithms which work in an array of noise models [BH20]. For instance,
the statistical query model was invented to capture a class of PAC learning algorithms which tolerate random
classification noise [Kea98]. A full survey is out of scope, but some highlights include nasty noise, which
is essentially the adaptive contamination model we consider here [BEK(02; DKS18], and Massart noise,
which has led to exciting recent algorithmic advances [DGT19; DKMR22; NT22]. While computational
separations are known between these noise models in classification settings (e.g., random classification noise
is much easier to handle algorithmically than adversarial label noise), separations in sample complexity seem
unlikely, because empirical risk minimization handles even the nastiest noise models.

Two works in particular study questions related to ours. First, [BLMT22] shows some equivalences
between adaptive and oblivious adversaries up to polynomial factors in sample complexity, for restricted
classes of algorithms (SQ) or adversaries (additive). [DKK+18; DKS17] together show a computational
separation between what error « is achievable for robustly learning a high-dimensional Gaussian when the
adversary can only add samples versus when they can add and remove samples. We emphasize that while
previous work showed evidence for a computational gap, we believe ours is the first demonstration of an
(unconditional) information-theoretic separation in a natural robust statistics setting.



1.4 Overview of Techniques
1.4.1 Exploiting Obliviousness to Robustly Test with Fewer Samples

Our Approach. We focus first on our main technical contribution, the mean tester from Theorem 1.4. To
get an improved testing algorithm for oblivious contaminations (compared to adaptive contaminations), we
need to exploit that the adversary must commit to the contaminated points before the remaining datapoints
are drawn. A consequence is that the correlation between the sums of good points (G) and bad points (B) is
comparable to independent random vectors of comparable norm:

< >ie Xi >ieq Xi >%:|:1
12 ien Xilly 11X ieq Xill, /- vd

By contrast, an adaptive adversary can make this correlation as large as 1.

Hence, the only way the adversary can have a substantial effect on || 3¢, X[, is by making [|32;c 5 Xill,
larger than it would be for a set of en good samples. Building on this idea, we can design a tester using
8] (max(‘/a dey Ir111[1<d2/3€2/3 ) %))) samples under (roughly) the additional assumption that the sum of

o2 ok 8/3
every subset of the adverszry’s vectors has about the same norm it would if the samples were uncorrupted.

The second challenge is to remove this additional assumption. The standard approach in robust statistics
to make bad samples “look like” good ones according to some tests (e.g. norms of sums of subsets of points)
is to remove samples in subsets which violate those tests; this is often called “filtering”. This risks removing
about en good samples as well, but in many settings this isn’t an issue.

However, removing any good samples after looking at all the samples potentially breaks obliviousness
by introducing dependencies between good and bad samples! We develop a novel obliviousness-preserving
filtering technique. We (iteratively) split the samples into two subsets, U, V. Looking only at U, we devise
a rule for which samples to keep and which to remove (keeping those contained in a certain intersection
of halfspaces); then we apply this rule to V' and show that it preserves obliviousness while ensuring that V'
now satisfies the assumption about sums of subsets of corrupted vectors. We turn now to a more detailed
overview.

Background: Narayanan’s Robust Tester. To understand quantitatively how we can exploit obliviousness
of the adversary, we first review a robust mean tester which uses O (max(v/d/a?, de?/a*)) samples in the
strong contamination model, as long as ¢ < « (all of which is information-theoretically necessary).” Our
polynomial-time algorithm is also an adaptation of the following robust tester.

As in many robust statistics settings, the overall scheme relies on finding a “good enough” subset of
(1 — e)n samples S C [n], to then apply a non-robust algorithm on S — in this case, the simple tester based
on ||>cq X,Hg For X1,..., X, € R? which are clear from context and T' C [n], let Sum(7T) = 3o X;.

Definition 1.8 (Good Enough Subset (Informal)). For X1,..., X, € RY wesay S C [n], [S| = (1 —¢&)n
is good enough if, for every T' C S with |T'| < en,

|Sum(T)||3 < |T|d + O(e**n'>Vd + £2n?) and |(Sum(S \ T), Sum(T))| < O(en'*Vd + £2n?).

The choice of parameters in the definition guarantees that any subset of size (1 — )n of n independent
samples from N (0, I) or N'(u, I), for small-enough i, is good enough with high probability. To see why

3 A similar tester can be extracted from [Nar22]. While Narayanan’s paper focuses on differentially private mean testing, the
tester can be shown to be robust by virtue of its privacy guarantees; see Section 7. The tester we describe here is simpler than
Narayanan’s original tester, in part because we need only robustness, not privacy.



this holds intuitively, observe that if S consists of good samples only, then |(Sum(S \ 7'), Sum(7))| is
roughly distributed as A/(0, en?d), and we need a union bound over ~ n°" choices of 7.

Definition 1.9 (Narayanan’s tester). Given n e-contaminated samples, Narayanan’s tester finds any good
enough subset S and outputs Hy if || Sum(S)||3 — (1 — e)nd < o*n? and H, otherwise.

Analysis Sketch. Let Xi,..., X, be an e-contaminated draw from either A/ (0, ) or N (u, I) for
some |||, = . Let G C [n] be the uncorrupted samples. (For simplicity, in this overview we assume
the adversary has only added samples; removed samples can be handled without much more difficulty.) Let
S C [n] be any good enough subset; we want to show [|Sum(S)||5 — (1 — £)d > Q(a*n?) in the alternative
case, and ||Sum(S)||§ — (1 — €)d < a?n? in the null. First,

EHSum(G)H; (- = {]E Yizjea (Xi, Xj) ~ a?n?  in the alternative case

in the null case

and standard concentration arguments show that this holds with high probability so long as n >> v/d /a?. So
we just have to show that |||Sum(S)||5 — ||Sum(G)||3| < a®n?. This is doable using the following lemma.

Lemma 1.10 (Main Lemma for Narayanan’s Tester). For any two good-enough subsets S, S' of X1,..., X, €
R, |||Sum(S)]||3 — HSum(S’)Hg‘ < a?n?, so long as n > de? /ot

Proof. We divide S into S N S" and S\ S" and S’ into S’ N S and S \ S, so we have

[Sum(S) 3 — [[Sum(8") 5 = |Sum(S N "), +2 (Sum(S N '), Sum(S\ §)) + | Sum(s\ 5|3
— [|[Sum(S" N S)||Z — 2 (Sum(S" N S),Sum(S"\ S)) — [|Sum(S"\ S)|[3-

Now, ||Sum(S N S")[|3 — [[Sum(S’ N S)||2 = 0, and since |S\ S| = |S"\ S], also [||[Sum(S \ S")||3 —
[Sum(8”\ 9)||5] < O(e'5n'*/d + £2n?), using good-enough-ness. By using good-enough-ness again,
both [(Sum(S N S"), Sum(S \ S"))| and [(Sum(S’ N S), Sum(S’\ S))| are at most O(en'5v/d + £2n?).
Since € < «, we have €2n? < a?n?, and since n > d52/a4, we have en®vd < o2n?. O

This completes the analysis of Narayanan’s tester. We record two important observations:

1. The reason that the tester requires de?/a* samples lies in the term (Sum(S N S’), Sum(S \ S’)).
Let’s think of S’ = @G, the good samples, and S as some good-enough subset which contains
around en corrupted samples, S \ G. The adaptive adversary could choose the samples in S \
G to make Sum(S \ G) too (anti)-correlated with Sum(S N G). There is a limit to how large
he can make the (anti)correlation before S is no longer “good enough” — namely, he can make
(Sum(S N G),Sum(S \ G)) as large as the largest inner product of the form (Sum(G \ T'), Sum(7))
for T C G with |T'| = en, which is around en'->+/d by standard concentration.

2. Narayanan’s tester requires finding a good-enough subset of (1—¢)n samples; prima facie this requires
exponential-time brute-force search, but we describe a polynomial-time variant of his approach later.

Using Only de/o? Samples if the Adversary is Oblivious and Not “Too Big”. Narayanan’s tester is
information-theoretically optimal (up to log factors) against adaptive adversaries. As our first taste of im-
proved testing against an oblivious adversary, consider the following toy setup. Suppose the adversary is
not only oblivious but also promises us that the end bad samples B will satisfy ||[Sum(B)||3 < O(end);



roughly, this constraints the adversary to add en vectors of norm v/d which are approximately pairwise or-
thogonal. (If the adversary adds any vector of norm much larger, we can remove it before proceeding.) We
will show how to test using /d /a? + de /a? samples, improving on Narayanan’s tester for ¢ > a?.

We revisit the simple tester using just ||Sum([n]) ||§ Dividing [n] into good and corrupted samples G, B,

|Sum([n)) |3 = nd = ([Sum(G)|[3 — (1 = &)nd) + 2 (Sum(G), Sum(B)) + |[Sum(B)||3 — end.

As usual, [|Sum(G)||3 — (1 — &)nd > Q(a?n?) in the alternative case and < n? in the null; we want to
show the remaining terms are < o?n? in magnitude. Trivially, |||[Sum(B)||3 — end| < O(end) < a*n?
when de/a? < n, using our promise on ||Sum(B)|3.

Now let’s look at the term where we make the improvement over Narayanan’s tester: (Sum(G), Sum(B));
we are looking to use obliviousness to beat the bound en!-5v/d. We fix Sum(B) and then sample the random
vector Sum(G), which is distributed either as N (0, (1 — e)nI) or N ((1 — &)nu, (1 — €)nl), meaning

(Sum(G), Sum(B)) ~ {Né(l —e)n{p, Sum(B)), (1 - E)nHSum(B)Hg) in the alternative case '

N{(0,(1— 5)n|\Sum(B)||§> in the null case

So, [{(Sum(G), Sum(B))| < O(na - Vend + nved) < a®n?, as |Sum(B) |5 < O(end) and n > de/a?.
From this simple reasoning, we draw the following important conclusion:

If the adversary is oblivious and is constrained to add samples B which aren’t “too big”, then
we can test using fewer samples than against an adaptive adversary.

This leads us to two key questions, whose answers form the main technical ingredients in our oblivious
tester. Can we take an obliviously-corrupted dataset and remove samples in some way to ensure that in the
resulting filtered dataset, the adversary has added samples B which aren’t “too big”, but do so in a way
which doesn’t introduce dependencies between good and bad samples which would break the obliviousness
we’re relying on? And, what is the right definition for “too big” — could a more refined definition lead to a
tester using fewer than de/a? samples?

Friendly Oblivious Adversaries and The Sum+Variance Tester. We will tackle the above questions in
reverse order. We introduce a key definition:

Definition 1.11 (Informal, see Assumption 1). A friendly oblivious adversary introduces { X; };cp such that
1. For disjoint S, T C B with |S|, |T'| < en, |(Sum(S), Sum(T))| < O(/[S[-|T| - (Vend + en)).
2. Fordistinct 4, j € B, |(X;, X;)| < O(V/d), and for every i € B, || X;||3 = d + O(\/d).

The parameters are chosen so that every pair of subsets .5, T" of good samples would satisfy these conditions.

To clarify why friendliness refines the “not too big” condition ||[Sum(B)|3 < O(end) from above,
observe that subject to friendliness, for any .S C B,

ISum(S)|[3 = [S] - (d = O(Vd)) + O(Es, s, (Sum(S1), Sum(S2))) = d| S| + O(|S|Vend + |S|Vd)

where S, Sy is a random partition of S. In particular, [|Sum(B)||3 = end+o(an?) whenever n > de® /o,

. . 3 2/3-2/3
Now we can introduce our robust mean tester which uses ¥4 + i% 44 ! -5 ! samples (up to log factors)

aZ
in the presence of a friendly oblivious adversary.




The Sum+Variance Tester (Algorithm 3): Given X1, ..., X,, € R, if |Sum([n])||3 — nd > Q(a?n?), or

if
1§ (Ko Sum(n])) - d )’ a'n
nZ( [Sum((n])], >>“Q<sd>’

i€[n]

return H, otherwise return Hj.

Analysis Sketch. For starters, we need to make sure that in the null case, ||Sum([n])||3 — nd <
o?n?. Splitting S into good samples G and corrupted samples B, we know ||Sum(G)H§ =(1—-¢e)nd=+
O(nv/d) and | (Sum(G), Sum(B)) | < O(nv/ed) using standard concentration tools and obliviousness, and

|Sum(B)||3 = end + O(e"%n'*/d 4 en+/d) by friendliness. All together,
[Sum([)|2 — nd = [Sum(@)][2 + 2 (Sum(@), Sum(B)) + |Sum(B) |2 — nd = O(nv/d + =5 5a)

. . 3
which is at most o>n? exactly when n > g + ‘i%.

Ideally, we would show next that in the alternative case ||Sum([n]) Hg —nd > o®n?, but even a friendly,
oblivious adversary can ensure this doesn’t happen when n < %. With knowledge of the vector u, he can
introduce samples { X, };cp such that (X;, u) ~ —%2, which introduces cancellations with E Sum(G) that
reduce ||Sum([n])||5. Overall, he can ensure ‘HSum([n])Hg — nd‘ < a?n?.

But now we encounter a typical theme in robust statistics: the adversary has had to introduce a small
set of X;’s such that (X;, Sum([n])) is more negative than typical, thereby increasing the variance among

{{Xi, Sum([n])) }ie[n). Fori € B, we expect (X;, Sum([n])) to be ”%2 smaller than usual, so heuristically,

n |Sum([n])||, ~n S 2nd T ed

1 Z <<Xi,Sum([n])> — d>2 S 1 atn?  aln

ieB

where we used ||Sum([n])||5 ~ nd. Adding the contribution from the samples in G gives us 1 -+ Q(%).

We make this idea rigorous in Section 4.

, _d\2
Of course, outputting H; when %Zie B(%) =1+ Q(f—d") only makes sense if the

adversary cannot make this happen in the null model. We show (Section 4.4) that no friendly oblivious

X;,Sum —d\? 4 . 2/3.2/3
adversary can make %ZieB(M) =1+Q(2)ifn> ¢ S

Friendliness via Obliviousness-Preserving Filtering. We’re still missing a key ingredient: how can we
force an oblivious adversary to be friendly? Ensuring condition 2 of friendliness is straightforward. If we
see any ||| X; ||§ —d| > V/d, that X; must have been introduced by the adversary and can be safely removed,
and similarly if any pair 4, j has | (X;, X;) | > \/d then (by obliviousness) both X;, X j must be corrupted
samples and can be removed. (We are using >> to hide logarithmic factors.)

But what about condition 1? A natural idea is to preprocess X1, ..., X, by removing any subsets .S, T’
of size at most en which violate condition 1. If we had a subset S which grossly violated 1 in the sense
that ||Sum(S)||3 > 100end, we could conclude that S contains at least 99% bad samples. This might seem
good enough — indeed, a common paradigm in robust statistics is filtering, removing samples in way which
removes at least as many bad samples as good ones, since any such procedure can ultimately remove at
most en good samples. However, removing any good samples after looking at all the samples, including the
corrupted ones, creates dependencies between good and bad samples, thus breaking obliviousness!




Sample-Splitting to Preserve Obliviousness. We introduce an obliviousness-preserving filter. We:

1. Randomly split X1,..., X, into U and V.

2. Using only U, identify a set of unit vectors v1, ..., v, € R%

3. Forall j < ¢, remove from V any X; such that | (X;,v;) | > y/logn, then return V.
The idea is that the returned V' will (with high probability) be a set of samples corrupted by a friendly
oblivious adversary. The threshold /log 7 is chosen so that with high probability no good sample is removed
from V. This means that with high probability the scheme preserves obliviousness, since we could have
gotten the same outcome by drawing the good samples in V' only after performing filtering.°

The challenge is ensuring friendliness, which of course rests on the implementation of step 2. In this
step, the basic idea is to find a family of subsets 77, ..., Ty C U such that, for each i € [¢],

o« |T;| < en/(logn)®M) (here < hides constants; the (logn)?(!) is crucial, as explained below), and

* if we choose v; = Sum(7;)/||Sum(7;)||, and remove from U any X such that (X, v;) > /logn,
then U satisfies condition 1 of friendliness. If this happens, we’ll say that 11, ..., T,, “cleans” U.

We need to establish two things: first, that such a family 71, ..., T, which cleans U exists, and second,
with high probability over the random split U, V, any T1,...,7; C {Xi,...,X,} which cleans U also
cleans V. However, these are in tension. For the first, we would like to be able to choose the sets 77, ..., Ty
as large as possible, as this gives more flexibility in the choice of filtering directions and hence makes it
easier to clean U. But, for the second, we need tight control over how many different choices of 77, ..., Ty
the cleaning algorithm could make, because we will need to make a union bound over all such choices; the
smaller the sets 77, . . ., Ty have to be, the fewer choices there are.

Compression and Small Witnesses. The key idea to balance these concerns is to show that if 57, .Sy
violate -friendliness condition 1, then we can compress S; to a smaller set S} such that removing all

) . ~_ Sum(S7)
X; € Sg with <X“ 4‘|Sum($il)H2

T;s. The following lemma shows this, as long as 51 U Sy already satisfy A-friendliness for some A > 6 —
we will be able to ensure that they already do via induction.

> makes progress in cleaning U, which means we can add S} to our list of

Lemma 1.12 (Small Witness Lemma, Basic Version of Lemma 3.12). Let S1, Sy C R? have |S1|, |Ss| = en
and (Sum(Sy), Sum(S2)) > en-V0d. Suppose S1USs is A-friendly, for some \ > 0, and that there is some
parameter C' > 0 such that | (X, X"} | < 0/d/C and || X;||*> = d + 0/d/C forall X, X' € S1 U So. Then

there is S] C Sy with |S1| < en/C and Q(en) vectors X € Sy such that <X¢, %> > Q(\/%).

In Lemma 1.12, we think of  ~ en(logn)°™, so that (Sum(S;), Sum(Ss)) > env/d is a violation
of friendliness, and C' ~ (logn)°™) so that S} is significantly smaller than S;. Proving Lemma 1.12 is
outside the scope of this overview, but the strategy is to first show that a large number of vectors in So are
correlated with Sum(.S7) (Claim 3.6), and then show this is preserved when we replace S; with a random
subset S] C S7. Lemma 1.12 shows that adding S to the list of 7;’s will result in removing §2(en) vectors;
this can only happen O(1) times before all bad samples would be removed, so that we can think of £ = O(1).

Small Filters Generalize from U to V. Lastly, we need to establish that, if we find a short list of small
T1,...,Ty which cleans U, then with high probability it also cleans V. Consider the set 7 of all possible
(Th,....Ty) € (m/(lognn)o(l))e; note that | 7| < 9en/(og )% becauge ¢ = O(1).

%1In reality we will perform several rounds of obliviousness-preserving filtering, splitting V again into U’, V' and so on; as
rounds progress we ensure friendliness for pairs of subsets S, 7" of increasing size. We will ignore this detail in our technical
overview.
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Fixing some (771,...,7y) € T, our goal is to show that with probability at least 1 — 2-en) over
the random split U, V, if T1,..., Ty cleans U then it cleans [n]; then we can take a union bound over
all of 7. By contrapositive, it is enough to show that, if after removing all X; from Xi,..., X,, such
that (Sum(7}), X;) > /logn, some subsets S1, S2 C [n] remain which violate A-friendliness, then with
probability 1 —2~(") the random set U also contains some S, S5 which violate #-friendliness, for some 6
not too much less than A. (This distinction between 6, X is the origin of the two different friendliness levels
in the small witness lemma.)

For the latter, standard concentration arguments show that, with probability 1 — 27" the offending
sets Sp, .99 get split evenly between U and V, and this in turn is enough to show that some subsets of
U N S1,U N S; also violate friendliness.

1.4.2 Lower Bounds

Information-Theoretic Lower Bound for Obliviously-Robust Testing. Among our lower bounds, the
greatest conceptual innovation lies in our proof that robust mean testing with an oblivious adversary requires

8/3
from the c(z)mplexity of non-robust mean testing and from a simpler argument using a Huber adversary,
respectively. (The latter we describe below.)

To prove the lower bound, we will describe a distribution over mean vectors p and adversarial vectors
{X;}icp such that the joint distribution of {X;};c g together with (1 — &)n samples from N (, I) is close
in total variation to A/(0, I)®™. The key trick in designing this distribution is to correlate, but not perfectly
align, Sum(B) with — . Concretely, we:

1. Draw X; ~ N (0, ) fori € B.

2. Draw p = —f3 Sum(B) — z, where 8 = 3(n,d, e, «) > 0 is a suitable constant and z ~ N (0, O‘T;I).
We show via direct calculation in Section 6 that the y? divergence, and hence total variation distance,

~ . 2/3.2/3 . e . 3 .
Q(mln(d < %)) samples. The remaining terms in the lower bound, g and C;%, come respectively

oa8/3 1 a2
trick above of sampling the corrupted samples { X };c p before drawing i keeps these calculations tractable.

between these two distributions on sets of n samples is o(1) so long as n < Q(min(d2/352/3 de )) The

Information-Theoretic Lower Bound for Huber-Robust Testing. Our final information-theoretic lower
bound shows that (de3/a*) samples are needed in the presence of a Huber adversary. Here we borrow
the lower-bound instance from [DKS17] — the adversary just adds samples from N'(—/3 - p, I) for some
well-chosen 5 > 0. We tighten the analysis of this instance from [DKS17] by using a conditional second
moment (a.k.a. conditional x? divergence) approach. ([DKS17] use a vanilla y2-divergence analysis of their
lower bound instance; this method can prove at best a de* /a* lower bound, which they obtain.)

Low-Degree Lower Bound for Huber-Robust Testing. Finally, we show a low-degree lower bound
in the Huber model (essentially equivalent to an SQ lower bound [BBH+20]) using the same instance
from [DKS17]; this is a direct computation using now-standard techniques from [KWB22].

1.4.3 A Quadratic-Time Tester

Now we turn to our quadratic-time algorithm for robust mean testing against adaptive adversaries using

2 oy . oy

% + i% (up to logarithmic factors) samples, matching Narayanan’s tester. Up to logarithmic factors, our

bound matches our low-degree lower bound mentioned above. Together, these bounds give strong evidence
. . b .

that computationally bounded algorithms must pay a factor of Cé% in the sample complexity, and therefore

cannot witness the improved rates described elsewhere in this paper, for any model of contamination. Recall

that Narayanan’s tester requires finding a good-enough subset (Definition 1.8). Since good-enough-ness
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involves all subsets of en samples, even checking whether some S C [n] is good enough seems to require
n" time.

Borrowing a technique from the robust estimation, we show that, at least for the good samples G C [n],
there’s an efficiently-computable witness to their good-enough-ness. This witness is the top eigenvalue of
the covariance matrix E; ¢ (X; — EjungX;)(Xi — EjncX j)T, together with a uniform upper bound on the
magnitude of the row-sums of the Gram matrix of {X; : i € G}.

For illustration here, consider the null case and imagine that n < d. Then it turns out to be nicer to
consider the Gram matrix M € R(=8)nx(1=&)n with entries M;; = (X, X;); up to zeros it has the same
eigenvalues as the covariance. Since X; ~ N(0,1) fori € G, we have M = d - I + O(v/nd). If 17 is the
0/1 indicator vector for " C G with |T'| < en, then 1}M 17 certifies the first part of good-enough-ness:

[Sum(T) [} = 17 M1y = d - |[17]3 = O(Vad] 17]}3) = |T]d + O(en'* V) .

For the second part, note that (Sum(G \ T'), >°(T')) = 3 ;er >_j; Mij is roughly the row-sums of the
(off-diagonals of the) matrix M for i € T. Each row sum is at most O(v/nd), so the sum is O(en'5v/d).

These arguments (at least in the case n < d; n > d is not very different) show that it is enough to
find S C [n] with |S| = (1 — £)n and whose Gram matrix has eigenvalues d + O(v/nd) and off-diagonal
row-sums at most O(enlf’\/a). In Section 8 we design a filtering algorithm which does this by starting with
[n] and iteratively removing samples X; with large projection onto too-large or small eigenvectors of the
Gram matrix, or whose row-sum is too large, until all the row-sums and eigenvalues are as we desire.

2 Preliminaries and Notation
2.1 Basic Definitions
Given two distributions Dy, D, we recall the definitions of total variation distance and y2-divergence.

Definition 2.1 (Total Variation Distance). Given two probability distributions D;, Dy over a measurable
space (2, F), the fotal variation distance between Di, Do, denoted drv (D1, D2), is super |D1(A) —
Dy (A)l.

Definition 2.2 (2-divergence). Given two distributions Dy, Dy over a measurable space (€2, F) with well-
defined probability density functions p1, pa, the x2-divergence between D; and Do, denoted D,2(D1]| Do),

2
is given by Ex..p, (z ;gg — 1) . (Note that this is not symmetric in D1, Ds.)

We recall the following standard relation between total variation distance and 2-divergence.

Fact 2.3. For any distributions D1, Do with probability density functions, drv (D1, D2)? < % D, 2(D1(|Do).

2.2 Useful Probabilistic Tools and Inequalities

In this subsection, we recall several basic but useful concentration inequalities and moment bounds which
we will rely on.
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Gaussian Concentration. First, we note a well-known proposition regarding univariate Gaussians.

Fact 2.4. For X ~ N(0,1) and a,b € R such that b < %, we have that
a2
e ()

V=20

1
1-2b°

In the special case a = 0, this becomes E [ebX 2} =

The following provides a generalization of Fact 2.4 to multivariate Gaussians: we include a proof for
completeness.

Proposition 2.5. Let z € R be drawn from the Gaussian N(0,6°I). Then for parameters a > 0 and
s € R we have

a 1 I3
E, [eXP (—QII«ZH% - <sz>>] T w1 P (2@”12/52)>

Proof. We have

a 1 ¢ - 2
EZ |:eXp (_2|Z|g _ <S, Z)):| — /(Sd(Qﬂ-)d/QeXp <_2”ZH§ - <57 Z> - H25”22> dZ.

To compute the integral, we can complete the square in the exponential and write it as

Va+1/6%z — ¥3
Vva-+1/62

[EE
2(a + 1/62)

1 |
2 2

SO

d
E [exp (—a|z||2 — <s Z))] = exp HSHS 1 i — exp HSHS
‘ 272 A 20a+1/82) ) \Va+1/02) 6 JasT+1° 2(a +1/62)
as desired. O

Proposition 2.6. Let z ~ N (0, I,) be an n-dimensional Gaussian vector. Then, for any symmetric matrix
M with all eigenvalues strictly greater than —1,

Ele~2% M2 = det(I + M) V2.

Proof. First, suppose that M is diagonal, with eigenvalues A1, Ao, ..., A,. Then, —%zTM z = —% > /\iz?.
Since each coordinate of z; is independent,

Ele~2* M| =E

n n n
H e_é/\iz?] — HE {e—%)\izﬂ — H 11—’_)\ — det(I + ]\4)—1/27
=1 =1 i=1 Vv 7

using Fact 2.4 with ¢ = 0. Finally, by rotational symmetry of Gaussians, the claim holds for all symmetric
M. O

From Proposition 2.6, we have the following immediate corollary.
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Corollary 2.7. Let X,Y be a 2-dimensional multivariate Gaussian with mean 0 and covariance matrix

_fa b . 1 X24y27 1
Y= <b c)’ Then, ifa +c < 3, Ele | = DT

Proof. We can write X" TY? = 'S0 — =37 (=297 for ¢~ A/(0,1). Since ¥ is PSD and has trace
less than %, its eigenvalues are both less than %, so —2% has all eigenvalues strictly more than —1. Hence,
we can apply Proposition 2.6, noting that det(1 — 2%) = (1 — 2a)(1 — 2¢) — 4b%, which completes the
proof. O

Next, we note some basic facts about the norm and inner products of Gaussians.

Fact 2.8. Consider n points X1, ..., X,, € R? drawn from a Gaussian N (1, I) where ||| < O(1). Then,
with probability 1 — 6, we have for all i € [n]

d—10 <,/1og(n/5)d 4 log(n/5)) <X <d+10 <,/1og(n/5)d 4 1og(n/5)) .

In light of Fact 2.8, it suffices to consider when all of the points, including the contaminations (in any of
the models) have || X;||? = d + O(v/d - poly log(d, n)), since we can simply remove all points whose norm
is too large or too small: with high probability these points are all contaminated.

Fact 2.9. Let 21, 29 be Gaussians N'(0,1) in RY. Then, for any C < O(Vd), P(|{z1,22)| > CVd) <
2e~2C?),

Proof. First, with probability at least e~ || 25|z < 2v/d, by Proposition 2.11. Then, conditioned on the
norm of 2y, (21, 22) has distribution A(0, 1) - ||22||2, which is at most C' - ||22||2 with probability at least
2¢=C*/2 Hence, P(|(z1, 20)| > CVd) < 2¢=C7/8 4 =), O

We will also make use of the Hanson-Wright inequality.

Lemma 2.10 (Hanson—-Wright). Given an n x n matrix A € R™*"™ and an n-dimensional Gaussian vector
Z ~ N(0,1), forany t > 0,

2 t
T T i
P(|z74z - E(zTaZ) 2 ) < 2“"(_0““ <|!Ar%’ HArop>>’

ZTAZ - B[ZTAZ)| <

for some absolute constant ¢ > 0. This implies that, with very high probability,
O(||Allr).
The Hanson-wright inequality with A = I, the n x n-dimensional identity vector, immediately implies

the following.
Proposition 2.11. Let z1, ..., z, be i.i.d. Gaussians. Then, for any t > (),

(o] ) <2 ()

We note one more result about Gaussian samples, which follows from well-known facts about sufficient
statistics. The following result says that if we know the mean X of some Gaussian samples X; drawn as
N (u, I), the posterior distribution of the deviations X; — X does not depend on the mean .

Proposition 2.12 ([Nar22, Corollary 18]). Forany u € RY, let X1, ..., X,, be distributed i.i.d. as N'(u, I),

and let X = %(Xl + -+ X,,). Then, for Zy,...,Z, i N(0,1), independent of (X1, ..., Xp), and
7 = %(Zl + -+ Zy,), we have that X1, . . . , X,, has the same distributionas X+7,—Z,... , X+ Z,—Z.

n

Zz?—n

i=1
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Hypergeometric distributions. Next, we will require some bounds on Hypergeometric distributions.
First, we define a Hypergeometric distribution.

Definition 2.13. For n € N and 0 < kj,ky < n, a Hypergeometric distribution HGeom(n, k1, k2) is
the distribution of the random variable Y generated as follows. Fix a set [n] of size n, and let S, T be
independent random subsets of [n] of size k1, k2 respectively. Then, output Y =[S N T.

ki-ko

It is well-known that HGeom(n, k1, k2) has expectation “L°

type inequality for Hypergeometric distributions.

. We will also use the following Bernstein-

Lemma 2.14 ((GW17, Corollary 1]). Suppose that k1, ke < % -n, and X ~ HGeom(n, k1, ko). Then, for

all A > 0, ,
Xk A2/2
P (VH (;?1 -0 A) < exp (_(kg/n) n A/(BVE)) '

The following is a direct corollary of Lemma 2.14.

Corollary 2.15. Suppose that k1 = ko = en, and X ~ HGeom(n, k1, k2). Then, for all t > 0,

]P’(X 2>t)< (t2n t-n
— - exp | — —— .
- € < exp min 12

We also will utilize the following subgaussian concentration bound for Hypergeometric distributions.

Proposition 2.16 ([Skal3]). If X ~ HGeom(n, k1, k2), then for any t > 0, P[X > E[X]+1t k] <
e 2R aqnd P[X > E[X] —t - k] < e 2k,

2.3 Simplification of Alternative Hypothesis

We recall that we wish to distinguish between the null hypothesis where p = 0 and the alternative hypothesis
where ||i|l2 > «. In this subsection, we briefly explain why it suffices to consider a slightly weaker
alternative hypothesis of o < ||pt||2 < 2c. This reduction is very similar to one used in [Nar22, Proposition
23]. We will only describe the reduction for oblivious robust testing, as we will not (directly) need the
reduction in the adaptive case.

Proposition 2.17. Ler 0 < a < O(1). Suppose A is an algorithm that can distinguish between n c-
obliviously contaminated samples from N (0, 1) and n e-obliviously contaminated samples from N (u, 1)
where ||pll2 € [a,2al, with probability at least 0.9. Then, there exists an algorithm A’ that can dis-

tinguish between n - polylog(n, d, é) m-obliviously contaminated samples from N (0,1) and

- -obliviously contaminated samples from N (u,I), where ||p|l2 > «, with

n - polylog(n/d) poblog(nd D)
probability at least 0.9.

Proof. Suppose our dataset of n - poly log(n, d, é) points is called X, which we split into groups X ("),
where 1 < r < R = O(lognd) and 1 <t < T = O(logZ), and where X = n. Also, let
X = U, X (") We can consider conditioning on the location and value of each corrupted point, and then
consider drawing the uncorrupted points. Then, if X is m—obliviously corrupted, each X (™) is
e-obliviously corrupted. Also, conditioned on the indices and values of the corrupted points, the uncorrupted
points in each X (") are independent. (For the rest of the proof, we will think of the corrupted indices/values

as fixed.)
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First, we show an amplification result that on each X (*), we can distinguish between 1 = 0 and || || €
[ar, 2a], with failure probability at most % (instead of failure probability 0.1). For each X ("), because the
corruptions are oblivious to the data, the probability of A outputting the right answer on the group X ()
is at least 0.9, and is independent across groups (after the above conditioning). So by a Chernoff bound, A
will output the right answer on at least 0.8 - R groups with probability at least 1 — %, for any fixed ¢. So,
the algorithm should simply output the majority across all .

Next, the same result holds if the alternative hypothesis is ||z]|2 € [o - 2!71 - 2] for any ¢ > 1. To see
why, replace each X; € X (") with X/ := (X; +/220 — 1. Z;)/2, where Z; ~ N'(0, I) is independent for
each X;. If X; ~ N'(p, I), then X/ ~ N (u/2', I). Moreover, { X/} is still e-obliviously corrupted, because
{Z;} is chosen as i.i.d. Gaussians independent of the samples.

The algorithm A’ thus works as follows. For each 1 < t < O(log(n/d)), we test on X ) whether 1 = 0
or || ]2 € [a- 2871, - 2!, with failure probability at most -L,. A’ rejects if any of these tests on X® rejects
for some 1 < ¢ < T'. Under the null hypothesis, with at least 0.99 probability, no test will reject. However,
if [|2]|2 € [v, 10v/d], then there exists some 0 < ¢ < O(log(d/c)) such that ||u||2 € [e -2, - 2671, so the
test on X () will reject. Finally, we use an additional O(1) randomly chosen points to robustly test whether
| 12ll2 > 10+/d, with 0.99 success probability. O

2.4 Notation

We record here several notational conventions.

* In what follows, a > 0 is the distance parameter, ¢ € [0, 1] is the corruption rate, d denotes the
dimension, and n is the number of samples. In the remainder of the paper, we assume o < O(1). In
addition, one must have ¢ < q.

« We use O, , © to hide polylogarithmic factors in the argument.

* Given a distribution D, we use pp(-) to represent the corresponding PDF (whenever it is well-defined).

* Throughout this paper, for a set of vectors S, we will use the shorthand Sum(.S) to denote the sum of
the vectors in .S, i.e., Sum(S) := > g .

Throughout the remainder of the paper, we will assume o > 0.99%. We will also assume the desired fail-

ure probability § > 0.99%. Thus, we can also assume that the number of samples n < 100d log(1/d)/a? <
(1.1)? since that would suffice to learn the distribution to accuracy 0.1c.’

3 Reducing to “Friendly' Oblivious Contaminations

The first key step in our oblivious upper bound is arguing that we can reduce to when the contaminated
points are reasonably behaved. Formally, we want to argue that it suffices to consider a friendly oblivious
contamination defined as follows.

Definition 3.1. [(Friendly) Oblivious Contamination Model] We say X1, ..., X, are obliviously e-contaminated
samples from a distribution D if they are drawn as follows: first Y7, ..., Y, are chosen adversarially, then
Yent1,-.., Yy ~Diid, and finally Y7, ..., Y, are randomly permuted to produce X1, ..., X,.

"Recall that we have a non-robust testing lower bound of € (\/& / aQ) and an efficient robust learning upper bound of O (d / a2) .
In the regime a < 0.99%, however, d/a? = O(v/dlog(1/a)/a?) = O(d/a?), so the trivial upper and lower bounds match up to
logarithmic factors. For the failure probability ¢, note that we can amplify any constant success probability in both the oblivious
and Huber contamination models by running multiple trials, at the cost of a multiplicative O(log(1/4)) factor.
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In the friendly oblivious contamination model, we additionally have the following assumption about the
data:

Assumption 1. A dataset X1, ..., X, € R?%is x-friendly if the following all hold:
1. For any disjoint subsets S, T" C [n] of sizes ki, k2 < € -n,

e

i€S €T

< k- (Vk1kg - max(Vend, en)).

2. For every distinct i # j € [n], (X}, X;)| < k- Vd.
3. Forevery i € [n)], | X:[|3 = d + xV/d.

In this definition, one should think of x = poly(log(n),log(d)).

Note that we need to make the reduction to friendly oblivious contamination while preserving the “obliv-
iousness" of the contaminated points. Getting the first condition is the main difficulty (the latter two are
relatively straight-forward in light of Fact 2.8 and Claim 3.3 below) as natural algorithms for filtering/re-
moving points don’t preserve this “obliviousness" and thus cannot be used. Nevertheless in this section, we
show how to filter an arbitrary oblivious contamination on a dataset to a friendly oblivious contamination
while preserving obliviousness. We will prove the following theorem.

Theorem 3.2 (Dealing with 6(1)—Friendly Contamination Suffices). Assume there exists an algorithm for
robust mean testing in R® under k-friendly oblivious e-contamination that uses n = f (d, v, €) samples and
succeeds with probability p > 2/3 where = (101log(nd))?°°. Assume n < (1.1)% Then there exists an
algorithm for robust mean testing in R% under (arbitrary) oblivious & /2-contaimination that succeeds with
probability p — 0.01 and uses n poly(log(nd)) samples.

3.1 Structure of Obliviously Contaminated Samples

We begin by proving a few basic structural properties that hold with high probability for an obliviously
contaminated dataset. First, we show that the inner product between any two points that are not both con-
taminated must be small.

Claim 3.3. Consider a set S = {X1,...,X,} of n points in R? that are drawn from N (p,I) and then
e-contaminated in the oblivious contamination model. Let R C S be the subset of contaminated points.
Also assume ||| < 1andn < (1.1)% Then for any 0.99% < § < 1, with probability 1 — 6, we have that for
all X; € S\R, X; € S withi # j,

|[(Xi, X;)| _ 10log(n/d)

IXAlXG0— Vd
Proof. Since the contamination is oblivious, we can imagine fixing the index j first and then drawing X;.
We can write X; = j + v where v ~ N(0, I). We have with probability 1 — 6/(2n?)

(X, X5/ 15101 = 16 X5/ 151D+ o, X5/ 11 XG1D] < (1 4 54/log(n/9)]
where in the last step we simply noted that (v, X;/ ||X;||) is distributed as a standard Gaussian and the
desired inequality follows from standard tail bounds. Also by Fact 2.8, || X;|| > 1/d/2 with probability at
least 1 — ¢/(2n) and combining this with the above gives
(X, X;)| _ 10log(n/d)
XX~ vd
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Union bounding the failure probability over all 7, j we are done. O

We also have the following bound on the number of uncontaminated points with large projection onto
any direction determined by a small subset of datapoints.

Claim 3.4. Consider a set S = {X1,...,X,} of n points in R? that are drawn from N(u,I) and then
e-contaminated in the oblivious contamination model. Let R C S denote the contaminated points. Also
assume ||| < 1andn < (1.1)% Then for any 0.99% < & < 1, with probability 1 — 6, we have the following
property: for any subset T C S,

{2 e s\R | |06, Sum(D)/ [Sun(T)])| = 10ylog(n/s) | < 2171,

Proof. We consider a fixed set T and then union bound over all possible choices of T'. For a fixed set T',
we can imagine fixing the points X; € T first and then drawing the remaining points X; € S\(RUT) ~
N (s, I) afterwards. It suffices to upper bound the probability that more than |T'| of these points satisfy

(X, Sum(T)/ [[Sum(T)[))| = 104/log(n/3) .
This probability can be upper bounded by

(& /n) T pI T < (§ /)T

and then union bounding over all possible choices of 1" gives the desired statement. O

3.2 Oblivious Filtering via Sample Splitting

Recall that our approach to prove Theorem 3.2 will be to “obliviously"” filter the dataset, removing some of
the contaminated points, so that the remaining data is friendly. In light of Fact 2.8 and Claim 3.3, it is not
difficult to enforce the latter two conditions for friendliness since we can simply remove points whose norm
is too large or too small and also remove pairs of points whose inner product is too large. The main difficulty
lies in enforcing the first condition and this is our focus for the remainder of this section.

It will be convenient to make the following definition.

Definition 3.5. Let S be a set of vectors in R?. For parameters A, m, k, we say that S is (A, m, k)-balanced
if for all pairs of disjoint subsets S1, S C S with | S|, |S2| < m and |S1]|S2] < k, we have

[(Sum(Sy), Sum(S2))| < \/A|S1|]|S2|d

Roughly, it will suffice to ensure that our dataset is balanced for A ~ k“en, m ~ enand k ~ m
We will do this by iteratively doubling & i.e. going from (A, m, k/2)-balanced to (A, m, k)-balanced. At
a high-level the way we do this while maintaining obliviousness of the contaminations is as follows. We
randomly split the dataset into two parts A, B and only look at A to construct some filter that “cleans" A
i.e. makes it (A, m, k)-balanced. We then argue that with high probability, this filter must clean B and we
simply apply it to B and iterate on the remaining data (throwing away A). Crucially, this sample splitting
preserves the obliviousness of the contaminations because the filters are constructed independently of the

2 28

8For most of this section, we will work in the regime en poly(log(nd)) < d. We will show a reduction when we finally prove
Theorem 3.2 that allows us to reduce to this case.
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uncontaminated data since we can view the uncontaminated points in B as being drawn after running our
algorithm on A. See Algorithm | and Algorithm 2 for more specific details.

We first need to prove a few basic properties. If a set of vectors S is (A, m, k/2)-balanced and not
(A, m, k)-balanced, then there must be some disjoint subsets S1,S2 C S with k£/2 < [S1]|S2] < k that

witness this i.e.
[(Sum(S1), Sum(S2))| > 1/ A|S1]]S2|d .

The above statement says that on average, vectors in S have large inner product with Sum(.S7). In the next
claim, we prove that this is actually the case for a large subset of .S5.

Claim 3.6. Let Si,S> be two disjoint sets of vectors in R Let k,m be some parameters such that
|S1],|S2| < m. Assume that S1 U Sy is (A, m, k/2)-balanced. Then if |S1| - |S2| < k and

(Sum(Sl), Sum(Sg)) Z \/H‘SIHSQ‘CZ

for some parameter 0 < )\, then there is a subset S, C So with |S5| > 9';;' such that for all v € S,

1 /0|S1|d
,Sum(Sh)) > —
(v, Sum($1)) 2 4/
Proof. Let T be the set of all vectors v € Sy such that
2|81

(v,Sum(S7)) > 2 d

0]Sa|

If T has size larger than 6|S2|/(4)\), then by taking 7" to be a random subset of 7" of size 6|S2|/(4\), we
would get

) 01Sy| . [N2Sy|, 1
E [(Sun("), Swn(81)] 2“2/ etd = 5y /0lSilSeld 2 AT 1]

Hence, the above deterministically happens for some 77 C T of size 0|S2|/(4\), which contradicts the
assumption that S1 U Sy is (A, m, k/2)-balanced. Thus, we must actually have |T'| < 0|Sa|/(4\), and

1
(Sum(T), Sum(S1)) < \/AIT||S1|d < 5\/9|sl|ysg|al.

In particular, this means that

(Sum(So\T), Sum(Sy)) > %\/9\51”52161.

Next, let R be the set of all vectors v € S5 such that

We have that

(Sum(S2\(T'U R)), Sum(S;)) > % /6151 ||Sa]d.
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Thus, by the construction of R, T’, we conclude that the number of vectors v € So such that

1 [6]S|d
>
(v, Sum(Sy)) > 1\ IS
is at least
(Sum(S2\(T'U R)), Sum(S7)) < VIR 0
A2|S - 8\
2 9\|521|‘d

With the above equipped, we can now show that if S1,5; C S are two sets of samples that vio-
late (X, m, k)-balancedness, then if we split .S into two parts A, B, with all but exponentially small (in
min(|S1[, |S2|)) probability, both parts A, B will witness a violation for slightly smaller values of \, m, k.

Lemma 3.7. Let S1, Sy be two disjoint sets of vectors in R Let k,m be some parameters such that
|S1], [S2| < m. Assume that S1 U Sy is (A, m, k/2)-balanced. Also assume that |S1| - |S2| < k and

(Sum(S1), Sum(Ss)) > +/A[S1]|Sald.

Consider splitting S1, S each into two sets S1 a, 51, and S 4, Sa B respectively where each element is
min(| Sy ],SDp3 (1-p)3
1010

assigned to the first part independently with probability p. Then with probability 1 — 2™ ,
there are subsets Sy 4,55 4,51 g, S5 g With S1 4 C S1.4, Sy 4 C S2.4, S1 g C S1.5, Sy p C Sa.p such
that

2
/ P[5
NI Gl Ol 1
|t;1,l3| - 1()6
/ _ p2|52|
ANt
|£;2,lg| - 1()6

p4\/)\‘S1HS2‘d

<SU,H1(SLA), Sum(‘s’é,A» = 1013

1 —p)*\/A[S1][S2]d
(Sum(S] p), Sum(S; 5)) > 1-7p) 1014 1|52

V

The proof of Lemma 3.7 relies on the claim below, which characterises what happens when we split one
of the sets, say So into two parts.

Claim 3.8. Let Sy, S be two disjoint sets of vectors in R Let k,m be some parameters such that
|S1],]S2| < m. Assume that S1 U Sy is (X, m, k/2)-balanced. Also assume that |S1| - |S2| < k and

(Sum(S1), Sum(S2)) > 1/60]S1||S2|d

for some parameter 8 < \. Now consider splitting So into two pieces A, B where each element is
independently assigned to A with probability p (and assigned to B otherwise). Then with probability
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_ p2(1-p)20|5,|
1-2 102x |, there exist subsets A’ C A and B' C B such that

615,|
A/ — p
A 20\
i (1 —p)0|Ss]
1B = 20\

(Sum(A’), Sum(Sy)) > 106 \/0]S1]|S2|d
(Sum(B), Sum(Sy)) > (11023 JoIS111Sld

Proof. First, construct the set S5 according to Claim 3.6. By Hoeffding’s inequality, with probability 1 —
>(1-p)?0]Sy|
~T50% , we have | S, N A| > pf|Sa|/(20)) and |S, N B| > (1 — p)8|Sa|/(20)). Let A’, B' be
arbitrary subsets of S5 N A, S5 N B with sizes pf|Sa|/(20\) and (1 — p)#|Sa|/(20\) respectively. Then by
the properties of S% guaranteed by Claim 3.6 we have

0|S1|d
(Sun( ), Sun(s)) 2 4] 50 > B ol ala
and similar for (Sum(B’), Sum(S;)), completing the proof. O

We can now prove Lemma 3.7 by applying Claim 3.8 twice.

Proof of Lemma 3.7. First consider when Ss is split into S 4 and Sa g and apply Claim 3.8 with 6 = .

This gives us sets Séz and Sé’% with

20
(Sum(S1), Sum(S5))) > 1054/ AIS1[[S21d
1 (1-p)
(Sum(S1), Sum(S3)) = 255 \/AISu[Sad

Now we can apply Claim 3.8 again when splitting S1 with # = p\/10* to get SL 4 with

| ! |: p2‘51|

(Sum(S4,). Sum(55) = 2 NS 1d.

Now we can take S} 4 to be random subset of Sélzl of size p?|S3|/10° and we have in expectation that

4
(Sum(S] 4), Sum(Sy 4)) > 1013 VAIS[Sad

so in particular it holds for some choice of S; 4. We can construct S 5 similarly. The overall failure

p®(1—p)® min(|51[.1S5)
probability over all applications of Claim 3.8 is at most 2 o0 and this completes the proof.

O]
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In light of Lemma 3.7, we know that when we split the set of samples S into two parts A, B, any pair
of subsets S1, S that violates (\, m, k)-balancedness creates a violation in both parts with (approximately)
exp(—min(|Sy|, |S2|)) failure probability. Now, we roughly proceed as follows. If the set of all possible
filters considered by our algorithm has size less than exp(min(|Si[,|S2|)), then we can union bound and
conclude that actually any filter that cleans A to be (X', m/, k")-balanced (for some slightly smaller X', m/, k')
must actually clean S to be (A, m, k)-balanced. Then it suffices to argue that there exists a filter in this set
that actually cleans A. The full argument will be slightly more involved as we have to deal with different
possibilities for min(|S1],|S2|) separately.

We first need a few more basic observations.

Definition 3.9. Let S be a set of vectors in R%. We say that S is p-bounded if for all v € S, d — \/pd <
”UHQ < d + /pd and for all distinct u,v € S, —/pd < {(u,v) < \/pd.

Claim 3.10. Let S € R? be a set of vectors that is (A, m, k)-balanced and \-bounded. Then for all subsets
T C S with |T| < min(m, V&), |Sum(T)||* < |T|d + 2|T|v/Ad.

Proof. We can write
ISum(T)|* < |T|(d+VAD) + > (u,0).

uwET uFv

Now consider a random partition of 7" into two sets 77,75 where each element is assigned uniformly at
random. Then
Z (u,v) = 2E[(Sum(71), Sum(73))] < |T|VAd

u,veT u#v

where we used the assumption of (A, m, k)-balancedness. Thus,

|Sum(T)||? < [T]d + 2/T|VAd
and we are done. O
Claim 3.11. Let S C R? be a set of vectors that is \/m-bounded. Then it is (\, m, m)-balanced.

Proof. Consider disjoint subsets S1, Sz C S. Then by the assumption of A\ /m-bounded,

|(Sum(S7), Sum(S2))| < [S1]]S2|\/Ad/m .
If |S1]]S2| < m then the above is at most 1/\|S1[|S2|d, completing the proof. O

Recall that one key point in the earlier sketch is that our algorithm can only enumerate over a (reason-
ably) small set of filters. Here we first show that if S, .S> violate balancedness, then there exists a direction
determined by a small subset S} with |S]| ~ [S1]]|S2|/m such that filtering along this direction removes a
large (~ |S2|) number of points. We can then aggregate multiple filtering directions for different choices of
S} to construct our full filter. Note that bounding the sizes of the individual sets S is the key for bounding
the total number of possible filters being considered.

Lemma 3.12. Let k,m, 0, \,C be some parameters. Let S1,So be two disjoint sets of vectors in R? with
|S1], [S2] < m, 10Cm < |S1| - |S2| < k, and

(Sum(Sl), Sum(Sg)) Z \/6‘51"52‘d .
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Also, assume that Sy U Sy is (A, m, k)-balanced and 6/(10°Cm)-bounded, where § < A < d and C > 1.

Then, there exists a subset S| C Sy with |S7| < |S1]|S2|/(C'm) such that there are at least 8'5)2\' vectors
v € Sy such that

< Sum(.S1) > - N
“[Sum(S)|/ T 16v/Cm

Proof. First we apply Claim 3.6 to S, to get a subset S with the stated properties. Now consider any vector
v € 5. Consider drawing a random subset S| C S; of size |S7| = |S1]]S2|/(C'm) (note this is well defined
because |S1||S2| > 10C'm and |S]| < |S1|). First, we compute

il | 0d
|51]]52]

By [(Sum($7) }] = o (. Sum(5) >

Next, we can compute the second moment

Eg [(Sum(s}),0)?) = Y Bl gz 5o BBUSU=D sy

u€Sy ‘S ’ u,uw €51 uFtu! ’S1|(‘51’ — 1)
STy o2 4 1SUUSH = 1) ,
< )2 I T ) o,
- ZS; YRR TAT A ESY W%fu o)

bd |SiIS1 = 1)
< ! 1 1
< S gem s = ¢

0d
< |5ﬂm + (Eg; [(Sum(S7), v)]).

v, Sum(S;)))?

Thus, the variance is at most |} |0d/(10°C'm). Now since |S}| = |S1||S2|/m and C > 1, we have

Eg, [(Sum(S}), v)] > 5,/Varg; ({Sum(8}), v))

and thus with probability at least 0.1,

|51

(v,Sum(S])) > O.5E51[<Sum(51),v)] > SiiSl

Next note that by the constraints on the parameters, |.S}| < min(m, v/k) and thus by Claim 3.10,

ISum(8})]| < /1941 + 2187 |VAd < 2/|84[d

which implies that with 0.1 probability over the randomness of the choice of S}

< Sum(Sl)> S16 - Vo
" [[Sum(S7)] 1S1][S2| = 16vCm

This holds for all v € S where S, was constructed at the beginning of this proof according to Claim 3.6.
By linearity of expectation, this means that there is some choice of .S} such that there are at least

0S|

0.11%] > 80\

23



vectors v € S such that

<U Sum(S}) >> N
"[Sum(SPI/ T 16v/Cm

as desired. O

—_l =<

We now describe a single iteration of our algorithm (see Algorithm 1) where we take as input a pa-
rameter s and the goal is to eliminate all pairs of subsets S, Se with s/2 < min(|Sy|,|S2|) < s that
violate (A, m, k)-balancedness. Repeating this algorithm over logarithmically many scales for s and then
logarithmically many scales for k£ will give our full algorithm (see Algorithm 2).

Definition 3.13. Given a collection of (finite) sets of vectors in R%, say F1, ..., F;, and a parameter vy > 0,
we define Filter, (FY, ..., Fy) C RY to consist of all vectors v € R? such that

I{gﬁl(v,Sum(Fi)/ [Sum(F5)[[)] = -

When we apply Filter., (F1, ..., Fy)toaset S C R?, we remove from S all points that are in Filter (F1, ..., Fy).

Algorithm 1 Single Filtering Iteration

Input: Finite set of samples S C R
Input: Parameters A\, m, k, s, p
Partition S into two sets A, B where each element is independently assigned to A with probability p

6
_ __sp
Set T = 15T IogTs]

Set V= Vv 1(/)\1p0500m
Set Fi,Fy,...,F, =10
for All collections of subsets 171, ...Ty C A with |Th| + |T2| + - - + |Ty| < 7 do

Set check = True

for All disjoint pairs Sy, S2 C A\Filter, (T, ..., Ty) with |S1| = p?s/(2-10°), |S2| = p?k/(2-10%s)
do

4
if [ (Sum(Sy), Sum(Sy))| > EVASIZI then
Set check = False

if check then
Set Fi =T1,...,Fp =1y
Break
Set B = B\Filtel’,y(Fl, .oy Fy)
Output: B’

Lemma 3.14 (Analysis of Algorithm 1). Assume that the set S is (A, m, k/2)-balanced and \p*° / (101%0m)-
bounded. Assume the parameters satisfy A\ < d,m < kp?°/10°° p < 1/2. Also, assume that there is a
subset R C S with |R| < (p°°m)/(10'%0 log |S|) such that for any subset T C S, we have

H € S\ I{v, Sum(7)/ [Sum(T)])] > \/ﬂ}l <27,
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Then with probability 1 — 2-57°/10" " the set B output by Algorithm | has the property that for any
disjoint sets S1,S2 C B' with s/2 < |S1] < s,|S1] < |Se| < mand k/2 < |51]|S2| < k,

(Sum(S1), Sum(Sa))| < v/ A[S1||S|d.

Proof. Throughout this proof we set v = 4/ % just as in Algorithm 1. We now introduce some termi-
nology. We say that S\Filter, (71, ..., Ty) is unclean if there exist disjoint S1, So C S\Filter, (T4, ...,T)
such that s/2 < |S1| < s,|S1| < |S2| < mand k/2 < |S;||S2| < k and

[(Sum(S1), Sum(S2))| = \/A|S1][Sa|d

and otherwise we say that S\Filter. (T4, ...,T}) is clean. Similarly, if A\Filter,(71,...,T;) contains two
disjoint sets S 4, S5 4 such that

Stal = 520
2
1S al = 520
(S (54,0, Sum (4, > LY A1
then we say A\Filter,(7%,...,T}) is unclean and otherwise we say that it is clean.

There are at most |.S|” distinct filters considered in Algorithm 1. For each of these filters {71, ..., Ty},
we apply Lemma 3.7 to S\Filter. (11, ..., T}). If it is unclean, then, with probability at least 1 — 9—sp°/1017,
A is unclean. This is because if S, S witness S\Filter., (71, ...,7,) being unclean, then since s/2 <
|S1] < s and k/(2s) < [S2| < 2k/s, we can choose random subsets S} 4,55 4 of the appropriate size
from the sets guaranteed by Lemma 3.7. (Note: we can apply Lemma 3.7 because |S1||S2| < k and
|S1| < |S2| < m by definition of unclean, and since S D S; U S is assumed to be (A, m, k/2)-balanced.)
Now we can union bound this over all |S|™ distinct filters and since by the definition of 7,

T SPG
‘S‘ < 25.1010

and thus with probability 1 — 2-57°/10"" "\ve have the following property:

For any {T,...,T,} if A\Filter,(T1,...,T}) is clean then S\Filter, (7%, ...,Ty) is clean. If Algo-
rithm 1 chooses F1, ..., Fy such that S\Filter,(F1,. .., Fy) is clean then we are done. Thus, it remains to
show that there actually exists a filter F1, ..., Fy that cleans A.

We construct such a filter iteratively. Start with an empty filter. Now if we are not done, then there
must exist a pair SL A> 557 4 that witnesses A being unclean. We will apply Lemma 3.12 on this pair (with
0 < Ap*/10%°,C = 10%°/pS, k < k/2). First we verify that the conditions of Lemma 3.12 are met. We
have

ptk 103"m
>
4. 1012 - p16
and also clearly [S] 4|[S5 4| < k/2. Also, |S] 4, (S5 4| < m since even |S1],]S2| < m. Recall that we

have
4
P*/AlS1]]S2|d
(Sum(S]_y), Sum(ss )| > PV S e s

1014

157, 41152, 4 = > 10Cm
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and also S7 4 U S 4 is (A, m, k/2)-balanced by assumption. Finally,

Ap°Y < 0
10100, = 105C'm’

so the boundedness condition is satisfied, and clearly § < A\ < d and C' > 1. Thus, Lemma 3.12 tells us that
we can find a subset Fy with |F;| < pk/(10%9m) such that

[ \po0 ok
|{v € A||{v, Sum(Fy)/ ||Sum(Fy)|))| > 10100m}‘ > 10503 -

. . . . 6.
Thus, by our assumption on R, the number of elements in the above set that are in R is at least 1170’7355 —2|F,

o 6 : .
which is at least #;’fos, since s/2 < |S1| < m. In particular, we added at most pk/(10*°m) elements

. 6 .
to our filter and eliminated at least % elements of R. Now we can iterate the above argument on
A\Filter, (F). Overall, repeating this process, the total number of elements that we will add to our filter is

at most .
P’k (IR
1040m< Ok +1)<7.
2-10%0s
This completes the proof. O

Algorithm 2 Full Sample Splitting

Input: Finite set of samples S C R¢
Input: Parameters A, m, ¢
Set k& = 1029m 10g!%(|S|m/0)
Set Sxp = S
while & < m? do
Set s = 1019 10g'%(|S|m/4)
while s < m do
Run Algorithm 1 on S with parameters A, m, k, s, p = 1/(51og? m)
Set Siit +— B’ where B’ is the output of Algorithm 1
§ 4 2s
k< 2k
Output: S

Lemma 3.15 (Analysis of Algorithm 2). Let S C R? be a finite set of vectors and \, m, § be some parame-
ters with \ < d. Assume that S is y*-bounded where vy = \/ 2 Also assume that there is

1020073 10g199(|S|m /)"
a subset R C S with |R| < such that for all subsets T C S,

m
10200 10g100(1S|m /4)

{ve S\ I(v. Sum(T)/ |Sum(T) ] = 7 }| < 2171,

Then if we run Algorithm 2 on S, with probability 1 — 6, the output Sgy will be (A, m, m?)-balanced.
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Proof. First by Claim 3.11, we have that S is (X, m/, m’)-balanced with m’ = m - 1020 1og!®(|S|m /s)
(and thus also (A, m,m')-balanced). Now we prove that after every execution of the outer while loop (for
a fixed value of k, before doubling k) in Algorithm 2, the set Sk will be (A, m, k)-balanced. We do this
by induction, where the base case follows from the preceding statement. Now after doubling k, we know
that Skt is (A, m, k/2)-balanced. Next we apply Lemma 3.14 for each execution of the inner while loop in
Algorithm 2. Note that this is valid because A < d, k is initialized sufficiently large, and our upper bound on
|R| is sufficiently small. Also s is initialized sufficiently large so we can union bound the failure probability
over all iterations and deduce that with probability 1 — §, the conclusion of Lemma 3.14 every time we run
Algorithm 1. If after the completion of the inner while loop, the set Sgj; is not (\, m, k)-balanced then there
must be some disjoint |.S;[, |S2| with |S1[, |Sa| < m, k/2 < [S1]]S2] < k, and [(Sum(S7), Sum(S2))| >
VAIS1]]S2]d. WLOG |S1] < |Ss|. By the inductive hypothesis, we must have |S;||S2| > k/2 and since
|Sa| < m,

|51 - |8

k/2
|S1] = /

199,100
5| >~ = 2510 log " (|S|m/9)
and thus there was some value of s for which we executed the inner while loop and s/2 < |S;| < s.
However, applying the guarantee of Lemma 3.14 for this execution of Algorithm 1 implies that such 57, So
cannot exist and this is a contradiction. Thus, actually Sg; must be (A, m, k)-balanced and this completes
the induction. Since we keep increasing k up to m?, at the end we know that Sgy; is (A, m, m?)-balanced
and we are done. O

Now we can use Lemma 3.15 to prove Theorem 3.2.

Proof of Theorem 3.2. Consider starting with a set S of n(10log(nd))'° obliviously e-contaminated sam-
ples. First, we remove all points X; € S with || X;||* > d++/(log(nd))™0d or || X;||* < d—+/(log(nd))0d.
Next, for all pairs of distinct points X;, X; with [(X;, X;)| > 1/(log(nd))?°d, we remove both of them.
By Fact 2.8 and Claim 3.3, with probability 0.999, this only removes contaminated points. Furthermore, the
remaining dataset is equivalent to an obliviously e-contaminated one (since it is equivalent to first remove
the subset of contaminated points that violate the previous conditions and then draw the uncontaminated
points).

Case 1: en < d We first consider the case where (10log(nd))'%Yen < d. We run Algorithm 2 with
0 =0.001 and

m = en(10log(nd))**®
A = en(101log(nd))'%.

Recall that Algorithm 2 runs O(log? m) iterations of Algorithm 1. For all executions of Algorithm 1, we
have v > (10log(nd))3%. Also note that we can imagine drawing the uncontaminated points in B after
drawing the points in A. On the other hand, the filters are constructed only from A. Thus, with 1—1/(nd)%°
probability, none of the uncontaminated points are removed by the filters. We can union bound this failure
probability over all executions of Algorithm 1 to get that with probability 0.999, no uncontaminated points
are removed by any filters throughout the execution of Algorithm 2. By the construction of Sk, we conclude
that with 0.999 probability |Ssit] > n and the number of contaminated points in Sy is at most en. Also,
none of the filters constructed throughout Algorithm 2 depend on the points in S so it is equivalent to an
obliviously e-contaminated dataset (since it is equivalent to simply apply these filters to the contaminated
points before drawing the rest of the dataset). It remains to argue that with high probability, Ssj; is k-friendly
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and then we can apply the tester that we assumed works under x-friendly oblivious e-contamination to
complete the proof.

Note that A = en(101log(nd))!?% < d by assumption and after the initial filtering step (where we filter
by norm and pairwise inner product), we know that the dataset is (log(nd))?°°-bounded. Also, by Claim 3.4,
there is a set R C Sgj; with | R| < en (consisting of exactly the contaminated points) such that for all subsets
T C S,

{v € S\R ’ (v, Sum(T)/ [Sum(T)[}] > 10010gn}‘ <.

Thus, we can apply Lemma 3.15 to get that Sgy is (\,m,m?)-balanced. This then implies that Sgy is
equivalent to a x-friendly obliviously e-contaminated dataset and we are done in this case.

Case 2: en > d Now it remains to consider the case where (10 log(nd))'%en > d. We can increase the
dimension by adding dummy coordinates to all of the points. We can draw these coordinates independently
from N(0,1) and pad the dimension to d’ = (10log(nd))'*en. We will use S’ to denote the padded
dataset and X to denote points in S’. Recall that we filtered by norm and inner product at the beginning.
Since all of the additional coordinates are i.i.d. standard Gaussians, with 0.999 probability, we have that
after the padding, for all X/ € S’

d' — \/(log(nd))10@ < || X!||* < d’ + /(log(nd'))100d
and for all distinct X/, X} € S,
(X7, X)| < 4/ (lognd'))20d" .

Now we can run Algorithm 2 as in the previous case on the padded points. By the same argument,
we end up with an obliviously e-contaminated dataset Sg, such that S, is (log(nd’))**°-bounded and
(en(log(nd'))'%%, en(log(nd’))?", e?n?(log(nd'))*%)-balanced. WLOG say Sy, = {X],..., X} }. Now
we take Sf; and remove the padding to get Sty = {X1, ..., X, }. Let II;54 denote the operator that projects
onto the padded coordinates. For a set A C [n], >_;c 4 Hpag X is just a vector in R%~ distributed accord-
ing to N (0, |A|I). Union bounding over all choices of disjoint sets A, B C [n]| with |A|,|B| < en using
Fact 2.9, with probability 0.999 over the randomness in the padded coordinates,

<Z Ipad X7, ZﬂpadX£> < \/|Al|Blend (log(nd'))'* < \/|Al|Blen(10log(nd))"*".

icA icB
Combining the above and the balancedness of Sy;;, we get that after removing the padding for any disjoint
sets A, B C [n],

(5o

i€A 1€B

< \/IAl|Blen(101og(nd))'*® + \/en(log(nd’)) 100  A||Bld < r+/|Al[Blen.

Thus, Syt is k-friendly (recall the latter two conditions follow from the filtering by norm and inner product
that we did at the beginning) and we are done. O
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4 Mean Testing Robustly Against Oblivious Adversaries

In this section, we prove our main technical result, the upper bound against oblivious adversaries:

a? a8/3
Then, there exists an c-robust mean tester using n samples.

Theorem 4.1. Suppose that n > O(ﬁ + ‘i—f + min(dQ/sEQ/g, %)) and that1 > o > ¢ - log(nd)O(l).

4.1 Setup and Algorithm

From Section 3, we may assume we are dealing with the friendly oblivious contamination model. We restate
the definition for convenience.

Definition 3.1. [(Friendly) Oblivious Contamination Model] We say X1, ..., X, are obliviously e-contaminated
samples from a distribution D if they are drawn as follows: first Y7, ..., Y, are chosen adversarially, then
Yent1,-.., Yy ~Diid, and finally Yi, ..., Y, are randomly permuted to produce X1, ..., X,.

In the friendly oblivious contamination model, we additionally have the following assumption about the
data:

Assumption 2. A dataset X1, ..., X, € R?%is x-friendly if the following all hold:
1. For any disjoint subsets .S, T" C [n] of sizes ki, k2 < e -n,

e

i€S T

< k- (Vk1kg - max(Vend, en)).

2. For every distinct i # j € [n], (X}, X;)| < k- Vd.
3. Foreveryi € [n)], | X:[|3 = d + xV/d.
We think of « as a sufficiently large log(nd)°™) term.

Given this promise on the data, the algorithm, roughly speaking, checks the mean and the variance in
the direction of the sum of the points. If both look reasonable for a set of samples from the null distribution,
we accept, otherwise, we reject. Formally, we use the algorithm described in Algorithm 3.

Algorithm 3 Robust mean tester for obliviously-corrupted data satisfying Assumption 2.  Input:
Xl?"'aXTL ERd,a,€ > 0.
: Let S = Zze[n] XZ
if |||S]|3 — nd| > 0.01a*n? then
return REJECT.

. N2

elseif 15,0, (L) > 1400252 - Sand n < O(+%) - (Y + &) then
return REJECT.

else

return ACCEPT.

AN A S s

We have the following results which lead to our main theorem.

Lemma 4.2. Suppose that X1, . .., X, are drawn from the friendly e-oblivious contamination model. More-
over, assume that d > ¢ -n and n < %. Then, Algorithm 3 can solve robust mean testing in n =

3 2/3.2/3
O(k) - (g + 4 4 d 73 ) samples, whenever o > K5 - .
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Lemma 4.3. Suppose that X1, ..., X, are drawn from the friendly c-oblivious contamination model. Then,
Vd

5+ da) samples, whenever o > K° - ¢.

Algorithm 3 can solve robust mean testing in n = O(k®) - (

We can think of “solving robust mean testing” (as stated in Lemmas 4.2 and 4.3) as follows. If given n
eg-obliviously contaminated samples from A/(0, I), with high probability we either return ACCEPT or the
samples were not x-friendly. Likewise, if given n e-obliviously contaminated samples from A/ (0, ), with
high probability we either return REJECT or the samples were not x-friendly. In this section, we always use

the phrase with high probability to mean the failure probability is at most m.

Given Lemmas 4.2 and 4.3, we explain how to prove our main theorem, Theorem 4.1.

Proof of Theorem 4.1. First, we assume that the data was drawn from the /@—friendly e-oblivious contamina—
tion model. Suppose that n > x5 - (ﬁ + @ + min (d2/2§§/3’ %)) and o > k° - . Then, if n > 2, we

10 ., da

have n > k
Lemma 4.2 or 4.3. Finally, if d < ¢ - n, but n > K9 f , then k° - d‘f =K°- g (5) < k7O d Since

«
n > k1.2 this means that O(k°) - %5 < O(k™4) - . Therefore, n 2 O(k%)- ¥ Yd 4 O(kP) - & 45, so we can
apply Lemma 4.3.
By Theorem 3.2, we may remove the assumption about the data being friendly. This completes the
proof. 0

, so we can use Theorem 7.1. Alternatively, if n < -% and d > ¢ - n, we can use either

The rest of the section is primarily devoted to Lemma 4.2, but we prove Lemma 4.3 in Section 4.6. By
Proposition 2.17, we may assume that the alternative hypothesis is || u||2 € [a, 2a]. In fact, for simplicity we
will pretend the alternative is || it||2 = a. Indeed, if ||u||2 = o’ € [, 2a], then our proof will show that either
IS[I3 — nd| > 0.01()?>n? > 0.01an or = 3=, (<Xﬁ’ss||>2‘d)2 > 1+0.025@ > 1+0.025%4 3

In the rest of this section, we use S to represent Sum([n]) = > ;) Xi- We also will split the data into
good (uncorrupted) points G and bad (corrupted) points B. We will always use R to denote Sum(B) =
> icp Xi. If the good samples are drawn as N '(p, I), we always use T to denote ;. (X; — 1), and Q to
denote |G| - p. Note that S = Q +R + T. Also, note that in the null case, Q = 0 and T = }_,.; X;, which
means S = R + T.

4.2 Consequences of Assumption 2

In this section, we prove a series of propositions that will be useful in bounding the mean and variance. In
all of the following, let X7, ..., X,, € R? be any vectors satisfying Assumption 2.
First, we have the following bound on the norm of any sum of at most en points.

Proposition 4.4. Let X1,..., X, € R? satisfy Assumption 2. Then, for any subset B' of size k < en,
IS ien Xill2 = kd £ O(k) - k - (Vend + en).

Proof. Let B}, Bl be a random partition of B’ into sets of equal size. For any distinct i,j € B’, let
p=Pr(i € B,j € By) = Q(1). Then

1
= p‘EB{,B§< X Y Xj>

i€B] JEBY

S (X, X5) <k-k-OWend+en),

i#jE€B’

by Item 1 of Assumption 2. Finally, 3;c 5/ || Xi||3 = kd & k - kv/d. Overall, this means ||Y;c 5 XzHg =
kd+k-k-O(end+ en). O
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Next, we have the following proposition.

Proposition 4.5. Let X1,..., X, satisfy Assumption 2, with en < d. Let B C [n| be any subset of size en,
andletR =Y. X;. Let B' C B be a subset of size k < ¢-n. Then, }_;cp/(X;,R) = kd+O(k-enVkd).

Proof. We have

> X

i€’

2+<2Xi, > X>

9 \i€B’  ieB\B'

> (Xi,R) = <ZXZ,ZX>:

i€B’ i€B’ 1€EB

By Proposition 4.4, we know that || ;e X;||3 = kd & O(k - kv/end). By Item 1 of Assumption 2, we
know that ‘(ZieB, XiyYiep\p Xi)| < k-Vk-en-Vend = k-en-Vkd. Since k < en, kvend < envkd,
so overall, we have that 3,5/ (X;, R) = kd £ O(k - enVkd). O

As aresult, we have the following.

Proposition 4.6. Let X1, ..., X, satisfy Assumption 2, with en < d. Then, for any subset B C [n] of size
en, we have that >, 5 ((X;, R) — d)? < O(k? - 2n%d), where R := 3", g Xii.

Proof. For each i € B, define y; := (X;,R) — d. Consider the kth largest y;. It must be at most O(x
eny/d/k), or else the sum of the k largest y; would exceed O(k - env/ kd), contradicting Proposition 4.5.
Likewise, the kth smallest y; must be greater than or equal to —O(ken+/d/k), so the kth largest |y;| is at

most O(ken+/d/k).

This means that
2 2,2
d
is Yi K-&n w FERC) = K“e"n"d).
Xi,R) 2 < o o O(k*e*n*d). O
i€B i€B
We also have the following bound.

Proposition 4.7. Let X1, ..., X, satisfy Assumption 2, with en < d. Let B C [n] have size en, and let
R =35 Xi. Then, ||;c5((Xi, R) — d) X[, < O(k* - end).

Proof. Write y; := (X;, R) — d. We can then write

S (XL R) —d)X; = Y yiX

i€B i€B
|y1
= / Xidt— ) /
1€B:y; >0 i€B:y;<0
(o] (o]
:/ X, dt—/ > Xi)adt.
0 \ieBwy;>t 0 \ieBuwy;<—t
Ay A_

For simplicity, we will just bound || A |2, as the argument for bounding || A_||2 is identical. As in Propo-
sition 4.6, for any real number ¢ > 0, the number of indices ¢ € B such that (X;, R) —d > t is some k()

fort < O(k - env/d/k(t)),so k(t) <O (w) for all ¢. In addition, k(t) < en always, because we are
only counting indices in B.
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For any ¢ > 0, define A, (t) := HZ . By Proposition 4.4 (which we can apply since

k(t) < en),

3/2 5/4 ,13/4 1.5
[ A+ @)[2 = (\/k: ~d+ \/n-kz(t)(snd)lﬂ) -0 (I%tnd LB (ent) d ) <0 (m tend) 7

since we are assuming d > en.

In addition, for any t > 0, as k() < en, we have || A, (t)||s < O(Vend + /r(en)?/*d"/*) = O(/k -
Vend). Also, note that A (t) = 0 for t > O(kenv/d), as this will imply k(t) < 1, so k(t) =

Overall, we have that

[Asll2 < [ 144 O]t

KEM KenvVd 1.5
g/ O(\/%-snd)dt—i—/ o) (” ‘Wl) dt.
0 KEM

t

The first integral is trivially bounded by O(x!'® - envend) < O(k!® - end), since en < d. The second

integral equals
d
renyd < k% end.

k1 Pend - log
KEN

An identical calculation for A_, combined with the triangle inequality, completes the proof. O

Finally, we will bound the Frobenius norm and operator norm of y_ X; X zT , over any subset of en points.
Proposition 4.8. Suppose B C [n] has size en. Then, under Assumption 2, and if en < d, we have that
I ies XiXi' | < Ok - dv/En).
Proof. Note that

2

xx =Y XXX =Y (X))
i€eB F  ijeB i,jEB
By Item 3 of Assumption 2, we know that for i = j, (X;, X;)? = ||X;[|3 < x?d?, and by Item 2 of
Assumption 2, for each i # j, <X7;,Xj>2 < k% -d. So, because |B| =¢-n < d,

ZXXT

i€B

<OK?-en-d*+ K% (en)?-d) = O(K* - en - d?).

We take the square root, and the result follows. O

Proposition 4.9. Suppose B C [n] has size en. Then, under Assumption 2, and if en < d, we have that
1 e s XiXi llop < O(5? - d).
Proof. Choose a unit vector w. Since 3_,c 5 X; X, is PSD, it suffices to show that w " (ZiGB XZ-XiT) w =
Sien(Xi, w)? is at most O(k? - d).

First, we consider the kth largest value of (X;, w). For any subset B’ C B of k < en elements, we
have |3 pr Xilly < \/k:d + K -kvVend + k- k-en < O(Vk - kd), by Proposition 4.4 and since en < d.
Therefore, ;¢ g/ (Xi, w) = (Xep Xisw) < O(Vk - kd). This means that the kth largest value of (X;, w)

is at most O(+/k - d/k), and the kth smallest value of (X;,w) is at least —O(\/x - d/k), which means the
kth largest value of (X;, w)? is at most O(x - d/k). Adding this over 1 < k < & - n, we have that

Yien(Xiw)? <351 O (Fc- %) = O(k? - d). O

32



4.3 The Null Case: Mean

In this subsection, we verify that, under the null hypothesis and Assumption 2, with high probability Algo-
rithm 3 not reject on the first step, assuming sufficiently many samples. In this subsection, we do not assume
that en < d.

Define v = (Zie[n] XZ-> /1l > ien Xi|2 to be the unit vector representing the direction of the sum of all
points. Also, define z; := (X;, v) for all i < n. Recall that G C [n] represents the set of good (uncorrupted)
data points, and B = [n]\G represents the set of bad (corrupted) data points. Note that |G| = (1 — €)n and
| B| = en. We now prove the main lemma for this subsection.

Lemma 4.10. Assume the null hypothesis, meaning that each X; for i € G is drawn i.i.d. as N(0,1).

Also, assume n > k° - (g + %f) and o > K - e. Then, under Assumption 2, with high probability,

HZie[n] X;

Proof. We write

2
, = nd + 0.01a2n2.

2 2

> X,

ieG

- + 2+2.<2Xi,ZXi>.

2 2 ge ieB

a b c

> x

i€[n]

>,

1€B

2

Using standard concentration, we can write a = (1 — £)nd & O(kn+/d) with high probability, and using
Proposition 4.4, we can write b = end &+ k - en - O(Vend + en). Finally, we know that the samples X;
for i € G are drawn independently, from the samples in B, which means that with very high probability,

o] < 0(%5) - | Sieq Xilla - || Siep Xill- We can bound this as O (2 - vknd - V/E(vVend + en)) =

r2(Ven2d + en®/?), by Proposition 4.4.
Overall, we have that

2
=nd+r*- 0O (n\/g + (en)®?Vd + e*n? + Ven2d + 5n3/2) .
2

> x

i€[n]

But note that Ven2d < n\/ﬁ, so the only relevant error terms are the other ones, n\/&, (En)3/ 2\/&, e2n?,
and en®/2. By assuming that n > 7 - (@ + d53), we have that the first two error terms O(x%n/d)

a at
and O(k?(en)3/2d) are each bounded by 0.001a%n%. The third term O(x? - £2n?) is at most 0.001a%n?,
assuming that @ > k° - &. The final term O(k? - en®/?) is at most 0.001a>n? assuming that n > x5 - Z—i,

2
which is true if n > k5 - g and ¢ < «. Hence, we have that sz‘e[n] X; , = nd + 0.01a2n2. J

4.4 The Null Case: Variance

In this subsection, we verify that, under the null hypothesis and Assumption 2, with high probability Algo-
rithm 3 does not reject on the second step, assuming sufficiently many samples. Hence, Algorithm 3 accepts.
In this and the next subsection, we may additionally assume that en < d and n < %. More formally, we
make the following assumption in this subsection.

. . .. 3 2/3.2/3
Assumption 3. We make Assumption 2. In addition, we assume that n > «° - (g + % + %87‘?3/) and

a>k?-e. Finally, we also assume that en < d and n < %.
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We recall that R := > ;cp X; and T = } ;. Xi. Also, recall that S = 37,1 X; = R+ T, and
v =S/||S||2. We wish to provide an upper bound for

Ly (8 Ay Ly (KR ) 4,

n 1€[n] n 1€[n]

First, we consider the bad terms, i.e., we bound

1 (Xi,R) + (X;, T) — d\?
() s

QZ[XuR d)’ 2(<Xz-,R>—d)-<XZ-,T>+<Xi,T>2}.

\sn2 P

i€B
Using the results from Section 4.2, we prove the following bound.

TN
Lemma 4.11. Assume the null hypothesis. Then, under Assumption 3, % Y ieB (%) <e+0.01-
o, 7 with high probability.

£

Proof. First, note that
> (X, R) —d)? = O(k* - €°n’d) 4)
i€l
by Proposition 4.6. Next, we can write ), g ((X;, R)—d)(X;, T) = (T, >, g ((Xi, R)—d) X;). However,
by Proposition 4.7, || ;e s ((Xi, R) — d) X2 < O(k? -end) and 3, 5 ((X;, R) — d) X; is independent of
T, which is drawn as N (0, (1 — £)nI). Therefore, with high probability,

< O(ky/n)-O(k%-end) = O(k*-en®2d). (5)

> ((Xi,R) - d)<XZ-,T>| - ’<T, > (X, R) — d)X; )
ieB i€B

Finally, we can write 32 5(Xs, T)? = TT (Liep XX ) T = (1 = e)n - 27 (Siep XiX[) Z,
where Z is a standard Gaussian independent of {X;};c5. We can then use the Hanson-Wright inequality
27 (Soen XXT) 7~ (e XXT)| £ O (- | S X7 1)
2 = end + O(k - enV/d), by Item 3 of Assumption 2. So, by

(Lemma 2.10) to say that with high probability,

We can write Tr(Y ;5 Xi X;') = e | Xi]
using Proposition 4.8, we have that

Z<Xi7 T)2 = (1 —&)n - (end £ O(k - enVd + k% - dy/en)) < end + O(k? - £/?n32d),  (6)
i€B

since we are assuming en < d. By combining Equations (4), (5), and (6), we have that

> (X3, 8) —d)? = > [((X5, R) = d)° + 2 ((X;, R) — d) - (X;, T) + (X;, T)?]

i€B i€B
<en?d+ k% - O(*n?d + £Y/?n3/%d).

As we are assuming that n > & - ‘27‘5?, this implies that O(x3 - e2n%d) < 0.001 - . Moreover, we are
assuming that n > x° - d2§;§§/3 > K5 - ds//f, which 1mphes that O(k3 - 1/2 3/2d) < 0.001 - T‘ In
summary,
4
S (X3, 8) — d)® < en’d +0.002 - — . n?, %
: £
i€B
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Next, we note that ||S||% =nd £ 0.01a?n? = nd - (1 +0. 01@) using Lemma 4.10. As a result, as
we are assuming that n < 2 , then the reciprocal of 1 £ (0.01%" o 4 isinthe range 1 +0. 020‘ t Therefore, by

),
1 X, 8)—d\? 1 ot
Z(H> < - <1+00 O‘) <5n2d—|—0002 @ n3>
n 2 \UTS n%d d Z
2 4
(140022 ) e (14+0002- £ .2
d g2

Oé4 n

S8

€
4
a* n
=e+001-—-—,
e d
. . 4 . .
where the penultimate line uses the fact that o’n 7~ < min (1 0.1 - %) since we are assuming that n < O%

and o« > 10e.

O

Next, we deal with the sum over good points.

Lemma 4.12. Assume the null hypothesis. Then, under Assumption 3, with high probability,

1 X;,8) —d\” 4
fz (m) < 1_6_‘_0.01&7.2'
nZz\ ISl -

Proof. Recall that S = R + T, and suppose R, T are fixed. Then, by Proposition 2.12, the posterior
distribution of { X, };cc conditioned on R and T is {% +Y; — }7} where {Y; }icq are i.i.d. N(0, 1),
independent of (R, T),and Y = W > icq Yi. As aresult, the posterior distribution of {(Xl, S)—d}ica
is {(<1 €)> —d+||Sll2 - (2 — z)} , where {z; };c are i.i.d. univariate A/(0,1), and z = @ Yicq Zi-
Hence, we can rewrite the desired sum over good points as

TS) —d 2
fz ( SHQ +(Z¢—Z)) .

zEG

Now, note that (T, S) = ||T||3+ (T, R). Since T ~ N(0, (1—¢)nl) is independent of R, and ||R |2 <
O(kV/end) by Proposition 4.4 and the assumption that en < d, we have that | (T, R)| < O(k?Ven2d) with
high probability. In addition, || T||2 = (1 — &)nd + O(k - nv/d) with high probability, as T is the sum of the
uncorrupted samples. In sum, (T, S) = (1 — &)nd + O(k? - n\/d). Therefore, (<T’S> - d‘ < O(k*Vd).
Since ||S||% = nd (1 + 0.01%) = O(nd) as we are assuming n < 2, this means ((<1 - d) /IISll2 =

2
+0 (7).

Next, defining Z; := z; — 2, we have Y ;e 27 = Yie 27 — (1 —€)n- 22, Clearly, Z ~ N'(0, ;= E) ), 80

|z| < k/+/n with high probability. Thus, Y ;e 22 = Yicq 22— (1—e)n-22 = (1—e)n+ O(ky/n+k?) =
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(1 — e)n + O(x%\/n), by Proposition 2.11. Hence, because the average of Z; over i € G is 0,

Ts> _d 2 (T8) _ 4

(1—en) ~ 1 2 (1—en)
— +Z1; = — Zi+ 1—¢)- — =
Z( HE ) w2 o) ( ISl )

zGG i€G

_ 1 72 —g)- i22
= i;ﬁ(l £) O(ﬁ)

_(1_€>i0<\/ﬁ>‘

2/3-2/3 . 4 .
Aslongasn > k° - (4 "*<*% ) the error term is at most 0.01< - %, which completes the proof. O
o8/3 e d

By combining Lemmas 4.11 and 4.12, we have the following.

L X;,8)—d 2 4
Lemma 4.13. Assume the null hypothesis. Then, under Assumption 3, vy (%) < 1+40.02- %7,
with high probability.

4.5 The Alternative Case: Variance

Let p = « - v, where v is a unit vector. Recall that Q = (1 —e)n-av, R = Y} ,cpX;, and T =
Yica(Xi—av) = (e Xi) — Q. Let S = Q+ R + T = 3 ;) Xi. We wish to bound

: 2 (Sist ) - Z(X“Q+RH>SL<X¢7T>—d)2_

i€[n] ze[n]

We can again split [n] into bad and good points. For the bad points B, our goal is to bound

. _ 2
lz <<X@,S> d) _ 1 Z {<X¢,T>2+2<X1'7T>'(<Xi,Q+R>—d)+(<X¢,Q—I—R>—d)2}.

AL n-SI3 &

Before doing so, we will consider the relationship between the values R, Q, T. Note that T is indepen-
dent of both R and Q, whereas R may depend on Q.

Proposition 4.14. Suppose that X1, ..., X, satisfy Assumption 2, that en < d, and Algorithm 3 does not
(k- (en)*?Vd), and |Q + R||3 = end £ 0.01a®n? £ &2 -

@) (n\/g + ozn?"/?).

Proof. By Proposition 4.4, we know that |R||3 = || S;cp Xil|3 = end + O(k - (en)?/?V/d). Next, because
Algorithm 3 did not reject in Line 3, we have that |Q + R + T||3 = || Xy Xill5 = nd £ 0.01a%n
However, we can write [ Q+R+T|3 = |Q+R |3+ T|3+2(Q+R, T). Let A = ||Q+R||2. Then, with
high probability, || T||3 = (1—&)nd+0(kn\/d) and (Q+R, T) = +O(kA\/n), since T ~ N(0, (1—¢)nI)
is independent of Q+R.. This means nd+0.01a?n? = A2+ (1—e)nd+O(knVd) £ O(k- Ay/n), so A? =
end + 0.01a%n? + O(kn\/d) + O(k - Ay/n). Finally, we know that A < ||Q||2 + [|R |2 < an + vk - end,
which means

1Q + R||2 = A% = end £ 0.01a%n> £ O(k?) - (nVd + an®/?). O
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Hence, we have the following corollary.

Proposition 4.15. Suppose that X1, ..., X, satisfy Assumption 2, ¢ < 0.5, , and Algorithm 3 does not
reject in Line 3. Then, ifn > k° - (g + Ciif) IR[3 - |Q + R3] <0.1-|Q||3 with high probability.

Proof. As a direct consequence of Proposition 4.14,

R[5~ Q-+ RH%‘ < 0.010%n? + 52+ O ((en)**Vd + nVd + anl?). (8)

Assuming that n > x° - (% + %f’) , each error term is at most 0.01a?n2, so (8) is at most 0.05a2n2. Since

1Qll2 = a(1 — )n > 0.5an, this means that ||R |3 — |Q + R3] < 0.1-|Ql3. O
We now turn to bounding the sum for the bad points B.

Lemma 4.16. Suppose that Algorithm 3 does not reject in Line 3, and € < 0.1. Then, with high probability
under the alternative hypothesis and Assumption 3,

0.05a*
> ((Xi,8) —d)? > en’d (1 T L ”) .
, e%d
i€B
Proof. We can rewrite the left-hand side of the above expression as
> (X6 Q+R) = d)? + (X, T) +2((X;, Q + R) — d) - (X;, T))
ieB
First, we consider 3 ,c5((X;,Q + R) — d)?. Since ¥ ;c5 X; = R, by Jensen’s inequality this is
2
at least en - ((%, Q+R) - d) = L . ((R,Q+R) — end)?. However, we can write (R,Q + R) =

2 3 2
”QJFR”?H‘QR”? 1912 4nd since IR||2 < |Q+R|%+40.1]|Q||3 by Proposition 4.15, this means that (R., Q-+
R) < [|Q + R|3 — 0.45]|Q||3. By Proposition 4.14, we have ||Q + R||2 = end £ 0.01a?n? £ O(x?) -

(n\/& + om3/2). Therefore, since ||Q||3 = (1 — €)?n? > 0.8a*n? as ¢ < 0.1, this means that

(R,Q+R)—end < 0.01a2n2+0(/€2)-(n\/g + an3/2) —0.36a%n? = —0.350*n>*+0(K?)- (n\/g + an3/2) .
Therefore,

S (X Q+R) — d)? > i - (03502 — O(k?) - (nVd + an¥'?))’
i€B

4 2 3
> O.lOé?n3 — O(rk?) - (C:: -n2Vd + O;n5/2>

4

> 0.08- 2pd, 9)
3

Above, the second inequality follows because (A — B)? > A? — 2AB for any real A, B, and the last

inequality follows because the two error terms are each at most 0.01 %4713 if n > K- g.
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To bound 3", 5 (X;, T)?, we can write this as T'" (ZiEB XZ-X;) T=(1-¢n-2Z" (ZieB XiXZ-T) Z,
where Z ~ N (0, I) is independent of {X; };c 5. We apply Hanson-Wright (Lemma 2.10) along with Propo-
sition 4.8, to say that with high probability, |2 (Siep XiX[) Z = Tr(Ciep XiX[)| < O (k- | Tiep XX ) <
O(k? - d\/en). In addition, Tr(Y;c 5 XiX;') = Sicp || Xill3 = end + & - env/d. Therefore, since en < d,

Z<Xi’ T)? = (1—¢)n- (6nd + O(k? - dv/en + k - sn\/;l)) = en?d—e’n?d+0 (/@2 : 61/2n3/2d) . (10)
i€B

To bound the final term ), 5 ({(X;, Q+R)—d)(X;, T), we firstbound ||3-,c 5 ((X;, Q + R) — d) X, .
We can use Proposition 4.7 to obtain that ||}, 5((Xi, R) — d)X;||, < O(k%end) < O(k*and), as we as-
sumed that ¢ < . Next, to bound |3, 5 (X, Q) Xil|, , we can write ), p(X;, Q) X; = (ZieB XiXZ-T> .
Q, which has norm at most sz‘eB X-X»T

since { X; }iep and Q are independent of T ~ N 0, (1 — e)nl), with high probability we have that
|<T > (X R) = )X, + 3 (X, Q>Xi>|
O(rv/n) - | |2 (X5, R) = ) X)) + |13 (X, QX
1€EB ) i€B 2

i€EB i€B
< O(K3 - an®?d). (11)

1Qll2 < O(k? - d - an), using Proposition 4.9. Therefore,

> ((Xi,Q+R)—d)- (X;,T) |

1€B

In summary, by combining Equations (9), (10), and (11), we have

4,3
S (X, 8) — d)? > 2B

end — O(K%) - (52n2d+ 123020 4 an3/2d) .
i€B

. 3 2/3.2/3 3 2/3 2/3-2/3
Now, assuming that n > x5 - (d% 4 & ;8%/ ) > K- (i% + ig//f + ¢ /ag ! ), each of the three error terms
is at most 0.01<- o’ 3. So overall,

0.05a*n?
g

O

>_((Xi,8) —d)* >

0.050*
tend=end|1+ 204 " .
i€EB e=d

Corollary 4.17. Suppose that Algorithm 3 does not reject in Line 3, and € < 0.1. Then, under the alternative

. . . . e 1 (X;,8)—d 2 a* n
hypothesis and Assumption 3, with high probability . - > icB ( EIE ) >e+0.04 - 7.

Proof. Since Algorithm 3 did not reject on Line 3, this means HSH% = nd+0.01a*n? = nd- (1 + 0.01%”).

So, WSH% = ﬁ . (1 + 0.02“?7”) because we assumed n < —5. Hence, by Lemma 4.16, we have

1 (X;,S) —d\? ot n 5 M
—. —— ] 2e-|14005—-=]-(1-0.02a" - =
n Z( ISl > = ( ORIy ( ° d)

i€EB
4
« n
- (1+004— - =
€ ( + 2 d)

4o

«
= 0.04— - —. O
e+ -
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Finally, we bound the good samples.

Lemma 4.18. Assume that n > k> - (dzézzji/:j) . Then, with high probability

Q)2 1
1Z(<X“S> d> 21_8_0.0104 n
n

PANE =d

Proof. Let’s fix the vectors Q, R, T, and consider the posterior distribution of the good samples {Xi}ica-

By Proposition 2.12, we can write X; = (Q+’)I‘ +Y; — Y, where {Y;};c( are distributed as i.i.d. (0, )

and Y = ﬁ > icc Yi. Hence, {(X;,S)}icq is distributed as <((21+:£)S + [|S||2 - zi — Z, where z; are

distributed as i.i.d. N'(0,1) and z = ﬁ > icq %i- Hence, defining Z; = 2; — Z, since Z; have mean 0, we
can rewrite our expression as

<Ql+T)S> d ’ 1 K2
em ~ ~\2
= +zZ| >2=> E)>0Q-¢) - —.
Z;; 1S]]2 ' n Zez(:; ' vn
The final inequality above combines the facts that Y";c; 22 = 3,0 22 — (1 —e)nz?, that 3y 22 = (1 —

g)ntk/nby Proposition 2.11, and that |z| < k/+/n. Finally, because we are assuming n > x°- (di;i/?’ ),

we have that £ \F < 0.01% o 7~ This completes the proof. O
By combining Corollary 4.17 and Lemma 4.18, the following lemma is immediate.

Lemma 4.19. Suppose that Algorithm 3 does not reject in Line 3, and € < 0.1. Then, under the alternative
hypothesis and Assumption 3, with high probability

1 &s (X, 8) — d\? 4

Z<M> 21_{_0‘03.@.

n = IS]2 ed

As a direct consequence of Lemmas 4.10, 4.13, and 4.19, Lemma 4.2 is immediate.

4.6 Proof of Lemma 4.3
In this section, we finish the proof of Theorem 4.1, by proving Lemma 4.3.

It suffices to prove the following lemma.

a? a?

Lemma 4.20. Assume the alternative hypothesis, and that n > K - (ﬁ + ﬁ) and that ¢ < 0.1 and

2
a > K? - . Then, under Assumption 2, with high probability Hzie[n il > nd + 0.1a2n?.

Proof. As usual, we write Y- ;c1,) Xi = Q + R + T, 50 || ¢ Xl||§ —|Q+R+T|5=|Q+R|}+
T3 +2(Q + R, T).

Let A = ||Q 4+ RJj2. Note that A > ||Q|l2 — [|R|l2 = 0.9an — ||R||2, assuming ¢ < 0.1. In
addition, by Proposition 4.4, we have that HRH2 = || Siep Xill3 < end+O(k) - ((en)3/?Vd + (e )2)
IR|2 < O(Vend + k - en). Assuming that n > £° - % and a > &° - €, both O(v/end) and O(k - en) are
at most 0.1an. Thus, A > 0.7an.

/-\/\
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Since T ~ N(0, (1 — ¢)nl) is independent of Q, R, this means that || T||3 > (1 — &)nd — xknv/d and
Q4+ R, T)| < (ky/n) - A with high probability. Thus,

||Q+R+TH%ZA2+(1—€)nd—/<m d—2kyn-A>(1—e)nd+ (A—kyn)? - k2nVd.

Since n > K° - g > a2, this means that k\/n < 0.2an, so A — ky/n > 0.5an. Moreover, £2nvd <
0.05a%n?. Thus,

IQ+R +T|3 > (1—¢e)nd+ (0.5an)? — 0.050*n* = (1 — &)nd + 0.20°n>
Assuming that n > k° - a—i end < 0.1a’n?, which means this is at least nd + 0.1a%n?. O

da

By combining Lemmas 4.10 and 4.20, Lemma 4.3 is immediate (since < %). Note that we never

assumed en < d in either of these lemmas.

5 Lower bound in the Huber model

In this section, we prove that under the Huber model, one needs n = (de®/a*) samples to solve robust
mean testing. Our lower bound even holds in the restricted setting where under the null hypothesis, the
distribution must be uncorrupted.

5.1 Main Lower Bound
We are now ready to prove our main lower bound.

Theorem 5.1. Let Dy represent the distribution of Xi,...,X b N (0,1), and let Dy represent the
distribution of (X1, ..., X,) where we choose a random vector v~ N (0, é I) and conditional on v, each
X, is drawn i.i.d. from the mixture (1 — &) - N(a-v,I) + ¢ - N( - v, I). Then, there exists a small

absolute constant ¢ > 0 such that if n = ¢ - ds ,a > ¢ andc- > a—\@, then dry(Dy, D) < 0.1.

Since the total variation distance is at most 0.1, no algorlthm can successfully distinguish between D

< 1+ o(1), and therefore ||av||2 < a(l + o(1)),

with Very high probability. Hence, this proves the desired lower bound when c - %
[e%

> g . Alternatively, if

a4 < ;{;, the lower bound is immediate from the non-robust lower bound [DKS17]. When o« > ¢, it is
Well known that this problem is impossible, since the null and alternative distributions have total variation
distance < €.

We will bound the dpv (Do, D1 ) through x? divergence. As D, 2(D1||Dy) is actually too large and thus
does not suffice, we instead bound D, 2 (D}||Dp) for some D that is close in total variation distance to D;.

For a sample X = (X1,...,X,) ~ D1, we will let a set S C [n] correspond to X where i € S iff
X, was drawn from the mixture component N (« - v, I). Note that S is not determined by X. We will
choose D] to be D; restricted to having S with size (1 — £)n + K+/en for some large constant K. Call
such sets .S good, and let S be the set of all good sets. By standard properties of Binomial distributions, if
K > 100, with probability at least 1 — 10~%, a random subset S obtained by including each element i € [n]
with probability 1 — ¢ is good. Hence, drv(D1,D}) < 2 -10~%. Thus, it now suffices to upper bound
D, 2(D1||Do) (which then upper bounds drv (D7, Do) by Fact 2.3).

It will be convenient to use the following notation throughout this section: let Z be the probability that
a random subset of [n] obtained by including each element i € [n] with probability 1 — ¢ is good. We begin
by computing the likelihood ratio.
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Claim 5.2. Let X = (Xi,...,X,) be a set of samples. Let pp, (X),ppll (X)) be the PDFs of seeing that
sample from Dy and D' respectively. Then

pp (X) 1 _ ISl n-ls| (A A ts _d/Qe as(X)
mwm‘z§§1@ : ( d) @(2 )

where we define for subsets S C [n],

XS:: (ZX 1—5)-2&)

€S 1S
ag(X) = HXSH2

o’
ts =g - (2181 + (1= 2)* - (n—|5]))

Proof. For any sample X = (X7i,..., X,), the PDF of seeing that sample from D is
n 2
ppy(X) = [[ ™I/ (12)
The probability of seeing that sample from D; is

Py (X) =By J] ((1—g) - e IimanlP/2 g o emlXakimeia/enl?/2)

- Y E, ( £)ISlen=ISD . T e IIXi—eel®/2. Hellxiﬂls)a/wlﬁ/?) . (13)

SC[n] i€S igS
By restricting ourselves to good sets S € S, the probability of seeing X drawn from D] is
pD, Z E, ISI n—I[S|) H eI Xi—avl?/2 H eI Xi+(1—e)a/ev|?/2 7 (14)
Z 55 i€S i2S

where Z is the probability of a random set S being good if each i € [n] is included in S independently with
probability 1 — €.
From (12) and (14), it is simple to compute the ratio

pD’l(X) 1 g s) —a(X o2lwl2 /2 1— (X —(1—e)2a2 /e2-lul2 /2
- _. (1 _5)| le(n=IS1) . e~ Xiv)=aZ|[v]?/2  TT e(1-8)a/e(Xiv)—(1-e)%a”/e=||v]|?/
X 72 B |LL 1l

_

Ag(X)

We use Ag(X) as a shorthand in simplifying the expression above. Now we can explicitly compute Ag(X).
With Xg, tg as defined above, we can write

As(X) = E, [emKso)=ts/2InI)
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1

Since v ~ N(0, 5 - I) = —= - N(0,I), we can use the rotational symmetry of v and Fact 2.4 to rewrite

-

-1
As(X) = Epn(o,1) [e aS(X)/d'x(tS/Qd).ﬁ] ‘ (EINN(OJ) [e*(tS/Zd)“zD

ag(X)/d _
_ eXp(2-S|—(2ts)//d> _ 1 -
1+tg/d

~en (i) (5)

Using expression for the likelihood ratio in Claim 5.2, we can explicitly compute the x? divergence
D, 2(D1||Dy).

O]

Lemma 5.3. We have

—d/2

1 . e tS, 2

D(DiIDo) = oz - 32 (1= &)SHITlelrIsh =170 (1( dT> )
S TCS

2

where ts = % (2|SNT| —e(1 —e)|SAT| + (1 — )?|(S UT)¢|) and A denotes symmetric difference.

Proof. Using Claim 5.2, we can write

1 n— n— d+t —d/2 d+t —d/2
D (DY[Dg) = 55 - 3 (1 —&)lSHITIglnISh+n—IT) <dS) ( . T)
S TCS

Ex~p, [exp (Q(O;ei(f L) 23;(1{ Z))} . (15)

Bs,T

where ag(X) = || Xs||?, ar(X) = || X7|* and

Xg =

€S €S

(a-ZXi—(l—a)-ZX,)
XT:j(a-ZXi—(l—e)-ZXi)

i€T igT

are as defined in Claim 5.2. Now we explicitly compute the expression above labelled Bgr. In each
coordinate j € [d], ((Xs);, (Xr);) forms a bivariate Gaussian, and ((Xg);, (X)) over all j € [d] are in-
dependent and identically distributed. Through direct computation, we get that ((Xg);, (X7);) ~ N (0,X),

where
ts tsr
Y= !
(tS,T tr )
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and

ts = - (21| + (1) (n— |S))

g
2
_ Y (2 _ _
tr="3- (1T +(1~e (n—|T])
Clz 2 c
tsr = 5 - ( ISNT| —e(l —e)|SAT| + (1 —£)2(SUT) |) .
(XS XT)]
Therefore, ( \/2(t5+d) St d) ) ), where
ts tS,T
S _ 2(ts+d) 24/ (tg+d)(tr+d)
—l_tsT tr
2,/ (ts+d)(tr+d) 2(tr+d)

By Corollary 2.7, this implies that

2o (s} () )

2(ts +d)  2(tpr +d)

(1 - tstid) (1 - tqfid) - (ts+5)’(fT+d)

Therefore, by multiplying this over all j (since ((Xg);, (X7);) are i.i.d. across all j € [d]), we have

that
ts tr t2 a2
Bsr=|(1- (1- - :
) ts+d tr+d)  (ts+d)(tr +d)

—d/2
£ty N
(ts + d)(tr + d)
So, (15) can be rewritten as

1 t 2
D@l = - 3 (=g, (1 (t52)

S TcS

—d/2

Now we can complete the proof of Theorem 5.1 by upper bounding the RHS of Lemma 5.3.

7 (X) 2
Proof of Theorem 5.1. Recall that it suffices to prove that D,2(D}||Dg) = Ex~p, (%) < 1.01 as,
0

by Fact 2.3, this implies that the TV distance between D) and Dy is at most 0.1. By Lemma 5.3 it now
suffices to bound the expression

! L oyt isheomy (4 (s
7R Z( —¢) € - (5 ‘

S, TCS

We can think of S, 7T as random subsets of [n] where each element 7 is chosen to be in S (and likewise 7°)
with probability 1 — &, and then conditioning on S, T" having size (1 — £)n = K/en for some sufficiently
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large constant K. In this case, if we use S,T ~ & to denote this distribution, the above expression is
equivalent to

—d/2
a2 2[SNT| —e(l—&)|SAT|+ (1 —e)2|(SuT)|\”
E&ng 1—(—- .

g2 d

So, now we just need to show thatif n = c - f—f for some small constant c, that the above expectation is at
most 1.01.

Now, recall that we assumed % < ¢ o7 This means that ¢ - f >1,or equlvalently > c 273,
Hence, we may assume that n > c 1. 5_3.

If |S|=aand |[T| =b,and we let Y := |(SUT)|,

E2SNT|—e(1—¢e)|SAT|+ (1 —¢e)*|(SUT)"|
=(1-e?Y—-c(l-e)n—a-Y+n—-b-Y)+e*(a+b-—n+Y)
=Y -—e(l-¢)2n—a—0b)+e%(a+b—n)
=Y +e(a+b)—e(2—¢)n

Recall that we may always assume a,b = (1 —e)n + K/en. Also, note that Y ~ HGeom(n,n —a,n —b).

Therefore, if we condition on fixed a,b € [(1 —¢)n— K+/en, (1 —e)n+ K\/an], we have that E[Y |a, b] =
w = &?n + 2Ke\/en + K?c. By our assumption that n > ¢~! - £73 and choosing ¢ sufficiently
small in terms of K, this can be bounded as e?n + 3K¢e /en.

Moreover, by Proposition 2.16, since n — a,n — b < en + K+/en < 2en,
P (Y — E[Y]a,b]| > tv/znla,b) < 2e~ 2/ (n=0) < 9=t
Because [E[Y |a, b] —e2n| < 3Ke\/en, this means P(|Y —e2n| > (3Ke+1),/en) < 2¢*". Hence, because
ela+b)—e(2—e)n = —e2n? 4+ 2K \/en, this means P(|Y +e(a+b)—e(2—¢e)n| > (5K +t)/en) < 2e7!
In addition, we know that Y is bounded by min(n — a,n — b) < 2en, so overall |Y +¢c(a+b) —e(2 —€)n|

is also bounded by 4en with probability 1.
We can rewrite our goal as bounding

o\ —d/2
a? Y+ela+b)—e(2—¢e)n
ES7TNS ]. - 572 . .

d

Note that if |#] < 0.2, then 1 — 22 > e 2%" 50 (1 — 22)" %2 < ¢ 2"~d/2 — ¢d=® We know that
+e(a+ b) — (2 — e)n| < 4en with probability 1, so as long as —22-4‘5—” < 0.4, which holds when
Y b 2 < 4 h probability 1 1 = 7
n<0.1- i—f <0.1- %, we just need to bound

‘ol
Es s [exp (; v (Y+e(a+b)—e(2— 5)n)2>] . (16)
Defining C such that Y + £(a + b) — e(2 — e)n = C/en, then P(|C| > 5K +t) < 2¢~". So, (16) equals

4 4
a1 a* n '
Esr~s [GXP (54 i 02571)] = Esr~s [exp (C’2 I d)] =Egr~s [602 C} ,

sincen < cd- 5 . By our bounds on C, if we assume c is sufficiently small in terms of K, this is at most 1.01,
which means D 2(D]||Dy) < 1.01. This concludes the proof, since Fact 2.3 implies dpv (D], Dy) < 0.05,
and we already know that dpy (D), Dy) < 2-1074 O
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6 Improved Lower Bound against Oblivious Adversaries

In this section, we further improve our lower bound from Section 5 against an oblivious adversary.

6.1 Lower bound instance

We first construct the distributions for the lower bound instance. Fix parameters € < o < 1 and dimension
d, and consider drawing n samples for some choice of n. We will also set an auxiliary parameter 3, which
will depend on ¢, v, d, n.

The null distribution Dy will simply be n i.i.d. samples from N(0,7). To generate the alternative
distribution D1, we perform the following steps:

1. Select a subset A C [n] of size en randomly. Let A¢ = [n]\ A

2. Draw ¢ - n points {X; };c 4 ii.d. from NV (0,7). Set Ry := Sum(A) = >";c 4 Xi.

3. Draw the vector z € R? from A (O, 0‘72 . I) .

4. Define i := —f - R — z, and draw (1 — &)n points { X, };c ac from the distribution N (s, ).
For simplicity, we may write X = (X1, ..., X,,), both in the null and alternative settings.

Note that with very high probability, ||z||2 < 2. We will also ensure that 3 is chosen so that with very
high probability, 5 - ||Ra|l2 < 2a. As a result, this alternative construction indeed has ||u||2 < O(«).

In the rest of this section, we prove that it is statistically hard to distinguish between Dy and Dy, for an
appropriate choice of .
d2/3€2/3

8/3

e<a<landn > % + dig. Then dpy (Do, D1) < 0.1.

«

Theorem 6.1. Suppose that n < c - min ( , %) for some sufficiently small constant c > 0, and that

This implies that no algorithm can successfully distinguish between Dy and D; with probability more

2/3.2/3 3 )
d 73 %) > Vd | del Alternatively, we

= a2 a
may either use the non-robust lower bound [DKS17] or Theorem 5.1. Finally, when o > ¢, it is well-known
that this problem is impossible, since the null and alternative distributions have total variation distance < .

We will prove the lower bound via a chi-square computation. For this, we must compute likelihood
ratios, which we will do in the next subsection.

than 0.55, which proves the desired lower bound when ¢ - min (

6.2 Likelihood Ratio Computation

First, we will compute a formula for the likelihood ratio between D; and Dy, if we condition on the set
A C [n] in the alternative hypothesis.

Definition 6.2. Recall that pp,(X), pp, (X) denote the joint PDF of the points X = (Xi,...,X,,) drawn
according to Dy and Dj, respectively. We also define p4(X) to denote the PDF of X3,..., X, drawn
according to D, conditioned on the first step selecting A.

In addition, we will define R4 := Sum(A) = >;c 4 X, and T4 (X) := >";c 4c X;. Usually, the choice
of X1,..., X, will be clear, in which case we will drop the argument X.

Lemma 6.3. Conditioned on A, the likelihood ratio is

pA(X) <1 Il a2> - <_ (1= )n2d - [Ral3 +26d - (Ra, Ta) — o um%)
pDo(X) .

- d 2((1—¢e)a?n+d)
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Proof. Suppose we additionally condition on the value z ~ N(0, %2 - I). Then,

pa(X|2) Z ( 1 2 1 2)
poifkad W M __ X‘+B'RA+Z + — X

-y (—(Xi,ﬁ-RA—i-z) - % HB-RA+zH§)

log

1€AC
= (a8 Rat )~ C0 5 Rl
= 5T R - T RS - (Tt (o8 R - g

So,

Pl —exp (<0 (TaRa) - B RN - (T (1= e 5o Rae) = B2 ).

Next, we remove the conditioning on 2. Indeed, by using the above equation followed by Proposition 2.5,
we have

pa(X)
pDo(X)
1-— 1—
= EzNN(o,%-I) exp <—ﬁ (T4, Ry) — (25)71 B Rl = (Ta+(1—e)n-B-Ry,z) — (25)71 . ||z||%)
_ 1—
= exp (-ATaRa) = LS PIRABVE, 0 (~ U520 + (T + (1= niRa, 7))

(1—e)n- a2>d/2 . <|y(1 —e)nfRa + TAHg) '

B (1—e)n
= exp (—5<TA, Ry) — 252||RAH%> ' <1 + d 2((1 —e)n+d/a?)

We can combine the terms that are in terms of ||R.||3, | T (|3, and (R4, T 4), to simplify this as

(1-c)n-a2\ ¥ (1—)nfB2d - ||Rall3 +28d - (Ra, Ta) —a? - | Tal3
<1+d > -exp | — (1= )an + d) .

Now, recall that the x* divergence D, 2(D1||Dy) equals

(pol <X)>2 3 (pA(X)pB(X)>
E = 1) E (—Fwu )
X~Do \Pp, (X) X1y XumeN'(0,1) A,BCIn] \ PDy (X)

where A, B will always denote random subsets of size en in [n]. Using Lemma 6.3, we can write this as

—d
1 — 2
<1+<6>m> B E expl
d AB X1,... Xn~N(0,I)

1 (1—e)np%d- (|Ral3 + |R5(3) +28d - ((Ra, Ta) + (Rp, Tp)) — o (|Tal3 + [ T5l3)
2 (1—-¢e)a?n+d '

A7)
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Now, the exponential term can be decomposed coordinate-wise, and since each coordinate of X7, ..., X,
is independent if we condition on A, B, we can therefore write (17) after removing the expectation on A, B

as
—d d
(1 —¢)na? 1 2" (Ma+ Mp)x
I+ = - -5 18
( i d xl,...,xﬁmo,l) P2 1 —oatntd (1%

Above, each z; is a standard univariate Gaussian, and M 4 is the n X n matrix with blocks

A A°

A [a—enp2d  pd
A° 8d —a?

and Mp is defined similarly. Here, each block is dependent on whether the row/column indices are in A or
A€, and all entries in the same block are the same. Note that M 4 has rank at most 2. Moreover, by projecting
onto the space of vectors v where v; is constant for all ¢ € A, and constant for all ¢ € A¢, we have that M4
has the same nonzero eigenvalues as /D Y 4v/D 4, where

_[en 0 (A —enp?d Bd
DA_(O (1—5)n>’ EA_( Bd —a?)"
If we define M4 p = M + Mp, we can write M 4 p in a similar block-diagonal format, where the rows/-

columns are split based on the index being in AN B, ANB¢, A°“NB, or A°NBC. Therefore, if [ ANB| =~v-n
for some 0 < v < g, M 4 p has the same nonzero eigenvalues as /D ¥4 B\/Da, B, where

n 0 0 0
10 (e=v)n 0 0
Das 0 0 (e —v)n 0
0 0 0 (1—=2e+v)n
and
2(1 —e)np?d (1 —¢enB?d+pBd (1 —¢e)nB?d+pBd  28d
S (1 —¢e)nB?d+ pd (1 —e)np?d—a? 283d Bd — o
AB-= (1 = e)nB2d + Bd 28d (1—¢e)nB2d—a? Bd— ao?
25d Bd — o? Bd — o —202
Now, for any subsets A, B C [n] of size -1, we define G4 = W'MA andGap=Ga+Gp =
m - M4 . We note the following basic proposition.

Proposition 6.4. Suppose that n < 0&—12(1 and 0 < g < O—T'Ll. Then, all eigenvalues of G 4 are strictly greater
than —%.
As a direct corollary, all eigenvalues of G 4 g, for any A, B, are strictly greater than —1.

Proof. 1t suffices to prove the claim for GA = (1—5)% -/ Da¥Xav/Dy. Note that G‘A isa2x2

symmetric matrix. If G 4 has eigenvalues A1, Ao, then we need to show that \; + %, Ao + % > (. It therefore
suffices to show that (A1 + 1)+ (A2 +3) = Tr(G4)+1and (A + - (e+i)= det(G4)+ : Tr(Ga)+ :
are both strictly greater than 0.
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Note that

A 1 1

—a?(1 —e)n
TI'(GA) — mTI‘(EADA) = m ( 6)

[—amsPd-en—a?- (1 —ep] 2 TS5

We are assuming that n < 0&—12‘1, which means that (1 — &)a®n < 0.1d. So in fact, Tr(G4) > —0.1, so
Tr(Ga) +1> 0.9 > 0.

Next,
det(@) = = 5);271 T det(Da) -det(%)
n-(l—e)n

~ Ay (L= (—a®) = (5

e(l—en?- % (1 —e)a’n+d)
a (1 —e)a?n +d)?
e(1—¢e)n?- 3%d
S (l-9)aln+d

A

Since 0 < 8 < 0.1/n, this means det(G 4) > _(01.(1155)212_73-?1 > —0'%1‘1 = —0.01. So, det(@,@—i—% Tr(Ga)+

1> —0.01-0.05+0.25 > 0. -

As a result of Proposition 6.4, we can apply Proposition 2.6 to obtain the following.

Lemma 6.5. Assuming that n < %3 and g < %1, the x* divergence D, 2(D1||Dy) equals

— ’I’ZO[2 2
B (45 2) s v oan)

Proof. We have the following chain of equalities. The first equality follows by combining (17) and (18), the
second follows by the definition of G 4 g, the third follows by Proposition 2.6, and the final follows by basic

manipulation.
- E 1 2" (My+ Mp)x I
: exp|—=-
214y ~N(0,1) P 2 (1 — 8)a2n +d

B o\ —d d
T~ N (0,1) 2

-det(I + GA,B)CW]

—d/2

D.2(D1||Dg) = E
2 (D1||Do) 5|

—d/2
-det(] + GA,B))
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6.3 Final Computation

Through some tedious computations, one can show the following:

Lemma 6.6. Suppose that |A N B| = 7 - n, for some 0 < v < e. Then,

1
det ([ = :
U +0as) = T = oamn)
{(d + B2d(e* — y)n*)? — (a®n — 2Bden + B2den® — 2a2en + oyn + 2Bdyn — 26%de*n? + ﬁ2d€fyn2)2}

19)

Proof. Note that G 4 p has the same eigenvalues as CA}A,B = (1—5)% “v/DaBXaB\/Da . Hence,

1 1
det(I =det ]+ —-—+—— 1/DapX D =det ([ + ——+———D Y .
et(I+G4 ) = de ( + A= oaZn+d A,BYA,BA/ A,B) e ( + A= aZn+d A.B A,B)

We can then can compute and factor the determinant as an expression of o, €, 3,7, d, and n. Writing the
output as a difference of squares, one then obtains (19).” O

Now, we will set 3 to satisfy the quadratic equation o>n — 23den + 2den? = 0. This is equivalent to
B%(den) — (2de)3 + a? = 0, for which we will set 3 to be the solution

B:de—\/d%z—aldsn:l. 1 — 1_@ .
den n d

Note that this is only possible if a?n < de, son < %. In this case, we can simplify our expression as

(d+ B%d(e? — y)n?)? — O(a®en + a?yn + Bdyn + [2de*n? + B2deyn?)?
(d+ (1 —¢e)a?n)? '

det(/ + GaB) =

Using the fact that v < &, we can ignore the terms o>yn (smaller than o?cn) and $2deyn? (smaller than
B2de?n?). So, this simplifies to

(d + B2d(e? — v)n?)? — O(a®en + Bdyn + 32de?*n?)?

det(I + G =
(I+Gap) (d+ (1= )na?)?
In addition, note that if n < %, then /1 — oi—an >1- %, which means 3 < % . % = 3—;. Hence, if
n <%,

(d— %:2 -max(0,y — &2) - n?)? — O(a?en + %2 -yn + %4 -n?)?

det(l +Cap) 2 (d+ (1 — e)na?)?

(20)

Note that if n < 0'155, then [ < 3—2 < %. So, by combining (20) with Lemma 6.5, we have the

(63
following lemma.

Some Mathematica code to verify the computation is provided in Appendix A.
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|AmB|

Lemma 6.7. Suppose that n < % and B = L. (1 —\/1—(a2n)/(de)). Then, for~y := , we have

sz (D1HDO) < E

—d
((d - d; -max(0,v — &2) - n?)? — O(a?en + %2 Syn + 0‘74 : n2)2> /2] 21
AB '

d2

Recall that 7 is the fraction of [n] in both A and B, so the distribution of 7 is 2 - HGeom(n, en, en).

Hence, v € [0, €] with probability 1, and by Corollary 2.15, P(max(y—e2,0) > t) < exp (— min ( £2.k 4”))
We note the following simple proposition.

Proposition 6.8. Suppose that n < C- for some small constant c. Then, for any A and B, each of

4
25 max(0,y —€?) - n? a’en, & -y - n, and o~ . n? is smaller than c - d.

4

Proof. Since 7 < e §zomax(0,y — %) - n? o =

- e >c- dthenn>\f %>c de

de aZ:
Next, a?en, & - yn < o?n. If o®n > ¢ - d, thenn >

IN

c-%> -da F1nally,1fa -n? < ¢ - d, then

nz\fa a—g O

The importance of Proposition 6.8 is that if 0 < 2 < ¢ for a sufficiently small constant ¢, 1 — 2 > =27,

Therefore, we can rewrite the right-hand side of (21) as at most

oo | O %-max(Ojv—sz)-nQ_’_ a2€n+%2-’yn+%4'n2 2 d
P d d 2
4 2., 4+ 22 at 2\?
exp(O(:;2 max(07—62)-n2+<a€n+5\/én+d n)))] (22)

. . L. . 3/4
First, note that if we additionally have n < ¢ - min (a—\/fa, %) for a small constant ¢, then a2en < cVd

E
AB

A,B

and %-nQ < ¢%V/d. Also, note that %2-771 < a26n+%2-max(0, y—&%)n, and that {( - max (0, e2)n )/\f}

4 .
?)?.n? < &5 max(0,7 —e?) - n?, since max(0, y —e?) < 1. As aresult, we can bound

4
- 2. ,2 ., 2
AHj: lexp(O(d2 max(0,y7 —e%) - n +c>>],

d/

g—; -max(0,v7—¢
(22) as at most

o

\s

assuming n < ¢ - min (d—g 5

e’ a2 )°
, we have that by Corollary 2.15,

OQ

Now, for any value ¢

ot 2y .2 2 de?
Pan p ‘max(0,y —e”)-n*>t| =Pyp|v—c¢ >t

A2t n ds?2 n

: 2
SexP(“““(t asn4452’fa4nz4>>

B . 9 d?e? de?
= exXp | —Imin t m,tm .
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If we additionally assume that n < d/ Z /i andn < c- 542 , this is at most exp (— min(t?/4c3,t/4c)).
So, for ¢ > c, the probability that 7= max(O v — %) -n? > tis at most e~'/4¢, which means that

)

4
E |exp|O a -max(0,y — %) - n? 4 ¢? <2 < 1.01.
AB de?

To summarize what we have proved, in combination with Lemma 6.7, we have the following.

Lemma 6.9. Assuming that
3/4 72/3.2/3 7.2
n<e in(de \/ﬁ’d (e ’d5)7 23

for some sufficiently small constant c, we have that
D,2(D1||Do) < 1.01.

However, we note that we can remove several of the terms in (23). More precisely, we have the following
proposition.

oy . 2/3.2/3
Proposition 6.10. Suppose that n < ¢ - min (d / 8%/ , de ) for some sufficiently small constant ¢ > 0, and
d d3/4 d2/3 2/3 d
thate < landn > \[ —l— . Then, n < ¢ - min (a—‘;, —(;2[6, o S ,%) .
Va\2/3 (a3 \1/3 g2/ q2/3:2/3 . J2/322/3 de3
Proof. First, note that( ) (?) =573 = S 55 sincee < 1. Therefore, if —7— > 7,
2/322/3 . 2/3.2/3
then a—\/;z > 4 a8/3/ . Thus, if n < ¢-min (ﬁ, d 8§3/ ) and n > d€ T+ f ,thenalson < c- ‘[ . In addition,
3/4
da—; = T\@s . ig , which means we also obtainn < c- 2 ,because we just showed thatn < c- \f and we
2/3 1/3 2/3.2/3 3.2/3
are assumlng that n < ¢ - 25. Finally, (\[> . (?) = %, which means that if < ;8 /3/ > g,
2/3.2/3
then ¢ “r £ > d ;8 /3/ So, by our assumptions, n < ¢ - % as well. O

From here, the proof of Theorem 6.1 is straightforward.

Proof of Theorem 6.1. By Lemma 6.9 and Proposition 6.10, we have that under the assumptions of Theo-
rem 6.1, D, 2(D1||Dg) < 1.01. By Fact 2.3, we have that drv(D1||Dp) < 0.1.

Finally, note that we created the adversarial samples and the mean vector p first, and then generated the
uncorrupted data, so the adversary is oblivious. Finally, ||u||2 < H l2+5-||R al]2. However, z ~ N(0, % 1)
means ||z]|2 < 2« with very high probability. Moreover, 5 < < and R is the sum of € - ni.i.d. NV (0 1),
50 |Rall2 < 2v/end with very high probability. So, 3 - HRA||2 < % = 2« \/g. Assuming that

n < %, < 4. We can replace « with «v/4 in the construction to finish
the proof. 0

7 The Sample Complexity under Strong Contamination
In this section, we leverage the tight sample complexity bounds for differentially private mean testing [Nar22],

along with the robust-private equivalence of [GH22; HKMN22; AUZ23], to obtain the optimal sample com-
plexity of robust mean testing under the strong contamination model:

51



Theorem 7.1. For o > ¢ - polylog(d, %, é),m the sample complexity of Gaussian mean testing in the

adaptive contamination model is
B d1/2 d€2
© <a2 tar)

The rest of this section is dedicated to the proof of this theorem. First, we recall the definition of
differential privacy: for simplicity, and as it suffices for our purposes, we focus on “fully approximate”
differentially private decision algorithms.

Definition 7.2. A randomized algorithm A: X" — {0, 1} is (0, 0)-differentially private (DP) if for all
datasets X, X’ € X™ that only differ in a single data point X; # X,

P(AX) =1) -P(AX') =1)| <é.

Upper bound. To prove our upper bound, we will require the tight upper bound for DP mean testing:

Theorem 7.3 ([Nar22]). For any parameters 0 < o, < %, there exists a (0, 0)-DP algorithm A that on

_{ d1/2 dL/3 1
n=0 o2 T ik T as
samples X1, ..., Xy, satisfies:

s If Xq,..., X, i N(0,1), then with probability at least 0.99 (over both the randomness of the
samples and the algorithm), A(X) = 0."!

* For any vector p with ||pll2 > o, if X1,..., X, i N (u, I), then with probability at least 0.99,
AX) =1
di/3

Moreover, this is tight: any (0, §)-DP algorithm with these guarantees must take Q(d;# + Sasges T %)
samples.

It is essentially folklore (see also [GH22]) that any (0, )-DP decision algorithm that succeeds with
0.99 probability given n samples is automatically e-robust in the strong (adaptive) corruption model for
€ = 10%’ and succeeds with at least 2/3 probability over the input. For completeness, we briefly repro-
duce the argument here for the algorithm A. If X,..., X, are i.i.d., then with at least 0.9 probability,
P(A(Xy,...,X,) = 0) > 0.9 over the randomness of the algorithm .A. Hence, for any e-corruption of
the data X’ (i.e., en = ﬁ individual data points are possibly adaptively changed from X to X’), by the
definition of privacy,

1 1
P(A(X1,...,X,) =0) —P(A(X],..., X)) = <dr—=—
Hence, for any such corruption X', P(A(X') = 0) >
show that if X1,..., X, "% A(u,I) where |||z > o, with probability at least 0.9 over X1, ..., Xy,
P(A(X’) = 1) > 2/3 for any e-corruption of X.

0.89 > 2/3. The same argument can be used to

While this condition may seem somewhat restrictive, it is in fact inconsequential. Indeed, fore < a < e-polylog(d, 1/¢,1/a),
one can use a robust learning algorithm with sample complexity O (d / ag) , which in this parameter regime becomes O (d52 / a4).

""While [Nar22] did not state a 0.99 success probability, one can amplify the success probability by running several independent
copies and using the majority output.
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Thus, the algorithm of Theorem 7.3 readily implies an e-robust one for robust mean testing, for e = .

106n
Plugging 6 = —— in its sample complexity, it suffices for n to satisfy

10en
d1/2 d1/3€2/3n2/3 e )
ni.

- di/2 dt/3 1 o
"= a? +044/3-(1/571)2/3 +oz'(l/en) B PERIPV TE L

This is equivalent to requiring

B [ g1/2 2
a>0() and n20<d+d€>,

o? ot

where O may hide polylogarithmic factors in d,« ', ~'. Hence, there exists a robust algorithm against
. . . . ~ 2 2
strong contamination with sample complexity O(ﬂ + g )

a? of
Lower bound. We next show this sample complexity is optimal, again by a reduction between robust and
private algorithms. Suppose there exists a robust mean testing algorithm A that uses n samples. We set § :=
%, and construct a (0, 0)-differentially private algorithm for mean testing using a black-box robustness-to-
privacy transformation [HKMN22; AD20]. We will then use a lower bound from [Nar22], which will create
a contradiction if n is too small.

To explain this transformation, first, for any two datasets X, X’ of size n, we define the Hamming dis-
tance dp (X, X') to be the number of indices i such that X; # X/. Now, for any dataset X = (X1,...,X,),
define the score S(X; A) of X (for A) to be the smallest nonnegative integer k such that there exists a
dataset X' of size n with dg(X, X’) = k and A(X') = 1. Equivalently, S(X;.A) represents the smallest
number of points we need to alter from X to obtain some X’ on which the robust algorithm would reject.
(Note that if A(X) = 1, then the score of X is simply 0.)

The differentially private algorithm A’ on X computes S(X;.A), and then outputs 1 with probability
min(0,1 —0 - S(X;A)).

Note that S(X;.A) changes by at most 1 between adjacent datasets X, X', because if S(X;.A) = k,
there exists X" with dy (X, X”) = kand A(X"”) = 1. But then, dip (X', X”) < k41,50 S(X"; A) < k+1.
Likewise, we can show S(X’; A) > k — 1. This proves that the algorithm is (0, ¢)-differentially private,
since the probability of outputting 1 changes by at most 4 if the score changes by at most 1.

Next, if X = (X1,...,X,) e (0, I), then by the property of the robust algorithm, with probability
at least 2/3, every dataset X’ of Hamming distance at most en from X satisfies A(X’) = 0. Whenever this
happens, S(X;.A) > en, and thus conditioned on this the algorithm 4" outputs 1 with probability 0, and
hence always outputs 0.

Finally, if X = (X1,...,Xn) “&" N(y,I), then with probability at least 2/3, A(X) = 1. Hence,
with probability at least 2/3 we have S(X;.4) = 0, and conditioned on this the algorithm A’ outputs 1 with
probability 1.

Overall, this means that if A is robust against strong contamination, then there exists an algorithm A’
that is (0, %)—differentially private for the Gaussian mean testing problem, with the same number of samples
n.

However, we can now invoke the lower bound part of Theorem 7.3 for DP Gaussian mean testing. From
the above reduction, a robust algorithm using n samples yields an (0, Ein)-DP algorithm with the same
sample complexity, which by Theorem 7.3 means that one must have

he & d1/2 N di/3 N 1 _q dl/? N d'/3¢2/3 )
a2 at3/(en)?3  af(en) a? at/3 a
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This implies that

This concludes the proof of Theorem 7.1. O

Lower Bound against Additive Adversaries. Finally, we note that the same lower bound holds even if
we restrict ourselves to adaptive adversaries that only can add points, and can never remove points. This
again follows readily from the results of [Nar22], but is a consequence of an intermediate result proven in
the paper rather than a direct black-box application of their private sample complexity lower bound. The
lemma that we require is the following.

Lemma 7.4 ([Nar22, Theorem D.6, restated] ). Fix any «,6 < 1 and any dimension d. There exists a
distribution D over R? with support only on {p € RY : ||ulla > a}, with the following property. Suppose
U is the distribution over (X1, ..., X,) € (R)™ where each X; ~ N(0,1), and V is the distribution over
(X1,...,X5) € (RD™ where we first draw ji ~ D and then draw each X; ~ N (u, I).

Then, for some universal constants ci,co > 0, if n < ¢1 - 0/17;7@/3 there exist distributions U',V’
over (RN)™ such that drv(U,U") < 1/4, dry(V, V') < 1/4, and there is a coupling of (U', V') such that
Ex v)~@ynldn(X,Y)] < c2/6, where dy denotes the Hamming distance, i.e., the number of points that
differ between X and'Y .

Now, we show why Lemma 7.4 implies that any robust algorithm cannot distinguish between i.i.d.
samples from N'(0, I) and N (u, I'), where p is drawn from the distribution D in Lemma 7.4 under adaptive

e-additive contamination, unless the number of samples is at least {2 ( ) This would conclude the claim.

dt/3 .
Fix a, e < 1, and define 6 = mﬂ , so that %62 = en. Suppose that n < ¢q - W’ which for § = 1?%

3
isequivalentton < 1001 7 By Lemma 7.4 and Markov’s inequality, P x y) s, v [du(X,Y) > 10c2/0]

1/10, which means by the coupling between U/ and U’ and between V and V', there exists a coupling
between U and V with P(x yyoq,v) [du(X,Y) > 10e2/6] < 1/4 +1/4 +1/10 = 3/5, i.e., such that
P(XY) ~U,V) [dH<X Y) < 1062/5] > 2/5

Consider such a coupling between { and V. Suppose we generate (X, Y) (U,V), and in the 2/5
probability event {dg(X,Y) < 10c2/6}, welet X = Y = X UY. Note that X can be created by adding
at most 10c2/0 points to X and at most 10c2/d points to Y. Otherwise, we let X=XadY =Y.
Importantly, this means there exists a distribution over X and Y (which are generated only by additive
adaptive contamination of 1062 = en points) such that with 2/5 probability, X and Y are the same. So, the
total variation distance between the distributions is at most 3/5, which means no algorithm can successfully

distinguish between the two distributions with more than 80% probability

de?
100 2 ot

samples from A/ (0, I) and NV (u, I) where o ~ D, under e-additive adaptlve contamination. Finally, because
there exists an Q(v/d/a?)-lower bound even against uncorrupted samples [SD08; DKS17], we conclude that
the sample complexity of robust Gaussian mean testing against additive adaptive adversaries is

()

In summary, there cannot exist an algorithm that uses n <

samples and distinguishes between

as claimed.
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8 Polynomial-Time Algorithm
Theorem 8.1. Letrd € N, 6 > 0. Let « = O(1) and assume that Ce+/log1/e < o and

2
n>0 (\/glogl/é n de 104gl/6
« «

polylog(d,1/5,1/a,10g1/5)> .

Then, there is an algorithm which runs in time O(en®d min(n, d) 4+ nd) with the following guarantees:
o Forevery i € R* with ||p|| = o, with probability 1 — & over n independent samples X1, . . ., X,, from
N (u, I), given any adaptive e-corruption of X1, ..., X, the algorithm outputs YES.

* With probability 1 — 6 over n independent samples X1, ..., X, from N(0,1), given any adaptive
e-corruption of X1, . .., Xy, the algorithm outputs NO.

We briefly mention that the assumption that ||u|| is exactly « is largely for notational convenience this
section. It is straightforward to verify that the same arguments also extend to testing when the mean of
the alternative hypothesis satisfies @ < ||| < O(1), which implies the same results for o < ||p|| (see
Subsection 2.3).

8.1 Regularity conditions

We will seek to algorithmically enforce a set of regularity conditions which are guaranteed to be satisfied
by any set of uncorrupted points, from either the null or alternate hypothesis. We demonstrate that if these
regularity conditions are satisfied, then the norm of the sum of the samples will suffice to distinguish between
the two cases, with high probability. Concretely, the regularity condition we will require is the following:

Definition 8.2. Let S = {X1,..., X,,} be a set of points in R?. We say that S is (¢, 31, 52)-regular if for
all sets T' C S with |T'| < en, we have:

) Tier 1X:|* = |ITld £ O(51),
(i) ||Sum(T)||* = |T|d + O(B,), and
(i) [(Sum(T),Sum(S))| = [T'|d + O(v/np1).

We first note the following bound:

Lemma8.3. Lera = O(1), let e, > 0 be at most a sufficiently small constant, and let S = {X1,..., X, } C
R? be a set of n independent draws from N (i, I), where |||z < o, and suppose that n > log(1/5)/e.
Then, with probability 1 — 6, S is

(5, enVdlog(n/d), (en)?*log1/e + eny/endlog 1/5) -regular .

Proof. We prove that S satisfies each bullet point in sequence. To prove the first bullet point, by Fact 2.8,
with probability 1—§/3, foralli € [n] ||| X;|?> — d| < 10 («/log(Sn/(S)d + log(3n/5)) < 30v/d-log(n/d).
Assuming this holds for all 4, then for any subset T C S, >";cp | Xi]|? = |T'|d+|T|-30v/dlog(n/J). Hence,
if |T'| < en, this equals |T'|d - O(env/dlog(n/é)), as desired.

We now prove the second bullet point. Fix any 7 satisfying |T'| < en. Then, Sum(7") ~ N (|T|u, |T|I),
soif we let Z = |T|~%/2 (Sum(T) — |T|p), we have that Z ~ N(0, I), and

ISun(T)|* = [|ll® - 7> + |12, Z) + 1 T] | 2]

55



Hence, we have that, for any C' > 0, there exists C’ > 0 so that
Pr [|<p, Z)| > C'ay/enlog 1/5] < exp(—Cenlogl/e) , and
Pr U|Z|2 — d‘ > C'y/endlog1/e + C'enlog 1/5] < exp(—Cenlogl/e) .

The number of subsets T C S of size at most en is at most exp (O(enlog1/e)). Therefore, by a union
bound over all choices of 7', with probability 1 — exp(—Q(enlog1/e)) = 1 — §/3, we have that

[[Sum(T)| = (lul]? |7 + |T|d)| < Oeny/endlog1/e + (en)*log1/e) , 24)
for all T with |T'| < en. Since ||u||? - |T|? < ?|T|? = O(en)?, this implies that
‘HSum(T)H2 — ]T|d‘ < O(eny/endlog1/e + (en)?log1/e) , (25)
as claimed. Condition on this event holding for the rest of the proof.
Finally, we prove the third bullet point. For any ¢ = 1,. .., n, note that

(Xi, Sum(S)) = | Xl|* + (X, Sum(S\ {i})) .

The second term on the RHS is the inner product of two independent Gaussians, and hence is subexponential,
with variance proxy (n — 1)d. Therefore, with probability 1 — 6/3, we have that (X, Sum(S \ {i}))| <
vndlog(n/d) foralli = 1,...,n. Condition on this holding. Then, for any fixed T satisfying |T| < en,
we have that

(Sum(7), Sum(S)) = Z<X"’ Sum(S))

ieT
=S 01E + 3 (X0, Sum(S\ {i}))
€T €T

= d|T| % O (env/dlog(n/6) + env/nd log(n/5))
= d|T| + O (en/ndlog(n/9)) ,
as claimed. Combining these bounds immediately yields the desired claim. O

Next, we note some simple consequences of regularity. For any subset " C S, we let 17 denote the
indicator vector of 7', and 1 = 1g denote the vector which is all 1’s. We also define X7 := ;. X;.

Proposition 8.4. Suppose S is (2¢, 81, B2)-regular. Then, for any sets T, T' of size at most en,
<XT, XT/> =d- |T N T/| + 0(62)
Proof. 1t is straightfoward to verify that
1
(X, Xr) = 5 [IXror P + 11Xz |2 = 1 X |2 = 1 Xzl
Eachof TUT', T NT', T\T',T'\T have size at most 2en. So, by regularity (Part ii of Definition 8.2),

1
(X7, Xpr) = Q-d- (ITUT|+|TNT'|—|T\T'| — |[T'\T|) £ O(B2) =d- [ TNT'| £ O(B2). O
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We note the following useful convexity lemma.

Fact 8.5. Let k < n be a nonnegative integer, and w € [0, 1] be an n-dimensional vector with ||w||; < k.
Then, w is a convex combination of the points 1 over T C S| |T| < k.

Proof. Without loss of generality assume that the coordinates of w are sorted in increasing order, i.e. 0 <
wy < ...,w, < 1, and additionally define wy = 0 and wy, 4 = 1 for all & > 0. For all integers 7 > 0,
let S; = {i,...,i + k} N [n], so that in particular S,,1; = 0 for all j > 0. Recursively define weights
ai,...,ap by a1 = wy, and a; = w; — Zzi & @5, where we set a; = 0 for j < 0. Then by construction,
we have that w = > ;" a;1g,. We will show that a; > 0 for all ¢, and that } ;" ; a; < 1, from which the
claim immediately follows. To prove the first claim, we proceed by induction. Note that the base case is
trivial, and moreover, if the claim is true for some 7 < n, then

i i—1
Z a; = a; + Z ai:wi—ai_kﬁwiéwiﬂa
j=i—k+1 J=i—k+1

so in particular a;4+1 > 0, which proves the induction.
To prove the second claim, we simply observe that by nonnegativity, we have that

n n % n
k‘ZZwiz Zaizkz,
i=1 i=1j=i—k i=1

where the last inequality follows from the fact that each a; appears at most k times in the sum. Simplifying
then immediately yields the claim. O

We use Fact 8.5 to generalize Proposition 8.4 as follows.

Proposition 8.6. Suppose S is (2¢, 51, B2)-regular, and a,b € [0, 1]" are n-dimensional vectors such that
Saq, > b < e-n. Then, we have

<Z aiXi,ijXj> (Z a; z) :|:O 52) and <Z aiXi,X5> =d- <Z ai> iO(\/ﬁBl)
€S €S €8 €S i€S

Proof. By Fact 8.5, we can write a as a convex combination of 17 over ' C S, |T| < en. In other words,
there exists a distribution 77 over T} C S, |11| < en such that a; = Pp, 7; (¢ € T1). Likewise, there exists
an (independent) distribution 73 over T C S, |T3| < en such that b; = Py, 7, (j € T3). Now,

<Z ai Xi, Z ijj> = ETlNﬂ,TzNE <XT1 ) XT2>‘
By Proposition 8.4,

Ery~7i 1on 2 (X1, X1y) = Byos o~z [d - T2 N T[] £ O(B2).

Next, the expectation of |7} N T»|, using linearity of expectation and independence of 71, 72, equals

ZPT1~71,T2~75 (teTiNTy) = ZPTlNTl (i€Ty) Ppop(i € To) ZCLZ i
€S i€S €S
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Overall, this implies that

(Y aiXi,> b X;) =d- (Zal ) +0(2).

€S

Next, by regularity (part iii of Definition 8.2), we have that

<Z aiXiaXS> =En~7(2n,2s) = Enon (d- [T1]) £ O(Vn - Br1) = <Z az) £0(Vn-p1). O

€S

8.2 Filtering preliminaries

Our algorithm for doing so will be based on the (soft) filter framework developed for robust estimation in
other contexts. Here we establish the notation and preliminaries we will require to design and analyze our
algorithm. We note that it will be convenient for us to use slightly nonstandard versions of the notation
compared to the literature.

Our algorithm will assign weights to each point, that we will monotonically decrease over time. For any
n, let I';, denote the set of valid weights:

Iy ={weR":w; €0,1]foralli=1,...,n}.

Recall that for any set ' C S, 11 € I';, denotes the indicator vector for 7', and 1 = 1g.

Let K be some value to be specified later. Given a set of points S = {X7,..., X, }, we associate it
weight vectors w® e T, fori = 1,...,nand t = 1,..., K where initially we set w® = 1.2 For any
such weight vector w, we let

Sum(w,S) = > /w;X; ,and M(w, S) ZwiXiXiT .
€S €S

When the context is clear, we will drop the S from the notation for simplicity, i.e. we will let Sum(w) =
Sum(w, S). For any set 7', and for any set of weights w on .S, we let wr denote the set of weights restricted
to the indices in 7N S. We also let Gram(w, S) = Gram(w) be the n x n matrix given by

Gram(w)ij = \/wiwj<X¢,Xj> .

Note that by design the nontrivial eigenvalues of Gram(w) and M (w) are identical.

Recall that when the samples S are an e-corruption of G, this means that there are sets B, R so that
|B| = |R| = en so that R C G and so that S = (G \ R) U B. For the remainder of this section, S, G, B, R
will always refer to these sets. We define the following important set:

Sp={wely: HlG\R - wG\RH1 <5|1p—wsl},

that is, &, is the set of weights where we have removed at most five times as much weight from the good
samples as we have removed from the the bad samples.

Finally, we will also seek to enforce regularity conditions on weighted subsets of points. We will require
the following natural generalization of Definition 8.2:

12 As is common in this literature, for simplicity of notation we will conflate S with the set of indices in S.
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Definition 8.7. Let S = {Xj,...,X,} be a set of points in R%, and let w € T,,. We say that w is
(e, p1, B2)-regular if for all sets T' C S with |T'| < en, we have:

() Yier [1Xil|* = IT|d + O(51),
(i) [|[Sum(w, T)||* = |lwrll; d + O(B2), and
(iii) [(Sum(w,T),Sum(w,S))| = ||wr|; d £ O(v/npbh).
The key fact we will use is the following:

Lemma 8.8. Let o = O(1), lete,d € [0,1), and let G be (4¢, b1, B2)-regular, where
B1 > envVdlog(n/s), By > eny/endlog1/e + (en)?log1/e .

Further, assume that

|Sum(G)[|? = dn + ||p]|? n? + O(an®/?\/log1/6 + nv/dlog(1/6)) .

Let S be an e-contamination of G, and let w € Ty, be a set of weights on w that satisfy |wl||, > (1 —e)n,
and w is (g, B1, B2)-regular. Then, we have that

ISum(w, 8)|* = d |wl; + [|ulf* n* £ O(an®?\/log 1/ + nVdlog(1/8) + v/nbi + B2) -

In particular, if n > C' - % and \/nB, B2 < % -o?n? for C sufficiently large, then:
 if u =0, then ‘HSum(w, 9)?—d Hw||1’ < 0.4a2n? | and
* if [l = o then ||Sum(uw, S)|* ~ d ], | > 0.7a%>

In other words, the norm of the sum of the set of points distinguishes between the null and alternative
hypotheses.

Proof. First, we bound || Sum(w, G'\ R)||?. Let a be the vector that equals 1 on the indices in R and 1 — ,/w;
on other indices, so that >, a;G; + Sum(w, G\ R) = Sum(G). Then,
2

| Sum(w, G\ R)||> = || Sum(G)||* - 2< Sum(G), Z aiGi> +
i€G

Let 83 := an®/2\/log1/6 + nv/dlog(1/8). Because ||la||; < 2 and G is (4, B1, 32) regular, Proposi-
tion 8.6 and our assumption on || Sum(G)||? imply that

[Sum(w, G\ R)||* = dn + ||ul|*n® £ O(Bs) — 24> _ a; £ O(vVnp1) +d Y a? £ O(Ba)
=d- (30(1=a)?) + [[ul*n? £ O(/npr + B> + Bs)
=d HwG\RH1 + ||,u||2 n?+ O(angpm—k n\/glog(l/é) +v/nB1+ Ba)

since (1 — a;)? = w; fori € G\ R and 0 otherwise.
Then, the regularity of w implies that

[Sum(w, S)||* = ||Sum(w, G\ R)||* + 2(Sum(w, G \ R), Sum(w, B)) + ||Sum(w, B) |
= ||Sum(w, G \ R)||* + 2(Sum(w, S), Sum(w, B)) — ||Sum(w, B)]?
= ||lw|l, d + ||ul|* n® £ O(an®/?\/log 1/6 +nVdlog(1/8) + v/npy + fBa) .

The second half of the claim then follows from straightforward calculations. O

Z aiGi

i€
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8.3 Additional preliminaries

We first prove bounds on the eigenvalues of the Gram matrix of random Gaussian samples. To do so, we
require properties about Wishart matrices, which we now define.

Definition 8.9. A Wishart matrix W = Wy(n) has distribution W = H " H, where H € R"*? has every
entry drawn as an i.i.d. standard Gaussian A0, 1). Note that W € R?*?, and W is positive semidefinite.

We will need the following concentration bound for the eigenvalues of a Wishart matrix.

Lemma 8.10. (Follows from [DS03, Theorem I1.13]) If W ~ W 4(n), then with probability 1 — 6,

IS—n-I|| <O (\/@+ /nlog(1/6) +d + 1og(1/5)) :

We now provide eigenvalue bounds for samples drawn from N (u, I).
Fact 8.11. Let i € R? have ||u|| < aand let § > 0. If n < d and X1,..., X, s N (p, I), then with
probability at least 1 — 6§, we have

| Gram({X1, ..., Xn}) —d- I|| < O(max(v'nd, \/dlog(1/6),log(1/8), a*n)).

Ifn>dand X1,...,X, i N (u, I), then with probability at least 1 — §, we have

Z XX —n- IH < O(max(Vnd, \/nlog(1/6),log(1/8), a’n)).

1€[n]

Proof. First, note that when n < d, the nonzero (top n) eigenvalues of XinT match the eigenvalues of
Gram({X1,..., Xp}). So, in the n < d case we can focus on the top n eigenvalues of 3¢, X;X,". This
will allow us to consolidate calculations for both the n < d and n > d case.

LetY; := X; — p. We can write

ZXZ-X; :ZYiYiT+ZYmT+ZMY;T+n-M,uT.

i<n i<n i<n i<n

Note that 3, ., Y;Y;" ~ Wg(n), so with probability at least 1 — 4,

Zan—n-IH §O<\/@+ \/m+d+log(l/5)>.

i€[n]

In the n < d case, we note that 3. Y;Y;' has the same nonzero eigenvalues as Gram({Y7,...,Y,}) ~
W, (d). So, with probability at least 1 — &, the top n eigenvalues of 3" Y;Y;" are in the range

d+0 (m +y/dlog(1/8) + n + 10g(1/5)> .

Next, >, Yipu' is a rank-1 matrix with operator norm || 3, ., Vil - lull < a - || X<, Yill. Since
di<n Yi ~ N(0,n - I), with probability at least 1 — & it has norm at most O(/nd + nlog(1/3)), which
means || Y ;<,, Yip" || < O(ay/nd + nlog(1/6)) < O(v/nd + \/nlog(1/4)). The same bound holds for
Yicn 1Yy Finally, [npp || = n- [l - uT] < no®.

In the n > d case, adding the bounds together completes the proof. In the n < d case, adding the bounds
together tells us the top n eigenvalues of > X; X lT are in the desired range, which completes the proof. [
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The next fact we will need is a direct corollary of Lemma 4.1 in [DHL19].

Fact 8.12. Let o = O(1), let i € RY have ||| < o, and let £,6 > 0. Suppose that n > Q(1/¢). Then,
there is some universal constant ¢ > 0 so that with probability 1 — 6, we have that for all v with ||v|| = 1,
and all w supported on G with ||w||; < 10en, it holds that

Zwi<v,Xi>2 <c-(enlogl/e+d+logl/d).
1€G

Finally, we will require the following downweighting scheme:

Fact 8.13. Let w € Gy, and let Ti,...,7, be a set of nonnegative scores satisfying 3 ;cc\r WiTi <
5> iep WiTi. Let w' € Ty, be defined by

! Ti
w) = (1 - ) w .
max;egs T;
Then supp(w’) C supp(w), and moreover w' € &,,.

8.4 The filtering algorithm for n < d

In this case, the filtering algorithm proceeds as follows. Let 6 > 0, and let

vy = C (m-|- o’n+ \/(n + d)log(1/6) + log(1/6) + enlog 1/5) , (26)

for some constant C' sufficiently large. Initialize weights w(!) = 1. Then, for ¢ = 1 until termination, we
proceed as follows. For any w € I'y, let D(w) = d - diag(w). Let A denote the top singular value of
Gram(w, S) — D(w), and let v be its associated singular unit vector (if there are multiple, choose any). If

2
A < 579, then terminate. Otherwise, for all 7 € S, let 7; = U{'w]l[wl(t) > 0] (where 7; defaults to 0 when
w,
wz(t) = 0), and proceed to sort the samples in decreasing order of 7;. Then, define w(**1) by
wEtH) = (1 . >w§t) .
max; 7;

The formal pseudocode for this algorithm appears in Algorithm 4.

Algorithm 4 Spectral filtering for n < d. Input: X1,..., X,, € R% ~3 > 0.
1: Letw® =1, and lett = 1
2: while HGram(w(t), S) — D(w(t))H > 57, do
3 Let v be the top singular vector of Gram(w®, S) — D(w®)

2
Y;

t>]1[w2(t) > 0] > If w(t) =0,weset; =0.

i
CRY (1 T ) w®
! max; 7;/)

4: For all 7, let 7; =

5: Let

3

6: Lett < t+1
7: Return w(®
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For the rest of the section, let us assume that G is (¢, env/dlog(n/§), (en)? log 1 /e +en+/endlog 1/¢)-
regular, and additionally assume that

|Gram(G) — dI| < % . @7
By Lemma 8.3 and Fact 8.11, these two conditions hold together with probability 1 — §. Then, our main
claim for this algorithm is the following:

Lemma 8.14. Under the above assumptions, Algorithm 4 terminates in K iterations for some K < 6en,
runs in time O(an) per iteration, and moreover, at termination, we have that

o wH) g 6, and

e forallT C S with |T| < en, we have that

HSum(w(K),T)H2 = Hw(K)(T)H1 d+O(en - y2).

Proof. The runtime per iteration is clearly dominated by the time it takes to find the top singular vector of
the centered gram matrix, which can be done in time O(dn?).

We will show that forall t = 1, ..., K, we have that w(¥) € &,,. First, we demonstrate how this proves
the overall lemma. First, note that after each iteration, some new w; (with the maximum 7;) becomes 0, so
after 6en iterations, we have removed at least 6en mass from w. By definition of G,,, this means we have
removed at least en mass from the bad coordinates wp, at which point no further updates can maintain the
invariant that w® € &,,.

Next, we observe that if w) € S,,, then since we terminated, we must have that

HGram(w(K)) - D(w(K))H <572 .
But then, for all 7" with |T'| < en, let 17 € R™ be the indicator vector 7. Then, we have that
2
HSum(w(K),T)H =1 Gram(w' )1y = HwéﬂK)Hl d+O(en- ),

as claimed.

Thus, it suffices to prove the invariant that wt) € &, forallt =1,...,K. We proceed by induction.
Clearly w(!) € &,,. Now, suppose w® € &,, for some ¢t < K. Since we have not yet terminated, this
implies that

A= HGram(w(t)) — D(w(t))H > 57, .

But by (27) and the Cauchy interlacing theorem, we have that

(1) — Diw® 2 A
HGram(w ,G\R) D(wG\R)H < 10 < 0
We claim that this implies that 53,5 v? > D icG\R vZ2. Indeed, suppose not, and let vg denote the
restriction of v onto the coordinates in G\ R, and let vp denote the restriction of v onto the coordinates in
B. This means that

’vT (Gram(w(t)) - D(w)) v’ = ‘vg (Gram(w(t), G\ R) — D(wgiR)) vG
+20/, (Gram(w(t)) — D(w(t))) v + v (Gram(w(t), B) — D(wg))) ’UB’

A
< Jloal- = T 2llvellllvsll A + los]|* A < 0.96
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where the last inequality holds because [|vp||? + [[vg||? = ||v]|> = 1 and |jvp||* < &. But this is a con-
tradiction since v is the top singular vector of the centered Gram matrix. Therefore, by Fact 8.13 and the

definition of 7;, we obtain that wltth) ¢ S,,, as claimed. (Note that if wz@ = 0, the 7th row and column

of both Gram(w®, S) and D(w®) are 0 so v; = 0, which means wgt) -1; = v? even if wz(t) = 0.) This

completes the proof. O

8.5 The filtering algorithm for n > d

The filtering algorithm proceeds similarly to above. Let 3 be as in (26). Initialize weights w(!) = 1. Then,
for t = 1 until termination, we proceed as follows. Let \ be the top singular value of M (w®)) — nI, and
let v be its associated singular value (if there are multiple, again choose one arbitrarily). If A < 5vs, then
terminate. Otherwise, for all i € G, let ; = (v, X;)?I[w; > 0]. Proceed to sort the samples in decreasing

order of 7;. As before, by relabeling indices, assume that 7y > 79 > --- > 7,,. Let I be the smallest index
so that 3°, wi(t) > 2¢en, and define w1 by
i )
1— 2w’ ife<I;
wl(t+1) _ ((t) n) w; . Z > (28)
w, ifi > 1.

The formal pseudocode for the algorithm appears in Algorithm 5.

Algorithm 5 Spectral filtering for n > d. Input: X1,..., X, € R, v > 0.
I: Letw™ =1, andlett = 1
2: while || M (w, S) —nl|| > 5y, do
3: Let v be the top singular vector of M (w, S) — nl
4: For all ¢, let 7; = (v, Xi>21[[w§t) > 0]
5
6
7:

Let w(*+1) be given by (28)
Lett+t+1
Return w(®)

As before, for the rest of this section, let us assume that G is (g,env/dlog(n/d), (en)?logl/e +
eny/endlog 1/¢)-regular, and additionally assume that

2
|M(G) ~nIl < 2. 29)
10
and that Fact 8.12 holds. As before, direct applications of Lemma 8.3 and Facts 8.11 and 8.12 immediately

imply that these conditions hold together with probability at least 1 — §. Then, our main claim for this
algorithm is the following:

Lemma 8.15. Under the above regularity conditions, Algorithm 5 terminates in K iterations for some
K < 6en, runs in time O(ndQ) per iteration, and moreover, at termination, we have that

o wk) e S, and
e forall T C S with |T| < en, we have that

HSum(w(K),T)H2 < 1072 - en.
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Proof. As before, the per-iteration runtime is dominated by the runtime of PCA, which is O(nd?).

We will again inductively show that for all iterations ¢, we have that w¥) € &,,. We first show how to
prove the lemma, assuming this claim. In this case, the number of iterations K can be bounded identically
as in Lemma 8.14. Moreover, by construction, at termination we have that HM (w(K )) —nl H < 5v2. Now

suppose that there was some subset 7" with | 7| < en that had

HSum(w(K),T)H2 > 107y - en.

Then, there is a unit vector v € R so that

Z(w,ﬁK))l/Q@,Xi) > /1072 - en . (30)
€T
Thus, we have that
> o, X2 > 3wl (v, Xi)? > 104 31
i€TUB i€l
Above, the first inequality holds because every wZ(K) is nonnegative, and the second inequality follows from
(30) and the Cauchy-Schwarz inequality. However, as |[R U T| < 2¢ and |1 — w®)||; < 6en, (29) and

Fact 8.12 together imply
| (w5, 6\ (RUT)) —ni < % (32)

Since G\(RUT) = S\(B UT), the inequalities (31) and (32) together imply that
HM (w(K),S) —nIH > bvya

which is a contradiction.
Thus, as before, it suffices to prove that w® e S,, for all iterations until termination. We will do so
inductively. As before, the base case ¢t = 1 is trivial. Now suppose that w() € &,, for some ¢ < K. Since
we have not yet terminated, this means that HM (w(t), S)—nl H > 5v2. Then, (29) and Fact 8.12 together
immediately imply that
3wl (v, Xi)2 > 399, (33)
i€B
()

for v the top eigenvector of M (w(t), S) —n - I. On the other hand, since 37,y w;” < 2en + 1 and since

w® e &, means we have removed at most 6en mass from all samples, this means I < 8sn + 1 < 10en.
So, Fact 8.12 implies that

> w (o, X2 <. (34)
i<IieG

By definition of I, every (v, X;)? for i < I is larger than every (v, X;)? for i € B\[I]. Therefore, since
2 ieB\[I] wgt) < |B\[{]| <enbut}>,; wl(t) > 2en, we have

2. (Zw§t><v,xi>2—Zw£“<v,xi>2) <2. Y w0, x)2 <Y 0w, X% (39)

icB i<I ieB\[I] icl
Along with (33), (35) implies that
S w0, X;)? > 27, (36)



Hence, by combining (36) with (34), we have

S ww X > Y w0, X2,
i<licB i<lieG

and so the result for w(*t1) immediately follows from Fact 8.13. O

8.6 Bounding row sums

We now have a way to ensure that small subsets of points have means with bounded norm. We also need
to enforce that row sums are bounded. To do so, we will simply remove the set of O(en) points whose row
sums have largest deviation from what we expect. More formally, given a set of weights w € G,,, we will
let

i = [(VwiXi, Y w0 X;) — wid| - I[w; > 0] . (37
jes
We then sort the indices in decreasing order by 7;. Again for simplicity of notation, assume that after some

suitable reindexing we have that 71 > 7 > ... > 7,. Then, we replace w; with 0 for all ¢ < en. We give
the formal pseudocode for this algorithm in Algorithm 6.

Algorithm 6 Bounding row sums. Input: X1, ..., X,, € R?
1: For all 4, let 7; be as in (37).
2: Sort the indices in decreasing order by 7;. > By relabeling indices, for simplicity of notation assume
that the ¢’s are initally sorted
3: Setw; = 0 forall i < en.
4: return w

Lemma 8.16. Assume G is (12¢, 51, B2)-regular, that Fact 8.12 holds for G, and S = (G\R) U B,
where |R| = |B| = en. Let w € &, and assume that for all T C S with |T| < 2en, we have that
|Sum (w, T)||* = |lwr |, d £ O(Bs). Then for all T C S\B with |T| < en, we have that

Y Vwiwi(Xi, X;) = d- [Jwrlli £ O(npi + Ba) -

i€T,jeS

Proof. Fix T' € S\B with |T'| < en. Since S = (G\R) U B, we can write

Y VowiXo, X5) = Y VO X, Xp) = Y Vo X, X+ Y Jwwi(Xi, X;)

i€T,j€S €T jEG i€T,jER i€T,jeB

Ay Az As

Above, for j € R, w; is defined to equal w; for the j' € B that replaces j.
Let b; := Jw; and a; := 1 — \Jw;. Since |T| < en, we know that } ;.7 b; < en. Moreover,
Yjeq Wi > (1 —6¢e)n, so > jec @i < 6en. Because G is (12¢, 31, B2)-regular and T' C G, Proposition 8.6
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implies that

= (S0 S - (S0 S,

i€T jea = jeG

=d-» bi—d)Y_ ab;£0(npi+ B)
i€l i€T

=d- Y wi £ O(V/npi + Ba). (38)
i€T

Next, we bound As. Since 7', R C G are disjoint and |T'|, | R| < en, Proposition 8.6 implies that
Ay = <Z biXi, Y ijj> = +0(V/np1 + f2), (39)
€T jER

since the b; terms in 1" and the b; terms in R are from disjoint sets.
Finally, we bound As. We will only use the fact that 7', B are disjoint sets in S of size at most en and
our assumption on w in the lemma statement. We can write

1
A3 = 5 (ISum(w, T U B)|* - [|Sum(w, T)[* ~ [[Sum(w, B)|)

1
= 5 (lwruplly - d = Jlwrlly - d = [lws]1 - d) £ O(52)
= +0(B2). (40)
Adding (38), (39), and (40) completes the proof. ]

Lemma 8.17. Assume Lemma 8.16 holds, and let w' be the output of Algorithm 6. Then, for all T C S with
|T| < en, we have that

S Jwlw(Xi, X)) = d- Jwrlls £ O(v/aBy + Ba)

1€T,jE[n]

Proof. Recall the definition of 7; from (37). First, we note that for any 7' C S\ B with |T'| < en, Y ;cp 7 <
O(y/nf1 + f2). To see why, we can split T into T+ and T, where i € T if (\/w; X;, Y ;cq \/W; X;) >
w;d and i € T~ otherwise. Then, since |T"|,|T~| < en, Lemma 8.16 implies that both ", + 7; and
> icr— Ti are at most O(y/nf1 + fa2).

Since Y ;cp 7 < O(v/nB1 + B2) for any subset 1" of S\ B of size at most en, and since we sorted the
7;’s in decreasing order, this implies Y ;.7 < O(y/nf1 + [2) for any subset 7" of S\ [en] of size at most

en. If w; represents the values of w before setting the top en indices to 0, and w) represents the values of w
afterwards (i.e., w}, = 0 for i < en and w;, = w; for i > en), then

Y Vwhw(X, Xg) —d - flwplh] < <\/174Xi,2\/szXj>—wgd

€T, jes €T jeSs
= Y 1 <OWnp+ Ba). 4D
€T \[en]
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Next, we have

oo WJwwiXa, Xy = > (X, X;) = £0(Ba), 42)
]

€T, jEen 1€T\[en],j€en]

by the same argument as in (40), since 7'\ [en] and [en] are disjoint sets in S and have size at most en.
By subtracting (42) from (41), we obtain the desired bound

> Jwiwi(Xe, Xj) — dljwp|h

1€T,jes

Z V wiw;(X;, X;) — d|wrplli| < OWnbi+ B2). O

i€T,jE€S\[en]

8.7 Putting it all together

We now have all the necessary pieces for the full algorithm. It will proceed as follows. First, remove
any points whose norms differ from d by too much. Then, run the appropriate spectral filtering algorithm
depending on whether or not n < d. Next, use Algorithm 6 to bound row sums. Finally, check the sum of
all entries in the (centered) Gram matrix, and if it is too large, then output YES, otherwise output NO. The
full pseudocode is given in Algorithm 7.

Algorithm 7 Robust mean testing X1, ..., X, € R?

1: Remove any 1 satisfying ‘||Xz\|2 - d‘ > O(v/dlogn/9)
2: Let 2 be as in (26).
3: if n < d then
4: Let w be the output of Algorithm 4 with parameter ~ys.
5: else
6: Let w be the output of Algorithm 5 with parameter 5.
7: Let w’ be the output of Algorithm 6 with input w
8: if‘||Sum(w’,S)||2 —d ||w|]1‘ > 0.7a2n? then
9: return YES
10: else
11: return NO

Proof of Theorem 8.1. The runtime of the algorithm is clearly dominated by the runtime of the spectral
filters, which both run in time O(en?dmin(n, d)), and the runtime of computing Sum(w, S), which is
O(nd). We now prove correctness.

By standard arguments, the first step (Line 1) of Algorithm 7 removes no uncorrupted points with prob-
ability 1 — §/3.

Assume that G'is (12¢, 31, B2 )-regular for 1 = env/dlog(n/d) and By = env/ndlog(n/d)+(en)?log1/e.
By Lemma 8.3, this occurs with probability 1 — /3. As argued above, for our choice of n, the condi-
tions for Lemma 8.14 and Lemma 8.15 are also satisfied with probability 1 — §/3 (and will even hold
for all |T'| < 2en). Thus, we obtain that w € &,,. Finally, regularity and standard sub-exponential mo-
ment bounds imply that the conditions for Lemma 8.17 are satisfied, as long as 3; = en+v/dlog(n/d) and
Ba = O(en-2) = O(env/nd+oen® +eny/(n + d) log(1/8) +enlog(1/8) + (en)? log(1/¢). Therefore,
the resulting set of weights w’ is (O(e), 51 + %, B2)-regular. Plugging this into Lemma 8.8 yields the

claim, since by our choice of n, one can verify that \/nfS1, f2 < % ~a2n?. O
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9 Computational Lower Bound

We refer to [KWB22] for definitions concerning the low-degree method and the low-degree likelihood ratio,
reviewing here only a little background. Originating in [BHK+19; Hop18; HS17], the low-degree method is
a heuristic for understanding computational complexity of average-case problems, in this case a hypothesis
testing problem. The heuristic unconditionally rules out a class of algorithms based on low-degree eval-
uating low-degree polynomials in the input; in this case, low-degree polynomials in the nd-length vector
(X1,...,X,). This low-degree model captures a surprisingly broad range of algorithms, including spectral
methods, making it a powerful heuristic for detecting computational hardness.

Theorem 9.1. For n,d € N and £, > 0, consider the following probability distributions on Dy, D1 on

(R™)%.
« Dy =N(0,1)®nd
 Dy: first, sample a random unit vector v € R%. Then, draw n i.i.d. vectors X1, ..., X, from the

distribution (1 — e)N (aw, I) + e(—a(1l — g)e v, I).
For D € N, D > 1, let L=P be the degree-D truncated likelihood ratio for Dy with respect to Dy. Then

2 2 2
HLSD _ 1” < DO(D) . \/’EO‘ - exp \/ﬁa + o '
Vde Vde Vde?

Consequently, if n < O(D*O(D ). %2) andn > \/Zi/ a? (since otherwise testing is information-theoretically
impossible), we have |[L=P — 1|| < o(1).

Proof. We define the following auxiliary distribution P over n x d matrices — to draw a sample from P, first
draw a random unit vector v € R?, then sample each column of P independently to be equal to o - v with
probability (1 — ¢) and otherwise equal to —a(1 — £)e~!. Note that an equivalent way to sample from D;
is to first draw X ~ P and output X + G, where G € R"* has independent entries distributed as A/(0, 1).
Thus, D, fits into the Gaussian additive model.

Using Theorem 2.6 of [KWB22], concerning low-degree likelihood ratio for Gaussian additive models,

we have
D

1
L= =17 =37 5 - Ex.xep(X, X')Y,
t=1"

where X, X' are independent draws from P and (-, -) is the Euclidean inner product in nd dimensions.
Let v, w be the independent random unit vectors associated to separate draws X, X’ ~ P, let S, C [n]
be the columns of X equal to aw, and similarly for S,. Then

(X, X"V = (v,w)" - (&S, N Sy| — &*(1 — €)™ 1(|Sy N Sy| + [Sw N Sy) + *(1 —€)272[S, N Sy|)t.
Furthermore, v, w are independent from .S,,, S, so

E(X, X"} = E(v,w)! - E(a?SyNSyw| — (1 —e)e ™ (|Sy N Su| 4 [SwNSy|) +a?(1—¢)% 725, NS, |)! .
The whole quantity is equal to zero for odd ¢, and for even ¢ it’s at most

O(t)t/z '

- a2 1Sy N Sul = (1= )= (1S, NSl + 1Su NS + (1 = )28, n S,
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using Fact 9.2. We have

E|S, N Sy| = n(l —¢)?
E|S, N Sy| = ne(1 —¢)
E[S, N Sy| = ne(l —¢)
E|S, N Sy| = ne?

and hence in particular

E|S, N Sw| — (1 —€)e” HE|S, N Sy| + E[Sy, N Sy|) + (1 — )% 2E|S, NSy, = 0.

Therefore,
VE (IS, N Sl — EIS, 0 Sul)*
+ \/<1 — &)2e2E (|9, N Sy| — E|S, N STU\)%
+ \/<1 — o)tte4E (|5, 0 5,| ~ B[S, nS,)”
Observe that:

* |S, N S| follows a Binomial distribution Bin(n, (1 — ¢)?), so
E(|Sy N Sw| — E[S, N Sy|)? < O)*n(1 —e)? + O(t)!(n(1 — £)?(2e — £2))*

using Fact 9.3.

* |S, NSy follows a Binomial distribution Bin(n,&(1 — €)), so
E(|Sy N Sw| — E[S, NSu])? < O(t)*ne(l —e) + O(t) (ne(1 — &)(1 — (1 — ¢)))?

using Fact 9.3.
* |S, NS, | follows a Binomial distribution Bin(n, £2), so

E(|S, N Sy| — E[S, N S,|)% < O(t)*ne? + O(t)! (ne?(1 — %))

using Fact 9.3.

Substituting these moment bounds and simplifying using ¢ > 1, we get

O(t)O(t)QQt

E(X, X'} < T (\/ﬁ gLy nt/2. E—t) ‘

Summing across t € [1, D] gives the result. O

Fact 9.2. Let u,v be independent random unit vectors in d dimensions and let t € N. Then E(u,v)! <
O(t)2 - O(d) =2,
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Proof. The random variable (u, v) has the same distribution as (z, g)/||g|| where z is any fixed unit vector
and g ~ N(0,I). We have

B < (Ble®) " (1)

Since (z, g) is distributed as A(0,1), the first term is at most /(2t)f = O(t)"/2. For the second term,
llg|l > Q(+v/d) with probability at least 0.9, so E||g|| =2 < O(1) - d~*. O

The following is a special case of Rosenthal’s inequality; see e.g. [Pin94].

Fact 9.3 (Moments of binomial distribution). There is a constant C > 0 such that for all n,t € Nand p €
[0,1], if Y ~ Bin(n, p) be a binomial random variable, E(Y —EY)t < (Ct)!-np+ (Ct)!/?- (np(1—p))¥/2.
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A Mathematica code to verify the computation from Section 6.3

For completeness, we here provide some Mathematica code which can be used to verify the computations
from the proof of Lemma 6.6:

s11[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_, d_] =

2%(1 — \[Epsilon])=*nx\[Beta]”"2xd;
s12[\[Alphal_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 — \[Epsilon])=*nx\[Beta]”2xd + \[Beta]x*d;
s13[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 — \[Epsilon])x*n*\[Beta]~2xd + \[Beta]xd;
s14[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = 2x\[Beta]xd;
s21[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 — \[Epsilon])x*n*\[Beta]"2xd + \[Beta]xd;
s22[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 — \[Epsilon])=*n*\[Beta]”~2xd — \[Alphal~2;
s23[\[Alphal_, \[Beta]_, \[Epsilon]_, n_, d_] = 2x\[Beta]xd;
s24[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = \[Beta]*d — \[Alpha]"2;
s31[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 — \[Epsilon])x*n*\[Beta]"2xd + \[Beta]xd;
s32[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = 2x\[Beta]xd;
s33[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 — \[Epsilon])=*nx\[Beta]”2xd — \[Alphal~2;
s34[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = \[Beta]*d — \[Alpha]"2;
s41[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_, d_] = 2x\[Beta]xd;
s42[\[Alphal—, \[Beta]_, \[Epsilon]_, n_, d_] = \[Beta]lxd — \[Alpha]"2;
s43[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_, d_] = \[Beta]*d — \[Alpha]"2;
s44[\[Alpha]l_, \[Beta]_, \[Epsilon]_, n_, d_] = —2%\[Alphal”"2;

diag[\[Epsilon]_, \[Gamma]_, n_] =
DiagonalMatrix[{\[Gamma]x*n,

(\[Epsilon] — \[Gamma]) *

n, (\[Epsilon] — \[Gamma])x*n, (1 — 2+\[Epsilon] + \[Gamma])=*n}];

I4 = DiagonalMatrix[{1, 1, 1, 1}];

sigma[\[Alpha]_, \[Betal_, \[Epsilon]_, n_,

d_] = {{s11[\[Alpha], \[Betal, \[Epsilon], n, d],
s12[\[Alpha], \[Betal], \[Epsilon], n, d],
s13[\[Alphal, \[Betal, \[Epsilon], n, dI,
s14[\[Alpha], \[Betal, \[Epsilon], n,

d]}, {s21[\[Alphal, \[Beta], \[Epsilon], n, d],
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s22[\[Alpha], \[Betal], \[Epsilon], n, d],
s23[\[Alpha], \[Betal, \[Epsilon], n, d],
s24[\[Alpha], \[Betal, \[Epsilon], n,

d]}, {s31[\[Alpha], \[Betal, \[Epsilon], n, dl,
s32[\[Alpha], \[Betal, \[Epsilon], n, d],
s33[\[Alpha], \[Betal, \[Epsilon], n, d],
s34[\[Alpha], \[Beta], \[Epsilon], n,

d]}, {s4l[\[Alphal, \[Beta], \[Epsilon], n, dJ,
s42[\[Alpha], \[Betal, \[Epsilon], n, d],
s43[\[Alpha], \[Betal], \[Epsilon], n, d],
s44[\[Alpha], \[Betal, \[Epsilon], n, d]}};

final[\[Alpha]l_, \[Betal_, \[Epsilon]_, n_, d_, \[Gamma]_] =
I4 + Dot[diag[\[Epsilon], \[Gamma], n],
sigma[\[Alphal], \[Beta], \[Epsilon], n,
d]11/((1 — \[Epsilon])*\[Alpha]”2xn + d);

FullSimplify[( (d + \[Beta]”2 d (\[Epsilon]”~2 \[Minus] \[Gamma]) \
n™2)72 \[Minus] (\[Alpha]”~2 n \[Minus]
2 \[Beta] d \[Epsilon] n + \[Beta]”2 d \[Epsilon] n”2 \[Minus]
2 \[Alpha]~2 \[Epsilon] n + \[Alpha]”~2 \[Gamma] n +
2 \[Beta] d \[Gamma] n \[Minus]
2 \[Beta]”2 d \[Epsilon]”2 n"2 + \[Beta]”2 d \[Epsilon]\
\[Gamma] n"2)"2 ) ==
Factor[Det[
final[\[Alphal, \[Beta], \[Epsilon], n,
d, \[Gamma]]]x(d + \[Alpha]~2%n — \[Alpha]l”2 *\[Epsilon]x*
n)~2] 1
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