
The Full Landscape of Robust Mean Testing: Sharp Separations
between Oblivious and Adaptive Contamination

Clément Canonne*

University of Sydney
Samuel B. Hopkins†

MIT
Jerry Li‡

Microsoft Research
Allen Liu§

MIT

Shyam Narayanan¶

MIT

July 21, 2023

Abstract

We consider the question of Gaussian mean testing, a fundamental task in high-dimensional distri-
bution testing and signal processing, subject to adversarial corruptions of the samples. We focus on
the relative power of different adversaries, and show that, in contrast to the common wisdom in robust
statistics, there exists a strict separation between adaptive adversaries (strong contamination) and obliv-
ious ones (weak contamination) for this task. Specifically, we resolve both the information-theoretic
and computational landscapes for robust mean testing. In the exponential-time setting, we establish the
tight sample complexity of testing N (0, I) against N (αv, I), where ∥v∥2 = 1, with an ε-fraction of
adversarial corruptions, to be

Θ̃
(

max
(√

d

α2 ,
dε3

α4 , min
(

d2/3ε2/3

α8/3 ,
dε

α2

)))
,

while the complexity against adaptive adversaries is

Θ̃
(

max
(√

d

α2 ,
dε2

α4

))
,

which is strictly worse for a large range of vanishing ε, α. To the best of our knowledge, ours is the first
separation in sample complexity between the strong and weak contamination models.

In the polynomial-time setting, we close a gap in the literature by providing a polynomial-time al-
gorithm against adaptive adversaries achieving the above sample complexity Θ̃(max(

√
d/α2, dε2/α4)),

and a low-degree lower bound (which complements an existing reduction from planted clique) suggest-
ing that all efficient algorithms require this many samples, even in the oblivious-adversary setting.

*clement.canonne@sydney.edu.au. Supported by an ARC DECRA (DE230101329) and an unrestricted gift from
Google Research.

†samhop@mit.edu. Supported by NSF Award No. 2238080 and MLA@CSAIL
‡jerrl@microsoft.com.
§cliu568@mit.edu Supported by an NSF Graduate Research Fellowship and a Fannie and John Hertz Foundation Fellow-

ship.
¶shyamsn@mit.edu. Supported by an NSF Graduate Fellowship and a Google Fellowship.

ar
X

iv
:2

30
7.

10
27

3v
1

 [c
s.D

S]
 1

8
Ju

l 2
02

3

Contents
1 Introduction 1

1.1 Types of Adversaries . 2
1.2 Our Results . 3
1.3 Related Work . 5
1.4 Overview of Techniques . 6

2 Preliminaries and Notation 12
2.1 Basic Definitions . 12
2.2 Useful Probabilistic Tools and Inequalities . 12
2.3 Simplification of Alternative Hypothesis . 15
2.4 Notation . 16

3 Reducing to “Friendly" Oblivious Contaminations 16
3.1 Structure of Obliviously Contaminated Samples . 17
3.2 Oblivious Filtering via Sample Splitting . 18

4 Mean Testing Robustly Against Oblivious Adversaries 29
4.1 Setup and Algorithm . 29
4.2 Consequences of Assumption 2 . 30
4.3 The Null Case: Mean . 33
4.4 The Null Case: Variance . 33
4.5 The Alternative Case: Variance . 36
4.6 Proof of Lemma 4.3 . 39

5 Lower bound in the Huber model 40
5.1 Main Lower Bound . 40

6 Improved Lower Bound against Oblivious Adversaries 45
6.1 Lower bound instance . 45
6.2 Likelihood Ratio Computation . 45
6.3 Final Computation . 49

7 The Sample Complexity under Strong Contamination 51

8 Polynomial-Time Algorithm 55
8.1 Regularity conditions . 55
8.2 Filtering preliminaries . 58
8.3 Additional preliminaries . 60
8.4 The filtering algorithm for n ≤ d . 61
8.5 The filtering algorithm for n > d . 63
8.6 Bounding row sums . 65
8.7 Putting it all together . 67

9 Computational Lower Bound 68

A Mathematica code to verify the computation from Section 6.3 73

1 Introduction

Among all high-dimensional distribution testing (i.e., hypothesis testing) problems, Gaussian mean testing
is one of the most basic, with connections to signal processing where it corresponds to signal detection under
white noise. Given n independent samples X1, . . . , Xn ∈ Rd, the goal is to decide between two hypotheses:

H0: X1, . . . , Xn were drawn from N (0, I), an origin-centered identity-covariance Gaussian.
H1: X1, . . . , Xn were drawn from N (µ, I) for some vector µ with ∥µ∥2 ≥ α.

The following simple tester uses only Θ(
√

d/α2) samples, the information-theoretic optimum: reject the
null iff the norm of the empirical mean

∥∥ 1
n

∑n
i=1 Xi

∥∥
2 is larger than some well-chosen threshold. The

number of samples scales as the square root of the dimension: in contrast, Θ(d/α2) samples (linear in the
dimension) are needed to learn the mean µ of a Gaussian N (µ, I) up to ℓ2 error α. This d-vs-

√
d gap is a

prime example of a core theme in the literature on distribution testing: testing requires fewer samples than
learning.

This simple tester is not robust to even a small fraction of adversarially corrupted samples. Concretely,
suppose that an ε-fraction of the samples X1, . . . , Xn are chosen by a malicious adversary. Even after
preprocessing the dataset by removing obvious outliers – say, Xi such that ∥Xi∥2 ≫ E∥Xi∥2 ≈

√
d – the

simple tester with Θ(
√

d/α2) samples can be fooled by just a single corrupted sample.
Robust distribution testing has been extensively studied in robust statistics (the sub-field of statistics

dealing with adversarially-corrupted data) [DKS17; DK23], and yet basic questions about robust mean
testing remain open. Most importantly: what is the sample-optimal robust mean tester? As we show, the
answer to this question is intimately intertwined with another unanswered question in robust statistics: how
much does it matter if the adversary sees the uncorrupted portion of the dataset?

We find the latter question interesting for (at least) two reasons. First, it is a foundational question about
the power of statistical adversaries – since modeling assumptions can have a strong effect on algorithm
design, it is important to understand the consequences of basic assumptions. We are not the first to ask the
question from this perspective; see also recent work of Blanc, Lange, Malik, and Tan [BLMT22]. Second,
the question is pertinent to data poisoning attacks in machine learning [DGJ+21; GTX+22], where an
adversary injects a small amount of malicious training data into a machine learning pipeline. Such attacks
can be feasible in practice and hence are a significant concern [KNL+20]. If an oblivious adversary is
strictly less powerful than an adaptive one, then keeping the training data secret is a potential (partial)
defense against data poisoning.

It turns out that oblivious and adaptive adversaries have equal power for robust mean testing’s close (and
intensely studied [DK23]) cousin, robust mean estimation.1 Here, the goal is to estimate µ up to ℓ2 error α
– in both adaptive and oblivious cases this requires Θ(d

α2) samples. Indeed, this appears to be the case for a
range of robust estimation problems, including covariance estimation and linear regression. This suggests a
conventional wisdom in robust statistics: adaptivity does not buy statistical adversaries additional power.

Returning to robust mean testing, recent work by Narayanan [Nar22] shows that the sample complexity
of robust mean testing against an adaptive adversary is Θ̃(max(

√
d/α2, dε2/α4)).2 This brings us to:

Main Question: What is the optimal robust mean tester against an oblivious adversary? Are the sample
1Here we mean that the sample complexity of robust mean estimation is insensitive to details of the adversary’s power. However,

some separations are known, for instance between additive versus additive and subtractive adversaries in the polynomial-time
setting [DKK+18]. See Section 1.3 for further discussion.

2Narayanan’s work focuses on differentially private mean testing, but this result can be extracted using known reductions
between robustness and privacy.

1

complexities of testing against adaptive and oblivious adversaries the same, as they are in robust
estimation?

We answer this question by showing that the common wisdom – being resilient to stronger adversaries
comes essentially “for free” – does not extend to mean testing, where being robust against an oblivious
adversary is strictly easier than against a fully adaptive one (Theorem 1.4)! In fact, we resolve (up to log
factors) the sample complexity of robust Gaussian mean testing in the presence of an oblivious adversary,
by designing a new robust mean tester and proving a nearly-matching information-theoretic lower bound.

To make the landscape even more interesting, we also show that this separation vanishes when one re-
quires the tester to be computationally efficient. We first give a polynomial-time (in fact, quadratic time)
variant of Narayanan’s tester, and then we obtain a lower bound against a large class of efficient algorithms
(“low-degree algorithms”) which shows a matching sample complexity against both oblivious and adaptive
adversaries (Theorem 1.7). (This complements a reduction from planted clique by Brennan and Bresler
[BB20] which also suggests that efficient algorithms require dε2

α4 samples even against oblivious adver-
saries.) One consequence is a new statistical-computational gap for robust mean testing against an oblivious
adversary.

In order to discuss our results in more detail, we describe in the next section the standard adversarial
corruption models we consider in our work, and how they relate. Then we state our results and provide an
overview of the new techniques and ideas that underlie our proofs and algorithms.

1.1 Types of Adversaries

We focus on two main types of adversarial corruptions: namely, the adaptive (strong) and oblivious corrup-
tion models. These have a long history in Statistics and Algorithmic Robust Statistics; see [DK19; DK23]
for a more thorough discussion. In what follows, we assume that the corruption rate ε is provided to the
algorithm. Note that this is without loss of generality, as, given d, α, and the expressions of the sample com-
plexities, the algorithm can compute the largest value of ε it can tolerate for a given number n of samples.

The first corruption model allows an adaptive adversary to look at the samples, and choose an ε-fraction
of them to alter arbitrarily. Which subset of the samples was corrupted is unknown to the algorithm.

Definition 1.1 (Strong contamination model). In the strong contamination model, n i.i.d. samples X ′
1, . . . , X ′

n

are drawn from the underlying unknown distribution D. The adversary, upon observing X ′
1, . . . , X ′

n,
chooses εn indices i1, . . . , iεn and values X ′′

i1 , . . . , X ′′
iεn

. The algorithm then receives the sequence X1, . . . , Xn,
where Xij = X ′′

ij
for all j ∈ [εn], and Xi = X ′

i otherwise. Crucially, both the εn indices and the values X ′′
i

can depend on the “uncorrupted” samples X ′
1, . . . , X ′

n.

In contrast, in the oblivious contamination model, the adversary must commit to which fraction of the
samples it will corrupt, and how, before observing the actual realization of the samples. (It is, however,
allowed knowledge of both the specification of the algorithm and the underlying distribution.)

Definition 1.2 (Oblivious contamination model). The adversary chooses εn indices i1, . . . , iεn and values
X ′′

i1 , . . . , X ′′
iεn

. Then n i.i.d. samples X ′
1, . . . , X ′

n are drawn from the underlying unknown distribution D,
and the algorithm is provided with the sequence X1, . . . , Xn, as in Definition 1.1.

This definition does allow the corrupted samples to be chosen in a correlated fashion; however, they
cannot depend on the realizations of the uncorrupted points themselves. This oblivious model can be further
weakened, leading to what is known as the Huber contamination model where the corrupted data points
themselves must be chosen independently of each other:

2

Definition 1.3 (Huber contamination model). In the Huber contamination model, the adversary chooses
a corruption distribution D̃ (possibly a function of the algorithm and underlying unknown distribution D).
Then n i.i.d. samples X1, . . . , Xn are drawn from the mixture (1−ε)D+εD̃, and provided to the algorithm.

While the focus of our work is on the adaptive and oblivious contamination models, some of our lower
bounds apply even to the weaker Huber contamination model.

1.2 Our Results

Our main result settles the sample complexity of robust mean testing under oblivious contamination, and es-
tablishes a strict separation between oblivious and adaptive contamination models. In what follows, Õ, Θ̃, Ω̃
hide polylogarithmic factors in the argument, and we always assume3 α ≤ O(1) and ε ≤ α/(log n)O(1)

(except in Theorem 1.6), which is information-theoretically necessary, up to the factor (log n)O(1).

Theorem 1.4 (Obliviously-robust mean testing (Informal; see Theorems 4.1, 5.1 and 6.1)). In the oblivious
contamination model, there is a mean tester which is robust to ε-contamination, which uses

Θ̃
(

max
(√

d

α2 ,
dε3

α4 , min
(

d2/3ε2/3

α8/3 ,
dε

α2

)))
, (1)

samples in the oblivious contamination model, and this is information-theoretically tight up to logarithmic
factors. Moreover, Ω̃

(
max

(√
d

α2 , dε3

α4

))
samples are needed even in the weaker Huber contamination model.

We offer a little interpretation of the (surprisingly complex) expression (1). If d dominates the other
parameters, i.e., d ≫ 1/poly(α), 1/poly(ε), then dε3

α4 is the dominant term. But if d, 1/α, 1/ε are within
small polynomial factors, any of the four terms in (1) can dominate.

Figure 1: The various phases of the sample com-
plexity of robust mean testing in the oblivious
contamination model, as stated in Theorem 1.4:
each area of this plot corresponds to which term
of the sample complexity dominates, as a function
of d, ε, α. The separation between adaptive and
oblivious contamination occurs at the red dashed
line (to the right, the oblivious sample complexity
is strictly smaller). The lower half corresponds to
α < ε, where testing is information-theoretically
impossible.

To see that Theorem 1.4 implies a strict separation between the oblivious and adaptive models, we recall:

3We note that, for identity-covariance Gaussian distributions, mean ℓ2 distance α corresponds (for small α) to total variation
(TV) distance Θ(α). Thus, ℓ2 mean testing corresponds to TV testing, which motivates the regime α ≪ 1 as of particular interest.

3

Theorem 1.5 ([Nar22], see also Theorem 7.1). In the adaptive contamination model, the optimal sample
complexity of ε-robust mean testing is

Θ̃
(

max
(√

d

α2 ,
dε2

α4

))
(2)

The sample complexity (1) is strictly smaller than (2) for a range of vanishing ε, α, e.g., with ε = Ω
(

α
d1/4

)
.

For completeness, in Section 7 we show explicitly how to obtain Theorem 1.5 by combining Narayanan’s
result on differentially-private mean testing with known robust-privacy equivalence results (as in e.g. [GH22;
HKMN22; AUZ23]). We further conjecture that a similar separation holds between the oblivious and Hu-
ber contamination models; to establish such a separation, it would be enough to prove a (non-efficient)
Õ(max(

√
d/α2, dε3/α4)) sample complexity upper bound in the latter, which in light of Theorem 1.4

would be nearly tight. We leave this as an interesting open problem.
A subtle difference between our strong and oblivious contamination models concerns which “good”

samples are removed by the adversary. In the strong model, the adversary chooses adaptively which of the
good samples to remove, whereas the oblivious adversary can only choose good samples to remove at ran-
dom. Thus, the oblivious adversary could be equivalently defined as merely adding samples and doing no
removals at all. One might ask whether the separation in sample complexities we establish between adap-
tive and oblivious adversaries actually arises from the ability of the adaptive adversary to remove samples,
rather than from adaptivity itself.4 We show in Section 7 that the lower bound of Theorem 1.5 actually
holds even against adaptive adversaries that may only add data points, meaning that the sample complexity
separation between adaptive and oblivious adversaries really is caused by the difference in addaptivity for
the added samples. This extension to additive-only adaptive adversaries also readily follows from results
proven in [Nar22].

Turning now to efficient algorithms, we provide the first polynomial-time algorithm which nearly matches
the optimal sample complexity in the adaptive model. Prior to our work, the best polynomial-time approach
was to learn the mean using O(d/α2) samples, or to apply a polynomial-time algorithm of Narayanan [Nar22]
which works only when ε ≤ α · d−1/4.

Theorem 1.6 (Adaptively-robust efficient mean testing (Informal; see Theorem 8.1)). In the adaptive con-
tamination model, there is a quadratic-time algorithm for ε-robust mean testing with sample complexity
Õ(max(

√
d

α2 , dε2

α4)), as long as α ≥ O(ε
√

log(1/ε)).

This computationally efficient analogue of Theorem 1.5 raises the question of whether a similar analogue
of Theorem 1.4 is possible. (The tester described in Theorem 1.4 relies on a computationally inefficient
“filtering step”; see Section 1.4). Our next result shows strong evidence that this is not possible, and that
the separation between adaptive and oblivious contamination models vanishes when restricting oneself to
computationally efficient algorithms.

Theorem 1.7 (Computational lower bound (Informal; see Theorem 9.1)). In the oblivious contamination
model, any ε-robust low-degree mean testing algorithm in the Huber contamination model has sample
complexity

Ω
(

max
(√

d

α2 ,
dε2

α4

))
. (3)

4For instance, one could consider an oblivious adversary which is allowed to replace the good distribution D with D conditioned
on any event of probability 1 − ε, thus obliviously “removing” part of D. We thank Guy Blanc for pointing this out.

4

Theorem 1.7 complements a reduction from planted clique [BB20] which suggests that nΩ(log n) time is
required to beat dε2

α4 samples, even in the Huber model. The quantitative version of our result (Theorem 9.1)
suggests something stronger (albeit for a restricted class of algorithms, rather than via reduction) – namely,
that exp(nΩ(1)) time is needed to use (dε2

α4)1−Ω(1) samples, even in the Huber model. We hope that our
results, by uncovering a richer landscape in robust statistics than previously known and showing that the
choice of contamination setting is much less innocuous than commonly believed, will spark interest in
revisiting these modelling assumptions for various other tasks.

1.3 Related Work

Gaussian Mean Testing. Gaussian mean testing is known in statistics as the Gaussian sequence model [Erm91;
Bar02; IIS03]; the understanding that it is possible to use fewer samples than dimensions appears relatively
recent [SD08]. A recent influential work, [DKS17], records the sample-optimal mean tester and the “folk-
lore” Ω(

√
d/α2) lower bound, and initiates the study of the complexity of robust mean testing. More recent

work focuses on variants such as mean testing under a sparsity assumption [GC22], testing with unknown
covariance [CCK+21; DKP23], testing subject to differential privacy [CKM+20; Nar22], robustly testing the
covariance [DK21], or (distributed) testing giving partial observations from each sample [ACT20; SVZ22].

(Algorithmic) Robust Statistics. Algorithmic robust statistics, especially in high dimensions, has experi-
enced a recent renaissance following a range of algorithmic breakthroughs; see the book [DK23]. Robust
mean estimation has played a fundamental role; the quest for efficient algorithms for robust mean estimation
led to the invention of the filter technique [DKK+19].

Connection to (Differential) Privacy. A recent line of work [GH22; HKMN22; AUZ23] established a
(two-way) correspondence between adversarially robust and differentially private algorithms for a range
of tasks, a connection we use to obtain Theorem 1.5. Importantly, this correspondence applies to adap-
tive adversaries, and does not, to the best of our knowledge, differentiate between oblivious and adaptive
adversaries.

Noise Models in Statistics and Learning. Many developments in computational learning theory have been
guided by the mission to design algorithms which work in an array of noise models [BH20]. For instance,
the statistical query model was invented to capture a class of PAC learning algorithms which tolerate random
classification noise [Kea98]. A full survey is out of scope, but some highlights include nasty noise, which
is essentially the adaptive contamination model we consider here [BEK02; DKS18], and Massart noise,
which has led to exciting recent algorithmic advances [DGT19; DKMR22; NT22]. While computational
separations are known between these noise models in classification settings (e.g., random classification noise
is much easier to handle algorithmically than adversarial label noise), separations in sample complexity seem
unlikely, because empirical risk minimization handles even the nastiest noise models.

Two works in particular study questions related to ours. First, [BLMT22] shows some equivalences
between adaptive and oblivious adversaries up to polynomial factors in sample complexity, for restricted
classes of algorithms (SQ) or adversaries (additive). [DKK+18; DKS17] together show a computational
separation between what error α is achievable for robustly learning a high-dimensional Gaussian when the
adversary can only add samples versus when they can add and remove samples. We emphasize that while
previous work showed evidence for a computational gap, we believe ours is the first demonstration of an
(unconditional) information-theoretic separation in a natural robust statistics setting.

5

1.4 Overview of Techniques

1.4.1 Exploiting Obliviousness to Robustly Test with Fewer Samples

Our Approach. We focus first on our main technical contribution, the mean tester from Theorem 1.4. To
get an improved testing algorithm for oblivious contaminations (compared to adaptive contaminations), we
need to exploit that the adversary must commit to the contaminated points before the remaining datapoints
are drawn. A consequence is that the correlation between the sums of good points (G) and bad points (B) is
comparable to independent random vectors of comparable norm:〈 ∑

i∈B Xi

∥
∑

i∈B Xi∥2
,

∑
i∈G Xi

∥
∑

i∈G Xi∥2

〉
≈ ±1√

d
.

By contrast, an adaptive adversary can make this correlation as large as 1.
Hence, the only way the adversary can have a substantial effect on

∥∥∑
i∈[n] Xi

∥∥
2 is by making ∥

∑
i∈B Xi∥2

larger than it would be for a set of εn good samples. Building on this idea, we can design a tester using
Θ̃
(
max

(√
d

α2 , dε3

α4 , min
(

d2/3ε2/3

α8/3 , dε
α2

)))
samples under (roughly) the additional assumption that the sum of

every subset of the adversary’s vectors has about the same norm it would if the samples were uncorrupted.
The second challenge is to remove this additional assumption. The standard approach in robust statistics

to make bad samples “look like” good ones according to some tests (e.g. norms of sums of subsets of points)
is to remove samples in subsets which violate those tests; this is often called “filtering”. This risks removing
about εn good samples as well, but in many settings this isn’t an issue.

However, removing any good samples after looking at all the samples potentially breaks obliviousness
by introducing dependencies between good and bad samples! We develop a novel obliviousness-preserving
filtering technique. We (iteratively) split the samples into two subsets, U, V . Looking only at U , we devise
a rule for which samples to keep and which to remove (keeping those contained in a certain intersection
of halfspaces); then we apply this rule to V and show that it preserves obliviousness while ensuring that V
now satisfies the assumption about sums of subsets of corrupted vectors. We turn now to a more detailed
overview.

Background: Narayanan’s Robust Tester. To understand quantitatively how we can exploit obliviousness
of the adversary, we first review a robust mean tester which uses Õ(max(

√
d/α2, dε2/α4)) samples in the

strong contamination model, as long as ε ≪ α (all of which is information-theoretically necessary).5 Our
polynomial-time algorithm is also an adaptation of the following robust tester.

As in many robust statistics settings, the overall scheme relies on finding a “good enough” subset of
(1− ε)n samples S ⊆ [n], to then apply a non-robust algorithm on S – in this case, the simple tester based
on ∥

∑
i∈S Xi∥22. For X1, . . . , Xn ∈ Rd which are clear from context and T ⊆ [n], let Sum(T) =

∑
i∈T Xi.

Definition 1.8 (Good Enough Subset (Informal)). For X1, . . . , Xn ∈ Rd, we say S ⊆ [n], |S| = (1 − ε)n
is good enough if, for every T ⊆ S with |T | ≤ εn,

∥Sum(T)∥22 ≤ |T |d + Õ(ε1.5n1.5√d + ε2n2) and |⟨Sum(S \ T), Sum(T)⟩| ≤ Õ(εn1.5√d + ε2n2) .

The choice of parameters in the definition guarantees that any subset of size (1 − ε)n of n independent
samples from N (0, I) or N (µ, I), for small-enough µ, is good enough with high probability. To see why

5A similar tester can be extracted from [Nar22]. While Narayanan’s paper focuses on differentially private mean testing, the
tester can be shown to be robust by virtue of its privacy guarantees; see Section 7. The tester we describe here is simpler than
Narayanan’s original tester, in part because we need only robustness, not privacy.

6

this holds intuitively, observe that if S consists of good samples only, then |⟨Sum(S \ T), Sum(T)⟩| is
roughly distributed as N (0, εn2d), and we need a union bound over ≈ nεn choices of T .

Definition 1.9 (Narayanan’s tester). Given n ε-contaminated samples, Narayanan’s tester finds any good
enough subset S and outputs H0 if ∥Sum(S)∥22 − (1− ε)nd≪ α2n2 and H1 otherwise.

Analysis Sketch. Let X1, . . . , Xn be an ε-contaminated draw from either N (0, I) or N (µ, I) for
some ∥µ∥2 = α. Let G ⊆ [n] be the uncorrupted samples. (For simplicity, in this overview we assume
the adversary has only added samples; removed samples can be handled without much more difficulty.) Let
S ⊆ [n] be any good enough subset; we want to show ∥Sum(S)∥22 − (1− ε)d ≥ Ω(α2n2) in the alternative
case, and ∥Sum(S)∥22 − (1− ε)d≪ α2n2 in the null. First,

E∥Sum(G)∥22 − (1− ε)d =
{
E
∑

i̸=j∈G ⟨Xi, Xj⟩ ≈ α2n2 in the alternative case
0 in the null case

and standard concentration arguments show that this holds with high probability so long as n≫
√

d/α2. So
we just have to show that |∥Sum(S)∥22 − ∥Sum(G)∥22| ≪ α2n2. This is doable using the following lemma.

Lemma 1.10 (Main Lemma for Narayanan’s Tester). For any two good-enough subsets S, S′ of X1, . . . , Xn ∈
Rd,

∣∣∣∥Sum(S)∥22 − ∥Sum(S′)∥22
∣∣∣≪ α2n2, so long as n≫ dε2/α4.

Proof. We divide S into S ∩ S′ and S \ S′ and S′ into S′ ∩ S and S′ \ S, so we have

∥Sum(S)∥22 −
∥∥Sum(S′)

∥∥2
2 =

∥∥Sum(S ∩ S′)
∥∥2

2 + 2
〈
Sum(S ∩ S′), Sum(S \ S′)

〉
+
∥∥Sum(S \ S′)

∥∥2
2

−
∥∥Sum(S′ ∩ S)

∥∥2
2 − 2

〈
Sum(S′ ∩ S), Sum(S′ \ S)

〉
−
∥∥Sum(S′ \ S)

∥∥2
2 .

Now, ∥Sum(S ∩ S′)∥22 − ∥Sum(S′ ∩ S)∥22 = 0, and since |S \ S′| = |S′ \ S|, also |∥Sum(S \ S′)∥22 −
∥Sum(S′ \ S)∥22| ≤ Õ(ε1.5n1.5√d + ε2n2), using good-enough-ness. By using good-enough-ness again,
both |⟨Sum(S ∩ S′), Sum(S \ S′)⟩| and |⟨Sum(S′ ∩ S), Sum(S′ \ S)⟩| are at most Õ(εn1.5√d + ε2n2).
Since ε≪ α, we have ε2n2 ≪ α2n2, and since n≫ dε2/α4, we have εn1.5√d≪ α2n2.

This completes the analysis of Narayanan’s tester. We record two important observations:
1. The reason that the tester requires dε2/α4 samples lies in the term ⟨Sum(S ∩ S′), Sum(S \ S′)⟩.

Let’s think of S′ = G, the good samples, and S as some good-enough subset which contains
around εn corrupted samples, S \ G. The adaptive adversary could choose the samples in S \
G to make Sum(S \ G) too (anti)-correlated with Sum(S ∩ G). There is a limit to how large
he can make the (anti)correlation before S is no longer “good enough” – namely, he can make
⟨Sum(S ∩G), Sum(S \G)⟩ as large as the largest inner product of the form ⟨Sum(G \ T), Sum(T)⟩
for T ⊆ G with |T | = εn, which is around εn1.5√d by standard concentration.

2. Narayanan’s tester requires finding a good-enough subset of (1−ε)n samples; prima facie this requires
exponential-time brute-force search, but we describe a polynomial-time variant of his approach later.

Using Only dε/α2 Samples if the Adversary is Oblivious and Not “Too Big”. Narayanan’s tester is
information-theoretically optimal (up to log factors) against adaptive adversaries. As our first taste of im-
proved testing against an oblivious adversary, consider the following toy setup. Suppose the adversary is
not only oblivious but also promises us that the εnd bad samples B will satisfy ∥Sum(B)∥22 ≤ O(εnd);

7

roughly, this constraints the adversary to add εn vectors of norm
√

d which are approximately pairwise or-
thogonal. (If the adversary adds any vector of norm much larger, we can remove it before proceeding.) We
will show how to test using

√
d/α2 + dε/α2 samples, improving on Narayanan’s tester for ε≫ α2.

We revisit the simple tester using just ∥Sum([n])∥22. Dividing [n] into good and corrupted samples G, B,

∥Sum([n])∥22 − nd =
(
∥Sum(G)∥22 − (1− ε)nd

)
+ 2 ⟨Sum(G), Sum(B)⟩+ ∥Sum(B)∥22 − εnd .

As usual, ∥Sum(G)∥22 − (1− ε)nd ≥ Ω(α2n2) in the alternative case and≪ α2n2 in the null; we want to
show the remaining terms are≪ α2n2 in magnitude. Trivially, |∥Sum(B)∥22 − εnd| ≤ O(εnd) ≪ α2n2

when dε/α2 ≪ n, using our promise on ∥Sum(B)∥22.
Now let’s look at the term where we make the improvement over Narayanan’s tester: ⟨Sum(G), Sum(B)⟩;

we are looking to use obliviousness to beat the bound εn1.5√d. We fix Sum(B) and then sample the random
vector Sum(G), which is distributed either as N (0, (1− ε)nI) or N ((1− ε)nµ, (1− ε)nI), meaning

⟨Sum(G), Sum(B)⟩ ∼

N
(
(1− ε)n ⟨µ, Sum(B)⟩ , (1− ε)n∥Sum(B)∥22

)
in the alternative case

N
(
0, (1− ε)n∥Sum(B)∥22

)
in the null case

.

So, |⟨Sum(G), Sum(B)⟩| ≤ O(nα ·
√

εnd + n
√

εd)≪ α2n2, as ∥Sum(B)∥22 ≤ O(εnd) and n≫ dε/α2.
From this simple reasoning, we draw the following important conclusion:

If the adversary is oblivious and is constrained to add samples B which aren’t “too big”, then
we can test using fewer samples than against an adaptive adversary.

This leads us to two key questions, whose answers form the main technical ingredients in our oblivious
tester. Can we take an obliviously-corrupted dataset and remove samples in some way to ensure that in the
resulting filtered dataset, the adversary has added samples B which aren’t “too big”, but do so in a way
which doesn’t introduce dependencies between good and bad samples which would break the obliviousness
we’re relying on? And, what is the right definition for “too big” – could a more refined definition lead to a
tester using fewer than dε/α2 samples?

Friendly Oblivious Adversaries and The Sum+Variance Tester. We will tackle the above questions in
reverse order. We introduce a key definition:

Definition 1.11 (Informal, see Assumption 1). A friendly oblivious adversary introduces {Xi}i∈B such that
1. For disjoint S, T ⊆ B with |S|, |T | ≤ εn, |⟨Sum(S), Sum(T)⟩| ≤ Õ(

√
|S| · |T | · (

√
εnd + εn)).

2. For distinct i, j ∈ B, |⟨Xi, Xj⟩| ≤ Õ(
√

d), and for every i ∈ B, ∥Xi∥22 = d± Õ(
√

d).
The parameters are chosen so that every pair of subsets S, T of good samples would satisfy these conditions.

To clarify why friendliness refines the “not too big” condition ∥Sum(B)∥22 ≤ O(εnd) from above,
observe that subject to friendliness, for any S ⊆ B,

∥Sum(S)∥22 = |S| · (d± Õ(
√

d)) + O(ES1,S2 ⟨Sum(S1), Sum(S2)⟩) = d|S|+ Õ(|S|
√

εnd + |S|
√

d)

where S1, S2 is a random partition of S. In particular, ∥Sum(B)∥22 = εnd±o(α2n2) whenever n≫ dε3/α4.
Now we can introduce our robust mean tester which uses

√
d

α2 + dε3

α4 + d2/3ε2/3

α2 samples (up to log factors)
in the presence of a friendly oblivious adversary.

8

The Sum+Variance Tester (Algorithm 3): Given X1, . . . , Xn ∈ Rd, if ∥Sum([n])∥22 − nd ≥ Ω(α2n2), or
if

1
n

∑
i∈[n]

(
⟨Xi, Sum([n])⟩ − d

∥Sum([n])∥2

)2

≥ 1 + Ω
(

α4n

εd

)
,

return H1, otherwise return H0.

Analysis Sketch. For starters, we need to make sure that in the null case, ∥Sum([n])∥22 − nd ≪
α2n2. Splitting S into good samples G and corrupted samples B, we know ∥Sum(G)∥22 = (1 − ε)nd ±
O(n
√

d) and | ⟨Sum(G), Sum(B)⟩ | ≤ O(n
√

εd) using standard concentration tools and obliviousness, and
∥Sum(B)∥22 = εnd + Õ(ε1.5n1.5√d + εn

√
d) by friendliness. All together,

∥Sum([n])∥22 − nd = ∥Sum(G)∥22 + 2 ⟨Sum(G), Sum(B)⟩+ ∥Sum(B)∥22 − nd = Õ(n
√

d + ε1.5n1.5√d)

which is at most α2n2 exactly when n≫
√

d
α2 + dε3

α4 .
Ideally, we would show next that in the alternative case ∥Sum([n])∥22−nd≫ α2n2, but even a friendly,

oblivious adversary can ensure this doesn’t happen when n ≪ dε
α2 . With knowledge of the vector µ, he can

introduce samples {Xi}i∈B such that ⟨Xi, µ⟩ ≈ −α2

ε , which introduces cancellations with E Sum(G) that

reduce ∥Sum([n])∥22. Overall, he can ensure
∣∣∣∥Sum([n])∥22 − nd

∣∣∣≪ α2n2.
But now we encounter a typical theme in robust statistics: the adversary has had to introduce a small

set of Xi’s such that ⟨Xi, Sum([n])⟩ is more negative than typical, thereby increasing the variance among
{⟨Xi, Sum([n])⟩}i∈[n]. For i ∈ B, we expect ⟨Xi, Sum([n])⟩ to be nα2

ε smaller than usual, so heuristically,

1
n

∑
i∈B

(
⟨Xi, Sum([n])⟩ − d

∥Sum([n])∥2

)2

≳
1
n
· εn · α4n2

ε2nd
= α4n

εd
,

where we used ∥Sum([n])∥22 ≈ nd. Adding the contribution from the samples in G gives us 1 + Ω(α4n
εd).

We make this idea rigorous in Section 4.

Of course, outputting H1 when 1
n

∑
i∈B

(
⟨Xi,Sum([n])⟩−d

∥Sum([n])∥2

)2
= 1 + Ω(α4n

εd) only makes sense if the
adversary cannot make this happen in the null model. We show (Section 4.4) that no friendly oblivious

adversary can make 1
n

∑
i∈B

(
⟨Xi,Sum([n])⟩−d

∥Sum([n])∥2

)2
= 1 + Ω(α4n

εd) if n≫ d2/3ε2/3

α8/3 .

Friendliness via Obliviousness-Preserving Filtering. We’re still missing a key ingredient: how can we
force an oblivious adversary to be friendly? Ensuring condition 2 of friendliness is straightforward. If we
see any |∥Xi∥22− d| ≫

√
d, that Xi must have been introduced by the adversary and can be safely removed,

and similarly if any pair i, j has | ⟨Xi, Xj⟩ | ≫
√

d then (by obliviousness) both Xi, Xj must be corrupted
samples and can be removed. (We are using≫ to hide logarithmic factors.)

But what about condition 1? A natural idea is to preprocess X1, . . . , Xn by removing any subsets S, T
of size at most εn which violate condition 1. If we had a subset S which grossly violated 1 in the sense
that ∥Sum(S)∥22 ≥ 100εnd, we could conclude that S contains at least 99% bad samples. This might seem
good enough – indeed, a common paradigm in robust statistics is filtering, removing samples in way which
removes at least as many bad samples as good ones, since any such procedure can ultimately remove at
most εn good samples. However, removing any good samples after looking at all the samples, including the
corrupted ones, creates dependencies between good and bad samples, thus breaking obliviousness!

9

Sample-Splitting to Preserve Obliviousness. We introduce an obliviousness-preserving filter. We:
1. Randomly split X1, . . . , Xn into U and V .

2. Using only U , identify a set of unit vectors v1, . . . , vℓ ∈ Rd.

3. For all j ≤ ℓ, remove from V any Xi such that | ⟨Xi, vj⟩ | ≫
√

log n, then return V .
The idea is that the returned V will (with high probability) be a set of samples corrupted by a friendly
oblivious adversary. The threshold

√
log n is chosen so that with high probability no good sample is removed

from V . This means that with high probability the scheme preserves obliviousness, since we could have
gotten the same outcome by drawing the good samples in V only after performing filtering.6

The challenge is ensuring friendliness, which of course rests on the implementation of step 2. In this
step, the basic idea is to find a family of subsets T1, . . . , Tℓ ⊆ U such that, for each i ∈ [ℓ],

• |Ti| ≪ εn/(log n)O(1) (here≪ hides constants; the (log n)O(1) is crucial, as explained below), and
• if we choose vi = Sum(Ti)/∥Sum(Ti)∥2 and remove from U any Xj such that ⟨Xj , vi⟩ ≫

√
log n,

then U satisfies condition 1 of friendliness. If this happens, we’ll say that T1, . . . , Tm “cleans” U .

We need to establish two things: first, that such a family T1, . . . , Tℓ which cleans U exists, and second,
with high probability over the random split U, V , any T1, . . . , Tℓ ⊆ {X1, . . . , Xn} which cleans U also
cleans V . However, these are in tension. For the first, we would like to be able to choose the sets T1, . . . , Tℓ

as large as possible, as this gives more flexibility in the choice of filtering directions and hence makes it
easier to clean U . But, for the second, we need tight control over how many different choices of T1, . . . , Tℓ

the cleaning algorithm could make, because we will need to make a union bound over all such choices; the
smaller the sets T1, . . . , Tℓ have to be, the fewer choices there are.

Compression and Small Witnesses. The key idea to balance these concerns is to show that if S1, S2
violate θ-friendliness condition 1, then we can compress S1 to a smaller set S′

1 such that removing all
Xi ∈ S2 with

〈
Xi,

Sum(S′
1)

∥Sum(S′
1)∥2

〉
makes progress in cleaning U , which means we can add S′

1 to our list of

Tis. The following lemma shows this, as long as S1 ∪ S2 already satisfy λ-friendliness for some λ ≫ θ –
we will be able to ensure that they already do via induction.

Lemma 1.12 (Small Witness Lemma, Basic Version of Lemma 3.12). Let S1, S2 ⊆ Rd have |S1|, |S2| = εn
and ⟨Sum(S1), Sum(S2)⟩ ≥ εn·

√
θd. Suppose S1∪S2 is λ-friendly, for some λ≫ θ, and that there is some

parameter C > 0 such that | ⟨X, X ′⟩ | ≤ θ
√

d/C and ∥Xi∥2 = d± θ
√

d/C for all X, X ′ ∈ S1 ∪ S2. Then

there is S′
1 ⊆ S1 with |S′

1| ≤ εn/C and Ω(εn) vectors X ∈ S2 such that
〈
Xi,

Sum(S′
1)

∥Sum(S′
1)∥2

〉
≥ Ω

(√
θ

Cεn

)
.

In Lemma 1.12, we think of θ ≈ εn(log n)O(1), so that ⟨Sum(S1), Sum(S2)⟩ ≥ εn
√

θd is a violation
of friendliness, and C ≈ (log n)O(1) so that S′

1 is significantly smaller than S1. Proving Lemma 1.12 is
outside the scope of this overview, but the strategy is to first show that a large number of vectors in S2 are
correlated with Sum(S1) (Claim 3.6), and then show this is preserved when we replace S1 with a random
subset S′

1 ⊂ S1. Lemma 1.12 shows that adding S′
1 to the list of Ti’s will result in removing Ω(εn) vectors;

this can only happen O(1) times before all bad samples would be removed, so that we can think of ℓ = O(1).

Small Filters Generalize from U to V . Lastly, we need to establish that, if we find a short list of small
T1, . . . , Tℓ which cleans U , then with high probability it also cleans V . Consider the set T of all possible
(T1, . . . , Tℓ) ∈

(n
εn/(log n)O(1)

)ℓ; note that |T | ≤ 2εn/(log n)O(1)
because ℓ = O(1).

6In reality we will perform several rounds of obliviousness-preserving filtering, splitting V again into U ′, V ′ and so on; as
rounds progress we ensure friendliness for pairs of subsets S, T of increasing size. We will ignore this detail in our technical
overview.

10

Fixing some (T1, . . . , Tℓ) ∈ T , our goal is to show that with probability at least 1 − 2−Ω(εn) over
the random split U, V , if T1, . . . , Tℓ cleans U then it cleans [n]; then we can take a union bound over
all of T . By contrapositive, it is enough to show that, if after removing all Xi from X1, . . . , Xn such
that ⟨Sum(Tj), Xi⟩ ≫

√
log n, some subsets S1, S2 ⊆ [n] remain which violate λ-friendliness, then with

probability 1−2−Ω(εn) the random set U also contains some S′
1, S′

2 which violate θ-friendliness, for some θ
not too much less than λ. (This distinction between θ, λ is the origin of the two different friendliness levels
in the small witness lemma.)

For the latter, standard concentration arguments show that, with probability 1 − 2−Ω(εn), the offending
sets S1, S2 get split evenly between U and V , and this in turn is enough to show that some subsets of
U ∩ S1, U ∩ S2 also violate friendliness.

1.4.2 Lower Bounds

Information-Theoretic Lower Bound for Obliviously-Robust Testing. Among our lower bounds, the
greatest conceptual innovation lies in our proof that robust mean testing with an oblivious adversary requires
Ω̃
(
min

(
d2/3ε2/3

α8/3 , dε
α2

))
samples. The remaining terms in the lower bound,

√
d

α2 and dε3

α4 , come respectively
from the complexity of non-robust mean testing and from a simpler argument using a Huber adversary,
respectively. (The latter we describe below.)

To prove the lower bound, we will describe a distribution over mean vectors µ and adversarial vectors
{Xi}i∈B such that the joint distribution of {Xi}i∈B together with (1 − ε)n samples from N (µ, I) is close
in total variation to N (0, I)⊗n. The key trick in designing this distribution is to correlate, but not perfectly
align, Sum(B) with −µ. Concretely, we:

1. Draw Xi ∼ N (0, I) for i ∈ B.

2. Draw µ = −β Sum(B)− z, where β = β(n, d, ε, α) > 0 is a suitable constant and z ∼ N (0, α2

d I).
We show via direct calculation in Section 6 that the χ2 divergence, and hence total variation distance,
between these two distributions on sets of n samples is o(1) so long as n ≪ Ω̃

(
min

(
d2/3ε2/3

α8/3 , dε
α2

))
. The

trick above of sampling the corrupted samples {Xi}i∈B before drawing µ keeps these calculations tractable.

Information-Theoretic Lower Bound for Huber-Robust Testing. Our final information-theoretic lower
bound shows that Ω(dε3/α4) samples are needed in the presence of a Huber adversary. Here we borrow
the lower-bound instance from [DKS17] – the adversary just adds samples from N (−β · µ, I) for some
well-chosen β > 0. We tighten the analysis of this instance from [DKS17] by using a conditional second
moment (a.k.a. conditional χ2 divergence) approach. ([DKS17] use a vanilla χ2-divergence analysis of their
lower bound instance; this method can prove at best a dε4/α4 lower bound, which they obtain.)

Low-Degree Lower Bound for Huber-Robust Testing. Finally, we show a low-degree lower bound
in the Huber model (essentially equivalent to an SQ lower bound [BBH+20]) using the same instance
from [DKS17]; this is a direct computation using now-standard techniques from [KWB22].

1.4.3 A Quadratic-Time Tester

Now we turn to our quadratic-time algorithm for robust mean testing against adaptive adversaries using√
d

α2 + dε2

α4 (up to logarithmic factors) samples, matching Narayanan’s tester. Up to logarithmic factors, our
bound matches our low-degree lower bound mentioned above. Together, these bounds give strong evidence
that computationally bounded algorithms must pay a factor of dε2

α4 in the sample complexity, and therefore
cannot witness the improved rates described elsewhere in this paper, for any model of contamination. Recall
that Narayanan’s tester requires finding a good-enough subset (Definition 1.8). Since good-enough-ness

11

involves all subsets of εn samples, even checking whether some S ⊆ [n] is good enough seems to require
nεn time.

Borrowing a technique from the robust estimation, we show that, at least for the good samples G ⊆ [n],
there’s an efficiently-computable witness to their good-enough-ness. This witness is the top eigenvalue of
the covariance matrix Ei∼G(Xi − Ej∼GXj)(Xi − Ej∼GXj)⊤, together with a uniform upper bound on the
magnitude of the row-sums of the Gram matrix of {Xi : i ∈ G}.

For illustration here, consider the null case and imagine that n ≤ d. Then it turns out to be nicer to
consider the Gram matrix M ∈ R(1−ε)n×(1−ε)n with entries Mij = ⟨Xi, Xj⟩; up to zeros it has the same
eigenvalues as the covariance. Since Xi ∼ N (0, I) for i ∈ G, we have M = d · I ± O(

√
nd). If 1T is the

0/1 indicator vector for T ⊆ G with |T | ≤ εn, then 1⊤
T M1T certifies the first part of good-enough-ness:

∥Sum(T)∥22 = 1⊤
T M1T = d · ∥1T ∥22 ±O(

√
nd∥1T ∥22) = |T |d + O(εn1.5√d) .

For the second part, note that ⟨Sum(G \ T),
∑

(T)⟩ ≈
∑

i∈T

∑
j ̸=i Mij is roughly the row-sums of the

(off-diagonals of the) matrix M for i ∈ T . Each row sum is at most Õ(
√

nd), so the sum is Õ(εn1.5√d).
These arguments (at least in the case n ≤ d; n > d is not very different) show that it is enough to

find S ⊆ [n] with |S| = (1 − ε)n and whose Gram matrix has eigenvalues d ± O(
√

nd) and off-diagonal
row-sums at most Õ(εn1.5√d). In Section 8 we design a filtering algorithm which does this by starting with
[n] and iteratively removing samples Xi with large projection onto too-large or small eigenvectors of the
Gram matrix, or whose row-sum is too large, until all the row-sums and eigenvalues are as we desire.

2 Preliminaries and Notation

2.1 Basic Definitions

Given two distributions D1,D2, we recall the definitions of total variation distance and χ2-divergence.

Definition 2.1 (Total Variation Distance). Given two probability distributions D1,D2 over a measurable
space (Ω,F), the total variation distance between D1,D2, denoted dTV(D1,D2), is supA∈F |D1(A) −
D2(A)|.

Definition 2.2 (χ2-divergence). Given two distributions D1,D2 over a measurable space (Ω,F) with well-
defined probability density functions p1, p2, the χ2-divergence between D1 and D2, denoted Dχ2(D1∥D2),

is given by EX∼D2

(
p1(X)
p2(X) − 1

)2
. (Note that this is not symmetric in D1,D2.)

We recall the following standard relation between total variation distance and χ2-divergence.

Fact 2.3. For any distributionsD1,D2 with probability density functions, dTV(D1,D2)2 ≤ 1
4 Dχ2(D1∥D2).

2.2 Useful Probabilistic Tools and Inequalities

In this subsection, we recall several basic but useful concentration inequalities and moment bounds which
we will rely on.

12

Gaussian Concentration. First, we note a well-known proposition regarding univariate Gaussians.

Fact 2.4. For X ∼ N (0, 1) and a, b ∈ R such that b < 1
2 , we have that

E
[
eaX+bX2] =

exp
(

a2

2−4b

)
√

1− 2b
.

In the special case a = 0, this becomes E
[
ebX2

]
= 1√

1−2b
.

The following provides a generalization of Fact 2.4 to multivariate Gaussians: we include a proof for
completeness.

Proposition 2.5. Let z ∈ Rd be drawn from the Gaussian N (0, δ2I). Then for parameters a ≥ 0 and
s ∈ Rd, we have

Ez

[
exp

(
−a

2∥z∥
2
2 − ⟨s, z⟩

)]
= 1

(aδ2 + 1)d/2 exp
(

∥s∥22
2(a + 1/δ2)

)

Proof. We have

Ez

[
exp

(
−a

2∥z∥
2
2 − ⟨s, z⟩

)]
=
∫ 1

δd(2π)d/2 exp
(
−a

2∥z∥
2
2 − ⟨s, z⟩ − ∥z∥

2
2

2δ2

)
dz .

To compute the integral, we can complete the square in the exponential and write it as

−1
2

∥∥∥∥∥√a + 1/δ2z − 1√
a + 1/δ2 s

∥∥∥∥∥
2

+ ∥s∥22
2(a + 1/δ2)

so

Ez

[
exp

(
−a

2∥z∥
2
2 − ⟨s, z⟩

)]
= exp

(
∥s∥22

2(a + 1/δ2)

)(
1√

a + 1/δ2

)d 1
δd

= 1
√

aδ2 + 1d
exp

(
∥s∥22

2(a + 1/δ2)

)

as desired.

Proposition 2.6. Let z ∼ N (0, In) be an n-dimensional Gaussian vector. Then, for any symmetric matrix
M with all eigenvalues strictly greater than −1,

E[e− 1
2 ·z⊤Mz] = det(I + M)−1/2.

Proof. First, suppose that M is diagonal, with eigenvalues λ1, λ2, . . . , λn. Then,−1
2z⊤Mz = −1

2 ·
∑

λiz
2
i .

Since each coordinate of zi is independent,

E[e− 1
2 z⊤Mz] = E

[
n∏

i=1
e− 1

2 λiz
2
i

]
=

n∏
i=1

E
[
e− 1

2 λiz
2
i

]
=

n∏
i=1

1√
1 + λi

= det(I + M)−1/2 ,

using Fact 2.4 with a = 0. Finally, by rotational symmetry of Gaussians, the claim holds for all symmetric
M .

From Proposition 2.6, we have the following immediate corollary.

13

Corollary 2.7. Let X, Y be a 2-dimensional multivariate Gaussian with mean 0 and covariance matrix

Σ =
(

a b
b c

)
. Then, if a + c < 1

2 , E[eX2+Y 2] = 1√
(1−2a)(1−2c)−4b2

Proof. We can write eX2+Y 2 = ex⊤Σx = e− 1
2 x⊤(−2Σ)x for x ∼ N (0, I). Since Σ is PSD and has trace

less than 1
2 , its eigenvalues are both less than 1

2 , so −2Σ has all eigenvalues strictly more than −1. Hence,
we can apply Proposition 2.6, noting that det(1 − 2Σ) = (1 − 2a)(1 − 2c) − 4b2, which completes the
proof.

Next, we note some basic facts about the norm and inner products of Gaussians.

Fact 2.8. Consider n points X1, . . . , Xn ∈ Rd drawn from a Gaussian N (µ, I) where ∥µ∥ ≤ O(1). Then,
with probability 1− δ, we have for all i ∈ [n]

d− 10
(√

log(n/δ)d + log(n/δ)
)
≤ ∥Xi∥2 ≤ d + 10

(√
log(n/δ)d + log(n/δ)

)
.

In light of Fact 2.8, it suffices to consider when all of the points, including the contaminations (in any of
the models) have ∥Xi∥2 = d±O(

√
d · poly log(d, n)), since we can simply remove all points whose norm

is too large or too small: with high probability these points are all contaminated.

Fact 2.9. Let z1, z2 be Gaussians N (0, I) in Rd. Then, for any C ≤ O(
√

d), P(|⟨z1, z2⟩| ≥ C
√

d) ≤
2e−Ω(C2).

Proof. First, with probability at least e−Ω(d), ∥z2∥2 ≤ 2
√

d, by Proposition 2.11. Then, conditioned on the
norm of z2, ⟨z1, z2⟩ has distribution N (0, 1) · ∥z2∥2, which is at most C · ∥z2∥2 with probability at least
2e−C2/2. Hence, P(|⟨z1, z2⟩| ≥ C

√
d) ≤ 2e−C2/8 + e−Ω(d).

We will also make use of the Hanson-Wright inequality.

Lemma 2.10 (Hanson–Wright). Given an n× n matrix A ∈ Rn×n and an n-dimensional Gaussian vector
Z ∼ N (0, I), for any t ≥ 0,

P
(∣∣∣Z⊤AZ − E[Z⊤AZ]

∣∣∣ ≥ t
)
≤ 2 exp

(
−c min

(
t2

∥A∥2F
,

t

∥A∥op

))
,

for some absolute constant c > 0. This implies that, with very high probability,
∣∣∣Z⊤AZ − E[Z⊤AZ]

∣∣∣ ≤
Õ(∥A∥F).

The Hanson-wright inequality with A = I , the n× n-dimensional identity vector, immediately implies
the following.

Proposition 2.11. Let z1, . . . , zn be i.i.d. Gaussians. Then, for any t ≥ 0,

P
(∣∣∣∣∣

n∑
i=1

z2
i − n

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−c ·min

(
t2

n
, t

))
.

We note one more result about Gaussian samples, which follows from well-known facts about sufficient
statistics. The following result says that if we know the mean X̄ of some Gaussian samples Xi drawn as
N (µ, I), the posterior distribution of the deviations Xi − X̄ does not depend on the mean µ.

Proposition 2.12 ([Nar22, Corollary 18]). For any µ ∈ Rd, let X1, . . . , Xn be distributed i.i.d. asN (µ, I),
and let X̄ = 1

n(X1 + · · ·+ Xn). Then, for Z1, . . . , Zn
i.i.d.∼ N (0, I), independent of (X1, . . . , Xn), and

Z̄ = 1
n(Z1 + · · ·+ Zn), we have that X1, . . . , Xn has the same distribution as X̄+Z1−Z̄, . . . , X̄+Zn−Z̄.

14

Hypergeometric distributions. Next, we will require some bounds on Hypergeometric distributions.
First, we define a Hypergeometric distribution.

Definition 2.13. For n ∈ N and 0 ≤ k1, k2 ≤ n, a Hypergeometric distribution HGeom(n, k1, k2) is
the distribution of the random variable Y generated as follows. Fix a set [n] of size n, and let S, T be
independent random subsets of [n] of size k1, k2 respectively. Then, output Y = |S ∩ T |.

It is well-known that HGeom(n, k1, k2) has expectation k1·k2
n . We will also use the following Bernstein-

type inequality for Hypergeometric distributions.

Lemma 2.14 ([GW17, Corollary 1]). Suppose that k1, k2 ≤ 1
2 · n, and X ∼ HGeom(n, k1, k2). Then, for

all λ > 0,

P
(√

k1 ·
(X

k1
− k2

n

)
> λ

)
≤ exp

(
− λ2/2

(k2/n) + λ/(3
√

k1)

)
.

The following is a direct corollary of Lemma 2.14.

Corollary 2.15. Suppose that k1 = k2 = εn, and X ∼ HGeom(n, k1, k2). Then, for all t > 0,

P
(

X

n
− ε2 > t

)
≤ exp

(
−min

(
t2 · n
4ε2 ,

t · n
4

))
.

We also will utilize the following subgaussian concentration bound for Hypergeometric distributions.

Proposition 2.16 ([Ska13]). If X ∼ HGeom(n, k1, k2), then for any t ≥ 0, P [X ≥ E[X] + t · k1] ≤
e−2t2·k1 , and P [X ≥ E[X]− t · k1] ≤ e−2t2·k1 .

2.3 Simplification of Alternative Hypothesis

We recall that we wish to distinguish between the null hypothesis where µ = 0 and the alternative hypothesis
where ∥µ∥2 ≥ α. In this subsection, we briefly explain why it suffices to consider a slightly weaker
alternative hypothesis of α ≤ ∥µ∥2 ≤ 2α. This reduction is very similar to one used in [Nar22, Proposition
23]. We will only describe the reduction for oblivious robust testing, as we will not (directly) need the
reduction in the adaptive case.

Proposition 2.17. Let 0 < α ≤ O(1). Suppose A is an algorithm that can distinguish between n ε-
obliviously contaminated samples from N (0, I) and n ε-obliviously contaminated samples from N (µ, I)
where ∥µ∥2 ∈ [α, 2α], with probability at least 0.9. Then, there exists an algorithm A′ that can dis-
tinguish between n · polylog(n, d, 1

α) ε
polylog(n,d, 1

α
) -obliviously contaminated samples from N (0, I) and

n · polylog(n/d) ε
polylog(n,d, 1

α
) -obliviously contaminated samples from N (µ, I), where ∥µ∥2 ≥ α, with

probability at least 0.9.

Proof. Suppose our dataset of n · poly log(n, d, 1
α) points is called X , which we split into groups X(r,t),

where 1 ≤ r ≤ R = O(log nd) and 1 ≤ t ≤ T = O(log n
α), and where |X(r,t)| = n. Also, let

X(t) =
⋃

r X(r,t). We can consider conditioning on the location and value of each corrupted point, and then
consider drawing the uncorrupted points. Then, if X is ε

O(log2(nd/α)) -obliviously corrupted, each X(r,t) is
ε-obliviously corrupted. Also, conditioned on the indices and values of the corrupted points, the uncorrupted
points in each X(r,t) are independent. (For the rest of the proof, we will think of the corrupted indices/values
as fixed.)

15

First, we show an amplification result that on each X(t), we can distinguish between µ = 0 and ∥µ∥2 ∈
[α, 2α], with failure probability at most 1

nd (instead of failure probability 0.1). For each X(r,t), because the
corruptions are oblivious to the data, the probability of A outputting the right answer on the group X(r,t)

is at least 0.9, and is independent across groups (after the above conditioning). So by a Chernoff bound, A
will output the right answer on at least 0.8 · R groups with probability at least 1 − 1

nd , for any fixed t. So,
the algorithm should simply output the majority across all r.

Next, the same result holds if the alternative hypothesis is ∥µ∥2 ∈ [α · 2t−1, α · 2t] for any t ≥ 1. To see
why, replace each Xi ∈ X(r,t) with X ′

i := (Xi +
√

22t − 1 ·Zi)/2t, where Zj ∼ N (0, I) is independent for
each Xi. If Xi ∼ N (µ, I), then X ′

i ∼ N (µ/2t, I). Moreover, {X ′
i} is still ε-obliviously corrupted, because

{Zi} is chosen as i.i.d. Gaussians independent of the samples.
The algorithmA′ thus works as follows. For each 1 ≤ t ≤ O(log(n/d)), we test on X(t) whether µ = 0

or ∥µ∥2 ∈ [α ·2t−1, α ·2t], with failure probability at most 1
nd .A′ rejects if any of these tests on X(t) rejects

for some 1 ≤ t ≤ T . Under the null hypothesis, with at least 0.99 probability, no test will reject. However,
if ∥µ∥2 ∈ [α, 10

√
d], then there exists some 0 ≤ t ≤ O(log(d/α)) such that ∥µ∥2 ∈ [α · 2t, α · 2t+1], so the

test on X(t) will reject. Finally, we use an additional O(1) randomly chosen points to robustly test whether
∥µ∥2 ≥ 10

√
d, with 0.99 success probability.

2.4 Notation

We record here several notational conventions.

• In what follows, α > 0 is the distance parameter, ε ∈ [0, 1] is the corruption rate, d denotes the
dimension, and n is the number of samples. In the remainder of the paper, we assume α ≤ O(1). In
addition, one must have ε ≤ α.

• We use Õ, Ω̃, Θ̃ to hide polylogarithmic factors in the argument.
• Given a distributionD, we use pD(·) to represent the corresponding PDF (whenever it is well-defined).
• Throughout this paper, for a set of vectors S, we will use the shorthand Sum(S) to denote the sum of

the vectors in S, i.e., Sum(S) :=
∑

x∈S x.

Throughout the remainder of the paper, we will assume α ≥ 0.99d. We will also assume the desired fail-
ure probability δ ≥ 0.99d. Thus, we can also assume that the number of samples n ≤ 100d log(1/δ)/α2 ≤
(1.1)d since that would suffice to learn the distribution to accuracy 0.1α.7

3 Reducing to “Friendly" Oblivious Contaminations

The first key step in our oblivious upper bound is arguing that we can reduce to when the contaminated
points are reasonably behaved. Formally, we want to argue that it suffices to consider a friendly oblivious
contamination defined as follows.

Definition 3.1. [(Friendly) Oblivious Contamination Model] We say X1, . . . , Xn are obliviously ε-contaminated
samples from a distribution D if they are drawn as follows: first Y1, . . . , Yεn are chosen adversarially, then
Yεn+1, . . . , Yn ∼ D i.i.d., and finally Y1, . . . , Yn are randomly permuted to produce X1, . . . , Xn.

7Recall that we have a non-robust testing lower bound of Ω
(√

d/α2) and an efficient robust learning upper bound of O
(
d/α2).

In the regime α ≤ 0.99d, however, d/α2 = O(
√

d log(1/α)/α2) = Õ(d/α2), so the trivial upper and lower bounds match up to
logarithmic factors. For the failure probability δ, note that we can amplify any constant success probability in both the oblivious
and Huber contamination models by running multiple trials, at the cost of a multiplicative O(log(1/δ)) factor.

16

In the friendly oblivious contamination model, we additionally have the following assumption about the
data:

Assumption 1. A dataset X1, . . . , Xn ∈ Rd is κ-friendly if the following all hold:
1. For any disjoint subsets S, T ⊂ [n] of sizes k1, k2 ≤ ε · n,∣∣∣∣∣

〈∑
i∈S

Xi,
∑
i∈T

Xi

〉∣∣∣∣∣ ≤ κ · (
√

k1k2 ·max(
√

εnd, εn)).

2. For every distinct i ̸= j ∈ [n], |⟨Xi, Xj⟩| ≤ κ ·
√

d.

3. For every i ∈ [n], ∥Xi∥22 = d± κ
√

d.

In this definition, one should think of κ = poly(log(n), log(d)).
Note that we need to make the reduction to friendly oblivious contamination while preserving the “obliv-

iousness" of the contaminated points. Getting the first condition is the main difficulty (the latter two are
relatively straight-forward in light of Fact 2.8 and Claim 3.3 below) as natural algorithms for filtering/re-
moving points don’t preserve this “obliviousness" and thus cannot be used. Nevertheless in this section, we
show how to filter an arbitrary oblivious contamination on a dataset to a friendly oblivious contamination
while preserving obliviousness. We will prove the following theorem.

Theorem 3.2 (Dealing with Õ(1)-Friendly Contamination Suffices). Assume there exists an algorithm for
robust mean testing in Rd under κ-friendly oblivious ε-contamination that uses n = f(d, α, ε) samples and
succeeds with probability p > 2/3 where κ = (10 log(nd))2000. Assume n ≤ (1.1)d. Then there exists an
algorithm for robust mean testing in Rd under (arbitrary) oblivious ε/2-contaimination that succeeds with
probability p− 0.01 and uses n poly(log(nd)) samples.

3.1 Structure of Obliviously Contaminated Samples

We begin by proving a few basic structural properties that hold with high probability for an obliviously
contaminated dataset. First, we show that the inner product between any two points that are not both con-
taminated must be small.

Claim 3.3. Consider a set S = {X1, . . . , Xn} of n points in Rd that are drawn from N(µ, I) and then
ε-contaminated in the oblivious contamination model. Let R ⊂ S be the subset of contaminated points.
Also assume ∥µ∥ ≤ 1 and n ≤ (1.1)d. Then for any 0.99d < δ < 1, with probability 1− δ, we have that for
all Xi ∈ S\R, Xj ∈ S with i ̸= j,

|⟨Xi, Xj⟩|
∥Xi∥ ∥Xj∥

≤ 10 log(n/δ)√
d

Proof. Since the contamination is oblivious, we can imagine fixing the index j first and then drawing Xi.
We can write Xi = µ + v where v ∼ N(0, I). We have with probability 1− δ/(2n2)

|⟨Xi, Xj/ ∥Xj∥⟩| = |⟨µ, Xj/ ∥Xj∥⟩+ ⟨v, Xj/ ∥Xj∥⟩| ≤ |1 + 5
√

log(n/δ)|

where in the last step we simply noted that ⟨v, Xj/ ∥Xj∥⟩ is distributed as a standard Gaussian and the
desired inequality follows from standard tail bounds. Also by Fact 2.8, ∥Xi∥ ≥

√
d/2 with probability at

least 1− δ/(2n) and combining this with the above gives

|⟨Xi, Xj⟩|
∥Xi∥ ∥Xj∥

≤ 10 log(n/δ)√
d

.

17

Union bounding the failure probability over all i, j we are done.

We also have the following bound on the number of uncontaminated points with large projection onto
any direction determined by a small subset of datapoints.

Claim 3.4. Consider a set S = {X1, . . . , Xn} of n points in Rd that are drawn from N(µ, I) and then
ε-contaminated in the oblivious contamination model. Let R ⊂ S denote the contaminated points. Also
assume ∥µ∥ ≤ 1 and n ≤ (1.1)d. Then for any 0.99d < δ < 1, with probability 1−δ, we have the following
property: for any subset T ⊂ S,∣∣∣∣{Xi ∈ S\R

∣∣∣∣ |⟨Xi, Sum(T)/ ∥Sum(T)∥⟩| ≥ 10
√

log(n/δ)
}∣∣∣∣ ≤ 2|T | .

Proof. We consider a fixed set T and then union bound over all possible choices of T . For a fixed set T ,
we can imagine fixing the points Xi ∈ T first and then drawing the remaining points Xi ∈ S\(R ∪ T) ∼
N(µ, I) afterwards. It suffices to upper bound the probability that more than |T | of these points satisfy

|⟨Xi, Sum(T)/ ∥Sum(T)∥⟩| ≥ 10
√

log(n/δ) .

This probability can be upper bounded by

(δ/n)10|T | · n|T | ≤ (δ/n)9|T |

and then union bounding over all possible choices of T gives the desired statement.

3.2 Oblivious Filtering via Sample Splitting

Recall that our approach to prove Theorem 3.2 will be to “obliviously" filter the dataset, removing some of
the contaminated points, so that the remaining data is friendly. In light of Fact 2.8 and Claim 3.3, it is not
difficult to enforce the latter two conditions for friendliness since we can simply remove points whose norm
is too large or too small and also remove pairs of points whose inner product is too large. The main difficulty
lies in enforcing the first condition and this is our focus for the remainder of this section.

It will be convenient to make the following definition.

Definition 3.5. Let S be a set of vectors in Rd. For parameters λ, m, k, we say that S is (λ, m, k)-balanced
if for all pairs of disjoint subsets S1, S2 ⊂ S with |S1|, |S2| ≤ m and |S1||S2| ≤ k, we have

|⟨Sum(S1), Sum(S2)⟩| ≤
√

λ|S1||S2|d

Roughly, it will suffice to ensure that our dataset is balanced for λ ∼ κ2εn, m ∼ εn and k ∼ m2 8.
We will do this by iteratively doubling k i.e. going from (λ, m, k/2)-balanced to (λ, m, k)-balanced. At
a high-level the way we do this while maintaining obliviousness of the contaminations is as follows. We
randomly split the dataset into two parts A, B and only look at A to construct some filter that “cleans" A
i.e. makes it (λ, m, k)-balanced. We then argue that with high probability, this filter must clean B and we
simply apply it to B and iterate on the remaining data (throwing away A). Crucially, this sample splitting
preserves the obliviousness of the contaminations because the filters are constructed independently of the

8For most of this section, we will work in the regime εn poly(log(nd)) < d. We will show a reduction when we finally prove
Theorem 3.2 that allows us to reduce to this case.

18

uncontaminated data since we can view the uncontaminated points in B as being drawn after running our
algorithm on A. See Algorithm 1 and Algorithm 2 for more specific details.

We first need to prove a few basic properties. If a set of vectors S is (λ, m, k/2)-balanced and not
(λ, m, k)-balanced, then there must be some disjoint subsets S1, S2 ⊂ S with k/2 ≤ |S1||S2| ≤ k that
witness this i.e.

|⟨Sum(S1), Sum(S2)⟩| ≥
√

λ|S1||S2|d .

The above statement says that on average, vectors in S2 have large inner product with Sum(S1). In the next
claim, we prove that this is actually the case for a large subset of S2.

Claim 3.6. Let S1, S2 be two disjoint sets of vectors in Rd. Let k, m be some parameters such that
|S1|, |S2| ≤ m. Assume that S1 ∪ S2 is (λ, m, k/2)-balanced. Then if |S1| · |S2| ≤ k and

⟨Sum(S1), Sum(S2)⟩ ≥
√

θ|S1||S2|d

for some parameter θ ≤ λ, then there is a subset S′
2 ⊂ S2 with |S′

2| ≥
θ|S2|

8λ such that for all v ∈ S′
2,

⟨v, Sum(S1)⟩ ≥ 1
4

√
θ|S1|d
|S2|

Proof. Let T be the set of all vectors v ∈ S2 such that

⟨v, Sum(S1)⟩ ≥ 2
√

λ2|S1|
θ|S2|

d .

If T has size larger than θ|S2|/(4λ), then by taking T ′ to be a random subset of T of size θ|S2|/(4λ), we
would get

E
[
⟨Sum(T ′), Sum(S1)⟩

]
≥ θ|S2|

4λ
· 2
√

λ2|S1|
θ|S2|

d = 1
2

√
θ|S1||S2|d ≥

√
λ|T ′||S1|d

Hence, the above deterministically happens for some T ′ ⊂ T of size θ|S2|/(4λ), which contradicts the
assumption that S1 ∪ S2 is (λ, m, k/2)-balanced. Thus, we must actually have |T | ≤ θ|S2|/(4λ), and

⟨Sum(T), Sum(S1)⟩ ≤
√

λ|T ||S1|d ≤
1
2

√
θ|S1||S2|d .

In particular, this means that

⟨Sum(S2\T), Sum(S1)⟩ ≥ 1
2

√
θ|S1||S2|d .

Next, let R be the set of all vectors v ∈ S2 such that

⟨v, Sum(S1)⟩ ≤ 1
4

√
θ|S1|d
|S2|

.

We have that
⟨Sum(S2\(T ∪R)), Sum(S1)⟩ ≥ 1

4

√
θ|S1||S2|d .

19

Thus, by the construction of R, T , we conclude that the number of vectors v ∈ S2 such that

⟨v, Sum(S1)⟩ ≥ 1
4

√
θ|S1|d
|S2|

is at least
⟨Sum(S2\(T ∪R)), Sum(S1)⟩

2
√

λ2|S1|
θ|S2| d

≥ θ|S2|
8λ

.

With the above equipped, we can now show that if S1, S2 ⊂ S are two sets of samples that vio-
late (λ, m, k)-balancedness, then if we split S into two parts A, B, with all but exponentially small (in
min(|S1|, |S2|)) probability, both parts A, B will witness a violation for slightly smaller values of λ, m, k.

Lemma 3.7. Let S1, S2 be two disjoint sets of vectors in Rd. Let k, m be some parameters such that
|S1|, |S2| ≤ m. Assume that S1 ∪ S2 is (λ, m, k/2)-balanced. Also assume that |S1| · |S2| ≤ k and

⟨Sum(S1), Sum(S2)⟩ ≥
√

λ|S1||S2|d .

Consider splitting S1, S2 each into two sets S1,A, S1,B and S2,A, S2,B respectively where each element is

assigned to the first part independently with probability p. Then with probability 1− 2− min(|S1|,|S2|)p3(1−p)3

1010 ,
there are subsets S′

1,A, S′
2,A, S′

1,B, S′
2,B with S′

1,A ⊂ S1,A, S′
2,A ⊂ S2,A, S′

1,B ⊂ S1,B , S′
2,B ⊂ S2,B such

that

|S′
1,A| =

p2|S1|
106

|S′
1,B| =

(1− p)2|S1|
106

|S′
2,A| =

p2|S2|
106

|S′
2,B| =

(1− p)2|S2|
106

⟨Sum(S′
1,A), Sum(S′

2,A)⟩ ≥ p4√λ|S1||S2|d
1013

⟨Sum(S′
1,B), Sum(S′

2,B)⟩ ≥ (1− p)4√λ|S1||S2|d
1013

The proof of Lemma 3.7 relies on the claim below, which characterises what happens when we split one
of the sets, say S2 into two parts.

Claim 3.8. Let S1, S2 be two disjoint sets of vectors in Rd. Let k, m be some parameters such that
|S1|, |S2| ≤ m. Assume that S1 ∪ S2 is (λ, m, k/2)-balanced. Also assume that |S1| · |S2| ≤ k and

⟨Sum(S1), Sum(S2)⟩ ≥
√

θ|S1||S2|d

for some parameter θ ≤ λ. Now consider splitting S2 into two pieces A, B where each element is
independently assigned to A with probability p (and assigned to B otherwise). Then with probability

20

1− 2− p2(1−p)2θ|S2|
102λ , there exist subsets A′ ⊂ A and B′ ⊂ B such that

|A′| = pθ|S2|
20λ

|B′| = (1− p)θ|S2|
20λ

⟨Sum(A′), Sum(S1)⟩ ≥ pθ

102λ

√
θ|S1||S2|d

⟨Sum(B′), Sum(S1)⟩ ≥ (1− p)θ
102λ

√
θ|S1||S2|d

Proof. First, construct the set S′
2 according to Claim 3.6. By Hoeffding’s inequality, with probability 1 −

2− p2(1−p)2θ|S2|
102λ , we have |S′

2 ∩ A| ≥ pθ|S2|/(20λ) and |S′
2 ∩ B| ≥ (1 − p)θ|S2|/(20λ). Let A′, B′ be

arbitrary subsets of S′
2 ∩A, S′

2 ∩B with sizes pθ|S2|/(20λ) and (1− p)θ|S2|/(20λ) respectively. Then by
the properties of S′

2 guaranteed by Claim 3.6 we have

⟨Sum(A′), Sum(S1)⟩ ≥ |A′| · 1
4

√
θ|S1|d
|S2|

≥ pθ

102λ

√
θ|S1||S2|d

and similar for ⟨Sum(B′), Sum(S1)⟩, completing the proof.

We can now prove Lemma 3.7 by applying Claim 3.8 twice.

Proof of Lemma 3.7. First consider when S2 is split into S2,A and S2,B and apply Claim 3.8 with θ = λ.
This gives us sets S

(1)
2,A and S

(1)
2,B with

|S(1)
2,A| =

p|S2|
20

|S(1)
2,B| =

(1− p)|S2|
20

⟨Sum(S1), Sum(S(1)
2,A)⟩ ≥ p

102

√
λ|S1||S2|d

⟨Sum(S1), Sum(S(1)
2,B)⟩ ≥ (1− p)

102

√
λ|S1||S2|d .

Now we can apply Claim 3.8 again when splitting S1 with θ = pλ/104 to get S′
1,A with

|S′
1,A| =

p2|S1|
106

⟨Sum(S′
1,A), Sum(S(1)

2,A)⟩ ≥ p3

108

√
λ|S1||S2|d .

Now we can take S′
2,A to be random subset of S

(1)
2,A of size p2|S2|/106 and we have in expectation that

⟨Sum(S′
1,A), Sum(S′

2,A)⟩ ≥ p4

1013

√
λ|S1||S2|d

so in particular it holds for some choice of S′
2,A. We can construct S′

2,B similarly. The overall failure

probability over all applications of Claim 3.8 is at most 2− p3(1−p)3 min(|S1|,|S2|)
1010 and this completes the proof.

21

In light of Lemma 3.7, we know that when we split the set of samples S into two parts A, B, any pair
of subsets S1, S2 that violates (λ, m, k)-balancedness creates a violation in both parts with (approximately)
exp(−min(|S1|, |S2|)) failure probability. Now, we roughly proceed as follows. If the set of all possible
filters considered by our algorithm has size less than exp(min(|S1|, |S2|)), then we can union bound and
conclude that actually any filter that cleans A to be (λ′, m′, k′)-balanced (for some slightly smaller λ′, m′, k′)
must actually clean S to be (λ, m, k)-balanced. Then it suffices to argue that there exists a filter in this set
that actually cleans A. The full argument will be slightly more involved as we have to deal with different
possibilities for min(|S1|, |S2|) separately.

We first need a few more basic observations.

Definition 3.9. Let S be a set of vectors in Rd. We say that S is ρ-bounded if for all v ∈ S, d −
√

ρd ≤
∥v∥2 ≤ d +

√
ρd and for all distinct u, v ∈ S, −

√
ρd ≤ ⟨u, v⟩ ≤

√
ρd.

Claim 3.10. Let S ∈ Rd be a set of vectors that is (λ, m, k)-balanced and λ-bounded. Then for all subsets
T ⊂ S with |T | ≤ min(m,

√
k), ∥Sum(T)∥2 ≤ |T |d + 2|T |

√
λd.

Proof. We can write
∥Sum(T)∥2 ≤ |T |(d +

√
λd) +

∑
u,v∈T,u̸=v

⟨u, v⟩ .

Now consider a random partition of T into two sets T1, T2 where each element is assigned uniformly at
random. Then ∑

u,v∈T,u̸=v

⟨u, v⟩ = 2E[⟨Sum(T1), Sum(T2)⟩] ≤ |T |
√

λd

where we used the assumption of (λ, m, k)-balancedness. Thus,

∥Sum(T)∥2 ≤ |T |d + 2|T |
√

λd

and we are done.

Claim 3.11. Let S ⊂ Rd be a set of vectors that is λ/m-bounded. Then it is (λ, m, m)-balanced.

Proof. Consider disjoint subsets S1, S2 ⊂ S. Then by the assumption of λ/m-bounded,

|⟨Sum(S1), Sum(S2)⟩| ≤ |S1||S2|
√

λd/m .

If |S1||S2| ≤ m then the above is at most
√

λ|S1||S2|d, completing the proof.

Recall that one key point in the earlier sketch is that our algorithm can only enumerate over a (reason-
ably) small set of filters. Here we first show that if S1, S2 violate balancedness, then there exists a direction
determined by a small subset S′

1 with |S′
1| ∼ |S1||S2|/m such that filtering along this direction removes a

large (∼ |S2|) number of points. We can then aggregate multiple filtering directions for different choices of
S′

1 to construct our full filter. Note that bounding the sizes of the individual sets S′
1 is the key for bounding

the total number of possible filters being considered.

Lemma 3.12. Let k, m, θ, λ, C be some parameters. Let S1, S2 be two disjoint sets of vectors in Rd with
|S1|, |S2| ≤ m, 10Cm ≤ |S1| · |S2| ≤ k, and

⟨Sum(S1), Sum(S2)⟩ ≥
√

θ|S1||S2|d .

22

Also, assume that S1 ∪ S2 is (λ, m, k)-balanced and θ/(105Cm)-bounded, where θ ≤ λ ≤ d and C ≥ 1.
Then, there exists a subset S′

1 ⊂ S1 with |S′
1| ≤ |S1||S2|/(Cm) such that there are at least θ|S2|

80λ vectors
v ∈ S2 such that 〈

v,
Sum(S′

1)
∥Sum(S′

1)∥

〉
≥

√
θ

16
√

Cm

Proof. First we apply Claim 3.6 to S2 to get a subset S′
2 with the stated properties. Now consider any vector

v ∈ S′
2. Consider drawing a random subset S′

1 ⊂ S1 of size |S′
1| = |S1||S2|/(Cm) (note this is well defined

because |S1||S2| ≥ 10Cm and |S′
1| ≤ |S1|). First, we compute

ES′
1
[⟨Sum(S′

1), v⟩] = |S
′
1|
|S1|
⟨v, Sum(S1)⟩ ≥ |S

′
1|

4

√
θd

|S1||S2|

Next, we can compute the second moment

ES′
1
[⟨Sum(S′

1), v⟩2] =
∑

u∈S1

|S′
1|
|S1|
⟨u, v⟩2 +

∑
u,u′∈S1,u̸=u′

|S′
1|(|S′

1| − 1)
|S1|(|S1| − 1)⟨u, v⟩⟨u′, v⟩

≤
∑

u∈S1

|S′
1|
|S1|
⟨u, v⟩2 + |S

′
1|(|S′

1| − 1)
|S1|(|S1| − 1)

∑
u,u′∈S1

⟨u, v⟩⟨u′, v⟩

≤ |S′
1|

θd

105Cm
+ |S

′
1|(|S′

1| − 1)
|S1|(|S1| − 1) (⟨v, Sum(S1)⟩)2

≤ |S′
1|

θd

105Cm
+ (ES′

1
[⟨Sum(S′

1), v⟩])2.

Thus, the variance is at most |S′
1|θd/(105Cm). Now since |S′

1| = |S1||S2|/m and C ≥ 1, we have

ES′
1
[⟨Sum(S′

1), v⟩] ≥ 5
√

VarS′
1
(⟨Sum(S′

1), v⟩)

and thus with probability at least 0.1,

⟨v, Sum(S′
1)⟩ ≥ 0.5ES′

1
[⟨Sum(S′

1), v⟩] ≥ |S
′
1|

8

√
θd

|S1||S2|
.

Next note that by the constraints on the parameters, |S′
1| ≤ min(m,

√
k) and thus by Claim 3.10,

∥∥Sum(S′
1)
∥∥ ≤ √|S′

1|d + 2|S′
1|
√

λd ≤ 2
√
|S′

1|d

which implies that with 0.1 probability over the randomness of the choice of S′
1〈

v,
Sum(S′

1)
∥Sum(S′

1)∥

〉
≥ 1

16

√
S′

1θ

|S1||S2|
≥

√
θ

16
√

Cm
.

This holds for all v ∈ S′
2 where S′

2 was constructed at the beginning of this proof according to Claim 3.6.
By linearity of expectation, this means that there is some choice of S′

1 such that there are at least

0.1|S′
2| ≥

θ|S2|
80λ

23

vectors v ∈ S2 such that 〈
v,

Sum(S′
1)

∥Sum(S′
1)∥

〉
≥

√
θ

16
√

Cm

as desired.

We now describe a single iteration of our algorithm (see Algorithm 1) where we take as input a pa-
rameter s and the goal is to eliminate all pairs of subsets S1, S2 with s/2 ≤ min(|S1|, |S2|) ≤ s that
violate (λ, m, k)-balancedness. Repeating this algorithm over logarithmically many scales for s and then
logarithmically many scales for k will give our full algorithm (see Algorithm 2).

Definition 3.13. Given a collection of (finite) sets of vectors in Rd, say F1, . . . , Fℓ, and a parameter γ ≥ 0,
we define Filterγ(F1, . . . , Fℓ) ⊂ Rd to consist of all vectors v ∈ Rd such that

max
i∈[l]
|⟨v, Sum(Fi)/ ∥Sum(Fi)∥⟩| ≥ γ .

When we apply Filterγ(F1, . . . , Fℓ) to a set S ⊂ Rd, we remove from S all points that are in Filterγ(F1, . . . , Fℓ).

Algorithm 1 Single Filtering Iteration
Input: Finite set of samples S ⊂ Rd

Input: Parameters λ, m, k, s, p
Partition S into two sets A, B where each element is independently assigned to A with probability p

Set τ = sp6

1011 log |S|

Set γ =
√

λp50

10100m
Set F1, F2, . . . , Fk = ∅
for All collections of subsets T1, . . . Tℓ ⊂ A with |T1|+ |T2|+ · · ·+ |Tℓ| ≤ τ do

Set check = True
for All disjoint pairs S1, S2 ⊂ A\Filterγ(T1, . . . , Tℓ) with |S1| = p2s/(2·106), |S2| = p2k/(2·106s)

do
if |⟨Sum(S1), Sum(S2)⟩| ≥ p4

√
λ|S1||S2|d
1014 then

Set check = False
if check then

Set F1 = T1, . . . , Fℓ = Tℓ

Break
Set B′ = B\Filterγ(F1, . . . , Fℓ)
Output: B′

Lemma 3.14 (Analysis of Algorithm 1). Assume that the set S is (λ, m, k/2)-balanced and λp50/(10100m)-
bounded. Assume the parameters satisfy λ ≤ d, m ≤ kp20/1050, p ≤ 1/2. Also, assume that there is a
subset R ⊂ S with |R| ≤ (p50m)/(10100 log |S|) such that for any subset T ⊂ S, we have∣∣∣∣∣∣

v ∈ S\R
∣∣∣∣ |⟨v, Sum(T)/ ∥Sum(T)∥⟩| ≥

√
λp50

10100m


∣∣∣∣∣∣ ≤ 2|T | .

24

Then with probability 1 − 2−sp6/1011
, the set B′ output by Algorithm 1 has the property that for any

disjoint sets S1, S2 ⊂ B′ with s/2 ≤ |S1| ≤ s, |S1| ≤ |S2| ≤ m and k/2 ≤ |S1||S2| ≤ k,

|⟨Sum(S1), Sum(S2)⟩| ≤
√

λ|S1||S2|d .

Proof. Throughout this proof we set γ =
√

λp50

10100m
just as in Algorithm 1. We now introduce some termi-

nology. We say that S\Filterγ(T1, . . . , Tℓ) is unclean if there exist disjoint S1, S2 ⊂ S\Filterγ(T1, . . . , Tℓ)
such that s/2 ≤ |S1| ≤ s, |S1| ≤ |S2| ≤ m and k/2 ≤ |S1||S2| ≤ k and

|⟨Sum(S1), Sum(S2)⟩| ≥
√

λ|S1||S2|d

and otherwise we say that S\Filterγ(T1, . . . , Tℓ) is clean. Similarly, if A\Filterγ(T1, . . . , Tℓ) contains two
disjoint sets S′

1,A, S′
2,A such that

|S′
1,A| =

p2s

2 · 106

|S′
2,A| =

p2k

2 · 106s

|⟨Sum(S′
1,A), Sum(S′

2,A)⟩| ≥ p4√λ|S1||S2|d
1014

then we say A\Filterγ(T1, . . . , Tℓ) is unclean and otherwise we say that it is clean.
There are at most |S|τ distinct filters considered in Algorithm 1. For each of these filters {T1, . . . , Tℓ},

we apply Lemma 3.7 to S\Filterγ(T1, . . . , Tℓ). If it is unclean, then, with probability at least 1−2−sp6/1010
,

A is unclean. This is because if S1, S2 witness S\Filterγ(T1, . . . , Tℓ) being unclean, then since s/2 ≤
|S1| ≤ s and k/(2s) ≤ |S2| ≤ 2k/s, we can choose random subsets S′

1,A, S′
2,A of the appropriate size

from the sets guaranteed by Lemma 3.7. (Note: we can apply Lemma 3.7 because |S1||S2| ≤ k and
|S1| ≤ |S2| ≤ m by definition of unclean, and since S ⊃ S1 ∪ S2 is assumed to be (λ, m, k/2)-balanced.)
Now we can union bound this over all |S|τ distinct filters and since by the definition of τ ,

|S|τ ≤ 2
sp6

5·1010

and thus with probability 1− 2−sp6/1011
, we have the following property:

For any {T1, . . . , Tℓ} if A\Filterγ(T1, . . . , Tℓ) is clean then S\Filterγ(T1, . . . , Tℓ) is clean. If Algo-
rithm 1 chooses F1, . . . , Fℓ such that S\Filterγ(F1, . . . , Fℓ) is clean then we are done. Thus, it remains to
show that there actually exists a filter F1, . . . , Fℓ that cleans A.

We construct such a filter iteratively. Start with an empty filter. Now if we are not done, then there
must exist a pair S′

1,A, S′
2,A that witnesses A being unclean. We will apply Lemma 3.12 on this pair (with

θ ← λp4/1020, C = 1030/p6, k ← k/2). First we verify that the conditions of Lemma 3.12 are met. We
have

|S′
1,A||S′

2,A| =
p4k

4 · 1012 ≥
1037m

p16 ≥ 10Cm

and also clearly |S′
1,A||S′

2,A| ≤ k/2. Also, |S′
1,A|, |S′

2,A| ≤ m since even |S1|, |S2| ≤ m. Recall that we
have

|⟨Sum(S′
1,A), Sum(S′

2,A)⟩| ≥ p4√λ|S1||S2|d
1014 ≥

√
θ|S′

1,A||S′
2,A|d

25

and also S′
1,A ∪ S′

2,A is (λ, m, k/2)-balanced by assumption. Finally,

λp50

10100m
≤ θ

105Cm
,

so the boundedness condition is satisfied, and clearly θ ≤ λ ≤ d and C ≥ 1. Thus, Lemma 3.12 tells us that
we can find a subset F1 with |F1| ≤ p6k/(1040m) such that∣∣∣∣∣∣

v ∈ A

∣∣∣∣|⟨v, Sum(F1)/ ∥Sum(F1)∥⟩| ≥

√
λp50

10100m


∣∣∣∣∣∣ ≥ p6k

1030s
.

Thus, by our assumption on R, the number of elements in the above set that are in R is at least p6·k
1030s

−2|F1|,
which is at least p6k

2·1030s
, since s/2 ≤ |S1| ≤ m. In particular, we added at most p6k/(1040m) elements

to our filter and eliminated at least p6k
2·1030s

elements of R. Now we can iterate the above argument on
A\Filterγ(F1). Overall, repeating this process, the total number of elements that we will add to our filter is
at most

p6k

1040m

(
|R|
p6k

2·1030s

+ 1
)
≤ τ .

This completes the proof.

Algorithm 2 Full Sample Splitting
Input: Finite set of samples S ⊂ Rd

Input: Parameters λ, m, δ
Set k = 10200m log100(|S|m/δ)
Set Sfilt = S
while k ≤ m2 do

Set s = 10199 log100(|S|m/δ)
while s ≤ m do

Run Algorithm 1 on S with parameters λ, m, k, s, p = 1/(5 log2 m)
Set Sfilt ← B′ where B′ is the output of Algorithm 1
s← 2s

k ← 2k
Output: Sfilt

Lemma 3.15 (Analysis of Algorithm 2). Let S ⊂ Rd be a finite set of vectors and λ, m, δ be some parame-
ters with λ ≤ d. Assume that S is γ2-bounded where γ =

√
λ

10200m log100(|S|m/δ) . Also assume that there is
a subset R ⊂ S with |R| ≤ m

10200 log100(|S|m/δ) such that for all subsets T ⊂ S,

∣∣∣∣{v ∈ S\R
∣∣∣∣ |⟨v, Sum(T)/ ∥Sum(T)∥⟩| ≥ γ

}∣∣∣∣ ≤ 2|T | .

Then if we run Algorithm 2 on S, with probability 1− δ, the output Sfilt will be (λ, m, m2)-balanced.

26

Proof. First by Claim 3.11, we have that S is (λ, m′, m′)-balanced with m′ = m · 10200 log100(|S|m/δ)
(and thus also (λ, m, m′)-balanced). Now we prove that after every execution of the outer while loop (for
a fixed value of k, before doubling k) in Algorithm 2, the set Sfilt will be (λ, m, k)-balanced. We do this
by induction, where the base case follows from the preceding statement. Now after doubling k, we know
that Sfilt is (λ, m, k/2)-balanced. Next we apply Lemma 3.14 for each execution of the inner while loop in
Algorithm 2. Note that this is valid because λ ≤ d, k is initialized sufficiently large, and our upper bound on
|R| is sufficiently small. Also s is initialized sufficiently large so we can union bound the failure probability
over all iterations and deduce that with probability 1− δ, the conclusion of Lemma 3.14 every time we run
Algorithm 1. If after the completion of the inner while loop, the set Sfilt is not (λ, m, k)-balanced then there
must be some disjoint |S1|, |S2| with |S1|, |S2| ≤ m, k/2 ≤ |S1||S2| ≤ k, and |⟨Sum(S1), Sum(S2)⟩| ≥√

λ|S1||S2|d. WLOG |S1| ≤ |S2|. By the inductive hypothesis, we must have |S1||S2| ≥ k/2 and since
|S2| ≤ m,

|S1| =
|S1| · |S2|
|S2|

≥ k/2
m
≥ 5 · 10199 log100(|S|m/δ)

and thus there was some value of s for which we executed the inner while loop and s/2 ≤ |S1| ≤ s.
However, applying the guarantee of Lemma 3.14 for this execution of Algorithm 1 implies that such S1, S2
cannot exist and this is a contradiction. Thus, actually Sfilt must be (λ, m, k)-balanced and this completes
the induction. Since we keep increasing k up to m2, at the end we know that Sfilt is (λ, m, m2)-balanced
and we are done.

Now we can use Lemma 3.15 to prove Theorem 3.2.

Proof of Theorem 3.2. Consider starting with a set S of n(10 log(nd))10 obliviously ε-contaminated sam-
ples. First, we remove all points Xi ∈ S with ∥Xi∥2 ≥ d+

√
(log(nd))100d or ∥Xi∥2 ≤ d−

√
(log(nd))100d.

Next, for all pairs of distinct points Xi, Xj with |⟨Xi, Xj⟩| ≥
√

(log(nd))200d, we remove both of them.
By Fact 2.8 and Claim 3.3, with probability 0.999, this only removes contaminated points. Furthermore, the
remaining dataset is equivalent to an obliviously ε-contaminated one (since it is equivalent to first remove
the subset of contaminated points that violate the previous conditions and then draw the uncontaminated
points).

Case 1: εn ≲ d We first consider the case where (10 log(nd))1000εn ≤ d. We run Algorithm 2 with
δ = 0.001 and

m = εn(10 log(nd))200

λ = εn(10 log(nd))1000 .

Recall that Algorithm 2 runs O(log2 m) iterations of Algorithm 1. For all executions of Algorithm 1, we
have γ ≥ (10 log(nd))300. Also note that we can imagine drawing the uncontaminated points in B after
drawing the points in A. On the other hand, the filters are constructed only from A. Thus, with 1−1/(nd)100

probability, none of the uncontaminated points are removed by the filters. We can union bound this failure
probability over all executions of Algorithm 1 to get that with probability 0.999, no uncontaminated points
are removed by any filters throughout the execution of Algorithm 2. By the construction of Sfilt, we conclude
that with 0.999 probability |Sfilt| ≥ n and the number of contaminated points in Sfilt is at most εn. Also,
none of the filters constructed throughout Algorithm 2 depend on the points in Sfilt so it is equivalent to an
obliviously ε-contaminated dataset (since it is equivalent to simply apply these filters to the contaminated
points before drawing the rest of the dataset). It remains to argue that with high probability, Sfilt is κ-friendly

27

and then we can apply the tester that we assumed works under κ-friendly oblivious ε-contamination to
complete the proof.

Note that λ = εn(10 log(nd))1000 ≤ d by assumption and after the initial filtering step (where we filter
by norm and pairwise inner product), we know that the dataset is (log(nd))200-bounded. Also, by Claim 3.4,
there is a set R ⊂ Sfilt with |R| ≤ εn (consisting of exactly the contaminated points) such that for all subsets
T ⊂ Sfilt, ∣∣∣∣{v ∈ S\R

∣∣∣∣ |⟨v, Sum(T)/ ∥Sum(T)∥⟩| ≥ 100 log n

}∣∣∣∣ ≤ 2|T | .

Thus, we can apply Lemma 3.15 to get that Sfilt is (λ, m, m2)-balanced. This then implies that Sfilt is
equivalent to a κ-friendly obliviously ε-contaminated dataset and we are done in this case.

Case 2: εn ≳ d Now it remains to consider the case where (10 log(nd))1000εn ≥ d. We can increase the
dimension by adding dummy coordinates to all of the points. We can draw these coordinates independently
from N(0, 1) and pad the dimension to d′ = (10 log(nd))1000εn. We will use S′ to denote the padded
dataset and X ′

i to denote points in S′. Recall that we filtered by norm and inner product at the beginning.
Since all of the additional coordinates are i.i.d. standard Gaussians, with 0.999 probability, we have that
after the padding, for all X ′

i ∈ S′

d′ −
√

(log(nd′))100d′ ≤
∥∥X ′

i

∥∥2 ≤ d′ +
√

(log(nd′))100d′

and for all distinct X ′
i, X ′

j ∈ S′,

|⟨X ′
i, X ′

j⟩| ≤
√

(log nd′))200d′ .

Now we can run Algorithm 2 as in the previous case on the padded points. By the same argument,
we end up with an obliviously ε-contaminated dataset S′

filt such that S′
filt is (log(nd′))200-bounded and

(εn(log(nd′))1000, εn(log(nd′))200, ε2n2(log(nd′))400)-balanced. WLOG say S′
filt = {X ′

1, . . . , X ′
n}. Now

we take S′
filt and remove the padding to get Sfilt = {X1, . . . , Xn}. Let Πpad denote the operator that projects

onto the padded coordinates. For a set A ⊂ [n],
∑

i∈A ΠpadX ′
i is just a vector in Rd′−d distributed accord-

ing to N(0, |A|I). Union bounding over all choices of disjoint sets A, B ⊂ [n] with |A|, |B| ≤ εn using
Fact 2.9, with probability 0.999 over the randomness in the padded coordinates,∣∣∣∣∣

〈∑
i∈A

ΠpadX ′
i,
∑
i∈B

ΠpadX ′
i

〉∣∣∣∣∣ ≤ √|A||B|εnd′(log(nd′))100 ≤
√
|A||B|εn(10 log(nd))1000 .

Combining the above and the balancedness of S′
filt, we get that after removing the padding for any disjoint

sets A, B ⊂ [n],∣∣∣∣∣
〈∑

i∈A

Xi,
∑
i∈B

Xi

〉∣∣∣∣∣ ≤ √|A||B|εn(10 log(nd))1000 +
√

εn(log(nd′))1000|A||B|d′ ≤ κ
√
|A||B|εn .

Thus, Sfilt is κ-friendly (recall the latter two conditions follow from the filtering by norm and inner product
that we did at the beginning) and we are done.

28

4 Mean Testing Robustly Against Oblivious Adversaries

In this section, we prove our main technical result, the upper bound against oblivious adversaries:

Theorem 4.1. Suppose that n ≥ Õ
(√

d
α2 + dε3

α4 + min
(

d2/3ε2/3

α8/3 , dε
α2

))
, and that 1 ≥ α ≥ ε · log(nd)O(1).

Then, there exists an ε-robust mean tester using n samples.

4.1 Setup and Algorithm

From Section 3, we may assume we are dealing with the friendly oblivious contamination model. We restate
the definition for convenience.

Definition 3.1. [(Friendly) Oblivious Contamination Model] We say X1, . . . , Xn are obliviously ε-contaminated
samples from a distribution D if they are drawn as follows: first Y1, . . . , Yεn are chosen adversarially, then
Yεn+1, . . . , Yn ∼ D i.i.d., and finally Y1, . . . , Yn are randomly permuted to produce X1, . . . , Xn.

In the friendly oblivious contamination model, we additionally have the following assumption about the
data:

Assumption 2. A dataset X1, . . . , Xn ∈ Rd is κ-friendly if the following all hold:
1. For any disjoint subsets S, T ⊂ [n] of sizes k1, k2 ≤ ε · n,∣∣∣∣∣

〈∑
i∈S

Xi,
∑
i∈T

Xi

〉∣∣∣∣∣ ≤ κ · (
√

k1k2 ·max(
√

εnd, εn)).

2. For every distinct i ̸= j ∈ [n], |⟨Xi, Xj⟩| ≤ κ ·
√

d.

3. For every i ∈ [n], ∥Xi∥22 = d± κ
√

d.

We think of κ as a sufficiently large log(nd)O(1) term.

Given this promise on the data, the algorithm, roughly speaking, checks the mean and the variance in
the direction of the sum of the points. If both look reasonable for a set of samples from the null distribution,
we accept, otherwise, we reject. Formally, we use the algorithm described in Algorithm 3.

Algorithm 3 Robust mean tester for obliviously-corrupted data satisfying Assumption 2. Input:
X1, . . . , Xn ∈ Rd, α, ε > 0.

1: Let S :=
∑

i∈[n] Xi.
2: if

∣∣∥S∥22 − nd
∣∣ > 0.01α2n2 then

3: return REJECT.
4: else if 1

n

∑
i∈[n]

(
⟨Xi,S⟩−d

∥S∥2

)2
≥ 1 + 0.025α4

ε ·
n
d and n ≤ O(κ5) ·

(√
d

α2 + dε
α2

)
then

5: return REJECT.
6: else
7: return ACCEPT.

We have the following results which lead to our main theorem.

Lemma 4.2. Suppose that X1, . . . , Xn are drawn from the friendly ε-oblivious contamination model. More-
over, assume that d ≥ ε · n and n ≤ d

α2 . Then, Algorithm 3 can solve robust mean testing in n =
O(κ5) ·

(√
d

α2 + dε3

α4 + d2/3ε2/3

α8/3

)
samples, whenever α ≥ κ5 · ε.

29

Lemma 4.3. Suppose that X1, . . . , Xn are drawn from the friendly ε-oblivious contamination model. Then,
Algorithm 3 can solve robust mean testing in n = O(κ5) ·

(√
d

α2 + dε
α2

)
samples, whenever α ≥ κ5 · ε.

We can think of “solving robust mean testing” (as stated in Lemmas 4.2 and 4.3) as follows. If given n
ε-obliviously contaminated samples from N (0, I), with high probability we either return ACCEPT or the
samples were not κ-friendly. Likewise, if given n ε-obliviously contaminated samples from N (0, I), with
high probability we either return REJECT or the samples were not κ-friendly. In this section, we always use
the phrase with high probability to mean the failure probability is at most 1

poly(n,d) .

Given Lemmas 4.2 and 4.3, we explain how to prove our main theorem, Theorem 4.1.

Proof of Theorem 4.1. First, we assume that the data was drawn from the κ-friendly ε-oblivious contamina-
tion model. Suppose that n ≥ κ6 ·

(√
d

α2 + dε3

α4 + min
(

d2/3ε2/3

α8/3 , dε
α2

))
and α ≥ κ5 · ε. Then, if n ≥ d

α2 , we

have n ≥ κ10 · dε2

α4 , so we can use Theorem 7.1. Alternatively, if n ≤ d
α2 and d ≥ ε · n, we can use either

Lemma 4.2 or 4.3. Finally, if d ≤ ε · n, but n ≥ κ6 ·
√

d
α2 , then κ5 · dε

α2 = κ5 · d
ε ·
(

ε
α

)2 ≤ κ−5 · d
ε . Since

n ≥ κ−1 · d
ε , this means that O(κ5) · dε

α2 ≤ O(κ−4) · n. Therefore, n ≥ O(κ5) ·
√

d
α2 + O(κ5) · dε

α2 , so we can
apply Lemma 4.3.

By Theorem 3.2, we may remove the assumption about the data being friendly. This completes the
proof.

The rest of the section is primarily devoted to Lemma 4.2, but we prove Lemma 4.3 in Section 4.6. By
Proposition 2.17, we may assume that the alternative hypothesis is ∥µ∥2 ∈ [α, 2α]. In fact, for simplicity we
will pretend the alternative is ∥µ∥2 = α. Indeed, if ∥µ∥2 = α′ ∈ [α, 2α], then our proof will show that either∣∣∥S∥22 − nd

∣∣ > 0.01(α′)2n2 ≥ 0.01α2n2 or 1
n

∑
i∈[n]

(
⟨Xi,S⟩−d

∥S∥2

)2
≥ 1 + 0.025 (α′)4

ε · n
d ≥ 1 + 0.025α4

ε ·
n
d .

In the rest of this section, we use S to represent Sum([n]) =
∑

i∈[n] Xi. We also will split the data into
good (uncorrupted) points G and bad (corrupted) points B. We will always use R to denote Sum(B) =∑

i∈B Xi. If the good samples are drawn as N (µ, I), we always use T to denote
∑

i∈G(Xi − µ), and Q to
denote |G| ·µ. Note that S = Q + R + T. Also, note that in the null case, Q = 0 and T =

∑
i∈G Xi, which

means S = R + T.

4.2 Consequences of Assumption 2

In this section, we prove a series of propositions that will be useful in bounding the mean and variance. In
all of the following, let X1, . . . , Xn ∈ Rd be any vectors satisfying Assumption 2.

First, we have the following bound on the norm of any sum of at most εn points.

Proposition 4.4. Let X1, . . . , Xn ∈ Rd satisfy Assumption 2. Then, for any subset B′ of size k ≤ εn,
∥
∑

i∈B′ Xi∥22 = kd±O(κ) · k · (
√

εnd + εn).

Proof. Let B′
1, B′

2 be a random partition of B′ into sets of equal size. For any distinct i, j ∈ B′, let
p = Pr(i ∈ B′

1, j ∈ B′
2) = Ω(1). Then∣∣∣∣∣∣

∑
i̸=j∈B′

⟨Xi, Xj⟩

∣∣∣∣∣∣ =

∣∣∣∣∣∣1p · EB′
1,B′

2

〈 ∑
i∈B′

1

Xi,
∑

j∈B′
2

Xj

〉∣∣∣∣∣∣ ≤ κ · k ·O(
√

εnd + εn),

by Item 1 of Assumption 2. Finally,
∑

i∈B′ ∥Xi∥22 = kd ± k · κ
√

d. Overall, this means ∥
∑

i∈B′ Xi∥22 =
kd± κ · k ·O(

√
εnd + εn).

30

Next, we have the following proposition.

Proposition 4.5. Let X1, . . . , Xn satisfy Assumption 2, with εn ≤ d. Let B ⊂ [n] be any subset of size εn,
and let R =

∑
i∈B Xi. Let B′ ⊂ B be a subset of size k ≤ ε·n. Then,

∑
i∈B′⟨Xi, R⟩ = kd±O(κ·εn

√
kd).

Proof. We have

∑
i∈B′

⟨Xi, R⟩ =
〈∑

i∈B′

Xi,
∑
i∈B

Xi

〉
=

∥∥∥∥∥∥
∑
i∈B′

Xi

∥∥∥∥∥∥
2

2

+
〈∑

i∈B′

Xi,
∑

i∈B\B′

Xi

〉
.

By Proposition 4.4, we know that ∥
∑

i∈B′ Xi∥22 = kd ± O(κ · k
√

εnd). By Item 1 of Assumption 2, we
know that

∣∣∣⟨∑i∈B′ Xi,
∑

i∈B\B′ Xi⟩
∣∣∣ ≤ κ·

√
k · εn·

√
εnd = κ·εn·

√
kd. Since k ≤ εn, k

√
εnd ≤ εn

√
kd,

so overall, we have that
∑

i∈B′⟨Xi, R⟩ = kd±O(κ · εn
√

kd).

As a result, we have the following.

Proposition 4.6. Let X1, . . . , Xn satisfy Assumption 2, with εn ≤ d. Then, for any subset B ⊂ [n] of size
εn, we have that

∑
i∈B(⟨Xi, R⟩ − d)2 ≤ O(κ3 · ε2n2d), where R :=

∑
i∈B Xi.

Proof. For each i ∈ B, define yi := ⟨Xi, R⟩ − d. Consider the kth largest yi. It must be at most O(κ ·
εn
√

d/k), or else the sum of the k largest yi would exceed O(κ · εn
√

kd), contradicting Proposition 4.5.
Likewise, the kth smallest yi must be greater than or equal to −O(κεn

√
d/k), so the kth largest |yi| is at

most O(κεn
√

d/k).
This means that

∑
i∈B

(⟨Xi, R⟩ − d)2 =
∑
i∈B

|yi|2 ≤
εn∑

k=1
O

κ · εn

√
d

k

2

=
εn∑

k=1
O

(
κ2ε2n2d

k

)
= O(κ3ε2n2d).

We also have the following bound.

Proposition 4.7. Let X1, . . . , Xn satisfy Assumption 2, with εn ≤ d. Let B ⊂ [n] have size εn, and let
R =

∑
i∈B Xi. Then, ∥

∑
i∈B(⟨Xi, R⟩ − d)Xi∥2 ≤ O(κ2 · εnd).

Proof. Write yi := ⟨Xi, R⟩ − d. We can then write∑
i∈B

(⟨Xi, R⟩ − d)Xi =
∑
i∈B

yiXi

=
∑

i∈B : yi≥0

∫ yi

0
Xi dt−

∑
i∈B : yi<0

∫ |yi|

0
Xi dt

=
∫ ∞

0

 ∑
i∈B:yi≥t

Xi

 dt

︸ ︷︷ ︸
A+

−
∫ ∞

0

 ∑
i∈B:yi≤−t

Xi

 dt

︸ ︷︷ ︸
A−

.

For simplicity, we will just bound ∥A+∥2, as the argument for bounding ∥A−∥2 is identical. As in Propo-
sition 4.6, for any real number t ≥ 0, the number of indices i ∈ B such that ⟨Xi, R⟩ − d ≥ t is some k(t)
for t ≤ O(κ · εn

√
d/k(t)), so k(t) ≤ O

(
κ2ε2n2d

t2

)
for all t. In addition, k(t) ≤ εn always, because we are

only counting indices in B.

31

For any t ≥ 0, define A+(t) :=
∥∥∥∑i∈B:yi≥t Xi

∥∥∥
2
. By Proposition 4.4 (which we can apply since

k(t) ≤ εn),

∥A+(t)∥2 = O

(√
k(t) · d +

√
κ · k(t)(εnd)1/4

)
= O

(
κεnd

t
+ κ3/2(εn)5/4d3/4

t

)
≤ O

(
κ1.5εnd

t

)
,

since we are assuming d ≥ εn.
In addition, for any t ≥ 0, as k(t) ≤ εn, we have ∥A+(t)∥2 ≤ O(

√
εnd +

√
κ(εn)3/4d1/4) = O(

√
κ ·√

εnd). Also, note that A+(t) = 0 for t ≥ O(κεn
√

d), as this will imply k(t) < 1, so k(t) = 0.
Overall, we have that

∥A+∥2 ≤
∫ ∞

0
∥A+(t)∥2dt

≤
∫ κεn

0
O(
√

κ · εnd)dt +
∫ κ·εn

√
d

κεn
O

(
κ1.5εnd

t

)
dt.

The first integral is trivially bounded by O(κ1.5 · εn
√

εnd) ≤ O(κ1.5 · εnd), since εn ≤ d. The second
integral equals

κ1.5εnd · log κεn
√

d

κεn
≤ κ2 · εnd.

An identical calculation for A−, combined with the triangle inequality, completes the proof.

Finally, we will bound the Frobenius norm and operator norm of
∑

XiX
⊤
i , over any subset of εn points.

Proposition 4.8. Suppose B ⊂ [n] has size εn. Then, under Assumption 2, and if εn ≤ d, we have that
∥
∑

i∈B XiX
⊤
i ∥F ≤ O(κ · d

√
εn).

Proof. Note that ∥∥∥∥∑
i∈B

XiX
⊤
i

∥∥∥∥2

F

=
∑

i,j∈B

Tr(XiX
⊤
i XjX⊤

j) =
∑

i,j∈B

⟨Xi, Xj⟩2.

By Item 3 of Assumption 2, we know that for i = j, ⟨Xi, Xj⟩2 = ∥Xi∥42 ≤ κ2d2, and by Item 2 of
Assumption 2, for each i ̸= j, ⟨Xi, Xj⟩2 ≤ κ2 · d. So, because |B| = ε · n ≤ d,∥∥∥∥∑

i∈B

XiX
⊤
i

∥∥∥∥2

F

≤ O(κ2 · εn · d2 + κ2 · (εn)2 · d) = O(κ2 · εn · d2).

We take the square root, and the result follows.

Proposition 4.9. Suppose B ⊂ [n] has size εn. Then, under Assumption 2, and if εn ≤ d, we have that
∥
∑

i∈B XiX
⊤
i ∥op ≤ O(κ2 · d).

Proof. Choose a unit vector w. Since
∑

i∈B XiX
⊤
i is PSD, it suffices to show that w⊤

(∑
i∈B XiX

⊤
i

)
w =∑

i∈B⟨Xi, w⟩2 is at most O(κ2 · d).
First, we consider the kth largest value of ⟨Xi, w⟩. For any subset B′ ⊂ B of k ≤ εn elements, we

have ∥
∑

i∈B′ Xi∥2 ≤
√

kd + κ · k
√

εnd + κ · k · εn ≤ O(
√

κ · kd), by Proposition 4.4 and since εn ≤ d.
Therefore,

∑
i∈B′⟨Xi, w⟩ = ⟨

∑
i∈B′ Xi, w⟩ ≤ O(

√
κ · kd). This means that the kth largest value of ⟨Xi, w⟩

is at most O(
√

κ · d/k), and the kth smallest value of ⟨Xi, w⟩ is at least −O(
√

κ · d/k), which means the
kth largest value of ⟨Xi, w⟩2 is at most O(κ · d/k). Adding this over 1 ≤ k ≤ ε · n, we have that∑

i∈B⟨Xi, w⟩2 ≤
∑εn

k=1 O
(
κ · d

k

)
= O(κ2 · d).

32

4.3 The Null Case: Mean

In this subsection, we verify that, under the null hypothesis and Assumption 2, with high probability Algo-
rithm 3 not reject on the first step, assuming sufficiently many samples. In this subsection, we do not assume
that εn ≤ d.

Define v =
(∑

i∈[n] Xi

)
/∥
∑

i∈n Xi∥2 to be the unit vector representing the direction of the sum of all
points. Also, define zi := ⟨Xi, v⟩ for all i ≤ n. Recall that G ⊂ [n] represents the set of good (uncorrupted)
data points, and B = [n]\G represents the set of bad (corrupted) data points. Note that |G| = (1− ε)n and
|B| = εn. We now prove the main lemma for this subsection.

Lemma 4.10. Assume the null hypothesis, meaning that each Xi for i ∈ G is drawn i.i.d. as N (0, I).
Also, assume n ≥ κ5 ·

(√
d

α2 + dε3

α4

)
and α ≥ κ5 · ε. Then, under Assumption 2, with high probability,∥∥∥∑i∈[n] Xi

∥∥∥2

2
= nd± 0.01α2n2.

Proof. We write ∥∥∥∥∥∥
∑
i∈[n]

Xi

∥∥∥∥∥∥
2

2

=
∥∥∥∥∥∑

i∈G

Xi

∥∥∥∥∥
2

2︸ ︷︷ ︸
a

+
∥∥∥∥∥∑

i∈B

Xi

∥∥∥∥∥
2

2︸ ︷︷ ︸
b

+2 ·
〈∑

i∈G

Xi,
∑
i∈B

Xi

〉
︸ ︷︷ ︸

c

.

Using standard concentration, we can write a = (1 − ε)nd ± O(κn
√

d) with high probability, and using
Proposition 4.4, we can write b = εnd ± κ · εn · O(

√
εnd + εn). Finally, we know that the samples Xi

for i ∈ G are drawn independently, from the samples in B, which means that with very high probability,
|c| ≤ O

(
κ√
d

)
· ∥
∑

i∈G Xi∥2 · ∥
∑

i∈B Xi∥2. We can bound this as O
(

κ√
d
·
√

κnd ·
√

κ(
√

εnd + εn)
)

=
κ2(
√

εn2d + εn3/2), by Proposition 4.4.
Overall, we have that∥∥∥∥∥∥

∑
i∈[n]

Xi

∥∥∥∥∥∥
2

2

= nd± κ2 ·O
(
n
√

d + (εn)3/2√d + ε2n2 +
√

εn2d + εn3/2
)

.

But note that
√

εn2d < n
√

d, so the only relevant error terms are the other ones, n
√

d, (εn)3/2√d, ε2n2,
and εn3/2. By assuming that n ≥ κ5 ·

(√
d

α2 + dε3

α4

)
, we have that the first two error terms O(κ2n

√
d)

and O(κ2(εn)3/2d) are each bounded by 0.001α2n2. The third term O(κ2 · ε2n2) is at most 0.001α2n2,

assuming that α ≥ κ5 · ε. The final term O(κ2 · εn3/2) is at most 0.001α2n2 assuming that n ≥ κ5 · ε2

α4 ,

which is true if n ≥ κ5 ·
√

d
α2 and ε ≤ α. Hence, we have that

∥∥∥∑i∈[n] Xi

∥∥∥2

2
= nd± 0.01α2n2.

4.4 The Null Case: Variance

In this subsection, we verify that, under the null hypothesis and Assumption 2, with high probability Algo-
rithm 3 does not reject on the second step, assuming sufficiently many samples. Hence, Algorithm 3 accepts.
In this and the next subsection, we may additionally assume that εn ≤ d and n ≤ d

α2 . More formally, we
make the following assumption in this subsection.

Assumption 3. We make Assumption 2. In addition, we assume that n ≥ κ5 ·
(√

d
α2 + dε3

α4 + d2/3ε2/3

α8/3

)
and

α ≥ κ5 · ε. Finally, we also assume that εn ≤ d and n ≤ d
α2 .

33

We recall that R :=
∑

i∈B Xi and T =
∑

i∈G Xi. Also, recall that S =
∑

i∈[n] Xi = R + T, and
v = S/∥S∥2. We wish to provide an upper bound for

1
n

∑
i∈[n]

(⟨Xi, S⟩ − d

∥S∥2

)2
= 1

n

∑
i∈[n]

(⟨Xi, R⟩+ ⟨Xi, T⟩ − d

∥S∥2

)2
.

First, we consider the bad terms, i.e., we bound

1
n

∑
i∈B

(⟨Xi, R⟩+ ⟨Xi, T⟩ − d

∥S∥2

)2
= 1

n · ∥S∥22

∑
i∈B

[
(⟨Xi, R⟩ − d)2 + 2 (⟨Xi, R⟩ − d) · ⟨Xi, T⟩+ ⟨Xi, T⟩2

]
.

Using the results from Section 4.2, we prove the following bound.

Lemma 4.11. Assume the null hypothesis. Then, under Assumption 3, 1
n

∑
i∈B

(
⟨Xi,S⟩−d

∥S∥2

)2
≤ ε + 0.01 ·

α4

ε ·
n
d with high probability.

Proof. First, note that ∑
i∈B

(⟨Xi, R⟩ − d)2 = O(κ3 · ε2n2d) (4)

by Proposition 4.6. Next, we can write
∑

i∈B(⟨Xi, R⟩−d)⟨Xi, T⟩ = ⟨T,
∑

i∈B(⟨Xi, R⟩−d)Xi⟩. However,
by Proposition 4.7, ∥

∑
i∈B(⟨Xi, R⟩− d)Xi∥2 ≤ O(κ2 · εnd) and

∑
i∈B(⟨Xi, R⟩− d)Xi is independent of

T, which is drawn as N (0, (1− ε)nI). Therefore, with high probability,∣∣∣∣∣∑
i∈B

(⟨Xi, R⟩ − d)⟨Xi, T⟩
∣∣∣∣∣ =

∣∣∣∣∣〈T,
∑
i∈B

(⟨Xi, R⟩ − d)Xi

〉∣∣∣∣∣ ≤ O(κ
√

n)·O(κ2 ·εnd) = O(κ3 ·εn3/2d). (5)

Finally, we can write
∑

i∈B⟨Xi, T⟩2 = T⊤
(∑

i∈B XiX
⊤
i

)
T = (1 − ε)n · Z⊤

(∑
i∈B XiX

⊤
i

)
Z,

where Z is a standard Gaussian independent of {Xi}i∈B . We can then use the Hanson-Wright inequality
(Lemma 2.10) to say that with high probability,

∣∣∣Z⊤
(∑

i∈B XiX
⊤
i

)
Z − Tr(

∑
i∈B XiX

⊤
i)
∣∣∣ ≤ O

(
κ · ∥

∑
i∈B XiX

⊤
i ∥F

)
.

We can write Tr(
∑

i∈B XiX
⊤
i) =

∑
i∈B ∥Xi∥22 = εnd±O(κ · εn

√
d), by Item 3 of Assumption 2. So, by

using Proposition 4.8, we have that∑
i∈B

⟨Xi, T⟩2 = (1− ε)n · (εnd±O(κ · εn
√

d + κ2 · d
√

εn)) ≤ εn2d + O(κ2 · ε1/2n3/2d), (6)

since we are assuming εn ≤ d. By combining Equations (4), (5), and (6), we have that∑
i∈B

(⟨Xi, S⟩ − d)2 =
∑
i∈B

[
(⟨Xi, R⟩ − d)2 + 2 (⟨Xi, R⟩ − d) · ⟨Xi, T⟩+ ⟨Xi, T⟩2

]
≤ εn2d + κ3 ·O(ε2n2d + ε1/2n3/2d).

As we are assuming that n ≥ κ5 · dε3

α4 , this implies that O(κ3 · ε2n2d) ≤ 0.001 · α4n3

ε . Moreover, we are

assuming that n ≥ κ5 · d2/3ε2/3

α8/3 ≥ κ5 · d2/3ε
α8/3 , which implies that O(κ3 · ε1/2n3/2d) ≤ 0.001 · α4n3

ε . In
summary, ∑

i∈B

(⟨Xi, S⟩ − d)2 ≤ εn2d + 0.002 · α4

ε
· n3. (7)

34

Next, we note that ∥S∥22 = nd ± 0.01α2n2 = nd ·
(
1± 0.01α2n

d

)
, using Lemma 4.10. As a result, as

we are assuming that n ≤ d
α2 , then the reciprocal of 1± 0.01α2n

d is in the range 1± 0.02α2n
d . Therefore, by

(7),

1
n

∑
i∈B

(⟨Xi, S⟩ − d

∥S∥2

)2
≤ 1

n2d
·
(

1 + 0.02α2n

d

)
·
(

εn2d + 0.002 · α4

ε
· n3

)

=
(

1 + 0.02α2n

d

)
· ε ·

(
1 + 0.002 · α4

ε2 ·
n

d

)

≤ ε ·
(

1 + 0.01 · α4

ε2 ·
n

d

)

= ε + 0.01 · α4

ε
· n

d
,

where the penultimate line uses the fact that α2n
d < min

(
1, 0.1α4

ε2 · n
d

)
since we are assuming that n ≤ d

α2

and α ≥ 10ε.

Next, we deal with the sum over good points.

Lemma 4.12. Assume the null hypothesis. Then, under Assumption 3, with high probability,

1
n

∑
i∈G

(⟨Xi, S⟩ − d

∥S∥2

)2
≤ 1− ε + 0.01α4

ε
· n

d
.

Proof. Recall that S = R + T, and suppose R, T are fixed. Then, by Proposition 2.12, the posterior
distribution of {Xi}i∈G conditioned on R and T is

{
T

(1−ε)n + Yi − Ȳ
}

, where {Yi}i∈G are i.i.d. N (0, I),

independent of (R, T), and Ȳ = 1
(1−ε)n

∑
i∈G Yi. As a result, the posterior distribution of {⟨Xi, S⟩−d}i∈G

is
{

⟨T,S⟩
(1−ε)n − d + ∥S∥2 · (zi − z̄)

}
, where {zi}i∈G are i.i.d. univariate N (0, 1), and z̄ = 1

(1−ε)n
∑

i∈G zi.
Hence, we can rewrite the desired sum over good points as

1
n

∑
i∈G

 ⟨T,S⟩
(1−εn) − d

∥S∥2
+ (zi − z̄)

2

.

Now, note that ⟨T, S⟩ = ∥T∥22 +⟨T, R⟩. Since T ∼ N (0, (1−ε)nI) is independent of R, and ∥R∥2 ≤
O(κ
√

εnd) by Proposition 4.4 and the assumption that εn ≤ d, we have that |⟨T, R⟩| ≤ O(κ2
√

εn2d) with
high probability. In addition, ∥T∥22 = (1− ε)nd±O(κ ·n

√
d) with high probability, as T is the sum of the

uncorrupted samples. In sum, ⟨T, S⟩ = (1 − ε)nd ± O(κ2 · n
√

d). Therefore,
∣∣∣ ⟨T,S⟩

(1−ε)n − d
∣∣∣ ≤ O(κ2√d).

Since ∥S∥22 = nd
(
1± 0.01α2n

d

)
= Θ(nd) as we are assuming n ≤ d

α2 , this means
(

⟨T,S⟩
(1−ε)n − d

)
/∥S∥2 =

±O
(

κ2
√

n

)
.

Next, defining z̃i := zi− z̄, we have
∑

i∈G z̃2
i =

∑
i∈G z2

i − (1−ε)n · z̄2. Clearly, z̄ ∼ N (0, 1
(1−ε)n), so

|z̄| ≤ κ/
√

n with high probability. Thus,
∑

i∈G z̃2
i =

∑
i∈G z2

i −(1−ε)n · z̄2 = (1−ε)n±O(κ
√

n+κ2) =

35

(1− ε)n±O(κ2√n), by Proposition 2.11. Hence, because the average of z̃i over i ∈ G is 0,

1
n

∑
i∈G

 ⟨T,S⟩
(1−εn) − d

∥S∥2
+ z̃i

2

= 1
n
·
∑
i∈G

z̃2
i + (1− ε) ·

 ⟨T,S⟩
(1−εn) − d

∥S∥2

2

= 1
n
·
∑
i∈G

z̃2
i + (1− ε) ·O

(
κ2
√

n

)2

= (1− ε)±O

(
κ4
√

n

)
.

As long as n ≥ κ5 ·
(

d2/3ε2/3

α8/3

)
the error term is at most 0.01α4

ε ·
n
d , which completes the proof.

By combining Lemmas 4.11 and 4.12, we have the following.

Lemma 4.13. Assume the null hypothesis. Then, under Assumption 3, 1
n

∑n
i=1

(
⟨Xi,S⟩−d

∥S∥2

)2
≤ 1+0.02· α4n

εd ,

with high probability.

4.5 The Alternative Case: Variance

Let µ = α · v, where v is a unit vector. Recall that Q = (1 − ε)n · αv, R =
∑

i∈B Xi, and T =∑
i∈G(Xi − αv) = (

∑
i∈G Xi)−Q. Let S = Q + R + T =

∑
i∈[n] Xi. We wish to bound

1
n

∑
i∈[n]

(⟨Xi, S⟩ − d

∥S∥2

)2
= 1

n

∑
i∈[n]

(⟨Xi, Q + R⟩+ ⟨Xi, T⟩ − d

∥S∥2

)2
.

We can again split [n] into bad and good points. For the bad points B, our goal is to bound

1
n
·
∑
i∈B

(⟨Xi, S⟩ − d

∥S∥2

)2
= 1

n · ∥S∥22
·
∑
i∈B

[
⟨Xi, T⟩2 + 2⟨Xi, T⟩ · (⟨Xi, Q + R⟩ − d) + (⟨Xi, Q + R⟩ − d)2

]
.

Before doing so, we will consider the relationship between the values R, Q, T. Note that T is indepen-
dent of both R and Q, whereas R may depend on Q.

Proposition 4.14. Suppose that X1, . . . , Xn satisfy Assumption 2, that εn ≤ d, and Algorithm 3 does not
reject in Line 3. Then, ∥R∥22 = εnd ± O(κ · (εn)3/2√d), and ∥Q + R∥22 = εnd ± 0.01α2n2 ± κ2 ·
O
(
n
√

d + αn3/2
)

.

Proof. By Proposition 4.4, we know that ∥R∥22 = ∥
∑

i∈B Xi∥22 = εnd±O(κ · (εn)3/2√d). Next, because
Algorithm 3 did not reject in Line 3, we have that ∥Q + R + T∥22 = ∥

∑
i∈[n] Xi∥22 = nd ± 0.01α2n2.

However, we can write ∥Q+R+T∥22 = ∥Q+R∥22 +∥T∥22 +2⟨Q+R, T⟩. Let A = ∥Q+R∥2. Then, with
high probability, ∥T∥22 = (1−ε)nd±O(κn

√
d) and ⟨Q+R, T⟩ = ±O(κA

√
n), since T ∼ N (0, (1−ε)nI)

is independent of Q+R. This means nd±0.01α2n2 = A2 +(1−ε)nd±O(κn
√

d)±O(κ ·A
√

n), so A2 =
εnd± 0.01α2n2±O(κn

√
d)±O(κ ·A

√
n). Finally, we know that A ≤ ∥Q∥2 + ∥R∥2 ≤ αn +

√
κ · εnd,

which means
∥Q + R∥22 = A2 = εnd± 0.01α2n2 ±O(κ2) · (n

√
d + αn3/2).

36

Hence, we have the following corollary.

Proposition 4.15. Suppose that X1, . . . , Xn satisfy Assumption 2, ε ≤ 0.5, , and Algorithm 3 does not
reject in Line 3. Then, if n ≥ κ5 ·

(√
d

α2 + dε3

α4

)
,
∣∣∥R∥22 − ∥Q + R∥22

∣∣ ≤ 0.1 · ∥Q∥22 with high probability.

Proof. As a direct consequence of Proposition 4.14,∣∣∣∥R∥22 − ∥Q + R∥22
∣∣∣ ≤ 0.01α2n2 + κ2 ·O

(
(εn)3/2√d + n

√
d + αn3/2

)
. (8)

Assuming that n ≥ κ5 ·
(√

d
α2 + dε3

α4

)
, each error term is at most 0.01α2n2, so (8) is at most 0.05α2n2. Since

∥Q∥2 = α(1− ε)n ≥ 0.5αn, this means that
∣∣∥R∥22 − ∥Q + R∥22

∣∣ ≤ 0.1 · ∥Q∥22.

We now turn to bounding the sum for the bad points B.

Lemma 4.16. Suppose that Algorithm 3 does not reject in Line 3, and ε ≤ 0.1. Then, with high probability
under the alternative hypothesis and Assumption 3,

∑
i∈B

(⟨Xi, S⟩ − d)2 ≥ εn2d

(
1 + 0.05α4n

ε2d

)
.

Proof. We can rewrite the left-hand side of the above expression as∑
i∈B

(
(⟨Xi, Q + R⟩ − d)2 + ⟨Xi, T⟩2 + 2(⟨Xi, Q + R⟩ − d) · ⟨Xi, T⟩

)
First, we consider

∑
i∈B(⟨Xi, Q + R⟩ − d)2. Since

∑
i∈B Xi = R, by Jensen’s inequality this is

at least εn ·
(
⟨R

εn , Q + R⟩ − d
)2

= 1
εn · (⟨R, Q + R⟩ − εnd)2. However, we can write ⟨R, Q + R⟩ =

∥Q+R∥2
2+∥R∥2

2−∥Q∥2
2

2 , and since ∥R∥22 ≤ ∥Q+R∥22+0.1∥Q∥22 by Proposition 4.15, this means that ⟨R, Q+
R⟩ ≤ ∥Q + R∥22 − 0.45∥Q∥22. By Proposition 4.14, we have ∥Q + R∥22 = εnd ± 0.01α2n2 ± O(κ2) ·(
n
√

d + αn3/2
)

. Therefore, since ∥Q∥22 = α2(1− ε)2n2 ≥ 0.8α2n2 as ε ≤ 0.1, this means that

⟨R, Q+R⟩−εnd ≤ 0.01α2n2+O(κ2)·
(
n
√

d + αn3/2
)
−0.36α2n2 = −0.35α2n2+O(κ2)·

(
n
√

d + αn3/2
)

.

Therefore, ∑
i∈B

(⟨Xi, Q + R⟩ − d)2 ≥ 1
εn
·
(
0.35α2n2 −O(κ2) · (n

√
d + αn3/2)

)2

≥ 0.1α4

ε
n3 −O(κ2) ·

(
α2

ε
· n2√d + α3

ε
n5/2

)

≥ 0.08 · α4

ε
n3. (9)

Above, the second inequality follows because (A − B)2 ≥ A2 − 2AB for any real A, B, and the last
inequality follows because the two error terms are each at most 0.01α4

ε n3 if n ≥ κ5 ·
√

d
α2 .

37

To bound
∑

i∈B⟨Xi, T⟩2, we can write this as T⊤
(∑

i∈B XiX
⊤
i

)
T = (1−ε)n·Z⊤

(∑
i∈B XiX

⊤
i

)
Z,

where Z ∼ N (0, I) is independent of {Xi}i∈B . We apply Hanson-Wright (Lemma 2.10) along with Propo-
sition 4.8, to say that with high probability,

∣∣∣Z⊤
(∑

i∈B XiX
⊤
i

)
Z − Tr(

∑
i∈B XiX

⊤
i)
∣∣∣ ≤ O

(
κ · ∥

∑
i∈B XiX

⊤
i ∥F

)
≤

O(κ2 · d
√

εn). In addition, Tr(
∑

i∈B XiX
⊤
i) =

∑
i∈B ∥Xi∥22 = εnd± κ · εn

√
d. Therefore, since εn ≤ d,∑

i∈B

⟨Xi, T⟩2 = (1−ε)n·
(
εnd±O(κ2 · d

√
εn + κ · εn

√
d)
)

= εn2d−ε2n2d±O
(
κ2 · ε1/2n3/2d

)
. (10)

To bound the final term
∑

i∈B(⟨Xi, Q+R⟩−d)⟨Xi, T⟩, we first bound ∥
∑

i∈B(⟨Xi, Q + R⟩ − d)Xi∥2 .
We can use Proposition 4.7 to obtain that ∥

∑
i∈B(⟨Xi, R⟩ − d)Xi∥2 ≤ O(κ2εnd) ≤ O(κ2αnd), as we as-

sumed that ε ≤ α. Next, to bound ∥
∑

i∈B⟨Xi, Q⟩Xi∥2 , we can write
∑

i∈B⟨Xi, Q⟩Xi =
(∑

i∈B XiX
⊤
i

)
·

Q, which has norm at most
∥∥∥∑i∈B XiX

⊤
i

∥∥∥
op
· ∥Q∥2 ≤ O(κ2 · d · αn), using Proposition 4.9. Therefore,

since {Xi}i∈B and Q are independent of T ∼ N (0, (1− ε)nI), with high probability we have that∣∣∣∣∣∑
i∈B

(⟨Xi, Q + R⟩ − d) · ⟨Xi, T⟩
∣∣∣∣∣ =

∣∣∣∣∣
〈

T,
∑
i∈B

(⟨Xi, R⟩ − d)Xi +
∑
i∈B

⟨Xi, Q⟩Xi

〉∣∣∣∣∣
≤ O(κ

√
n) ·

∥∥∥∥∥∑
i∈B

(⟨Xi, R⟩ − d)Xi

∥∥∥∥∥
2

+
∥∥∥∥∥∑

i∈B

⟨Xi, Q⟩Xi

∥∥∥∥∥
2


≤ O(κ3 · αn3/2d). (11)

In summary, by combining Equations (9), (10), and (11), we have

∑
i∈B

(⟨Xi, S⟩ − d)2 ≥ 0.08α4n3

ε
+ εn2d−O(κ3) ·

(
ε2n2d + ε1/2n3/2d + αn3/2d

)
.

Now, assuming that n ≥ κ5 ·
(

dε3

α4 + d2/3ε2/3

α8/3

)
≥ κ5 ·

(
dε3

α4 + d2/3ε
α8/3 + d2/3ε2/3

α2

)
, each of the three error terms

is at most 0.01α4

ε n3. So overall,

∑
i∈B

(⟨Xi, S⟩ − d)2 ≥ 0.05α4n3

ε
+ εn2d = εn2d

(
1 + 0.05α4n

ε2d

)
.

Corollary 4.17. Suppose that Algorithm 3 does not reject in Line 3, and ε ≤ 0.1. Then, under the alternative

hypothesis and Assumption 3, with high probability 1
n ·
∑

i∈B

(
⟨Xi,S⟩−d

∥S∥2

)2
≥ ε + 0.04α4

ε ·
n
d .

Proof. Since Algorithm 3 did not reject on Line 3, this means ∥S∥22 = nd±0.01α2n2 = nd·
(
1± 0.01α2n

d

)
.

So, 1
n·∥S∥2

2
= 1

n2d
·
(
1± 0.02α2n

d

)
, because we assumed n ≤ d

α2 . Hence, by Lemma 4.16, we have

1
n
·
∑
i∈B

(⟨Xi, S⟩ − d

∥S∥2

)2
≥ ε ·

(
1 + 0.05α4

ε2 ·
n

d

)
·
(

1− 0.02α2 · n

d

)

≥ ε ·
(

1 + 0.04α4

ε2 ·
n

d

)

= ε + 0.04α4

ε
· n

d
.

38

Finally, we bound the good samples.

Lemma 4.18. Assume that n ≥ κ5 ·
(

d2/3ε2/3

α8/3

)
. Then, with high probability

1
n

∑
i∈G

(⟨Xi, S⟩ − d

∥S∥2

)2
≥ 1− ε− 0.01α4n

εd
.

Proof. Let’s fix the vectors Q, R, T, and consider the posterior distribution of the good samples {Xi}i∈G.
By Proposition 2.12, we can write Xi = Q+T

(1−ε)n + Yi − Ȳ , where {Yi}i∈G are distributed as i.i.d. N (0, I)
and Ȳ = 1

(1−ε)n
∑

i∈G Yi. Hence, {⟨Xi, S⟩}i∈G is distributed as ⟨Q+T,S⟩
(1−ε)n + ∥S∥2 · zi − z̄, where zi are

distributed as i.i.d. N (0, 1) and z̄ = 1
(1−ε)n

∑
i∈G zi. Hence, defining z̃i = zi− z̄, since z̃i have mean 0, we

can rewrite our expression as

1
n

∑
i∈G

 ⟨Q+T,S⟩
(1−ε)n − d

∥S∥2
+ z̃i

2

≥ 1
n

∑
i∈G

(z̃i)2 ≥ (1− ε)− κ2
√

n
.

The final inequality above combines the facts that
∑

i∈G z̃2
i =

∑
i∈G z2

i − (1− ε)nz̄2, that
∑

i∈G z2
i = (1−

ε)n±κ
√

n by Proposition 2.11, and that |z̄| ≤ κ/
√

n. Finally, because we are assuming n ≥ κ5 ·
(

d2/3ε2/3

α8/3

)
,

we have that κ2
√

n
≤ 0.01α4n

εd . This completes the proof.

By combining Corollary 4.17 and Lemma 4.18, the following lemma is immediate.

Lemma 4.19. Suppose that Algorithm 3 does not reject in Line 3, and ε ≤ 0.1. Then, under the alternative
hypothesis and Assumption 3, with high probability

1
n

n∑
i=1

(⟨Xi, S⟩ − d

∥S∥2

)2
≥ 1 + 0.03 · α4n

εd
.

As a direct consequence of Lemmas 4.10, 4.13, and 4.19, Lemma 4.2 is immediate.

4.6 Proof of Lemma 4.3

In this section, we finish the proof of Theorem 4.1, by proving Lemma 4.3.
It suffices to prove the following lemma.

Lemma 4.20. Assume the alternative hypothesis, and that n ≥ κ5 ·
(√

d
α2 + dε

α2

)
and that ε ≤ 0.1 and

α ≥ κ5 · ε. Then, under Assumption 2, with high probability
∥∥∥∑i∈[n] Xi

∥∥∥2

2
≥ nd + 0.1α2n2.

Proof. As usual, we write
∑

i∈[n] Xi = Q + R + T, so
∥∥∑

i∈[n] Xi

∥∥2
2 = ∥Q + R + T∥22 = ∥Q + R∥22 +

∥T∥22 + 2⟨Q + R, T⟩.
Let A = ∥Q + R∥2. Note that A ≥ ∥Q∥2 − ∥R∥2 = 0.9αn − ∥R∥2, assuming ε ≤ 0.1. In

addition, by Proposition 4.4, we have that ∥R∥22 = ∥
∑

i∈B Xi∥22 ≤ εnd + O(κ) · ((εn)3/2√d + (εn)2). So,
∥R∥2 ≤ O(

√
εnd + κ · εn). Assuming that n ≥ κ5 · dε

α2 and α ≥ κ5 · ε, both O(
√

εnd) and O(κ · εn) are
at most 0.1αn. Thus, A ≥ 0.7αn.

39

Since T ∼ N (0, (1 − ε)nI) is independent of Q, R, this means that ∥T∥22 ≥ (1 − ε)nd − κn
√

d and
|⟨Q + R, T⟩| ≤ (κ

√
n) ·A with high probability. Thus,

∥Q + R + T∥22 ≥ A2 + (1− ε)nd− κn
√

d− 2κ
√

n ·A ≥ (1− ε)nd + (A− κ
√

n)2 − κ2n
√

d.

Since n ≥ κ5 ·
√

d
α2 ≥ κ5

α2 , this means that κ
√

n ≤ 0.2αn, so A − κ
√

n ≥ 0.5αn. Moreover, κ2n
√

d ≤
0.05α2n2. Thus,

∥Q + R + T∥22 ≥ (1− ε)nd + (0.5αn)2 − 0.05α2n2 = (1− ε)nd + 0.2α2n2.

Assuming that n ≥ κ5 · dε
α2 , εnd ≤ 0.1α2n2, which means this is at least nd + 0.1α2n2.

By combining Lemmas 4.10 and 4.20, Lemma 4.3 is immediate (since dε3

α4 < dε
α2). Note that we never

assumed εn ≤ d in either of these lemmas.

5 Lower bound in the Huber model

In this section, we prove that under the Huber model, one needs n = Ω(dε3/α4) samples to solve robust
mean testing. Our lower bound even holds in the restricted setting where under the null hypothesis, the
distribution must be uncorrupted.

5.1 Main Lower Bound

We are now ready to prove our main lower bound.

Theorem 5.1. Let D0 represent the distribution of X1, . . . , Xn
i.i.d.∼ N (0, I), and let D1 represent the

distribution of (X1, . . . , Xn) where we choose a random vector v ∼ N (0, 1
d · I) and conditional on v, each

Xi is drawn i.i.d. from the mixture (1− ε) · N (α · v, I) + ε · N (−1−ε
ε · α · v, I). Then, there exists a small

absolute constant c > 0 such that if n = c · dε3

α4 , α ≥ ε, and c · dε3

α4 ≥
√

d
α2 , then dTV(D0,D1) ≤ 0.1.

Since the total variation distance is at most 0.1, no algorithm can successfully distinguish between D0
and D1 with probability more than 0.55. Moreover, ∥v∥2 ≤ 1 + o(1), and therefore ∥αv∥2 ≤ α(1 + o(1)),
with very high probability. Hence, this proves the desired lower bound when c · dε3

α4 ≥
√

d
α2 . Alternatively, if

c · dε3

α4 <
√

d
α2 , the lower bound is immediate from the non-robust lower bound [DKS17]. When α ≥ ε, it is

well-known that this problem is impossible, since the null and alternative distributions have total variation
distance ≤ ε.

We will bound the dTV(D0,D1) through χ2 divergence. As Dχ2(D1||D0) is actually too large and thus
does not suffice, we instead bound Dχ2(D′

1||D0) for some D′
1 that is close in total variation distance to D1.

For a sample X = (X1, . . . , Xn) ∼ D1, we will let a set S ⊂ [n] correspond to X where i ∈ S iff
Xi was drawn from the mixture component N (α · v, I). Note that S is not determined by X . We will
choose D′

1 to be D1 restricted to having S with size (1 − ε)n ± K
√

εn for some large constant K. Call
such sets S good, and let S be the set of all good sets. By standard properties of Binomial distributions, if
K ≥ 100, with probability at least 1− 10−4, a random subset S obtained by including each element i ∈ [n]
with probability 1 − ε is good. Hence, dTV(D1,D′

1) ≤ 2 · 10−4. Thus, it now suffices to upper bound
Dχ2(D′

1||D0) (which then upper bounds dTV(D′
1,D0) by Fact 2.3).

It will be convenient to use the following notation throughout this section: let Z be the probability that
a random subset of [n] obtained by including each element i ∈ [n] with probability 1− ε is good. We begin
by computing the likelihood ratio.

40

Claim 5.2. Let X = (X1, . . . , Xn) be a set of samples. Let pD0(X), pD′
1
(X) be the PDFs of seeing that

sample from D0 and D′
1 respectively. Then

pD′
1
(X)

pD0(X) = 1
Z

∑
S∈S

(1− ε)|S|εn−|S|
(

d + tS

d

)−d/2
exp

(
αS(X)

2(tS + d)

)

where we define for subsets S ⊂ [n],

XS := α

ε
·

ε ·
∑
i∈S

Xi − (1− ε) ·
∑
i̸∈S

Xi


αS(X) := ∥XS∥2

tS := α2

ε2 ·
(
ε2 · |S|+ (1− ε)2 · (n− |S|)

)
Proof. For any sample X = (X1, . . . , Xn), the PDF of seeing that sample from D0 is

pD0(X) =
n∏

i=1
e−∥Xi∥2/2 (12)

The probability of seeing that sample from D1 is

pD1(X) = Ev

n∏
i=1

(
(1− ε) · e−∥Xi−αv∥2/2 + ε · e−∥Xi+(1−ε)α/εv∥2/2

)

=
∑

S⊂[n]
Ev

(1− ε)|S|ε(n−|S|) ·
∏
i∈S

e−∥Xi−αv∥2/2 ·
∏
i̸∈S

e−∥Xi+(1−ε)α/εv∥2/2

 . (13)

By restricting ourselves to good sets S ∈ S , the probability of seeing X drawn from D′
1 is

pD′
1
(X) = 1

Z

∑
S∈S

Ev

(1− ε)|S|ε(n−|S|) ·
∏
i∈S

e−∥Xi−αv∥2/2 ·
∏
i̸∈S

e−∥Xi+(1−ε)α/εv∥2/2

 , (14)

where Z is the probability of a random set S being good if each i ∈ [n] is included in S independently with
probability 1− ε.

From (12) and (14), it is simple to compute the ratio

pD′
1
(X)

pD0(X) = 1
Z
·
∑
S∈S

(1− ε)|S|ε(n−|S|) · Ev

∏
i∈S

e−α⟨Xi,v⟩−α2∥v∥2/2 ·
∏
i̸∈S

e(1−ε)α/ε·⟨Xi,v⟩−(1−ε)2α2/ε2·∥v∥2/2


︸ ︷︷ ︸

AS(X)

 .

We use AS(X) as a shorthand in simplifying the expression above. Now we can explicitly compute AS(X).
With XS , tS as defined above, we can write

AS(X) = Ev

[
e−⟨XS ,v⟩−tS/2·∥v∥2]

.

41

Since v ∼ N (0, 1
d · I) = 1√

d
· N (0, I), we can use the rotational symmetry of v and Fact 2.4 to rewrite

AS(X) = Ex∼N (0,1)

[
e−
√

αS(X)/d·x−(tS/2d)·x2
]
·
(
Ex∼N (0,1)

[
e−(tS/2d)·x2])d−1

=
exp

(
αS(X)/d
2+2tS/d

)
√

1 + tS/d
·
(

1√
1 + tS/d

)d−1

= exp
(

αS(X)
2(tS + d)

)
·
(

d + tS

d

)−d/2
.

Using expression for the likelihood ratio in Claim 5.2, we can explicitly compute the χ2 divergence
Dχ2(D′

1||D0).

Lemma 5.3. We have

Dχ2(D′
1||D0) = 1

Z2 ·
∑

S,T ⊂S
(1− ε)|S|+|T |ε(n−|S|)+(n−|T |) ·

(
1−

(
tS,T

d

)2
)−d/2

where tS,T = α2

ε2 ·
(
ε2|S ∩ T | − ε(1− ε)|S△T |+ (1− ε)2|(S ∪ T)c|

)
and△ denotes symmetric difference.

Proof. Using Claim 5.2, we can write

Dχ2(D′
1||D0) = 1

Z2 ·
∑

S,T ⊂S
(1− ε)|S|+|T |ε(n−|S|)+(n−|T |) ·

(
d + tS

d

)−d/2 (d + tT

d

)−d/2

·EX∼D0

[
exp

(
αS(X)

2(tS + d) + αT (X)
2(tT + d)

)]
︸ ︷︷ ︸

BS,T

.
(15)

where αS(X) = ∥XS∥2, αT (X) = ∥XT ∥2 and

XS = α

ε

ε ·
∑
i∈S

Xi − (1− ε) ·
∑
i̸∈S

Xi


XT = α

ε

ε ·
∑
i∈T

Xi − (1− ε) ·
∑
i̸∈T

Xi


are as defined in Claim 5.2. Now we explicitly compute the expression above labelled BS,T . In each
coordinate j ∈ [d], ((XS)j , (XT)j) forms a bivariate Gaussian, and ((XS)j , (XT)j) over all j ∈ [d] are in-
dependent and identically distributed. Through direct computation, we get that ((XS)j , (XT)j) ∼ N (0, Σ),
where

Σ =
(

tS tS,T

tS,T tT

)

42

and

tS = α2

ε2 ·
(
ε2 · |S|+ (1− ε)2 · (n− |S|)

)
tT = α2

ε2 ·
(
ε2 · |T |+ (1− ε)2 · (n− |T |)

)
tS,T = α2

ε2 ·
(
ε2|S ∩ T | − ε(1− ε)|S△T |+ (1− ε)2|(S ∪ T)c|

)
.

Therefore,
(

(XS)j√
2(tS+d)

,
(XT)j√
2(tT +d)

)
∼ N (0, Σ′), where

Σ′ =

 tS
2(tS+d)

tS,T

2
√

(tS+d)(tT +d)
tS,T

2
√

(tS+d)(tT +d)
tT

2(tT +d)

 .

By Corollary 2.7, this implies that

E
[
exp

(
(XS)2

j

2(tS + d) +
(XT)2

j

2(tT + d)

)]
= 1√(

1− tS
tS+d

)
·
(
1− tT

tT +d

)
− t2

S,T

(tS+d)(tT +d)

.

Therefore, by multiplying this over all j (since ((XS)j , (XT)j) are i.i.d. across all j ∈ [d]), we have
that

BS,T =
((

1− tS

tS + d

)
·
(

1− tT

tT + d

)
−

t2
S,T

(tS + d)(tT + d)

)−d/2

=
(

d2 − t2
S,T

(tS + d)(tT + d)

)−d/2

So, (15) can be rewritten as

Dχ2(D′
1||D0) = 1

Z2 ·
∑

S,T ⊂S
(1− ε)|S|+|T |ε(n−|S|)+(n−|T |) ·

(
1−

(
tS,T

d

)2
)−d/2

.

Now we can complete the proof of Theorem 5.1 by upper bounding the RHS of Lemma 5.3.

Proof of Theorem 5.1. Recall that it suffices to prove that Dχ2(D′
1||D0) = EX∼D0

(
pD′

1
(X)

pD0 (X)

)2
≤ 1.01 as,

by Fact 2.3, this implies that the TV distance between D′
1 and D0 is at most 0.1. By Lemma 5.3 it now

suffices to bound the expression

1
Z2 ·

∑
S,T ⊂S

(1− ε)|S|+|T |ε(n−|S|)+(n−|T |) ·
(

1−
(

tS,T

d

)2
)−d/2

.

We can think of S, T as random subsets of [n] where each element i is chosen to be in S (and likewise T)
with probability 1 − ε, and then conditioning on S, T having size (1 − ε)n ±K

√
εn for some sufficiently

43

large constant K. In this case, if we use S, T ∼ S to denote this distribution, the above expression is
equivalent to

ES,T ∼S

1−
(

α2

ε2 ·
ε2|S ∩ T | − ε(1− ε)|S△T |+ (1− ε)2|(S ∪ T)c|

d

)2
−d/2

.

So, now we just need to show that if n = c · dε3

α4 for some small constant c, that the above expectation is at
most 1.01.

Now, recall that we assumed
√

d
α2 ≤ c · dε3

α4 . This means that c ·
√

dε3

α2 ≥ 1, or equivalently dε3

α4 ≥ c−2ε−3.
Hence, we may assume that n ≥ c−1 · ε−3.

If |S| = a and |T | = b, and we let Y := |(S ∪ T)c|,

ε2|S ∩ T | − ε(1− ε)|S△T |+ (1− ε)2|(S ∪ T)c|
= (1− ε)2 · Y − ε(1− ε)(n− a− Y + n− b− Y) + ε2(a + b− n + Y)
= Y − ε(1− ε)(2n− a− b) + ε2(a + b− n)
= Y + ε(a + b)− ε(2− ε)n .

Recall that we may always assume a, b = (1− ε)n±K
√

εn. Also, note that Y ∼ HGeom(n, n−a, n− b).
Therefore, if we condition on fixed a, b ∈ [(1− ε)n−K

√
εn, (1− ε)n + K

√
εn], we have that E[Y |a, b] =

(n−a)(n−b)
n = ε2n ± 2Kε

√
εn ± K2ε. By our assumption that n ≥ c−1 · ε−3 and choosing c sufficiently

small in terms of K, this can be bounded as ε2n± 3Kε
√

εn.
Moreover, by Proposition 2.16, since n− a, n− b ≤ εn + K

√
εn ≤ 2εn,

P
(
|Y − E[Y |a, b]| ≥ t

√
εn|a, b

)
≤ 2e−2t2(εn)/(n−a) ≤ 2e−t2

.

Because |E[Y |a, b]−ε2n| ≤ 3Kε
√

εn, this means P(|Y −ε2n| ≥ (3Kε+t)
√

εn) ≤ 2e−t2
. Hence, because

ε(a+b)−ε(2−ε)n = −ε2n2±2K
√

εn, this means P(|Y +ε(a+b)−ε(2−ε)n| ≥ (5K +t)
√

εn) ≤ 2e−t2
.

In addition, we know that Y is bounded by min(n− a, n− b) ≤ 2εn, so overall |Y + ε(a + b)− ε(2− ε)n|
is also bounded by 4εn with probability 1.

We can rewrite our goal as bounding

ES,T ∼S

1−
(

α2

ε2 ·
Y + ε(a + b)− ε(2− ε)n

d

)2
−d/2

.

Note that if |x| ≤ 0.2, then 1 − x2 ≥ e−2x2
, so (1 − x2)−d/2 ≤ e−2x2·−d/2 = edx2

. We know that
|Y + ε(a + b) − ε(2 − ε)n| ≤ 4εn with probability 1, so as long as α2

ε2 · 4εn
d ≤ 0.4, which holds when

n ≤ 0.1 · dε3

α4 ≤ 0.1 · dε
α2 , we just need to bound

ES,T ∼S

[
exp

(
α4

ε4 ·
1
d
· (Y + ε(a + b)− ε(2− ε)n)2

)]
. (16)

Defining C such that Y + ε(a + b)− ε(2− ε)n = C
√

εn, then P(|C| ≥ 5K + t) ≤ 2e−t2
. So, (16) equals

ES,T ∼S

[
exp

(
α4

ε4 ·
1
d
· C2εn

)]
= ES,T ∼S

[
exp

(
C2 · α4

ε3 ·
n

d

)]
= ES,T ∼S

[
eC2·c

]
,

since n ≤ cd· ε3

α4 . By our bounds on C, if we assume c is sufficiently small in terms of K, this is at most 1.01,
which means Dχ2(D′

1||D0) ≤ 1.01. This concludes the proof, since Fact 2.3 implies dTV(D′
1,D0) ≤ 0.05,

and we already know that dTV(D′
1,D1) ≤ 2 · 10−4.

44

6 Improved Lower Bound against Oblivious Adversaries

In this section, we further improve our lower bound from Section 5 against an oblivious adversary.

6.1 Lower bound instance

We first construct the distributions for the lower bound instance. Fix parameters ε < α ≤ 1 and dimension
d, and consider drawing n samples for some choice of n. We will also set an auxiliary parameter β, which
will depend on ε, α, d, n.

The null distribution D0 will simply be n i.i.d. samples from N (0, I). To generate the alternative
distribution D1, we perform the following steps:

1. Select a subset A ⊂ [n] of size εn randomly. Let Ac = [n]\A
2. Draw ε · n points {Xi}i∈A i.i.d. from N (0, I). Set RA := Sum(A) =

∑
i∈A Xi.

3. Draw the vector z ∈ Rd from N
(
0, α2

d · I
)

.

4. Define µ := −β ·RA − z, and draw (1− ε)n points {Xi}i∈Ac from the distribution N (µ, I).
For simplicity, we may write X = (X1, . . . , Xn), both in the null and alternative settings.

Note that with very high probability, ∥z∥2 ≤ 2α. We will also ensure that β is chosen so that with very
high probability, β · ∥RA∥2 ≤ 2α. As a result, this alternative construction indeed has ∥µ∥2 ≤ O(α).

In the rest of this section, we prove that it is statistically hard to distinguish between D0 and D1, for an
appropriate choice of β.

Theorem 6.1. Suppose that n ≤ c ·min
(

d2/3ε2/3

α8/3 , dε
α2

)
for some sufficiently small constant c > 0, and that

ε ≤ α ≤ 1 and n ≥
√

d
α2 + dε3

α4 . Then dTV(D0,D1) ≤ 0.1.

This implies that no algorithm can successfully distinguish between D0 and D1 with probability more
than 0.55, which proves the desired lower bound when c ·min

(
d2/3ε2/3

α8/3 , dε
α2

)
≥

√
d

α2 + dε3

α4 . Alternatively, we
may either use the non-robust lower bound [DKS17] or Theorem 5.1. Finally, when α ≥ ε, it is well-known
that this problem is impossible, since the null and alternative distributions have total variation distance ≤ ε.

We will prove the lower bound via a chi-square computation. For this, we must compute likelihood
ratios, which we will do in the next subsection.

6.2 Likelihood Ratio Computation

First, we will compute a formula for the likelihood ratio between D1 and D0, if we condition on the set
A ⊂ [n] in the alternative hypothesis.

Definition 6.2. Recall that pD0(X), pD1(X) denote the joint PDF of the points X = (X1, . . . , Xn) drawn
according to D0 and D1, respectively. We also define pA(X) to denote the PDF of X1, . . . , Xn drawn
according to D1, conditioned on the first step selecting A.

In addition, we will define RA := Sum(A) =
∑

i∈A Xi, and TA(X) :=
∑

i∈Ac Xi. Usually, the choice
of X1, . . . , Xn will be clear, in which case we will drop the argument X .

Lemma 6.3. Conditioned on A, the likelihood ratio is

pA(X)
pD0(X) =

(
1 + (1− ε)n · α2

d

)−d/2

· exp
(
−(1− ε)nβ2d · ∥RA∥22 + 2βd · ⟨RA, TA⟩ − α2 · ∥TA∥22

2((1− ε)α2n + d)

)
.

45

Proof. Suppose we additionally condition on the value z ∼ N (0, α2

d · I). Then,

log pA(X|z)
pD0(X) =

∑
i∈Ac

(
−1

2 ∥Xi + β ·RA + z∥22 + 1
2 ∥Xi∥22

)

=
∑
i∈Ac

(
−⟨Xi, β ·RA + z⟩ − 1

2 ∥β ·RA + z∥22
)

= −⟨TA, β ·RA + z⟩ − (1− ε)n
2 · ∥β ·RA + z∥22

= −β · ⟨TA, RA⟩ −
(1− ε)n

2 · β2 · ∥RA∥22 − ⟨TA + (1− ε)n · β ·RA, z⟩ − (1− ε)n
2 · ∥z∥22.

So,

pA(X|z)
pD0(X) = exp

(
−β · ⟨TA, RA⟩ −

(1− ε)n
2 · β2 · ∥RA∥22 − ⟨TA + (1− ε)n · β ·RA, z⟩ − (1− ε)n

2 · ∥z∥22
)

.

Next, we remove the conditioning on z. Indeed, by using the above equation followed by Proposition 2.5,
we have

pA(X)
pD0(X)

= E
z∼N (0, α2

d
·I) exp

(
−β · ⟨TA, RA⟩ −

(1− ε)n
2 · β2 · ∥RA∥22 − ⟨TA + (1− ε)n · β ·RA, z⟩ − (1− ε)n

2 · ∥z∥22
)

= exp
(
−β⟨TA, RA⟩ −

(1− ε)n
2 β2∥RA∥22

)
E

z∼N (0, α2
d

·I) exp
(
−(1− ε)n

2 ∥z∥22 + ⟨TA + (1− ε)nβRA, z⟩
)

= exp
(
−β⟨TA, RA⟩ −

(1− ε)n
2 β2∥RA∥22

)
·
(

1 + (1− ε)n · α2

d

)−d/2

· exp
(
∥(1− ε)nβRA + TA∥22

2((1− ε)n + d/α2)

)
.

We can combine the terms that are in terms of ∥RA∥22, ∥TA∥22, and ⟨RA, TA⟩, to simplify this as(
1 + (1− ε)n · α2

d

)−d/2

· exp
(
−(1− ε)nβ2d · ∥RA∥22 + 2βd · ⟨RA, TA⟩ − α2 · ∥TA∥22

2((1− ε)α2n + d)

)
.

Now, recall that the χ2 divergence Dχ2(D1||D0) equals

E
X∼D0

(
pD1(X)
pD0(X)

)2
= E

X1,...,Xn∼N (0,I)
E

A,B⊂[n]

(
pA(X)pB(X)

pD0(X)2

)
,

where A, B will always denote random subsets of size εn in [n]. Using Lemma 6.3, we can write this as

(
1 + (1− ε)nα2

d

)−d

· E
A,B

E
X1,...,Xn∼N (0,I)

exp
[

−1
2 ·

(1− ε)nβ2d · (∥RA∥22 + ∥RB∥22) + 2βd · (⟨RA, TA⟩+ ⟨RB, TB⟩)− α2 · (∥TA∥22 + ∥TB∥22)
(1− ε)α2n + d

]
.

(17)

46

Now, the exponential term can be decomposed coordinate-wise, and since each coordinate of X1, . . . , Xn

is independent if we condition on A, B, we can therefore write (17) after removing the expectation on A, B
as (

1 + (1− ε)nα2

d

)−d

·
(

E
x1,...,xn∼N (0,1)

exp
(
−1

2 ·
x⊤(MA + MB)x
(1− ε)α2n + d

))d

(18)

Above, each xi is a standard univariate Gaussian, and MA is the n× n matrix with blocks

A︷ ︸︸ ︷ Ac︷ ︸︸ ︷
A

{

Ac

{


(1− ε)nβ2d βd

βd −α2


and MB is defined similarly. Here, each block is dependent on whether the row/column indices are in A or
Ac, and all entries in the same block are the same. Note that MA has rank at most 2. Moreover, by projecting
onto the space of vectors v where vi is constant for all i ∈ A, and constant for all i ∈ Ac, we have that MA

has the same nonzero eigenvalues as
√

DAΣA

√
DA, where

DA =
(

εn 0
0 (1− ε)n

)
, ΣA =

(
(1− ε)nβ2d βd

βd −α2

)
.

If we define MA,B = MA + MB , we can write MA,B in a similar block-diagonal format, where the rows/-
columns are split based on the index being in A∩B, A∩Bc, Ac∩B, or Ac∩Bc. Therefore, if |A∩B| = γ ·n
for some 0 ≤ γ ≤ ε, MA,B has the same nonzero eigenvalues as

√
DA,BΣA,B

√
DA,B , where

DA,B =


γn 0 0 0
0 (ε− γ)n 0 0
0 0 (ε− γ)n 0
0 0 0 (1− 2ε + γ)n


and

ΣA,B :=


2(1− ε)nβ2d (1− ε)nβ2d + βd (1− ε)nβ2d + βd 2βd

(1− ε)nβ2d + βd (1− ε)nβ2d− α2 2βd βd− α2

(1− ε)nβ2d + βd 2βd (1− ε)nβ2d− α2 βd− α2

2βd βd− α2 βd− α2 −2α2

 .

Now, for any subsets A, B ⊂ [n] of size ε·n, we define GA = 1
(1−ε)α2n+d

·MA and GA,B = GA+GB =
1

(1−ε)α2n+d
·MA,B . We note the following basic proposition.

Proposition 6.4. Suppose that n ≤ 0.1d
α2 and 0 ≤ β ≤ 0.1

n . Then, all eigenvalues of GA are strictly greater
than −1

2 .
As a direct corollary, all eigenvalues of GA,B , for any A, B, are strictly greater than −1.

Proof. It suffices to prove the claim for ĜA := 1
(1−ε)α2n+d

·
√

DAΣA

√
DA. Note that ĜA is a 2 × 2

symmetric matrix. If ĜA has eigenvalues λ1, λ2, then we need to show that λ1 + 1
2 , λ2 + 1

2 > 0. It therefore
suffices to show that (λ1 + 1

2)+(λ2 + 1
2) = Tr(ĜA)+1 and (λ1 + 1

2) ·(λ2 + 1
2) = det(ĜA)+ 1

2 Tr(ĜA)+ 1
4

are both strictly greater than 0.

47

Note that

Tr(ĜA) = 1
(1− ε)α2n + d

·Tr(ΣA·DA) = 1
(1− ε)α2n + d

·
[
(1− ε)nβ2d · εn− α2 · (1− ε)n

]
≥ −α2(1− ε)n

(1− ε)α2n + d
.

We are assuming that n ≤ 0.1d
α2 , which means that (1 − ε)α2n ≤ 0.1d. So in fact, Tr(ĜA) ≥ −0.1, so

Tr(ĜA) + 1 ≥ 0.9 > 0.
Next,

det(ĜA) = 1
((1− ε)α2n + d)2 · det(DA) · det(ΣA)

= εn · (1− ε)n
((1− ε)α2n + d)2 ·

(
(1− ε)nβ2d · (−α2)− (βd)2

)
= −ε(1− ε)n2 · β2d · ((1− ε)α2n + d)

((1− ε)α2n + d)2

= −ε(1− ε)n2 · β2d

(1− ε)α2n + d
.

Since 0 ≤ β ≤ 0.1/n, this means det(ĜA) ≥ − 0.01ε(1−ε)d
(1−ε)α2n+d

≥ −0.01d
d = −0.01. So, det(ĜA)+ 1

2 Tr(ĜA)+
1
4 ≥ −0.01− 0.05 + 0.25 > 0.

As a result of Proposition 6.4, we can apply Proposition 2.6 to obtain the following.

Lemma 6.5. Assuming that n ≤ 0.1d
α2 and β ≤ 0.1

n , the χ2 divergence Dχ2(D1||D0) equals

E
A,B


(d + (1− ε)nα2

d

)2

· det(I + GA,B)

−d/2
 .

Proof. We have the following chain of equalities. The first equality follows by combining (17) and (18), the
second follows by the definition of GA,B , the third follows by Proposition 2.6, and the final follows by basic
manipulation.

Dχ2(D1||D0) = E
A,B

(1 + (1− ε)nα2

d

)−d

·
(

E
x1,...,xn∼N (0,1)

exp
(
−1

2 ·
x⊤(MA + MB)x
(1− ε)α2n + d

))d


= E
A,B

(1 + (1− ε)nα2

d

)−d

·
(

E
x1,...,xn∼N (0,1)

exp
(
−1

2 · x
⊤ ·GA,B · x

))d


= E
A,B

(1 + (1− ε)nα2

d

)−d

· det(I + GA,B)−d/2


= E

A,B


(d + (1− ε)nα2

d

)2

· det(I + GA,B)

−d/2
 .

48

6.3 Final Computation

Through some tedious computations, one can show the following:

Lemma 6.6. Suppose that |A ∩B| = γ · n, for some 0 ≤ γ ≤ ε. Then,

det(I + GA,B) = 1
(d + (1− ε)α2n)2 ·[

(d + β2d(ε2 − γ)n2)2 − (α2n− 2βdεn + β2dεn2 − 2α2εn + α2γn + 2βdγn− 2β2dε2n2 + β2dεγn2)2
]

(19)

Proof. Note that GA,B has the same eigenvalues as ĜA,B := 1
(1−ε)α2n+d

·
√

DA,BΣA,B
√

DA,B . Hence,

det(I+GA,B) = det
(

I + 1
(1− ε)α2n + d

·
√

DA,BΣA,B

√
DA,B

)
= det

(
I + 1

(1− ε)α2n + d
DA,B · ΣA,B

)
.

We can then can compute and factor the determinant as an expression of α, ε, β, γ, d, and n. Writing the
output as a difference of squares, one then obtains (19).9

Now, we will set β to satisfy the quadratic equation α2n− 2βdεn + β2dεn2 = 0. This is equivalent to
β2(dεn)− (2dε)β + α2 = 0, for which we will set β to be the solution

β = dε−
√

d2ε2 − α2 · dεn

dεn
= 1

n
·

1−

√
1− α2n

dε

 .

Note that this is only possible if α2n < dε, so n < dε
α2 . In this case, we can simplify our expression as

det(I + GA,B) = (d + β2d(ε2 − γ)n2)2 −O(α2εn + α2γn + βdγn + β2dε2n2 + β2dεγn2)2

(d + (1− ε)α2n)2 .

Using the fact that γ ≤ ε, we can ignore the terms α2γn (smaller than α2εn) and β2dεγn2 (smaller than
β2dε2n2). So, this simplifies to

det(I + GA,B) = (d + β2d(ε2 − γ)n2)2 −O(α2εn + βdγn + β2dε2n2)2

(d + (1− ε)nα2)2 .

In addition, note that if n < dε
α2 , then

√
1− α2n

dε ≥ 1 − α2n
dε , which means β ≤ 1

n ·
α2n
dε = α2

dε . Hence, if
n < dε

α2 ,

det(I + GA,B) ≥
(d− α4

dε2 ·max(0, γ − ε2) · n2)2 −O(α2εn + α2

ε · γn + α4

d · n
2)2

(d + (1− ε)nα2)2 . (20)

Note that if n ≤ 0.1dε
α2 , then β ≤ α2

dε ≤
0.1
n . So, by combining (20) with Lemma 6.5, we have the

following lemma.
9Some Mathematica code to verify the computation is provided in Appendix A.

49

Lemma 6.7. Suppose that n ≤ 0.1dε
α2 and β = 1

n · (1−
√

1− (α2n)/(dε)). Then, for γ := |A∩B|
n , we have

Dχ2(D1||D0) ≤ E
A,B

((d− α4

dε2 ·max(0, γ − ε2) · n2)2 −O(α2εn + α2

ε · γn + α4

d · n
2)2

d2

)−d/2 . (21)

Recall that γ is the fraction of [n] in both A and B, so the distribution of γ is 1
n · HGeom(n, εn, εn).

Hence, γ ∈ [0, ε] with probability 1, and by Corollary 2.15, P(max(γ−ε2, 0) > t) ≤ exp
(
−min

(
t2·n
4ε2 , t·n

4

))
.

We note the following simple proposition.

Proposition 6.8. Suppose that n ≤ c · dε
α2 for some small constant c. Then, for any A and B, each of

α4

dε2 ·max(0, γ − ε2) · n2, α2εn, α2

ε · γ · n, and α4

d · n
2 is smaller than c · d.

Proof. Since γ ≤ ε, α4

dε2 · max(0, γ − ε2) · n2 ≤ α4n2

dε . If α4n2

dε ≥ c · d, then n ≥
√

c · d
√

ε
α2 > c · dε

α2 .
Next, α2εn, α2

ε · γn ≤ α2n. If α2n ≥ c · d, then n ≥ c · d
α2 > c · d·ε

α2 . Finally, if α4

d · n
2 ≤ c · d, then

n ≥
√

c · d
α2 > c · d·ε

α2 .

The importance of Proposition 6.8 is that if 0 < x ≤ c for a sufficiently small constant c, 1− x ≥ e−2x.
Therefore, we can rewrite the right-hand side of (21) as at most

E
A,B

exp

O

 α4

dε2 ·max(0, γ − ε2) · n2

d
+
(

α2εn + α2

ε · γn + α4

d · n
2

d

)2 · d

2


= E

A,B

exp

O

 α4

dε2 ·max(0, γ − ε2) · n2 +
(

α2εn + α2

ε · γn + α4

d · n
2

√
d

)2 . (22)

First, note that if we additionally have n ≤ c ·min
(√

d
α2ε

, d3/4

α2

)
for a small constant c, then α2εn ≤ c

√
d

and α4

d ·n
2 ≤ c2√d. Also, note that α2

ε ·γn ≤ α2εn+α2

ε ·max(0, γ−ε2)n, and that
[
(α2

ε ·max(0, γ − ε2)n)/
√

d
]2

=
α4

dε2 ·max(0, γ− ε2)2 ·n2 ≤ α4

dε2 ·max(0, γ− ε2) ·n2, since max(0, γ− ε2) ≤ 1. As a result, we can bound
(22) as at most

E
A,B

[
exp

(
O

(
α4

dε2 ·max(0, γ − ε2) · n2 + c2
))]

,

assuming n ≤ c ·min
(

dε
α2 ,

√
d

α2ε
, d3/4

α2

)
.

Now, for any value t > 0, we have that by Corollary 2.15,

PA,B

(
α4

dε2 ·max(0, γ − ε2) · n2 > t

)
= PA,B

(
γ − ε2 > t · dε2

α4n2

)

≤ exp
(
−min

(
t2 · d2ε4

α8n4 ·
n

4ε2 , t · dε2

α4n2 ·
n

4

))

= exp
(
−min

(
t2 · d2ε2

4α8n3 , t · dε2

4α4n

))
.

50

If we additionally assume that n ≤ c · d2/3ε2/3

α8/3 and n ≤ c · dε2

α4 , this is at most exp
(
−min(t2/4c3, t/4c)

)
.

So, for t ≥ c, the probability that α4

dε2 ·max(0, γ − ε2) · n2 ≥ t is at most e−t/4c, which means that

E
A,B

[
exp

(
O

(
α4

dε2 ·max(0, γ − ε2) · n2 + c2
))]

≤ eO(c) ≤ 1.01.

To summarize what we have proved, in combination with Lemma 6.7, we have the following.

Lemma 6.9. Assuming that

n ≤ c ·min
(

dε

α2 ,

√
d

α2ε
,
d3/4

α2 ,
d2/3ε2/3

α8/3 ,
dε2

α4

)
, (23)

for some sufficiently small constant c, we have that

Dχ2(D1||D0) ≤ 1.01.

However, we note that we can remove several of the terms in (23). More precisely, we have the following
proposition.

Proposition 6.10. Suppose that n ≤ c ·min
(

d2/3ε2/3

α8/3 , dε
α2

)
for some sufficiently small constant c > 0, and

that ε ≤ 1 and n ≥
√

d
α2 + dε3

α4 . Then, n ≤ c ·min
(

dε
α2 ,

√
d

α2ε
, d3/4

α2 , d2/3ε2/3

α8/3 , dε2

α4

)
.

Proof. First, note that
(√

d
α2ε

)2/3
·
(

dε3

α4

)1/3
= d2/3ε1/3

α8/3 ≥ d2/3ε2/3

α8/3 , since ε ≤ 1. Therefore, if d2/3ε2/3

α8/3 > dε3

α4 ,

then
√

d
α2ε

> d2/3ε2/3

α8/3 . Thus, if n ≤ c·min
(

dε
α2 , d2/3ε2/3

α8/3

)
and n ≥ dε3

α4 +
√

d
α2 , then also n ≤ c·

√
d

α2ε
. In addition,

d3/4

α2 =
√ √

d
α2ε
· dε

α2 , which means we also obtain n ≤ c · d3/4

α2 , because we just showed that n ≤ c ·
√

d
α2ε

and we

are assuming that n ≤ c · dε
α2 . Finally,

(√
d

α2

)2/3
·
(

dε2

α4

)1/3
= d2/3ε2/3

α8/3 , which means that if d2/3ε2/3

α8/3 >
√

d
α2 ,

then dε2

α4 > d2/3ε2/3

α8/3 . So, by our assumptions, n ≤ c · dε2

α4 as well.

From here, the proof of Theorem 6.1 is straightforward.

Proof of Theorem 6.1. By Lemma 6.9 and Proposition 6.10, we have that under the assumptions of Theo-
rem 6.1, Dχ2(D1||D0) ≤ 1.01. By Fact 2.3, we have that dTV(D1||D0) ≤ 0.1.

Finally, note that we created the adversarial samples and the mean vector µ first, and then generated the
uncorrupted data, so the adversary is oblivious. Finally, ∥µ∥2 ≤ ∥z∥2+β·∥RA∥2. However, z ∼ N (0, α2

d ·I)
means ∥z∥2 ≤ 2α with very high probability. Moreover, β ≤ α2

εd and RA is the sum of ε · n i.i.d. N (0, 1),

so ∥RA∥2 ≤ 2
√

εnd with very high probability. So, β · ∥RA∥2 ≤ α2·2
√

εnd
εd = 2α2

√
n
εd . Assuming that

n ≤ dε
α2 , this is at most 2α. So overall, ∥µ∥2 ≤ 4α. We can replace α with α/4 in the construction to finish

the proof.

7 The Sample Complexity under Strong Contamination

In this section, we leverage the tight sample complexity bounds for differentially private mean testing [Nar22],
along with the robust-private equivalence of [GH22; HKMN22; AUZ23], to obtain the optimal sample com-
plexity of robust mean testing under the strong contamination model:

51

Theorem 7.1. For α ≥ ε · polylog(d, 1
ε , 1

α),10 the sample complexity of Gaussian mean testing in the
adaptive contamination model is

Θ̃
(

d1/2

α2 + dε2

α4

)
.

The rest of this section is dedicated to the proof of this theorem. First, we recall the definition of
differential privacy: for simplicity, and as it suffices for our purposes, we focus on “fully approximate”
differentially private decision algorithms.

Definition 7.2. A randomized algorithm A : X n → {0, 1} is (0, δ)-differentially private (DP) if for all
datasets X, X ′ ∈ X n that only differ in a single data point Xi ̸= X ′

i,∣∣P(A(X) = 1)− P(A(X ′) = 1)
∣∣ ≤ δ.

Upper bound. To prove our upper bound, we will require the tight upper bound for DP mean testing:

Theorem 7.3 ([Nar22]). For any parameters 0 < α, δ ≤ 1
2 , there exists a (0, δ)-DP algorithm A that on

n = Õ

(
d1/2

α2 + d1/3

α4/3δ2/3 + 1
αδ

)

samples X1, . . . , Xn, satisfies:

• If X1, . . . , Xn
i.i.d.∼ N (0, I), then with probability at least 0.99 (over both the randomness of the

samples and the algorithm), A(X) = 0.11

• For any vector µ with ∥µ∥2 ≥ α, if X1, . . . , Xn
i.i.d.∼ N (µ, I), then with probability at least 0.99,

A(X) = 1.

Moreover, this is tight: any (0, δ)-DP algorithm with these guarantees must take Ω̃
(

d1/2

α2 + d1/3

α4/3δ2/3 + 1
αδ

)
samples.

It is essentially folklore (see also [GH22]) that any (0, δ)-DP decision algorithm that succeeds with
0.99 probability given n samples is automatically ε-robust in the strong (adaptive) corruption model for
ε := 1

10δn , and succeeds with at least 2/3 probability over the input. For completeness, we briefly repro-
duce the argument here for the algorithm A. If X1, . . . , Xn are i.i.d., then with at least 0.9 probability,
P(A(X1, . . . , Xn) = 0) ≥ 0.9 over the randomness of the algorithm A. Hence, for any ε-corruption of
the data X ′ (i.e., εn = 1

10δ individual data points are possibly adaptively changed from X to X ′), by the
definition of privacy,

|P(A(X1, . . . , Xn) = 0)− P(A(X ′
1, . . . , X ′

n) = 0)| ≤ δ · 1
10δ

= 1
10

Hence, for any such corruption X ′, P(A(X ′) = 0) ≥ 0.89 > 2/3. The same argument can be used to
show that if X1, . . . , Xn

i.i.d.∼ N (µ, I) where ∥µ∥2 ≥ α, with probability at least 0.9 over X1, . . . , Xn,
P(A(X ′) = 1) > 2/3 for any ε-corruption of X .

10While this condition may seem somewhat restrictive, it is in fact inconsequential. Indeed, for ε ≤ α ≤ ε·polylog(d, 1/ε, 1/α),
one can use a robust learning algorithm with sample complexity O

(
d/α2), which in this parameter regime becomes Õ

(
dε2/α4).

11While [Nar22] did not state a 0.99 success probability, one can amplify the success probability by running several independent
copies and using the majority output.

52

Thus, the algorithm of Theorem 7.3 readily implies an ε-robust one for robust mean testing, for ε = 1
10δn .

Plugging δ = 1
10εn in its sample complexity, it suffices for n to satisfy

n ≥ Õ

(
d1/2

α2 + d1/3

α4/3 · (1/εn)2/3 + 1
α · (1/εn)

)
= Õ

(
d1/2

α2 + d1/3ε2/3n2/3

α4/3 + ε

α
· n
)

.

This is equivalent to requiring

α ≥ Õ(ε) and n ≥ Õ

(
d1/2

α2 + dε2

α4

)
,

where Õ may hide polylogarithmic factors in d, α−1, ε−1. Hence, there exists a robust algorithm against
strong contamination with sample complexity Õ

(
d1/2

α2 + dε2

α4

)
.

Lower bound. We next show this sample complexity is optimal, again by a reduction between robust and
private algorithms. Suppose there exists a robust mean testing algorithmA that uses n samples. We set δ :=
1

εn , and construct a (0, δ)-differentially private algorithm for mean testing using a black-box robustness-to-
privacy transformation [HKMN22; AD20]. We will then use a lower bound from [Nar22], which will create
a contradiction if n is too small.

To explain this transformation, first, for any two datasets X, X ′ of size n, we define the Hamming dis-
tance dH(X, X ′) to be the number of indices i such that Xi ̸= X ′

i. Now, for any dataset X = (X1, . . . , Xn),
define the score S(X;A) of X (for A) to be the smallest nonnegative integer k such that there exists a
dataset X ′ of size n with dH(X, X ′) = k and A(X ′) = 1. Equivalently, S(X;A) represents the smallest
number of points we need to alter from X to obtain some X ′ on which the robust algorithm would reject.
(Note that if A(X) = 1, then the score of X is simply 0.)

The differentially private algorithm A′ on X computes S(X;A), and then outputs 1 with probability
min(0, 1− δ · S(X;A)).

Note that S(X;A) changes by at most 1 between adjacent datasets X, X ′, because if S(X;A) = k,
there exists X ′′ with dH(X, X ′′) = k andA(X ′′) = 1. But then, dH(X ′, X ′′) ≤ k+1, so S(X ′;A) ≤ k+1.
Likewise, we can show S(X ′;A) ≥ k − 1. This proves that the algorithm is (0, δ)-differentially private,
since the probability of outputting 1 changes by at most δ if the score changes by at most 1.

Next, if X = (X1, . . . , Xn) i.i.d.∼ N (0, I), then by the property of the robust algorithm, with probability
at least 2/3, every dataset X ′ of Hamming distance at most εn from X satisfies A(X ′) = 0. Whenever this
happens, S(X;A) ≥ εn, and thus conditioned on this the algorithm A′ outputs 1 with probability 0, and
hence always outputs 0.

Finally, if X = (X1, . . . , Xn) i.i.d.∼ N (µ, I), then with probability at least 2/3, A(X) = 1. Hence,
with probability at least 2/3 we have S(X;A) = 0, and conditioned on this the algorithmA′ outputs 1 with
probability 1.

Overall, this means that if A is robust against strong contamination, then there exists an algorithm A′

that is (0, 1
εn)-differentially private for the Gaussian mean testing problem, with the same number of samples

n.
However, we can now invoke the lower bound part of Theorem 7.3 for DP Gaussian mean testing. From

the above reduction, a robust algorithm using n samples yields an (0, 1
εn)-DP algorithm with the same

sample complexity, which by Theorem 7.3 means that one must have

n = Ω̃
(

d1/2

α2 + d1/3

α4/3/(εn)2/3 + 1
α/(εn)

)
= Ω̃

(
d1/2

α2 + d1/3ε2/3

α4/3 · n2/3 + ε

α
· n
)

.

53

This implies that

n = Ω̃
(

d1/2

α2

)
and n = Ω̃

(
dε2

α4

)
.

This concludes the proof of Theorem 7.1.

Lower Bound against Additive Adversaries. Finally, we note that the same lower bound holds even if
we restrict ourselves to adaptive adversaries that only can add points, and can never remove points. This
again follows readily from the results of [Nar22], but is a consequence of an intermediate result proven in
the paper rather than a direct black-box application of their private sample complexity lower bound. The
lemma that we require is the following.

Lemma 7.4 ([Nar22, Theorem D.6, restated]). Fix any α, δ ≤ 1 and any dimension d. There exists a
distribution D over Rd with support only on {µ ∈ Rd : ∥µ∥2 ≥ α}, with the following property. Suppose
U is the distribution over (X1, . . . , Xn) ∈ (Rd)n where each Xi ∼ N (0, I), and V is the distribution over
(X1, . . . , Xn) ∈ (Rd)n where we first draw µ ∼ D and then draw each Xi ∼ N (µ, I).

Then, for some universal constants c1, c2 > 0, if n ≤ c1 · d1/3

α4/3·δ2/3 there exist distributions U ′,V ′

over (Rd)n such that dTV(U ,U ′) ≤ 1/4, dTV(V ,V ′) ≤ 1/4, and there is a coupling of (U ′,V ′) such that
E(X,Y)∼(U ′,V ′)[dH(X, Y)] ≤ c2/δ, where dH denotes the Hamming distance, i.e., the number of points that
differ between X and Y .

Now, we show why Lemma 7.4 implies that any robust algorithm cannot distinguish between i.i.d.
samples fromN (0, I) andN (µ, I), where µ is drawn from the distribution D in Lemma 7.4 under adaptive
ε-additive contamination, unless the number of samples is at least Ω

(
dε2

α4

)
. This would conclude the claim.

Fix α, ε ≤ 1, and define δ = 10c2
εn , so that 10c2

δ = εn. Suppose that n ≤ c1 · d1/3

α4/3δ2/3 , which for δ = 10c2
εn

is equivalent to n ≤ c3
1

100c2
2
·dε2

α4 . By Lemma 7.4 and Markov’s inequality, P(X,Y)∼(U ′,V ′) [dH(X, Y) ≥ 10c2/δ] ≤
1/10, which means by the coupling between U and U ′ and between V and V ′, there exists a coupling
between U and V with P(X,Y)∼(U ,V) [dH(X, Y) ≥ 10c2/δ] ≤ 1/4 + 1/4 + 1/10 = 3/5, i.e., such that
P(X,Y)∼(U ,V) [dH(X, Y) ≤ 10c2/δ] ≥ 2/5.

Consider such a coupling between U and V . Suppose we generate (X, Y) ∼ (U ,V), and in the 2/5
probability event {dH(X, Y) ≤ 10c2/δ}, we let X̂ = Ŷ = X ∪ Y . Note that X̂ can be created by adding
at most 10c2/δ points to X and at most 10c2/δ points to Y . Otherwise, we let X̂ = X and Ŷ = Y .
Importantly, this means there exists a distribution over X̂ and Ŷ (which are generated only by additive
adaptive contamination of 10c2

δ = εn points) such that with 2/5 probability, X̂ and Ŷ are the same. So, the
total variation distance between the distributions is at most 3/5, which means no algorithm can successfully
distinguish between the two distributions with more than 80% probability.

In summary, there cannot exist an algorithm that uses n ≤ c3
1

100c2
2
· dε2

α4 samples and distinguishes between
samples fromN (0, I) andN (µ, I) where µ ∼ D, under ε-additive adaptive contamination. Finally, because
there exists an Ω(

√
d/α2)-lower bound even against uncorrupted samples [SD08; DKS17], we conclude that

the sample complexity of robust Gaussian mean testing against additive adaptive adversaries is

Ω
(√

d

α2 + dε2

α4

)
,

as claimed.

54

8 Polynomial-Time Algorithm

Theorem 8.1. Let d ∈ N, δ > 0. Let α = O(1) and assume that Cε
√

log 1/ε ≤ α and

n ≥ Ω
(√

d log 1/δ

α2 + dε2 log 1/δ

α4 poly log(d, 1/ε, 1/α, log 1/δ)
)

.

Then, there is an algorithm which runs in time O(εn2d min(n, d) + nd) with the following guarantees:

• For every µ ∈ Rd with ∥µ∥ = α, with probability 1− δ over n independent samples X1, . . . , Xn from
N (µ, I), given any adaptive ε-corruption of X1, . . . , Xn, the algorithm outputs YES.

• With probability 1 − δ over n independent samples X1, . . . , Xn from N (0, I), given any adaptive
ε-corruption of X1, . . . , Xn, the algorithm outputs NO.

We briefly mention that the assumption that ∥µ∥ is exactly α is largely for notational convenience this
section. It is straightforward to verify that the same arguments also extend to testing when the mean of
the alternative hypothesis satisfies α ≤ ∥µ∥ ≤ O(1), which implies the same results for α ≤ ∥µ∥ (see
Subsection 2.3).

8.1 Regularity conditions

We will seek to algorithmically enforce a set of regularity conditions which are guaranteed to be satisfied
by any set of uncorrupted points, from either the null or alternate hypothesis. We demonstrate that if these
regularity conditions are satisfied, then the norm of the sum of the samples will suffice to distinguish between
the two cases, with high probability. Concretely, the regularity condition we will require is the following:

Definition 8.2. Let S = {X1, . . . , Xn} be a set of points in Rd. We say that S is (ε, β1, β2)-regular if for
all sets T ⊂ S with |T | ≤ εn, we have:

(i)
∑

i∈T ∥Xi∥2 = |T |d±O(β1),

(ii) ∥Sum(T)∥2 = |T |d±O(β2), and

(iii) |⟨Sum(T), Sum(S)⟩| = |T |d±O(
√

nβ1).

We first note the following bound:

Lemma 8.3. Let α = O(1), let ε, δ > 0 be at most a sufficiently small constant, and let S = {X1, . . . , Xn} ⊂
Rd be a set of n independent draws from N (µ, I), where ∥µ∥2 ≤ α, and suppose that n ≥ log(1/δ)/ε.
Then, with probability 1− δ, S is(

ε, εn
√

d log(n/δ), (εn)2 log 1/ε + εn
√

εnd log 1/ε

)
-regular .

Proof. We prove that S satisfies each bullet point in sequence. To prove the first bullet point, by Fact 2.8,
with probability 1−δ/3, for all i ∈ [n]

∣∣∥Xi∥2 − d
∣∣ ≤ 10

(√
log(3n/δ)d + log(3n/δ)

)
≤ 30

√
d·log(n/δ).

Assuming this holds for all i, then for any subset T ⊂ S,
∑

i∈T ∥Xi∥2 = |T |d±|T |·30
√

d log(n/δ). Hence,
if |T | ≤ εn, this equals |T |d±O(εn

√
d log(n/δ)), as desired.

We now prove the second bullet point. Fix any T satisfying |T | ≤ εn. Then, Sum(T) ∼ N (|T |µ, |T |I),
so if we let Z = |T |−1/2 (Sum(T)− |T |µ), we have that Z ∼ N (0, I), and

∥Sum(T)∥2 = ∥µ∥2 · |T |2 + |T |3/2⟨µ, Z⟩+ |T | ∥Z∥2 .

55

Hence, we have that, for any C > 0, there exists C ′ > 0 so that

Pr
[
|⟨µ, Z⟩| ≥ C ′α

√
εn log 1/ε

]
≤ exp(−Cεn log 1/ε) , and

Pr
[∣∣∣∥Z∥2 − d

∣∣∣ > C ′
√

εnd log 1/ε + C ′εn log 1/ε

]
≤ exp(−Cεn log 1/ε) .

The number of subsets T ⊂ S of size at most εn is at most exp (O(εn log 1/ε)). Therefore, by a union
bound over all choices of T , with probability 1− exp(−Ω(εn log 1/ε)) = 1− δ/3, we have that∣∣∣∥Sum(T)∥2 − (∥µ∥2 · |T |2 + |T |d)

∣∣∣ ≤ O(εn
√

εnd log 1/ε + (εn)2 log 1/ε) , (24)

for all T with |T | ≤ εn. Since ∥µ∥2 · |T |2 ≤ α2|T |2 = O(εn)2, this implies that∣∣∣∥Sum(T)∥2 − |T |d
∣∣∣ ≤ O(εn

√
εnd log 1/ε + (εn)2 log 1/ε) , (25)

as claimed. Condition on this event holding for the rest of the proof.
Finally, we prove the third bullet point. For any i = 1, . . . , n, note that

⟨Xi, Sum(S)⟩ = ∥Xi∥2 + ⟨Xi, Sum(S \ {i})⟩ .

The second term on the RHS is the inner product of two independent Gaussians, and hence is subexponential,
with variance proxy (n − 1)d. Therefore, with probability 1 − δ/3, we have that |⟨Xi, Sum(S \ {i})⟩| ≤√

nd log(n/δ) for all i = 1, . . . , n. Condition on this holding. Then, for any fixed T satisfying |T | ≤ εn,
we have that

⟨Sum(T), Sum(S)⟩ =
∑
i∈T

⟨Xi, Sum(S)⟩

=
∑
i∈T

∥Xi∥22 +
∑
i∈T

⟨Xi, Sum(S \ {i})⟩

= d|T | ±O
(
εn
√

d log(n/δ) + εn
√

nd log(n/δ)
)

= d|T | ±O
(
εn
√

nd log(n/δ)
)

,

as claimed. Combining these bounds immediately yields the desired claim.

Next, we note some simple consequences of regularity. For any subset T ⊂ S, we let 1T denote the
indicator vector of T , and 1 = 1S denote the vector which is all 1’s. We also define XT :=

∑
i∈T Xi.

Proposition 8.4. Suppose S is (2ε, β1, β2)-regular. Then, for any sets T, T ′ of size at most εn,

⟨XT , XT ′⟩ = d · |T ∩ T ′| ±O(β2).

Proof. It is straightfoward to verify that

⟨XT , XT ′⟩ = 1
2
[
∥XT ∪T ′∥2 + ∥XT ∩T ′∥2 − ∥XT \T ′∥2 − ∥XT ′\T ∥2

]
.

Each of T ∪ T ′, T ∩ T ′, T\T ′, T ′\T have size at most 2εn. So, by regularity (Part ii of Definition 8.2),

⟨XT , XT ′⟩ = 1
2 · d ·

(
|T ∪ T ′|+ |T ∩ T ′| − |T\T ′| − |T ′\T |

)
±O(β2) = d · |T ∩ T ′| ±O(β2).

56

We note the following useful convexity lemma.

Fact 8.5. Let k ≤ n be a nonnegative integer, and w ∈ [0, 1]n be an n-dimensional vector with ∥w∥1 ≤ k.
Then, w is a convex combination of the points 1T over T ⊆ S, |T | ≤ k.

Proof. Without loss of generality assume that the coordinates of w are sorted in increasing order, i.e. 0 ≤
w1 ≤ . . . , wn ≤ 1, and additionally define w0 = 0 and wn+k = 1 for all k ≥ 0. For all integers i ≥ 0,
let Si = {i, . . . , i + k} ∩ [n], so that in particular Sn+j = ∅ for all j > 0. Recursively define weights
a1, . . . , an by a1 = w1, and ai = wi −

∑i−1
j=i−k aj , where we set aj = 0 for j < 0. Then by construction,

we have that w =
∑n

i=1 ai1Si . We will show that ai ≥ 0 for all i, and that
∑n

i=1 ai ≤ 1, from which the
claim immediately follows. To prove the first claim, we proceed by induction. Note that the base case is
trivial, and moreover, if the claim is true for some i < n, then

i∑
j=i−k+1

ai = ai +
i−1∑

j=i−k+1
ai = wi − ai−k ≤ wi ≤ wi+1 ,

so in particular ai+1 ≥ 0, which proves the induction.
To prove the second claim, we simply observe that by nonnegativity, we have that

k ≥
n∑

i=1
wi =

n∑
i=1

i∑
j=i−k

ai ≥ k
n∑

i=1
,

where the last inequality follows from the fact that each ai appears at most k times in the sum. Simplifying
then immediately yields the claim.

We use Fact 8.5 to generalize Proposition 8.4 as follows.

Proposition 8.6. Suppose S is (2ε, β1, β2)-regular, and a, b ∈ [0, 1]n are n-dimensional vectors such that∑
ai,
∑

bi ≤ ε · n. Then, we have〈∑
i∈S

aiXi,
∑
i∈S

bjXj

〉
= d ·

(∑
i∈S

aibi

)
±O(β2) and

〈∑
i∈S

aiXi, XS

〉
= d ·

(∑
i∈S

ai

)
±O(

√
n · β1).

Proof. By Fact 8.5, we can write a as a convex combination of 1T over T ⊂ S, |T | ≤ εn. In other words,
there exists a distribution T1 over T1 ⊂ S, |T1| ≤ εn such that ai = PT1∼T1(i ∈ T1). Likewise, there exists
an (independent) distribution T2 over T2 ⊂ S, |T2| ≤ εn such that bj = PT2∼T2(j ∈ T2). Now,〈∑

aiXi,
∑

bjXj

〉
= ET1∼T1,T2∼T2⟨XT1 , XT2⟩.

By Proposition 8.4,

ET1∼T1,T2∼T2⟨XT1 , XT2⟩ = ET1∼T1,T2∼T2 [d · |T1 ∩ T2|]±O(β2).

Next, the expectation of |T1 ∩ T2|, using linearity of expectation and independence of T1, T2, equals∑
i∈S

PT1∼T1,T2∼T2(i ∈ T1 ∩ T2) =
∑
i∈S

PT1∼T1(i ∈ T1) · PT2∼T2(i ∈ T2) =
∑
i∈S

aibi.

57

Overall, this implies that

〈∑
aiXi,

∑
bjXj

〉
= d ·

(∑
i∈S

aibi

)
±O(β2).

Next, by regularity (part iii of Definition 8.2), we have that

〈∑
aiXi, XS

〉
= ET1∼T1⟨xT1 , xS⟩ = ET1∼T1 (d · |T1|)±O(

√
n · β1) = d ·

(∑
i∈S

ai

)
±O(

√
n · β1).

8.2 Filtering preliminaries

Our algorithm for doing so will be based on the (soft) filter framework developed for robust estimation in
other contexts. Here we establish the notation and preliminaries we will require to design and analyze our
algorithm. We note that it will be convenient for us to use slightly nonstandard versions of the notation
compared to the literature.

Our algorithm will assign weights to each point, that we will monotonically decrease over time. For any
n, let Γn denote the set of valid weights:

Γn = {w ∈ Rn : wi ∈ [0, 1] for all i = 1, . . . , n} .

Recall that for any set T ⊆ S, 1T ∈ Γn denotes the indicator vector for T , and 1 = 1S .
Let K be some value to be specified later. Given a set of points S = {X1, . . . , Xn}, we associate it

weight vectors w(t) ∈ Γn, for i = 1, . . . , n and t = 1, . . . , K where initially we set w(1) = 1.12 For any
such weight vector w, we let

Sum(w, S) =
∑
i∈S

√
wiXi , and M(w, S) =

∑
i∈S

wiXiX
⊤
i .

When the context is clear, we will drop the S from the notation for simplicity, i.e. we will let Sum(w) =
Sum(w, S). For any set T , and for any set of weights w on S, we let wT denote the set of weights restricted
to the indices in T ∩ S. We also let Gram(w, S) = Gram(w) be the n× n matrix given by

Gram(w)ij = √wiwj⟨Xi, Xj⟩ .

Note that by design the nontrivial eigenvalues of Gram(w) and M(w) are identical.
Recall that when the samples S are an ε-corruption of G, this means that there are sets B, R so that

|B| = |R| = εn so that R ⊂ G and so that S = (G \R) ∪B. For the remainder of this section, S, G, B, R
will always refer to these sets. We define the following important set:

Sn = {w ∈ Γn :
∥∥∥1G\R − wG\R

∥∥∥
1
≤ 5 ∥1B − wB∥1} ,

that is, Sn is the set of weights where we have removed at most five times as much weight from the good
samples as we have removed from the the bad samples.

Finally, we will also seek to enforce regularity conditions on weighted subsets of points. We will require
the following natural generalization of Definition 8.2:

12As is common in this literature, for simplicity of notation we will conflate S with the set of indices in S.

58

Definition 8.7. Let S = {X1, . . . , Xn} be a set of points in Rd, and let w ∈ Γn. We say that w is
(ε, β1, β2)-regular if for all sets T ⊂ S with |T | ≤ εn, we have:

(i)
∑

i∈T ∥Xi∥2 = |T |d±O(β1),

(ii) ∥Sum(w, T)∥2 = ∥wT ∥1 d±O(β2), and

(iii) |⟨Sum(w, T), Sum(w, S)⟩| = ∥wT ∥1 d±O(
√

nβ1).

The key fact we will use is the following:

Lemma 8.8. Let α = O(1), let ε, δ ∈ [0, 1), and let G be (4ε, β1, β2)-regular, where

β1 ≥ εn
√

d log(n/δ), β2 ≥ εn
√

εnd log 1/ε + (εn)2 log 1/ε .

Further, assume that

∥Sum(G)∥2 = dn + ∥µ∥2 n2 ±O(αn3/2
√

log 1/δ + n
√

d log(1/δ)) .

Let S be an ε-contamination of G, and let w ∈ Γn be a set of weights on w that satisfy ∥w∥1 ≥ (1 − ε)n,
and w is (ε, β1, β2)-regular. Then, we have that

∥Sum(w, S)∥2 = d ∥w∥1 + ∥µ∥2 n2 ±O(αn3/2
√

log 1/δ + n
√

d log(1/δ) +
√

nβ1 + β2) .

In particular, if n ≥ C ·
√

d·log 1/δ
α2 and

√
nβ1, β2 < 1

C · α
2n2 for C sufficiently large, then:

• if µ = 0, then
∣∣∣∥Sum(w, S)∥2 − d ∥w∥1

∣∣∣ ≤ 0.4α2n2 , and

• if ∥µ∥ = α, then
∣∣∣∥Sum(w, S)∥2 − d ∥w∥1

∣∣∣ ≥ 0.7α2n2 .

In other words, the norm of the sum of the set of points distinguishes between the null and alternative
hypotheses.

Proof. First, we bound ∥ Sum(w, G\R)∥2. Let a be the vector that equals 1 on the indices in R and 1−√wi

on other indices, so that
∑

i∈G aiGi + Sum(w, G \R) = Sum(G). Then,

∥ Sum(w, G \R)∥2 = ∥ Sum(G)∥2 − 2
〈

Sum(G),
∑
i∈G

aiGi

〉
+
∥∥∥∥∑

i∈G

aiGi

∥∥∥∥2
.

Let β3 := αn3/2√log 1/δ + n
√

d log(1/δ). Because ∥a∥1 ≤ 2ε and G is (4ε, β1, β2) regular, Proposi-
tion 8.6 and our assumption on ∥ Sum(G)∥2 imply that

∥Sum(w, G \R)∥2 = dn + ∥µ∥2n2 ±O(β3)− 2d
∑

ai ±O(
√

nβ1) + d
∑

a2
i ±O(β2)

= d ·
(∑

(1− ai)2
)

+ ∥µ∥2n2 ±O(
√

nβ1 + β2 + β3)

= d
∥∥∥wG\R

∥∥∥
1

+ ∥µ∥2 n2 ±O(αn3/2
√

log 1/δ + n
√

d log(1/δ) +
√

nβ1 + β2) ,

since (1− ai)2 = wi for i ∈ G \R and 0 otherwise.
Then, the regularity of w implies that

∥Sum(w, S)∥2 = ∥Sum(w, G \R)∥2 + 2⟨Sum(w, G \R), Sum(w, B)⟩+ ∥Sum(w, B)∥2

= ∥Sum(w, G \R)∥2 + 2⟨Sum(w, S), Sum(w, B)⟩ − ∥Sum(w, B)∥2

= ∥w∥1 d + ∥µ∥2 n2 ±O(αn3/2
√

log 1/δ + n
√

d log(1/δ) +
√

nβ1 + β2) .

The second half of the claim then follows from straightforward calculations.

59

8.3 Additional preliminaries

We first prove bounds on the eigenvalues of the Gram matrix of random Gaussian samples. To do so, we
require properties about Wishart matrices, which we now define.

Definition 8.9. A Wishart matrix W = Wd(n) has distribution W = H⊤H , where H ∈ Rn×d has every
entry drawn as an i.i.d. standard Gaussian N (0, 1). Note that W ∈ Rd×d, and W is positive semidefinite.

We will need the following concentration bound for the eigenvalues of a Wishart matrix.

Lemma 8.10. (Follows from [DS03, Theorem II.13]) If W ∼Wd(n), then with probability 1− δ,

∥S − n · I∥ ≤ O

(√
nd +

√
n log(1/δ) + d + log(1/δ)

)
.

We now provide eigenvalue bounds for samples drawn from N (µ, I).

Fact 8.11. Let µ ∈ Rd have ∥µ∥ ≤ α and let δ > 0. If n ≤ d and X1, . . . , Xn
i.i.d.∼ N (µ, I), then with

probability at least 1− δ, we have

∥Gram({X1, . . . , Xn})− d · I∥ ≤ O(max(
√

nd,
√

d log(1/δ), log(1/δ), α2n)).

If n ≥ d and X1, . . . , Xn
i.i.d.∼ N (µ, I), then with probability at least 1− δ, we have∥∥∥∥ ∑

i∈[n]
XiX

⊤
i − n · I

∥∥∥∥ ≤ O(max(
√

nd,
√

n log(1/δ), log(1/δ), α2n)).

Proof. First, note that when n ≤ d, the nonzero (top n) eigenvalues of
∑

XiX
⊤
i match the eigenvalues of

Gram({X1, . . . , Xn}). So, in the n ≤ d case we can focus on the top n eigenvalues of
∑

i∈[n] XiX
⊤
i . This

will allow us to consolidate calculations for both the n ≤ d and n ≥ d case.
Let Yi := Xi − µ. We can write∑

i≤n

XiX
⊤
i =

∑
i≤n

YiY
⊤

i +
∑
i≤n

Yiµ
⊤ +

∑
i≤n

µY ⊤
i + n · µµ⊤ .

Note that
∑

i≤n YiY
⊤

i ∼Wd(n), so with probability at least 1− δ,∥∥∥∥ ∑
i∈[n]

YiY
⊤

i − n · I
∥∥∥∥ ≤ O

(√
nd +

√
n log(1/δ) + d + log(1/δ)

)
.

In the n ≤ d case, we note that
∑

YiY
⊤

i has the same nonzero eigenvalues as Gram({Y1, . . . , Yn}) ∼
Wn(d). So, with probability at least 1− δ, the top n eigenvalues of

∑
YiY

⊤
i are in the range

d±O

(√
nd +

√
d log(1/δ) + n + log(1/δ)

)
.

Next,
∑

i≤n Yiµ
⊤ is a rank-1 matrix with operator norm ∥

∑
i≤n Yi∥ · ∥µ∥ ≤ α · ∥

∑
i≤n Yi∥. Since∑

i≤n Yi ∼ N (0, n · I), with probability at least 1 − δ it has norm at most O(
√

nd + n log(1/δ)), which
means ∥

∑
i≤n Yiµ

⊤∥ ≤ O(α
√

nd + n log(1/δ)) ≤ O(
√

nd +
√

n log(1/δ)). The same bound holds for∑
i≤n µY ⊤

i . Finally, ∥nµµ⊤∥ = n · ∥µ∥ · ∥µ⊤∥ ≤ nα2.
In the n ≥ d case, adding the bounds together completes the proof. In the n ≤ d case, adding the bounds

together tells us the top n eigenvalues of
∑

XiX
⊤
i are in the desired range, which completes the proof.

60

The next fact we will need is a direct corollary of Lemma 4.1 in [DHL19].

Fact 8.12. Let α = O(1), let µ ∈ Rd have ∥µ∥ ≤ α, and let ε, δ > 0. Suppose that n ≥ Ω(1/ε). Then,
there is some universal constant c > 0 so that with probability 1 − δ, we have that for all v with ∥v∥ = 1,
and all w supported on G with ∥w∥1 ≤ 10εn, it holds that∑

i∈G

wi⟨v, Xi⟩2 ≤ c · (εn log 1/ε + d + log 1/δ) .

Finally, we will require the following downweighting scheme:

Fact 8.13. Let w ∈ Sn, and let τ1, . . . , τn be a set of nonnegative scores satisfying
∑

i∈G\R wiτi <
5
∑

i∈B wiτi. Let w′ ∈ Γn be defined by

w′
i =

(
1− τi

maxi∈S τi

)
wi .

Then supp(w′) ⊂ supp(w), and moreover w′ ∈ Sn.

8.4 The filtering algorithm for n ≤ d

In this case, the filtering algorithm proceeds as follows. Let δ > 0, and let

γ2 := C

(√
nd + α2n +

√
(n + d) log(1/δ) + log(1/δ) + εn log 1/ε

)
, (26)

for some constant C sufficiently large. Initialize weights w(1) = 1. Then, for t = 1 until termination, we
proceed as follows. For any w ∈ Γn, let D(w) = d · diag(w). Let λ denote the top singular value of
Gram(w, S) −D(w), and let v be its associated singular unit vector (if there are multiple, choose any). If

λ < 5γ2, then terminate. Otherwise, for all i ∈ S, let τi = v2
i

w
(t)
i

I[w(t)
i > 0] (where τi defaults to 0 when

w
(t)
i = 0), and proceed to sort the samples in decreasing order of τi. Then, define w(t+1) by

w
(t+1)
i =

(
1− τi

maxi τi

)
w

(t)
i .

The formal pseudocode for this algorithm appears in Algorithm 4.

Algorithm 4 Spectral filtering for n ≤ d. Input: X1, . . . , Xn ∈ Rd, γ2 > 0.

1: Let w(1) = 1, and let t = 1
2: while

∥∥∥Gram(w(t), S)−D(w(t))
∥∥∥ ≥ 5γ2 do

3: Let v be the top singular vector of Gram(w(t), S)−D(w(t))
4: For all i, let τi = v2

i

w
(t)
i

I[w(t)
i > 0] ▷ If w

(t)
i = 0, we set τi = 0.

5: Let
w

(t+1)
i =

(
1− τi

maxi τi

)
w

(t)
i .

6: Let t← t + 1
7: Return w(t)

61

For the rest of the section, let us assume that G is (ε, εn
√

d log(n/δ), (εn)2 log 1/ε+εn
√

εnd log 1/ε)-
regular, and additionally assume that

∥Gram(G)− dI∥ ≤ γ2
10 . (27)

By Lemma 8.3 and Fact 8.11, these two conditions hold together with probability 1 − δ. Then, our main
claim for this algorithm is the following:

Lemma 8.14. Under the above assumptions, Algorithm 4 terminates in K iterations for some K ≤ 6εn,
runs in time O(dn2) per iteration, and moreover, at termination, we have that

• w(K) ∈ Sn, and
• for all T ⊂ S with |T | ≤ εn, we have that∥∥∥Sum(w(K), T)

∥∥∥2
=
∥∥∥w(K)(T)

∥∥∥
1

d±O(εn · γ2).

Proof. The runtime per iteration is clearly dominated by the time it takes to find the top singular vector of
the centered gram matrix, which can be done in time O(dn2).

We will show that for all t = 1, . . . , K , we have that w(t) ∈ Sn. First, we demonstrate how this proves
the overall lemma. First, note that after each iteration, some new wi (with the maximum τi) becomes 0, so
after 6εn iterations, we have removed at least 6εn mass from w. By definition of Sn, this means we have
removed at least εn mass from the bad coordinates wB , at which point no further updates can maintain the
invariant that w(i) ∈ Sn.

Next, we observe that if w(K) ∈ Sn, then since we terminated, we must have that∥∥∥Gram(w(K))−D(w(K))
∥∥∥ ≤ 5γ2 .

But then, for all T with |T | ≤ εn, let 1T ∈ Rn be the indicator vector T . Then, we have that∥∥∥Sum(w(K), T)
∥∥∥2

= 1⊤
T Gram(w(K))1T =

∥∥∥w(K)
T

∥∥∥
1

d±O(εn · γ2) ,

as claimed.
Thus, it suffices to prove the invariant that w(t) ∈ Sn for all t = 1, . . . , K . We proceed by induction.

Clearly w(1) ∈ Sn. Now, suppose w(t) ∈ Sn for some t < K. Since we have not yet terminated, this
implies that

λ =
∥∥∥Gram(w(t))−D(w(t))

∥∥∥ ≥ 5γ2 .

But by (27) and the Cauchy interlacing theorem, we have that∥∥∥Gram(w(t), G \R)−D(w(t)
G\R)

∥∥∥ ≤ γ2
10 ≤

λ

50 .

We claim that this implies that 5
∑

i∈B v2
i >

∑
i∈G\R v2

i . Indeed, suppose not, and let vG denote the
restriction of v onto the coordinates in G \ R, and let vB denote the restriction of v onto the coordinates in
B. This means that∣∣∣v⊤

(
Gram(w(t))−D(w)

)
v
∣∣∣ =

∣∣∣v⊤
G

(
Gram(w(t), G \R)−D(w(t)

G\R)
)

vG

+2v⊤
G

(
Gram(w(t))−D(w(t))

)
vB + v⊤

B

(
Gram(w(t), B)−D(w(t)

B)
)

vB

∣∣∣
≤ ∥vG∥2 ·

λ

50 + 2 ∥vG∥ ∥vB∥λ + ∥vB∥2 λ ≤ 0.96λ ,

62

where the last inequality holds because ∥vB∥2 + ∥vG∥2 = ∥v∥2 = 1 and ∥vB∥2 ≤ 1
6 . But this is a con-

tradiction since v is the top singular vector of the centered Gram matrix. Therefore, by Fact 8.13 and the
definition of τi, we obtain that w(t+1) ∈ Sn, as claimed. (Note that if w

(t)
i = 0, the ith row and column

of both Gram(w(t), S) and D(w(t)) are 0 so vi = 0, which means w
(t)
i · τi = v2

i even if w
(t)
i = 0.) This

completes the proof.

8.5 The filtering algorithm for n > d

The filtering algorithm proceeds similarly to above. Let γ2 be as in (26). Initialize weights w(1) = 1. Then,
for t = 1 until termination, we proceed as follows. Let λ be the top singular value of M(w(t)) − nI , and
let v be its associated singular value (if there are multiple, again choose one arbitrarily). If λ < 5γ2, then
terminate. Otherwise, for all i ∈ G, let τi = ⟨v, Xi⟩2I[wi > 0]. Proceed to sort the samples in decreasing
order of τt. As before, by relabeling indices, assume that τ1 ≥ τ2 ≥ · · · ≥ τn. Let I be the smallest index
so that

∑
i≤I w

(t)
i ≥ 2εn, and define w(t+1) by

w
(t+1)
i =


(
1− τi

τ1

)
w

(t)
i if i ≤ I;

w
(t)
i if i > I.

(28)

The formal pseudocode for the algorithm appears in Algorithm 5.

Algorithm 5 Spectral filtering for n > d. Input: X1, . . . , Xn ∈ Rd, γ2 > 0.

1: Let w(1) = 1, and let t = 1
2: while ∥M(w, S)− nI∥ ≥ 5γ2 do
3: Let v be the top singular vector of M(w, S)− nI

4: For all i, let τi = ⟨v, Xi⟩2I[w(t)
i > 0]

5: Let w(t+1) be given by (28)
6: Let t← t + 1
7: Return w(t)

As before, for the rest of this section, let us assume that G is (ε, εn
√

d log(n/δ), (εn)2 log 1/ε +
εn
√

εnd log 1/ε)-regular, and additionally assume that

∥M(G)− nI∥ ≤ γ2
10 , (29)

and that Fact 8.12 holds. As before, direct applications of Lemma 8.3 and Facts 8.11 and 8.12 immediately
imply that these conditions hold together with probability at least 1 − δ. Then, our main claim for this
algorithm is the following:

Lemma 8.15. Under the above regularity conditions, Algorithm 5 terminates in K iterations for some
K ≤ 6εn, runs in time O(nd2) per iteration, and moreover, at termination, we have that

• w(K) ∈ Sn, and
• for all T ⊂ S with |T | ≤ εn, we have that∥∥∥Sum(w(K), T)

∥∥∥2
≤ 10γ2 · εn.

63

Proof. As before, the per-iteration runtime is dominated by the runtime of PCA, which is O(nd2).
We will again inductively show that for all iterations t, we have that w(t) ∈ Sn. We first show how to

prove the lemma, assuming this claim. In this case, the number of iterations K can be bounded identically
as in Lemma 8.14. Moreover, by construction, at termination we have that

∥∥∥M(w(K))− nI
∥∥∥ ≤ 5γ2. Now

suppose that there was some subset T with |T | ≤ εn that had∥∥∥Sum(w(K), T)
∥∥∥2

> 10γ2 · εn.

Then, there is a unit vector v ∈ Rd so that∑
i∈T

(w(K)
i)1/2⟨v, Xi⟩ >

√
10γ2 · εn . (30)

Thus, we have that ∑
i∈T ∪B

w
(K)
i ⟨v, Xi⟩2 ≥

∑
i∈T

w
(K)
i ⟨v, Xi⟩2 ≥ 10γ2 . (31)

Above, the first inequality holds because every w
(K)
i is nonnegative, and the second inequality follows from

(30) and the Cauchy-Schwarz inequality. However, as |R ∪ T | ≤ 2ε and ∥1 − w(K)∥1 ≤ 6εn, (29) and
Fact 8.12 together imply ∥∥∥M (

w(K), G \ (R ∪ T)
)
− nI

∥∥∥ ≤ γ2
5 . (32)

Since G\(R ∪ T) = S\(B ∪ T), the inequalities (31) and (32) together imply that∥∥∥M (
w(K), S

)
− nI

∥∥∥ > 5γ2 ,

which is a contradiction.
Thus, as before, it suffices to prove that w(t) ∈ Sn for all iterations until termination. We will do so

inductively. As before, the base case t = 1 is trivial. Now suppose that w(t) ∈ Sn for some t < K. Since
we have not yet terminated, this means that

∥∥∥M(w(t), S)− nI
∥∥∥ > 5γ2. Then, (29) and Fact 8.12 together

immediately imply that ∑
i∈B

w
(t)
i ⟨v, Xi⟩2 ≥ 3γ2 , (33)

for v the top eigenvector of M(w(t), S) − n · I . On the other hand, since
∑

i≤I w
(t)
i ≤ 2εn + 1 and since

w(t) ∈ Sn means we have removed at most 6εn mass from all samples, this means I ≤ 8εn + 1 ≤ 10εn.
So, Fact 8.12 implies that ∑

i≤I,i∈G

w
(t)
i ⟨v, Xi⟩2 < γ2 . (34)

By definition of I , every ⟨v, Xi⟩2 for i ≤ I is larger than every ⟨v, Xi⟩2 for i ∈ B\[I]. Therefore, since∑
i∈B\[I] w

(t)
i ≤ |B\[I]| ≤ εn but

∑
i≤I w

(t)
i ≥ 2εn, we have

2 ·

∑
i∈B

w
(t)
i ⟨v, Xi⟩2 −

∑
i≤I

w
(t)
i ⟨v, Xi⟩2

 ≤ 2 ·
∑

i∈B\[I]
w

(t)
i ⟨v, Xi⟩2 ≤

∑
i∈I

w
(t)
i ⟨v, Xi⟩2. (35)

Along with (33), (35) implies that ∑
i≤I

w
(t)
i ⟨v, Xi⟩2 ≥ 2γ2. (36)

64

Hence, by combining (36) with (34), we have∑
i≤I,i∈B

w
(t)
i ⟨v, Xi⟩2 ≥ γ2 ≥

∑
i≤I,i∈G

w
(t)
i ⟨v, Xi⟩2 ,

and so the result for w(t+1) immediately follows from Fact 8.13.

8.6 Bounding row sums

We now have a way to ensure that small subsets of points have means with bounded norm. We also need
to enforce that row sums are bounded. To do so, we will simply remove the set of O(εn) points whose row
sums have largest deviation from what we expect. More formally, given a set of weights w ∈ Sn, we will
let

τi =

∣∣∣∣∣∣⟨√wiXi,
∑
j∈S

√
wjXj⟩ − wid

∣∣∣∣∣∣ · I[wi > 0] . (37)

We then sort the indices in decreasing order by τi. Again for simplicity of notation, assume that after some
suitable reindexing we have that τ1 ≥ τ2 ≥ . . . ≥ τn. Then, we replace wi with 0 for all i ≤ εn. We give
the formal pseudocode for this algorithm in Algorithm 6.

Algorithm 6 Bounding row sums. Input: X1, . . . , Xn ∈ Rd

1: For all i, let τi be as in (37).
2: Sort the indices in decreasing order by τi. ▷ By relabeling indices, for simplicity of notation assume

that the i’s are initally sorted
3: Set wi = 0 for all i ≤ εn.
4: return w

Lemma 8.16. Assume G is (12ε, β1, β2)-regular, that Fact 8.12 holds for G, and S = (G\R) ∪ B,
where |R| = |B| = εn. Let w ∈ Sn, and assume that for all T ⊂ S with |T | ≤ 2εn, we have that
∥Sum(w, T)∥2 = ∥wT ∥1 d±O(β2). Then for all T ⊂ S\B with |T | ≤ εn, we have that∑

i∈T,j∈S

√
wiwj⟨Xi, Xj⟩ = d · ∥wT ∥1 ±O(

√
nβ1 + β2) .

Proof. Fix T ∈ S\B with |T | ≤ εn. Since S = (G\R) ∪B, we can write∑
i∈T,j∈S

√
wiwj⟨Xi, Xj⟩ =

∑
i∈T,j∈G

√
wiwj⟨Xi, Xj⟩︸ ︷︷ ︸
A1

−
∑

i∈T,j∈R

√
wiwj⟨Xi, Xj⟩︸ ︷︷ ︸
A2

+
∑

i∈T,j∈B

√
wiwj⟨Xi, Xj⟩︸ ︷︷ ︸
A3

.

Above, for j ∈ R, wj is defined to equal wj′ for the j′ ∈ B that replaces j.
Let bi := √

wi and ai := 1 − √wi. Since |T | ≤ εn, we know that
∑

i∈T bi ≤ εn. Moreover,∑
j∈G wj ≥ (1− 6ε)n, so

∑
j∈G ai ≤ 6εn. Because G is (12ε, β1, β2)-regular and T ⊂ G, Proposition 8.6

65

implies that

A1 =
〈∑

i∈T

biXi,
∑
j∈G

Xj

〉
−
〈∑

i∈T

biXi,
∑
j∈G

ajXj

〉

= d ·
∑
i∈T

bi − d
∑
i∈T

aibi ±O(
√

nβ1 + β2)

= d ·
∑
i∈T

wi ±O(
√

nβ1 + β2). (38)

Next, we bound A2. Since T, R ⊂ G are disjoint and |T |, |R| ≤ εn, Proposition 8.6 implies that

A2 =
〈∑

i∈T

biXi,
∑
j∈R

bjXj

〉
= ±O(

√
nβ1 + β2), (39)

since the bi terms in T and the bj terms in R are from disjoint sets.
Finally, we bound A3. We will only use the fact that T, B are disjoint sets in S of size at most εn and

our assumption on w in the lemma statement. We can write

A3 = 1
2
(
∥Sum(w, T ∪B)∥2 − ∥Sum(w, T)∥2 − ∥Sum(w, B)∥2

)
= 1

2 (∥wT ∪B∥1 · d− ∥wT ∥1 · d− ∥wB∥1 · d)±O(β2)

= ±O(β2). (40)

Adding (38), (39), and (40) completes the proof.

Lemma 8.17. Assume Lemma 8.16 holds, and let w′ be the output of Algorithm 6. Then, for all T ⊂ S with
|T | ≤ εn, we have that ∑

i∈T,j∈[n]

√
w′

iw
′
j⟨Xi, Xj⟩ = d · ∥wT ∥1 ±O(

√
nβ1 + β2) .

Proof. Recall the definition of τi from (37). First, we note that for any T ⊂ S\B with |T | ≤ εn,
∑

i∈T τi ≤
O(
√

nβ1 + β2). To see why, we can split T into T + and T −, where i ∈ T + if ⟨√wiXi,
∑

j∈S
√

wjXj⟩ ≥
wid and i ∈ T − otherwise. Then, since |T +|, |T −| ≤ εn, Lemma 8.16 implies that both

∑
i∈T + τi and∑

i∈T − τi are at most O(
√

nβ1 + β2).
Since

∑
i∈T τi ≤ O(

√
nβ1 + β2) for any subset T of S\B of size at most εn, and since we sorted the

τi’s in decreasing order, this implies
∑

i∈T τi ≤ O(
√

nβ1 + β2) for any subset T of S\[εn] of size at most
εn. If wi represents the values of w before setting the top εn indices to 0, and w′

i represents the values of w
afterwards (i.e., w′

i = 0 for i ≤ εn and w′
i = wi for i > εn), then∣∣∣∣∣∣

∑
i∈T,j∈S

√
w′

iwj⟨Xi, Xj⟩ − d · ∥w′
T ∥1

∣∣∣∣∣∣ ≤
∑
i∈T

∣∣∣∣∣∣
〈√

w′
iXi,

∑
j∈S

√
wjXj

〉
− w′

id

∣∣∣∣∣∣
=

∑
i∈T \[εn]

τi ≤ O(
√

nβ1 + β2). (41)

66

Next, we have ∑
i∈T,j∈[εn]

√
w′

iwj⟨Xi, Xj⟩ =
∑

i∈T \[εn],j∈[εn]

√
wiwj⟨Xi, Xj⟩ = ±O(β2), (42)

by the same argument as in (40), since T\[εn] and [εn] are disjoint sets in S and have size at most εn.
By subtracting (42) from (41), we obtain the desired bound∣∣∣∣∣∣
∑

i∈T,j∈S

√
w′

iw
′
j⟨Xi, Xj⟩ − d∥w′

T ∥1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i∈T,j∈S\[εn]

√
w′

iwj⟨Xi, Xj⟩ − d∥w′
T ∥1

∣∣∣∣∣∣ ≤ O(
√

nβ1 + β2).

8.7 Putting it all together

We now have all the necessary pieces for the full algorithm. It will proceed as follows. First, remove
any points whose norms differ from d by too much. Then, run the appropriate spectral filtering algorithm
depending on whether or not n ≤ d. Next, use Algorithm 6 to bound row sums. Finally, check the sum of
all entries in the (centered) Gram matrix, and if it is too large, then output YES, otherwise output NO. The
full pseudocode is given in Algorithm 7.

Algorithm 7 Robust mean testing X1, . . . , Xn ∈ Rd

1: Remove any i satisfying
∣∣∣∥Xi∥2 − d

∣∣∣ ≥ O(
√

d log n/δ)
2: Let γ2 be as in (26).
3: if n ≤ d then
4: Let w be the output of Algorithm 4 with parameter γ2.
5: else
6: Let w be the output of Algorithm 5 with parameter γ2.
7: Let w′ be the output of Algorithm 6 with input w

8: if
∣∣∣∥Sum(w′, S)∥2 − d ∥w∥1

∣∣∣ ≥ 0.7α2n2 then
9: return YES

10: else
11: return NO

Proof of Theorem 8.1. The runtime of the algorithm is clearly dominated by the runtime of the spectral
filters, which both run in time O(εn2d min(n, d)), and the runtime of computing Sum(w, S), which is
O(nd). We now prove correctness.

By standard arguments, the first step (Line 1) of Algorithm 7 removes no uncorrupted points with prob-
ability 1− δ/3.

Assume that G is (12ε, β1, β2)-regular for β1 = εn
√

d log(n/δ) and β2 = εn
√

nd log(n/δ)+(εn)2 log 1/ε.
By Lemma 8.3, this occurs with probability 1 − δ/3. As argued above, for our choice of n, the condi-
tions for Lemma 8.14 and Lemma 8.15 are also satisfied with probability 1 − δ/3 (and will even hold
for all |T | ≤ 2εn). Thus, we obtain that w ∈ Sn. Finally, regularity and standard sub-exponential mo-
ment bounds imply that the conditions for Lemma 8.17 are satisfied, as long as β1 = εn

√
d log(n/δ) and

β2 = O(εn ·γ2) = O(εn
√

nd+α2εn2 +εn
√

(n + d) log(1/δ)+εn log(1/δ)+(εn)2 log(1/ε). Therefore,
the resulting set of weights w′ is (O(ε), β1 + β2√

n
, β2)-regular. Plugging this into Lemma 8.8 yields the

claim, since by our choice of n, one can verify that
√

nβ1, β2 ≤ 1
C · α

2n2.

67

9 Computational Lower Bound

We refer to [KWB22] for definitions concerning the low-degree method and the low-degree likelihood ratio,
reviewing here only a little background. Originating in [BHK+19; Hop18; HS17], the low-degree method is
a heuristic for understanding computational complexity of average-case problems, in this case a hypothesis
testing problem. The heuristic unconditionally rules out a class of algorithms based on low-degree eval-
uating low-degree polynomials in the input; in this case, low-degree polynomials in the nd-length vector
(X1, . . . , Xn). This low-degree model captures a surprisingly broad range of algorithms, including spectral
methods, making it a powerful heuristic for detecting computational hardness.

Theorem 9.1. For n, d ∈ N and ε, α > 0, consider the following probability distributions on D0, D1 on
(Rn)d.

• D0 = N (0, 1)⊗nd

• D1: first, sample a random unit vector v ∈ Rd. Then, draw n i.i.d. vectors X1, . . . , Xn from the
distribution (1− ε)N (αv, I) + ε(−α(1− ε)ε−1v, I).

For D ∈ N, D > 1, let L≤D be the degree-D truncated likelihood ratio for D1 with respect to D0. Then

∥L≤D − 1∥ ≤ DO(D) ·
√

nα2
√

dε
· exp

(√
nα2
√

dε
+ α2
√

dε2

)
.

Consequently, if n ≤ o(D−O(D) · dε2

α4) and n ≥
√

d/α2 (since otherwise testing is information-theoretically
impossible), we have ∥L≤D − 1∥ ≤ o(1).

Proof. We define the following auxiliary distribution P over n×d matrices – to draw a sample from P , first
draw a random unit vector v ∈ Rd, then sample each column of P independently to be equal to α · v with
probability (1 − ε) and otherwise equal to −α(1 − ε)ε−1. Note that an equivalent way to sample from D1
is to first draw X ∼ P and output X + G, where G ∈ Rn×d has independent entries distributed asN (0, 1).
Thus, D1 fits into the Gaussian additive model.

Using Theorem 2.6 of [KWB22], concerning low-degree likelihood ratio for Gaussian additive models,
we have

∥L≤D − 1∥2 =
D∑

t=1

1
t! · EX,X′∼P ⟨X, X ′⟩t ,

where X, X ′ are independent draws from P and ⟨·, ·⟩ is the Euclidean inner product in nd dimensions.
Let v, w be the independent random unit vectors associated to separate draws X, X ′ ∼ P , let Sv ⊆ [n]

be the columns of X equal to αv, and similarly for Sw. Then

⟨X, X ′⟩t = ⟨v, w⟩t · (α2|Sv ∩ Sw| − α2(1− ε)ε−1(|Sv ∩ Sw|+ |Sw ∩ Sv) + α2(1− ε)2ε−2|Sv ∩ Sw|)t .

Furthermore, v, w are independent from Sv, Sw, so

E⟨X, X ′⟩t = E⟨v, w⟩t ·E(α2|Sv∩Sw|−α2(1−ε)ε−1(|Sv∩Sw|+ |Sw∩Sv|)+α2(1−ε)2ε−2|Sv∩Sw|)t .

The whole quantity is equal to zero for odd t, and for even t it’s at most

O(t)t/2

dt/2 · α2t · E(|Sv ∩ Sw| − (1− ε)ε−1(|Sv ∩ Sw|+ |Sw ∩ Sv|) + (1− ε)2ε−2|Sv ∩ Sw|)t ,

68

using Fact 9.2. We have

E|Sv ∩ Sw| = n(1− ε)2

E|Sv ∩ Sw| = nε(1− ε)
E|Sv ∩ Sw| = nε(1− ε)
E|Sv ∩ Sw| = nε2

and hence in particular

E|Sv ∩ Sw| − (1− ε)ε−1(E|Sv ∩ Sw|+ E|Sw ∩ Sv|) + (1− ε)2ε−2E|Sv ∩ Sw| = 0 .

Therefore,

E⟨X, X ′⟩t ≤ O(t)t/2α2t

dt/2 ·√
E (|Sv ∩ Sw| − E|Sv ∩ Sw|)2t

+
√

(1− ε)2tε−2tE
(
|Sv ∩ Sw| − E|Sv ∩ Sw|

)2t

+
√

(1− ε)4tε−4tE
(
|Sv ∩ Sw| − E|Sw ∩ Sv|

)2t

Observe that:

• |Sv ∩ Sw| follows a Binomial distribution Bin(n, (1− ε)2), so

E(|Sv ∩ Sw| − E|Sv ∩ Sw|)2t ≤ O(t)2tn(1− ε)2 + O(t)t(n(1− ε)2(2ε− ε2))t

using Fact 9.3.
• |Sv ∩ Sw| follows a Binomial distribution Bin(n, ε(1− ε)), so

E(|Sv ∩ Sw| − E|Sv ∩ Sw|)2t ≤ O(t)2tnε(1− ε) + O(t)t(nε(1− ε)(1− ε(1− ε)))t

using Fact 9.3.
• |Sv ∩ Sw| follows a Binomial distribution Bin(n, ε2), so

E(|Sv ∩ Sw| − E|Sv ∩ Sw|)2t ≤ O(t)2tnε2 + O(t)t(nε2(1− ε2))t

using Fact 9.3.

Substituting these moment bounds and simplifying using t ≥ 1, we get

E⟨X, X ′⟩t ≤ O(t)O(t)α2t

dt/2

(√
n · η−2t+1 + nt/2 · ε−t

)
.

Summing across t ∈ [1, D] gives the result.

Fact 9.2. Let u, v be independent random unit vectors in d dimensions and let t ∈ N. Then E⟨u, v⟩t ≤
O(t)t/2 ·O(d)−t/2.

69

Proof. The random variable ⟨u, v⟩ has the same distribution as ⟨x, g⟩/∥g∥ where x is any fixed unit vector
and g ∼ N (0, I). We have

E
⟨x, g⟩t

∥g∥t
≤
(
E⟨x, g⟩2t

)1/2
·
(
E∥g∥−2t

)1/2
.

Since ⟨x, g⟩ is distributed as N (0, 1), the first term is at most
√

(2t)t = O(t)t/2. For the second term,
∥g∥ ≥ Ω(

√
d) with probability at least 0.9, so E∥g∥−2t ≤ O(1)t · d−t.

The following is a special case of Rosenthal’s inequality; see e.g. [Pin94].

Fact 9.3 (Moments of binomial distribution). There is a constant C > 0 such that for all n, t ∈ N and p ∈
[0, 1], if Y ∼ Bin(n, p) be a binomial random variable, E(Y −EY)t ≤ (Ct)t ·np+(Ct)t/2 ·(np(1−p))t/2.

Acknowledgments

The authors would like to thank Guy Blanc and Gautam Kamath for some helpful suggestions.

References

[ACT20] Jayadev Acharya, Clément L. Canonne, and Himanshu Tyagi. “Distributed Signal Detec-
tion under Communication Constraints”. In: ed. by Jacob Abernethy and Shivani Agarwal.
Vol. 125. Proceedings of Machine Learning Research. PMLR, July 2020, pp. 41–63 (cit. on
p. 5).

[AD20] Hilal Asi and John C Duchi. “Instance-optimality in differential privacy via approximate in-
verse sensitivity mechanisms”. In: Advances in neural information processing systems. Vol. 33.
2020, pp. 14106–14117 (cit. on p. 53).

[AUZ23] Hilal Asi, Jonathan R. Ullman, and Lydia Zakynthinou. “From Robustness to Privacy and
Back”. In: CoRR abs/2302.01855 (2023) (cit. on pp. 4, 5, 51).

[Bar02] Yannick Baraud. “Non-asymptotic minimax rates of testing in signal detection”. In: Bernoulli
(2002), pp. 577–606 (cit. on p. 5).

[BB20] Matthew Brennan and Guy Bresler. “Reducibility and statistical-computational gaps from
secret leakage”. In: Conference on Learning Theory. PMLR. 2020, pp. 648–847 (cit. on pp. 2,
5).

[BBH+20] Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li, and Tselil Schramm. “Statistical
query algorithms and low-degree tests are almost equivalent”. In: arXiv preprint arXiv:2009.06107
(2020) (cit. on p. 11).

[BEK02] Nader H Bshouty, Nadav Eiron, and Eyal Kushilevitz. “PAC learning with nasty noise”. In:
Theoretical Computer Science 288.2 (2002), pp. 255–275 (cit. on p. 5).

[BH20] Maria-Florina Balcan and Nika Haghtalab. Noise in Classification. 2020 (cit. on p. 5).

[BHK+19] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron
Potechin. “A nearly tight sum-of-squares lower bound for the planted clique problem”. In:
SIAM Journal on Computing 48.2 (2019), pp. 687–735 (cit. on p. 68).

70

[BLMT22] Guy Blanc, Jane Lange, Ali Malik, and Li-Yang Tan. “On the power of adaptivity in statistical
adversaries”. In: Conference on Learning Theory. PMLR. 2022, pp. 5030–5061 (cit. on pp. 1,
5).

[CCK+21] Clément L. Canonne, Xi Chen, Gautam Kamath, Amit Levi, and Erik Waingarten. “Random
Restrictions of High Dimensional Distributions and Uniformity Testing with Subcube Condi-
tioning”. In: SODA. SIAM, 2021, pp. 321–336 (cit. on p. 5).

[CKM+20] Clément L. Canonne, Gautam Kamath, Audra McMillan, Jonathan R. Ullman, and Lydia Za-
kynthinou. “Private Identity Testing for High-Dimensional Distributions”. In: NeurIPS. 2020
(cit. on p. 5).

[DGJ+21] Samuel Deng, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and
Abhradeep Guha Thakurta. “A separation result between data-oblivious and data-aware poi-
soning attacks”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 10862–
10875 (cit. on p. 1).

[DGT19] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. “Distribution-independent pac
learning of halfspaces with massart noise”. In: Advances in Neural Information Processing
Systems 32 (2019) (cit. on p. 5).

[DHL19] Yihe Dong, Samuel Hopkins, and Jerry Li. “Quantum entropy scoring for fast robust mean
estimation and improved outlier detection”. In: Advances in Neural Information Processing
Systems 32 (2019) (cit. on p. 61).

[DK19] Ilias Diakonikolas and Daniel M. Kane. “Recent Advances in Algorithmic High-Dimensional
Robust Statistics”. In: CoRR abs/1911.05911 (2019) (cit. on p. 2).

[DK21] Ilias Diakonikolas and Daniel M. Kane. “The Sample Complexity of Robust Covariance
Testing”. In: COLT. Vol. 134. Proceedings of Machine Learning Research. PMLR, 2021,
pp. 1511–1521 (cit. on p. 5).

[DK23] Ilias Diakonikolas and Daniel M. Kane. Algorithmic High-Dimensional Robust Statistics. To
appear. Draft available at https:/ /sites.google.com/view/ars- book/. Cambridge University
Press, 2023 (cit. on pp. 1, 2, 5).

[DKK+18] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. “Robustly learning a gaussian: Getting optimal error, efficiently”. In: Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2018,
pp. 2683–2702 (cit. on pp. 1, 5).

[DKK+19] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair Stew-
art. “Robust estimators in high-dimensions without the computational intractability”. In: SIAM
Journal on Computing 48.2 (2019), pp. 742–864 (cit. on p. 5).

[DKMR22] Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi, and Lisheng Ren. “Cryptographic hard-
ness of learning halfspaces with massart noise”. In: Advances in Neural Information Process-
ing Systems 35 (2022), pp. 3624–3636 (cit. on p. 5).

[DKP23] Ilias Diakonikolas, Daniel M. Kane, and Ankit Pensia. “Gaussian Mean Testing Made Sim-
ple”. In: SOSA. SIAM, 2023, pp. 348–352 (cit. on p. 5).

[DKS17] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. “Statistical Query Lower Bounds
for Robust Estimation of High-Dimensional Gaussians and Gaussian Mixtures”. In: FOCS.
IEEE Computer Society, 2017, pp. 73–84 (cit. on pp. 1, 5, 11, 40, 45, 54).

71

https://sites.google.com/view/ars-book/

[DKS18] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. “Learning geometric concepts with
nasty noise”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing. 2018, pp. 1061–1073 (cit. on p. 5).

[DS03] Kenneth R. Davidson and Slanislaw J. Szarek. “Local operator theory, random matrices and
Banach spaces”. In: Handbook of the geometry of Banach spaces 2 (2003), pp. 317–366 (cit.
on p. 60).

[Erm91] Michael Sergeevich Ermakov. “Minimax detection of a signal in a Gaussian white noise”. In:
Theory of Probability & Its Applications 35.4 (1991), pp. 667–679 (cit. on p. 5).

[GC22] Anand Jerry George and Clément L. Canonne. “Robust Testing in High-Dimensional Sparse
Models”. In: NeurIPS. 2022 (cit. on p. 5).

[GH22] Kristian Georgiev and Samuel B. Hopkins. “Privacy Induces Robustness: Information-Computation
Gaps and Sparse Mean Estimation”. In: NeurIPS. 2022 (cit. on pp. 4, 5, 51, 52).

[GTX+22] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn
Song, Aleksander Mądry, Bo Li, and Tom Goldstein. “Dataset security for machine learning:
Data poisoning, backdoor attacks, and defenses”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 45.2 (2022), pp. 1563–1580 (cit. on p. 1).

[GW17] Evan Greene and Jon A. Wellner. “Exponential bounds for the hypergeometric distribution”.
In: Bernoulli 23.3 (2017), pp. 1911–1950 (cit. on p. 15).

[HKMN22] Samuel B. Hopkins, Gautam Kamath, Mahbod Majid, and Shyam Narayanan. “Robustness
Implies Privacy in Statistical Estimation”. In: CoRR abs/2212.05015 (2022) (cit. on pp. 4, 5,
51, 53).

[Hop18] Samuel Hopkins. “Statistical inference and the sum of squares method”. PhD thesis. Cornell
University, 2018 (cit. on p. 68).

[HS17] Samuel B Hopkins and David Steurer. “Efficient bayesian estimation from few samples: com-
munity detection and related problems”. In: 2017 IEEE 58th Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE. 2017, pp. 379–390 (cit. on p. 68).

[IIS03] Yuri Ingster, Jurij I Ingster, and IA Suslina. Nonparametric goodness-of-fit testing under
Gaussian models. Vol. 169. Springer Science & Business Media, 2003 (cit. on p. 5).

[Kea98] Michael Kearns. “Efficient noise-tolerant learning from statistical queries”. In: Journal of the
ACM (JACM) 45.6 (1998), pp. 983–1006 (cit. on p. 5).

[KNL+20] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew Marshall, Mario Go-
ertzel, Andi Comissoneru, Matt Swann, and Sharon Xia. “Adversarial machine learning-
industry perspectives”. In: 2020 IEEE security and privacy workshops (SPW). IEEE. 2020,
pp. 69–75 (cit. on p. 1).

[KWB22] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. “Notes on computational hard-
ness of hypothesis testing: Predictions using the low-degree likelihood ratio”. In: Mathemat-
ical Analysis, its Applications and Computation: ISAAC 2019, Aveiro, Portugal, July 29–
August 2. Springer, 2022, pp. 1–50 (cit. on pp. 11, 68).

[Nar22] Shyam Narayanan. “Private High-Dimensional Hypothesis Testing”. In: COLT. Vol. 178. Pro-
ceedings of Machine Learning Research. PMLR, 2022, pp. 3979–4027 (cit. on pp. 1, 4–6, 14,
15, 51–54).

72

[NT22] Rajai Nasser and Stefan Tiegel. “Optimal SQ lower bounds for learning halfspaces with mas-
sart noise”. In: Conference on Learning Theory. PMLR. 2022, pp. 1047–1074 (cit. on p. 5).

[Pin94] Iosif Pinelis. “Optimum bounds for the distributions of martingales in Banach spaces”. In:
The Annals of Probability (1994), pp. 1679–1706 (cit. on p. 70).

[SD08] Muni S Srivastava and Meng Du. “A test for the mean vector with fewer observations than the
dimension”. In: Journal of Multivariate Analysis 99.3 (2008), pp. 386–402 (cit. on pp. 5, 54).

[Ska13] Matthew Skala. “Hypergeometric tail inequalities: ending the insanity”. In: CoRR abs/1311.5939
(2013) (cit. on p. 15).

[SVZ22] Botond Szabó, Lasse Vuursteen, and Harry van Zanten. “Optimal high-dimensional and non-
parametric distributed testing under communication constraints”. In: (2022). arXiv: 2202 .
00968 [math.ST] (cit. on p. 5).

A Mathematica code to verify the computation from Section 6.3

For completeness, we here provide some Mathematica code which can be used to verify the computations
from the proof of Lemma 6.6:

s11[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] =
2*(1 − \[Epsilon])*n*\[Beta]^2*d;

s12[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_,
d_] = (1 − \[Epsilon])*n*\[Beta]^2*d + \[Beta]*d;

s13[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_,
d_] = (1 − \[Epsilon])*n*\[Beta]^2*d + \[Beta]*d;

s14[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = 2*\[Beta]*d;
s21[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 − \[Epsilon])*n*\[Beta]^2*d + \[Beta]*d;
s22[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 − \[Epsilon])*n*\[Beta]^2*d − \[Alpha]^2;
s23[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = 2*\[Beta]*d;
s24[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = \[Beta]*d − \[Alpha]^2;
s31[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 − \[Epsilon])*n*\[Beta]^2*d + \[Beta]*d;
s32[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = 2*\[Beta]*d;
s33[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_,

d_] = (1 − \[Epsilon])*n*\[Beta]^2*d − \[Alpha]^2;
s34[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = \[Beta]*d − \[Alpha]^2;
s41[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = 2*\[Beta]*d;
s42[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = \[Beta]*d − \[Alpha]^2;
s43[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = \[Beta]*d − \[Alpha]^2;
s44[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_] = −2*\[Alpha]^2;

diag[\[Epsilon]_, \[Gamma]_, n_] =
DiagonalMatrix[{\[Gamma]*n, (\[Epsilon] − \[Gamma])*

n, (\[Epsilon] − \[Gamma])*n, (1 − 2*\[Epsilon] + \[Gamma])*n}];
I4 = DiagonalMatrix[{1, 1, 1, 1}];
sigma[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_,

d_] = {{s11[\[Alpha], \[Beta], \[Epsilon], n, d],
s12[\[Alpha], \[Beta], \[Epsilon], n, d],
s13[\[Alpha], \[Beta], \[Epsilon], n, d],
s14[\[Alpha], \[Beta], \[Epsilon], n,
d]}, {s21[\[Alpha], \[Beta], \[Epsilon], n, d],

73

https://arxiv.org/abs/2202.00968
https://arxiv.org/abs/2202.00968

s22[\[Alpha], \[Beta], \[Epsilon], n, d],
s23[\[Alpha], \[Beta], \[Epsilon], n, d],
s24[\[Alpha], \[Beta], \[Epsilon], n,
d]}, {s31[\[Alpha], \[Beta], \[Epsilon], n, d],
s32[\[Alpha], \[Beta], \[Epsilon], n, d],
s33[\[Alpha], \[Beta], \[Epsilon], n, d],
s34[\[Alpha], \[Beta], \[Epsilon], n,
d]}, {s41[\[Alpha], \[Beta], \[Epsilon], n, d],
s42[\[Alpha], \[Beta], \[Epsilon], n, d],
s43[\[Alpha], \[Beta], \[Epsilon], n, d],
s44[\[Alpha], \[Beta], \[Epsilon], n, d]}};

final[\[Alpha]_, \[Beta]_, \[Epsilon]_, n_, d_, \[Gamma]_] =
I4 + Dot[diag[\[Epsilon], \[Gamma], n],

sigma[\[Alpha], \[Beta], \[Epsilon], n,
d]]/((1 − \[Epsilon])*\[Alpha]^2*n + d);

FullSimplify[((d + \[Beta]^2 d (\[Epsilon]^2 \[Minus] \[Gamma]) \
n^2)^2 \[Minus] (\[Alpha]^2 n \[Minus]

2 \[Beta] d \[Epsilon] n + \[Beta]^2 d \[Epsilon] n^2 \[Minus]
2 \[Alpha]^2 \[Epsilon] n + \[Alpha]^2 \[Gamma] n +
2 \[Beta] d \[Gamma] n \[Minus]
2 \[Beta]^2 d \[Epsilon]^2 n^2 + \[Beta]^2 d \[Epsilon]\

\[Gamma] n^2)^2) ==
Factor[Det[

final[\[Alpha], \[Beta], \[Epsilon], n,
d, \[Gamma]]]*(d + \[Alpha]^2*n − \[Alpha]^2 *\[Epsilon]*
n)^2]]

74

	1 Introduction
	1.1 Types of Adversaries
	1.2 Our Results
	1.3 Related Work
	1.4 Overview of Techniques

	2 Preliminaries and Notation
	2.1 Basic Definitions
	2.2 Useful Probabilistic Tools and Inequalities
	2.3 Simplification of Alternative Hypothesis
	2.4 Notation

	3 Reducing to ``Friendly" Oblivious Contaminations
	3.1 Structure of Obliviously Contaminated Samples
	3.2 Oblivious Filtering via Sample Splitting

	4 Mean Testing Robustly Against Oblivious Adversaries
	4.1 Setup and Algorithm
	4.2 Consequences of assumption
	4.3 The Null Case: Mean
	4.4 The Null Case: Variance
	4.5 The Alternative Case: Variance
	4.6 Proof of lem:mean-var-main-2

	5 Lower bound in the Huber model
	5.1 Main Lower Bound

	6 Improved Lower Bound against Oblivious Adversaries
	6.1 Lower bound instance
	6.2 Likelihood Ratio Computation
	6.3 Final Computation

	7 The Sample Complexity under Strong Contamination
	8 Polynomial-Time Algorithm
	8.1 Regularity conditions
	8.2 Filtering preliminaries
	8.3 Additional preliminaries
	8.4 The filtering algorithm for n d
	8.5 The filtering algorithm for n > d
	8.6 Bounding row sums
	8.7 Putting it all together

	9 Computational Lower Bound
	A Mathematica code to verify the computation from sec:final:computation:mathematica

