
ar
X

iv
:2

21
2.

05
01

5v
1

 [c
s.D

S]
 9

 D
ec

 2
02

2

Robustness Implies Privacy in Statistical Estimation∗

Samuel B. Hopkins†

MIT EECS
Gautam Kamath‡

University of Waterloo
Mahbod Majid§

University of Waterloo

Shyam Narayanan¶

MIT EECS

December 12, 2022

Abstract

We study the relationship between adversarial robustness and differential privacy in high-
dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness

which can produce private estimators with optimal tradeoffs among sample complexity, ac-
curacy, and privacy for a wide range of fundamental high-dimensional parameter estimation

problems, including mean and covariance estimation. We show that this reduction can be

implemented in polynomial time in some important special cases. In particular, using nearly-
optimal polynomial-time robust estimators for the mean and covariance of high-dimensional

Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time

private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs.
Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.

∗Authors are listed in alphabetical order.
†samhop@mit.edu.
‡g@csail.mit.edu. Supported by an NSERC Discovery Grant, an unrestricted gift from Google, and a University of

Waterloo startup grant.
§m2majid@uwaterloo.ca. Supported by an NSERC Discovery Grant.
¶shyamsn@mit.edu. Supported by an NSF Graduate Fellowship, the NSF TRIPODS Program (award DMS-2022448),

and a Google Fellowship.

http://arxiv.org/abs/2212.05015v1

Contents

1 Introduction 1

1.1 Results . 2

1.2 Related Work . 4

2 Techniques 6

2.1 Black-Box Reduction from Privacy to Robustness . 6

2.2 Algorithms . 11

3 Preliminaries 14

4 A General Private Sampling Algorithm 15

4.1 Sampling and volume computation with an imperfect oracle 17

4.2 Proof of Theorem 4.1 . 18

4.3 Proof of Theorem 4.2 . 20

5 Estimating the Mean of a Gaussian 21

5.1 Main Theorem . 21

5.2 Resilience of First and Second Moments . 22

5.3 Robust Algorithm . 23

5.4 Score Function and its Properties . 23

5.5 Proof of Theorem 5.1 . 28

5.6 The approx-DP setting . 29

6 Preconditioning the Gaussian 30

6.1 Main Theorems . 30

6.2 Resilience of Moments . 31

6.3 Robust Algorithm . 31

6.4 Score Function and its Properties . 32

6.5 Proof of Theorem 6.1 . 38

6.6 The approx-DP setting . 38

7 Learning a Gaussian in Total Variation Distance 39

7.1 Robust Algorithm . 40

7.2 Score Function and its Properties . 40

7.3 Proof of Theorem 7.1 . 44

7.4 Proof of Theorems 1.3 and 1.4 . 45

A Omitted proofs for Private Sampling 51

A.1 Preliminaries . 51

A.2 Sampling from a well-rounded convex body with an imperfect oracle 52

B Sum-of-squares proofs 58

B.1 Proofs of Accuracy Lemmas . 59

B.2 SoS bounds for arbitrary samples: Covariance estimation 62

B.3 SoS bounds for arbitrary samples: Mean estimation 65

C Computing Score Functions 68

D High-Probability Bound for Stability of Covariance 76

D.1 Preliminaries . 76

D.2 Main Probability Bound . 77

D.3 Proof of Lemma 6.3 . 80

E Mean Estimation in ℓ∞ 81

1 Introduction

Parameter estimation is a fundamental statistical task: given samples �푋1, . . . , �푋�푛 from a distribution

�푝�휃(�푋) belonging to a known family of distributions �풫 and indexed by a parameter vector �휃 ∈ Θ ⊆
R�퐷 , and for a given a norm ‖ · ‖, the goal is find �̂휃 such that ‖�휃 − �̂휃‖ is as small as possible. Two

important desiderata for parameter estimation algorithms are:

Robustness: If an �휂-fraction of �푋1, . . . , �푋�푛 are adversarially corrupted, we would nonetheless like

to estimate �휃. This strong contamination model for robust parameter estimation dates from the

1960’s, but has recently been under intense study from an algorithmic perspective, especially in

the high-dimensional setting where �푋1, . . . , �푋�푛 ∈ R�푑 for large �푑. Thanks to these efforts, we now

know efficient algorithms for a wide range of high-dimensional parameter estimation problems

which enjoy optimal or nearly-optimal accuracy/sample complexity guarantees.

Privacy: A differentially private (DP) [DMNS06] algorithm protects the privacy of individuals rep-

resented in a dataset �푋1, . . . , �푋�푛 by guaranteeing that the distribution of outputs of the algorithm

given �푋1, . . . , �푋�푛 is statistically close to the distribution it would generate given �푋′
1
, . . . , �푋′

�푛 , where

�푋′
1
, . . . , �푋′

�푛 differs from �푋1, . . . , �푋�푛 on any one sample �푋�푖.

Privacy and robustness are intuitively related: both place requirements on the behavior of an

algorithm when one or several inputs are adversarially perturbed. Already by 2009, Dwork and Lei

recognized that “robust statistical estimators present an excellent starting point for differentially

private estimators” [DL09]. More recent works continue to leverage ideas from robust estimation to

design private estimation procedures [BKSW19, KSU20, BGS+21, RC21, KMV22, LKO22, HKM22,

GH22, RJC22] – these works address both sample complexity and computationally efficient algo-

rithms.

Despite robustness being useful as a tool in privacy, the relationship between robustness

and privacy remains murky. Consequently, for many high-dimensional estimation tasks, we

know polynomial-time algorithms which obtain (nearly) optimal tradeoffs among accuracy, sample

complexity, and robustness, but known private algorithms either require exponential time or give

suboptimal tradeoffs among accuracy, sample complexity, and privacy. Indeed, this is the case

even for learning the mean of a high-dimensional (sub-)Gaussian distribution, and for learning a high-

dimensional Gaussian in total variation distance.

We contribute a new technique to design private estimators using robust ones, leading to:

The first black-box reduction from private to robust estimation: Prior works using robust estimators to

design private ones are white box, relying on properties of those estimators beyond robustness.

Black-box privacy techniques such as the Gaussian and Laplace mechanisms are widely used, but

so far do not yield private algorithms for high-dimensional estimation tasks with optimal accuracy-

samples-privacy tradeoffs, even when applied to optimal robust estimators. For tasks including mean

and covariance estimation and regression, using any robust estimator with an optimal accuracy-samples-

robustness tradeoff, our reduction gives a private estimator with optimal accuracy-samples-privacy tradeoff.

Our basic black-box reduction yields estimators satisfying pure DP, which work assuming Θ is

bounded, and which don’t necessarily admit efficient algorithms. Two additional properties of an

underlying robust estimator can lead to potential improvements in the resulting private estimator:

1

1. If Θ is convex and the robust estimator is based on the Sum of Squares (SoS) method, the

resulting private estimator can be implemented in polynomial time.

2. If the robust estimator satisfies a stronger worst-case robustness property, satisfied by many

high-dimensional robust estimators, we can remove the assumption that Θ is bounded, at

the additional (necessary) expense of weakening from pure to approximate DP guarantees.

The first polynomial-time algorithms to learn high-dimensional Gaussian distributions with nearly-optimal

sample complexity subject to differential privacy: Using SoS-based robust algorithms and our privacy-

to-robustness reduction, we obtain polynomial-time estimators with nearly-optimal accuracy-

samples-privacy tradeoffs, for both pure and approximate DP, for learning the mean and/or

covariance of a high-dimensional Gaussian, and for learning a high-dimensional Gaussian in to-

tal variation. In addition, our private algorithms enjoy near-optimal levels of robustness. Prior

private polynomial-time estimators have sub-optimal samples-accuracy-privacy tradeoffs, losing

polynomial factors in the dimension �푑 and/or privacy parameter log 1/�훿.

Our methods also yield a polynomial-time algorithm for private mean estimation under a

bounded-covariance assumption, recovering the main result of [HKM22] with slightly improved

sample complexity. We expect them to generalize to other estimation problems where Θ is convex

and nearly-optimal robust SoS algorithms are known – e.g., linear regression [KKM18] and mean

estimation under other bounded-moment assumptions [HL18a, KSS18].

Conclusions on Robust versus Private Estimation: Recent work [GH22] shows that private algorithms

with very high success probabilities are robust simply by virtue of their privacy guarantees. This

complements our results, which show a converse – from robust estimators with optimal samples-

accuracy-robustness tradeoffs we get analogous private estimators (with very high success prob-

abilities). Together, these hint at a potential equivalence between robust and private parameter

estimation, which can be made algorithmic in the context of SoS-based algorithms. Our results

show such an equivalence for “nice enough” parameter estimation problems, but the broader rela-

tionship between privacy and robustness is more subtle; in Section 2 we discuss situations where

optimal robust estimators don’t necessarily yield optimal private ones, at least in a black-box way.

1.1 Results

We first recall the definitions of differential privacy and the strong contamination model.

Definition 1.1 (Differential Privacy (DP) [DMNS06, DKM+06]). Let �풳 be a set of inputs and �풳∗ be

all finite-length strings of inputs. Let �풪 be a set of outputs. A randomized map (“mechanism”)

�푀 : �풳∗ → �풪 satisfies (�휀, �훿)-DP if for every neighboring �푋, �푋′ ∈ �풳∗ with Hamming distance 1 and

every subset �푆 ⊆ �풪, P(�푀(�푋) ∈ �푆) ≤ �푒�휀 P(�푀(�푋′) ∈ �푆) + �훿. If �훿 = 0, we say that �푀 satisfies pure DP,

otherwise �푀 satisfies approximate DP.

Definition 1.2 (Strong Contamination Model). For a probability distribution�퐷 and�휂 > 0,�푌1, . . . , �푌�푛
are �휂-corrupted samples from �퐷 if �푋1, . . . , �푋�푛 ∼ �퐷 i.i.d. and �푌�푖 = �푋�푖 for at least (1 − �휂)�푛 indices �푖.

2

1.1.1 Learning High-Dimensional Gaussian Distributions in TV Distance

We begin with learning Gaussians in total variation distance.

Theorem 1.3 (Learning Arbitrary Gaussians, Pure DP, Subsection 7.4). Assume that 0 < �훼, �훽, �휀 < 1,

0 < �휂 < �휂∗ for some absolute constant �휂∗, and �퐾, �푅 > 0. There is a polynomial-time (�휀, 0)-DP algorithm

with the following guarantees for every �푑 ∈ N and every �휇 ∈ R�푑 ,Σ ∈ R�푑×�푑 such that ‖�휇‖ ≤ �푅 and
1
�퐾 · �퐼 � Σ � �퐾 · �퐼. Given �푛 �휂-corrupted samples from �풩(�휇,Σ), the algorithm returns �̂휇, Σ̂ such that

�푑�푇�푉(�풩(�휇,Σ),�풩(�̂휇, Σ̂)) ≤ �훼 + �푂(�휂) with probability at least 1 − �훽, if1

�푛 ≥ �푂

(
�푑2 + log2(1/�훽)

�훼2
+

�푑2 + log(1/�훽)
�훼�휀

+ �푑2 log �퐾

�휀
+ �푑 log �푅

�휀

)
.

We are unaware of prior computationally efficient pure-DP algorithms for learning high-

dimensional Gaussians in TV distance; we believe that state of the art is based on the techniques

of [KLSU19],2 which would give an algorithm requiring �푛 ≫ �푑3 samples (and lack robustness).

Pure-DP necessitates the a priori upper bounds �푅 and �퐾 on �휇 and Σ in Theorem 1.3. Under

(�휀, �훿)-DP these bounds are avoidable. But, obtaining a polynomial-time (�휀, �훿)-DP algorithm to

learn Gaussians with optimal samples-accuracy-privacy tradeoffs and without assumptions on

�휇,Σ has been a significant challenge, with progress in several recent works [AL22, KMS+22b,

KMV22, TCK+22] (see Table 1). These algorithms require a number of samples exceeding the

information-theoretic optimum by polynomial factors in either �푑, log(1/�훿), or both.

We give the first polynomial-time (�휀, �훿)-DP algorithm for learning an arbitrary high-dimensional

Gaussian distribution with nearly-optimal sample complexity with respect to all of: dimension,

accuracy, privacy, and corruption rate. Ours is the first �̃푂(�푑2)-sample polynomial-time robust and

private estimator; prior works require Ω(�푑3.5) samples [AL22, TCK+22].

Theorem 1.4 (Learning Arbitrary Gaussians, (�휀, �훿)-DP, Subsection 7.4). Assume that 0 < �훼, �훽, �훿, �휀 <
1, and 0 < �휂 < �휂∗ for some absolute constant �휂∗. There is a polynomial-time (�휀, �훿)-DP algorithm with the

following guarantees for every �푑 ∈ N, �휇 ∈ R�푑, and Σ ∈ R�푑×�푑, Σ ≻ 0.3 Given �푛 �휂-corrupted samples from

�풩(�휇,Σ), the algorithm returns �̂휇, Σ̂ such that �푑�푇�푉(�풩(�휇,Σ),�풩(�̂휇, Σ̂)) ≤ �훼 +�푂(�휂) with probability at least

1 − �훽, if

�푛 ≥ �푂

(
�푑2 + log2(1/�훽)

�훼2
+

�푑2 + log(1/�훽)
�훼�휀

+ log(1/�훿)
�휀

)
.

The sample-complexity guarantees of Theorems 1.3 and 1.4 are information-theoretically tight

up to logarithmic factors in �푑, �훼, �휀, and log 1/�훿. The log(1/�훽)/�훼�휀 term in each is potentially im-

provable tomin(log(1/�훽), log(1/�훿))/�훼�휀, and the log2(1/�훽) term is potentially improvable to log(1/�훽).
However, this still means our algorithms succeed with exponentially small (�푒−�푑) failure probability,

with no blowup in the sample complexity.

1With more careful analysis, we expect the error bound can be tightened to �훼 +�푂(�휂 log 1/�휂), which is expected to be

tight for statistical query algorithms [DKS17]; the same goes for our other results on learning Gaussians.
2replacing the Gaussian mechanism with the Laplace mechanism
3We suppress running-time dependence on log �퐾, where �퐾 is the condition number of Σ; logarithmic dependence on

the condition number orthogonal to ker(Σ) is necessary for learning Gaussians in TV, regardlessof privacy or robustness.

Note that the sample complexity has no such dependence on log �퐾.

3

1.1.2 Estimating the Mean of a Subgaussian Distribution

Mean estimation in high dimensions subject to differential privacy has also received substantial

recent attention [KV18, KLSU19, BS19, BKSW19, KSU20, LKKO21, BGS+21, LKO22, HKM22]. We

focus on the following simple problem: given (corrupted) samples from �풩(�휇, �퐼), find �̂휇 such that

‖�휇 − �̂휇‖ ≤ �훼. In the pure-DP setting, exponential-time estimators are known which achieve this

guarantee using �푛 ≈ �푑
�훼2 + �푑

�훼�휀 samples [BKSW19, KSU20]. Existing polynomial-time estimators

require �푛 ≫ min(�푑
�훼2�휀 ,

�푑1.5

�휀) samples or satisfy a weaker privacy guarantee [KLSU19, HKM22] (see

Table 2). We give the first nearly-sample-optimal pure-DP algorithm:

Theorem 1.5 (Estimating the Mean of a Spherical Subgaussian Distribution, Theorem 5.1). Assume

that 0 < �훼, �훽, �휀 < 1, 0 < �휂 < �휂∗ for some absolute constant �휂∗, and �푅 > 0. There is a polynomial-time

(�휀, 0)-DP algorithm with the following guarantees for every �푑 ∈ N, every �휇 ∈ R�푑 with ‖�휇‖ ≤ �푅, and every

subgaussian distribution �퐷 on R�푑 with mean �휇 and covariance �퐼. Given �푛 �휂-corrupted samples from �퐷, the

algorithm returns �̂휇 such that ‖�휇 − �̂휇‖ ≤ �훼 + �푂(�휂) with probability at least 1 − �훽, as long as

�푛 ≥ �푂

(
�푑 + log(1/�훽)

�훼2
+

�푑 + log(1/�훽)
�훼�휀

+ �푑 log �푅

�휀

)
.

It is natural to ask whether the identity-covariance assumption can be removed from Theo-

rem 1.5, since information-theoretically the assumption of covariance Σ � �퐼 is enough to obtain the

same guarantees. Removing this assumption while retaining polynomial running time and high-

probability privacy guarantees would improve over state-of-the-art algorithms for robust mean

estimation which have withstood significant efforts at improvement [HL19].

There is also an analogue (Theorem 5.2) for polynomial-time mean estimation subject to (�휀, �훿)-
DP without the ‖�휇‖ ≤ �푅 assumption, using �̃푂(�푑

�훼�휀 + �푑
�훼2 + log 1/�훿

�휀) samples. We obtain this result

from our approx-DP framework similar to proving Theorem 1.4: one could alternatively combine

Theorem 1.5 with an (�휀, �훿)-DP procedure that obtains an �푂(�푑)-accurate estimate, such as [EMN22].

Finally, we note that Theorems 1.3 and 1.5 are known to be near-optimal from standard packing

lower bounds [BKSW19], and Theorem 1.4 and Theorem 5.2 are also known to be near-optimal,

via the technique of fingerprinting [KLSU19, KMS22a], except, as in Theorems 1.3 and 1.4, that

log(1/�훽)/�훼�휀 is potentially improvable to min(log(1/�훽), log(1/�훿))/�훼�휀. All our algorithmic results are

applications of Theorems 4.1, 4.2, which give general tools for turning SoS-based robust estimators

into private ones.

1.2 Related Work

Our work joins three bodies of literature too large to survey here: on private and high-dimensional

parameter estimation, on high-dimensional statistics via SoS (see [RSS18]), and on high-dimensional

algorithmic robust statistics (see [DK19]). We discuss other works at the intersections of these areas.

Private and Robust Estimators: [DL09] first used robust statistics primitives to design private algo-

rithms, a tradition continued by [BKSW19, KSU20, LKO22, BGS+21, RC21, KMV22, HKM22]. Other

works from the Statistics community also investigate connections between robustness and pri-

vacy [AM20, AM21, RJC22, SM22], including local differential privacy [LBY22]. Our black-box re-

duction from privacy to robustness can be seen as a generalization of methods of [BKSW19, KSU20],

4

Paper Sample Complexity Robust? Poly-time? Privacy

[KV18] 1
�훼2 + 1

�훼�휀 +
min(log�퐾,log �훿−1)

�휀 , �푑 = 1 No Yes Pure/Approximate

[KLSU19] �푑2

�훼2 + �푑2
√

log �훿−1

�훼�휀 + �푑3/2
√

log �퐾 log �훿−1

�휀 No Yes Concentrated

[BKSW19] �푑2

�훼2 + �푑2 log�퐾
�훼�휀 Optimal No Pure

[AAK21] �푑2

�훼2 + �푑2

�훼�휀 +
log �훿−1

�휀 Optimal No Approximate

[LKO22] �푑2

�훼2 + �푑2

�훼�휀 +
log �훿−1

�훼�휀 Optimal No Approximate

[KMS+22b] �푑2

�훼2 +
(
�푑2

�훼�휀 + �푑5/2
�휀

)
· (log �훿−1)�푂(1) No Yes Approximate

[KMV22] �푑8

�훼4 ·
(
log �훿−1

�휀

)6
Suboptimal Yes Approximate

[AL22, TCK+22] �푑2

�훼2 + �푑2
√

log �훿−1

�훼�휀 + �푑 log �훿−1

�휀 No Yes Approximate

[AL22, TCK+22] �푑3.5 log �훿−1

�훼3�휀 Optimal Yes Approximate

Thm 1.3 �푑2

�훼2 + �푑2

�훼�휀 +
�푑2 log�퐾

�휀 Optimal Yes Pure

Thm 1.4 �푑2

�훼2 + �푑2

�훼�휀 +
log �훿−1

�휀 Optimal Yes Approximate

Table 1: Private covariance estimation of Gaussians in Mahalanobis distance, omitting logarithmic

factors. Optimal robustness means the algorithm succeeds even with Ω̃(�훼)-fraction of corruptions.

which also instantiate the exponential mechanism with a score function counting the minimum

point changes to achieve some accuracy guarantee, but for specific robust estimators. A recent line

of work focuses on simultaneously private and robust estimators for high-dimensional statistics

[BKSW19, GKMN21, LKKO21, EMN22, AL22, KMV22, TCK+22, LKO22]; see Tables 1, 2.

Recall that [GH22] observes that pure-DP algorithms which succeed with sufficiently high proba-

bility over the internal coins of the algorithm are automatically robust to a constant fraction of corrupted

inputs. While optimal inefficient private estimators often satisfy this high-probability requirement,

most existing polynomial-time private estimators do not. Our private estimators have not only

(nearly) optimal sample complexity but also (nearly) optimal success probability.

Private Estimators via SoS: [HKM22] and [KMV22] pioneer the use of SoS for private algorithm de-

sign. [HKM22] gives a polynomial-time algorithm for pure-DP mean estimation under a bounded

covariance assumption, using �푑
�훼2�휀 samples, and [KMV22] gives a ≈ �푑8-sample (�휀, �훿)-DP algorithm

for learning �푑-dimensional Gaussians. [GH22] uses SoS for private sparse mean estimation.

On a technical level, our work most resembles [HKM22]; we also employ SoS SDPs as score

functions and leverage tools from log-concave sampling. However, there are fundamental road-

blocks to using [HKM22]’s strategy for converting SoS proofs into private algorithms in settings

beyond mean estimation under bounded covariance, as we discuss in Section 2. We provide a

blueprint for converting a much wider range of SoS-based robust algorithms to private ones.

Inverse Sensitivity Mechanism: In [AD20b, AD20a], Asi and Duchi design private polynomial-time

algorithms for statistical problems with an inverse sensitivity mechanism which is closely related to

our black-box reduction, as described in (1). However, the focus of their work is rather different,

as they investigate applications to instance-optimal private estimation, whereas our goal is to

understand private estimation through the lens of robustness. Furthermore, their study is centered

5

Paper Sample Complexity Robust? Poly-time? Privacy

[KV18] 1
�훼2 + 1

�훼�휀 +
min(log�푅,log �훿−1)

�휀 , �푑 = 1 No Yes Pure/Approximate

[KLSU19] �푑
�훼2 + �푑

√
log �훿−1

�훼�휀 +
√

�푑 log�푅 log �훿−1

�휀 No Yes Concentrated

[BKSW19] �푑
�훼2 + �푑 log�푅

�훼�휀 Optimal No Pure

[KSU20] �푑
�훼2 + �푑

�훼�휀 +
�푑 log�푅

�휀 Optimal No Pure

[AAK21] �푑
�훼2 + �푑

�훼�휀 +
log �훿−1

�휀 Optimal No Approximate

[LKKO21] �푑
�훼2 + �푑3/2 log �훿−1

�훼�휀 Optimal Yes Approximate

[BKSW19, LKO22] �푑
�훼2 + �푑

�훼�휀 +
log �훿−1

�훼�휀 Optimal No Approximate

[HKM22] �푑
�훼2�휀 +

�푑 log�푅
�휀 Suboptimal Yes Pure

Theorem 1.5 �푑
�훼2 + �푑

�훼�휀 +
�푑 log�푅

�휀 Optimal Yes Pure

Theorem 5.2 �푑
�훼2 + �푑

�훼�휀 +
log �훿−1

�휀 Optimal Yes Approximate

Table 2: Private mean estimation of identity-covariance Gaussians in ℓ2-norm, omitting logarithmic

factors. Optimal robustness means the algorithm succeeds even with Ω̃(�훼) fraction of corruptions.

on one-dimensional statistics, and their analysis is not black-box.

Contemporaneous work: In independent and simultaneous work, Alabi, Kothari, Tankala, Venkat,

and Zhang also design efficient robust and private algorithms for learning high-dimensional Gaus-

sians with nearly-optimal sample complexity with respect to dimension; however, their algorithms

require poly(1/�휀, log 1/�훿, 1/�훼)-factors more samples than those we present [AKT+22].

2 Techniques

2.1 Black-Box Reduction from Privacy to Robustness

Consider a deterministic4 robust estimator �̂휃 : datasets → Θ for a parameter �휃 ∈ R�푑, a distribution

family �풫, and a norm ‖ · ‖, with the following guarantee: for a non-decreasing function �훼 : [0, 1] →
R and some �푛 ∈ N, with probability 1 − �훽 over samples �푋1, . . . , �푋�푛 ∼ �푝�휃 ∈ �풫, for every �휂 ∈ [0, 1],
given any �휂-corruption of �푋1, . . . , �푋�푛 , the estimator obtains ‖�̂휃− �휃‖ ≤ �훼(�휂). That is, �훼 is a function

that quantifies the error achieved by the estimator for every corruption level �휂. Let �푋 denote an

�푛-vector dataset �푋1, . . . , �푋�푛 , and �푑(�푋, �푋′) be the Hamming distance between the datasets �푋, �푋′.
Our key conceptual contribution is the following instantiation of the exponential mechanism [MT07]:

Given �휀 > 0, �푋1, . . . , �푋�푛 and a threshold �휂0 ∈ [0, 1], the mechanism picks a random �휃 ∈ Θ + �훼(�휂0) ·
�퐵‖·‖ with:

P(�휃) ∝ exp(−�휀 · score�푋(�휃)) where score�푋(�휃) = min{�푑(�푋, �푋′) : ‖�̂휃(�푋′) − �휃‖ ≤ �훼(�휂0)} , (1)

4If we are not concerned with running time, the deterministic assumption is without loss of generality, as any

randomized estimator can be converted to a deterministic one with at most a constant-factor loss in accuracy, by

enumerating over all choices of the estimator’s internal random coins and selecting an output which is contained in a

ball which contains at least 50% of the mass of the estimator’s output distribution.

6

where �퐵‖·‖ is the unit ball of ‖ · ‖. In words: the mechanism assigns each �휃 within distance �훼(�휂0)
of Θ a score given by the number of input samples which would have to be changed to obtain

a dataset �푋′ for which the robust estimator �̂휃(�푋′) is close to �휃, and samples �휃 with probability

∝ exp(−�휀 · score�푋(�휃)). If Θ is unbounded these probabilities are not well defined; in that case

pure-DP guarantees are not obtainable anyway, due to packing lower bounds [HT10]. Later, we

use a truncated version of (1) to allow unbounded Θ with (�휀, �훿)-DP.

The general idea to instantiate the exponential mechanism where the score of some �휃 is the

number of inputs which must be changed to make some function �̂휃 take the value (approximately)�휃
appears to be folklore; see for instance the inverse sensitivity mechanism of [AD20b]. Our contribution

is (a) to show that for (1) to have nontrivial utility guarantees, it suffices for �̂휃 to be robust to

adversarial corruptions, and (b) to show how to implement variants of (1) in polynomial time.

To elucidate the role of and how to set the threshold parameter �휂0: if the target bound on the

error of our private estimator is some value �훼, we can think of �휂0 as the maximum amount of

contamination a robust estimator could tolerate if the goal was to achieve the same error �훼. This

will depend on the distribution class �풫; for example, if we consider the class of distributions with

bounded covariance Σ � �퐼, then the appropriate setting is �휂0 = Θ(�훼2) [DKK+17, SCV18].

The exponential mechanism enjoys (2�휀, 0)-DP, but the question of utility remains. Suppose that

�푋1, . . . , �푋�푛 ∼ �푝�휃∗ . How small is ‖�휃 − �휃∗‖? The following lemma bounds this quantity in terms of

the robustness of �̂휃. Despite its simplicity, we are not aware of a similar result in the literature.

Lemma 2.1. Suppose a dataset �푋1, . . . , �푋�푛 ∼ �푝�휃∗ , where the parameter vector �휃∗ ∈ Θ ⊆ R�퐷 . For any

threshold �휂0 ∈ [0, 1], a random �휃 drawn according to (1) has ‖�휃 − �휃∗‖ ≤ 2�훼(�휂0) with probability at least

1 − 2�훽, if

�푛 ≥ max
�휂0≤�휂≤1

�퐷 · log 2�훼(�휂)
�훼(�휂0) + log(1/�훽) + �푂(log �휂�푛)

�휂�휀
. (2)

Observe that the �푂(log �휂�푛) term in (2) is negligible compared to �퐷 log
2�훼(�휂)
�훼(�휂0) ≥ �퐷 log 2 if �푛 ≪ 2�퐷 .

The sample complexity in (2) is a maximum over the parameter �휂; we pay a cost in samples

depending on the underlying robust estimator’s robustness profile, taking the worst case over all

corruption levels �휂. The price at each �휂 scales roughly as the log-volume of the set of solutions

which satisfy the robust estimator’s accuracy level under �휂-corruptions. The more robust the

estimator is, the smaller this volume will be, matching the intuition that settings which permit

more robust estimation also are easier to privatize.

A robust analogue of Lemma 2.1, in which the dataset �푋1, . . . , �푋�푛 is a contamination of i.i.d.

samples from �푝�휃∗ , follows by a similar proof.

Proof. Condition on the (1−�훽)-probable event that the robustness guarantees of �̂휃 hold with respect

to �푋 . Consider �휃 with score �휂�푛. By definition, ‖�휃 − �̂휃(�푋′)‖ ≤ �훼(�휂0) for some �푋′ with �푑(�푋, �푋′) ≤ �휂.

By robustness, ‖�̂휃(�푋′) − �휃∗‖ ≤ �훼(�휂). Using triangle inequality, ‖�휃 − �휃∗‖ ≤ �훼(�휂0) + �훼(�휂) ≤ 2�훼(�휂),
assuming �휂 ≥ �휂0. In summary, any �휃 with score �휂�푛 is within distance 2�훼(�휂) of �휃∗.

Let �푉�푟 be the volume of a radius �푟 ‖ · ‖-ball. Any �휃 such that ‖�휃 − �̂휃(�푋)‖ ≤ �훼(�휂0) has score

0. The normalizing factor implicit in (1) can be lower bounded by the contribution due to these

points, or �푉�훼(�휂0) · exp(−�휀 · 0) = �푉�훼(�휂0). Combining this with the argument above, the probability of

7

seeing �휃 with score �휂�푛 with �휂 > �휂0 in a draw from (1) is at most
�푉2�훼(�휂)
�푉�훼(�휂0)

exp(−�휀�휂�푛). Summing over

all scores ≥ �휂0�푛, the overall probability of seeing some �휃 with score greater than �휂0 is at most

�푛∑
�푡=�휂0�푛

�푉2�훼(�푡/�푛)
�푉�훼(�휂0)

·exp(−�휀�푡) =
�푛∑

�푡=�휂0�푛

�푉2�훼(�푡/�푛)
�푉�훼(�휂0)

·exp(−�휀�푡)·�푡2·1/�푡2 ≤ �푂(1)· max
�휂0≤�휂≤1

{
(�휂�푛)2 ·

�푉2�훼(�휂)
�푉�훼(�휂0)

· exp(−�휀�휂�푛)
}
,

where the inequality is Hölder’s. This quantity is at most �훽 for �푛 as in (2). So, with probability at

least 1 − �훽 the random �휃 will have score at most �휂0�푛, meaning ‖�휃 − �휃∗‖ ≤ 2�훼(�휂0). �

Consequences of Lemma 2.1: Applied to robust mean estimators with optimal error rates under

bounded �푘-th moment assumptions, for any �푘 ≥ 2, Lemma 2.1 gives optimal pure-DP estima-

tors under those same assumptions, recovering the main results of [KSU20], applied to robust

linear regression (with known covariance) [DKS19], it yields a pure-DP analogue of the nearly-

optimal regression result of [LKKO21], and so on. The same argument can be adapted to perform

covariance-aware mean estimation5 and covariance-aware linear regression, recovering pure-DP

versions of the results of [LKKO21, BGS+21], using a robust estimator of mean and covariance.

To illustrate, we apply Lemma 2.1 to Gaussian mean estimation. With �푛 ≫ �푑/�훼2 samples from

a �푑-dimensional Gaussian �풩(�휇, �퐼), it is possible to estimate the mean under �휂-contamination with

error ‖�̂휇−�휇‖ ≤ �푂(�훼+�휂), if �휂 < 1/2. For �휀-DP guarantees, we need to restrict to the case of ‖�휇‖ ≤ �푅

for some (large) �푅 > 0; we will assume that even for �휂 ≥ 1/2, ‖�̂휇‖ ≤ �푅.

Plugging such a robust �̂휇 into Lemma 2.1, and choosing �휂0 = �훼, there are two interesting

cases: �휂 = �푂(�휂0) and �휂 = 1. In the former, �훼(2�휂0)/�훼(�휂0) = �푂(1), so we get the requirement

�푛 ≥ �푂(�푑+log(1/�훽)�훼�휀), and in the latter �훼(1) = �푅, so we get the additional requirement �푛 ≥ �푑 log �푅
�휀 ,

meaning that we obtained an �휀-DP estimator with accuracy �푂(�훼) using �푛 samples,

�푛 ≫
�푑 + log(1/�훽)

�훼�휀
+ �푑 log �푅

�휀
+ �푑

�훼2
.

This is tight up to constants [HT10, BKSW19]. Similarly tight results can be derived for mean

estimation under bounded covariance, covariance estimation, linear regression, and more. We

remind that the resulting private algorithms are not computationally efficient, though we will see

how this approach can be made efficient for several interesting cases.

When Is Lemma 2.1 Loose? More refined analyses of the construction (1) are possible. In particular,

if the robust estimator �̂휃 enjoys the property that the volume of the sets of possible values it assumes

under �휂-corrupted inputs are substantially smaller than �푉2�훼(�휂), the bound in Lemma 2.1 can be

improved accordingly. (At the cost of breaking black-box-ness in the analysis.)

As an example, consider estimating the mean of a Gaussian �풩(�휇, �퐼) to ℓ∞ error �훼. Using a

similar argument as in the ℓ2 example above, Lemma 2.1 gives a sample-complexity upper bound

of
log �푑
�훼2 + �푑

�훼�휀+
�푑 log�푅

�휀 . But, because �푑�푇�푉(�풩(�휇, �퐼),�풩(�휇′, �퐼)) ≈ ‖�휇−�휇′‖2, it’s possible to construct a robust

estimator �̂휇 such that under �휂-corruptions, ‖�̂휇−�휇‖∞ can only be as large as �휂 if ‖�̂휇−�휇‖2 ≈ ‖�̂휇−�휇‖∞;

otherwise ‖�̂휇 − �휇‖∞ is much smaller. This affords better control over the volumes of candidate

outputs with a given score �휂�푛 than the �휂-radius ℓ∞ ball would offer. Using this, we show in

Appendix E that �̃푂(log �푑
�훼2 + �푑2/3

�훼�휀2/3
+

√
�푑

�훼�휀 + �푑 log �푅
�휀) samples are enough, in the pure-DP setting.

5a.k.a., mean estimation in Mahalanobis distance

8

From Robustness to (�휀, �훿)-DP: If �̂휃 has a nontrivial breakdown point – i.e., a fraction of corruptions

�휂 beyond which it admits no error guarantees, then Lemma 2.1 doesn’t give a nontrivial private

estimator. For example, in the Gaussian mean estimation setting, if we remove the assumption

‖�휇‖ ≤ �푅, then when �휂 ≥ 1/2 no estimator has a finite accuracy guarantee (i.e., �훼(�휂) is unbounded

for such �휂).

By relaxing from pure to (�휀, �훿)-DP, however, we can design private estimators even starting

with robust estimators �̂휃 which have a breakdown point. Our reduction in this case, however,

requires �̂휃 to satisfy a worst-case robustness property, because we will need to appeal to robustness

to ensure privacy, as well as accuracy as in Lemma 2.1.

Simple adaptations of standard robust estimators of mean and covariance,and robust regression

algorithms, have such worst-case robustness guarantees. This approach gives an alternative to the

high-dimensional propose-test-release framework of [LKO22], and the approach of [BGS+21], for

building approx-DP estimators from robust estimation primitives; we can recover their results on

covariance-aware mean estimation and linear regression with (�휀, �훿)-DP guarantees. This approach

carries the advantages of black-box-ness and potential polynomial-time implementability, since

SoS-based robust estimators for mean and covariance have the required worst-case behavior.

Consider again a deterministic robust estimator �̂휃 : datasets → Θ ∪ {reject} for a parameter

�휃 ∈ R�푑, which takes �푛 inputs and returns either some element of Θ or reject. Let�풫 be a distribution

family, ‖ · ‖ be a norm, �훼 : [0, 1] → R be a nondecreasing function, �푛 ∈ N, and �휂0 , �휂∗ ∈ [0, 1].
We continue to employ score�푋(�휃) as defined in (1). Suppose as before that with probability

1 − �훽 over samples �푋1, . . . , �푋�푛 ∼ �푝�휃 ∈ �풫, for every �휂 < �휂∗, given any �휂-corruption of �푋1, . . . , �푋�푛,

‖�̂휃 − �휃‖ ≤ �훼(�휂). And, suppose that �̂휃 has the following worst-case robustness property: for any

input �푋 = �푋1, . . . , �푋�푛, if �̂휃(�푋) ≠ reject, then for every �휂 < �휂∗, given any �휂-corruption �푋′ of �푋 ,

either �̂휃(�푋′) = reject, or ‖�̂휃(�푋′) − �̂휃(�푋)‖ ≤ �훼(�휂∗).
Lemma 2.2. Let �휂0 < �휂∗ ∈ [0, 1] be such that �휂∗�푛 is a sufficiently large constant. For every �휀, �훿 > 0, there

is an (�푂(�휀), �푂(�푒2�휀�훿))-DP mechanism which, for any �휃∗, takes �푋1, . . . , �푋�푛 ∼ �푝�휃∗ and with probability 1− �훽
outputs �휃 such that ‖�휃 − �휃∗‖ ≤ 2�훼(�휂0), if

�푛 ≥ �푂
©­«
max

�휂0≤�휂≤�휂∗

�퐷 · log 2�훼(�휂)
�훼(�휂0) + log(1/�훽) + log �휂�푛

�휂�휀
+ log(1/�훿)

�휂∗�휀
ª®¬
.

Before proving the lemma, we need a preliminary claim.

Claim 2.3. Suppose for a dataset �푋 there exists �휃 such that score�푋 (�휃) < 0.2�휂∗�푛. Then there exists a ball

of radius 2�훼(�휂∗) which contains every �휃′ with score�푋(�휃′) < 0.4�휂∗�푛.

Proof. Since there exists some �휃 such that score�푋(�휃) < 0.2�휂∗�푛, there’s some �푌 ∼0.2�휂∗ �푋 such that

�̂휃(�푌) ≠ reject: this is because we can consider any such �푌 which has score�푌(�휃) = 0, and thus

�̂휃(�푌) outputs an element of Θ and not reject. Similarly, for any other �휃′ with score�푋(�휃′) ≤ 0.4�휂∗�푛,

there’s some �푍 ∼0.4�휂∗ �푋 such that ‖�휃′ − �̂휃(�푍)‖ ≤ �훼(�휂0). By triangle inequality, �푍 ∼0.6�휂∗ �푌, so by

worst-case robustness of �̂휃, ‖�휃′− �̂휃(�푌)‖ ≤ ‖�휃′− �̂휃(�푍)‖ + ‖�̂휃(�푍)− �̂휃(�푌)‖ ≤ �훼(�휂0)+�훼(�휂∗) ≤ 2�훼(�휂∗). �

Proof of Lemma 2.2. First, let �푔 : Z→ R be a function with the following properties: for �푡 < 0.1�휂∗�푛,

�푔(�푡) = 1, for �푡 > 0.2�휂∗�푛, �푔(�푡) = 0, and for all �푡, �푒−�휀�푔(�푡 + 1) − �훿 ≤ �푔(�푡) ≤ �푒�휀�푔(�푡 + 1) + �훿. Such a

function exists since �푛 ≫ log 1
�훿/�휂∗�휀.

9

This is not hard to show: one could, for example, consider the function which, for �푡 over the

interval [0.1�휂∗�푛, 0.2�휂∗�푛], first decreases by a multiplicative factor of �푒−�휀 (i.e., �푔(�푡+1) = �푒−�휀�푔(�푡)) until

some point �푡∗ when �푔(�푡∗) ≤ �훿. Then, we set �푔(�푡) = 0 for all �푡 > �푡∗. This satisfies the requirements on

the function for all �푡 ≤ �푡∗ with �훿 = 0, and for �푡 > �푡∗ with �휀 = 0. We need that �훿 ≥ exp(−(�푡−0.1�휂∗�푛)�휀) is

satisfied by some �푡 in the interval [0.1�휂∗�푛, 0.2�휂∗�푛] (roughly speaking, to allow enough multiplicative

�푒−�휀 decreases to accumulate in order to cancel out the remainder with a subtractive �훿 shift), which

we can take to be �푡∗. Rearranging the inequality, we get �푡 ≥ log(1/�훿)/�휀 + 0.1�휂∗�푛. But for �푡∗ to

lie in the stated interval, we need log(1/�훿)/�휀 + 0.1�휂∗�푛 ≤ �푡 ≤ 0.2�휂∗�푛, which is satisfied as long as

�푛 ≫ log(1/�훿)/�휂∗�휀, as claimed.

The mechanism is as follows. Given �푋 = �푋1, . . . , �푋�푛, let �푇 = min�휃∈Θ score�푋(�휃). First, output

reject with probability 1 − �푔(�푇). If reject is not output, output a sample from the distribution on

Θ + �훼(�휂0)�퐵‖·‖ where

P(�휃) ∝
{

score�푋(�휃) if score�푋 (�휃) < 0.3�휂∗�푛

0 otherwise

and �퐵‖·‖ is the unit ball for the norm ‖ · ‖.
Proof of privacy: The reject phase of the mechanism clearly satisfies (�휀, �훿)-DP, because score�푋 (�휃)

can change by at most 1 when �푋 is replaced with neighboring �푋′, and based on the definition of �푔.

Now we turn to the sampling phase. Let �푋, �푋′ differ on one sample. Let �푇, �푇′ be the numbers

computed in the reject phase of the mechanism; we may assume �푇, �푇′ ≤ 0.2�휂∗�푛, since otherwise

on both �푋, �푋′ the mechanism outputs reject with probability at least 1 − �훿. We show that the

mechanism above, conditioned on not rejecting, satisfies (�푂(�휀), �푂(�푒2�휀�훿))-DP; then the overall result

follows by composition.

For brevity, we abbreviate score�푋 to �푠�푋 . For any �푆 ⊆ Θ+�훼(�휂0) ·�퐵‖·‖ , we can bound its associated

weight via∫
�휃∈�푆

�푒−�휀�푠�푋 (�휃) · 1(�푠�푋 (�휃) < 0.3�휂∗�푛) ≤ �푒�휀
∫
�휃∈�푆

�푒−�휀�푠�푋′(�휃) · [1(�푠�푋′(�휃) < 0.3�휂∗�푛) + 1(�푠�푋′(�휃) ∈ [0.25�휂∗�푛, 0.35�휂∗�푛]].

To see why, first note that for any �휃 we have |�푠�푋(�휃) − �푠�푋′(�휃)| ≤ 1. This implies that �푒−�휀�푠�푋 (�휃) ≤
�푒�휀�푒−�휀�푠�푋′(�휃). Similarly, if �푠�푋(�휃) ≤ 0.3�휂∗�푛, it also implies that at least one of the following must be

true (potentially both): �푠�푋′(�휃) ≤ 0.3�휂∗�푛 or �푠�푋′(�휃) ∈ [0.25�휂∗�푛, 0.35�휂∗�푛] (we use the fact that �휂∗�푛 is at

least a sufficiently large constant).

Normalizing to get a probability, we have

P
�푋
(�휃 ∈ �푆) ≤ �푒�휀 ·

∫
�휃∈�푆 �푒

−�휀�푠�푋′(�휃) · [1(�푠�푋′(�휃) < 0.3�휂∗�푛) + 1(�푠�푋′(�휃) ∈ [0.25�휂∗�푛, 0.35�휂∗�푛])]∫
�휃∈Θ+�훼(�휂0)�퐵‖·‖

�푒−�휀�푠�푋 (�휃) · 1(�푠�푋 (�휃) < 0.3�휂∗�푛)

≤ �푒�휀 ·
∫
�휃∈�푆 �푒

−�휀�푠�푋′(�휃) · [1(�푠�푋′(�휃) < 0.3�휂∗�푛) + 1(�푠�푋′(�휃) ∈ [0.25�휂∗�푛, 0.35�휂∗�푛])]
�푒−�휀

∫
�휃∈Θ+�훼(�휂0)�퐵‖·‖

�푒−�휀�푠�푋′(�휃) · [1(�푠�푋′(�휃) < 0.3�휂∗�푛) − 1(�푠�푋′(�휃) ∈ [0.25�휂∗�푛, 0.35�휂∗�푛])]

The denominator is split into two terms with a similar argument as used for the numerator.

We next simplify the denominator. Because, by assumption, there is �휃′ such that score�푋′(�휃′) <
0.2�휂∗�푛, there is a ball of radius �훼(�휂0), contained in Θ+�훼(�휂0)·�퐵‖·‖ , of points with score at most 0.2�휂∗�푛;

10

we can hence lower-bound the first term
∫
�푒−�휀�푠�푋′(�휃) · 1(�푠�푋′(�휃) < 0.3�휂∗�푛) ≥ exp(−�휀 · 0.2�휂∗�푛) · �푉�훼(�휂0),

where �푉�훼(�휂0) is the volume of a ‖ · ‖-ball of radius �훼(�휂0).
We can use Claim 2.3 to upper-bound the magnitude of the second term in the denominator,∫

�푒−�휀�푠�푋′(�휃) · 1(�푠�푋′(�휃) ∈ [0.25�휂∗�푛, 0.35�휂∗�푛]) ≤ exp(−�휀 · 0.25�휂∗�푛) · �푉2�훼(�휂∗), which is at most �훿 times the

lower bound on the first term, under our hypotheses on the lower bound for �푛. Overall, we obtain

P
�푋
(�휃 ∈ �푆) ≤ �푒2�휀

1 − �훿
· ©­«

∫
�휃∈�푆 �푒

−�휀�푠�푋′(�휃) · 1(�푠�푋′(�휃) < 0.3�휂∗�푛) +
∫
�휃∈�푆 �푒

−�휀�푠�푋′(�휃) · 1(�푠�푋′(�휃) ∈ [0.25�휂∗�푛, 0.35�휂∗�푛])∫
�휃∈Θ+�훼(�휂0)�퐵‖·‖

�푒−�휀�푠�푋′(�휃) · 1(�푠�푋′(�휃) < 0.3�휂∗�푛)
ª®¬

=
�푒2�휀

1 − �훿
·
(
P
�푋′
(�휃 ∈ �푆) + P

�푋′
(�푠�푋′(�휃) ∈ [0.25�휂∗�푛, 0.35�휂∗�푛])

)
.

Using Claim 2.3 in the same fashion to bound the last term, this is at most �푒2�휀 P�푋′(�휃 ∈ �푆)+�푂(�푒2�휀�훿),
which completes the privacy proof.

Proof of accuracy: Observe that with probability at least 1−�훽 over samples �푋1, . . . , �푋�푛 , the reject

phase of the mechanism accepts with probability 1. Conditioned on it doing so, the remainder of

the accuracy proof parallels the proof of Lemma 2.1, except instead of allowing �휂 ∈ [�휂0 , 1] we can

now limit it to �휂 ∈ [�휂0 , �휂∗]. �

2.2 Algorithms

Even if the robust estimator �̂휃 can be computed in polynomial time, the sampling problem in (1)

lacks an obvious polynomial-time algorithm, for two reasons. First, computing the score of a single

�휃 ∈ Θ given an input dataset �푋 appears to require solving a minimization problem over all other

datasets �푋′. Second, even if computing the scores were somehow made efficient, the resulting

sampling problem might still be computationally hard. Our main technical contribution is to

overcome both of these hurdles in the context of learning high-dimensional Gaussian distributions.

The Sum of Squares method (SoS) uses convex programming to solve multivariate systems of

polynomial inequalities. It is extremely useful for designing polynomial-time robust estimators.

Definition 2.4 (SoS Proof). Let �푝1(�푥) ≥ 0, . . . , �푝�푚(�푥) ≥ 0 be a system of polynomial inequlities in

variables �푥1, . . . , �푥�푛 . An inequality �푞(�푥) ≥ 0 has a degree �푑 SoS proof from �푝1 ≥ 0, . . . , �푝�푚 ≥ 0,

written {�푝1 ≥ 0, . . . , �푝�푚 ≥ 0} ⊢�푥
�푑
�푞 ≥ 0, if for each multiset �푆 ⊆ [�푚] there exists a sum of squares

polynomial �푞�푆(�푥), such that deg(�푞�푆(�푥) ·
∏

�푖∈�푆 �푝�푖(�푥) ≤ �푑) and such that

�푞(�푥) =
∑
�푆⊆[�푚]

�푞�푆(�푥) ·
∏
�푖∈�푆

�푝�푖(�푥) .

SoS proofs form a convex set described by a semidefinite program (SDP), so they have duals:

Definition 2.5 (Pseudoexpectation). Let R[�푥]≤�푑 be the set of degree at most �푑 polynomials in

variables �푥1, . . . , �푥�푛 . A linear operator Ẽ : R[�푥]≤�푑 → R is a degree �푑 pseudoexpectation if Ẽ1 = 1 and

Ẽ�푝2 ≥ 0 for any �푝 of degree at most �푑/2. A pseudoexpectation Ẽ satisfies a system of polynomial

inequalities �푝1 ≥ 0, . . . , �푝�푚 ≥ 0, written Ẽ |= �푝1 ≥ 0, . . . , �푝�푚 ≥ 0, if for every �푆 ⊆ [�푚] and every

�푝, we have Ẽ
∏

�푖∈�푆 �푝�푖 · �푝2 ≥ 0 when the degree of this polynomial is at most �푑, where ‖�푝‖ is the

ℓ2-norm of the vector of coefficients of �푝 in the monomial basis.

11

The by-now standard approach to use SoS to robustly estimate a �퐷-dimensional parameter �휃
in a norm ‖ · ‖ works as follows. For �휂-corrupted �푋 = �푋1, . . . , �푋�푛 from �푝�휃∗ , define a degree-�푂(1)
system of polynomial inequalities �풜(�푋, �휃, �푧) where �휃 = �휃1, . . . , �휃�퐷 , �푧 = �푧1, . . . , �푧(�푛�퐷)�푂(1) are some

indeterminates. With high probability, �풜(�푋, �휃, �푧) should (a) be satisfied by some choice of �푧 when

�휃 = �휃∗, and (b) should have �풜(�푋, �휃, �푧) ⊢�푂(1) 〈�휃 − �휃∗, �푣〉 ≤ �훼 for every �푣 in the dual ball of ‖ · ‖.
To give a robust estimation algorithm, on input �휂-corrupted �푋 , we can obtain Ẽ which satisfies

�풜(�푋, �휃, �푧) using semidefinite programming,6 and then output �̂휃 = Ẽ�휃. Applying Ẽ to the SoS

proofs �풜 ⊢�휃,�푧
�푂(1) 〈�휃 − �휃∗, �푣〉 ≤ �훼, we get ‖Ẽ�휃 − �휃∗‖ ≤ �훼.

Lemma 2.6 (Informal, implicit in [KMZ22]). There exists �풜 with the above properties with respect to

�푛 ≫ �푑/�휂2 �휂-corrupted samples from �풩(�휃∗ , �퐼), for any �휃∗ ∈ R�푑, where ‖ · ‖ = ℓ2, and �훼 = �̃푂(�휂).

2.2.1 Robustness to Privacy, Algorithmically

For this technical overview, we focus on mean estimation in the pure-DP setting; similar ideas

extend to covariance estimation and (�휀, �훿)-DP. Even for the SoS-based robust mean estimation

algorithm described above, which we call kmz, given �푋 we do not know how to efficiently compute

score�푋(�휃) = min{�푑(�푋, �푋′) : ‖kmz(�푌) − �휃‖ ≤ �훼} , (3)

much less sample from the distribution (1). At a very high level, will tackle these challenges by

using the polynomial system �풜(�푋, �휃, �푧) underlying kmz to design an SoS-based relaxation of the

above score function, SoS-score�푋(�휃), which has favorable enough convexity properties that we will

be able to both efficiently compute it and sample from the distribution it induces (both up to small

error). The SoS robustness proofs which �풜 enjoys will be enough for us to apply an argument like

Lemma 2.1 to prove accuracy of the resulting estimator, and it will be private by construction.

First, we describe an attempt at an SoS relaxation of SoS-score, which will have several flaws

we’ll fix later. We can introduce more indeterminates �푋′
1
, . . . , �푋′

�푛, �푤1, . . . , �푤�푛, �휃′, and consider

ℬ�푡 =

{
�푤2

�푖 = �푤�푖 ,

�푛∑
�푖=1

�푤�푖 = �푛 − �푡 , �푤�푖�푋�푖 = �푤�푖�푋
′
�푖 ,

}
∪�풜(�푋′, �휃′, �푧) , (4)

which is satisfied when �푋′ is a dataset with �푑(�푋, �푋′) ≤ �푡 and �풜(�푋′, �휃′, �푧) is satisfied. Let

SoS-score�푋(�휃) = min �푡 s.t. ∃ degree �푂(1) Ẽ in variables �푋′, �푤, �휃′, �푧, Ẽ |= ℬ�푡 , ‖Ẽ�휃′ − �휃‖ ≤ �훼 . (5)

Privacy and Accuracy for SoS-score: Suppose for a moment that SoS-score solves our computational

problems. Does it lead to a good private estimator, when we sample from the distribution P(�휃) ∝
exp(−�휀 · SoS-score�푋(�휃))? Standard arguments show privacy; the main question is accuracy.

It turns out the relaxation is tight enough that the proof of Lemma 2.1 still applies! The key step

in that proof is to argue via robustness that if �휃 has low score, then ‖�휃∗ − �휃‖ is small. To establish

the corresponding statement for SoS-score, we need to show that if �푋1, . . . , �푋�푛 ∼ �풩(�휃∗ , �퐼) and

Ẽ |= ℬ�푡 for �푡 = �휂�푛, then ‖Ẽ�휃′ − �휃∗‖ ≤ �̃푂(�휂). This is slightly stronger than what we already know

6This ignores some issues of numerical accuracy which turn out to be important; see below.

12

from the SoS proofs associated to �풜, because now we have indeterminates �푋′ which represent �휂-

corrupted samples, rather than a fixed collection of �휂-corrupted samples, and we need ℬ�푡 ⊢�푋
′,�휃′,�푤,�푧

�푂(1)
〈�휃′ − �휃∗ , �푣〉 ≤ �̃푂(�휂). Luckily, the SoS proofs of [KMZ22] readily generalize to show this.

In fact, [KMZ22]’s SoS proofs already show this in part because within the “auxiliary” inde-

terminates �푧 they already use variables like our �푋′ and �푤. This means that (4), (5), while closely

following our black-box reduction strategy, contain an unnecessary layer of indirection. When we

implement this strategy in detail in Sections 5, 6, and 7, we remove this indirection for simplicity.

On “Satisfies”: An important technical difference between our score function and that of [HKM22] is

that the Ẽs it involves must have Ẽ |= ∑�푛
�푖=1 �푤�푖 = �푛−�푡, rather than something weaker, like Ẽ

∑�푛
�푖=1 �푤�푖 =

�푛− �푡. While in some applications of SoS this “satisfies” versus “in expectation” distinction is minor,

it is actually crucial for our accuracy guarantees – if we only required Ẽ
∑�푛

�푖=1 �푤�푖 = �푛 − �푡, we could

have Ẽ which satisfies the rest of ℬ�푡 but has ‖Ẽ�휃′−�휃∗‖ ≥ Ω(�푅), just by taking Ẽ to be the moments

of a distribution which has all �푤�푖 = 0 with probability 1/�푡.
However, this creates two significant technical challenges. First, for bit-complexity reasons, no

polynomial-time algorithm to check if there exists Ẽ satisfying a given system of polynomials is

known – existing techniques to find Ẽs work best in the context of satisfiable polynomial systems

[RW17]. We sidestep this challenge by generalizing a technique from the robust statistics literature,

which searches for Ẽ which approximately satisfies a system of polynomials, to the setting where

those polynomials may be unsatisfiable – see Appendix C. Ultimately, we find a further-relaxed

score function SoS-score′�푋 , which we evaluate to error �휏 in (�푛�푑 log 1/�휏)�푂(1) time.

Quasi-Convexity, Sampling, and Weak Membership: The second challenge is that SoS-score�푋(�휃) need

not be convex in�휃 – if it were, we could sample fromP(�휃) ∝ exp(−�휀·SoS-score�푋 (�휃))with log-concave

sampling techniques, as in [HKM22]. Indeed, consider �휃0 and �휃1 with corresponding scores �푡0, �푡1
witnessed by Ẽ0, Ẽ1. The problem is that 1

2
(Ẽ0 + Ẽ1) need not satisfy

∑�푛
�푖=1 �푤�푖 ≥ �푛 − 1

2
(�푡0 + �푡1), even

though it does have 1
2
(Ẽ0 + Ẽ1)[

∑�푛
�푖=1 �푤�푖] ≥ �푛 − 1

2
(�푡0 + �푡1).

SoS-score�푋(�휃) is quasi-convex in �휃, meaning that its sub-level sets �푆�푡 = {�휃 : SoS-score�푋(�휃) ≤ �푡}
are convex for all �푡. This is good news: if we discretize the range of possible scores [0, �푛] into

�푡1, . . . , �푡�푛�푂(1) (replacing SoS-score with a version rounded to the nearest �푡�푖), we can hope to compute

the volumes �푉�푖 = Vol(�푆�푡�푖), as well as sample uniformly from the �푆�푡�푖s, using standard techniques

for sampling from a convex body. Then, we could sample �휃 by first sampling a score �푡�푖 with

probability proportional to �푒−�휀�푡�푖 (1 − �푒−�휀(�푡�푖+1−�푡�푖))�푉�푖 , then drawing uniformly from �푆�푡�푖 .

Approximate sampling and volume algorithms for convex bodies typically access the body via

a weak membership oracle, meaning that the oracle is allowed to give incorrect answers to query

points very near the body’s boundary.7 We have access to an oracle which computes SoS-score�푋 (�휃)
up to exponentially-small errors. Ideally, we’d create a weak membership oracle by answering a

query about �푆�푡�푖 by checking if SoS-score�푋(�휃) ≤ �푡�푖 , but if SoS-score�푋 is not Lipschitz, a small error

in computing this value may translate to answering a query incorrectly about some �휃 far from the

boundary of �푆�푡�푖 . That is, we may not notice if �푆�푡�푖+2−�푛 is much larger than �푆�푡�푖 .

However, because SoS-score�푋 is bounded in [0, �푛] and the sublevel sets are convex, we are able

7It seems to be folklore that volume computation algorithms, e.g. the seminal [DFK91], work given only weak

membership oracles, as opposed to e.g. weak separation oracles. For completeness, in Appendix A, we analyze a

hit-and-run sampling algorithm which uses a weak membership oracle, tracking the numerical errors this creates.

13

to show that �푆�푡�푖+2−�푛 could only be much larger than �푆�푡�푖 at a small-measure set of �푡�푖s. Thus, if we

choose our discretization �푡1 , . . . , �푡�푛�푂(1) randomly, with very high probability our approximate score

oracle for SoS-score�푋 translates to a weak membership oracle for the �푆�푡�푖s (Lemma 4.7).

Putting it Together: Thus, by modifying SoS-score�푋 by (a) rounding to the nearest threshold �푡�푖 ,

thresholds chosen randomly,and (b) accounting for some numerical errors, we obtain a polynomial-

time-samplable proxy for (1). Theorems 4.1 and 4.2 capture this strategy formally.

3 Preliminaries

First, we note a few notational conventions. We will use 0 to denote the origin inR�푑 (or in Euclidean

space generally). For �푥 ∈ R�푑 and �푟 ≥ 0, we define �퐵(�푥, �푟) to be the ℓ2-ball of radius �푟 around �푥.

We note a series of important definitions that we will use in our analysis.

Definition 3.1 (sensitivity). We say that a function �푓 (�휃,�풳) has sensitivity Δ with respect to �풳 if

for all �휃 and all neighboring datasets �풳 ,�풳′ (i.e., datasets that differ in exactly one data point),

| �푓 (�휃,�풳) − �푓 (�휃,�풳′)| ≤ Δ. We will implicitly assume that sensitivity is with respect to the dataset.

Definition 3.2 (quasi-convexity). A function �푓 : �푆 → R, defined on a convex subset �푆 of a real

vector space is quasi-convex if for all �푥, �푦 ∈ �푆 and �휆 ∈ [0, 1] we have

�푓 (�휆�푥 + (1 − �휆)�푦) ≤ max{ �푓 (�푥), �푓 (�푦)}.

Next, we note some important distance metrics for mean vectors and covariance matrices. We

will use ‖ · ‖�퐹 to denote Frobenius norm and ‖ · ‖�표�푝 to denote the operator norm (a.k.a. spectral

norm) of a matrix.

Definition 3.3 (Mahalanobis distance). Given two vectors �휇, �휇′ ∈ R�푑 and a positive definite co-

variance matrix Σ ∈ R�푑×�푑, we define the Mahalanobis distance between �휇 and �휇′ with respect to Σ,

written as ‖�휇 − �휇′‖Σ, to equal ‖Σ−1/2(�휇 − �휇′)‖2.
In addition, given two covariance matrices Σ,Σ′ ∈ R�푑×�푑, we define the Mahalanobis distance

between Σ and Σ′ to equal ‖Σ−1/2Σ′Σ−1/2 − �퐼‖�퐹.

Note that there are two different definitions of Mahalanobis distance, though which definition

we are using will be clear from context.

It is well known that Mahalanobis distance captures total variation distance. Namely, if ‖�휇 −
�휇′‖Σ = �훼 ≤ 1, then �푑TV(�풩(�휇,Σ),�풩(�휇′,Σ)) = Θ(�훼), and if Σ,Σ′ have Mahalanobis distance �훼 ≤ 1,

then �푑TV(�풩(0,Σ),�풩(0,Σ′)) = Θ(�훼).
It is well-known that Mahalanobis distance between covariance matrices is roughly symmet-

ric: namely, ‖Σ−1/2Σ′Σ−1/2 − �퐼‖�퐹 = Θ(‖Σ′−1/2ΣΣ′−1/2 − �퐼‖�퐹) if either is at most 0.5. In addition,

‖Σ−1/2Σ′Σ−1/2 − �퐼‖�퐹 = ‖Σ′1/2Σ−1Σ′1/2 − �퐼‖�퐹, and ‖Σ′−1/2ΣΣ′−1/2 − �퐼‖�퐹 = ‖Σ1/2Σ′−1Σ1/2 − �퐼‖�퐹.

Definition 3.4 (Spectral distance). Given two covariance matrices Σ,Σ′ ∈ R�푑×�푑, we define the

spectral distance between Σ and Σ′ to equal ‖Σ−1/2Σ′Σ−1/2 − �퐼‖�표�푝 .

Similarly, we have ‖Σ−1/2Σ′Σ−1/2 − �퐼‖�표�푝 = ‖Σ′1/2Σ−1Σ′1/2− �퐼‖�표�푝 , which are asymptotically equal

to ‖Σ′−1/2ΣΣ′−1/2 − �퐼‖�표�푝 = ‖Σ1/2Σ′−1Σ1/2 − �퐼‖�표�푝 if either is at most 0.5.

Finally, we define the notions of flattening and tensor powers.

14

Definition 3.5 (Tensor power). Given two vectors �푥 ∈ R�푑 , �푦 ∈ R�푑′ , the tensor product �푥 ⊗ �푦 is the

vector in R�푑·�푑′, with entries indexed by (�푖 , �푗) ∈ [�푑] × [�푑′], such that (�푥 ⊗ �푦)�푖�푗 = �푥�푖 · �푦 �푗 .
We also will define �푥⊗2 := �푥 ⊗ �푥.

Definition 3.6 (Flattening). Given a matrix �푀 ∈ R�푑×�푑′ , we define the flattening �푀♭ to be the vector

in R�푑·�푑′ with (�푀♭)�푖�푗 = �푀�푖, �푗.

Note that for any vectors �푥, �푦, �푥 ⊗ �푦 equals (�푥�푦�푇)♭ .
To represent linear functionals and polynomials, we look at the value of the linear functional

over monomials.

Definition 3.7 (monomial vector). A monomial vector of degree �푑 is a �푛�푂(�푑)-dimensional vector

�푣�푑(�푥) indexed by multisets �푆 ⊆ [�푛], |�푆 | ≤ �푑, where the entry �푣�푑(�푥)�푆 is the monomial

�푣�푑(�푥)�푆 :=
∏
�푖∈�푆

�푥�푖 .

Remark. The definition of �푛 for number of variables and �푑 for degree is a slight abuse of notation,

as in the rest of the paper �푛 represents the number of data points and �푑 is the dimension of the

data points. We will only use the former definition here and in Appendix C.

Linear functionals over the set of polynomials of up to degree �푑 over R�푛 form an �푛�푂(�푑)-
dimensional vector space and we can represent them as follows numerically.

Definition 3.8 (numerical representation of linear functionals and polynomials). Suppose ℒ is a

linear functional over polynomials of up to degree �푑 over R�푛 . We define the representation of ℒ,

ℛ(ℒ) ∈ R�푛�푂(�푑)
indexed by multisets �푆 ⊆ [�푛], |�푆 | ≤ �푑, as

ℛ(ℒ)�푆 = ℒ(�푣�푑(�푥)�푆).

Similarly, for a polynomial �푞, we define its representation ℛ(�푞) ∈ R�푛�푂(�푑)
to be

ℛ(�푞)�푆 = coefficient of �푥�푆 in �푞.

4 A General Private Sampling Algorithm

In this section, we prove two general theorems showing that if one has a score function correspond-

ing to a robust algorithm for parameter estimation from samples, with a few important properties,

then one can construct a differentially private algorithm. The results can either generate a pure-DP

algorithm (Theorem 4.1), or an approx-DP algorithm (Theorem 4.2), depending on the properties

we assume about the robust algorithm.

Assuming the robust algorithm and score function can be computed efficiently, and we have

another property that we call quasi-convexity, the private algorithms also run in polynomial time.

One can also generate analogous statements by removing these assumptions, but the algorithm no

longer runs in polynomial time. To avoid rewriting, we color certain parts of Theorems 4.1 and 4.2

in blue: one can read the same theorems and ignore what is written in blue to obtain an inefficient

private algorithm arising from an inefficient robust algorithm.

We first state our theorem for creating a pure-DP algorithm.

15

Theorem 4.1. Let 0 < �휂, �푟 < 1 < �푅 be fixed parameters. Suppose we have a score function�풮(�휃,�풴) ∈ [0, �푛]
that takes as input a dataset �풴 = {�푦1 , . . . , �푦�푛} and a parameter �휃 ∈ Θ ⊂ R�푑 (where Θ is convex and

contained in a ball of radius �푅), with the following properties:

• (Bounded Sensitivity) For any two adjacent datasets�풴 ,�풴′ and any�휃 ∈ Θ, |�풮(�휃,�풴)−�풮(�휃,�풴′)| ≤ 1.

• (Quasi-Convexity) For any fixed dataset �풴, any �휃, �휃′ ∈ Θ, and any 0 ≤ �휆 ≤ 1, we have that

�풮(�휆�휃 + (1 − �휆)�휃′,�풴) ≤ max(�풮(�휃,�풴),�풮(�휃′,�풴)).

• (Efficiently Computable) For any given �휃 ∈ Θ and dataset �풴, we can compute �풮(�휃,�풴) up to error �훾
in poly(�푛, �푑, log�푅, log �훾−1) time for any �훾 > 0.

• (Robust algorithm finds low-scoring point) For a given dataset �풴, let �푇 = min�휃0
�풮(�휃0 ,�풴). Then,

we can find some point �휃 such that for all �휃′ within distance �푟 of �휃, �풮(�휃′,�풴) ≤ �푇 + 1, in time

poly(�푛, �푑, log �푅
�푟).

• (Volume) For any given dataset �풴 and �휂′ ≥ �휂, let �푉�휂′(�풴) represent the �푑-dimensional volume of

points �휃 ∈ Θ ⊂ R�푑 with score at most �휂′�푛. (Note that �푉1(�풴) is the full volume of Θ).

Then, we have a pure �휀-DP algorithm �풜 on datasets of size �푛, that runs in poly(�푛, �푑, log �푅
�푟) time,

with the following property. For any dataset �풴, if there exists �휃 with �풮(�휃,�풴) ≤ �휂�푛 and if �푛 ≥

Ω

(
max

�휂′:�휂≤�휂′≤1
log(�푉�휂′(�풴)/�푉�휂(�풴))+log(1/(�훽·�휂))

�휀·�휂′

)
, then �풜(�풴) outputs some �휃 ∈ Θ of score at most 2�휂�푛 with proba-

bility 1 − �훽.

We remark that this theorem has several important conditions. The bounded sensitivity of

the score is important as it ensures that if we sample according to the exponential mechanism,

the sampling probability of any �휃 does not change significantly between adjacent datasets. The

conditions of quasi-convexity, computability, and finding a low-scoring point are only required for

the algorithm to run in polynomial time. Indeed, the latter two of these conditions are important

for the robust algorithm to succeed, and the quasi-convexity assumption generalizes a convexity

assumption on the score, which roughly corresponds to sampling from log-concave distributions.

Finally, the sample complexity is dictated both by the number of samples needed for the robust

algorithm to succeed and by bounds on the volume of low versus high scoring points.

Along with a general result for pure-DP algorithms,we also prove a similar result for approx-DP

algorithms, which we now state.

Theorem 4.2. Let 0 < �휂 < 0.1 and �푟 < 1 < �푅 be fixed parameters. Suppose we have a score function

�풮(�휃,�풴) ∈ R that takes as input a dataset �풴 = {�푦1 , . . . , �푦�푛} and a parameter �휃 ∈ Θ ⊂ R�푑 (where Θ is

convex and contained in a ball of radius �푅), with the same properties as in Theorem 4.1.

In addition, fix some parameter �휂∗ ∈ [10�휂, 1]. Suppose that �푛 ≥ Ω

(
log(1/�훿)+log(�푉�휂∗ (�풴)/�푉0.8�휂∗ (�풴))

�휀·�휂∗
)

for

all �풴 such that there exists �휃 with �풮(�휃,�풴) ≤ 0.7�휂∗�푛. Then, we have an (�휀, �훿)-DP algorithm �풜 that

runs in poly(�푛, �푑, log �푅
�푟) time, such that for any dataset �풴, if there exists �휃 with �풮(�휃,�풴) ≤ �휂�푛 and if

�푛 ≥ Ω

(
max

�휂′:�휂≤�휂′≤�휂∗
log(�푉�휂′(�풴)/�푉�휂(�풴))+log(1/(�훽·�휂))

�휀·�휂′

)
, then �풜(�풴) outputs some �휃 ∈ Θ of score at most 2�휂�푛 with

probability 1 − �훽.

16

The main difference in the approx-DP setting is that we set some threshold�휂∗, and only consider

volumes of points of score up to �휂∗ · �푛. This is because, roughly speaking, we will sample using a

truncated exponential mechanism until score roughly �휂∗�푛. (In reality, we need to be more careful

about how we truncate.) But because of this truncation, the volume bound will be crucial for

not only bounding sample complexity but also ensuring privacy, to make sure the probability of

sampling a point near the threshold score is low.

We will only prove Theorems 4.1 and 4.2 for the efficient case. In the proofs, one can verify that

the requirements of quasi-convexity, efficient computability, and efficiently finding a low-scoring

point, as well as the promise that Θ is convex and bounded, are only needed for our sampling

algorithms to run in polynomial time. Hence, the inefficient algorithm results also follow.

4.1 Sampling and volume computation with an imperfect oracle

To prove the main results of this section, we heavily rely on the theory of sampling and volume

computation for convex bodies, given only membership oracle access (as opposed to membership

and separation oracle access). While one may wish to directly apply these techniques, we cannot

afford to do so, because, to the best of our knowledge, all such results have been written assuming

infinite-precision arithmetic and perfect membership oracles. In our setting, we must show such

results are possible even if we only have bounded precision arithmetic and imperfect membership

oracles. This will be crucial because we assume we cannot perfectly compute the score function,

but can only approximately compute it. We now formally define approximate membership oracles.

Definition 4.3. Given two nested convex bodies �퐾1 ⊂ �퐾2, a (�퐾1, �퐾2)-membership oracle �풪 is an

oracle that, if given an input �푥 ∈ �퐾1, outputs YES, if given an input �푥 ∉ �퐾2, outputs NO, and if

given an input �푥 ∈ �퐾2\�퐾1, may output either YES or NO.

In addition, we will wish for multiplicative approximations for the sake of pure-DP, meaning

each point (in a sufficiently fine net) in the convex body should be sampled in a way that is point-

wise close to uniform, as opposed to close to uniform in total variation distance. While one could

use the techniques of [MV22] to achieve the point-wise guarantee, they still make an assumption

of using perfect membership oracles and infinite-precision arithmetic.

To deal with the issues of precision and imperfect oracles, we apply the known analyses of hit-

and-run sampling, made discrete in an appropriate fashion, and make sure that the probability of

ever being near the boundary of the convex body, where the membership oracle may be incorrect,

is low. To ensure the multiplicative approximation, we make a final step where we slightly perturb

and then discretize the sample further, and show that this is sufficient. Since most of the analysis

derives from known results, we defer the proofs to Appendix A, and here we simply state the

results we need.

Lemma 4.4. (Main convex body sampling lemma) Fix any parameter �훾6 ≤ �푑−100 and �푟 < 1 < �푅. Let

�퐾1, �퐾2 be convex bodies such that �퐵(0, �푟) ⊂ �퐾1 ⊂ �퐾2 ⊂ �퐵(0, �푅), and vol(�퐾2) − vol(�퐾1) ≤
(�훾1·�푟
6�푑

)�푑
, for

some �훾1 such that log �훾−1
1

= poly(�푑, log �푅
�푟 , log �훾

−1
6
). Suppose we have a (�퐾1, �퐾2)-membership oracle �풪.

Then, in poly(�푑, log �푅
�푟 , log �훾

−1
6
) time and queries to �풪, we can output a point �푧 that is (1 ± �훾6)-pointwise

close to uniform on the set of points in R�푑 with all coordinates integer multiples of �훾5 that are accepted by

�풪, for �훾5 =
�푟 ·�훾6
�푑3

.

17

Lemma 4.5. (Volume sampling) Set �훾6 = �휀
�푑100 log(�푅/�푟) , and set �훾1, �훾5, along with �푟, �푅, �퐾1, �퐾2,�풪, as in

Lemma 4.4. Fix any �휀 < 0.5. Then, for any �훾 < 1, in poly(�푑, log �푅
�푟 ,

1
�휀 , log �훾

−1) time and oracle accesses,

we can approximate the number of points in R�푑 with all coordinates integer multiples of �훾5 that are accepted

by �풪, up to a 1 ± �휀 multiplicative factor, with failure probability �훾.

Remark. Our parameters skip to �훾5 and �훾6 since we define auxiliary parameters �훾2, �훾3, �훾4 in the

proofs of Lemmas 4.4 and 4.5.

4.2 Proof of Theorem 4.1

Our algorithm will roughly sample each �휃 based on the exponential mechanism, where each �휃
is sampled proportional to �푒−�휀·�풮(�휃,�풴). In the following lemma, we apply Lemmas 4.4 and 4.5 to

obtain a desired sampling procedure.

We note the following fact, which we will prove in Appendix A, while proving Lemma 4.5.

Fact 4.6. Suppose �퐾 ⊂ R�푑 is a convex body that contains a ball of radius �푟. Suppose �훾 is a parameter

which is at most �푟
�푑3

. Then, the number of points in �퐾 that have all coordinates integral multiples of �훾 is

(1 ± �푂(1/�푑)) · vol(�퐾)/�훾�푑.

Lemma 4.7. Set �훾1, �훾5, �훾6 as in Lemma 4.5, and let Θ̃ be the set of points in Θ with all coordinates integral

multiples of �훾5. Then, in poly(�푛, �푑, 1�휀 , log �푅
�푟) time, we can sample from each �휃 ∈ Θ̃ with probability

proportional to �푒−�휀·�풮(�휃,�풴) · �푒±�푂(�휀).

Proof. First, we set some additional parameters. Finally, we define �훾8 := �휀
2
· �푒−�푛 · (�훾5/2�푅)�푑 and

�훾7 := �훾8 ·
(�훾1·�푟
6�푑

)�푑 /(2(2�푅)�푑).
We now describe our algorithm. Define �푇 := max�휃0

�풮(�휃0,�풴). Even if �푇 is unknown, in time

poly(�푛, �푑, log 1
�푟), we can find some point �휃 such that �풮(�휃′,�풴) ≤ �푇+1 for all �휃′ within �푟 of �휃. We can

also get some estimate�푇′ between�푇 and�푇+1. We pick a uniformly random number between�푇′+1

and �푇′ + 2 that is an integral multiple of �훾7. Call this number �̂푇: note that �̂푇 ≤ min�휃 �풮(�휃0,�풴) + 3.

Now, for any point �휃 ∈ Θ̃, let �푡(�휃) be the smallest nonnegative integer �푡 such that the estimate

(where the estimate has accuracy �훾7) of the score �풮(�휃,�풴) is at most �̂푇 + �푡.

Our goal will be to produce an �푒±�푂(�휀)-pointwise sample from the distribution proportional to

�푒−�휀·�푡(�휃). For each integer �푡 ≥ 0, define �퐾
(�푡)
1

to be the convex body of points in Θ with (true) score at

most �̂푇 + �푡 − �훾7, and �퐾
(�푡)
2

to be the convex body of points in Θ with (true) score at most �̂푇 + �푡 + �훾7.

We will apply Lemmas 4.4 and 4.5, with �풪 as the (�퐾(�푡)
1
, �퐾

(�푡)
2
)-oracle that accepts if the estimate of

the score is at most �̂푇+ �푡, i.e., if �푡(�휃) ≤ �푡. (Note that while �퐾
(�푡)
1

may not contain 0, it contains a ball of

radius �푟 around an efficiently computable point �휃, which is sufficient.) Also, let �푆(�푡), �푁 (�푡) to be the

set of and number of points in Θ̃, respectively, such that �푡(�휃) ≤ �푡. Since �푡(�휃) ∈ {0, 1, . . . , �푛}, we can

write
∑

�휃∈Θ̃ �푒−�휀�푡(�휃) = �푁 (0)+∑�푛
�푡=1 �푒

−�휀�푡(�푁 (�푡)−�푁 (�푡−1)) = ∑�푛−1
�푡=0

(
�푒−�휀�푡(1 − �푒−�휀)�푁 (�푡))+ �푒−�휀�푛�푁 (�푛). Assuming

that vol(�퐾(�푡)
2
) − vol(�퐾(�푡)

1
) ≤

(�훾1·�푟
6�푑

)�푑
for all �푡, then we can provide a �푒±�휀-factor approximation �̃푁 (�푡) for

each �푁 (�푡), with failure probability at most �훾8, in time poly(�푑, log �푅
�푟 ,

1
�휀 , log �훾

−1
8
), by Lemma 4.5.

Our final algorithm will sample each number �푡 ∈ {0, 1, . . . , �푛−1} with probability proportional

to �푒−�휀�푡(1 − �푒−�휀)�̃푁 (�푡) and �푡 = �푛 with probability proportional to �푒−�휀�푛 �̃푁 (�푛). Then, we use Lemma 4.4

to sample (1 ± �훾6)-pointwise close to uniform from the set �푆(�푡) in time poly(�푑, log �푅
�푟 , log �훾

−1
6
).

18

Overall, assuming that vol(�퐾(�푡)
2
) − vol(�퐾(�푡)

1
) ≤

(�훾1·�푟
6�푑

)�푑
for all �푡, since �훾6 < �휀, we obtain an �푒±2�휀-

pointwise approximation to sampling from the distribution proportional to �푒−�휀·�푡(�휃) for �휃 ∈ Θ̃, with

failure probability at most �훾8. In addition, note that �푡(�휃) = �풮(�휃,�풴) − �푇 ± �푂(1), which means in

fact we are sampling proportional to �푒−�휀·�풮(�휃,�풴) up to a �푒±�푂(�휀) pointwise approximation. There are

two ways for this to fail: if either there is some �푡 with vol(�퐾(�푡)
2
) − vol(�퐾(�푡)

1
) >

(�훾1·�푟
6�푑

)�푑
or in the �훾8

probability event that some estimate �̃푁 (�푡) is incorrect. Note however, that this volume represents

the set of points with score between �푇′ + �푡 + 1 + �푢 − �훾7 and �푇′ + �푡 + 1 + �푢 + �훾7, where �푢 ∈ [0, 1) is

chosen at random to be an integer multiple of �훾7. Therefore, the expectationE�푢[vol(�퐾(�푡)
2
)−vol(�퐾(�푡)

1
)]

is at most 2 · �훾7 times the volume difference of points with score at least �푇′ + �푡 + 2 and �푇′ + �푡 + 1,

which is at most vol(Θ) ≤ (2�푅)�푑. So, by Markov’s inequality, vol(�퐾(�푡)
2
) − vol(�퐾(�푡)

1
) >

(�훾1·�푟
6�푑

)�푑
with

probability at most
(
2�훾7 · (2�푅)�푑

)
/
(�훾1·�푟
6�푑

)�푑
= �훾8.

Therefore, with probability at least 1 − 2�훾8, we are sampling �휃 ∈ Θ̃ from a distribution

proportional to �푒−�휀·�풮(�휃,�풴) · �푒±�푂(�휀). However, note that the number of points in Θ̃ is at most

vol(Θ)/(�훾5)�푑 · (1 + �표(1)) ≤ (2�푅/�훾5)�푑 by Fact 4.6, so each point in Θ̃ is selected with probability at

least Ω(�푒−�푛 · (�훾5/2�푅)�푑). So, since we set �훾8 =
�휀
2
· �푒−�푛 · (�훾5/2�푅)�푑, we are still sampling each element

with probability proportional to �푒−�휀·�풮(�휃,�풴) · �푒±�푂(�휀). �

Proof of Theorem 4.1. The algorithm is the same as in Lemma 4.7. To see why this implies a private

algorithm, for any two adjacent datasets �풴 ,�풴′, the score of any point changes by at most 1, which

means the distribution does not change by more than a �푒±�푂(�휀) factor multiplicatively for any fixed

�휃 between �풴 and �풴′. So, if we could approximately sample from this distribution, the distribution

still does not change by more than a �푒±�푂(�휀) factor multiplicatively. This ensures the algorithm will

be �푂(�휀)-DP.

The runtime has already been verified, with the fact that �푛 ≥ Ω(1/�휀) is already known, so we

can ignore polynomial runtime dependencies on 1
�휀 .

Finally, we check accuracy. Assume there exists a �휃 ∈ Θ with score at most �휂�푛. By Fact 4.6, if

�훾5 ≤ �푟
�푑3
, then for any convex body �퐾 containing a ball of radius �푟, vol(�퐾) = (1 ± �표(1)) · (�훾5)�푑 · �푁�퐾 if

�푁�퐾 is the number of points in �퐾 ∩ Θ̃. Now, for any �푗 ≥ 1, we bound the probability that we select

a �휃 ∈ Θ̃ with score between 2�푗 · �휂�푛 and 2�푗+1 · �휂�푛. If we consider �퐾 �푗 to be the convex body of points

in Θ with score at most 2�푗+1 · �휂�푛, then the probability of sampling a point with a score between

2�푗 · �휂�푛 and 2�푗+1 · �휂�푛 is proportional to at most �푒−�휀·2
�푗 ·�휂�푛 · vol(�퐾 �푗)/(�훾5)�푑 · (1 + �표(1)). However, the set

of points with score at most �휂�푛 + 1 contains a ball of radius �푟, so the probability of sampling such

a point is proportional to at least �푒−�휀·(�휂�푛+1) ·�푉�휂/(�훾5)�푑 · (1 − �표(1)).
So, to select a point with score at most 2�휂�푛 with probability 1 − �푂(�훽), it suffices to check that∑⌈log2(1/�휂)⌉

�푗=1
�푒−�휀·(2

�푗−1)·�휂�푛 · vol(�퐾 �푗)/�푉�휂 ≤ �훽. Now, by setting �휂′ = 2�푗+1 · �휂, we have that vol(�퐾 �푗)/�푉�휂 =

�푉�휂′/�푉�휂 , and �푒−�휀·(2
�푗−1)·�휂�푛 ≤ �푒−�휀·�휂

′·�푛/4. Thus, if �푛 ≥ 8 log(�푉�휂′/�푉�휂) · 1
�휂′·�휀 , then �푒−�휀·�휂

′·�푛/8 ≤ �푉�휂

�푉�휂′
. Also, if �푛 ≥

8 log(1/(�훽·�휂))
�휀·�휂′ , then �푒−�휀·�휂

′·�푛/8 ≤ �훽 ·�휂. Therefore, �푒−�휀·�휂
′·�푛/4 ≤ �푉�휂

�푉�휂′
·�훽 ·�휂, which means

∑⌈log2(1/�휂)⌉
�푗=1

�푒−�휀·(2
�푗−1)·�휂�푛 ·

vol(�퐾 �푗)
�푉�휂

≤ ∑⌈log2(1/�휂)⌉
�푗=1

�푉�휂

vol(�퐾 �푗) ·�훽 ·�휂 ·
vol(�퐾 �푗)

�푉�휂
≤ �훽. Thus, the algorithm is accurate with 1−�훽 probability. �

19

4.3 Proof of Theorem 4.2

In this subsection, we prove Theorem 4.2. We start by describing the algorithm.

First, we define the function �푔 : Z→ [0, 1] as follows. First, for �푡 < 0.3�휂∗�푛, we let �푔(�푡) = 1, and

for �푡 ≥ 0.7�휂∗�푛, we let �푔(�푛) = 0. For 0.3 · �휂∗�푛 ≤ �푡 ≤ 0.5�휂∗�푛, we let �푔(�푡) = max
(
1
2
, 1 − �훿 · �푒�휀(�푡−0.3�휂∗�푛)

)
,

and for 0.5�휂∗�푛 ≤ �푡 ≤ 0.7�휂∗�푛, we let �푔(�푡) = min
(
1
2
, �훿 · �푒�휀(0.7�휂∗�푛−�푡)

)
. The first step of the algorithm

is to compute some �̂푇, which equals min�휃∈Θ �풮(�휃,�풴) up to additive error 1. The first part of the

algorithm, which we call �풜1, will accept the dataset �풴 with probability �푔(�̂푇).
If �풜1 rejects �풴, the overall algorithm �풜 outputs nothing. If �풜1 accepts �풴 , the algorithm

proceeds to the second phase. The second phase, at a high level, attempts to sample a�휃proportional

to �푒−�휀·�풮(�휃,�풴) as long as �풮(�휃,�풴) ≤ 0.9�휂∗�푛. This may be impossible as we cannot perfectly compute

�휃. Instead, if we define the function ℎ(�푡) to equal �푒−�휀�푡 for �푡 ≤ 0.9�휂∗�푛 and 0 for �푡 > 0.9�휂∗�푛, we prove

the following.

Lemma 4.8. Let Θ̃ be as in Lemma 4.7. Then, in time poly(�푛, �푑, 1�휀 , log �푅
�푟) time and with failure probability

at most min(�훽, �훿), we can sample from each �휃 ∈ Θ̃ with probability proportional to ℎ′(�휃), where ℎ′(�휃) is a

function satisfying ℎ(�풮(�휃,�풴) + �푂(1)) · �푒−�푂(�휀) ≤ ℎ′(�휃) ≤ ℎ(�풮(�휃,�풴) − �푂(1)) · �푒�푂(�휀).

Proof. The proof is nearly identical to that of Lemma 4.7. We again define �푡(�휃) to be the smallest

nonnegative �푡 such that our estimate of�풮(�휃,�풴) is at most �̂푇+�푡. This time, rather than approximately

sampling with probability proportional to �푒−�휀�푡(�휃), we approximately sample proportional to ℎ(�푡(�휃)+
�̂푇). (Note that �푡(�휃) + �̂푇 = �풮(�휃,�풴) ± �푂(1).) As in Lemma 4.7, we define �푆(�푡), �푁 (�푡) to be the set of

and number of points in Θ̃, respectively, such that �푡(�휃) ≤ �푡. We can write
∑

�휃∈Θ̃ ℎ(�푡(�휃) + �̂푇) =

ℎ(�̂푇) · �푁 (0) +∑�푛
�푡=1 ℎ(�̂푇 + �푡)(�푁 (�푡) − �푁 (�푡−1)) = ∑�푛−1

�푡=0

(
ℎ(�̂푇 + �푡) − ℎ(�̂푇 + �푡 + 1)

)
�푁 (�푡), since ℎ(�̂푇 + �푛) = 0.

Again, we can compute each �푁 (�푡) up to a �푒±�휀 multiplicative factor (to get estimates �̃푁 (�푡), choose

�푡 proportional to �̃푁 (�푡) · (ℎ(�̂푇 + �푡)− ℎ(�̂푇 + �푡 + 1)), and then sample (1± �훾6)-pointwise close to uniform

on �푆(�푡), where we ensure �훾6 ≤ �휀. The algorithm fails with probability 2�훾8. This time we cannot

charge this error to multiplicative error (since some points may have large enough score that they

will be sampled with probability 0), so we additionally ensure that �훾8 ≤ min(�훽,�훿)
2

as well. (I.e., we

set �훾8 := min

(
�훽
2
, �훿
2
, �휀
2
· �푒−�푛 · (�훾5/2�푅)�푑

)
.) Note that as long as �푛 ≥ log �훿−1 + log �훽−1, the runtime is

still poly(�푛, �푑, 1�휀 , log �푅
�푟). �

Proof of Theorem 4.2. The algorithm is as described, where the second phase samples (with failure

probability at most min(�훽, �훿)) proportional to ℎ′(�휃). We recall that by Fact 4.6, for the convex body

�푁 (�푡) of points with score at most �푡 + �̂푇, vol(�퐾(�푡)) = (1 ± �표(1)) · �훾�푑
5
· �푁 (�푡).

First, we check privacy. It is clear that the first phase of the algorithm is (�푂(�휀), �푂(�훿))-DP as long

as �푛 ≫ log �훿−1

�휀·�휂∗ , since for any two adjacent datasets, max�휃∈Θ �풮(�휃,�풴) changes by at most 1, and our

estimate for this maximum is accurate up to error 1. So, �̂푇 changes by at most�푂(1) between adjacent

datasets �풴 and �풴′, which is sufficient. For the second phase, we sample each �휃 proportional to

�푒−�휀·(�풮(�휃,�풴)±�푂(1)) if �풮(�휃,�풴) ≤ 0.9�휂∗�푛−�푂(1), and proportional to 0 if �풮(�휃,�풴) ≥ 0.9�휂∗�푛+�푂(1). So, the

sampling probability stays proportional between adjacent datasets, unless�풮(�휃,�풴) = 0.9�휂∗�푛±�푂(1).
So, we need to make sure the probability of sampling such a dataset is at most �푂(�훿), so that the

overall algorithm is (�푂(�휀), �푂(�훿))-DP.

20

To see why this is true, the probability of sampling a point �휃 ∈ Θ̃ with score in the range

0.9�휂∗�푛 ± �푂(1) is proportional to at most �푒−�휀·(0.9�휂
∗�푛−�푂(1))(1 + �표(1)) · �훾−�푑

5
· �푉0.9�휂∗+�푂(1/�푛)(�풴) ≤ �푂(1) ·

�푒−�휀·0.9�휂
∗�푛 · �훾−�푑

5
·�푉�휂∗(�풴). Conversely, since we didn’t reject, we know that �̂푇 ≤ 0.7�휂∗�푛, which means

the probability that we sample a point �휃 ∈ Θ̃ with score at most 0.85�휂∗�푛 is proportional to at least

�푒−�휀·(0.85�휂
∗�푛+�푂(1))(1 − �표(1)) · �훾−�푑

5
· �푉0.85�휂∗−�푂(1/�푛)(�풴) ≥ Ω(1) · �푒−�휀·0.85�휂∗�푛 · �훾−�푑

5
· �푉0.8�휂∗(�풴). So, it suffices

to show that
�푒−�휀·0.9�휂

∗�푛 ·�훾−�푑
5

·�푉�휂∗(�풴)
�푒−�휀·0.85�휂∗�푛 ·�훾−�푑

5
·�푉0.8�휂∗ (�풴) ≤ �훿, which is true as long as �푛 ≥ log(1/�훿)·log(�푉�휂∗ (�풴)/�푉0.8�휂∗ (�풴))

�휀·�휂∗ . Note

that this only has to be true for datasets �풴 such that min�휃 �풮(�휃,�풴) ≤ 0.7�휂∗�푛, since otherwise the

algorithm would have already rejected in the first phase.

To check efficiency, note that we can compute �̂푇 in poly(�푛, �푑, log �푅
�푟) time, using the condition

that the robust algorithm can find a low-scoring point up to error 1. Then, in time poly(�푛, �푑, log �푅
�푟),

since �푛 ≥ Ω(1�휀), we can sample proportional to ℎ′(�휃), using Lemma 4.8.

Checking accuracy will be very similar to as in the proof of Theorem 4.1. Suppose there exists

�휃 such that �풮(�휃,�풴) ≤ �휂�푛. Then, �̂푇 ≤ �휂�푛 + �푂(1) ≤ 0.1�휂∗�푛 + �푂(1), which means the first part

of the algorithm will succeed. For the second phase, we sample each �휃 ∈ Θ̃ with probability

proportional to ℎ′(�휃), with failure probability at most �훽. The probability of sampling a point

with score at most �휂�푛 + 1 is proportional to at least �푒−�휀·(�휂�푛+�푂(1)) · �푉�휂(�풴)/(�훾5)�푑 · (1 − �표(1)). Also,

if we define �퐾 �푗 to be the convex body of points in Θ with score at most 2�푗+1 · �휂�푛, then the

probability of selecting a �휃 ∈ Θ̃ with score between 2�푗 · �휂�푛 and 2�푗+1 · �휂�푛 is proportional to at most

�푒−�휀·(2
�푗 ·�휂�푛−�푂(1))) ·min(vol(�퐾 �푗), �푉�휂∗(�풴))/(�훾5)�푑 · (1 + �표(1)), by Lemma 4.8 and the definition of ℎ.

Hence, we wish to check that
∑⌈log2(�휂∗/�휂)⌉

�푗=1
�푒−�휀·(2

�푗−1)·�휂�푛 ·min(vol(�퐾 �푗), �푉�휂∗(�풴))/�푉�휂(�풴) is at most �훽:

it suffices to show that �푒−�휀·2
�푗 ·�휂�푛/2 ·min(vol(�퐾 �푗), �푉�휂∗(�풴))/�푉�휂(�풴) ≤ �훽 ·�휂 for any 1 ≤ �푗 ≤ ⌈log2(�휂∗/�휂)⌉. If

2�푗+1 · �휂 ≤ �휂∗, then by setting �휂′ = 2�푗+1, we are assuming that �푛 ≥ Ω

(
log(�푉�휂′(�풴)/�푉�휂(�풴))+log(1/(�훽·�휂))

�휀·�휂′
)
. This

means �푒−�휀·2
�푗 ·�휂�푛/2 ·min(vol(�퐾 �푗), �푉�휂∗(�풴))/�푉�휂(�풴) ≤ �푒−�휀·�휂

′�푛/4 ·vol(�퐾 �푗)/�푉�휂(�풴) ≤ �푉�휂(�풴)
�푉�휂′(�풴) ·�훽 ·�휂 ·

vol(�퐾 �푗)
�푉�휂(�풴) = �훽 ·�휂.

If 2�푗+1 · �휂 > �휂∗, then by setting �휂′ = �휂∗, we are assuming that �푛 ≥ Ω

(
log(�푉�휂∗ (�풴)/�푉�휂(�풴))+log(1/(�훽·�휂))

�휀·�휂∗
)
. This

means �푒−�휀·2
�푗 ·�휂�푛/2 ·min(vol(�퐾 �푗), �푉�휂∗(�풴))/�푉�휂(�풴) ≤ �푒−�휀·�휂

∗�푛/4 ·�푉�휂∗(�풴)/�푉�휂(�풴) ≤ �푉�휂(�풴)
�푉�휂∗ (�풴) · �훽 ·�휂 ·

�푉�휂∗ (�풴)
�푉�휂(�풴) = �훽 ·�휂.

Hence, the algorithm is accurate. �

5 Estimating the Mean of a Gaussian

5.1 Main Theorem

Our main theorem in this section is a polynomial time and pure-DP algorithm for private mean

estimation of an identity-covariance Gaussian, with optimal sample complexity.

Theorem 5.1 (Private Mean Estimation of a (Sub-)Gaussian). Assume that 0 < �훼, �훽, �휀 < 1 and �푅 > 0.

Let �휇 ∈ R�푑, where ‖�휇‖2 ≤ �푅, be unknown. There is an �휀-DP algorithm that takes �푛 i.i.d. samples from

�풩(�휇, �퐼) (or in general, a subgaussian distribution with mean �휇 and covariance �퐼) and with probability 1− �훽
outputs �휇 such that ‖�휇 − �̂휇‖2 ≤ �훼, where

�푛 = �푂

(
�푑 + log(1/�훽)

�훼2
+

�푑 + log(1/�훽)
�훼�휀

+ �푑 log �푅

�휀

)
.

21

Here, �푂 only hides logarithmic factors in 1/�훼. Moreover, this algorithm runs in time poly(�푛, �푑), and

succeeds with the same accuracy even if �휂 = Ω̃(�훼) fraction of the samples are adversarially corrupted,

assuming �휂 ≤ �휂∗ for some universal constant �휂∗.

For pure-DP algorithms, the
�푑 log�푅

�휀 term is required by a standard packing lower bound. How-

ever, in the approximate-DP setting, we can replace this term with
log(1/�훿)

�휀 , as we now state.

Theorem 5.2 (Private Mean Estimation of a (Sub-)Gaussian with Approx-DP). Let �휇 ∈ R�푑, where

‖�휇‖2 ≤ �푅, be unknown. There is an (�휀, �훿)-DP algorithm that takes �푛 i.i.d. samples from �풩(�휇, �퐼) (or a

subgaussian distribution with mean �휇 and covariance �퐼) and with probability 1 − �훽 outputs �휇 such that

‖�휇 − �̂휇‖2 ≤ �훼, where

�푛 = �푂

(
�푑 + log(1/�훽)

�훼2
+

�푑 + log(1/�훽)
�훼�휀

+ log(1/�훿)
�휀

)
.

Moreover, this algorithm runs in time poly(�푛, �푑, log�푅), and still succeeds with the same accuracy even if

�휂 = Ω̃(�훼) fraction of the samples are adversarially corrupted.

Note that the runtime dependence on log �푅 is required as even reading the input up to �푂(1)-
precision requires log �푅 time.

We note that one could alternatively prove Theorem 5.2 by combining Theorem 5.1 with

[EMN22, Corollary 5] (or alternatively [GKM21, TCK+22]), which allows us to learn �휇 up to radius

�푂(�푑)first. However, this method is slightly suboptimal in that the final term would be
log(1/�훿)·log(1/�훽)

�휀 .

The rest of this section is devoted to proving Theorem 5.1 and Theorem 5.2.

5.2 Resilience of First and Second Moments

In this subsection, we note some known concentration inequalities for subgaussian random vari-

ables (commonly known as resilience or stability conditions) that will be crucial for our analysis.

Lemma 5.3 (Resilience of First and Second Moments, Proposition 3.3 in [DK22]). Let �푛 ≥ �푂((�푑 +
log(1/�훽))/�훼2), for some �훼 = �푂(�휂). Let {�푥�푖}�푛�푖=1

�푖.�푖.�푑.∼ �풟, where �풟 is a subgaussian random variable with

mean �휇 ∈ R�푑 and covariance �퐼. Then, with probability 1−�훽, for all vectors �푏 ∈ [0, 1]�푛 such that E�푖 �푏�푖 ≥ 1−�휂
and all unit vectors �푣 ∈ R�푑, we have ��E�푖 �푏�푖 〈�푣, �푥�푖 − �휇〉

�� ≤ �훼.

In addition, ��E�푖 �푏�푖 〈�푣, �푥�푖 − �휇〉2 − 1
�� ≤ �훼.

Corollary 5.4. Let �휇,�풟 , {�푥�푖}, �훼, �휂 be as in Lemma 5.3. Then, with probability 1− �훽, the following all hold

for all unit vectors �푣 simultaneously.

1.
��E�푖 〈�푥�푖 − �휇, �푣〉

�� ≤ �훼.

2.
��E�푖 〈�푥�푖 − �휇, �푣〉2 − 1

�� ≤ �훼.

3. For any real values �푎1, . . . , �푎�푛 ∈ [0, 1] such that
∑�푛

�푖=1 �푎�푖 ≤ �휂 · �푛,
��E�푖 �푎�푖 〈�푥�푖 − �휇, �푣〉

�� ≤ �훼 and��E�푖 �푎�푖 〈�푥�푖 − �휇, �푣〉2
�� ≤ �훼.

22

4. E�푖

��〈�푥�푖 − �휇, �푣〉
�� ≤ �푂(1).

Proof. Fix a vector �푣 and let �푧�푖 := 〈�푥�푖 − �휇, �푣〉. Suppose the events of Lemma 5.3 hold.

Parts 1 and 2 are immediate from Lemma 5.3, by setting �푏�푖 = 1 for all �푖. Part 3 follows by setting

�푎�푖 = 1 − �푏�푖, and then noticing that
�� 1
�푛

∑�푛
�푖=1 �푎�푖�푧�푖

�� ≤ �� 1
�푛

∑�푛
�푖=1 �푧�푖

�� + �� 1
�푛

∑�푛
�푖=1 �푏�푖�푧�푖

�� ≤ �푂(�휂).
Finally, to check part 4, we may consider �휂 = 0.1 and then apply part 3, to obtain that�� 1

�푛

∑�푛
�푖=1 �푎�푖�푧�푖

�� ≤ �푂(1) for any �푎 ∈ [0, 1]�푛 with
∑

�푎�푖 ≤ 0.1�푛. Since every vector in [−1, 1]�푛 can be written

as a sum of at most 20 vectors �푎 ∈ [0, 1]�푛 with
∑

�푎�푖 ≤ 0.1�푛, we thus have that
�� 1
�푛

∑�푛
�푖=1 �푐�푖�푧�푖

�� ≤ �푂(1)
for all choices of �푐�푖 ∈ {−1, 1}�푛 simultaneously. Thus, 1

�푛

∑�푛
�푖=1 |�푧�푖 | ≤ �푂(1). �

Remark. The conditions in Corollary 5.4 will be the only conditions we will require about the

samples we draw. So in fact, our algorithm will output a point close to �휇 if given an �휂-corrupted

version of �풳 for any �풳 satisfying Corollary 5.4.

We also note that if �휇, {�푥�푖} satisfy Corollary 5.4, then for all symmetric �퐻 with ‖�퐻 − �퐼‖�표�푝 ≤ �훼,

�퐻�휇, {�퐻�푥�푖} also satisfies Corollary 5.4 (up to replacing �훼 with �푂(�훼)). To see why, assume without

loss of generality that �휇 = 0. Then, using Condition 1, for all unit vectors �푣, | E�푖 〈�퐻�푥�푖 , �푣〉 | =
| E�푖 〈�푥�푖 , �퐻�푣〉 | ≤ �훼 · ‖�퐻�푣‖2 ≤ �훼 · (1 + �훼) ≤ 2�훼. We can repeat the same argument for the 2nd, 3rd,

and 4th conditions.

5.3 Robust Algorithm

Here, we describe the robust algorithm that will inspire our score function to generate a differen-

tially private algorithm. The robust algorithm, as well as the algorithms used in the covariance

settings, are essentially the same as in [KMZ22].

Suppose {�푥�푖}�푛�푖=1 are samples from �풩(�휇, �퐼) (or a subgaussian distribution with mean �휇 and

covariance �퐼). Let {�푦�푖} be an arbitrary �휂-corruption of the {�푥�푖}. Consider the following pseudo-

expectation program with input points {�푦�푖} and domain the degree-4 pseudo-expectations with

{�푤�푖}, {�푥�푖}, {�푀�푖, �푗} as indeterminates. (�푀 = {�푀�푖, �푗} will represent a �푑 × �푑-matrix of indeterminates.)

find Ẽ

such that Ẽ satisfies �푤2
�푖 = �푤�푖 ,

Ẽ satisfies
∑

�푤�푖 ≥ (1 − �휂)�푛,
Ẽ satisfies �푤�푖�푥

′
�푖 = �푤�푖�푦�푖 ,

Ẽ satisfies
1

�푛

∑
(�푥′�푖 − �휇′)(�푥′�푖 − �휇′)T + �푀�푀T

= (1 + �푂(�휂))�퐼 ,where �휇′
= �퐸�푖�푥

′
�푖

It can be proven that if �푛 is as in Lemma 5.3, with probability 1 − �훽 over the choice of {�푥�푖} and for

any �휂-corruption {�푦�푖} of {�푥�푖}, then ‖Ẽ�휇′ − �휇‖2 = �푂(�휂) for any feasible pseudo-expectation Ẽ.

5.4 Score Function and its Properties

Our goal is to use Theorem 4.1, but to do so, we need to design a suitable score function. Our score

function will be very similar to the robust algorithm, but modified to deal with precision issues.

Before we define our score function, we make a definition of certifiable means, which modifies

the pseudoexpectation program in Section 5.3 to deal with approximate pseudoexpectations.

23

Definition 5.5 (Certifiable Mean). Let �훼, �휏, �휙, �푇 ∈ R≥0, �푦1, . . . �푦�푛 ∈ R�푑 (with �풴 := {�푦1 , . . . , �푦�푛}),
and �휇 ∈ R�푑. We call the point �휇 an (�훼, �휏, �휙, �푇)-certifiable mean for �풴 if and only if there exists a

linear functional ℒ over the set of polynomials in indeterminates {�푤�푖}, {�푥′�푖, �푗}, {�푀 �푗,�푘} of degree at

most 6 such that

1. ℒ1 = 1,

2. for every polynomial �푝, where ‖ℛ(�푝)‖2 ≤ 1 (where we recall that ℛ(�푝) is the vector of

monomial coefficients of �푝):

(a) ℒ�푝2 ≥ −�휏 · �푇,

(b) ∀�푖 ,ℒ(�푤2
�푖
− �푤�푖)�푝2 ∈ [−�휏 · �푇, �휏 · �푇],

(c) ℒ(∑�푤�푖 − �푛 + �푇)�푝2 ≥ −5�휏 · �푇 · �푛,

(d) ∀�푖 , �푗 ,ℒ�푤�푖(�푥′�푖, �푗 − �푦�푖, �푗)�푝2 ∈ [−�휏 · �푇, �휏 · �푇],

(e) ∀�푗 , �푘 : ℒ
([

1
�푛

∑
�푖(�푥′�푖 − �휇′)(�푥′

�푖
− �휇′)T + �푀�푀T − (1 + �훼)�퐼

]
�푗,�푘

�푝2
)
∈ [−�휏 · �푇, �휏 · �푇], where �푥′

�푖
=

{�푥′
�푖, �푗
}1≤ �푗≤�푑 , and �휇′ = E�푖 �푥

′
�푖
. Note that here [. . .]�푗,�푘 denotes the (�푗 , �푘) entry of a matrix,

which is a polynomial in indeterminates {�푤�푖}, {�푥′�푖}, {�푀 �푗,�푘}. We write in this format for

the sake of conciseness.

3. ∀�푖 ,ℒ�휇′
�푖
− �휇�푖 ∈ [−�휙 − �휏 · �푇, �휙 + �휏 · �푇].

In addition we will require ‖ℛ(ℒ)‖2 ≤ �푅′ + �푇 · �휏 for some sufficiently large �푅′ = poly(�푛, �푑, �푅),8
where we recall that ℛ(ℒ) is the vector which represents the value of ℒ applied to each monomial

of degree at most 6. (Note that ℛ(ℒ) has dimension polynomial in the number of variables, which

is polynomial in �푛, �푑.) This requirement is only needed for computability purposes. For such ℒ,

we also say that ℒ is an (�훼, �휏, �휙, �푇)-certificate for �풴.

Note that one may think of ℒ as an approximate pseudo-expectation. In addition, for each

constraint 2a) to 2e) we implicitly assume a bound on the degree of �푝 so that ℒ is applied to a

polynomial of degree at most 6.

For our purposes, we will end up setting �휏 = 1/(�푛 · �푑)�푂(1), for a large enough �푂(1).
Now we use this definition to define a score function.

Definition 5.6 (Score Function). LetB�푑
�푅

denote the ball of radius �푅 inR�푑 centered at the origin. Let

�훼, �휏, �휙, �푇 ∈ R≥0, �푦1 , . . . �푦�푛 ∈ R�푑 (with �풴 = {�푦1 , . . . , �푦�푛}) and �̃휇 ∈ R�푑. We define the score function

�풮 : B�푑
�푅
→ R as

�풮(�̃휇,�풴; �훼, �휏, �휙) = min
�푇

such that �̃휇 is a (�훼, �휏, �휙, �푇) certifiable mean for �풴 = {�푦1 , . . . , �푦�푛}.

In the rest of this section we will prove the following properties for this score function. This

will allow us to use Theorem 4.1.

1. Bounded Sensitivity: Score has sensitivity 1 with respect to �풴.

8See Lemma 5.11 for more details on how large we require �푅′ to be.

24

2. Quasi-Convexity: Score is quasi-convex as a function of �̃휇.

3. Accuracy: All points �̃휇 that have score at most �휂 · �푛 have distance at most �훼 = �푂(�휂) away

from �휇. (Robustness for volume/accuracy purposes).

4. Volume: The volume of points that have score at most �휂 · �푛 is sufficiently large, and the

volume of points with score at most �휂′ · �푛 for �휂′ > �휂 is not too large.

5. Efficient Computability: Score is efficiently computable for any fixed �̃휇,�풴.

6. Robust algorithm finds low-scoring point: Finding �̃휇 that minimizes score (up to error 1) for

any fixed �풴 can be done efficiently.

5.4.1 Sensitivity

Before proving sensitivity we need to prove the following upper bound on the value of the score

function.

Lemma 5.7 (score function upper bound). The value of the score function �풮 defined in Definition 5.6 is

less than or equal to �푛.

Proof. It suffices to show that in Definition 5.5 for �푇 = �푛, there exists a linear functional ℒ such

that the constraints of Definition 5.5 are satisfied.

Let’s define ℒ. For any monomial �푝 we should assign a value to ℒ�푝. To begin, let ℒ1 = 1. If �푝

contains �푤�푖 or �푀 �푗,�푘 where �푗 ≠ �푘 let ℒ�푝 = 0. Now we need to define ℒ�푝 for monomials that only

contain �푥′
�푖, �푗

and �푀 �푗, �푗 . For such monomials �푝, let ℒ�푝 be equal to (1 + �휂)(�훽/2) ·∏�푑
�푗=1 �̃휇

�훼 �푗

�푗
, where �훼 �푗 is

equal to the sum of the number of the factors of the form �푥′
�푖, �푗

over all �푖 in �푝, and �훽 is equal to the

number of �푀 �푗, �푗 factors in �푝 over all �푗. Basically, when applying ℒ to a polynomial we are treating

the indeterminates in the problem as if they were scalars and had the assignment �푤�푖 = 0, �푥′
�푖
= �̃휇,

and �푀 =
√
(1 + �휂)�퐼. In the non-relaxed version of the problem, this assignment would correspond

to changing every point to �̃휇. It is easy to check that all of the constraints would be satisfied under

this choice of ℒ, even if �휏 = 0. Therefore, the value of the score function �풮 defined in Definition 5.6

is at most �푛. �

Lemma 5.8 (sensitivity). The score function �풮 as defined in Definition 5.6 has sensitivity 1 with respect

to its first input.

Proof. Suppose that �풴, �풴′ are two neighboring datasets, and �̃휇 ∈ R�푑. Moreover, assume �풮(�̃휇,�풴) =
�푇. If we show that �풮(�̃휇,�풴′) ≤ �풮(�̃휇,�풴) + 1 = �푇 + 1, by symmetry we are done. Since �풮(�̃휇,�풴) = �푇,

we know that there exists some functional ℒ such that the constraints of Definition 5.5 are satisfied

for ℒ, �풴, and �푇. If we construct a new functional ℒ′ such that the constraints of Definition 5.5 are

satisfied for ℒ′, �풴′ and �푇 + 1, we have shown that �풮(�̃휇,�풴′) ≤ �푇 + 1 and we are done.

Without loss of generality assume �풴 and �풴′ differ on index �푗. In order to construct ℒ′, for any

monomial �푝, let

ℒ′�푝 =

{
0 if �푝 has a �푤 �푗 factor,

ℒ�푝 otherwise
.

25

Now let’s go through all of the constraints and verify them. The first condition holds since by

definition, ℒ′1 = ℒ1 = 1. Now let’s prove the conditions in the second set of conditions. Suppose

‖�푝‖2 ≤ 1 and �푝 = �푞 + �푤 �푗�푟, where �푞 does not contain a monomial containing �푤 �푗.

• ℒ′�푝2 ≥ −�휏 · (�푇 + 1).

ℒ′�푝2 = ℒ′(�푞 + �푤 �푗�푟)2 = ℒ′�푞2 = ℒ�푞2 = −�휏 · �푇 ≥ −�휏 · (�푇 + 1)

as desired, where we used the fact that ‖�푞‖2 ≤ ‖�푝‖2 ≤ 1.

• ∀�푖 : ℒ′(�푤2
�푖
− �푤�푖)�푝2 ∈ [−�휏 · (�푇 + 1), �휏 · (�푇 + 1)]. If �푖 = �푗, this would be zero, if not then we can

write �푝 as �푞 + �푤 �푗�푟 similar to the previous part and get the desired bounds.

• ℒ′(∑�푤�푖 − �푛 + (�푇 + 1))�푝2 ≥ −5�휏 · (�푇 + 1) · �푛.

ℒ′(
∑

�푤�푖 − �푛 + (�푇 + 1))�푝2 = ℒ′(
∑

�푤�푖 − �푛 + (�푇 + 1))�푞2

= ℒ′(
∑
�푖≠�푗

�푤�푖 − �푛 + (�푇 + 1))�푞2

= ℒ(
∑
�푖≠�푗

�푤�푖 − �푛 + (�푇 + 1))�푞2

= ℒ(
∑

�푤�푖 − �푛 + �푇)�푞2 − �푤 �푗�푞
2 + �푞2

To bound the first term, we have that ℒ(Σ�푤�푖−�푛+�푇)�푞2 ≥ −5�휏 ·�푇 ·�푛. To bound the second and

third terms, we have ℒ[−�푤 �푗�푞
2 + �푞2] = ℒ[(1 − �푤 �푗)�푞2] = ℒ[(1 − �푤 �푗)2�푞2] + ℒ[(�푤 �푗 − �푤2

�푗
)�푞2]. We

know that ‖(1−�푤 �푗)�푞‖2 ≤ 2‖�푞‖2 ≤ 2, so ℒ[(1−�푤 �푗)2�푞2] ≥ −4�휏 ·�푇, and ℒ[(�푤 �푗 −�푤2
�푗
)�푞2] ≥ −�휏 ·�푇.

So together, we have a bound of at least −5�휏 ·�푇 · �푛 − 5�휏 ·�푇. Therefore it remains to prove that

−5�휏 · �푇 · �푛 − 5�휏 · �푇 ≥ −5�휏 · (�푇 + 1) · �푛, which is trivial by Lemma 5.7.

• ∀�푗 , �푘 : ℒ′
([

1
�푛

∑
�푖(�푥′�푖 − �휇′)(�푥′

�푖
− �휇′)T + �푀�푀T − (1 + �훼)�퐼

]
�푗,�푘

�푝2
)
∈ [−�휏 ·�푇, �휏 ·�푇], where �휇′ = E�푖 �푥

′
�푖
.

Similar to previous parts, we just need to plug in �푝 = �푞 + �푤 �푗�푟, and we get the desired

inequality.

The last condition holds because ℒ′�휇′
�푖
− �휇�푖 = ℒ�휇′

�푖
− �̃휇�푖. Therefore we showed that there exists

a linear functional ℒ′ which satisfies the constraints of Definition 5.5 for �푦′, and �푇 + 1. Finally,

note that ‖ℛ(ℒ′)‖2 ≤ ‖ℛ(ℒ)‖2 clearly holds. Therefore the score function �풮 has sensitivity 1 with

respect to its first input. �

5.4.2 Quasi-convexity

Lemma 5.9 (quasi-convexity). The score function �풮 as defined in Definition 5.6 is quasi-convex in its

second input, �̃휇.

Proof. Suppose �풮(�̃휇1 ,�풴) = �푇1 ,�풮(�̃휇2,�풴) = �푇2, and suppose there exists ℒ1 and ℒ2 that satisfy the

constraints in Definition 5.5 with �̃휇1, �푇1, and �̃휇2, �푇2 respectively. If we can construct a functional

ℒ3 such that the constraints in Definition 5.5, are satisfied with �휇3 = �휆�̃휇1 + (1 − �휆)�̃휇2, and �푇3 =

26

max{�푇1 , �푇2}, we are done. Let ℒ3 = �휆ℒ1 + (1 − �휆)ℒ2. Then all of the constraints in Definition 5.5

will be satisfied trivially except for ℒ3(
∑

�푤�푖 − �푛 + �푇3)�푝2 ≥ −5�휏 · �푇3 · �푛. Let’s verify this constraint.

Without loss of generality suppose �푇3 = �푇2 ≥ �푇1, then

ℒ3

(∑
�푤�푖 − �푛 + �푇3

)
�푝2 ≥ (�휆ℒ1 + (1 − �휆)ℒ2)

(∑
�푤�푖 − �푛 + �푇2

)
�푝2

= �휆ℒ1

(∑
�푤�푖 − �푛 + �푇1

)
�푝2 + (1 − �휆)ℒ2

(∑
�푤�푖 − �푛 + �푇2

)
�푝2 + �휆(�푇2 − �푇1)ℒ1�푝

2

≥ −5�휏 · �푛(�휆�푇1 + (1 − �휆)�푇2) − �휆(�푇2 − �푇1) · �휏 · �푇1
≥ −5�휏 · �푛(�휆�푇1 + (1 − �휆)�푇2 + �휆(�푇2 − �푇1)) (�푛 ≥ �푇1, Lemma 5.7)

= −5�휏 · �푇3 · �푛,

as desired. �

5.4.3 Accuracy

We show that any point �̃휇 of low score with respect to i.i.d. samples from �풩(�휇, �퐼) must be close

to �휇. We remark that because of our sensitivity bound, this will also imply a similar result for

corrupted samples.

Lemma 5.10. Let �훼 = �푂(�휂) and suppose �훼, �휂 are bounded by a sufficiently small constant. Let �푛 ≥
�푑+log(1/�훽)

�훼2 , and �풳 = {�푥1 , . . . , �푥�푛} ∼ �풩(�휇, �퐼), for �휇 ∈ R�푑.

Then, for any �훼∗ ≤ �훼, and assuming �휏 ≪ 1/(�푛�푑)�푂(1), with probability at least 1−�훽, every point �̃휇 ∈ R�푑

that is (�훼∗ , �휏, �휙, �푇)-certifiable for �풳 with �푇 = �휂�푛 and �휙 ≤ �훼/
√
�푑 must satisfy ‖�̃휇 − �휇‖2 ≤ �푂(�훼).

The proof of Lemma 5.10 essentially follows from the same argument as in [KMZ22], with slight

modifications to deal with our modified score function. Hence, we defer the proof to Appendix B.

5.4.4 Volume of Good Points

Lemma 5.11. Let �풳 = {�푥1 , . . . , �푥�푛} ∼ �풩(�휇, �퐼), and let �풴 = {�푦1 , . . . , �푦�푛} represent an �휂-corruption of �풳.

Then, for any �휏, �휙 ≥ 0 and �푇 = �휂 · �푛, with probability at least 1− �훽, there exists a �휇′ such that every �̃휇 such

that ‖�̃휇 − �휇′‖∞ ≤ �휙 is an (�훼, �휏, �휙, �푇)-certifiable mean for �풴.

Proof. Our linear operator ℒ generalizes pseudo-expectations Ẽ. So, it suffices to find a pseudo-

expectation on variables {�푤�푖}, {�푥′�푖}, {�푀�푖, �푗} that satisfy the constraints of the robust algorithm. If

so, then by setting �휇′ = 1
�푛

∑
�푥′
�푖
, we have that for all �̃휇 such that ‖�̃휇− Ẽ�휇′‖∞ ≤ �휙, �̃휇 is an (�훼, �휏, �휙, �푇)-

certifiable mean.

Indeed, finding such a pseudo-expectation is quite simple to do: it will actually just be an

expectation over a single point. We just set every �푤�푖 = 1 if �푦�푖 = �푥�푖 and 0 otherwise, and set every

�푥′
�푖
= �푥�푖 , so �휇′ = 1

�푛

∑
�푖 �푥�푖 . By Lemma 5.3, we have that 1

�푛

∑�푛
�푖=1〈�푥�푖 − �휇, �푣〉2 ≤ 1 + �푂(�휂) for all unit

vectors �푣. In addition,

1

�푛

�푛∑
�푖=1

〈�푥�푖−�휇, �푣〉2 =
1

�푛

�푛∑
�푖=1

〈(�푥�푖−�휇′)+(�휇′−�휇), �푣〉2 = 〈�휇′−�휇, �푣〉2+ 1

�푛

�푛∑
�푖=1

〈�푥�푖−�휇′, �푣〉2 ≥ 1

�푛

�푛∑
�푖=1

〈�푥�푖−�휇′, �푣〉2.

27

So, 1
�푛

∑�푛
�푖=1〈�푥�푖 − �휇′, �푣〉2 ≤ 1+�푂(�휂) for all unit vectors �푣, which means 1

�푛

∑�푛
�푖=1(�푥�푖 − �휇)(�푥�푖 − �휇)⊤ 4 (1+

�푂(�휂))�퐼. Therefore, there exists a �푑×�푑matrix �푀 such that 1
�푛

∑�푛
�푖=1(�푥�푖−�휇)(�푥�푖−�휇)⊤+�푀�푀⊤ = (1+�푂(�휂))�퐼.

Finally, we remark that every�푤�푖 , �푥�푖, �푗 , and �푀 �푗,�푘 is bounded by �푅 ·�푛. Therefore, the corresponding

linear operator ℒ satisfies ‖ℛ(ℒ)‖2 ≤ (�푅�푛�푑)�푂(1). �

Lemma 5.12. Let �풳 = {�푥1 , . . . , �푥�푛} ∼ �풩(�휇, �퐼), and let �풴 = {�푦1 , . . . , �푦�푛} represent an �휂-corruption of

�풳. Then, for every integer �푇 ∈ [�휂 · �푛, �휂∗ · �푛] for some fixed constant �휂∗ < 1, with probability at least 1 − �훽,

every (�훼, �휏, �휙, �푇)-certifiable mean with respect to �풴 has distance at most �푂(�푇/�푛) from �휇.

Proof. Since the score function has sensitivity at most 1 (Lemma 5.8), this means that any (�훼, �휏, �휙, �푇)-
certifiable mean with respect to �풴 is an (�훼, �휏, �휙, �푇 + �휂�푛)-certifiable mean with respect to �풳.

Now, define �휂′ :=
�푇+�휂�푛
�푛 = �푂(�푇�푛). In this case, by setting �훼′ = �푂(�휂′) and since �훼 = �푂(�휂) ≤ �훼′,

we have that by Lemma 5.10 that any (�훼, �휏, �휙, �푇 + �휂�푛)-certifiable mean �휇 must satisfy ‖�̃휇 − �휇‖2 ≤
�푂(�훼′) ≤ �푂(�푇/�푛). �

If we set �휙 = �훼/
√
�푑 and �휏 ≪ 1/(�푛�푑)�푂(1), this means the volume of (�훼, �휏, �휙, �푇)-certifiable

means for �푇 = �휂�푛 is at least (�훼/
√
�푑)�푑. However, for any �푇 = �휂′�푛 for �휂 ≤ �휂′ ≤ �휂∗, the volume of

(�훼, �휏, �휙, �푇)-certifiable means is at most (�̃푂(�휂′))�푑 times the volume of a �푑-dimensional sphere, which

is (�̃푂(�휂′))�푑/
√
�푑
�푑
. Finally, for �푇 = �휂′�푛 with �휂′ > �휂∗, the volume of Θ, the set of all candidate means

�̃휇 with ‖�̃휇‖2 ≤ �푅, is at most �푂(�푅/
√
�푑)�푑.

5.4.5 Efficient Computability

Verifying that we can efficiently compute the score roughly follows from the ellipsoid method

used in semidefinite programming. We had to modify the score accordingly (relaxing constraints

using �휏) – however, we show in Theorem C.6, deferred to Appendix C, that for the score in

Definition 5.6, defined by the constraints in Definition 5.5, we can compute it up to error �훾 in time

poly(�푛, �푑, log�푅, log �훾−1). Hence, this verifies the “efficiently computable” criterion for Theorem 4.1.

5.4.6 Efficient Finding of Low-Scoring Point

Verifying the “robust algorithm finds low-scoring point” criterion is also direct from Theorem C.6.

We simply remove the constraint that ℒ�휇′
�푖
− �̃휇�푖 ∈ [−�휙, �휏 · �푇 + �휙 + �휏 · �푇], and allow for the much

broader ℒ�휇′
�푖
∈ [−�푅, �푅]. We can apply Theorem C.6 in the same way to find some linear operator

ℒ with score at most min�̃휇�풮(�̃휇,�풴) + 1. Then, we can compute ℒ[�휇′] set �푟 = �휙, and obtain that

every point within ℓ2 distance �휙 of ℒ[�휇′] has score at most min�̃휇�풮(�̃휇,�풴) + 1.

5.5 Proof of Theorem 5.1

We apply Theorem 4.1, using the score function defined in Definition 5.6. Indeed, for �푟 = �휙 = �훼/
√
�푑,

we have verified all conditions, as long as �푛 ≥ �푂((�푑 + log(1/�훽))/�훼2). Therefore, we have an �휀-DP

algorithm running in time poly(�푛, �푑, log �푅
�훼) = poly(�푛, �푑) that finds a candidate mean �̃휇 of score at

most 2�휂�푛, as long as

�푛 ≥ �푂

(
max

�휂′:�휂≤�휂′≤1

log(�푉�휂′(�풴)/�푉�휂(�풴)) + log(1/(�훽 · �휂′))
�휀 · �휂′

)
.

28

Using Lemmas 5.11 and 5.12, we have that for �휂′ ≤ �휂∗ for some �휂∗ = Ω(1), �푉�휂′(�풴)/�푉�휂(�풴) =

(�푂(�휂′)/�휂)�푑 ≤ (�푂(1/�휂))�푑. For �휂′ > �휂∗, we have that �푉�휂′(�풴)/�푉�휂(�풴) ≤ (�푂(�푅/�휂))�푑. So overall, it suffices

for

�푛 ≥ �푂

(
�푑 + log(1/�훽)

�훼2

)
+ �푂

(
max

�휂≤�휂′≤�휂∗
�푑 log(1/�휂) + log(1/(�훽 · �휂))

�휀 · �휂′ + max
�휂∗≤�휂′≤1

�푑 log(�푅/�휂) + log(1/(�훽 · �휂))
�휀 · �휂′

)

= �푂

(
�푑 + log(1/�훽)

�훼2
+

�푑 + log(1/�훽)
�휀 · �훼 + �푑 log �푅

�휀

)
.

Hence, our algorithm, using this many samples, can find a point �̃휇 of score at most 2�휂�푛. Finally,

by replacing �휂 with 2�휂 and applying Lemma 5.10, we have that any point �̃휇 with score at most 2�휂�푛
is within �푂(�훼) of �휇. While we did not verify Lemma 5.10 for corrupted points, by our bound on

sensitivity, we know that for any �풴 which is an �휂-corruption of �풳, any point with score at most

2�휂�푛 with respect to �풴 has score at most 3�휂�푛 with respect to �풳, and therefore is within �푂(�훼) of �휇.

This completes the proof.

5.6 The approx-DP setting

In this subsection, we prove Theorem 5.2. In this setting, the score function is identical, but we can

afford fewer samples as we apply the algorithm of Theorem 4.2 instead of Theorem 4.1. The main

additional thing we must check is that for any dataset �풴, if �풮(Σ,�풴) ≤ 0.7�휂∗�푛 for some Σ, then the

volume ratio �푉�휂∗(�풴)/�푉0.8�휂∗(�풴) is not too high.

Before proving our main result of this subsection, we must first establish the following “worst-

case robustness” guarantee, which is important for ensuring privacy. We defer the proof to

Appendix B.

Lemma 5.13. Fix �휂∗ to be a sufficiently small constant, and �푇 = �휂∗�푛. Also, suppose �휙 ≤ �훼/
√
�푑. Then,

for a dataset �풴 with every �푦�푖 bounded in ℓ2 norm by �푅 · �푑100, if there exist �̃휇1, �̃휇2 ∈ R�푑 that are both

(�훼, �휏, �휙, �푇)-certifiable means with respect to �풴, then ‖�̃휇1 − �̃휇2‖2 ≤ �푂(1).

As a corollary of Lemma 5.13, we have the following result.

Corollary 5.14. Suppose that �풴 is a dataset with every �푦�푖 bounded in ℓ2 norm by �푅 · �푑100 that has an

(�훼, �휏, �휙, 0.7�휂∗�푛)-certifiable mean, and let �̂휇 = ℒ[�휇′] where ℒ is an (�훼, �휏, �휙, 0.7�휂∗�푛)-certificate. Also,

suppose �휙 ≤ �훼/
√
�푑. Then, the set of (�훼, �휏, �휙, 0.8�휂∗�푛)-certifiable means contains all �̃휇 such that ‖�̃휇− �̂휇‖∞ ≤

�휙, and any (�훼, �휏, �휙, �휂∗�푛)-certifiable mean �̃휇 must satisfy ‖�̃휇 − �̂휇‖ ≤ �푂(1).

Proof. If ℒ is an (�훼, �휏, �휙, 0.7�휂∗�푛)-certificate, it is also an (�훼, �휏, �휙, 0.8�휂∗�푛)-certificate. This means

every �̃휇 such that ‖�̂휇− �̃휇‖∞ ≤ �휙 is (�훼, �휏, 0.8�휂∗�푛)-certifiable. To see why, note that for a (�훼, �휏, 0.8�휂∗�푛)-
certificate ℒ of �풴, Constraint 3 (which is the only constraint that deals with �̃휇, which we recall

is not indeterminate) just requires that ℒ[�휇′
�푖
] − �̃휇�푖 ∈ [−�휙 − �휏 · �푇, �휙 + �휏 · �푇]. So, any such �̃휇 is an

(�훼, �휏, 0.8�휂∗�푛)-certifiable covariance.

The second part is immediate by Lemma 5.13. �

Therefore, by setting �휙 := �훼/
√
�푑, the set of (�훼, �휏, �휙, �휂∗�푛)-certifiable means has volume at most

�푂(1/
√
�푑)�푑, since the volume of a unit sphere is �푂(1/

√
�푑)�푑. The set of (�훼, �휏, �휙, 0.8�휂∗�푛)-certifiable

means has volume at least �휙�푑 ≥ Ω(1/
√
�푑)�푑. So, the ratio �푉�휂∗(�풴)/�푉0.8�휂∗(�풴) ≤ �푂(1/�훼)�푑.

29

We now prove Theorem 5.2, by applying Theorem 4.2. First, note that we may truncate the

samples so that no �푦�푖 ∈ �풴 has norm more than �푅 · �푑100. Since we are promised ‖�휇‖ ≤ �푅,

the probability that any uncorrupted sample has this norm is at most �푒−�푑
100

. We will set �휂∗

to be a sufficiently small constant (such as 0.01). We just showed, using Corollary 5.14, that

for all �풴 such that min
Σ̃
�풮(Σ̃,�풴) ≤ 0.7�휂∗�푛, �푉�휂∗(�풴)/�푉0.8�휂∗(�풴) ≤ �푂(1/�훼)�푑2 . So, as long as �푛 ≥

�푂
(
log(1/�훿)+�푑 log(1/�훼)

�휀

)
, the algorithm of Theorem 4.2 is (�휀, �훿)-differentially private. In addition, we

have already verified all of the conditions, so the algorithm is accurate as long as we additionally

have �푛 ≥ �푂((�푑 + log(1/�훽))/�휂2) and

�푛 ≥ �푂

(
max

�휂′:�휂≤�휂′≤�휂∗
log(�푉�휂′(�풴)/�푉�휂(�풴)) + log(1/(�훽 · �휂′))

�휀 · �휂′
)
.

By our volume bounds, this means it suffices for

�푛 ≥ �푂

(
�푑 + log(1/�훽)

�훼2

)
+ �푂

(
max

�휂≤�휂′≤�휂∗
�푑 log(1/�휂) + log(1/(�훽 · �휂))

�휀 · �휂′
)
+ �푂

(
log(1/�훿) + �푑 log(1/�훼)

�휀

)

= �푂

(
�푑 + log(1/�훽)

�훼2
+

�푑 + log(1/�훽)
�휀 · �훼 + log(1/�훿)

�휀

)
.

This concludes the proof of Theorem 5.2.

6 Preconditioning the Gaussian

6.1 Main Theorems

Our goal is to obtain polynomial time algorithms for private covariance estimation of a unknown

Gaussian, with optimal sample complexity. Before achieving this, an important step is precon-

ditioning the Gaussian so that the samples come from a near-isotropic Gaussian. This requires

approximately learning the covariance up to spectral distance, which we focus on in this section.

We prove both a pure-DP and approx-DP result in this section, showing that one can privately

(and robustly) learn the covariance of a Gaussian up to spectral distance using roughly �푑2 samples.

In addition, in the approx-DP setting, our sample complexity has no dependence on the parameter

�퐾, which describes the ratio between a priori upper and lower bounds on the true covariance

matrix, though the runtime depends on log �퐾.

Theorem 6.1 (Private Preconditioning of a Gaussian, Pure-DP). Let Σ ∈ R�푑×�푑 be such that �퐾−1�퐼 4
Σ 4 �퐾 · �퐼. Then, there exists an �휀-differentially private algorithm that takes �푛 i.i.d. samples from �풩(0,Σ)
and with probability 1 − �훽 outputs Σ̃ such that ‖Σ−1/2Σ̃Σ−1/2 − �퐼‖�표�푝 ≤ �훼, for

�푛 = �푂

(
�푑2 + log2(1/�훽)

�훼2
+

�푑2 + log(1/�훽)
�훼�휀

+ �푑2 log �퐾

�휀

)
.

Here �푂 is hiding factors. Moreover, this algorithm runs in time poly(�푛, �푑), and succeeds with the same

accuracy even if �휂 = Ω̃(�훼) fraction of the points are adversarially corrupted.

30

Theorem 6.2 (Private Preconditioning of a Gaussian, Approx-DP). Let Σ ∈ R�푑×�푑 be such that

�퐾−1�퐼 4 Σ 4 �퐾 · �퐼. Then, there exists an (�휀, �훿)-differentially private algorithm that takes �푛 i.i.d. samples

from �풩(0,Σ) and with probability 1 − �훽 outputs Σ̃ such that ‖Σ−1/2Σ̃Σ−1/2 − �퐼‖�표�푝 ≤ �훼, where

�푛 = �푂

(
�푑2 + log2(1/�훽)

�훼2
+

�푑2 + log(1/�훽)
�훼�휀

+ log(1/�훿)
�휀

)
.

Here �푂 is hiding factors. Moreover, this algorithm runs in time poly(�푛, �푑, log�퐾), and succeeds with the

same accuracy even if �휂 = Ω̃(�훼) fraction of the points are adversarially corrupted.

6.2 Resilience of Moments

Similar to the mean estimation case, we will also require higher-order moment bounds, and stability

conditions that imply the top roughly �휂 fraction of samples in any “covariance” direction cannot

be too large.

Lemma 6.3. Let {�푥�푖} ∼ �풩(0, �퐼) and �푛 ≥ �푂((�푑2 + log2(1/�훽))/�휂2). Then, with probability 1 − �훽, the

following all hold for all symmetric �푃 ∈ R�푑×�푑 with ‖�푃‖�퐹 = 1 simultaneously, for some �훼 = �̃푂(�휂).

1.
��� 1�푛 ∑�푛

�푖=1〈(�푥�푖�푥⊤�푖 − �퐼)/
√
2, �푃〉

��� ≤ �훼.

2.
��� 1�푛 ∑�푛

�푖=1〈(�푥�푖�푥⊤�푖 − �퐼)/
√
2, �푃〉2 − 1

��� ≤ �훼.

3. For any real values �푎1 , . . . , �푎�푛 ∈ [0, 1] such that
∑�푛

�푖=1 �푎�푖 ≤ �휂 · �푛,
��� 1�푛 ∑�푛

�푖=1 �푎�푖 〈(�푥�푖�푥⊤�푖 − �퐼)/
√
2, �푃〉

��� ≤ �훼

and
��� 1�푛 ∑�푛

�푖=1 �푎�푖 〈(�푥�푖�푥⊤�푖 − �퐼)/
√
2, �푃〉2

��� ≤ �훼.

4. 1
�푛

∑�푛
�푖=1

���〈(�푥�푖�푥⊤�푖 − �퐼)/
√
2, �푃〉

��� ≤ �푂(1).

To our knowledge, such a result is not known with this number of samples. The best-known

result we know of can obtain the same bounds but requires �푂(�푑2 log5(1/�훽)/�휂2) samples [DKK+16],

which means the number of samples required is �푑2+Ω(1) if we want exponentially small failure

probability. We prove Lemma 6.3 in Appendix D.

Remark. As in the mean estimation case, Lemma 6.3 will be the only conditions we will require

about the samples we draw. (Or if �푥�푖 ∼ �풩(0,Σ), then {Σ−1/2�푥�푖} are resilient.)

6.3 Robust Algorithm

Suppose �푥�푖’s are samples from �풩(0,Σ). Let �푦�푖’s be an arbitrarily �휂-corruption of �푥�푖’s. Consider

the following pseudo-expectation program, where �푦�푖’s are the input points and the domain is the

31

degree-12 pseudo-expectations with {�푤�푖}, {�푥�푖} as indeterminates.

find Ẽ

such that Ẽ satisfies �푤2
�푖 = �푤�푖 ,

Ẽ satisfies
∑

�푤�푖 ≥ (1 − �휂)�푛,
Ẽ satisfies �푤�푖�푥

′
�푖 = �푤�푖�푦�푖 ,

Ẽ(2 + �푂(�휂)) · (�푣⊤Σ′�푣)2 − 1

�푛

∑
(〈�푣, �푥′〉2 − �푣⊤Σ′�푣)2 has a degree 4-SoS proof of

nonnegativity in �푣 ∈ R�푑, where Σ′ =
1

�푛

�푛∑
�푖=1

(�푥′�푖)(�푥′�푖)⊤.

To explain the last condition further, note that Ẽ
[
(2 + �푂(�휂)) · (�푣⊤Σ′�푣)2 − 1

�푛

∑(〈�푣, �푥′〉2 − �푣⊤Σ′�푣)2
]

is a degree 4 polynomial in �푣 ∈ R�푑: the claim is that this polynomial has a degree-4 sum of squares

certificate of being nonnegative.

It can be proven that if �푛 is as in Lemma 6.3, with probability 1− �훽 over the choice of �푥�푖’s, if we

output ẼΣ′, then ‖Σ−1/2(ẼΣ′)Σ−1/2 − �퐼‖�표�푝 = �푂(�휂).

6.4 Score Function and its Properties

Our goal is to use Theorem 4.1, so we relax the pseudo-expectation from the robust algorithm to a

linear operator that behaves as an approximate pseudoexpectation.

Definition 6.4 (Certifiable Covariance). Let �훼, �휏, �푇 ∈ R≥0, �푦1, . . . �푦�푛 ∈ R�푑 and let Σ̃ ∈ R�푑×�푑 be PSD.

We call the point Σ̃ an (�훼, �휏, �푇)-certifiable covariance for �푦�푖’s if and only if there exists a linear

functional ℒ over the set of polynomials in indeterminates {�푤�푖}, {�푥′�푖, �푗}, {�푀{ �푗, �푗′},{�푘,�푘′}} of degree at

most 12 such that

1. ℒ1 = 1

2. for every polynomial �푝, where ‖ℛ(�푝)‖2 ≤ 1

(a) ℒ�푝2 ≥ −�휏 · �푇,

(b) ∀�푖 ,ℒ(�푤2
�푖
− �푤�푖)�푝2 ∈ [−�휏 · �푇, �휏 · �푇],

(c) ℒ(∑�푤�푖 − �푛 + �푇)�푝2 ≥ −5�휏 · �푇 · �푛,

(d) ∀�푖 ,ℒ�푤�푖(�푥′�푖 − �푦�푖)�푝2 ∈ [−�휏 · �푇, �휏 · �푇],

3. ℒ[1�푛
∑

�푖

(
〈�푣, �푥′

�푖
〉2 − �푣⊤Σ′�푣

)2 + (�푣⊗2)⊤�푀⊤�푀�푣⊗2 − (2+ �훼)(�푣⊤Σ′�푣)2], as a degree-4 polynomial in

�푣 = (�푣1, . . . , �푣�푑), has all coefficients between [−�휏 · �푇, �휏 · �푇], where Σ′ := 1
�푛

∑(�푥′
�푖
)(�푥′

�푖
)⊤.

4. ℒ[(1+ �훼)Σ′ − Σ̃] < −�휏 ·�푇 · �퐼 , and ℒ[Σ̃− (1− �훼)Σ′] < −�휏 ·�푇 · �퐼 , where ℒ applied to a matrix is

applied entrywise,

5. (1
2�퐾 − �휏 · �푇) · �퐼 4 ℒ[Σ′] 4 (2�퐾 + �휏 · �푇) · �퐼.

32

We also require ‖ℛ(ℒ)‖2 ≤ �푅′ +�푇 · �휏 for some sufficiently large �푅′ = poly(�푛, �푑, �퐾). As in the mean

estimation case, this requirement is only needed for computability purposes. We will also say that

ℒ is an (�훼, �휏, �푇)-certificate for �풴.

Note that one may think of ℒ as an approximate pseudo-expectation, and it is clear that ℒ
generalizes pseudo-expectations. In addition, for each constraint 2a) to 2d) we implicitly assume

a bound on the degree of �푝 so that ℒ is applied to a polynomial of degree at most 12.

For our purposes, we will end up setting �휏 = 1/(�퐾 · �푛 · �푑)�푂(1), for a large enough �푂(1).
Now we use this definition to define a score function.

Definition 6.5 (Score Function). Let �훼, �휏, �푇 ∈ R≥0, �푦1, . . . , �푦�푛 ∈ R�푑 (with �풴 := {�푦1 , . . . , �푦�푛}), and

Σ̃ ∈ R�푑×�푑 be a symmetric matrix. We define the score function �풮 : R�푑×�푑 → R as

�풮(Σ̃,�풴; �훼, �휏) = min
�푇

such that Σ̃ is a (�훼, �휏, �푇) certifiable covariance for �푦�푖’s .

In the rest of this subsection we will prove the following properties for this score function. This

will allow us to use Theorem 4.1.

1. Score has sensitivity 1.

2. Score is quasi-convex as a function of Σ̃.

3. All points Σ̃ that have score at most �휂 · �푛 have spectral distance at most �̃푂(�휂) away from Σ.

(Robustness for volume/accuracy purposes).

4. The volume of points that have score at most �휂 · �푛 is sufficiently large, and the volume of

points with score at most �휂′ · �푛 for �휂′ > �휂 is not too large.

5. Score is efficiently computable.

6. We can approximately minimize score efficiently.

6.4.1 Existence of Low-Scoring Σ′

Before verifying the desired conditions of our score functions, we prove that for data points drawn

from �풩(0,Σ), with high probability some Σ′ which is close to Σ has low score. This will be

important both for sensitivity and for volume bounds. While such results are already known in

the literature [KS17] for certifiable fourth moment bounds, which we will need to verify Condition

3 of Definition 6.4, the previous result requires �푛 = �̃푂(�푑2 log2(1/�훽)/�훼2), as opposed to our goal of

�푛 = �̃푂((�푑2 + log2(1/�훽))/�훼2). As a result, we reprove some known results to establish a low-scoring

Σ′, but with better failure probability bounds.

First, we note the following basic proposition which is immediate by Cauchy-Schwarz.

Proposition 6.6. For any two matrices �퐴, �퐵 ∈ R�푑×�푑, |Tr(�퐴�퐵)| ≤ ‖�퐴‖�퐹 · ‖�퐵‖�퐹.

The following proposition is also well-known.

Proposition 6.7. For any two matrices �퐴, �퐵 ∈ R�푑×�푑, ‖�퐴�퐵‖�퐹 ≤ ‖�퐴‖�표�푝 · ‖�퐵‖�퐹 , ‖�퐵‖�표�푝 · ‖�퐴‖�퐹 ≤ ‖�퐴‖�퐹 · ‖�퐵‖�퐹.

33

Proposition 6.8. Let �푀 ∈ R�푑×�푑 be a real symmetric matrix, and let �퐽 ∈ R�푑×�푑 be any real-valued matrix

(possibly not symmetric) such that ‖�퐽�퐽⊤ − �퐼‖�표�푝 ≤ �훼. Then, ‖�퐽⊤�푀�퐽‖2
�퐹
= (1 ± 3�훼) · ‖�푀‖2

�퐹
.

Proof. Start by writing

‖�퐽⊤�푀�퐽‖2�퐹 = Tr((�퐽⊤�푀�퐽)(�퐽⊤�푀�퐽)⊤) = Tr(�퐽⊤�푀�퐽�퐽⊤�푀�퐽) = Tr(�푀�퐽�퐽⊤�푀�퐽�퐽⊤).

Now, write �퐽�퐽⊤ = �퐼 + �퐻 for some symmetric matrix �퐻 such that ‖�퐻‖�표�푝 ≤ �훼. Therefore,

Tr(�푀�퐽�퐽⊤�푀�퐽�퐽⊤) = Tr(�푀(�퐼 + �퐻)�푀(�퐼 + �퐻))
= Tr(�푀2) + Tr(�푀�퐻�푀) + Tr(�푀�푀�퐻) + Tr(�푀�퐻�푀�퐻)
= Tr(�푀2) + 2Tr(�푀�푀�퐻) + Tr((�푀�퐻)2).

Now, by Propositions 6.6 and 6.7, we have that |Tr((�푀�퐻)2)| ≤ ‖�푀�퐻‖2
�퐹
≤ ‖�푀‖2

�퐹
· ‖�퐻‖2�표�푝. In

addition, |Tr(�푀�푀�퐻)| ≤ ‖�푀‖�퐹 · ‖�푀�퐻‖�퐹 ≤ ‖�푀‖2
�퐹
· ‖�퐻‖�표�푝. Since ‖�퐻‖�표�푝 ≤ �훼, this implies that

‖�퐽⊤�푀�퐽‖2
�퐹
= Tr(�푀2) ± 3�훼 · ‖�푀‖2

�퐹
= (1 ± 3�훼) · ‖�푀‖2

�퐹
. �

Lemma 6.9. Suppose �푛 ≥ �푂
(
�푑2+log2(1/�훽)

�휂2

)
, and let �훼 = �푂(�휂). Let �풳 = {�푥1 , . . . , �푥�푛} ∼ �풩(0,Σ),

and let �풴 = {�푦1 , . . . , �푦�푛} represent an �휂-corruption of �풳. Then, for any �휏 ≥ 0 and �푇 = �휂 · �푛, with

probability at least 1 − �훽, there exists a Σ′ such that every Σ̃ of spectral distance at most �훼 from Σ′ (i.e.,

‖(Σ′)−1/2Σ̃(Σ′)−1/2 − �퐼‖�표�푝 ≤ �훼) is an (�훼, �휏, �푇)-certifiable covariance for �풴.

Proof. As in the case for mean estimation, we use the fact that our linear operators generalize

pseudo-expectations, which in turn generalize expectations over a single point. Again, we set

�푤�푖 = 1 if �푦�푖 = �푥�푖 and 0 otherwise, and �푥′
�푖
= �푥�푖 for all �푖. For �푇 = �휂�푛, it is clear that Constraints 1 and

2a-2d are all satisfied in Definition 6.4.

To verify Constraint 3 in Definition 6.4, first note that Σ−1/2�푥1, . . . ,Σ−1/2�푥�푛
�푖.�푖.�푑.∼ �풩(0, �퐼). Now,

by part 2 of Lemma 6.3, where we replace �훼 with �훼/4, we have 1
�푛

∑�푛
�푖=1〈Σ−1/2�푥�푖�푥⊤�푖 Σ

−1/2 − �퐼 , �푃〉2 ≤
(2 + �훼/2) · ‖�푃‖2

�퐹
with probability at least 1 − �훽, for all �푑 × �푑 symmetric matrices �푃. We can write

〈Σ−1/2�푥�푖�푥
⊤
�푖 Σ

−1/2 − �퐼 , �푃〉 = Tr[(Σ−1/2�푥�푖�푥
⊤
�푖 Σ

−1/2 − �퐼) · �푃]
= Tr[�푥�푖�푥⊤�푖 · Σ−1/2�푃Σ−1/2 − �푃]
= Tr[(�푥�푖�푥⊤�푖 − Σ) · (Σ−1/2�푃Σ−1/2)]
= 〈�푥�푖�푥⊤�푖 − Σ,Σ−1/2�푃Σ−1/2〉.

So, by replacing �푃 with Σ1/2�푃Σ1/2, we have that for all symmetric matrices �푃,

1

�푛

�푛∑
�푖=1

〈�푥�푖�푥⊤�푖 − Σ, �푃〉2 ≤ (2 + �훼/2) · ‖Σ1/2�푃Σ1/2‖2�퐹 .

Now, note that the empirical covariance Σ′ = 1
�푛

∑�푛
�푖=1 �푥�푖�푥

⊤
�푖

of the uncorrupted samples satisfies

‖Σ−1/2Σ′Σ−1/2− �퐼‖�퐹 ≤ �훼/100 with probability at least 1−�훽, by Condition 1 of Lemma 6.3 (replacing

�훼 with �훼/200). Therefore, by setting �퐽 = Σ−1/2(Σ′)1/2, we have ‖�퐽�퐽⊤ − �퐼‖�퐹 ≤ �훼/100, which means

34

‖(Σ′)1/2�푃(Σ′)1/2‖2
�퐹
= ‖�퐽⊤Σ1/2�푃Σ1/2�퐽‖2

�퐹
≥ (1−3�훼/100)· ‖Σ1/2�푃Σ1/2‖2

�퐹
by Proposition 6.8. In addition,

since Σ′ is the empirical average of �푥�푖�푥
⊤
�푖

, this means for any symmetric �푃,

1

�푛

�푛∑
�푖=1

〈�푥�푖�푥⊤�푖 − Σ
′, �푃〉2 ≤ 1

�푛

�푛∑
�푖=1

〈�푥�푖�푥⊤�푖 − Σ, �푃〉2

≤ 2 + �훼/2
(1 − 3�훼/100) · ‖(Σ

′)1/2�푃(Σ′)1/2‖2�퐹

≤ (2 + �훼) · ‖(Σ′)1/2�푃(Σ′)1/2‖2�퐹 .

For fixed �푥�푖 (and thus fixed Σ′), note that for a symmetric matrix �푃, 〈�푥�푖�푥⊤�푖 − Σ′, �푃〉 is a linear

functional mapping �푃 to R, and (Σ′)1/2�푃(Σ′)1/2 is a linear map sending symmetric matrices �푃

to symmetric matrices. For a symmetric matrix �푃 ∈ R�푑×�푑, let �푃♭ ∈ R�푑2 be the vector {�푃�푖�푗}�푖, �푗≤�푑 ,

and let (�푃♭)′ ∈ R�푑(�푑+1)/2 be the vector {�푃�푖�푗}�푖≤ �푗 . So, if we consider the embedding �푃 → (�푃♭)′,
there exist vectors �푣1 , . . . , �푣�푛 ∈ R�푑(�푑+1)/2 (corresponding to taking inner product with �푥�푖�푥

⊤
�푖
− Σ′)

and a
�푑(�푑+1)

2
× �푑(�푑+1)

2
matrix �퐽 (corresponding to left- and right- multiplication by (Σ′)−1/2), such

that 1
�푛

∑�푛
�푖=1〈�푣�푖 , (�푃♭)′〉2 ≤ (2 + �훼) · ‖�퐽 · (�푃♭)′‖2

2
. Therefore, there is some other matrix �퐽′ such that

1
�푛

∑�푛
�푖=1〈�푣�푖 , (�푃♭)′〉2 + ‖�퐽′ · (�푃♭)′‖2

2
= (2 + �훼) · ‖�퐽 · (�푃♭)′‖2

2
, meaning that

1

2

�푛∑
�푖=1

〈�푥�푖�푥⊤�푖 − Σ
′, �푃〉2 + ‖�퐽′ · (�푃♭)′‖22 = (2 + �훼) · ‖(Σ′)1/2�푃(Σ′)1/2‖2�퐹 .

We can convert �퐽′ ∈ R�푑(�푑+1)/2×�푑(�푑+1)/2 into a matrix �푀 ∈ R�푑(�푑+1)/2×�푑2 , by replacing any column in

�퐽′ corresponding to entry (�푖 , �푗) for �푖 < �푗 with two copies for (�푖 , �푗) and (�푗 , �푖), each divided by 2.

Importantly, �퐽′ · (�푃♭)′ = �푀 · �푃♭. Therefore, for any �푃 = �푣�푣⊤, since �푃♭ = {�푣�푖�푣 �푗}�푖, �푗≤�푛 = �푣⊗2 and

(�푃♭)′ = {�푣�푖�푣 �푗}�푖≤ �푗 , there exists a matrix �푀 ∈ R�푑(�푑+1)/2×�푑2 such that

1

�푛

�푛∑
�푖=1

(
〈�푣, �푥�푖〉2 − �푣⊤Σ′�푣

)2 + (�푣⊗2)⊤�푀⊤�푀�푣⊗2 = (2 + �훼)(�푣⊤Σ′�푣)2.

While �푀 is lacking in rows (it should have �푑2 rows and columns), we can simply add additional 0

rows.

Now, we have such aΣ′ so that the first 3 constraints are satisfied, and moreover,Σ′ has spectral

distance at most �훼/100 from Σ, which means Constraint 5 is also satisfied since 1
�퐾 · �퐼 4 Σ 4 �퐾 · �퐼.

We can choose any Σ̃ between (1 − �훼)Σ′ and (1 + �훼)Σ′, since then (1 + �훼)Σ′ − Σ̃ and Σ̃ − (1 − �훼)Σ′

are both PSD, so Constraint 4 is satisfied.

Finally, we remark that every �푤�푖 , �푥�푖, �푗 , and �푀{ �푗,�푘},{ �푗′,�푘′} is bounded by poly(�푛, �푑, �퐾). Therefore,

the corresponding linear operator ℒ satisfies ‖ℛ(ℒ)‖2 ≤ (�퐾�푛�푑)�푂(1). �

6.4.2 Sensitivity

The proof of sensitivity is similar to the mean estimation case. We again have an upper bound of

�푛 on the value of the score function. This time we can essentially use Lemma 6.9.

Lemma 6.10 (score function upper bound). The value of the score function �풮 defined in Definition 6.5

is less than or equal to �푛.

35

Proof. We use the fact that our linear operators generalize pseudo-expectations, which generalize

expectations over a single point mass. In Lemma 6.9, we showed that for �풳 = {�푥1 , . . . , �푥�푛} �푖.�푖.�푑.∼
�풩(0,Σ), we can set �푥′

�푖
= �푥�푖 , and choose Σ′ = 1

�푛

∑
�푥�푖�푥

⊤
�푖

and �푀 to satisfy all of the constraints (where

Σ̃ = Σ), with probability at least 1 − �훽. So, there exists a set �풳 that satisfies the constraints, which

means for a general set of data points �풴 = {�푦1 , . . . , �푦�푛}, the score is at most �푛, since we can set

�푤�푖 = 0 and �푥′
�푖
= �푥�푖 for all �푖. For �푇 = �푛, it is clear that all constraints are satisfied. �

Lemma 6.11 (sensitivity). The score function �풮 as defined in Definition 6.5 has sensitivity 1 with respect

to its first input.

Proof. Suppose that �풴, �풴′ are two neighboring datasets, and Σ̃ ∈ R�푑×�푑. Moreover, assume

�풮(Σ̃,�풴) = �푇. If we show that �풮(Σ̃,�풴′) ≤ �풮(Σ̃,�풴) = �푇 + 1, by symmetry we are done.

Without loss of generality assume �풴 and �풴′ differ on index �푗. In order to construct ℒ′, for any

monomial �푝, let

ℒ′�푝 =

{
0 if �푝 has a �푤 �푗 factor,

ℒ�푝 otherwise
.

To verify the constraints, Constraints 1 and 2a-2d are identical to in the mean estimation case

(where checking Constraint 2c applies Lemma 6.10). Also, ‖ℛ(ℒ′)‖2 ≤ ‖ℛ(ℒ)‖2 clearly holds. So,

we just need to verify Constraints 3, 4, and 5 in Definition 6.4.

However, note that these three constraints do not involve �푤 �푗 at all, so in fact their evaluation is

the same regardless of ℒ or ℒ′. The only difference is we are allowing the values ℒ[·] to have a

greater range, which makes it easier. �

6.4.3 Quasi-convexity

Lemma 6.12 (quasi-convexity). The score function �풮 as defined in Definition 6.5 is quasi-convex in its

second input, Σ̃.

Proof. Suppose �풮(Σ̃1 ,�풴) = �푇1,�풮(Σ̃2 ,�풴) = �푇2, and suppose there exists ℒ1 and ℒ2 that satisfy the

constraints in Definition 6.4 with Σ̃1 , �푇1,and Σ̃2, �푇2 respectively. If we can construct a functional

ℒ3 such that the constraints in Definition 6.4, are satisfied with Σ̃3 = �휆Σ̃1 + (1 − �휆)Σ̃2, and �푇3 =

max{�푇1 , �푇2}, we are done. Let ℒ3 = �휆ℒ1 + (1 − �휆)ℒ2. As in the mean estimation case, all of the

constraints in Definition 6.4 will be satisfied trivially except for Constraints 2c and 5, and Constraint

2c is the same as in the mean estimation case. So, the same verification implies that this constraint

is also satisfied. Constraint 5 is also straightforward, since if (1
2�퐾 −�휏 ·�푇1) · �퐼 4 ℒ1[Σ′] 4 (2�퐾+�휏 ·�푇1) · �퐼

and (1
2�퐾 −�휏·�푇2)·�퐼 4 ℒ2[Σ′] 4 (2�퐾+�휏·�푇2)·�퐼, then (1

2�퐾 −�휏·max{�푇1 , �푇2})·�퐼 4 �휆·ℒ1[Σ′]+(1−�휆)·ℒ2[Σ′] 4
(2�퐾 + �휏 ·max{�푇1 , �푇2}) · �퐼. �

6.4.4 Accuracy

We show that any point Σ̃ of low score with respect to i.i.d. samples from �풩(0,Σ) must be close to

Σ in spectral distance, i.e., ‖Σ−1/2Σ̃Σ−1/2 − �퐼‖�표�푝 ≤ �푂(�훼).

36

Lemma 6.13. Let �훼 = �푂(�휂) and suppose �훼, �휂 are bounded by a sufficiently small constant. Let

�푛 ≥ �푂
(
�푑2+log2(1/�훽)

�훼2

)
, and �풳 = {�푥1 , . . . , �푥�푛} ∼ �풩(0,Σ), for �퐾−1�퐼 4 Σ 4 �퐾 · �퐼. Also, suppose

�휏 ≪ (�푛�푑�퐾/�휀)−�푂(1).
Then, for any �훼∗ ≤ �훼, with probability at least 1 − �훽, every symmetric matrix Σ̃ ∈ R�푑×�푑 that is

(�훼∗ , �휏, �푇)-certifiable for �풳 with �푇 = �휂�푛 must satisfy ‖Σ−1/2Σ̃Σ−1/2 − �퐼‖�표�푝 ≤ �푂(�훼).

As in the mean estimation case, the proof follows the same approach as [KMZ22], so we defer

this to Appendix B.

6.4.5 Volume of Good Points

Lemma 6.14. Let �풳 = {�푥1 , . . . , �푥�푛} ∼ �풩(0,Σ), and let �풴 = {�푦1 , . . . , �푦�푛} represent an �휂-corruption of

�풳. Then, for every integer �푇 ∈ [�휂 · �푛, �휂∗ · �푛] for some fixed constant �휂∗ < 1, with probability at least 1 − �훽,

every (�훼, �휏, �푇)-certifiable covariance with respect to �풴 has spectral distance at most �푂(�푇/�푛) from Σ.

Proof. Since the score function has sensitivity at most 1 (Lemma 6.11), this means that any (�훼, �휏, �푇)-
certifiable mean with respect to �풴 is an (�훼, �휏, �푇 + �휂�푛)-certifiable mean with respect to �풳.

Now, define �휂′ :=
�푇+�휂�푛
�푛 = �푂(�푇�푛). In this case, by setting �훼′ = �푂(�휂′) and since �훼 = �푂(�휂) ≤ �훼′, we

have that by Lemma 6.13 that any (�훼, �휏, �푇+�휂�푛)-certifiable covariance Σ̃ must satisfy ‖Σ−1/2Σ̃Σ−1/2−
�퐼‖�표�푝 ≤ �푂(�훼′) ≤ �푂(�푇/�푛). �

So, for any �휂′ ∈ [�휂, �휂∗], the any Σ̃ with score at most �휂′ · �푛 must be of the form (1−�훼′) ·Σ+2�훼′ ·�푅
where 0 4 �푅 4 Σ and �훼′ = �푂(�휂′). So, if we define�푉Σ to the set of PSD matrices spectrally bounded

by Σ (where we think of symmetric matrices as vectors in R�푑(�푑+1)/2), the set of (�훼, �휏, �휂′�푛)-certifiable

covariance matrices has volume at most �푒�푂(�푑2) · �푉Σ, meaning �푉�휂′ ≤ �푂(1)�푑2 · �푉Σ for �휂′ ∈ [�휂, �휂∗].
In addition, by Constraint 5 of Definition 6.4, we know that ℒ[Σ′] is always spectrally bounded

between 1
4�퐾 · �퐼 and 4�퐾 · �퐼, and so Σ̃ is spectrally bounded between 0 and 8�퐾 · �퐼 4 8�퐾2 · Σ. Thus, for

any �휂′ ∈ [�휂∗ , 1], �푉�휂′ ≤ �푂(�퐾2)�푑2 ·�푉Σ = �푒�푂(�푑2 log�퐾) ·�푉Σ.

Finally, by Lemma 6.9, with probability at least 1 − �훽 every Σ̃ within spectral distance �훼 of
1
�푛

∑
�푥�푖�푥

⊤
�푖

(where {�푥�푖} are the uncorrupted points) have score at most �휂 · �푛. Since �푛 ≥ �푂((�푑2 +
log2(1/�훽))/�휂2), 1

�푛

∑
�푥�푖�푥

⊤
�푖

has spectral distance at most �훼/10 away from Σ, which means every Σ̃

within spectral distance �훼/10 of Σ has score at most �휂 · �푛. So, �푉�휂 ≥ �푉Σ · (�훼/10)�푑2 .

6.4.6 Efficient Computability

As in the mean estimation case, we apply Theorem C.6 in Appendix C. This time, there are

constraints where we wish to spectrally bound ℒ applied to a matrix. However, this constraint is

also captured by Theorem C.6. So, we have efficient computability.

6.4.7 Efficient Finding of Low-Scoring Point

To verify that the “robust algorithm finds low-scoring point”, we simply remove the constraint

that ℒ[(1 + �훼)Σ′ − Σ̃] < −�휏 · �푇 · �퐼 , and ℒ[Σ̃ − (1 − �훼)Σ′] < −�휏 · �푇 · �퐼. We can apply Theorem C.6 in

the same way to find some linear operator ℒ with score at most min
Σ̃
�풮(Σ̃,�풴) + 1. Then, we can

37

compute ℒ[Σ′] and set �푟 ≤ �휏, and obtain that every matrix Σ̃ such that ‖Σ̃− ℒ[Σ′]‖�퐹 ≤ �푟 has score

at most min
Σ̃
�풮(Σ̃,�풴) + 1.

6.5 Proof of Theorem 6.1

We apply Theorem 4.1, using the score function defined in Definition 6.5 and thinking of the

candidate parameters Σ as lying in R�푑(�푑+1)/2. Indeed, for �푟 = �훼/�퐾�푂(1) and �푅 = �퐾�푂(1), we have

verified all conditions, as long as �푛 ≥ �푂((�푑2+ log2(1/�훽))/�휂2). Therefore, we have an �휀-DP algorithm

running in time poly(�푛, �푑, log �퐾
�훼) that finds a candidate covariance Σ̃ of score at most 2�휂�푛, as long

as

�푛 ≥ �푂

(
max

�휂′:�휂≤�휂′≤1

log(�푉�휂′(�풴)/�푉�휂(�풴)) + log(1/(�훽 · �휂′))
�휀 · �휂′

)
.

By our volume bounds, this means it suffices for

�푛 ≥ �푂

(
�푑2 + log2(1/�훽)

�훼2

)
+ �푂

(
max

�휂≤�휂′≤�휂∗
�푑2 log(1/�휂) + log(1/(�훽 · �휂))

�휀 · �휂′ + max
�휂∗≤�휂′≤1

�푑2 log(�퐾/�휂) + log(1/(�훽 · �휂))
�휀 · �휂′

)

= �푂

(
�푑2 + log2(1/�훽)

�훼2
+

�푑2 + log(1/�훽)
�휀 · �훼 + �푑2 log �퐾

�휀

)
.

Hence, our algorithm, using this many samples, can find a point Σ̃ of score at most 2�휂�푛 with

respect to �풴, which means it has score at most 3�휂�푛 with respect to the uncorrupted samples �풳.

Finally, by replacing �휂 with 3�휂 and applying Lemma 6.13, we have that any point Σ̃ with score at

most 3�휂�푛 with respect to �풳 is within �푂(�훼) spectral distance of Σ. This completes the proof.

6.6 The approx-DP setting

In this subsection, we prove Theorem 6.2. In this setting, the score function is identical, but we can

afford fewer samples as we apply the algorithm of Theorem 4.2 instead of Theorem 4.1. The main

additional thing we must check is that for any dataset �풴, if �풮(Σ,�풴) ≤ 0.7�휂∗�푛 for some Σ, then the

volume ratio �푉�휂∗(�풴)/�푉0.8�휂∗(�풴) is not too high.

Before proving our main result of this subsection, we must first establish the following lemma,

which is important for ensuring privacy. We defer the proof to Appendix B.

Lemma 6.15. Fix �휂∗ to be a sufficiently small constant, and �푇 = �휂∗�푛. Then, for a dataset �풴 with every �푦�푖
bounded in ℓ2 norm by �퐾 · �푑100, if there exist linear operators ℒ1,ℒ2 that are both (�훼, �휏, �푇)-certificates for

�풴, then Σ̃1 4 �푂(1) · Σ̃2 and Σ̃2 4 �푂(1) · Σ̃1.

As a corollary of Lemma 6.15, we have the following result.

Corollary 6.16. Suppose that �풴 is a dataset with every �푦�푖 bounded in ℓ2 norm by �퐾 · �푑100 that has an

(�훼, �휏, 0.7�휂∗�푛)-certifiable covariance, and let Σ̂ = ℒ[Σ′] where ℒ is an (�훼, �휏, 0.7�휂∗�푛)-certificate. Then,

the set of (�훼, �휏, 0.8�휂∗�푛)-certifiable covariance matrices Σ̃ contains all matrices spectrally bounded between

(1−�훼)Σ̂ and (1+�훼)Σ̂, and the set of (�훼, �휏, �휂∗�푛)-certifiable covariance matrices is spectrally bounded between
1
�퐶 · Σ̂ and �퐶 · Σ̂ for some constant �퐶 = �푂(1).

38

Proof. If ℒ is an (�훼, �휏, 0.7�휂∗�푛)-certificate, it is also an (�훼, �휏, 0.8�휂∗�푛)-certificate. This means every Σ̃

such that (1−�훼)Σ̂ 4 Σ̃ 4 (1+�훼)Σ̂ is (�훼, �휏, 0.8�휂∗�푛)-certifiable. To see why, note that for a (�훼, �휏, 0.8�휂∗�푛)-
certificate ℒ of �풴, Constraint 4 (which is the only constraint that deals with Σ̃, which we recall is

not indeterminate) just requires that ℒ[(1+�훼)Σ′− Σ̃] < −�휏 ·�푇 · �퐼 and ℒ[Σ̃−(1−�훼)Σ′] < −�휏 ·�푇 · �퐼. So,

any Σ̃ spectrally bounded between (1 − �훼)Σ̂ and (1 + �훼)Σ̂ is an (�훼, �휏, 0.8�휂∗�푛)-certifiable covariance.

The second part is immediate by Lemma 6.15. �

Therefore, if we let �푉
Σ̂

represent the volume of PSD matrices spectrally bounded above by

Σ̂ (where we think of symmetric matrices as vectors in R�푑(�푑+1)/2), the set of (�훼, �휏, �휂∗�푛)-certifiable

covariance matrices has volume at most�푂(1)�푑2 ·�푉
Σ̂

and the set of (�훼, �휏, 0.8�휂∗�푛)-certifiable covariance

matrices has volume at least �훼�푑2 ·�푉
Σ̂
. So, the ratio �푉�휂∗(�풴)/�푉0.8�휂∗(�풴) ≤ �푂(1/�훼)�푑2 .

We now prove Theorem 6.2, by applying Theorem 4.2. First, note that we may truncate the

samples so that no �푦�푖 ∈ �풴 has norm more than �퐾 · �푑100. Since we are promised ‖Σ‖�표�푝 ≤ �퐾, the

probability that any uncorrupted sample has this norm is at most �푒−�푑
100

. We will set �휂∗ to be a

sufficiently small constant (such as 0.01). We just showed, using Corollary 6.16, that for all �풴 such

that min
Σ̃
�풮(Σ̃,�풴) ≤ 0.7�휂∗�푛,�푉�휂∗(�풴)/�푉0.8�휂∗(�풴) ≤ �푂(1/�훼)�푑2 . So, as long as �푛 ≥ �푂

(
log(1/�훿)+�푑2 log(1/�훼)

�휀

)
,

the algorithm of Theorem 4.2 is (�휀, �훿)-differentially private. In addition, we have already verified

all of the conditions, so the algorithm is accurate as long as �푛 ≥ �푂((�푑2 + log2(1/�훽))/�휂2) and

�푛 ≥ �푂

(
max

�휂′:�휂≤�휂′≤�휂∗
log(�푉�휂′(�풴)/�푉�휂(�풴)) + log(1/(�훽 · �휂′))

�휀 · �휂′
)
.

By our volume bounds, this means it suffices for

�푛 ≥ �푂

(
�푑2 + log2(1/�훽)

�훼2

)
+ �푂

(
log(1/�훿) + �푑2 log(1/�훼)

�휀

)
+ �푂

(
max

�휂≤�휂′≤�휂∗
�푑2 log(1/�휂) + log(1/(�훽 · �휂))

�휀 · �휂′
)

= �푂

(
�푑2 + log2(1/�훽)

�훼2
+

�푑2 + log(1/�훽)
�휀 · �훼 + log(1/�훿)

�휀

)
.

This concludes the proof of Theorem 6.2.

7 Learning a Gaussian in Total Variation Distance

The main result we prove in this section is is to privately learn the covariance Σ of a Gaussian up to

low Frobenius norm error, if we are promised all eigenvalues of Σ are between (1 − �훼) and (1 + �훼).

Theorem 7.1 (Privately Learning a Preconditioned Gaussian). Let Σ ∈ R�푑×�푑 where (1 − �훼) · �퐼 4 Σ 4

(1 + �훼) · �퐼. There exists an �휀-differentially private algorithm that takes �푛 i.i.d. samples from �풩(0,Σ) and

with probability 1 − �훽 outputs Σ̃ such that ‖Σ̃ − Σ‖�퐹 ≤ �푂(�훼), where

�푛 = �푂

((�푑 + log(1/�훽))2
�훼2

+ �푑2 + log(1/�훽)
�훼�휀

)
.

Moreover, this algorithm runs in time poly(�푛, �푑), and succeeds with the same accuracy even if �휂 = Ω̃(�훼)
fraction of the points are adversarially corrupted.

39

By combining Theorem 7.1 with Theorem 5.1 and Theorem 6.1 (or Theorem 5.2 and Theo-

rem 6.2), we will be able to prove our main results on privately learning Gaussians up to low total

variation distance, namely Theorems 1.3 and 1.4. We prove these theorems in Section 7.4.

7.1 Robust Algorithm

Suppose {�푥�푖} is a set of samples from�풩(0,Σ),where (1−�훼)·�퐼 4 Σ 4 (1+�훼)·�퐼. Let {�푦�푖} be an arbitrary

�휂-corruption of {�푥�푖}. Consider the following pseudo-expectation program, where {�푦�푖} are the

input points and the domain is the degree-12 pseudo-expectations with {�푤�푖}, {�푥�푖}, {�푀{ �푗, �푗′},{�푘,�푘′}}
as indeterminates.

find Ẽ

such that Ẽ satisfies �푤2
�푖 = �푤�푖 ,

Ẽ satisfies
∑

�푤�푖 ≥ (1 − �휂)�푛,
Ẽ satisfies �푤�푖�푥

′
�푖 = �푤�푖�푦�푖 ,

Ẽ

[
1

�푛

�푛∑
�푖=1

(�푥′�푖 ⊗ �푥′�푖 − �푆′)(�푥′�푖 ⊗ �푥′�푖 − �푆′)T + �푀�푀T

]
= (2 + �푂(�휂))�퐼 ,where �푆′ =

1

�푛

∑
�푖

�푥′�푖 ⊗ �푥′�푖 .

We use Σ′ to represent 1
�푛

∑(�푥′
�푖
)(�푥′

�푖
)⊤: note that �푆′ is the flattening of Σ′. It can be proven that

if �푛 is as in Lemma 6.3, with probability 1 − �훽 over the choice of �푥�푖’s, if we output ẼΣ′, then

‖ẼΣ′ − Σ‖�퐹 = �푂(�휂).

7.2 Score Function and its Properties

Again, we need design a suitable score function based on the robust algorithm, this time for

learning covariance in up to low Frobenius norm error.

Definition 7.2 (Certifiable Covariance). Let �훼, �휏, �휙, �푇 ∈ R≥0, �푦1, . . . �푦�푛 ∈ R�푑 (with�풴 := {�푦1 , . . . , �푦�푛}),
and Σ̃ ∈ R�푑. We call the point Σ̃ an (�훼, �휏, �휙, �푇)-certifiable covariance for �풴 if and only if there exists a

linear functional ℒ over the set of polynomials in indeterminates {�푤�푖}, {�푥′�푖, �푗}, {�푀 �푗,�푘} of degree at

most 6 such that

1. ℒ1 = 1

2. for every polynomial �푝, where ‖ℛ(�푝)‖2 ≤ 1:

(a) ℒ�푝2 ≥ −�휏 · �푇,

(b) ∀�푖 ,ℒ(�푤2
�푖
− �푤�푖)�푝2 ∈ [−�휏 · �푇, �휏 · �푇],

(c) ℒ(∑�푤�푖 − �푛 + �푇)�푝2 ≥ −5�휏 · �푇 · �푛,

(d) ∀�푖 , �푗 ,ℒ�푤�푖(�푥′�푖, �푗 − �푦�푖, �푗)�푝2 ∈ [−�휏 · �푇, �휏 · �푇],

3. ∀�푗 , �푘 : ℒ
(
1
�푛

∑
�푖

[
((�푥′

�푖
)⊗2 − �푆′)((�푥′

�푖
)⊗2 − �푆′)T + �푀�푀T − (2 + �훼)�퐼�푑2

]
{ �푗, �푗′},{�푘,�푘′}

)
∈ [−�휏 · �푇, �휏 · �푇],

where �푥′
�푖
= {�푥′

�푖, �푗
}1≤ �푗≤�푑 , and �푆′ = E�푖 �푥

′⊗2
�푖

.

40

4. ∀�푗 , �푘 ∈ [�푑],ℒΣ′
�푗,�푘

− Σ̃�푗,�푘 ∈ [−�휙 − �휏 · �푇, �휙 + �휏 · �푇]

We also require ‖ℛ(ℒ)‖2 ≤ �푅′ + �푇 · �휏 for some sufficiently large �푅′ = poly(�푛, �푑). As in the mean

estimation case, this requirement is only needed for computability purposes. We will also say that

ℒ is an (�훼, �휏, �휙, �푇)-certificate for �풴.

Again, we may think of ℒ as an approximate pseudo-expectation. In addition, for each

constraint 2a) to 2d) we implicitly assume a bound on the degree of �푝 so that ℒ is applied to a

polynomial of degree at most 12.

For our purposes, we will end up setting �휏 = 1/(�푛 · �푑)�푂(1), for a large enough �푂(1).
Now we use this definition to define a score function.

Definition 7.3 (Score Function). Let �훼, �휏, �휙, �푇 ∈ R≥0, �푦1, . . . �푦�푛 ∈ R�푑 (with �풴 = {�푦1 , . . . , �푦�푛}) and

Σ̃ ∈ R�푑×�푑. We define the score function �풮 : R�푑×�푑 → R as

�풮(Σ̃,�풴; �훼, �휏, �휙) = min
�푇

such that Σ̃ is a (�훼, �휏, �휙, �푇) certifiable covariance for �풴 = {�푦1 , . . . , �푦�푛}.

In the rest of this section we will prove the following properties for this score function. This

will allow us to use Theorem 4.1.

1. Score has sensitivity 1.

2. Score is quasi-convex as a function of Σ̃.

3. All points Σ̃ that have score at most �휂 · �푛 have ‖Σ̃ − Σ‖�퐹 ≤ �푂(�휂). (Robustness for vol-

ume/accuracy purposes).

4. The volume of points that have score at most �휂 · �푛 is sufficiently large, and the volume of

points with score at most �휂′ · �푛 for �휂′ > �휂 is not too large.

5. Score is efficiently computable.

6. We can approximately minimize score efficiently.

Checking these constraints will, for the most part, be identical to the cases for mean estimation

and covariance estimation in spectral distance. So for the sake of brevity, we omit any details that

are essentially identical to these cases.

7.2.1 Existence of Low-Scoring Σ′

As in the case of covariance estimation, we must show that for data points drawn from �풩(0,Σ),
that some Σ′ close to Σ has low score. In this setting, it actually turns out to be easier, because

the dataset has already been well-conditioned and since the robust algorithm/score function are

slightly easier to work with.

Lemma 7.4. Suppose that �푛 ≥ �푂
(
�푑2+log2(1/�훽)

�휂2

)
and �훼 = �푂(�휂). Let �풳 = {�푥1 , . . . , �푥�푛} �푖.�푖.�푑.∼ �풩(0,Σ), where

‖Σ − �퐼‖�표�푝 ≤ �훼, and let �풴 = {�푦1 , . . . , �푦�푛} represent an �휂-corruption of �풳. Then, with probability at least

1 − �훽, for Σ′ = 1
�푛

∑
�푥�푖�푥

⊤
�푖

, every Σ̃ such that ‖Σ̃ − Σ‖�퐹 ≤ �휙 is (�훼, �휏, �휙, �휂�푛)-certifiable.

41

Proof. Again, we use the fact that ℒ generalizes pseudoexpectations, which generalize expectations

over a single data point. We will set �푤�푖 = 1 if �푥�푖 = �푦�푖 and 0 otherwise, and �푥′
�푖
= �푥�푖 for all �푖. By part

2 of Lemma 6.3, we know that for all �푑 × �푑 symmetric matrices �푃 with ‖�푃‖�퐹 = 1, if �푥�푖
�푖.�푖.�푑.∼ �풩(0, �퐼),

then
�� 1
�푛 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 − 2

�� ≤ �푂(�훼). But in our case, �푥�푖
�푖.�푖.�푑.∼ �풩(0,Σ), but by the same argument as

Lemma 6.9, we have

1

�푛

�푛∑
�푖=1

〈�푥�푖�푥⊤�푖 − Σ, �푃〉2 ≤ (2 + �푂(�훼)) · ‖Σ1/2�푃Σ1/2‖2�퐹

for any symmetric matrix �푃. Also, by Proposition 6.8,

‖Σ1/2�푃Σ1/2‖�퐹 ≤ (1 + 3�훼) · ‖�푃‖�퐹.

So, by setting Σ′ to be the empirical average of �푥�푖�푥
⊤
�푖

, this means

1

�푛

�푛∑
�푖=1

〈�푥�푖�푥⊤�푖 − Σ
′, �푃〉2 ≤ 1

�푛

�푛∑
�푖=1

〈�푥�푖�푥⊤�푖 − Σ, �푃〉2 ≤ (2 + �푂(�훼)) · ‖Σ1/2�푃Σ1/2‖2�퐹 ≤ (2 + �푂(�훼)) · ‖�푃‖2�퐹

for any symmetric matrix �푃. Note, this is also true for non-symmetric matrices, because if �푃 is

nonsymmetric, then �푃+�푃⊤
2

has smaller Frobenius norm but 〈�푥�푖�푥⊤�푖 − Σ′, �푃〉 = 〈�푥�푖�푥⊤�푖 − Σ′, �푃+�푃
⊤

2
〉.

By flattening and defining �푆′ = (Σ′)♭, we have that

1

�푛

�푛∑
�푖=1

〈�푥⊗2�푖 − �푆′, �푣〉2 ≤ 2 + �푂(�훼)

for all unit vectors �푣 ∈ R�푑2 . Hence, 1
�푛

∑�푛
�푖=1(�푥⊗2�푖 − �푆′)(�푥⊗2

�푖
− �푆′)⊤ has all eigenvalues at most 2+�푂(�훼),

and thus we can find some positive semidefinite �푀�푀⊤ such that 1
�푛

∑�푛
�푖=1(�푥⊗2�푖 − �푆′)(�푥⊗2

�푖
− �푆′)⊤ +

�푀�푀⊤ = 2 + �푂(�훼).
If Σ′

�푗,�푘
− Σ̃�푗,�푘 ∈ [−�휙, �휙] for all �푗 , �푘, then Σ̃ has score at most �휂 · �푛. So, every covariance matrix Σ̃

with ‖Σ̃ − Σ′‖�퐹 ≤ �휙 has score at least �휂 · �푛.

Finally, we remark that every �푤�푖 , �푥�푖, �푗, and �푀{ �푗,�푘},{ �푗′,�푘′} is bounded by poly(�푛, �푑). Therefore, the

corresponding linear operator ℒ satisfies ‖ℛ(ℒ)‖2 ≤ (�푛�푑)�푂(1). �

7.2.2 Sensitivity

Before proving sensitivity we need to prove the following upper bound on the value of the score

function.

Lemma 7.5 (score function upper bound). The value of the score function �풮 defined in Definition 7.3 is

less than or equal to �푛.

Proof. The proof is identical to Lemma 6.10: we again set�푤�푖 = 0 and �푥′
�푖
= �푥�푖 for all �푖, with�푇 = �푛. �

Lemma 7.6 (sensitivity). The score function �풮 as defined in Definition 7.3 has sensitivity 1 with respect

to its first input.

42

Proof. The proof is nearly identical to Lemma 6.11. Suppose that �풴, �풴′ are two neighboring

datasets, and Σ̃ ∈ R�푑×�푑. Moreover, assume�풮(Σ̃,�풴) = �푇. If we show that�풮(Σ̃,�풴′) ≤ �풮(Σ̃,�풴) = �푇+1,

by symmetry we are done.

The only constraints that are different in our setting from Lemma 6.11 are Constraints 3 and 4

in Definition 7.2. However, note that these three constraints do not involve �푤 �푗 at all, so in fact their

evaluation is the same regardless of ℒ or ℒ′. The only difference is we are allowing the values ℒ[·]
to have a greater range, which makes it easier. �

7.2.3 Quasi-convexity

Lemma 7.7 (quasi-convexity). The score function �풮 as defined in Definition 7.3 is quasi-convex in its

second input, Σ̃.

Proof. Again, all of the constraints are satisfied trivially except 2c), and the same proof as in

Lemma 5.9 and Lemma 6.12 works for this case. �

7.2.4 Accuracy

We now show accuracy, meaning that any point Σ̃ of low score with respect to i.i.d. samples from

�풩(0,Σ) must be close to Σ. Because of our sensitivity bound, this will also imply a similar result

for corrupted samples. Like for Lemma 5.10 and 6.13, we defer the proof to Appendix B.

Lemma 7.8. Let �훼 = �푂(�휂) and suppose �훼, �휂 are bounded by a sufficiently small constant. Let �푛 ≥
�푑2+log2(1/�훽)

�훼2 , and �풳 = {�푥1 , . . . , �푥�푛} ∼ �풩(0,Σ), for Σ ∈ R�푑×�푑 with (1 − �훼)�퐼 4 Σ 4 (1 + �훼)�퐼.
Then, for any �훼∗ ≤ �훼, and assuming �휏 ≪ 1/(�푛�푑)�푂(1), with probability at least 1 − �훽, any covariance

matrix Σ̃ ∈ R�푑×�푑 that is (�훼∗ , �휏, �휙, �푇)-certifiable for �풳 with �푇 = �휂�푛 and �휙 ≤ �훼/�푑 must satisfy ‖Σ̃ −Σ‖�퐹 ≤
�푂(�훼).

7.2.5 Volume of Good Points

Finally, we use our accuracy bounds to get an upper bound for the volumes of �푉�휂. We already can

obtain a lower bound from Lemma 7.4.

Lemma 7.9. Let �풳 = {�푥1 , . . . , �푥�푛} ∼ �풩(0,Σ) (where (1− �훼)�퐼 4 Σ 4 (1+ �훼)�퐼), and let �풴 = {�푦1 , . . . , �푦�푛}
represent an �휂-corruption of �풳. Then, for every integer �푇 ∈ [�휂 · �푛, �휂∗ · �푛] for some fixed constant �휂∗ < 1,

with probability at least 1 − �훽, every (�훼, �휏, �휙, �푇)-certifiable covariance Σ̃ with respect to �풴, for �휙 = �훼/�푑,

satisfies ‖Σ − Σ̃‖�퐹 ≤ �푂(�푇/�푛).

Proof. Since the score function has sensitivity at most 1 (Lemma 7.6), this means that any (�훼, �휏, �휙, �푇)-
certifiable covariance with respect to �풴 is an (�훼, �휏, �휙, �푇 + �휂�푛)-certifiable covariance with respect to

�풳.

Now, define �휂′ :=
�푇+�휂�푛
�푛 = �푂(�푇�푛). In this case, by setting �훼′ = �푂(�휂′) and since �훼 = �푂(�휂) ≤ �훼′, we

have that by Lemma 7.8 that any (�훼, �휏, �휙, �푇 + �휂�푛)-certifiable covariance Σ̃ must satisfy ‖Σ̃ − Σ‖�퐹 ≤
�푂(�훼′) ≤ �푂(�푇/�푛). �

43

We think of the set of potential covariances as lying in R�푑(�푑+1)/2, by taking the upper-diagonal

entries. In addition, we know that the covariance has all eigenvalues between 1 − �훼 and 1 + �훼,

so in R�푑(�푑+1)/2, they all lie in a ℓ2-norm ball of radius �푂(�푑) around the origin. If we set �휙 = �훼/�푑
and �휏 ≪ 1/(�푛�푑)�푂(1), this means the volume of (�훼, �휏, �휙, �푇)-certifiable covariances for �푇 = �휂�푛 is at

least (�훼/�푑)�푑(�푑+1)/2. However, for any �푇 = �휂′�푛 for �휂 ≤ �휂′ ≤ �휂∗, the volume of (�훼, �휏, �휙, �푇)-certifiable

covariances is at most (�̃푂(�휂′))�푑(�푑+1)/2 times the volume of a
�푑(�푑+1)

2
-dimensional sphere, which is

(�̃푂(�휂′)/�푑)�푑(�푑+1)/2. Finally, for �푇 = �휂′�푛 with �휂′ > �휂∗, the volume of Θ, the set of all candidate

covariances Σ̃, is at most �푑�푂(�푑2).

7.2.6 Efficient Computability

As in the mean estimation case, we apply Theorem C.6 in Appendix C: the proof is identical to

verify “efficient computability”.

7.2.7 Efficient Finding of Low-Scoring Point

To verify that the “robust algorithm finds low-scoring point”, we remove the constraint that

ℒ[Σ′
�푗,�푘

− Σ̃�푗,�푘] ∈ [−�휙 − �휏 · �푇, �휙 + �휏 · �푇]. We can apply Theorem C.6 in the same way to find some

linear operator ℒ with score at most min
Σ̃
�풮(Σ̃,�풴)+ 1. Then, we can compute ℒ[Σ′] and set �푟 ≤ �휏,

and obtain that every matrix Σ̃ with ‖Σ̃ − ℒ[Σ′]‖�퐹 ≤ �푟 has score at most min
Σ̃
�풮(Σ̃,�풴) + 1.

7.3 Proof of Theorem 7.1

We apply Theorem 4.1, using the score function defined in Definition 7.3. Indeed, for �푟 = �휙 = �훼/�푑,

we have verified all conditions, as long as �푛 ≥ �푂((�푑2 + log2(1/�훽))/�훼2). Therefore, we have an �휀-DP

algorithm running in time poly(�푛, �푑, log �푅
�훼) that finds a candidate covariance Σ̃ of score at most

2�휂�푛, as long as

�푛 ≥ �푂

(
max

�휂′:�휂≤�휂′≤1

log(�푉�휂′(�풴)/�푉�휂(�풴)) + log(1/(�훽 · �휂′))
�휀 · �휂′

)
.

Using Lemmas 7.4 and 7.9, and by the commentary after Lemma 7.9, we have that for �휂′ ≤ �휂∗

for some �휂∗ = Ω(1), if we set �휙 = �훼/�푑, then �푉�휂′(�풴)/�푉�휂(�풴) ≤ (�푂(�휂′)/�훼)�푑(�푑+1)/2 ≤ (�푂(1/�휂))�푑(�푑+1)/2.

For �휂′ > �휂∗, we have that �푉�휂′(�풴)/�푉�휂(�풴) ≤ �푑�푂(�푑2). So overall, it suffices for

�푛 ≥ �푂

(
�푑2 + log2(1/�훽)

�훼2

)
+ �푂

(
max

�휂≤�휂′≤�휂∗
�푑2 log(1/�휂) + log(1/(�훽 · �휂))

�휀 · �휂′ + max
�휂∗≤�휂′≤1

�푑2 log �푑 + log(1/(�훽 · �휂))
�휀 · �휂′

)

= �푂

(
�푑2 + log2(1/�훽)

�훼2
+

�푑2 + log(1/�훽)
�휀 · �훼

)
.

Hence, our algorithm, using this many samples, is �휀-DP, and can find a point Σ̃ of score at most

2�휂�푛 with respect to �풴. So, by replacing �휂 with 2�휂 and applying Lemma 7.8, we have that any point

Σ̃ with score at most 2�휂�푛 with respect to �풴 must have ‖Σ̃−Σ‖�퐹 ≤ �푂(�훼). This completes the proof.

44

7.4 Proof of Theorems 1.3 and 1.4

By combining Theorems 6.1, 7.1, and 5.1, we are able to prove Theorem 1.3.

Proof of Theorem 1.3. Let the corrupted samples be �푦1, . . . , �푦�푛 , and let the uncorrupted samples be

�푥1, . . . , �푥�푛 .

We may assume without loss of generality that �훼 = �푂(�휂) (either by raising �훼 or �휂 appropriately).

Via the standard method of pairing samples and subtracting them, we may first assume that the

mean is 0, and we will attempt to learn covariance. By Theorem 6.1, we can thus privately learn a

Σ̃1 such that ‖Σ−1/2Σ̃1Σ
−1/2 − �퐼‖�표�푝 ≤ �훼, given samples �푦1, . . . , �푦�푛 .

Next, we learnΣ up to Mahalanobis distance rather than just spectral distance. Let �̂푦�푖 = Σ̃
−1/2
1

�푦�푖 ,

and let �푥�푖 = Σ̃
−1/2
1

�푥�푖 and �푥∗
�푖
= Σ−1/2�푥�푖. Note that �푥∗

�푖

�푖.�푖.�푑.∼ �풩(0, �퐼), and �푥�푖 = �퐽 · �푥∗
�푖

for �퐽 = Σ̃
−1/2
1

Σ1/2.

However, �퐽 may be adversarially dependent on the data points, as we chose Σ̃1 based on the

samples �풴 9. Nevertheless, we may still apply Theorem 7.1, because it will turn out that the {�푥�푖}
samples will have the desired resilience conditions for every choice of �퐽 with ‖�퐽�퐽⊤ − �퐼‖�표�푝 ≤ �훼.

Indeed, note that 〈�̂푥�푖 �̂푥⊤�푖 − �퐽�퐽⊤ , �푃〉 = 〈�퐽�푥∗
�푖
(�푥∗

�푖
)⊤�퐽⊤ − �퐽�퐽⊤, �푃〉 = 〈(�푥∗

�푖
)(�푥∗

�푖
)⊤ − �퐼 , �퐽⊤�푃�퐽〉 for all �퐽, and

‖�퐽⊤�푃�퐽‖�퐹 = (1± 3�훼) · ‖�푃‖�퐹 by Proposition 6.8, since �퐽�퐽⊤ = Σ̃
−1/2
1

ΣΣ̃
−1/2
1

. Thus, assuming {�푥∗
�푖
} satisfy

the resilience properties (Lemma 6.3), 1
�푛

∑〈�̂푥�푖 �̂푥⊤�푖 − �퐽�퐽⊤ , �푃〉2 ≤ (2 + �푂(�훼)) · ‖�푃‖2
�퐹

for all symmetric

matrices �푃. This is sufficient to ensure Lemma 7.4 holds, if we replace �풳 with {�푥1 , . . . , �̂푥�푛} and

Σ with �퐽�퐽⊤ = Σ̃
−1/2
1

ΣΣ̃
−1/2
1

. Likewise, Lemma 7.8 will also work in the same way, replacing each

�푥�푖 with �푥�푖 , and replacing Σ with �퐽�퐽⊤. The rest of the conditions also clearly hold (as they either

do not depend on the dataset or follow from Lemmas 7.4 and 7.8). Therefore, we can apply

Theorem 7.1 to privately and robustly find Σ̃2 such that ‖Σ̃2 − �퐽�퐽⊤‖�퐹 ≤ �푂(�훼), by applying the

algorithm on �̂푦1, . . . , �̂푦�푛 . Since both Σ2 and �퐽�퐽⊤ are spectrally bounded between 1 ± �훼, this implies

‖�퐼 − Σ̃
−1/2
2

�퐽�퐽⊤Σ̃−1/2
2

‖�퐹 ≤ �푂(�훼), which means ‖�퐼 − �퐽⊤Σ̃−1
2
�퐽‖�퐹 ≤ �훼. Note, however, that we can write

this as ‖�퐼 − Σ1/2(Σ̃−1/2
1

Σ̃−1
2
Σ̃
−1/2
1

)Σ1/2‖�퐹 ≤ �훼, which implies that Σ and Σ̃
1/2
1

Σ̃2Σ̃
1/2
1

are �훼-close in

Mahalanobis distance. So, we can output Σ̂ = Σ̃
1/2
1

Σ̃2Σ̃
1/2
1

.

Finally, we must decide on �̂휇. To do so, we return to our original samples �푦1 , . . . , �푦�푛 (where

we did not do sample pairing and subtraction), and redefine �̂푦�푖 = Σ̂−1/2�푦�푖 , �푥�푖 = Σ̂−1/2�푥�푖 . Also,

redefine �푥∗
�푖
= Σ−1/2�푥�푖 . Now, �푥∗

�푖
∼ �풩(Σ−1/2�휇, �퐼), and �̂푥�푖 = �퐽 · �푥∗

�푖
for some new choice of �퐽 = Σ̂−1/2Σ1/2,

and note ‖�퐽�퐽⊤ − �퐼‖�퐹 ≤ �훼, but �퐽 may be adversarial. However, this is sufficient to satisfy all

resilience conditions by the remark after Corollary 5.4. Hence, using Theorem 5.1 on the corrupted

samples �̂푦�푖 , we learn Σ̂−1/2�휇 up to ℓ2 error �푂(�훼). Multiplying this by Σ̂1/2, we find �̂휇 such that

‖�휇−�̂휇‖
Σ̂
≤ �푂(�훼), which implies �푑TV(�풩(�̂휇, Σ̂),�풩(�휇, Σ̂)) ≤ �푂(�훼). But sinceΣ and Σ̂have Mahalanobis

distance at most �푂(�훼), this means �푑TV(�풩(�휇, Σ̂),�풩(�휇,Σ)) ≤ �훼. So, by the Triangle inequality, we

have �푑TV(�풩(�̂휇, Σ̂),�풩(�휇,Σ)) ≤ �푂(�훼), which completes the proof.

The privacy factor and increases by a factor of 3 via basic composition of privacy, the failure

probability also increases by a factor of 3, and the sample complexity is simply the maximum of

the sample complexities required by Theorems 6.1, 7.1, and 5.1. �

The proof of Theorem 1.4 is very similar: this time, we combine Theorems 6.2, 7.1, and 5.2.

9One may attempt to remove this issue by using different samples for this step, but due to the adversarial nature of

the strong contamination model, previous samples may affect how later samples are corrupted!

45

Proof of Theorem 1.4. The proof is identical to the proof of Theorem 1.3. First, we privately learn Σ̃1

such that ‖Σ−1/2Σ̃1Σ
−1/2 − �퐼‖�표�푝 ≤ �훼, using Theorem 6.2. We then replace each �푦�푖 with �̂푦�푖 = Σ̃

−1/2
1

�푦�푖 ,

and via the same procedure we learn some Σ̂ such that Σ, Σ̂ are close in Mahalanobis distance.

Finally, we redefine �̂푦�푖 = Σ̂−1/2�푦�푖 , and learn �̂휇 such that �푑TV(�풩(�̂휇, Σ̂),�풩(�휇,Σ)) ≤ �푂(�훼), using

Theorem 5.2, in the same way as we applied Theorem 5.1, to prove Theorem 1.3.

The privacy factor and failure probability increase by a factor of 3, and the sample complexity

is the maximum of the sample complexities required by Theorems 6.2, 7.1, and 5.2. �

Acknowledgements

We thank Xiyang Liu, Weihao Kong, and Sewoong Oh for helpful conversations at the beginning

of this project. We also thank Lydia Zakynthinou and Pasin Manurangsi for making us aware of

prior work on the inverse sensitivity mechanism.

References

[AAK21] Ishaq Aden-Ali, Hassan Ashtiani, and Gautam Kamath. On the sample complexity of

privately learning unbounded high-dimensional gaussians. In Proceedings of the 32nd

International Conference on Algorithmic Learning Theory, ALT ’21, pages 185–216. JMLR,

Inc., 2021.

[AD20a] Hilal Asi and John C Duchi. Instance-optimality in differential privacy via approxi-

mate inverse sensitivity mechanisms. Advances in neural information processing systems,

33:14106–14117, 2020.

[AD20b] Hilal Asi and John C Duchi. Near instance-optimality in differential privacy. arXiv

preprint arXiv:2005.10630, 2020.

[AKT+22] Daniel Alabi, Pravesh Kothari, Pranay Tankala, Prayaag Venkat, and Fred Zhang.

Privately estimating a gaussian: Efficient, robust and optimal. Personal communication

(in submission), 2022.

[AL22] Hassan Ashtiani and Christopher Liaw. Private and polynomial time algorithms for

learning Gaussians and beyond. In Proceedings of the 35th Annual Conference on Learning

Theory, COLT ’22, pages 1075–1076, 2022.

[AM20] Marco Avella-Medina. The role of robust statistics in private data analysis. Chance,

33(4):37–42, 2020.

[AM21] Marco Avella-Medina. Privacy-preserving parametric inference: a case for robust

statistics. Journal of the American Statistical Association, 116(534):969–983, 2021.

[BGS+21] Gavin Brown, Marco Gaboardi, Adam Smith, Jonathan Ullman, and Lydia Zakyn-

thinou. Covariance-aware private mean estimation without private covariance esti-

mation. In Advances in Neural Information Processing Systems 34, NeurIPS ’21. Curran

Associates, Inc., 2021.

46

[BKSW19] Mark Bun, Gautam Kamath, Thomas Steinke, and Zhiwei Steven Wu. Private hypoth-

esis selection. In Advances in Neural Information Processing Systems 32, NeurIPS ’19,

pages 156–167. Curran Associates, Inc., 2019.

[BS19] Mark Bun and Thomas Steinke. Average-case averages: Private algorithms for smooth

sensitivity and mean estimation. In Advances in Neural Information Processing Systems

32, NeurIPS ’19, pages 181–191. Curran Associates, Inc., 2019.

[DFK91] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm for

approximating the volume of convex bodies. Journal of the ACM (JACM), 38(1):1–17,

1991.

[DK19] Ilias Diakonikolas and Daniel M Kane. Recent advances in algorithmic high-

dimensional robust statistics. arXiv preprint arXiv:1911.05911, 2019.

[DK22] Ilias Diakonikolas and Daniel M. Kane. Algorithmic High-Dimensional Robust Statistics.

Cambridge University Press, 2022.

[DKK+16] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and

Alistair Stewart. Robust estimators in high dimensions without the computational

intractability. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Com-

puter Science, FOCS ’16, pages 655–664, Washington, DC, USA, 2016. IEEE Computer

Society.

[DKK+17] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and

Alistair Stewart. Being robust (in high dimensions) can be practical. In Proceedings of

the 34th International Conference on Machine Learning, ICML ’17, pages 999–1008. JMLR,

Inc., 2017.

[DKK+19] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and

Alistair Stewart. Robust estimators in high-dimensions without the computational

intractability. SIAM Journal on Computing, 48(2):742–864, 2019.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni

Naor. Our data, ourselves: Privacy via distributed noise generation. In Proceedings of

the 24th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, EUROCRYPT ’06, pages 486–503, Berlin, Heidelberg, 2006. Springer.

[DKS17] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Statistical query lower

bounds for robust estimation of high-dimensional Gaussians and Gaussian mixtures.

In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science,

FOCS ’17, pages 73–84, Washington, DC, USA, 2017. IEEE Computer Society.

[DKS19] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower

bounds for robust linear regression. In Proceedings of the 30th Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’19, pages 2745–2754, Philadelphia, PA, USA,

2019. SIAM.

47

[DL09] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of

the 41st Annual ACM Symposium on the Theory of Computing, STOC ’09, pages 371–380,

New York, NY, USA, 2009. ACM.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise

to sensitivity in private data analysis. In Proceedings of the 3rd Conference on Theory of

Cryptography, TCC ’06, pages 265–284, Berlin, Heidelberg, 2006. Springer.

[EMN22] Hossein Esfandiari, Vahab S Mirrokni, and Shyam Narayanan. Tight and robust private

mean estimation with few users. In Proceedings of the 39th International Conference on

Machine Learning, ICML ’22, pages 16383–16412. JMLR, 2022.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and effi-

cient algorithm design. Foundations and Trends® in Theoretical Computer Science, 14(1-

2):1–221, 2019.

[GH22] Kristian Georgiev and Samuel B Hopkins. Privacy induces robustness: Information-

computation gaps and sparse mean estimation. In Advances in Neural Information

Processing Systems 35, NeurIPS ’22. Curran Associates, Inc., 2022.

[GKM21] Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. User-level differentially private

learning via correlated sampling. In Advances in Neural Information Processing Systems

34, NeurIPS ’21. Curran Associates, Inc., 2021.

[GKMN21] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Thao Nguyen. Robust and private

learning of halfspaces. In The 24th International Conference on Artificial Intelligence and

Statistics, volume 130 of AISTATS ’21, pages 1603–1611. PMLR, 2021.

[HKM22] Samuel B Hopkins, Gautam Kamath, and Mahbod Majid. Efficient mean estimation

with pure differential privacy via a sum-of-squares exponential mechanism. In Pro-

ceedings of the 54th Annual ACM Symposium on the Theory of Computing, STOC ’22, New

York, NY, USA, 2022. ACM.

[HL18a] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of squares

proofs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Comput-

ing, pages 1021–1034, 2018.

[HL18b] Samuel B. Hopkins and Jerry Li. Mixture models, robustness, and sum of squares

proofs. In Proceedings of the 50th Annual ACM Symposium on the Theory of Computing,

STOC ’18, pages 1021–1034, New York, NY, USA, 2018. ACM.

[HL19] Samuel B Hopkins and Jerry Li. How hard is robust mean estimation? In Conference

on Learning Theory, pages 1649–1682. PMLR, 2019.

[HT10] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Proceedings

of the 42nd Annual ACM Symposium on the Theory of Computing, STOC ’10, pages 705–714,

New York, NY, USA, 2010. ACM.

48

[JLLV21] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh S. Vempala. Reducing isotropy and

volume to KLS: an �표∗(�푛3�휓2)volume algorithm. In 53rd Annual ACM SIGACT Symposium

on Theory of Computing, STOC ‘21, pages 961–974. ACM, 2021.

[KKM18] Adam Klivans, Pravesh K Kothari, and Raghu Meka. Efficient algorithms for outlier-

robust regression. In Conference On Learning Theory, pages 1420–1430. PMLR, 2018.

[KLS95] Ravi Kannan, László Lovász, and Miklós Simonovits. Isoperimetric problems for

convex bodies and a localization lemama. Discret. Comput. Geom., 13:541–559, 1995.

[KLSU19] Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan Ullman. Privately learning

high-dimensional distributions. In Proceedings of the 32nd Annual Conference on Learning

Theory, COLT ’19, pages 1853–1902, 2019.

[KMS22a] Gautam Kamath, Argyris Mouzakis, and Vikrant Singhal. New lower bounds for

private estimation and a generalized fingerprinting lemma. In Advances in Neural

Information Processing Systems 35, NeurIPS ’22, 2022.

[KMS+22b] Gautam Kamath, Argyris Mouzakis, Vikrant Singhal, Thomas Steinke, and Jonathan

Ullman. A private and computationally-efficient estimator for unbounded gaussians.

In Proceedings of the 35th Annual Conference on Learning Theory, COLT ’22, pages 544–572,

2022.

[KMV22] Pravesh K Kothari, Pasin Manurangsi, and Ameya Velingker. Private robust estimation

by stabilizing convex relaxations. In Proceedings of the 35th Annual Conference on Learning

Theory, COLT ’22, pages 723–777, 2022.

[KMZ22] Pravesh K. Kothari, Peter Manohar, and Brian Hu Zhang. Polynomial-time sum-of-

squares can robustly estimate mean and covariance of gaussians optimally. In Sanjoy

Dasgupta and Nika Haghtalab, editors, International Conference on Algorithmic Learning

Theory, 29-1 April 2022, Paris, France, volume 167 of Proceedings of Machine Learning

Research, pages 638–667. PMLR, 2022.

[KS17] Pravesh K. Kothari and David Steurer. Outlier-robust moment-estimation via sum-of-

squares. CoRR, abs/1711.11581, 2017.

[KSS18] Pravesh K Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation

and improved clustering via sum of squares. In Proceedings of the 50th Annual ACM

SIGACT Symposium on Theory of Computing, pages 1035–1046, 2018.

[KSU20] Gautam Kamath, Vikrant Singhal, and Jonathan Ullman. Private mean estimation

of heavy-tailed distributions. In Proceedings of the 33rd Annual Conference on Learning

Theory, COLT ’20, pages 2204–2235, 2020.

[KV18] Vishesh Karwa and Salil Vadhan. Finite sample differentially private confidence in-

tervals. In Proceedings of the 9th Conference on Innovations in Theoretical Computer Sci-

ence, ITCS ’18, pages 44:1–44:9, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

49

[LBY22] Mengchu Li, Thomas B Berrett, and Yi Yu. On robustness and local differential privacy.

arXiv preprint arXiv:2201.00751, 2022.

[LKKO21] Xiyang Liu, Weihao Kong, Sham Kakade, and Sewoong Oh. Robust and differentially

private mean estimation. In Advances in Neural Information Processing Systems 34,

NeurIPS ’21. Curran Associates, Inc., 2021.

[LKO22] Xiyang Liu, Weihao Kong, and Sewoong Oh. Differential privacy and robust statistics

in high dimensions. In Proceedings of the 35th Annual Conference on Learning Theory,

COLT ’22, pages 1167–1246, 2022.

[LV04] László Lovász and Santosh S. Vempala. Hit-and-run from a corner. In Proceedings

of the 36th Annual ACM Symposium on Theory of Computing, STOC ‘04, pages 310–314.

ACM, 2004.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In

Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,

FOCS ’07, pages 94–103, Washington, DC, USA, 2007. IEEE Computer Society.

[MV22] Oren Mangoubi and Nisheeth K. Vishnoi. Sampling from log-concave distributions

with infinity-distance guarantees. In Advances in Neural Information Processing Systems

35, NeurIPS ’22. Curran Associates, Inc., 2022.

[RC21] Kelly Ramsay and Shoja’eddin Chenouri. Differentially private depth functions and

their associated medians. arXiv preprint arXiv:2101.02800, 2021.

[RJC22] Kelly Ramsay, Aukosh Jagannath, and Shoja’eddin Chenouri. Concentration of the

exponential mechanism and differentially private multivariate medians. arXiv preprint

arXiv:2210.06459, 2022.

[RSS18] Prasad Raghavendra, Tselil Schramm, and David Steurer. High dimensional estima-

tion via sum-of-squares proofs. In Proceedings of the International Congress of Mathe-

maticians (ICM 2018), pages 3389–3423. WORLD SCIENTIFIC, 2018.

[RW17] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares

proofs. arXiv preprint arXiv:1702.05139, 2017.

[SCV18] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for

learning in the presence of arbitrary outliers. In Proceedings of the 9th Conference

on Innovations in Theoretical Computer Science, ITCS ’18, pages 45:1–45:21, Dagstuhl,

Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[SM22] Aleksandra Slavkovic and Roberto Molinari. Perturbed M-estimation: A further in-

vestigation of robust statistics for differential privacy. In Alicia L. Carriquiry, Judith M.

Tanur, and William F. Eddy, editors, Statistics in the Public Interest: In Memory of Stephen

E. Fienberg, pages 337–361. Springer, 2022.

50

[TCK+22] Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, and Uri Stemmer. Friend-

lycore: Practical differentially private aggregation. In Proceedings of the 39th Interna-

tional Conference on Machine Learning, ICML ’22, pages 21828–21863. JMLR, Inc., 2022.

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in

Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge

University Press, 2018.

A Omitted proofs for Private Sampling

In this section, we prove Lemmas 4.4 and 4.5.

A.1 Preliminaries

In this subsection, we note a few miscellaneous results that will be very important in proving

Theorems 4.1 and 4.2.

We need the following ellipsoid theorem, showing that convex bodies are contained in reason-

ably small ellipsoids but also contain reasonably large ellipsoids.

Theorem A.1. [KLS95, Theorem 4.1] Let �퐾 ⊂ R�푑 be a convex body in isotropic position, meaning that

if �푋 is uniformly drawn from �퐾, E[�푋] = 0 and �퐶�표�푣(�푋) = �퐼. Then, for �퐵 the unit ball of radius 1,√
�푑+2
�푑 · �퐵 ⊂ �퐾 ⊂

√
�푑(�푑 + 2) · �퐵.

Next, we need the following basic proposition.

Proposition A.2. Suppose that �퐾, �퐾′ are convex bodies such that �퐵(0, �푟) ⊂ �퐾 ⊂ �퐾′, and suppose that

�퐾′ ⊄ (1 + �훾1)�퐾, where (1 + �훾1)�퐾 represents �퐾 dilated by a factor 1 + �훾1 around the origin. Then,

vol(�퐾′) − vol(�퐾) ≥ (�훾1 ·�푟
6�푑)�푑.

Proof. Since �퐾′ ⊄ (1+ �훾1)�퐾, there exists a vector �푣 such that �푣, (1+ �훾1
2
)�푣 are both contained in �퐾′\�퐾.

Now, let’s consider the ball of radius �휌 around (1+ �훾1
4
)�푣 for some small value �휌. We will show that

for �휌 appropriately chosen, this ball is contained in �퐾′ but is disjoint from �퐾.

For any such point, we can write it as �푣 + (�훾1
4
�푣 + �푤) for some �푤 with ‖�푤‖2 ≤ �휌. If this point

were in �퐾, then since �푣 ∉ �퐾, this means by convexity �푣 − �휆(�훾1
4
�푣 + �푤) is not in �퐾 for all �휆 ≥ 0. By

choosing �휆 = 4
�훾1
, we have that − 4

�훾1
· �푤 is not in �퐾. This is a contradiction if we choose �휌 ≤ �훾1·�푟

4
,

since this implies − 4
�훾1

·�푤 has norm at most �푟 so it must be in �퐾. Thus, if �휌 ≤ �훾1·�푟
4

, the ball of radius

�휌 around (1 + �훾1
4
)�푣 is disjoint from �퐾.

Next, we alternatively write the point as (1 + �훾1
2
)�푣 − (�훾1

4
�푣 − �푤). To show it is in �퐾′, note that

(1 + �훾1
2
)�푣 is in �퐾′, so by convexity it suffices to show that (1 + �훾1

2
)�푣 − �휆(�훾1

4
�푣 − �푤) is in �퐾′ for some

�휆 ≥ 1. By setting �휆 = (1+ �훾1
2
) · 4

�훾1
, it suffices to show that (1+ �훾1

2
) · 4

�훾1
·�푤 =

(
4
�훾1

+ 2

)
·�푤 is in �퐾′. But

this is similarly true as long as �휌 ≤ �푟/(4
�훾1

+ 2), which holds as long as �휌 ≤ �훾1·�푟
6
.

Therefore, �퐾′\�퐾 contains a ball of radius
�훾1·�푟
6

, which has volume at least (�훾1·�푟
6�푑)�푑. �

51

A.2 Sampling from a well-rounded convex body with an imperfect oracle

In this subsection, our goal is to sample uniformly from a convex body, but we wish to do this even

if we only can afford polynomial bit precision and do not have a perfect membership oracle. To do

this, we will apply the well-known hit-and-run Markov chain, but with some minor adjustments

to avoid the issue of requiring infinite precision arithmetic.

First, we describe the standard hit-and-run Markov chain assuming infinite precision arith-

metic. Given a convex body �퐾 for which we have a membership oracle, the hit-and-run algorithm

starts with a point �푥0 ∈ �퐾. At each step �푡, we move from �푥�푡−1 ∈ �퐾 to �푥�푡 ∈ �퐾 as follows. We first pick

a vector �푣 at random from the unit sphere. We then let �푥�푡 be uniformly chosen on the line segment

{�푥�푡−1 + �휆 · �푣}�휆∈R ∩ �퐾, i.e., the line segment parallel to �푣 that goes through �푥�푡−1, but restricted by �퐾

since we cannot sample outside �퐾.

The main result of the hit-and-run algorithm we apply is the following, due to Lovász and

Vempala.

Theorem A.3. [LV04] Let �퐾 be a �푑-dimensional convex body that contains the ball �퐵(0, 1) and is contained

in the ball �퐵(0, �퐷). Then, for a sufficiently large constant�퐶 and for any 0 < �훾 < 1
2
, after�푚 ≥ �퐶�푑2�퐷2 log �훾−1

steps of hit-and-run starting from the origin (i.e., setting �푥0 to be the origin), the distribution of the final

point �푥�푚 has total variation distance at most �훾 from the uniform distribution over �퐾.

In our setting, we cannot directly use the hit-and-run algorithm for two reasons. The first

reason is that we cannot pick a truly uniform direction and sample truly uniformly along that

direction from a starting point. The second reason is that we don’t have a perfect membership

oracle. That being said, we will be able to make minor modifications to the algorithm and show

that we output a distribution that is “close” to uniform on �퐾.

We assume we are given two unknown convex bodies �퐾1, �퐾2, such that �퐵(0, 1) ⊂ �퐾1 ⊂ �퐾2 ⊂
(1 + �훾1)�퐾1 ⊂ �퐵(0, �퐷). One should think of �퐷 as polynomially large (we will later improve this to

being exponentially large) and �훾1 as exponentially small. We also assume we have an (�퐾1, �퐾2)-
membership oracle �풪.

For some small parameter �훾 > 0, we define the hit-and-run algorithm with �훾 precision as

follows. Given a point �푥�푡−1, we select a random unit vector �푣 and round the coordinates of �푣 to

multiples of �훾. Next, we attempt to sample along the line �푥�푡−1 + �휆 · �푣 for �휆 ∈ R, restricted to �퐾1.

To do this with our oracle �풪, we perform a binary search to find a positive integer �푎1 such that

�풪 accepts �푥�푡−1 + �푎1 · �훾 · �푣 but rejects �푥�푡−1 + (�푎1 + 1) · �훾 · �푣. Likewise we find a negative integer

−�푎2 such that oracle accepts �푥�푡−1 − �푎2 · �훾 · �푣 but rejects �푥�푡−1 − (�푎2 + 1) · �훾 · �푣. Finally, we compute

�푥�푡 := �푥�푡−1+ �푎 ·�훾 ·�푣, where �푎 is an integer chosen uniformly at random betwen −�푎2 and �푎1, inclusive.

We note that it may be possible to choose �푥�푡 that the oracle rejects, but we know that �푥�푡 is always

in �퐾2.

Before analyzing the modified hit-and-run algorithm, we first show the following proposition.

Proposition A.4. Let �퐾 be any convex body. Suppose that �푥 is a point and �훾 > 0 is a parameter such that

the ball �퐵(�푥, �훾) is contained in �퐾, and let Λ be an arbitrary line passing through �푥. Define �퐿 to be the length

of Λ ∩ �퐾. Then, for any parameter 0 < �휆 < 1, the length of points �푥′ on Λ ∩ �퐾 such that �퐵(�푥′,�휆 · �훾) is

contained in �퐾 is at least (1 − �휆) · �퐿.

52

Proof. Let Λ′ represent the segment of Λ that is contained in �퐾, with endpoints �푦 and �푧. Since the

ball �퐵(�푥, �훾) is contained in �퐾, we can consider the convex hull of this ball and the points �푦 and �푧.

Note that the ball of radius �휆′ · �푟 around �휆′�푥+(1−�휆′)�푦 or around �휆′�푥+(1−�휆′)�푧 is contained in this

convex hull. So, all points �푥′ on Λ′ such that �퐵(�푥′,�휆 · �훾) is not contained in �퐾 cannot be between

�휆�푥 + (1−�휆)�푦 and �휆�푥 + (1−�휆)�푧, so the length of the interval of such points is at least (1−�휆) · �퐿. �

Next, we show that the hit-and-run algorithm with �훾 precision, assuming �훾 is sufficiently small,

always stays within �퐾1 up to a small margin of error.

Proposition A.5. Let �퐾1, �퐾2 be convex bodies such that �퐵(0, 1) ⊂ �퐾1 ⊂ �퐾2 ⊂ (1 + �훾1)�퐾1 ⊂ �퐵(0, �퐷).
Consider running �푚 steps of hit-and-run from the origin with �훾1 precision, with �푥�푡 being the point chosen

after the �푡th step for all 0 ≤ �푡 ≤ �푚. Then, for any 0 < �휏 < 1 such that (�휏/2)�푚+1 ≥ �퐷 · �훾1, we have that with

probability at least 1 − �푂(�푚 · �휏), all the points �푥�푡 satisfy the �퐵(�푥�푡 , (�휏/2)�푚) ⊂ �퐾1.

Proof. Suppose that after �푡 steps of hit and run, the point selected is �푥�푡 . Suppose that �퐵(�푥�푡 , �훾(�푡)) is

contained in �퐾1, for some positive real �훾(�푡), which also means �퐵(�푥�푡 , �훾(�푡)) ⊂ �퐾2. Let Λ represent an

arbitrary line through �푥�푡 . By making oracle calls to �풪 using the binary search procedure, we obtain

some line segment Λ′ ⊂ Λ that goes entirely through �퐾1 but is contained in �퐾2. Let �퐿 represent the

length of the line segment we found, and �퐿1 represent the length of Λ ∩ �퐾1. Also, let �퐿2 represent

the length of Λ ∩ �퐾2, so �퐿1 ≤ �퐿 ≤ �퐿2.

Recall that �퐵(�푥�푡 , �훾(�푡)) ⊂ �퐾2, but note that for any point �푥′ outside �퐾1, �퐵(�푥′, �훾1 · �퐷) ⊄ �퐾2.

Therefore, by Proposition A.4, the value of �퐿2− �퐿1 is at most
�훾1·�퐷
�훾(�푡) · �퐿2, which assuming �훾(�푡) ≥ 2�훾1�퐷

is at most
2�훾1 ·�퐷
�훾(�푡) · �퐿. In addition, the length of points �푥′ in �퐿1 such that �퐵(�푥′, �휏 · �훾(�푡)) ⊄ �퐾1 is at most

�휏 · �퐿1 ≤ �휏 · �퐿. So, if we sample randomly from �퐿 even after discretizing by rounding coordinates to

the nearest multiples of �훾1, the probability of selecting a point �푥′ such that �퐵(�푥′, �휏 · �훾(�푡) − �훾1) ⊄ �퐾1

is at most �휏 + �푂
(
�훾1·�퐷
�훾(�푡)

)
.

For �푡 = 0, we assume �푥0 is the origin, so we can set �훾(0) = 1. In general, we fix some parameter �휏,

and let �훾(�푡+1) := �휏 · �훾(�푡)− �훾1. If (�휏/2)�푚+1 ≥ �퐷 · �훾1, then we will inductively have that �훾(�푡) ≥ (�휏/2)�푡 for

all 0 ≤ �푡 ≤ �푚, and so
�훾1·�퐷
�훾(�푡) ≤ �휏/2. Therefore, by a union bound over all 0 ≤ �푡 ≤ �푚, we have that with

probability at least 1−�푂(�푚 ·�휏), every �푥�푡 selected satisfies �퐵(�푥�푡 , �훾(�푡)) ⊂ �퐾1, so �퐵(�푥�푡 , (�휏/2)�푚) ⊂ �퐾1. �

We show that the hit-and-run algorithm with limited precision outputs a distribution that is

“close” to uniform on the convex body �퐾1. We will use the following formal definition of closeness.

Definition A.6. We define two distributions �풟 ,�풟′ over Euclidean space R�푑 to be (�훾, �훾′)-close if

there exists a coupling of �풟 ,�풟′ such that P(�푎,�푐)∼(�풟 ,�풟′)(‖�푎 − �푐‖2 ≥ �훾) ≤ �훾′.

Lemma A.7. Given parameters �퐷, �훾2, �훾3, there exists �훾1 such that log �훾−1
1

= poly(�푑, �퐷, log �훾−1
2

, log �훾−1
3
),

and the following holds. If �퐾1, �퐾2 are convex bodies such that �퐵(0, 1) ⊂ �퐾1 ⊂ �퐾2 ⊂ (1 + �훾1)�퐾1 ⊂ �퐵(0, �퐷),
then after �푚 ≥ �푂(�푑2�퐷2 log �훾−1

3
) steps of hit-and-run starting from the origin with �훾1 precision, the final

point is (�훾2 , �훾3)-close to the uniform distribution over �퐾1.

Proof. We create a coupling between running hit-and-run with perfect precision and running hit-

and-run with �훾1 precision. After �푡 steps, let �푥�푡 be the point we sampled for hit-and-run with

53

perfect precision, and let �푥′�푡 be the point we sampled for hit-and-run with �훾1 precision. We start

with �푥0 = �푥′
0

as the origin.

Let Λ be the random line drawn through �푥�푡 , and let Λ′ be the rounded random line drawn

through �푥′�푡 . We will couple the lines so that with 1−�훾1 probability, the lines are essentially parallel

up to �훾1 error. Let’s write Λ = {�푥�푡 +�휆 · �푣�푡}�휆∈R and Λ′ = {�푥′�푡 +�휆 · �푣′�푡}�휆∈R, where �푣�푡 , �푣
′
�푡 are unit vectors

with ‖�푣�푡 − �푣′�푡 ‖2 ≤
√
�푑 · �훾1 with probability at least 1− �훾1. If �퐵(�푥�푡 , (�휏/2)�푚) ⊂ �퐾1, then the probability

that a random point �푥′ on Λ ∩ �퐾1 satisfies �퐵(�푥′, (�휏/2)�푚+1) ⊄ �퐾1 is at most �휏 + �푂
(

�훾1·�퐷
(�휏/2)�푚

)
, by the

argument of Proposition A.5. Likewise, if �퐵(�푥′�푡 , (�휏/2)�푚) ⊂ �퐾1, then the probability that a random

point �푥′ on Λ′ in the segment selected by step �푡 + 1 of the algorithm satisfies �퐵(�푥′, (�휏/2)�푚+1) ⊄ �퐾1

is at most �휏 + �푂
(

�훾1·�퐷
(�휏/2)�푚

)
.

Now, suppose that �퐵(�푥�푡 , (�휏/2)�푚), �퐵(�푥′�푡 , (�휏/2)�푚) ⊂ �퐾1, and ‖�푥�푡 − �푥′�푡 ‖2 ≤ �휏(�푡) for some parameter

�휏(�푡) ≤ (�휏/2)�푚 − 2�퐷 · �훾1. Then, if we selected �휆 uniformly such that �푥�푡 + �휆�푣�푡 ∈ �퐾1, then �푥′�푡 + �휆�푣′�푡 has

distance at most �휏(�푡) + 2�퐷 · �훾1 from �푥�푡 + �휆�푣�푡 (even after rounding off �휆 to the nearest multiple of

�훾1). This means that with probability at most �휏+�푂
(

�훾1·�퐷
(�휏/2)�푚

)
, �푥′�푡 +�휆�푣′�푡 ∈ �퐾1. Likewise, if we selected

�휆′ according to the distribution from hit-and-run on �푥′�푡 with �훾1-precision, then �푥�푡 +�휆′�푣�푡 ∈ �퐾1 with

probability at most �휏+�푂
(

�훾1·�퐷
(�휏/2)�푚

)
(even after replacing�휆′ with a uniform real in [�휆′−�훾1/2,�휆′+�훾1/2]

to “un-round” it). So, by keeping �휆 the same (up to rounding) whenever possible (which can

happen with at most �푂
(
�휏 + �훾1·�퐷

(�휏/2)�푚
)

failure probability, we have that ‖�푥�푡+1 − �푥′�푡+1‖2 ≤ �휏(�푡) + 2�퐷 · �훾1
if �퐵(�푥�푡 , (�휏/2)�푚), �퐵(�푥′�푡 , (�휏/2)�푚) ⊂ �퐾1, ‖�푥�푡 − �푥′�푡 ‖2 ≤ �휏(�푡), and �휏(�푡) ≤ (�휏/2)�푚 − 2�퐷 · �훾1.

To finish the proof, we set �휏(�푡) = 2�퐷�훾1 · �푡. We assume that �휏(�푡) ≤ (�휏/2)�푚 − 2�퐷�훾1, so it suffices for

4�퐷�푚�훾1 ≤ (�휏/2)�푚 . Let ℰ�푡 be the event that �퐵(�푥�푡 , (�휏/2)�푚), �퐵(�푥′�푡 , (�휏/2)�푚) ⊂ �퐾1, and ‖�푥�푡 − �푥′�푡 ‖2 ≤ �휏(�푡).

Then, if ℰ�푡 holds, the probability that ‖�푥�푡+1− �푥′�푡+1‖2 ≤ �휏(�푡+1) does not hold is at most �푂
(
�휏 + �훾1·�퐷

(�휏/2)�푚
)
.

In addition, the probability that �퐵(�푥�푡+1, (�휏/2)�푚), �퐵(�푥′�푡+1, (�휏/2)�푚) ⊂ �퐾1 does not hold for any choice of

�푡+1 is at most �푂(�푚 ·�휏) if (�휏/2)�푚+1 ≥ �퐷 ·�훾1, by Proposition A.5. So, P(ℰ�푡\ℰ�푡+1) ≤ �푂(�푚 ·�휏+�휏+ �훾1·�퐷
(�휏/2)�푚),

which means that the probability that ℰ�푚 doesn’t hold is at most �푂
(
�푚2 · �휏 + �푚 ·�훾1·�퐷

(�휏/2)�푚
)
, as long as

4�퐷�푚�훾1 ≤ (�휏/2)�푚 . Assuming ℰ�푚, we have that ‖�푥�푚 − �푥′�푚 ‖2 ≤ 2�퐷�푚�훾1, and by Theorem A.3, if

�푚 ≥ �퐶�푑2�퐷2 log �훾−1 then the distribution of �푥�푚 is �훾-far from uniform over �퐾1.

To summarize, we have that there exists a coupling of �푥′�푚 (which is the random walk af-

ter �푚 steps of hit-and-run with �훾1-precision) with a uniform distribution �푥 over �퐾1 such that

P ((‖�푥 − �푥′�푚 ‖2 ≤ 2�퐷�푚�훾1) ≤ �푂
(
�훾 + �푚2�휏 + �푚�훾1·�퐷

(�휏/2)�푚
)
, as long as 4�퐷�푚�훾1 ≤ (�휏/2)�푚 , �퐷�훾1 ≤ (�휏/2)�푚+1,

and �푚 ≥ �퐶�푑2�퐷2 log �훾−1. Given some small parameters �훾2, �훾3, we set �훾 = �푐�훾3, �푚 = �퐶�푑2�퐷2 log �훾−1,

and �휏 =
�훾
�푚2 for some small constant �푐. Finally, we set �훾1 = min

(
�훾2

2�퐷�푚 ,
�훾(�휏/2)�푚
�푚�퐷 ,

(�휏/2)�푚+1

4�퐷�푚

)
so that the

conditions are satisfied and P (‖�푥 − �푥′�푚 ‖2 ≥ �훾2) ≤ �푂(�훾) ≤ �훾3. �

Next, we must show that, rather than having �퐾1, �퐾2 ⊂ �퐵(0, �퐷) for some polynomially sized �퐷,

we can have �퐾1, �퐾2 ⊂ �퐵(0, �푅) for �푅 exponentially large. In other words, one can avoid issues when

the convex body is poorly conditioned.

Lemma A.8. Let �훾2, �훾3 be as in Lemma A.7, and let �훾1 be defined as in the end of Lemma A.7, assuming�퐷 :=

2�푑3. For some �푟 < 1 < �푅, Let�퐾1, �퐾2 be convex bodies with a (�퐾1 , �퐾2)-membership oracle, such that�퐵(0, �푟) ⊂

54

�퐾1 ⊂ �퐾2 ⊂ �퐵(0, �푅), and vol(�퐾2)−vol(�퐾1) ≤
(�훾1·�푟
6�푑

)�푑
. Then, there exists a poly(�푑, log �푅

�푟 , log �훾
−1
2

, log �훾−1
3
)-

time algorithm that can find an affine transformation A such that A(�퐾1) is contained in �퐵(0, 2�푑3) but

contains �퐵(0, 1).

Proof. The proof is an ellipsoid method, modified to deal with the fact that we do not have a perfect

membership oracle and that we do not have a separation oracle. We will keep track of an interior

ellipsoid �퐸1 ⊂ �퐾1 and an exterior ellipsoid �퐸2 ⊃ �퐾2, and keep trying to either grow �퐸1 or shrink �퐸2.

The way we do this will be inspired by some recent work on sampling and volume computation

of convex bodies [JLLV21].

Given current interior ellipsoid �퐸1 and exterior ellipsoid �퐸2, letA be some affine transformation

that sends �퐸1 to the ball �퐵(0, 1) = A�퐸1, and where the largest axis of A�퐸2 is parallel to the first

coordinate direction. (Note thatA�퐸2 may not have center as the origin.) At every step, we will only

increase the volume of�퐸1 and decrease the volume of�퐸2, and since�퐸1 started out as�퐵(0, �푟), the affine

transformation Amultiplies the volume by at most
(
1
�푟

)�푑
. Therefore, vol(A�퐾2) − vol(A�퐾1) ≤

(�훾1
6�푑

)�푑
.

We may assume that this largest axis of A�퐸2 has length at least �퐷 := 2�푑3, or else we are already

done. Define �퐾′
1
:= A�퐾1∩�퐵(0, �퐷) and �퐾′

2
:= A�퐾2∩�퐵(0, �퐷). Note that vol(�퐾′

2
)−vol(�퐾′

1
) ≤ vol(A�퐾2)−

vol(A�퐾1) ≤
(�훾1
6�푑

)�푑
, and �퐵(0, 1) ⊂ �퐾′

1
, so by Proposition A.2,A�퐾2 ⊂ (1+ �훾1)A�퐾1 and �퐾′

2
⊂ (1+ �훾1)�퐾′

1
.

Given (�퐾1, �퐾2)-membership oracle access, it is simple to obtain (�퐾′
1
, �퐾′

2
)-membership oracle access.

Therefore, by Lemma A.7, we can produce a sample from a distribution that is (�훾2 , �훾3)-close to

uniform over �퐾′
1

in poly(�푑, �퐷, log �훾−1
2

, log �훾−1
3
) time.

Assuming without loss of generality that �훾2, �훾3 ≤ �푑−100, we can repeat the samplingpoly(�푑, �퐷) =
�푑�푂(1) times and approximately learn the mean �휇1 and covariance Σ1 of the uniform distribution

with respect to �퐾′
1
, up to ℓ2 norm (resp., Frobenius norm) error 1 by using the empirical mean �̂휇1

and empirical covariance Σ̂1 as our estimates.

First, suppose that one of our (approximate) samples from �퐾′
1

was a point �푥 with ℓ2 norm at least

25�푑. Then, if we define �푦 = (1−�훾1)�푥, then �푦 ∈ A�퐾1 and ‖�푦‖2 ≥ 20�푑. If we rotate the spaceR�푑 and as-

sume �푦 = (�푦1 , 0, 0, . . . , 0) ∈ R�푑 for �푦1 ≥ 20�푑, then the ellipse �퐸 =

{
�푧 : (�푧1−10

10
)2 +∑�푑

�푖=2

(
�푧�푖

(1−1/�푑)

)2
≤ 1

}
is contained in the convex hull of �퐵(0, 1) and �푦. The volume ratio vol(�퐸)/vol(�퐵(0, 1)) is 10·(1− 1

�푑)�푑−1 ≥
10
�푒 ≥ 2, so we can replace A�퐸1 = �퐵(0, 1) with the larger ellipsoid �퐸 ⊂ A�퐾1.

Alternatively, every sample we drew has ℓ2 norm at most 25�푑, which means that the empirical

covariance Σ̂1 has operator norm at most 25�푑. Thus, Σ1 has operator norm at most 30�푑, meaning

�푥⊤Σ1�푥 ≤ 30�푑 for all ‖�푥‖2 = 1. Now, by Theorem A.1, �퐾′
1
⊂

{
�푥 : (�푥 − �휇1)⊤Σ−1

1
(�푥 − �휇1) ≤ �푑(�푑 + 2)

}
.

So if �푥 ⊂ �퐾′
1
, then (�푥 − �휇1)⊤Σ−1

1
(�푥 − �휇1) ≤ �푑(�푑 + 2), and since the minimum eigenvalue of Σ−1

1
is at

least 1
25�푑+1 , this means that ‖�푥 − �휇1‖2 ≤ �푑(�푑 + 2)(25�푑 + 1) for all �푥 ∈ �퐾′

1
. Since the origin is in �퐾′

1
,

this implies that every point in �퐾′
1

has norm bounded by �푂(�푑3/2).
Recall that the original convex bodies �퐾1, �퐾2 are known to be in �퐸2, and A�퐸2 has largest axis

parallel to the first coordinate direction. If the major radius of A�퐸2 is some �퐹, then we claim

that all points in A�퐾1 or A�퐾2 have first coordinate bounded in magnitude by �푂
(

�퐹
�푑3/2

)
. To see

why, for any �푥 ∈ A�퐾1, �푥 · �퐷
�퐹 is in �퐾1 by convexity. Moreover, since ‖�푥‖2 ≤ �퐹, this means that

‖�푥 · �퐷
�퐹 ‖2 ≤ �퐷 so �푥 · �퐷

�퐹 ∈ �퐾′
1
. Therefore, we actually have

�푥 · �퐷
�퐹

 ≤ �푂(�푑3/2), which means that

‖�푥‖ ≤ �푂(�퐹 · �푑3/2/�퐷) = �푂(�퐹/�푑3/2). This implies that |�푥1 | is at most �푂(�퐹/�푑3/2) for all �푥 ∈ A�퐾1: this

therefore is also true for all �푥 ∈ A�퐾2. The intersection of the ellipsoid A�퐸2 with the set of points

55

with first coordinate at most �푂(�퐹/�푑3/2) is contained in the ellipsoid �퐸 which shrinks the first axis of

A�퐸2 by a factor of 10 and grows all other directions by 1 + 1
�푑 . So, we can replace A�퐸2 with another

ellipsoid �퐸 ⊃ A�퐾2 with volume at most �푒
10

≤ 0.5 times the volume of A�퐸2.

Therefore, unless 2�푑3 · A�퐸1 ⊃ A�퐸2, we can find either a new larger �퐸1 or a new smaller �퐸2 in

polynomial time. Each time this takes poly(�푑, �퐷, log �훾−1
2

, log �훾−1
3
) = poly(�푑, log �훾−1

2
, log �훾−1

3
) time.

However, the volume ratio of the original ellipsoids �퐵(0, �푟) and �퐵(0, �푅) is (�푅/�푟)�푑, so we can only

repeat this process at most �푂(�푑 log �푅
�푟) times. �

We combine Lemma A.7 and Lemma A.8 to obtain the following corollary.

Corollary A.9. For any parameters �푟, �훾2, �훾3 < 1 < �푅, there exists some �훾1 such that log �훾−1
1

=

poly(�푑, log �푅
�푟 , log �훾

−1
2

, log �훾−1
3
) and the following holds. If �퐾1, �퐾2 are convex bodies such that �퐵(0, �푟) ⊂

�퐾1 ⊂ �퐾2 ⊂ �퐵(0, �푅) and vol(�퐾2) − vol(�퐾1) ≤
(�훾1·�푟
6�푑

)�푑
, then there is a poly(�푑, log �푅

�푟 , log �훾
−1
2

, log �훾−1
3
)-time

algorithm that can sample from a distribution that is (�훾2 , �훾3)-close to uniform on �퐾1.

Proof. First, use Lemma A.8 to find an affine transformation A such that A applied to �퐾1 contains

�퐵(0, 1) but is contained in �퐵(0, 2�푑3). Then, if we define �훾′
2
=

�훾2
(�푅/�푟)·�푑3 , we can produce a sample that

is (�훾′
2
, �훾3)-close to uniform on A�퐾1. Finally, undo the affine transformation and the sample will

still be (�훾2 , �훾3)-close to uniform. �

Unfortunately, being (�훾2, �훾3)-close to uniform does not necessarily ensure privacy. This is

because one may extract information about the data based on minor perturbations of the generated

sample. To fix this, we convert this version of closeness to pointwise closeness to uniform on a fine

grid of points.

Lemma A.10. (Convex body sampling, Lemma 4.4) Fix any parameters �훾6 ≤ �푑−100 and �푟 < 1 < �푅.

Let �퐾1, �퐾2 be convex bodies such that �퐵(0, �푟) ⊂ �퐾1 ⊂ �퐾2 ⊂ �퐵(0, �푅), and vol(�퐾2) − vol(�퐾1) ≤
(�훾1·�푟
6�푑

)�푑
,

for �훾1 that will be defined in terms of �훾6. Suppose we have a (�퐾1, �퐾2)-membership oracle �풪. Then, in

poly(�푑, log �푅
�푟 , log �훾

−1
6
) time and queries to �풪, we can output a point �푧 that is (1 ± �훾6)-pointwise close to

uniform on the set of points in R�푑 with all coordinates integer multiples of �훾5 that are accepted by �풪, for

�훾5 =
�푟 ·�훾6
�푑3

.

Proof. First, we will define parameters �훾1 through �훾5 based on �푟, �푅, and �훾6. Define �훾4 := �푟
�푑2

and

�훾5 :=
�훾4·�훾6
�푑 . Next, define �훾2 :=

�훾5�훾6
�푑2

and �훾3 :=
(�훾5
2�푅

)�푑 · �훾6
�푑 . Finally, define �훾1 to be the value for �훾1

that appears when applying Corollary A.9 with �훾2 and �훾3.
Let �퐾′

1
= (1+ 1

�푑)�퐾1 and �퐾′
2
= (1+ 1

�푑)�퐾2. Let �풟1 be the uniform distribution over �퐾′
1
. By applying

Corollary A.9 on (�퐾1 , �퐾2) and then scaling the point by 1 + 1
�푑 , we obtain a point �푐 ∼ �풟2, where �풟2

is (�훾2, �훾3)-close to �풟1.

Our algorithm works as follows. First, replace �푐 with �푐 + �푦, where each coordinate �푦�푖 was

uniformly chosen from [−�훾4, �훾4] with precision �훾1. Then, round each coordinate of �푐 + �푦 to the

nearest multiple of �훾5 to get a point �푧. Finally, we run a rejection sampling algorithm by checking

whether the (�퐾1, �퐾2)-membership oracle accepts �푧. If so, we return �푧. If not, we restart the

procedure until we accept some �푧. It will be simple to see that each step of the rejection sampling

algorithm succeeds with probability (1−Ω(1�푑))�푑 ≥ Ω(1) because �푧 will be in �퐾1 with this probability,

so we can stop the rejection sampling after �푂(log �훾−1
3
) steps, to incur additional additive error �훾3.

56

We now analyze the accuracy. Let �풟3 be a distribution so that we have a coupling between

�풟1 ,�풟3,�풟2 such that if (�푎, �푏, �푐) ∼ �풟1 ,�풟3,�풟2, then ‖�푎−�푏‖2 ≤ �훾2 with probability 1, and P(�푏 ≠ �푐) ≤
�훾3. Now, for any point �푧 with all coordinates multiples of �훾5 such that the (�퐾1, �퐾2)-membership

oracle accepts �푧, we compute the probability of sampling �푧. In order to sample �푧, we must have

sampled �푐 and �푦 so that �푐 + �푦 rounds to �푧. This probability is the same as the probability that

�푏 + �푦 rounds to �푧, up to additive error �훾3. If we condition on choosing �푎 such that ‖�푎 − �푧‖∞ ≤
�훾4−(�훾1+�훾2+�훾5), then ‖�푏−�푧‖∞ ≤ �훾4−(�훾1+�훾5), so if each coordinate �푦�푖 were chosen uniformly from

[−�훾4, �훾4] with perfect precision, the probability that �푏 + �푦 rounds to �푧 will exactly be (�훾5/(2�훾4))�푑.
Due to precision issues, the actual probability that �푏 + �푦 rounds to �푧 is ((�훾5 ± �푂(�훾1))/(2�훾4))�푑.
Likewise, if we choose �푎 such that ‖�푎 − �푧‖∞ ≥ �훾4 + (�훾1 + �훾2 + �훾5), then ‖�푏 − �푧‖∞ ≥ �훾4 + (�훾1 + �훾5), so

we will never select �푏+ �푦 to round to �푧. Finally, if �훾4−(�훾1+�훾2+�훾5) ≤ ‖�푎− �푧‖∞ ≤ �훾4+(�훾1+�훾2+�훾5),
then the probability that �푏 + �푦 rounds to �푧 is between 0 and ((�훾5 + �푂(�훾1))/(2�훾4))�푑.

Since �푎 is truly uniform from �퐾′
1
= (1 + 1

�푑)�퐾1, we claim that the probability of selecting an �푎

with ‖�푎 − �푧‖∞ ≤ �훾4 + (�훾1 + �훾2 + �훾5) is (2(�훾4 + (�훾1 + �훾2 + �훾5)))�푑/vol(�퐾′
1
). For this to be true, we

need every point �푎 with ‖�푎 − �푧‖∞ ≤ �훾4 + (�훾1 + �훾2 + �훾5) to be in �퐾′
1
. Since �풪 accepts �푧, this means

�푧 ∈ �퐾2 ⊂ (1+ �훾1)�퐾1, so every point within ℓ2 distance (1�푑 − �훾1) · �푟 of �푧 is contained in (1+ 1
�푑)�퐾1 = �퐾′

1
.

So, it suffices for
√
�푑 · (�훾1 + �훾2 + �훾4 + �훾5) ≤ (1�푑 − �훾1) · �푟. Likewise, the probability of selecting an �푎

with ‖�푎 − �푧‖∞ ≤ �훾4 − �훾5 − �훾2 is (2(�훾4 − �훾5 − �훾2))�푑/vol(�퐾′
1
).

So, the overall probability that �푏+ �푦 rounds to �푧 is at least (2(�훾4−(�훾1+�훾2+�훾5)))�푑/vol(�퐾′
1
) · ((�훾5−

�푂(�훾1))/(2�훾4))�푑 and at most (2(�훾4 + (�훾1 + �훾2 + �훾5)))�푑/vol(�퐾′
1
) · ((�훾5 +�푂(�훾1))/(2�훾4))�푑 . Assuming that

�푑 · �훾1 , �훾2 ≪ �훾5 and �푑 · �훾5 ≪ �훾4, these bounds equal
�훾�푑
5

vol(�퐾′
1
) ·
(
1 ± �푂

(
�푑·�훾5
�훾4

+ �푑·�훾1
�훾5

))
. We also need that

�훾4 ≪ �푟

�푑
√
�푑
, so that

√
�푑 · (�훾1 + �훾2 + �훾4 + �훾5) ≤ (1�푑 − �훾1) · �푟. Finally, we had an additive error of �훾3 due

to the coupling of the points �푏 and �푐, as well as another �훾3 for the rejection algorithm failing. So,

the final probability of choosing some point �푧 with all coordinates integer multiples of �훾5 that is

accepted by the (�퐾1 , �퐾2)-membership oracle is
(

�푑
�푑+1

)�푑 · �훾�푑
5

vol(�퐾1) ·
(
1 ± �푂

(
�푑·�훾5
�훾4

+ �푑·�훾1
�훾5

))
±�푂(�훾3), where

we used the fact that vol(�퐾′
1
) = vol(�퐾1) ·

(
1 + 1

�푑

)�푑
.

Based on how we set �훾1 , . . . , �훾5, all the conditions hold, and we can simplify the probability as(
�푑

�푑+1
)�푑 · �훾�푑

5

vol(�퐾1) ·
(
1 ± �푂

(�훾6
�푑

))
±
(�훾5
2�푅

)�푑 · �훾6. However, since vol(�퐾1) ≤ (2�푅)�푑 and
(

�푑
�푑+1

)�푑 ≥ 1
�푒 , in total

this equals
(

�푑
�푑+1

)�푑 · �훾�푑
5

vol(�퐾1) ·
(
1 ± �푂

(�훾6
�푑

))
. So, our sampling algorithm is pointwise accurate up to a

1 ± �푂
(�훾6
�푑

)
factor. �

Finally, we show that our sampling algorithm can also allow us to approximately compute the

volume of points accepted by the oracle �풪. More accurately, we can approximate the number of

points in the grid of precision �훾5 that are accepted by �풪.

Lemma A.11. (Volume sampling, Lemma 4.5) Let all notation be as in Lemma 4.4. Fix any �휀 <
0.5, and set �훾6 ≤ �휀

�푑 log �푅
�푟

and �훾1, . . . , �훾5 in terms of �훾6 as in Lemma 4.4. Then, for any �훾 < 1, in

poly(�푑, log �푅
�푟 ,

1
�휀 , log �훾

−1) time and oracle accesses, we can approximate the number of points in R�푑 with all

coordinates integer multiples of �훾5 that are accepted by �풪, up to a 1 ± �휀 multiplicative factor, with failure

probability �훾.

Proof. For some �휌 ∈ [�푟, �푅], let �퐾
(�휌)
1

= �퐾1 ∩ �퐵(0, �휌) and �퐾
(�휌)
2

= �퐾2 ∩ �퐵(0, �휌). Clearly, �퐵(0, �푟) ⊂ �퐾
(�휌)
1

⊂

57

�퐾
(�휌)
2

⊂ �퐵(0, �푅), and vol(�퐾(�휌)
2
) − vol(�퐾(�휌)

1
) ≤

(�훾1·�푟
6�푑

)�푑
. Also, let �푆(�휌) be the set of points in �퐾

(�휌)
2

with all

coordinates multiples of �훾5 that are accepted by the oracle, and let �푁 (�휌) := |�푆(�휌) |.
Since �훾2 ≤ �훾5 ≤ �푟

�푑3
, we have that vol(�퐾(�휌)

1
) = (1 ± �표(1)) · �푁 (�휌) · (�훾5)�푑. To see why, suppose �푥

is a point that, after rounding each coordinate to the nearest multiple of �훾5, is in (1 − �훾5
√
�푑

�푟) · �퐾(�휌)
1

.

Then, since �푥 moved by at most �훾5
√
�푑 in absolute value, and since �퐵(0, �푟) ⊂ �퐾

(�휌)
1

, �푥 must be in

�퐾
(�휌)
1

and so is accepted by the oracle. Therefore, (�훾5)�푑 · �푁 (�휌) ≥ (1 − �훾5
√
�푑

�푟)�푑 · vol(�퐾(�휌)
1
) which means

vol(�퐾(�휌)
1
) ≤ (1 + �표(1)) · �푁 (�휌) · (�훾5)�푑. For the other direction, any point that is in �퐾

(�휌)
2

⊂ (1 + �훾2)�퐾(�휌)
1

, if

we change each coordinate by up to �훾5, is still in (1 + �훾2) · (1 + �훾5
√
�푑

�푟) · �퐾(�휌)
1

. Therefore (�훾5)�푑 · �푁 (�휌) ≤
vol(�퐾(�휌)

1
) · (1 + �표(1)).

Now, if �휌′ ≤ (1 + 1
�푑)�휌, note that �퐾

(�휌′)
2

⊂ (1 + 1
�푑)�퐾

(�휌)
2

. Therefore, this means vol(�퐾(�휌′)
1

) ≤ (�푒 +
�표(1)) · vol(�퐾(�휌)

1
), which means that �푁 (�휌′) ≤ (�푒 + �표(1)) · �푁 (�휌). Given this, by Lemma 4.4, we can

generate 1 ± �훾6-pointwise random samples from �푆(�휌′) and check the fraction of them that are in

�푆(�휌) by determining for each sample if its ℓ2 norm is at most �휌. By Hoeffding’s inequality, for any

�휀′ < 1 we can compute �푁 (�휌)

�푁 (�휌′) with failure probability �훾 up to an additive error of ±�푂(�휀′ + �훾6) in

�푂((�휀′)−2 log �훾−1) random samples, and since 1 ≤ �푁 (�휌′)

�푁 (�휌) ≤ �푒 + �표(1), this also implies we can compute

the ratio up to a multiplicative factor of 1 ± �푂(�휀′), assuming �훾6 ≤ �휀′.
Now, consider �푟 = �휌0, �휌1, �휌2, . . . , �휌�푀 = �푅, where

�휌1
�휌0

≤ 1+ 1
�푑 . We can let �푀 = �푂(�푑 log �푅

�푟). Then, by

setting �휀′ = �휀
�푀 we can compute �푁 (�휌�푡+1)

�푁 (�휌�푡) up to multiplicative error �푒�푂(�휀/�푀) inpoly
(
�푑, log �푅

�푟 , log �훾
−1
6

, log �훾−1
1

, 1�휀
)

time, with failure probability
�훾1
�푀 . By multiplying all of our estimates to form a telescoping product,

we can compute �푁 (�푅)

�푁 (�푟) up to a multiplicative factor �푒±�푂(�휀) with failure probability �훾1. Our goal is

precisely to compute �푁 (�푅), so it suffices to compute �푁 (�푟). But since �퐵(0, �푟) ⊂ �퐾1, this is just the

number of points with all coordinates integral multiples of �훾5 that are in �퐵(0, �푟). By the argument

of the above paragraph, this is just �훾−�푑
5

· vol(�퐵(0, �푟)) ·
(
1 ± �훾5

√
�푑

�푟

)�푑
=

(
�푟
�훾5

)�푑
· �푒±�훾5·�푑3/2/�푟 · vol(�퐵(0, 1)).

Since �훾5 =
�푟 ·�훾6
�푑3

, �훾5 · �푑3/2/�푟 ≤ �훾6 ≤ �휀. Therefore, since the volume of a �푑-dimensional sphere

has an explicit representation, we can compute �푁 (�푅) up to multiplicative error �푒±�푂(�휀) in time

poly(�푑, log �푅
�푟 , log �훾

−1
6

, 1�휀 , log �훾
−1) = poly(�푑, log �푅

�푟 ,
1
�휀 , log �훾

−1) time. �

B Sum-of-squares proofs

In this section, we prove sum-of-squares proofs that are crucial in establishing accuracy of our

algorithms, as well as privacy in the approx-DP setting. These include both results both when

the data points are sampled from a Gaussian, and for worst-case results. Due to precision issues

when solving a semidefinite program, our bounds must hold with respect to not only all pseudo-

expectations but also with respect to linear operators that are “approximate pseudoexpectations”.

The exponentially-small numerical errors this introduces are manageable by observing that the

coefficients in the SoS proofs we use to analyze these approximate pseudoexpectations are at most

some fixed polynomial in the bit-representation of the input; see e.g. the discussion in [HL18b].

In Appendix B.1, we recall the sum-of-squares results from [KMZ22], and use these to establish

accuracy for Gaussian data. Namely, we show that a low-scoring point with respect to samples

58

drawn from a Gaussian (or more generally for samples with the required resilience samples) must

be a good estimate for the mean/covariance of the Gaussian. Next, we prove two sum-of-squares

results showing that any set of data points, no matter how corrupted, cannot have a very large

volume of potential means (or covariances) which all have low scores. This differs from accuracy

results proven in prior work, which assume that a large fraction of the points come from some

distribution. This establishes a “worst-case accuracy” result, which is crucial to establishing privacy

in our approx-DP algorithms. We prove a result for covariance estimation in Appendix B.2 and a

result for mean estimation in Appendix B.3.

B.1 Proofs of Accuracy Lemmas

In this subsection, we prove the accuracy results for mean and covariance estimation (Lemmas

5.10, 6.13, and 7.8).

The main sum-of-squares result that we apply is the following lemma due to Kothari, Manohar,

and Zhang.

Lemma B.1. [KMZ22, Lemma 4.1, restated] Let �푥1 , . . . , �푥�푛 ∈ R�푑, and let �휇0 = 1
�푛

∑�푛
�푖=1 �푥�푖 be the sample

mean. Let �푉(�휇, �푣) for �푣 ∈ R�푑 be a degree at most 2 polynomial in �휇, that is always nonnegative for all

�휇 ∈ R�푑 and �푣 in some fixed subset �풮 ⊂ R�푑. Suppose that for all vectors �푎 ∈ [0, 1]�푛 with
∑�푛

�푖=1 �푎�푖 ≥ (1−�휂)�푛,

and for all �푣 ∈ �풮, we have����� 1�푛
�푛∑
�푖=1

�푎�푖 〈�푥�푖 − �휇0, �푣〉
����� ≤ �푂(�휂) ·

√
�푉(�휇0, �푣) and

����� 1�푛
�푛∑
�푖=1

�푎�푖[〈�푥�푖 − �휇0, �푣〉2 −�푉(�휇0 , �푣)]
����� ≤ �푂(�휂) ·�푉(�휇0, �푣).

Let Ẽ be a degree-6 pseudoexpectation on {�푥′
�푖
}�푛
�푖=1

and {�푤�푖}�푛�푖=1 such that

1. ∀�푖 ∈ [�푛], Ẽ satisfies �푤2
�푖
= �푤�푖,

2. ∀�푖 ∈ [�푛], Ẽ satisfies �푤�푖�푥
′
�푖
= �푤�푖�푥�푖,

3. Ẽ satisfies
∑�푛

�푖=1 �푤�푖 ≥ (1 − �휂)�푛,

4. For all �푣 ∈ �풮, Ẽ
[
1
�푛

∑�푛
�푖=1〈�푥′�푖 − �휇′, �푣〉2

]
≤ (1 + �푂(�휂)) · Ẽ[�푉(�휇′, �푣)], where �휇′ := 1

�푛

∑�푛
�푖=1 �푥

′
�푖
.

Then, for every unit vector �푣 ∈ �풮, the following two inequalities hold:

Ẽ
[
〈�휇′ − �휇0, �푣〉2

]
≤ �푂(�휂) · (Ẽ[�푉(�휇′, �푣)] +�푉(�휇0 , �푣)).

|〈Ẽ[�휇′] − �휇0, �푣〉 | ≤ �푂(�휂) ·
√
�푉(�휇0 , �푣) + Ẽ[�푉(�휇′, �푣)] +

√
�푂(�휂) · (Ẽ[�푉(�휇′, �푣)] −�푉(�휇0, �푣)).

We first prove Lemma 5.10.

Proof of Lemma 5.10. Since �휙 ≤ �훼/
√
�푑, it suffices to show that any (�훼∗ , �휏, �휙, �푇)-certificate ℒ for �풳

satisfies ‖ℒ[�휇′] − �휇‖ ≤ �푂(�훼). If we assume �휏 = 0 and �훼 = �푂(�휂), then in fact ℒ is a degree-6

pseudoexpectation that precisely satisfies the four required conditions of Lemma B.1, if we set

�푉(�휇′, �푣) := 1 and define �풮 to be the set of unit vectors in R�푑. In addition, by Corollary 5.4, the

required conditions on �푥�푖 hold up to replacing �훼 with 2�훼 and the sample mean �휇0 with the true

59

mean �휇. However, Corollary 5.4 implies that ‖�휇 − �휇0‖2 ≤ �훼, so |〈�푥�푖 − �휇0, �푣〉 − 〈�푥�푖 − �휇, �푣〉 | ≤ �훼 and

|〈�푥�푖 − �휇0, �푣〉2 − 〈�푥�푖 − �휇, �푣〉2 | ≤ �훼(1 + |〈�푥�푖 − �휇, �푣〉 |). But 1
�푛

∑�푛
�푖=1 |〈�푥�푖 − �휇, �푣〉 | ≤ �푂(1). Together this

means that the conditions of Lemma B.1 hold up to replacing �훼 with �푂(�훼).
Therefore, for any unit vector �푣, |〈ℒ[�휇′] − �휇, �푣〉 | ≤ �푂(�휂) ≤ �푂(�훼) by Lemma B.1, as desired.

While our proof was for exact pseudoexpectations since we set �휏 = 0, as mentioned in [KMZ22],

the proof also extends to approximate pseudoexpectations for small �휏, since the coefficients at each

step in the sum-of-squares proof are polynomially bounded (see, e.g., the discussion in [HL18b]

or [KMZ22]). Here, we must make the assumption that every �푥�푖 has magnitude bounded by

(�푛�푑�푅)�푂(1), which holds automatically assuming the resilience properties. �

Next, we prove Lemma 6.13.

Proof of Lemma 6.13. Given samples �푥1, . . . , �푥�푛 and �푑-dimensional indeterminates �푥′
1
, . . . , �푥′�푛 , we

define the indeterminates �푧′
1
, . . . , �푧′�푛 as �푧′

�푖
:= (�푥′

�푖
)(�푥′

�푖
)⊤ (note that each �푧′

�푖
is a �푑 × �푑-dimensional

matrix), and Σ′ := 1
�푛

∑
�푧′
�푖
. We also define �푧�푖 := �푥�푖�푥

⊤
�푖

and Σ0 :=
1
�푛

∑
�푧�푖.

We will apply Lemma B.1, but replacing �푑 with �푑2, �푥�푖 with �푧�푖 , �푥
′
�푖

with �푧′
�푖
, �휇0 with Σ0, and �휇′

with Σ′. We also define �풮 to be the subset of vectors of the form �푣�푣⊤ where �푣 is a �푑-dimensional

unit vector. (Note that �푣�푣⊤ is �푑2-dimensional and has ℓ2 norm 1 when flattened). Finally, for

Σ, �푀 ∈ R�푑×�푑, we define �푉(Σ, �푀) := 2 · 〈Σ, �푀〉2.
Now, for any (�훼∗ , �휏, �푇)-certificate ℒ with �훼∗ ≤ �훼, it suffices to show that for any unit vector

�푣 ∈ R�푑, (1 − �푂(�훼))�푣⊤Σ�푣 ≤ ℒ[�푣⊤Σ′�푣] ≤ (1 + �푂(�훼))�푣⊤Σ�푣. This would imply that (1 − �푂(�훼))Σ 4
ℒ[Σ′] 4 (1 + �푂(�훼))Σ, which means for �휏 ≪ 1/poly(�푛, �푑, �퐾), (1 − �푂(�훼))Σ 4 Σ̃ 4 (1 + �푂(�훼))Σ.

We start by assuming �휏 = 0, so ℒ is actually a degree-12 pseudoexpectation. Then, ℒ satisfies

�푤2
�푖
= �푤�푖, �푤�푖(�푥′�푖)(�푥′�푖)⊤ = �푤�푖�푥�푖�푥

⊤
�푖

, and
∑

�푤�푖 ≥ (1 − �휂)�푛. In addition, since ℒ
[
‖(�푣⊗2)⊤�푀⊤�푀�푣⊗2‖2

2

]
=

ℒ
[
‖�푀�푣⊗2‖2

2

]
≥ 0, this means

ℒ
[
1

�푛

�푛∑
�푖=1

(
〈�푥′�푖 , �푣〉2 − �푣⊤Σ′�푣

)2] ≤ (2 + �푂(�휂)) · ℒ
[
(�푣⊤Σ′�푣)2

]
.

But note that �푉(�휇′, �푣) is precisely replaced with 2 · 〈Σ′, �푣�푣⊤〉2 = 2(�푣⊤Σ′�푣)2. In addition, 〈�푥′
�푖
, �푣〉2 −

�푣⊤Σ′�푣 = 〈�푧′
�푖
− Σ′, �푣�푣⊤〉. Hence, the 4 conditions in Lemma B.1 are satisfied.

In addition, to apply Lemma B.1 we need to verify the desired conditions for �푧�푖 . By the

resilience properties (Lemma 6.3) of {Σ−1/2�푥�푖}, we have that (1−�훼)‖�푣‖2
2
≤ 1

�푛

∑
�푣⊤Σ−1/2�푥�푖�푥⊤�푖 Σ

−1/2�푣 ≤
(1 + �훼)‖�푣‖2

2
, which means by replacing �푣 with Σ1/2�푣, we have

(1 − �훼)(�푣⊤Σ�푣) ≤ �푣⊤Σ0�푣 ≤ (1 + �훼)�푣⊤Σ�푣. (6)

Now, for any unit vector �푣 and �푎1, . . . , �푎�푛 ∈ [0, 1]with
∑

�푎�푖 ≥ (1−�휂)�푛,
�� 1
�푛

∑�푛
�푖=1 �푎�푖(〈�푣,Σ−1/2�푥�푖〉2 − 1)

�� =�� 1
�푛

∑�푛
�푖=1 �푎�푖 〈(Σ−1/2�푥�푖)(Σ−1/2�푥�푖)⊤ − �퐼 , �푣�푣⊤〉

�� ≤ �푂(�휂) if {Σ−1/2�푥�푖} satisfy the resilience properties. By

scaling, for general vectors �푣,
�� 1
�푛

∑�푛
�푖=1 �푎�푖(〈�푣,Σ−1/2�푥�푖〉2 − ‖�푣‖2

2
)
�� ≤ �푂(�휂) · ‖�푣‖2

2
, which means by

replacing �푣 with Σ1/2�푣, we have
�� 1
�푛

∑�푛
�푖=1 �푎�푖(〈�푣, �푥�푖〉2 − �푣⊤Σ�푣)

�� ≤ �푂(�휂) · �푣⊤Σ�푣. By (6), this implies����� 1�푛
�푛∑
�푖=1

�푎�푖 〈�푣�푣⊤, �푧�푖 − Σ0〉
����� ≤ �푂(�휂) · 〈�푣�푣⊤,Σ0〉.

60

Next, note that

〈�푧�푖 − Σ0 , �푣�푣
⊤〉2 = 〈�푧�푖 − Σ, �푣�푣⊤〉2 + 2〈Σ − Σ0 , �푣�푣

⊤〉 · 〈�푧�푖 − Σ, �푣�푣⊤〉 + 〈Σ − Σ0 , �푣
⊤〉2

= 〈�푧�푖 − Σ, �푣�푣⊤〉2 ± �푂(�훼) · (�푣⊤Σ�푣) · |〈�푧�푖 − Σ, �푣�푣⊤〉 | ± �푂(�훼2) · (�푣⊤Σ�푣)2.

We can rewrite 〈�푧�푖 − Σ, �푣�푣⊤〉 = 〈Σ−1/2�푥�푖 ,Σ1/2�푣〉2 − ‖Σ1/2�푣‖2
2
. This means by applying Lemma 6.3

with �푃 = (Σ1/2�푣)(Σ1/2�푣)⊤, we have that

1

�푛

�푛∑
�푖=1

〈�푧�푖 − Σ, �푣�푣⊤〉2 = (2 ± �푂(�훼)) · ‖Σ1/2�푣‖42 = (2 ± �푂(�훼)) · (�푣⊤Σ�푣)2.

and
1

�푛

�푛∑
�푖=1

��〈�푧�푖 − Σ, �푣�푣⊤〉
�� ≤ �푂(1) · ‖Σ1/2�푣‖22 = �푂(1) · (�푣⊤Σ�푣).

Together, this implies that����� 1�푛
�푛∑
�푖=1

�푎�푖 〈�푣�푣⊤, �푧�푖 − Σ0〉2
����� = (2 ± �푂(�훼)) · (�푣⊤Σ�푣)2 = (1 ± �푂(�훼)) ·�푉(Σ0 , �푣�푣

⊤).

Since
∑

�푎�푖 ≥ (1 − �휂)�푛, this completes the verification of the conditions.

Now, we may apply Lemma B.1. We first have that

ℒ[(�푣⊤(Σ′ − Σ0)�푣)2] ≤ �푂(�휂) ·
(
ℒ[(�푣⊤Σ′�푣)2] + ℒ[(�푣⊤Σ0�푣)2]

)
.

By Cauchy-Schwarz, we know that

ℒ[(�푣⊤Σ′�푣)2] ≤ 2 ·
(
ℒ[(�푣⊤Σ0�푣)2] + ℒ[(�푣⊤(Σ′ − Σ0)�푣)2]

)
,

which means

ℒ[(�푣⊤(Σ′ − Σ0)�푣)2] ≤ �푂(�휂) ·
(
ℒ[(�푣⊤(Σ′ − Σ0)�푣)2] + ℒ[(�푣⊤Σ0�푣)2]

)
and therefore,

ℒ[(�푣⊤(Σ′ − Σ0)�푣)2] ≤ �푂(�휂) · (�푣⊤Σ0�푣)2

since �푣,Σ0 are fixed determinates. This also implies that ℒ[(�푣⊤Σ′�푣)2] ≤ �푂(1) · (�푣⊤Σ0�푣)2.
Let �퐴 := �푣⊤Σ0�푣, and �퐵 := ℒ[�푣⊤(Σ′ − Σ0)�푣]. Then, �푉(Σ0 , �푣�푣

⊤) = 2�퐴2, ℒ[�푉(Σ′, �푣�푣⊤)] = �푂(�퐴2),
and ℒ[�푉(Σ′, �푣�푣⊤)] −�푉(Σ0 , �푣�푣

⊤) = 2 · ℒ[(�푣⊤Σ′�푣)2 − (�푣⊤Σ0�푣)2] = 2 · ℒ[(�푣⊤(Σ′ − Σ0)�푣)2] + 4�퐴 · �퐵. In

addition, we know that ℒ[(�푣⊤(Σ′ − Σ0)�푣)2] ≤ �푂(�휂) · �퐴2. Hence, Lemma B.1 implies that

|�퐵 | ≤ �푂(�휂) · �퐴 +
√
�푂(�휂) · �푂(�휂) · �퐴2 + �푂(�휂) · �퐴 · �퐵 ≤ �푂(�휂) · �퐴 +

√
�푂(�휂) ·

√
�퐴 · |�퐵 |.

This means that |�퐵 | ≤ �푂(�휂) ·�퐴, which means that ℒ[�푣⊤Σ′�푣] = (1±�푂(�휂)) ·�푣⊤Σ0�푣 = (1±�푂(�훼)) ·�푣⊤Σ�푣,

where the last equation follows by (6).

This completes the proof for true pseudoexpectations. Again, the proof extends to approximate

pseudoexpectations, since the coefficients at each step in the sum-of-squares proof are polynomially

bounded. �

61

Finally, we prove Lemma 7.8.

Proof of Lemma 7.8. As in Lemma 6.13, we apply Lemma B.1 with some replacements. This time,

we replace �푑 with �푑2, �푥�푖 with �푧�푖 = �푥⊗2
�푖

, �푥′
�푖

with �푧′
�푖
= (�푥′

�푖
)⊗2, �휇0 with �푆0 = 1

�푛

∑
�푖 �푧�푖 , and �휇′ with

�푆′ = 1
�푛

∑
�푖 �푧

′
�푖
. In addition, the set �풮 ⊂ R�푑2 will represent all vectors �푃 of norm 1 such that the �푑 × �푑

matrix �푀 such that �푀♭ = �푃 is symmetric. Finally, we define �푉(�푆, �푃) := 2.

For any (�훼∗ , �휏, �휙, �푇)-certificate ℒ with �휙 ≤ �훼/�푑 and �훼∗ ≤ �훼, it suffices to show that ‖ℒ[Σ′] −
Σ‖�퐹 ≤ �훼, since ℒ[Σ′]�푗,�푘 − Σ̃�푗,�푘 ≤ �푂(�훼/�푑) for all indices �푗 , �푘 ≤ �푑.

We again assume �휏 = 0, so ℒ is actually a degree-12 pseudoexpectation. Then, ℒ satisfies

�푤2
�푖
= �푤�푖 ,

∑
�푤�푖 ≥ (1 − �휂)�푛, and �푤�푖(�푥′�푖)⊗2 = �푤�푖�푥

⊗2
�푖

. Next, for any �푃 ∈ �풮, 〈�푧′
�푖
− �푆′, �푃〉2 = �푃⊤((�푥′

�푖
)⊗2 −

�푆′)((�푥′
�푖
)⊗2 − �푆′)⊤�푃, and we are assuming ℒ[((�푥′

�푖
)⊗2 − �푆′)((�푥′

�푖
)⊗2 − �푆′)⊤] 4 (2 + �훼) · ℒ[�퐼] = (2 + �훼) · �퐼,

where �퐼 refers to the �푑2×�푑2-identity matrix. Hence, ℒ[〈�푧′
�푖
−�푆′, �푃〉2] ≤ 2+�훼 ≤ (1+�푂(�휂))·ℒ[�푉(�푆′, �푃)]

since �푉 ≡ 2, so the 4 conditions in Lemma B.1 are satisfied.

Next, we must verify the desired conditions for �푧�푖 . Note that 〈�푥⊗2
�푖

− �푆0, �푃〉 = 〈�푥�푖�푥⊤�푖 −
Σ0 , �푃

♯〉 (where �푃♯ is the symmetric matrix that flattens to �푃). Also, note that 〈�푥�푖�푥⊤�푖 − Σ, �푃♯〉 =

〈Σ−1/2�푥�푖�푥⊤�푖 Σ
−1/2 − �퐼 ,Σ1/2�푃♯Σ1/2〉. Writing �푄 = Σ1/2�푃♯Σ1/2 , by Proposition 6.8 we have that

‖�푄‖�퐹 = 1 ± �푂(�훼). This implies, using the resilience of {Σ−1/2�푥�푖} (Lemma 6.3) that����� 1�푛
�푛∑
�푖=1

�푎�푖 〈�푥�푖�푥⊤�푖 − Σ, �푃♯〉
����� =

����� 1�푛
�푛∑
�푖=1

�푎�푖 〈Σ−1/2�푥�푖�푥
⊤
�푖 Σ

−1/2 − �퐼 , �푄〉
����� ≤ �푂(�훼),

1

�푛

�푛∑
�푖=1

�푎�푖 〈�푥�푖�푥⊤�푖 − Σ, �푃♯〉2 = 1

�푛

�푛∑
�푖=1

�푎�푖 〈Σ−1/2�푥�푖�푥
⊤
�푖 Σ

−1/2 − �퐼 , �푄〉2 = 2 ± �푂(�훼).

In addition, note that ‖Σ−Σ0‖�퐹 ≤ �훼 due to the resilience guarantees (Lemma 6.3), which means

〈�푥�푖�푥⊤�푖 − Σ0, �푃
♯〉 = 〈�푥�푖�푥⊤�푖 − Σ, �푃♯〉 ± �훼. In addition, Lemma 6.3 implies that 1

�푛

∑��〈�푥�푖�푥⊤�푖 − Σ, �푃♯〉
�� =

1
�푛

∑��〈Σ−1/2�푥�푖�푥⊤�푖 Σ
−1/2 − �퐼 , �푄〉

�� ≤ �푂(1). This immediately implies that����� 1�푛
�푛∑
�푖=1

�푎�푖 〈�푧�푖 − �푆0, �푃〉
����� =

����� 1�푛
�푛∑
�푖=1

�푎�푖 〈�푥�푖�푥⊤�푖 − Σ0 , �푃
♯〉
����� ≤ �푂(�훼),

1

�푛

�푛∑
�푖=1

�푎�푖 〈�푧�푖 − �푆0, �푃〉2 =
1

�푛

�푛∑
�푖=1

�푎�푖 〈�푥�푖�푥⊤�푖 − Σ0, �푃
♯〉2 = 2 ± �푂(�훼).

Since �푉 ≡ 2, this immediately implies we can apply Lemma B.1. Doing so, we obtain |〈ℒ[�푆′] −
�푆0, �푃〉 | = |〈ℒ[Σ′] − Σ0, �푃

♯〉 | ≤ �푂(�휂) for all symmetric �푃♯ with ‖�푃♯‖�퐹 = 1. Hence, ‖ℒ[Σ′] − Σ0‖�퐹 ≤
�푂(�훼), which means ‖ℒ[Σ′] − Σ‖�퐹 ≤ �푂(�훼) as well.

This completes the proof for true pseudoexpectations. Again, the proof extends to approximate

pseudoexpectations, since the coefficients at each step in the sum-of-squares proof are polynomially

bounded. �

B.2 SoS bounds for arbitrary samples: Covariance estimation

In this subsection, we prove Lemma 6.15, which is our worst-case robustness result for covariance

estimation. First, we establish a 1-dimensional Sum-of-Squares result that will be crucial in proving

Lemma 6.15.

62

Lemma B.2. Let �푧1, . . . , �푧�푛 be a set of �푛 reals, such that the 95th percentile of the �푧2
�푖

values is 1. Suppose

that there exists a degree-6 pseudoexpectation Ẽ on the variables {�푤�푖}, {�푧′�푖} such that:

1. ∀�푖 , Ẽ satisfies �푤2
�푖
− �푤�푖 = 0,

2. Ẽ satisfies
∑

�푤�푖 − 0.99�푛 ≥ 0,

3. ∀�푖 , Ẽ satisfies �푤�푖(�푧′�푖 − �푧�푖) = 0,

4. Ẽ
[
1
�푛

∑
�푖((�푧′�푖)2 − �휎′)2

]
≤ 3 · Ẽ

[
(�휎′)2

]
, where we define �휎′ := 1

�푛

∑(�푧′
�푖
)2.

Then, Ẽ[�휎′] = Θ(1). Moreover, if the 95th percentile of �푧2
�푖

is less than 1, we still have Ẽ[�휎′] ≤ �푂(1).

Proof. First, let’s show that Ẽ[�휎′] ≥ Ω(1). To prove this, note that by Constraint 1, Ẽ satisfies

�푤�푖 = �푤2
�푖
≥ 0 and (1 − �푤�푖) = (1 − �푤�푖)2 ≥ 0. So,

Ẽ[�휎′] = 1

�푛

�푛∑
�푖=1

Ẽ[�푤�푖(�푧′�푖)2 + (1 − �푤�푖)(�푧′�푖)2] (Definition of �휎′)

≥ 1

�푛

�푛∑
�푖=1

Ẽ[�푤�푖(�푧′�푖)2] (Positivity of 1 − �푤�푖)

=
1

�푛

�푛∑
�푖=1

Ẽ[�푤�푖�푧
2
�푖] (Constraint 3)

=
1

�푛

�푛∑
�푖=1

�푧2�푖 Ẽ[�푤�푖] (Linearity)

Since Ẽ[�푤�푖] is bounded between 0 and 1 (as Ẽ�푤�푖 = Ẽ�푤2
�푖

and Ẽ[1−�푤�푖] = Ẽ[(1−�푤�푖)2]), and since∑
Ẽ[�푤�푖] ≥ 0.99�푛, the minimum possible value of

∑
�푧2
�푖
Ẽ[�푤�푖] is the sum of �푧2

�푖
over the 0.99�푛 smallest

values of �푧2
�푖
. Since the 95th percentile of the �푧2

�푖
values is 1, this means

∑
�푧2
�푖
Ẽ[�푤�푖] ≥ 0.04�푛. Thus,

Ẽ[�휎′] ≥ 0.04.

Next, we must show that Ẽ[�휎′] ≤ �푂(1), if the 95th percentile of the �푧2
�푖

values is at most 1. To do

this, we consider restricting Ẽ to the (at least) 0.95�푛 indices �푆 where �푧2
�푖
≤ 1 (note that �푧�푖 are fixed

real numbers, not variables). More formally, we define Ẽ′ to be a pseudoexpectation where on any

monomial �푝, Ẽ′�푝 = 0 if �푝 has a positive power of some �푤�푖 for �푖 ∉ �푆, and Ẽ
′�푝 = Ẽ�푝 otherwise. It is

clear that Ẽ′ is still a degree-6 pseudoexpectation, since Ẽ
′1 = Ẽ1 = 1, and Ẽ

′[�푝2] = Ẽ[(�푝′)2] where

�푝′ is the polynomial that removes all monomials containing some �푤�푖 for �푖 ∉ �푆. In addition, if we

replace Ẽ with Ẽ
′, Constraint 4 is unchanged. Constraints 1 and 3 are unchanged for �푖 ∈ �푆, and

trivially hold for �푖 ∉ �푆. Finally, since Ẽ satisfies �푤�푖 ≤ 1 for all �푖 (since Ẽ′ satisfies 1−�푤�푖 = (1−�푤�푖)2 ≥ 0),

we thus have that Ẽ satisfies
∑

�푖∈�푆 �푤�푖 +
∑

�푖∉�푆 1 − 0.99�푛 ≥ 0, which means
∑

�푖∈�푆 �푤�푖 ≥ 0.94�푛. So, Ẽ′

satisfies
∑

�푤�푖 − 0.94�푛 ≥ 0. Overall, by replacing Ẽ with Ẽ
′, we have the constraints are unchanged

except 2, and the goal of showing Ẽ
′[�휎′] ≤ �푂(1) is sufficient.

We also remark that we can rewrite Constraint 4 (now with Ẽ
′) as

Ẽ
′
[
1

�푛

�푛∑
�푖=1

(�푧′�푖)4
]
≤ 4 · Ẽ′ [(�휎′)2] = 4 · Ẽ′


(
1

�푛

�푛∑
�푖=1

(�푧′�푖)2
)2

. (7)

63

Now, note that

1

�푛
· Ẽ′

[
�푛∑
�푖=1

(1 − �푤�푖)(�푧′�푖)4
]

︸ ︷︷ ︸
�퐴

≤ Ẽ
′
[
1

�푛

�푛∑
�푖=1

(�푧′�푖)4
]

(Constraint 1)

≤ 4 · Ẽ′

(
1

�푛

�푛∑
�푖=1

(�푧′�푖)2
)2

(Equation (7))

= 4 · Ẽ′

(
1

�푛

�푛∑
�푖=1

(1 − �푤�푖)(�푧′�푖)2 +
1

�푛

�푛∑
�푖=1

�푤�푖(�푧′�푖)2
)2

≤ 8 · Ẽ′

(
1

�푛

�푛∑
�푖=1

(1 − �푤�푖)(�푧′�푖)2
)2

+
(
1

�푛

�푛∑
�푖=1

�푤�푖(�푧′�푖)2
)2

(Cauchy-Schwarz)

=
8

�푛2
·
(
Ẽ
′

(

�푛∑
�푖=1

(1 − �푤�푖)(�푧′�푖)2
)2︸ ︷︷ ︸

�퐵

+Ẽ′

(

�푛∑
�푖=1

�푤�푖�푧
2
�푖

)2
)

(Constraint 3).

Note that Ẽ′
[(∑�푛

�푖=1 �푤�푖�푧
2
�푖

)2]
=
∑

�푖, �푗∈�푆 Ẽ[�푤�푖�푤 �푗]�푧2�푖 �푧2�푗 . In addition, for any �푖 , �푗, Ẽ[�푤�푖�푤 �푗] ≤ 1
2

(
Ẽ[�푤2

�푖
] + Ẽ[�푤2

�푗
]
)
≤

1. So, since 0 ≤ �푧2
�푖
≤ 1 for all �푖 ∈ �푆, we have that Ẽ′

[(∑�푛
�푖=1 �푤�푖�푧

2
�푖

)2] ≤ �푛2. Therefore,

1

�푛
· �퐴 ≤ 8

�푛2
· �퐵 + 8. (8)

Also,

0.06�푛 · �퐴 = Ẽ
′
[(

�푛∑
�푖=1

(1 − �푤�푖)(�푧′�푖)4
)
· 0.06�푛

]
(Definition of �퐴)

= Ẽ
′
[(

�푛∑
�푖=1

(1 − �푤�푖)2(�푧′�푖)4
)
· 0.06�푛

]
(Constraint 1)

≥ Ẽ
′
[(

�푛∑
�푖=1

(1 − �푤�푖)2(�푧′�푖)4
)
·
(

�푛∑
�푖=1

(1 − �푤�푖)2
)]

(Constraints 1 and 2)

≥ Ẽ
′

(

�푛∑
�푖=1

(1 − �푤�푖)2(�푧′�푖)2
)2

(Cauchy-Schwarz),

Therefore, 0.06�푛 · �퐴 ≥ �퐵, but (8) tells us that �푛 · �퐴 ≤ 8(�퐵 + �푛2). So, �퐵 ≤ 0.06�푛 · �퐴 ≤
0.48 · (�퐵 + �푛2), which means �퐵 ≤ �푛2. Therefore, by Cauchy-Schwarz, Ẽ′ [1

�푛

∑�푛
�푖=1(1 − �푤�푖)(�푧′�푖)2

]2 ≤
Ẽ
′
[(

1
�푛

∑�푛
�푖=1(1 − �푤�푖)(�푧′�푖)2

)2]
= 1

�푛2 · �퐵 ≤ 1, which means Ẽ′ [1
�푛

∑�푛
�푖=1(1 − �푤�푖)(�푧′�푖)2

]
≤ 1. In addition, we

64

know that Ẽ′ [1
�푛

∑�푛
�푖=1 �푤�푖(�푧′�푖)2

]
≤ Ẽ

′ [1
�푛

∑�푛
�푖=1 �푤�푖�푧

2
�푖

]
≤ 1. So overall, since �휎′ has no coefficients with

�푤�푖, we obtain

Ẽ[�휎′] = Ẽ
′[�휎′] = Ẽ

′
[
1

�푛

∑
(�푧′�푖)2

]
= Ẽ

′
[
1

�푛

�푛∑
�푖=1

(1 − �푤�푖)(�푧′�푖)2
]
+ Ẽ

′
[
1

�푛

�푛∑
�푖=1

�푤�푖(�푧′�푖)2
]
≤ 2. �

Proof of Lemma 6.15. Our main goal will be to show thatℒ1[Σ′],ℒ2[Σ′] are close in spectral distance.

To do so, we show that for any unit vector �푣, �푣⊤Σ̂1�푣 and �푣⊤Σ̂2�푣 are equal up to an �푂(1)multiplicative

factor. This will imply that ℒ1[Σ′] 4 �푂(1) · ℒ2[Σ′] and ℒ2[Σ′] 4 �푂(1) · ℒ1[Σ′].
Assume first that ℒ1,ℒ2 are actual pseudoexpectations (i.e., if �휏 = 0). We define �푧�푖 := 〈�푥�푖 , �푣〉

and �푧′
�푖
:= 〈�푥′

�푖
, �푣〉. If ℒ1,ℒ2 are (�훼, �휏, �푇)-certificates for �휏 = 0 and �푇 ≤ 0.01�푛, then it is clear that ℒ1

and ℒ2 satisfy Constraints 1, 2, and 3 of Lemma B.2. To check Constraint 4, note that by Constraint

3 of Definition 6.4,

ℒ
[
1

�푛

�푛∑
�푖=1

((�푧′�푖)
2 − �휎′)2 − (2 + �훼)(�휎′)2

]
= ℒ

[
1

�푛

�푛∑
�푖=1

(
〈�푥′�푖 , �푣〉

2 − �푣⊤Σ′�푣
)2 − (2 + �훼) · (�푣⊤Σ′�푣)2

]

= −ℒ
[
‖�푀�푣⊗2‖22

]
≤ 0,

for either ℒ = ℒ1 or ℒ = ℒ2, where Σ′ := 1
�푛

∑(�푥′
�푖
)(�푥′

�푖
)⊤ and �휎′ := 1

�푛

∑(�푧′
�푖
)2.

Hence, both we can apply Lemma B.2 for both ℒ1 and ℒ2. If the 95th percentile of 〈�푦�푖 , �푣〉2 is

equal to 1, this implies that ℒ1[�푣⊤Σ′�푣],ℒ2[�푣⊤Σ′�푣] are both Θ(1). If the 95th percentile of 〈�푦�푖 , �푣〉2 is

some value �퐺, we may rescale and use linearity to say that ℒ1[�푣⊤Σ′�푣],ℒ2[�푣⊤Σ′�푣] are both Θ(�퐺2).
Hence, this implies that ℒ1[Σ′] and ℒ2[Σ′] are within �푂(1) spectral distance of each other, at

least when �휏 = 0. For general �휏, we note that again the coefficients at each step in the sum-of-squares

proof are bounded by poly(�푛, �푑, �퐾). The only possible issue is the rescaling, if �퐺 ≫ (�푛�푑�퐾)�푂(1) or

�퐺 ≪ (�푛�푑�퐾)−�푂(1). We avoid the former case because we are assuming that every sample is bounded

by poly(�푛, �푑, �퐾) in magnitude, using truncation. In the latter case, we use the fact that if the 95th

percentile of �푧2
�푖

is less than 1, then ℒ[�휎′] ≤ �푂(1) in Lemma B.2. In this case, by scaling by 1
�퐾2 , we

have ℒ[�푣⊤Σ′�푣] ≤ �푂(1)
�퐾2 , which violates Constraint 5 of Definition 6.4.

In summary, we have that ℒ1[Σ′] 4 �푂(1) · ℒ2[Σ′] and ℒ2[Σ′] 4 �푂(1) · ℒ1[Σ′], and both are

spectrally bounded between 1
4�퐾 and 4�퐾. Since we have the requirements that (1−�훼)ℒ[Σ′]−�휏 ·�푇 · �퐼 4

Σ̃ 4 (1 + �훼)ℒ[Σ′] + �휏 · �푇 · �퐼, this implies that Σ̃1 4 �푂(1) · Σ̃2 and Σ̃2 4 �푂(1) · Σ̃1. �

B.3 SoS bounds for arbitrary samples: Mean estimation

In this subsection, we prove Lemma 5.13, which is our worst-case robustness result for mean

estimation. First, we establish a 1-dimensional Sum-of-Squares result that will be crucial in proving

Lemma 5.13.

Lemma B.3. Let �푧1, . . . , �푧�푛 be a set of �푛 reals, such that at least �푛/4 of the �푧�푖’s are at least 20. Then, for

any degree-6 pseudoexpectation Ẽ on the variables {�푤�푖}, {�푧′�푖} such that

1. ∀�푖, Ẽ satisfies �푤2
�푖
− �푤�푖 = 0,

65

2. Ẽ satisfies
∑

�푤�푖 − 0.99�푛 = 0,

3. ∀�푖, Ẽ satisfies �푤�푖(�푧′�푖 − �푧�푖) = 0,

4. Ẽ[�휇′] = 0, where �휇′ = 1
�푛

∑
�푧′
�푖
,

we must have that Ẽ
[
1
�푛

∑(�푧′
�푖
− �휇′)2

]
≥ 2.

Proof. Using the fact that Ẽ satisfies �푤2
�푖
= �푤�푖, we have that (1 − �푤�푖�푤 �푗)2 = (1 − �푤�푖�푤 �푗), which means

�푤�푖�푤 �푗 ≤ 1 is satisfied. In addition, Ẽ satisfies�푤�푖�푤 �푗 = �푤2
�푖
�푤2

�푗
≥ 0, and also satisfies�푤�푖�푤 �푗 ≥ �푤�푖+�푤 �푗−1,

since �푤�푖�푤 �푗 − (�푤�푖 + �푤 �푗 − 1) = (1 − �푤�푖)(1 − �푤 �푗) = (1 − �푤�푖)2(1 − �푤 �푗)2.
This means

Ẽ


�푛∑

�푖, �푗=1

(�푧′�푖 − �푧′�푗)2

≥ Ẽ


∑
�푖, �푗

�푤�푖�푤 �푗(�푧′�푖 − �푧′�푗)2


≥ Ẽ


∑
�푖, �푗

�푤�푖�푤 �푗(�푧�푖 − �푧 �푗)2


(Condition 3)

=

∑
�푖, �푗

(�푧�푖 − �푧 �푗)2 · Ẽ
[
�푤�푖�푤 �푗

]
(Linearity)

≥
∑
�푖, �푗

(�푧�푖 − �푧 �푗)2 ·max(Ẽ[�푤�푖] + Ẽ[�푤 �푗] − 1, 0). (9)

Now, �퐶1 and �퐶2 be the 25th and 75th percentiles, respectively, of the elements �푧�푖 sorted in

increasing order. We show that we may assume �퐶2 − �퐶1 ≤ 8. Otherwise, there exists a set �푆 of

0.25�푛 elements �푧�푖 that are at least �퐶1 + 8, and a set �푇 of 0.25�푛 elements that are at most �퐶1. In this

case, we can bound (9) as at least

2 ·
∑

�푖∈�푆,�푗∈�푇
(�푧�푖 − �푧 �푗)2 ·max(Ẽ[�푤�푖] + Ẽ[�푤 �푗] − 1, 0)

≥ 2 ·
∑

�푖∈�푆,�푗∈�푇
82 · (Ẽ[�푤�푖] + Ẽ[�푤 �푗] − 1)

= 2 ·

64(�푛/4) ·

∑
�푖∈�푆

Ẽ[�푤�푖] + 64(�푛/4) ·
∑
�푗∈�푇

Ẽ[�푤 �푗] − 64(�푛/4)2


≥ 4 · 64(�푛/4)(�푛/4 − 0.01�푛) − 2 · 64(�푛/4)2

≥ 6�푛2,

where the penultimate inequality uses the fact that Ẽ[�푤�푖] ∈ [0, 1] and
∑�푛

�푖=1 Ẽ[�푤�푖] ≥ 0.99�푛. Overall,

this means Ẽ[∑�푖, �푗(�푧′�푖 − �푧′
�푗
)2] ≥ 6�푛2. But,

∑�푛
�푖, �푗=1(�푧′�푖 − �푧′

�푗
)2 = 2�푛 · ∑�푛

�푖=1(�푧′�푖 − �휇′)2 , which means

Ẽ
[∑�푛

�푖=1(�푧′�푖 − �휇′)2
]
≥ 3�푛, as desired.

Hence, we may assume that the 25th and 75th percentiles are within 8 of each other. Re-define

�푆 ⊂ [�푛] to be the set of indices of size �푛/2 between the 25th and 75th percentile. By our assumption

66

in the lemma that at least �푛/4 values are at least 20, �푧�푖 ∈ [�퐶 − 4, �퐶+ 4] for all �푖 ∈ �푆, for some �퐶 ≥ 16.

Note that

Ẽ

[∑
�푖∈�푆

�푤�푖�푧
′
�푖

]
= Ẽ

[∑
�푖∈�푆

�푤�푖�푧�푖

]
=

∑
�푖∈�푆

�푧�푖Ẽ[�푤�푖] ≥ (�퐶 − 4) ·
∑
�푖∈�푆

Ẽ[�푤�푖] ≥ (�퐶 − 4) · (0.49�푛), (10)

but

Ẽ


(∑
�푖∈�푆

�푤�푖�푧
′
�푖

)2
= Ẽ


(∑
�푖∈�푆

�푤�푖�푧�푖

)2
=

∑
�푖, �푗∈�푆

�푧�푖�푧 �푗Ẽ[�푤�푖�푤 �푗] ≤ (�퐶 + 4)2 · (0.5�푛)2. (11)

In addition, if we assume Ẽ[1�푛
∑�푛

�푖=1(�푧′�푖 − �휇′)2] ≤ 2, then since �푆 is fixed and has size �푛/2,

Ẽ

[∑
�푖∈�푆

(�푧′�푖)2
]
≤ Ẽ

[∑
�푖∈�푆

(�푧′�푖)2
]
+ 1

|�푆 | · Ẽ

(∑
�푖∈�푆

�푧′�푖 − |�푆 | · �휇′
)2

= Ẽ

[∑
�푖∈�푆

(�푧′�푖 − �휇′)2
]
+ 1

|�푆 | · Ẽ

(∑
�푖∈�푆

�푧′�푖

)2
≤ Ẽ

[
�푛∑
�푖=1

(�푧′�푖 − �휇′)2
]
+ 1

|�푆 | · Ẽ

(∑
�푖∈�푆

�푧′�푖

)2
≤ 2�푛 + 1

|�푆 | · Ẽ

(∑
�푖∈�푆

�푧′�푖

)2
. (12)

Making use of the fact that Ẽ satisfies (1 − �푤�푖) = (1 − �푤�푖)2, we have

Ẽ


(∑
�푖∈�푆

(1 − �푤�푖)�푧′�푖

)2︸ ︷︷ ︸
�퐴

≤ Ẽ

[(∑
�푖∈�푆

(1 − �푤�푖)
)
·
(∑
�푖∈�푆

(1 − �푤�푖)(�푧′�푖)2
)]

(Cauchy-Schwarz)

≤ 0.01�푛 · Ẽ
[∑
�푖∈�푆

(1 − �푤�푖)(�푧′�푖)2
]

(Condition 2)

≤ 0.01�푛 · Ẽ
[∑
�푖∈�푆

(�푧′�푖)2
]

(Condition 1)

≤ 0.01 · ©­«
Ẽ


2

(∑
�푖∈�푆

�푧′�푖

)2
+ 2�푛2ª®¬

(Equation (12))

≤ 0.01·
(
4 Ẽ


(∑
�푖∈�푆

(1 − �푤�푖)�푧′�푖

)2︸ ︷︷ ︸
�퐴

+4Ẽ

(∑
�푖∈�푆

�푤�푖�푧
′
�푖

)2
+ 2�푛2

)
. (Cauchy-Schwarz)

67

Hence, we have that �퐴 ≤ 0.05Ẽ
[(∑

�푖∈�푆 �푤�푖�푧
′
�푖

)2] + 0.03�푛2 ≤ 0.02�퐶2�푛2 for �퐶 ≥ 16, using (11).

So, by Cauchy-Schwarz, we have that
��Ẽ [∑

�푖∈�푆(1 − �푤�푖)�푧′�푖
] �� ≤ 0.15�퐶�푛. But Ẽ

[∑
�푖∈�푆 �푤�푖�푧

′
�푖

]
≥

(�퐶 − 4) · 0.49�푛 ≥ 0.35�퐶�푛 by (10), which means Ẽ
[∑

�푖∈�푆 �푧
′
�푖

]
≥ 0.2�퐶�푛.

However, if Ẽ
[∑�푛

�푖=1 �푧
′
�푖

]
= 0, then Ẽ

[∑
�푖∈�푆 �푧

′
�푖
− 1

2

∑�푛
�푖=1 �푧

′
�푖

]
≥ 0.2�퐶�푛. By Cauchy-Schwarz, this

means Ẽ
[(∑

�푖∈�푆 �푧
′
�푖
− 1

2

∑�푛
�푖=1 �푧

′
�푖

)2] ≥ 0.04�퐶2�푛2. Since �푆 is a fixed set of size �푛/2, defining �푇 := [�푛]\�푆,

we have

Ẽ

[(∑
�푖∈�푆

�푧′�푖 −
1

2

�푛∑
�푖=1

�푧′�푖

)2]
=

1

4
· Ẽ

[(∑
�푖∈�푆

�푧′�푖 −
∑
�푖∈�푇

�푧′�푖

)2]

=
1

�푛2
Ẽ


(∑
�푖∈�푆,�푗∈�푇

(�푧′�푖 − �푧′�푗)
)2

≤ 1

4
· Ẽ


∑

�푖∈�푆,�푗∈�푇
(�푧′�푖 − �푧′�푗)

2


. (Cauchy-Schwarz)

This implies that Ẽ
[∑

�푖∈�푆,�푗∈�푇 (�푧′�푖 − �푧′
�푗
)2
]
≥ 0.16�퐶2�푛2, which means 2�푛·Ẽ

[∑�푛
�푖=1(�푧′�푖 − �휇′)2

]
= Ẽ

[∑�푛
�푖, �푗=1(�푧′�푖 − �푧′

�푗
)2
]
≥

0.32�퐶2�푛2. So, Ẽ
[∑�푛

�푖=1(�푧′�푖 − �휇′)2
]
≥ 0.16�퐶2�푛 ≥ 3�푛. �

Proof of Lemma 5.13. Our main goal will be to show that �̂휇1 := ℒ1[�휇′], �̂휇2 := ℒ2[�휇′] are close in ℓ2
distance. To do so, we show that for any unit vector �푣, 〈ℒ1[�휇′] − ℒ2[�휇′], �푣〉 ≤ �푂(1).

We first focus on ℒ1: suppose ℒ1 is an actual pseudoexpectation (i.e., if �휏 = 0). We define

�푧�푖 := 〈�푥�푖 − �̂휇1, �푣〉 and �푧′
�푖
:= 〈�푥′

�푖
− �̂휇1, �푣〉. If ℒ1 is an (�훼, �휏, �푇)-certificate for �휏 = 0 and �푇 ≤ 0.01�푛, then

it is clear that ℒ1 satisfies Constraints 1, 2, and 3 of Lemma B.3. To check Constraint 4, note that

ℒ1

[
1
�푛

∑
�푧′
�푖

]
= 1

�푛

∑ℒ1[〈�푥′�푖 , �푣〉 − 〈�̂휇1, �푣〉] = 0.

Hence, by Lemma B.3, if the median of 〈�푥�푖−�̂휇1, �푣〉was greater than 20, thenℒ1

[
1
�푛

∑〈�푥′
�푖
− �휇′, �푣〉2

]
≥

2, where �휇′ := 1
�푛

∑
�푥′
�푖
. This, however, contradicts Condition 2e in Definition 5.5. For general �휏,

we note that again the coefficients at each step in the sum-of-squares proof are bounded by

poly(�푛, �푑, �퐾). So, this implies that if ℒ1 is an (�훼∗ , �휏, �휙, �푇)-certifiable mean, then for every unit

vector �푣, 〈�̂휇1, �푣〉 is at most 20 away from the median of 〈�푥�푖 , �푣〉. (This is true in both directions since

we can replace �푣 with −�푣).

Likewise, the same is true for ℒ2, which means that
��〈�̂휇1, �푣〉 − 〈�̂휇2, �푣〉

�� ≤ 40 for all vectors �푣.

Therefore, ‖�̂휇1 − �̂휇2‖2 ≤ 40. Finally, we note that ‖�̃휇1 − �̂휇1‖∞ , ‖�̃휇2 − �̂휇2‖∞ ≤ �휙 + �휏 · �푇 ≤ �푂(�훼/
√
�푑),

so ‖�̃휇1 − �휇2‖2 ≤ 42. �

C Computing Score Functions

In this section we will describe how we can compute the value of the score functions efficiently.

In our problems, we usually have some family of properties {�푃�푇}, parameterized by �푇. The

higher values of �푇 correspond to more lenient settings and the lower values of �푇 correspond to

more stringent settings. We are interested in how well (or poorly) a parameter �휃 satisfies these

properties. We can easily define a score function to measure this. These score functions are later

68

used to run the exponential mechanism and design private algorithms. These score functions are

defined in the following fashion.

�풮(�휃) := inf
�푇

such that �휃 satisfies �푃�푇 .

As mentioned, because �푃�푇’s are increasingly lenient, �휃 satisfies �푃�푇 for all �푇 > �풮(�휃), and

does not satisfy �푃�푇 for all �푇 < �풮(�휃). In our problems we describe {�푃�푇} through systems of

polynomial inequalities and the existence of linear functionals that approximately satisfy them.

We define polynomial constraints �푞1 ≥ 0, . . . , �푞�푘 ≥ 0, which depend on�푇 and �휃, and if there exists a

linear functional (an approximate pseudo-expectation) that approximately satisfies these polynomial

constraints, we say that�휃 satisfies�푃�푇 . We first make some assumptions on these generic polynomial

constraints and after that we will define approximate satisfiability formally in definition C.2.

Assumption C.1. We make the assumption that in problems that we deal with parameterized

families of polynomials {�푄�푇}�푇max

�푇=0
that are in the following form and may include the following

different types of constraints.

1. Regular constraints: �푞 ≥ 0.

2. PSD constraints: ∀ℎ, where ‖ℎ‖2 = 1: �푞ℎ2 ≥ 0.

3. �푇-constraint: Each �푄�푇 , has exactly one constraint that depends on �푇. We call this constraint

the "�푇-constraint".The other constraints do not depend on �푇, and are the same over all �푄�푇’s.

Let �푞�푇 denote this constraint. This constraint is also a PSD constraint and it appears only in

the form of ∀ℎ : �푞�푇ℎ
2 ≥ 0. We also make the assumption that �푞�푇 depends linearly on �푇 and

∀0 ≤ �푇, �푇′ ≤ �푇max : (�푞�푇 − �푞′�푇) = (�푇 − �푇′)/(2�푇max).

Note that this is a polynomial identity.

4. Matrix PSD constraints: �푞 < 0.

Definition C.2 (approximate satisfiability). Suppose �푅 > 1, and a parameterized family of poly-

nomials {�푄�푇} of up to degree �푑, over R�푛 are given as in assumption C.1. We say a linear functional

ℒ over the set of polynomials of degree at most �푑 over �푅�푛 , �휏-approximately satisfies �푄�푇 and write

ℒ ��휏 �푄�푇 if and only if

1. ℒ1 = 1,

2. ℒℎ2 ≥ −�휏 · �푇, for every polynomial ℎ such that 2 deg ℎ ≤ �푑 and ‖ℎ‖2 ≤ 1.

3. ℒ�푞 ≥ −�휏 · �푇, for every polynomial �푞 ∈ �푄�푇 that is a regular constraint.

4. ℒ�푞ℎ2 ≥ −�휏 ·�푇, for every polynomial �푞 ∈ �푄�푇 that is a PSD constraint and every polynomial ℎ

such that 2 deg ℎ + deg �푞 ≤ �푑 and ‖ℎ‖2 = 1.

5. ℒ�푞 < −�휏 · �푇 · �퐼, for every polynomial �푞 ∈ �푄�푇 , that is a matrix PSD constraint.

6. ‖ℛ(ℒ)‖2 ≤ �푅 + �휏 · �푇.

69

In addition, for any �훾 > 0 we write ℒ ��휏,�훾 �푄�푇 if the above conditions hold but replacing �휏 · �푇 with

�휏 · (�푇 + �훾). (Note that the constraint �푄�푇 has not been replaced with �푄�푇+�훾.)

Remark. In order to run the ellipsoid algorithm, we should have a full dimensional ball of positive

volume. If we attempt to run the ellipsoid algorithm over the set of functionals with ℒ1 = 1,

this is trivially not going to be the case. Therefore, instead we only consider the space of linear

functionals excluding the �푆 = ∅ index, which corresponds to the monomial 1.

Lemma C.3 (efficient functional search). Suppose �푅 > 1, and �푄�푇 is a set of polynomial constraints of

up to degree �푑, over R�푛 as in Assumption C.1, with fixed parameter �푇. Let ℛ(ℒ)∅ denote the representation

of a functional ℒ for every multiset of size up to �푑, excluding the empty set index. Then, for any �푟, �훾 > 0,

there exists an algorithm that runs in time poly(�푛�푑 , Size(�푄�푇), log(�푅′/�푟), log(1/�훾)) that either

1. finds the representation of a linear functional ℒ such that ‖ℛ(ℒ)∅‖2 ≤ �푅′, and ℒ ��휏,�푂(�훾) �푄�푇 ; or,

2. shows that the volume of representations of functionals ℒ such that ‖ℛ(ℒ)∅‖2 ≤ �푅′ and ℒ ��휏 �푄�푇 ,

when projected to the entries �푆 ≠ ∅, is less than the volume of a ball of radius �푟,

where �푅′ =
√
(�푅 + �휏 · �푇)2 − 1. Note that here ℛ(ℒ) ∈ R(�푛

≤�푑), and ℛ(ℒ)∅ ∈ R(�푛
≤�푑)−1, and the volume in the

second case is measured with respect to R(�푛
≤�푑)−1.

In essence, we use reductions to semi-definite programs. For a textbook treatment of this

approach see Chapter 3 of [FKP19].

Proof. Firstly note that under the assumption that ℛ(ℒ)∅ = 1, we have that ‖ℛ(ℒ)‖2 ≤ �푅 is

equivalent to ‖ℛ(ℒ)∅‖2 ≤ �푅′. Let

�퐾 = {ℛ(ℒ) | ℒ ��휏 �푄�푇} , �퐾∅ =
{
ℛ(ℒ)∅

�� ℒ ��휏 �푄�푇

}
.

It is easy to see that �퐾 ⊂ R(�푛
≤�푑) is equal to �퐾∅ ⊂ R(�푛

≤�푑)−1 with the adjustment that all of its members

have the additional ∅ entry 1. We want to apply the ellipsoid algorithm over the ball of radius �푅

in R(�푛
≤�푑)−1, if we show that

1. �퐾∅ is convex; and,

2. �퐾∅ admits an efficient (approximate) membership and separation oracle,

we are done and we obtain the desired guarantees via the ellipsoid algorithm.

Convexity. In order to show that �퐾∅ is convex, it suffices to show that �퐾 is convex. let �푀1, �푀2 ∈ �퐾,

we need to prove that ∀�훼 ∈ [0, 1], �푀3 = �훼�푀1 + (1 − �훼)�푀2 ∈ �퐾. By triangle inequality it is easy to

see that ‖�푀3‖2 ≤ �훼‖�푀2‖2 + (1− �훼)‖�푀2‖2 ≤ �푅. Let ℒ1,ℒ2,ℒ3 be the corresponding functionals of

�푀1, �푀2, �푀3. It suffices to show that ℒ3 � �푄�푇 . Let’s verify this.

1. ℒ31 = �훼ℒ11 + (1 − �훼)ℒ21 = 1.

2. ℒ3�푞 = �훼ℒ1�푞 + (1 − �훼)ℒ2�푞 ≥ −�휏 · �푇, for every regular constraint �푞 ∈ �푄�푇 .

70

3. ℒ3ℎ
2 = �훼ℒ1ℎ

2 + (1 − �훼)ℒ2ℎ
2 ≥ −�훼�휏 · �푇 − (1 − �훼)�휏 · �푇 = −�휏 · �푇, for every polynomial ℎ such

that 2 deg(ℎ) ≤ �푑.

4. ℒ3�푞ℎ
2 = �훼ℒ1�푞ℎ

2 + (1 − �훼)ℒ2�푞ℎ
2 ≥ −�훼�휏 ·�푇 − (1 − �훼)�휏 · �푇 = −�휏 · �푇, for every PSD polynomial

constraint �푞 ∈ �푄�푇 and every polynomial ℎ such that deg �푞 + 2 deg(ℎ) ≤ �푑.

5. ℒ3�푞 = �훼ℒ1�푞 + (1 − �훼)ℒ2�푞 < −�훼�휏 · �푇 · �퐼 − (1 − �훼)�휏 · �푇 · �퐼 = −�휏 · �푇 · �퐼, for every matrix PSD

polynomial constraint �푞 ∈ �푄�푇 and every polynomial ℎ such that deg �푞 + 2 deg(ℎ) ≤ �푑.

6. ‖ℛ(ℒ3)‖2 ≤ �훼‖ℛ(ℒ1)‖2 + (1 − �훼)‖ℛ(ℒ2)‖2 = �푅 + �휏 · �푇.

Therefore �퐾 is convex as desired.

Membership/Separation oracle. Suppose �푀 ∈ R(�푛
≤�푑)−1 is given. We need to verify �푀 ∈ �퐾∅, or

not. Let �푀′ be equal to �푀 with the additional entry �푀′
∅ = 1. Then it is easy to see that �푀 ∈ �퐾∅, if

and only if �푀′ ∈ �퐾. Suppose ℒ is the linear functional with �푀′ as its representation. We need to

come up with membership/separation oracles for each of the constraints in Definition C.2.

Regular Constraints.

ℒ�푞 ≥ −�휏 · �푇, for every regular constraint �푞 ∈ �푄�푇 .

In order to check this constraint we can just compute the value 〈�푀′,ℛ(�푞)〉. If its value is greater

than or equal to −�휏 ·�푇, then that means ℒ�푞 ≥ −�휏 ·�푇 is satisfied, and this constraint does not refute

ℒ ��휏,�풪(�훾), and we would be in the setting where ℒ ��휏,�풪(�훾) �푄�푇 , if all of the other constraints hold as

well.

If this is not the case then let �퐻 ∈ R(�푛
≤�푑) be as

�퐻 = ℛ(�푞).
Then 〈�푀, �퐻∅〉 = 〈�푀′, �퐻〉 − �퐻∅ < −�휏 · �푇 − �퐻∅. Moreover, for every �푁 ∈ �퐾∅, we have that 〈�푁, �퐻∅〉 ≥
−�휏 · �푇 − �퐻∅. Therefore �퐻∅ is a separating hyperplane. Therefore we have an efficient separation

oracle as desired.

PSD Constraints. These constraints are in the following form.

ℒ�푞ℎ2 ≥ −�휏 · �푇, for every polynomial ℎ where ‖ℛ(ℎ)‖2 ≤ 1, and deg �푞 + 2 deg ℎ ≤ �푑,

and for every polynomial �푞 that is either 1 or a PSD constraint in �푄�푇 .

Suppose �푞 = 〈�푎, �푣�푑(�푥)〉, ℎ = 〈�푏, �푣�푑(�푥)〉. Then,

ℒ�푞ℎ2 = ℒ
(∑

�푈

(
�푎�푈�푥

�푈
))

·
(∑

�푉

(
�푏�푉�푥

�푉
))

·
(∑

�푊

(
�푏�푊�푥�푊

))

= ℒ
∑

�푈,�푉,�푊

�푎�푈�푏�푉�푏�푊 · �푥�푈+�푉+�푊

=

∑
�푉,�푊

�푏�푉�푏�푊

[∑
�푈

�푎�푈ℒ(�푥�푈+�푉+�푊)
]
.

71

Define the matrix �푋 ∈ R(
�푛

≤(�푑−deg �푞)/2)×(�푛
≤(�푑−deg �푞)/2) as

�푋�푉,�푊 =

∑
�푈

�푎�푈ℒ(�푥�푈+�푉+�푊)

=

∑
�푈

ℛ(�푞)�푈ℛ(ℒ)�푈+�푉+�푊 .

Then

ℒ�푞ℎ2 = �푏T�푋�푏.

Our goal is to verify whether ℒ�푞ℎ2 is larger than −�휏 · �푇 for every ℎ, where ‖ℛ(ℎ)‖2 ≤ 1 or not.

This is equivalent to �푏T�푋�푏 being larger than −�휏 · �푇 for every �푏, where ‖�푏‖2 ≤ 1. We can check this

by looking at the spectral value decomposition of �푋 . Suppose that the spectral decomposition of

�푋 = �푃�퐷�푃T, where �퐷 is a diagonal matrix whose entries are the eigenvalues of �푋 , and the rows

of �푃 are the corresponding eigenvectors. This decomposition can be computed in polynomial

time using standard algorithms for obtaining eigenvalue decompositions. More accurately, for any

�훾 > 0, we can learn the minimum eigenvalue up to error �휏 · �훾 in time poly(�푛�푑 , log 1
�휏·�훾). Then, if

(our estimate of) the minimum eigenvalue is at least −�휏 · (�푇 + 3�훾), this means that the constraint

ℒ�푞ℎ2 ≥ �휏 · (�푇 + 4�훾) is satisfied, and this constraint does not refute ℒ ��휏,�풪(�훾), and we would be in

the setting where ℒ ��휏,�풪(�훾) �푄�푇 , if all of the other constraints hold as well.

If this is not the case then we know that the minimum eigenvalue is less than −�휏 · (�푇 + 2�훾),
and we need to return a separating hyperplane that separates �푀 and �퐾∅. Suppose the minimum

eigenvalue of �푋 is less than −�휏 · (�푇 + 2�훾). Then we can find a vector �푐 such that �푐⊤�푋�푐 < −�휏 · (�푇 + �훾).
Let the vector �퐻 ∈ R(�푛

≤�푑) be as

�퐻�푆 =

∑
�푈∪�푉=�푆

�푐�푈ℛ(�푞)�푉 .

Note that we can compute this vector efficiently. Then we have that

〈�푀′, �퐻〉 = ℒ�푞〈�푐, �푣(�푑−deg �푞)/2(�푥)〉2

= �푐T�푋�푐

< −�휏 · (�푇 + �훾).

Since �푀′
∅ = 1, we have that 〈�푀, �퐻∅〉 = 〈�푀′, �퐻〉 − �퐻∅ < −�휏 · (�푇 + �훾) − �퐻∅. Now assume �푁 ∈ �퐾∅.

Similarly, we can show that 〈�푁, �퐻∅〉 ≥ −�휏 · �푇 − �퐻∅. Therefore �퐻∅ is a separating hyperplane.

Therefore we have an efficient separation oracle as desired.

Matrix PSD Constraints.

ℒ�푞 < −�휏 · �푇, for every matrix PSD constraint �푞 ∈ �푄�푇 .

Note that here �푞 is a square matrix with polynomials as its entries. We use �푞�푖, �푗 to denote the (�푖 , �푗)-
entry of this matrix, which is a polynomial. In order to check this constraint just define �푋 as

�푋�푖, �푗 = ℒ�푞�푖, �푗 = 〈�푀,ℛ(�푞�푖, �푗)〉.

72

In order to check the constraint ℒ�푞 < −�휏 · �푇, we can check the spectral value decomposition

of �푋 . Suppose that the spectral decomposition of �푋 = �푃�퐷�푃T, where �퐷 is a diagonal matrix

whose entries are the eigenvalues of �푋 , and the rows of �푃 are the corresponding eigenvectors.

This decomposition can be computed in polynomial time using standard algorithms for obtaining

eigenvalue decompositions. More accurately, for any �훾 > 0, we can compute the minimum

eigenvalue of to error �휏 ·�훾 in time poly(�푛�푑 , log 1
�휏·�훾). Then, if our estimate of the eigenvalue is at least

−�휏 · (�푇 + 3�훾), this means that the constraint ℒ�푞 < −�휏 · (�푇 + 4�훾) · �퐼 is satisfied, and this constraint

does not refute ℒ ��휏,�풪(�훾)�푄�푇
, and we would be in the setting where ℒ ��휏,�풪(�훾) �푄�푇 , if all of the other

constraints hold as well.

If this is not the case then we know that the minimum eigenvalue is less than −�휏 · (�푇 + 2�훾),
and we need to return a separating hyperplane that separates �푀 and �퐾∅. Suppose the minimum

eigenvalue of �푋 is less than −�휏 · (�푇 + 2�훾). Then we can find a vector �푐 such that �푐T�푋�푐 < −�휏 · (�푇 + �훾).
Now consider �푐Tℒ�푞�푐, and assume �푐 and �푞 are constants and ℒ is variable. We can write this as

�푐Tℒ�푞�푐 =
∑
�푈

�퐻�푈ℒ(�푥�푈),

for some �퐻�푈 ’s that depend only on �푞 and �푐. Moreover, give �푞 and �푐 we can compute this �퐻

efficiently. Now since �푐T�푋�푐 < −�휏 · (�푇 + �훾), we have that

〈ℛ(ℒ), �퐻〉 = 〈�푀′, �퐻〉 < −�휏 · (�푇 + �훾),

and therefore 〈�푀, �퐻∅〉 = 〈�푀′, �퐻〉 − �퐻∅ < −�휏 · (�푇 + �훾) − �퐻∅. Similarly, if �푁 ∈ �퐾∅, we can show that

〈�푁, �퐻∅〉 ≥ −�휏 · �푇 − �퐻∅. Therefore �퐻∅ is a separating hyperplane. Therefore we have obtained an

efficient separation oracle as desired.

Norm Bound Constraints.

‖ℛ(ℒ)‖2 ≤ �푅 + �휏 · �푇.
In order to check this constraint we just compute ‖�푀‖2

2
. If its value is less than or equal to �푅′2,

then that means ‖ℛ(ℒ)‖2 ≤ �푅 + �휏 · �푇 is satisfied. If this is not the case then let �퐻 ∈ R(�푛
≤�푑) be as

�퐻 = ℛ(�퐿) = �푀′. Note that ‖�퐻‖2 > �푅, since ‖�푀‖2 > �푅′. Then 〈�푀, �퐻∅〉 = 〈�푀′, �퐻〉 −�퐻∅ = ‖�퐻‖2
2
− 1.

Moreover, for every �푁 ∈ �퐾∅, we have that 〈�푁, �퐻∅〉 ≤ �푅‖�퐻‖2 − 1. Therefore �퐻∅ is a separating

hyperplane. �

Lemma C.4 (robust satisfiability). Consider the family of polynomial constraints {�푄�푇} of up to degree

�푑 over R�푛 as in Assumption C.1. Moreover, suppose that there exists some linear functional ℒ0, such that

ℒ0 � �푄�푇0. Then there exists a set of linear functionals ℱ such that{
ℛ(ℒ)∅

�� ℒ ∈ ℱ
}

contains a full-dimensional ball of radius �푟 = poly(1/poly(�푛�푑), �휏, �훾, 1/�푘, 1/‖�푅(�푄�푇0)‖∞), and for all

ℒ ∈ ℱ , we have that ℒ ��휏 �푄�푇0+�훾. Here ‖ℛ(�푄�푇0)‖∞ denotes the infinity norm over all coefficients that

appear in �푄�푇0..

Proof. Suppose �퐸 ∈ R(�푛
≤�푑) be such that ‖�퐸∅‖2 ≤ �푟 and �퐸∅ = 0. Let ℒ be the linear functional with

the representation ℛ(ℒ) = ℛ(ℒ0) + �퐸. Our goal is to choose �푟, in a way that for every choice �퐸∅,
where ‖�퐸∅‖2 ≤ �푟, we can prove that ℒ ��휏 �푄�푇0+�훾.

73

1. ℒ1 = ℒ01 = 1.

2. For every regular constraint �푞, we have that

ℒ�푞 = ℒ0�푞 + 〈�퐸,ℛ(�푞)〉 ≥ −�휏 · �푇0 − �푟‖�푞‖∞.

3. For all ℎ such that 2 deg ℎ ≤ �푑 and ‖ℎ‖2 ≤ 1 we have that

ℒℎ2 = ℒ0ℎ
2 + 〈�퐸,ℛ(ℎ2)〉 ≥ −�휏 · �푇0 − �푟 poly(�푛�푑).

4. For every PSD constraint �푞, excluding the �푇-constraint, and every polynomial ℎ such that

2 deg ℎ ≤ �푑 − deg �푞, and ‖ℎ‖2 ≤ 1 we have that

ℒ�푞ℎ2 = ℒ0�푞ℎ
2 + 〈�퐸,ℛ(�푞ℎ2)〉

≥ −�휏 · �푇0 − �푟‖ℛ(�푞)‖∞ · poly(�푛�푑).

5. Let �푐 = 1/2�푇max. For the �푇-constraint �푞�푇0+�훾, and every polynomial ℎ such that 2 deg ℎ ≤
�푑 − deg �푞�푇0+�훾, and ‖ℎ‖2 ≤ 1, we have that

ℒ�푞�푇0+�훾ℎ
2
= ℒ(�푞�푇0 + �푐�훾)ℎ2

= ℒ0�푞�푇0ℎ
2 + �푐�훾ℒℎ2 + 〈�퐸,ℛ(�푞�푇0ℎ2)〉

≥ −�휏 · �푇0 − �푐�훾
(
�휏 · �푇0 + �푟 poly(�푛�푑)

)
− �푟 · ‖ℛ(�푞�푇0)‖∞ · poly(�푛�푑)

6. Let ℰ be the corresponding linear functional for �퐸. For every �푘 × �푘 matrix PSD constraint q,

we have that

‖ℰ�푞‖2 ≤
√
�푘‖ℰ�푞‖∞

=
√
�푘max

�푖, �푗

��〈�퐸,ℛ(�푞�푖, �푗)〉
��

≤ �푟 ·
√
�푘 · poly(�푛�푑) ·max

�푖, �푗
‖ℛ(�푞�푖, �푗)‖∞.

Therefore

ℒ�푞 < ℒ0�푞 + ℰ�푞 < −�휏 · �푇 − �푟 ·
√
�푘 · poly(�푛�푑) ·max

�푖, �푗
‖ℛ(�푞�푖, �푗)‖∞.

7. We have

‖ℛ(�푐�퐿)‖2 ≤ ‖ℛ(ℒ0)‖2 + ‖�퐸‖2 ≤ �푅 + �휏 · �푇0 + �푟.

Therefore it suffices to take �푟 such that

1. �푟 · poly(�푛�푑) ≤ �휏�훾. In order to do this take �푟 ≤ �휏�훾/poly(�푛�푑).

2. �푐�훾�푟 poly(�푛�푑) + �푟 · ‖ℛ(�푞�푇0)‖∞ · poly(�푛�푑) ≤ �휏�훾/2. In order to do this take �푟 to be

�푟 ≤ �휏

4 poly(�푛�푑)
·min

(
�훾

ℛ(�푞�푇0)

∞
,

1

�푇max

)
,

74

3. �푟 ·
√
�푘 · poly(�푛�푑) ·max�푖, �푗 ‖ℛ(�푞�푖, �푗)‖∞ ≤ �휏 · �훾. In order for this to hold take �푟 to be

�푟 ≤ �휏�훾
√
�푘 poly(�푛�푑)max�푖, �푗 ‖ℛ(�푞�푖, �푗)‖∞

.

Therefore there exists a ball of radius poly(1/poly(�푛�푑), �휏, �훾, 1/�푘, 1/‖�푅(�푄�푇0)‖∞) such that for

every ℛ(ℒ)∅ in that ball we have that ℒ ��휏 �푄�푇0+�훾, as desired.

�

Lemma C.5. Consider the family of polynomial constraints {�푄�푇} of up to degree �푑 over R�푛 as in Assump-

tion C.1. Suppose there exists some linear functional ℒ such that ℒ ��휏,�훾 �푄�푇 . Then if �훾 ≤ �푇max/2, we have

that ℒ ��휏 �푄�푇+4�훾.

Proof. All of the inequalities in ℒ ��휏 �푄�푇+4�훾 will be trivially satisfied because of ℒ ��푡+�훾 �푄�푇 except

for the �푇-constraint. So we should prove the inequality for the �푇-constraint. Suppose ℎ is a

polynomial such that ‖ℎ‖2 ≤ 1, and 2 deg ℎ ≤ �푑 − deg �푞�푇 . Then

ℒ�푞�푇+4�훾ℎ
2
= ℒ�푞�푇ℎ

2 + 4�훾

2�푇max

ℒℎ2

≥ −�휏 · (�푇 + �훾) − 2�훾�휏 · (�푇 + �훾)/�푇max

≥ −�휏 · (�푇 + �훾) − 3�훾�휏

≥ −�휏 · (�푇 + 4�훾),

as desired.

�

Theorem C.6 (computability of score functions). Consider the family of polynomial constraints {�푄�푇}
of up to degree �푑 over R�푛 as in Assumption C.1. Let

�푇0 = inf
�푇

such that there exists ℒ such that ℒ ��휏 �푄�푇 .

Then we can compute �푇0 in time poly(�푛�푑 , Size(�푄�푇), log(�푅), log(�푇max), log(1/�훾), log(1/�휏)) up to error

�풪(�훾). Note that �푅 is as in Definition C.2.

Proof. We apply binary search in order to estimate �푇0. Suppose �푇 is given, run the ellipsoid

algorithm from Lemma C.3, either we can find some functional ℒ such that ℒ ��휏,�훾 �푄�푇 , or a proof

that no ball of radius �푟(�훾) of functionals ℒ that satisfy ℒ ��휏 �푄�푇 exists. Note that �푟(�훾) here is as

in Lemma C.4. If we are in the first case, by Lemma C.5 we know that ℒ ��휏 �푄�푇+4�훾. Therefore,

�푇 + 4�훾 ≥ �푇0, and we decrease the value of �푇. If we are in the second case, we must have �푇 < �푇0 + �훾,

since otherwise we know that by Lemma C.4 there should exists a ball of radius �푟(�훾). This gives

us an efficient algorithm for approximating the score function. �

75

D High-Probability Bound for Stability of Covariance

D.1 Preliminaries

Lemma D.1. [DKK+19, Corollary 4.8, rephrased] There exists �훼 = �푂(�휂 log 1
�휂), such that for any �푛 ≥

�푂
(
�푑2+log(1/�훽)

�훼2

)
and �푋1, . . . , �푋�푛

�푖.�푖.�푑.∼ �풩(0, �퐼), then with probability at least 1− �휏, for all symmetric matrices

�푃 ∈ R�푑×�푑 with Frobenius norm 1 and all �푏 ∈ [0, 1]�푛 with E�푖 �푏�푖 ≥ 1 − �휂,

1

�푛

�푛∑
�푖=1

�푏�푖 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉 ≤ �훼.

Lemma D.2 (Hanson-Wright Inequality). Let �푥 ∼ �풩(0, �퐼) be a �푑-dimensional Gaussian vector. Then,

there exists a universal constant �푐 such that for any symmetric matrix �푃 and for all �푡 > 0,

P
[��〈�푥�푥⊤ − �퐼 , �푃〉

�� > �푡
]
≤ 2 exp

(
−�푐 ·min

(
�푡2

‖�푃‖2
�퐹

,
�푡

‖�푃‖�표�푝

))
.

Proposition D.3 (Theorem 4.5, [Ver18]). Let �퐴 be a rectangular �푚 × �푛-dimensional matrix with each

entry i.i.d. �풩(0, 1). Then, there exists a constant�퐶0 such that for any �푡 ≥ 0, P(‖�퐴‖�표�푝 > �퐶0(
√
�푚+

√
�푛+�푡)) ≤

2�푒−Ω(�푡2).

Proposition D.4. For some fixed 1 ≤ �푘 ≤ �푑, let �풫 be the set of symmetric �푑 × �푑 matrices with Frobenius

norm at most 1 and all nonzero eigenvalues at least
√
1/�푘 in absolute value. Then, for any 0 < �훾 < 1/2, �풫

has a �훾-net (in the Frobenius norm distance) of size (1/�훾)�푂(�푘·�푑).

Proof. For such a �푃 ∈ �풫, note that �푃 must have rank at most �푘. Therefore, we can write �푃 = �푈�퐷�푈⊤,

where �퐷 is a diagonal matrix of Frobenius norm at most 1 and �푈 is a �푑 × �푘-dimensional matrix

with orthonormal columns. Let �풯 be a �훾/10-net of the �푑-dimensional unit sphere, of size (1/�훾)�푂(�푑).
Define �풱 ∈ R�푑×�푘 to be the set of �푑× �푘-matrices where each column is in �풯 . Then, every orthogonal

�푈 ∈ R�푑×�푘 has a corresponding �푉 ∈ �풱 such that each corresponding column in �푈,�푉 are unit

vectors of distance at most �훾/10. Therefore, there exists a set �풲 of orthogonal matrices in R�푑×�푘

such that every �푈 has a corresponding �푊 where ‖�푈 −�푊 ‖�퐹 ≤ �푘 · �훾/5. �풲 is created by choosing a

single representative near each �푉 ∈ �풱, should one exist, which means |�풲| ≤ (1/�훾)�푂(�푑·�푘). Finally,

let �풯 ′ be a �훾/5-net of the unit ball in �푘-dimensions, which corresponds to a �훾/5-net �풟 of diagonal

matrices of Frobenius norm at most 1.

Now, we claim that the set of matrices �푊�퐷′�푊⊤, for �푊 ∈ �풲 and �퐷′ ∈ �풟, form a �훾-net for the

set of �푃. Indeed, for any �푃 = �푈�퐷�푈⊤, we associate �푈 with �푊 such that each column of �푈 and of �푊

differ by at most �훾/5 in ℓ2-distance, and �퐷 with �퐷′ such that ‖�퐷 − �퐷′‖�퐹 ≤ �훾/5. We want to show

that ‖�푈�퐷�푈⊤ −�푊�퐷′�푊⊤‖�퐹 ≤ �훾.

Note we can bound ‖�푈�퐷�푈⊤ −�푊�퐷′�푊⊤‖�퐹 ≤ ‖�푈�퐷(�푈 −�푊)⊤‖�퐹 + ‖(�푈 −�푊)�퐷�푊⊤‖�퐹 + ‖�푊(�퐷′ −
�퐷)�푊⊤‖�퐹 , so it suffices to bound each of these terms by �훾/5. Since �푈 and �푊 are orthogonal

matrices, ‖�푈�푀‖�퐹 = ‖�푊�푀‖�퐹 = ‖�푀‖�퐹 and ‖�푀�푈⊤‖�퐹 = ‖�푀�푊⊤‖�퐹 = ‖�푀‖�퐹 for any matrix �푀

(fitting the dimensions). Therefore, it suffices to show that ‖�퐷(�푈 − �푊)⊤‖�퐹 , ‖(�푈 − �푊)�퐷‖�퐹 , and

‖�퐷′−�퐷‖�퐹 ≤ �훾/5. Indeed, we already know ‖�퐷′−�퐷‖�퐹 ≤ �훾/5, and ‖�퐷(�푈 −�푊)⊤‖�퐹 = ‖(�푈 −�푊)�퐷‖�퐹
since �퐷 is diagonal, so we just need to show ‖(�푈 −�푊)�퐷‖�퐹 ≤ �훾/5. To prove this, note that �푈 −�푊 is

76

a �푑 × �푘-dimensional matrix with very column having ℓ2 norm at most �훾/5. When we multiply by

�퐷, this multiplies the �푖th column of �푈 −�푊 by �퐷�푖�푖 , the �푖th diagonal entry of �퐷. Therefore, the �푖th

column of (�푈 −�푊)�퐷 has ℓ2 norm at most �훾/5 · �퐷�푖�푖 . Therefore, the Frobenius norm of (�푈 −�푊)�퐷 is

at most
√∑�푘

�푖=1(�훾/5)2 · �퐷2
�푖�푖
= �훾/5 ·

√∑�푘
�푖=1 �퐷

2
�푖�푖
= �훾/5.

Finally, the size of this net is at most |�풲| · |�풟| ≤ (1/�훾)�푂(�푑·�푘) · (1/�훾)�푂(�푘) = (1/�훾)�푂(�푑·�푘). �

D.2 Main Probability Bound

Lemma D.5. Let �푛 ≥ �푂
(
(�푑+log(1/�훿))2

�휂2

)
and let �푥1 , . . . , �푥�푛

�푖.�푖.�푑.∼ �풩(0, �퐼). Then, with probability at least

1 − �훿, for any �푑 × �푑 symmetric matrix �푃 with Frobenius norm ≤ 1, and for any subset �푆 ⊂ [�푛] of size at

most �휂 · �푛, ∑
�푖∈�푆

〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 ≤ �푂

(
�휂 log2

1

�휂

)
· �푛.

Proof. For simplicity, we may assume without loss of generality that �훿 = �푒−�푑. This is because if

�훿 > �푒−�푑, we can decrease the failure probability to �푒−�푑. Likewise, if �훿 < �푒−�푑, then �푑 < log(1/�훿), so

we may increase the dimension to log(1/�훿) by sampling additional random standard Gaussians for

the rest of the coordinates of �푥�푖, and then only proving the result for all �푃 with all nonzero values

supported on the first �푑 rows and columns.

Let ℛ be a 1/2-net of the set of symmetric matrices with Frobenius norm at most 1, and suppose

we successfully prove the lemma for all �푃 ∈ ℛ. Then, for a general �푃, we can write �푃 =
∑∞

�푖=0 2
−�푖�푅�푖,

for each �푅�푖 ∈ ℛ. Then, for any �푖,〈
�푥�푖�푥

⊤
�푖 − �퐼 ,

∞∑
�푖=0

2−�푖�푅�푖

〉2
=

(∞∑
�푖=0

2−�푖 · 〈�푥�푖�푥⊤�푖 − �퐼 , �푅�푖〉
)2

≤
(∞∑
�푖=0

2−�푖
)
·
(∞∑
�푖=0

2−�푖 〈�푥�푖�푥⊤�푖 − �퐼 , �푅�푖〉2
)
,

using the Cauchy-Schwarz inequality. Then, we can write

∑
�푖∈�푆

〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 ≤ 2 ·
(∞∑
�푖=0

2−�푖 ·
∑
�푖∈�푆

〈�푥�푖�푥⊤�푖 − �퐼 , �푅�푖〉2
)
≤ 4 · �푂(�휂) · �푛.

So it suffices to show the theorem for the net ℛ.

Next, note that for a sufficiently large constant �퐶0,∑
�푖∈�푆

〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 =
∑
�푖∈�푆

∫ ∞

�푡=0

I
[
�푡 ≤ 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2

]
�푑�푡

=

∫ ∞

�푡=0

#
{
�푖 ∈ �푆 : 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 ≥ �푡

}
�푑�푡

≤ (�퐶0 log(1/�휂))2 · �휂�푛 +
∫ ∞

�푡=(�퐶0 log(1/�휂))2
#

{
�푖 : 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 ≥ �푡

}
· (�푡 log2 �푡) · 1

�푡 log2 �푡
�푑�푡

≤ (�퐶0 log(1/�휂))2 · �휂�푛 + max
�푡≥(�퐶0 log(1/�휂))2

(
�푡 log2 �푡 ·#

{
�푖 : 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 ≥ �푡

})
≤ (�퐶0 log(1/�휂))2 · �휂�푛 + max

�퐶≥�퐶0 log(1/�휂)

(
�퐶2 log2 �퐶 ·#

{
�푖 :

��〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉
�� ≥ �퐶

})
.

77

The second-to-last line uses the fact that
∫ ∞
3

1

�푡 log2 �푡
�푑�푡 < 1, and the last line is just a substitution

�퐶 =
√
�푡.

Therefore, it will suffice to show that for all �퐶 ≥ �퐶0 log(1/�휂), with probability at least 1− �푒−�푑/�퐶
the following holds. For all �푃 ∈ ℛ, the number of �푖 ∈ [�푛] such that |〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉 | ≥ �퐶 is at most

�푛 · �휂/(�퐶2 log2 �퐶). The probability bound is sufficient since it suffices to prove this for all �퐶 that is a

power of 2, and the sum of �푒−�푑/�퐶 over �퐶 a power of 2 is �푒−�푑. �

So, to prove Lemma D.5, it suffices to prove the following lemma.

Lemma D.6. Suppose �푛
log20 �푛

≥ �푂
(
�푑2

�휂2

)
and let �푥1 , . . . , �푥�푛

�푖.�푖.�푑.∼ �풩(0, �퐼). Then, there exists a sufficiently

large constant �퐶0 and a 1/2-net ℛ for �푑 × �푑 symmetric matrices with Frobenius norm at most 1, such that

for any �퐶 ≥ �퐶0 log(1/�휂), with probability at least 1 − �푒−�푑/�퐶, for any �푃 ∈ ℛ, the number of indices �푖 ∈ [�푛]
such that 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉 ≥ �퐶 is at most �푛 · �휂/(�퐶2 log2 �퐶).

Proof. First, assume that �퐶 ≤
√
�휂�푛/(log9 �푛 · �푑). For �푗 ≥ 1, let �풫�푗 be a �훾�푗 := (1/(10�푗2))-net of the

matrices in �풫 with all nonzero eigenvalues in the range [−2/
√
2�푗 ,−1/

√
2�푗] ∪ [1/

√
2�푗 , 2/

√
2�푗]. Also,

let �풬 �푗 be a 1/10-net of the set of matrices in �풫 with all eigenvalues below 1/
√
2�푗 in absolute value.

Now, for some fixed �푃, suppose we can write �푃 = �푃1 + �푃2 + · · · + �푃⌈log2 �퐶2⌉ + �푄, where each

�푃�푗 ∈ �풫�푗 and �푄 ∈ �풬⌈log2 �퐶2⌉ . Then, if the event that 〈�푃, �푥�푥⊤ − �퐼〉 ≥ �퐶 holds, then we must

have that either 〈�푃�푗 , �푥�푥
⊤ − �퐼〉 ≥ �퐶/(4�푗2) for some �푗 or 〈�푄, �푥�푥⊤ − �퐼〉 ≥ �퐶/2. For any fixed

choice of {�푃�푗}1≤ �푗≤⌈log2 �퐶2⌉ and �푄, the probability that this event occurs for each �푃�푗 is at most

exp

(
−�푐1min

(
�퐶2

�푗4
, �퐶·2

�푗/2
�푗2

))
≤ exp

(
−�푐1 · �퐶·2�푗/2

�푗4

)
, by the Hanson-Wright inequality and since 2�푗/2 ≤ 2�퐶

for �푗 ≤ ⌈log2 �퐶2⌉. The probability that this event holds for �푄, by Hanson-Wright, is at most

exp

(
−�푐1 ·min

(
�퐶2, �퐶 · 2⌈log2 �퐶2⌉/2

))
≤ exp

(
−�푐1 · �퐶2

)
.

For a fixed �푃 = �푃1 + �푃2 + · · · + �푃⌈log2 �퐶2⌉ + �푄, and for �푥1, . . . , �푥�푛
�푖.�푖.�푑.∼ �풩(0, �퐼), we bound the

probability of the event that 〈�푃, �푥�푖�푥⊤�푖 − �퐼〉 ≥ �퐶 for at least �휂 · �푛/(�퐶2 · log2 �퐶) different choices of

�푖 ∈ [�푛]. For simplicity we define �̄퐶 = �퐶2 · (log �퐶)2/�휂. Now, if the event holds, then either some

〈�푃�푗 , �푥�푖�푥
⊤
�푖
− �퐼〉 ≥ �퐶/(4�푗2) for �푛/(4�̄퐶 �푗2) indices, or 〈�푄, �푥�푖�푥

⊤
�푖
− �퐼〉 ≥ �퐶/2 for �푛/(2�̄퐶) different choices of

�푖 ∈ [�푛]. For fixed �푗 ≤ ⌈log2 �퐶2⌉, the probability of this occurring for �푃�푗 is at most

(
�푛

�푛/(4�̄퐶 �푗2)

)
· exp

(
−�푐1 ·

�퐶 · 2�푗/2
�푗4

· �푛

4�̄퐶 �푗2

)
≤ �푂(�̄퐶 �푗2)�푛/(4�̄퐶 �푗2) · exp

(
−�푐1 ·

�퐶 · 2�푗/2
�푗4

· �푛

4�̄퐶 �푗2

)

≤ exp

(
−�푐2 ·

�푛 · 2�푗/2 · �퐶
�̄퐶 · �푗6

)

= exp

(
−�푐2 ·

�푛 · 2�푗/2 · �휂
�퐶(log �퐶)2 · �푗6

)
.

where we used the fact that log(�̄퐶 �푗2) ≤ �푂(log(�퐶/�휂)), which is much smaller than �퐶 ≤ �푂(�퐶 ·2�푗/2/�푗4)
since �퐶 ≥ �퐶0 log(1/�휂).

78

Likewise, the probability of this occurring for �푄 is at most(
�푛

�푛/(2�̄퐶)

)
· exp

(
−�푐1 · �퐶2 · �푛

2�̄퐶

)
≤ �푂(�̄퐶)�푛/(2�̄퐶) · exp

(
−�푐1 · �퐶2 · �푛

2�̄퐶

)

≤ exp

(
−�푐2 · �퐶2 · �푛

�̄퐶

)

= exp

(
−�푐2 ·

�휂 · �푛
(log �퐶)2

)
.

Finally, recall that |�풫�푗 | ≤ �푂(�푗2)2�푗 ·�푑 = �푒�푂(log �푗·2�푗 ·�푑) and |�풬⌈log2 �퐶2⌉ | = �푒�푂(�푑2). So overall, the

probability of there even existing such a �푃 that can be written as �푃1+ · · · +�푃⌈log2 �퐶2⌉ +�푄 where each

�푃�푗 ∈ �풫�푗 and �푄 ∈ �풬⌈log2 �퐶2⌉ is at most

⌈log2 �퐶2⌉∑
�푗=1

exp

(
−�푐2 ·

�푛 · 2�푗/2 · �휂
�퐶(log �퐶)2 · �푗6

)
· exp

(
�퐶1 · log �푗 · 2�푗 · �푑

)
+ exp

(
−�푐2 ·

�푛 · �휂
(log �퐶)2

)
· exp

(
�퐶1 · �푑2

)
. (13)

Since �퐶 ≤
√
�휂�푛/(log9 �푛 · �푑) and 2�푗 ≤ 2�퐶2, this means

�푛·2�푗/2·�휂
�퐶(log �퐶)2 · �푗6 ≫ log �푗 · 2�푗 · �푑. To see why, this is

equivalent to �휂 · �푛
�푑 ≫ �퐶(log �퐶)2 · �푗6 log �푗 · 2�푗/2, and since 2�푗/2 ≤ 2�퐶 and �퐶 ≪ �푛, this is implied by

�휂 · �푛
�푑 ≫ �퐶2(log �푛)9. In addition, assuming that �푛 ≫ (log �푛)2 · �푑2/�휂, we also have that

�푛·�휂
(log�퐶)2 ≫ �푑2.

Therefore, we can further bound (13) by

�푛 · max
�푗≤⌈log2 �퐶2⌉

exp

(
−�푐3 ·

�푛 · 2�푗/2 · �휂
�퐶(log �퐶)2 · �푗6

)
+ exp

(
−�푐3 ·

�푛 · �휂
(log �퐶)2

)
≤ (�푛+1) · exp

(
−�푐4

�휂 · �푛
�퐶(log �퐶)2

)
≤ �푒−�푑/�퐶.

So, our probability bound is sufficient, but we need to make sure that the set ℛ of matrices that

can be written as �푃1 + · · · + �푃⌈log2 �퐶2⌉ + �푄 for �푃�푗 ∈ �풫�푗 and �푄 ∈ �풬⌈log2 �퐶2⌉ is a 1/2-net. However, by

looking at the singular value decomposition of any symmetric matrix �̃푃 with ‖�푃‖�퐹 = 1, we can write

it as �̃푃1+· · ·+�̃푃⌈log2 �퐶2⌉+�̃푄, where �̃푃�푗 has all nonzero eigenvalues in [−2/
√
2�푗 ,−1/

√
2�푗]∪[1/

√
2�푗 , 2/

√
2�푗]

and �̃푄 has all eigenvalues at most 1/
√
2⌈log2 �퐶2⌉ in absolute value. In addition, each �̃푃�푗 is within

distance 1/(10�푗2) of some �푃�푗 ∈ �풫�푗 and �̃푄 is within distance 1/10 of some �푄 ∈ �풬⌈log2 �퐶2⌉ . So, by the

triangle inequality, ℛ is a 1/2-net.

Next, suppose �퐶 ≥
√
�휂�푛/(log9 �푛 · �푑), but �퐶 ≤

√
�휂�푛/(log2 �푛) so �̄퐶 ≤ �푛. Then, for any fixed choice

of �푛/�̄퐶 = �휂 · �푛/(�퐶2(log �퐶)2) indices �푆, the probability that there exists �푃 ∈ R�푑×�푑 such that ‖�푃‖�퐹 = 1

and 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉 ≥ �퐶 for all �푖 ∈ �푆 is at most

P

(
∃�푃 :

∑
�푖∈�푆

〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉 ≥ �퐶 · �푛
�̄퐶

)
= P

(

∑
�푖∈�푆

(�푥�푖�푥⊤�푖 − �퐼)

�퐹

≥ �퐶 · �푛
�̄퐶

)

≤ P
(

∑
�푖∈�푆

�푥�푖�푥
⊤
�푖

�퐹

≥ �푛 · �퐶
�̄퐶

− �푛
√
�푑

�̄퐶

)

≤ P
(

∑
�푖∈�푆

�푥�푖�푥
⊤
�푖

�퐹

≥ �푛 · �퐶
2�̄퐶

)
.

79

The second line is true because the Frobenius norm of �퐼 is
√
�푑 so the Frobenius norm of |�푆 | · �퐼 is

�푛
√
�푑

�̄퐶
. The third line is true because �퐶 ≥ 2

√
�푑 if �푛 ≥ 4�푑2 log9 �푛/�휂.

So, for the final event to occur, it is equivalent for ‖�퐴�퐴⊤‖�퐹 ≥ �푛·�퐶
2�̄퐶

, where �퐴 is the (�푛/�̄퐶) × �푑-

dimensional matrix with each row of �퐴 being �푥�푖 for �푖 ∈ �푆. Since �퐴 and therefore �퐴�퐴⊤ have rank at

most �푛/�̄퐶, this requires ‖�퐴‖2�표�푝 = ‖�퐴�퐴⊤‖�표�푝 ≥ �푛·�퐶
2�̄퐶

·
√

�̄퐶
�푛 ≥

√
�푛·�퐶

2
√
�퐶

=

√
�휂·�푛

2 log �퐶 .

Assuming �푛 ≫ �푑2 log2 �푛/�휂, then
√
�휂·�푛

2 log �퐶 ≫ �푑. Also, assuming �푛 ≫ �푑2 log18 �푛/�휂, then
√
�휂�푛 ≫

�푑 log9 �푛, which means
√
�휂�푛 ≪ �휂�푛

log9 �푛·�푑 ≤ �퐶2 · log �퐶. This means that �푛
�̄퐶
=

�휂·�푛
�퐶2(log �퐶)2 ≪

√
�휂·�푛

2 log�퐶 . So, this

means
√
�휂·�푛

2 log �퐶 ≫ �푑 + �푛
�̄퐶

, which means that by Proposition D.3, the probability of ‖�퐴‖2�표�푝 ≥
√
�휂·�푛

2 log�퐶 is at

most 2 exp
(
−Ω

(√
�휂·�푛

log �퐶

))
.

Therefore, for any fixed choice of �푛/�퐶2 indices, the probability that there exists �푃 ∈ R�푑×�푑 such

that ‖�푃‖�퐹 = 1 and 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉 ≥ �퐶 for all �푖 ∈ �푆 is at most 2 exp
(
−Ω

(√
�휂·�푛

log�퐶

))
. There are at most(�푛

�푛/�̄퐶
)
≤ �푒 log �푛·�푛/�̄퐶 ≤ �푒�푑 log

10 �푛/log2 �퐶 . Note that
�푑 log10 �푛

log2 �퐶
≪

√
�휂·�푛

log�퐶 for any �푛 ≫ �푑 log20 �푛/�휂. So, this means

that the overall failure probability is at most 2 exp
(
−Ω

(√
�휂·�푛

log�퐶

))
≤ �푒−�푑/�퐶.

The final case is if �퐶 ≥
√
�휂 · �푛/(log2 �푛). In this case, the probability that even a single index has

‖�푥�푖�푥⊤�푖 − �퐼‖�퐹 ≥ �퐶 means ‖�푥�푖�푥⊤�푖 ‖�퐹 ≥ �퐶
2

which means ‖�푥�푖 ‖22 ≥ �퐶
2

. We can again apply Hanson-Wright

to conclude that, since �퐶 ≫ �푑, the probability that ‖�푥�푖 ‖22 ≥ �퐶
2

is at most 2�푒−Ω(−�퐶) , which means the

probability that this is true for even a single �푥�푖 is at most 2�푛�푒−Ω(�퐶) ≤ �푒−�푑/�퐶. �

D.3 Proof of Lemma 6.3

First, we note the following corollary of Lemma D.5.

Corollary D.7. With probability at least 1 − �훽, every �푑 × �푑 symmetric matrix �푃 with Frobenius norm

exactly 1, 1
�푛

∑�푛
�푖=1〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 = 2 ± �푂

(
�휂 · log2 1

�휂

)
.

Proof. Suppose �푥1 , . . . , �푥�푛 has the property of Lemma D.5. Now, for a fixed �푃 with ‖�푃‖�퐹 = 1, note

that
∑�푛

�푖=1〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 ≤ ∑�푛
�푖=1 min

(
〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2, �퐶0 log

2 1
�휂

)
+�푂(�푛 · �휂 · log2 1

�휂). This is because the

number of indices �푖 such that 〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 ≥ �퐶0 log
2 1
�휂 is at most �푂(�휂 · �푛) by Lemma D.5, and for

those indices, we know that
∑〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 is at most �푂(�푛 · �휂 · log2 1

�휂).
Now, note that for any fixed �푃 with ‖�푃‖�퐹 = 1, E�푥∼�풩(0,�퐼)〈�푥�푥⊤ − �퐼 , �푃〉2 = 2. Indeed, this is

simple to see if �푃 is diagonal (using the fact that the fourth moment of a Gaussian is 3), and

for general symmetric �푃 we can diagonalize �푃 and use the same diagonalization on each �푥�푖 , to

show this is true. Therefore, since P(〈�푥�푥⊤ − �퐼 , �푃〉2 ≥ �푡2) ≤ 2�푒−Ω(�푡) by Hanson-Wright, this means

if �퐶0 is sufficiently large, E�푥∼�풩(0,�퐼) min

(
〈�푥�푥⊤ − �퐼 , �푃〉2, �퐶0 log

2 1
�휂

)
∈ [2 − �휂, 2]. In addition, this

variable is bounded between 0 and �퐶0 log
2 1
�휂 , so by Hoeffding’s inequality, the probability that

1
�푛 ·∑�푛

�푖=1 min

(
〈�푥�푥⊤ − �퐼 , �푃〉2, �퐶0 log

2 1
�휂

)
is not in the range [2 − 2�휂, 2 + 2�휂] is at most �푒

−2�푛�휂2/log4 1
�휂 .

We can union bound over a 1/�푛2-net of symmetric matrices with Frobenius norm 1, which has

80

size �푒�푂(�푑2 log �푑), to say that if �푛 ≫ �푑2

�휂2 · log �푛 log4 1
�휂 , then with probability at least �푒

−�푛·�휂2/log4 1
�휂 , every �푃

in the net satisfies 1
�푛 ·∑�푛

�푖=1 min

(
〈�푥�푥⊤ − �퐼 , �푃〉2, �퐶0 log

2 1
�휂

)
∈ [2 − 2�휂, 2 + 2�휂].

For a general �푃, write �푃 = �푃0 + �푃′, where �푃0 is in the net and ‖�푃′‖�퐹 ≤ 1/�푛2. Assuming the

event of Lemma D.5, for every choice of �푃′ and every choice of �푥�푖 , 〈�푥�푖�푥⊤�푖 − �퐼 , �푃′〉 ≤ 1
�푛 . Therefore,

the difference between min

(
〈�푥�푥⊤ − �퐼 , �푃〉2, �퐶0 log

2 1
�휂

)
and min

(
〈�푥�푥⊤ − �퐼 , �푃0〉2, �퐶0 log

2 1
�휂

)
is always

at most �푂
(
1
�푛 · log2 1

�휂

)
≤ �휂. So, for every symmetric matrix �푃 with Frobenius norm 1, we have that

1
�푛 · ∑�푛

�푖=1 min

(
〈�푥�푥⊤ − �퐼 , �푃〉2, �퐶0 log

2 1
�휂

)
∈ [2 − 3�휂, 2 + 3�휂] with probability at least 1 − �훽, as long as

�푛 ≥ �푂
(
(�푑+log(1/�훽))2

�휂2

)
.

Therefore,
∑�푛

�푖=1〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉2 =
(
2 ± �푂(�휂 · log2 1

�휂)
)
· �푛, as desired. �

Proof of Lemma 6.3. Part 1 and the first half of Part 3 are immediate from Lemma D.1. The second

half of Part 3 follows from Lemma D.5 and Part 2 follows from Corollary D.7. Finally, Part 4 follows

from Lemma D.1 in the same way that Part 4 of Corollary 5.4 follows from Lemma 5.3. For instance,

we can set�휂 = 0.01 to obtain that for any subset �푆 of size at most 0.01�푛, 1
�푛 ·
∑

�푖∈�푆 �푐�푖 〈�푥�푖�푥⊤�푖 −�퐼 , �푃〉 ≤ �푂(1)
for any choice of �푐�푖 ∈ {−1, 1}, which means 1

�푛 ·∑�푖∈�푆 |〈�푥�푖�푥⊤�푖 − �퐼 , �푃〉 | ≤ �푂(1). We can then partition

[�푛] into 100 such sets �푆. �

E Mean Estimation in ℓ∞

In this section, we start by providing an algorithm for robust Gaussian mean estimation in ℓ∞
distance (Proposition E.1). We then show that this robust algorithm allows us to derive a pure

DP algorithm with better sample complexity than a black-box application of Lemma 2.1 (Proposi-

tion E.3).

Proposition E.1. There is a robust estimator �휇0 : (R�푑)�푛 → R such that for every �휇 ∈ R�푑 and small-

enough �휂 > 0, with high probability over �푥1, . . . , �푥�푛 ∼ �풩(�휇, �퐼), letting �푥 = 1
�푛

∑�푛
�푖=1 �푥�푖 , given any �휂-

corruption �푦1 , . . . , �푦�푛 of �푥1, . . . , �푥�푛 , ‖�̂휇(�푦1 , . . . , �푦�푛)−�푥‖2 ≤ �푂(
√
�휂�푑(log �푛)/�푛+�휂

√
log �푛) and ‖�̂휇−�푥‖∞ ≤

�푂(�휂
√
log �푛), as long as �푛 ≫ �푑.

To prove the proposition, we establish a few facts about �푥1 , . . . , �푥�푛 ∼ �풩(�휇, �퐼).

Fact E.2. The following all hold with high probability for �푥1, . . . , �푥�푛 ∼ �풩(�휇, �퐼), with �휇 ∈ R�푑, and letting

�푥 = 1
�푛

∑�푛
�푖=1 �푥�푖 , if �푛 ≫ �푑.

1. For a big-enough constant �퐶 and all �푡 ∈ {�퐶
√
log �푛, 2�퐶

√
log �푛, 4�퐶

√
log �푛, . . . , �푑}

sup
‖�푣‖=1

∑
�푖≤�푛

1[〈�푥�푖 − �푥, �푣〉 > �푡] ≤ �푂(�푑(log �푑 + log log �푛)/�푡2) ,

2. ‖�푥�푖 − �푥‖ ≤ �푂(
√
�푑 +

√
log �푛)

3. every coordinate �푖 ∈ [�푑] and �푗 , �푘 ≤ �푛 have |(�푥 �푗)�푖 − (�푥�푘)�푖 | ≤ �푂(
√
log �푛�푑).

81

Proof. First, the following simultaneously occur with high probability by standard Gaussian con-

centration arguments:

• each �푥�푖 has ‖�푥�푖 ‖ ≤
√
�푑 + �푂(

√
log �푛), and

• ‖�푥‖ ≤ �푂(
√
�푑/�푛).

Now, let �푆 be a �훿-net of the ℓ2 unit sphere; we can take �푆 to have 2�푂(�푑 log(1/�훿)) elements. For any

�푥1, . . . , �푥�푛 and �푡 > 0, let �푛�푡 = sup�푣∈�푆
∑

�푖≤�푛 1[〈�푥�푖 , �푣〉 > �푡]. We claim that∑
�푖≤�푛

1[〈�푥�푖 − �푥, �푣〉 > �푡] ≤ �푛�푡−�훿·max�푖 ‖�푥�푖 ‖−‖�푥‖ .

To see this, we can write �푣 = �푤 +Δ, where �푤 ∈ �푆 and ‖Δ‖ ≤ �훿. Then 〈�푥�푖 − �푥, �푣〉 = 〈�푥�푖 , �푤〉 − 〈�푥, �푣〉 +
〈�푥�푖 ,Δ〉 > �푡 only if 〈�푥�푖 , �푤〉 > �푡 + 〈�푥, �푣〉 − 〈�푥�푖 ,Δ〉 ≥ �푡 − ‖�푥‖ − �훿‖�푥�푖 ‖. If max�푖 ‖�푥�푖 ‖ ≤ 1/(2�훿) and �푛 ≫ �푑,

then we get
∑

�푖≤�푛 1[〈�푥�푖 , �푣〉 > �푡] ≤ �푛�푡−1.
We just need to establish a high-probability upper bound on �푛�푡−1 for �훿 ≪ 1/(

√
�푑 + �푂(

√
log �푛))

and �푡 ∈ {�퐶
√
log �푛, 2

√
log �푛, . . . , �푑}. If �푥1, . . . , �푥�푛 ∼ �풩(0, �퐼), then for any fixed �푣 ∈ �푆 and fixed �푡, we

have

P

(∑
�푖≤�푛

1[〈�푥�푖 , �푣〉 > �푡] > �푠

)
≤ �푛�푠 exp(−Ω(�푠�푡2)) .

via a union bound over �푛�푠 choices of �푠 indices �푖 ∈ [�푛]. If �푡 ≥ �퐶
√
log �푛 and �푠 = �푂(�푑max(log �푑, log log �푛)/�푡2),

we can take a union bound over the net �푆 and get that for any fixed �푡,
∑

�푖≤�푛 1[〈�푥�푖 , �푣〉 > �푡] ≤
�푂(�푑max(log �푑, log log �푛)/�푡2) with probability at least 1 − �푒−Ω(�푑); the proof for (1) is finished by a

union bound over �푂(log �푑) choices of �푡.

The proof for (2) is standard Gaussian concentration, and the proof for (3) is a union bound

over �푛2�푑 pairs (�푥 �푗)�푖 , (�푥�푘)�푖 . �

Proof of Proposition E.1. Define the estimator �̂휇 as: given �푦1 , . . . , �푦�푛 , find any �푥′
1
, . . . , �푥′�푛 which

(a) agree with the �푦�푖s on (1 − �휂)�푛 vectors and (b) have both properties in Fact E.2, and output

�̂휇 = 1
�푛

∑�푛
�푖=1 �푥

′
�푖
. If no such set {�푥′

�푖
} exists, output ∅.

With high probability over �푥1 , . . . , �푥�푛 ∼ �풩(�휇, �퐼), by Fact E.2, such a set of �푥′s exists, since the �푥s

are such a set.

Let’s bound ‖�푥− �푥′‖2. Let �퐵 ⊆ [�푛], |�퐵 | ≤ 2�휂�푛, be the indices where �푥�푖 ≠ �푥′
�푖
. For any unit �푣 ∈ R�푑,

〈�푥 − �푥′, �푣〉 = 1

�푛

∑
�푖≤�푛

〈�푥�푖 − �푥′�푖 , �푣〉 =
1

�푛

∑
�푖∈�퐵

〈�푥�푖 − �푥, �푣〉 − 1

�푛

∑
�푖∈�퐵

〈�푥′�푖 − �푥′, �푣〉 + |�퐵 |
�푛

〈�푥 − �푥′, �푣〉 .

For each of the sums, we group terms in the average by their magnitudes. Terms smaller than

�푂(
√
log �푛) can only contribute�푂(�휂

√
log �푛). At most�휂�푛 terms are smaller than

√
�푑(log �푑 + log log �푛)/(�휂�푛);

they contribute at most
√
�휂�푑(log �푑 + log log �푛)/�푛. So we have

1

�푛

∑
�푖∈�퐵

〈�푥�푖−�푥, �푣〉 ≤ �푂(�휂
√
log �푛)+�푂

(√
�휂�푑(log �푑 + log log �푛)

�푛

)
+

∑
�푖 : | 〈�푥�푖−�푥,�푣〉|>

√
�푑(log �푑+log log �푛)/�휂�푛

〈�푥�푖−�푥, �푣〉 .

82

The remaining terms on the RHS we can group by their magnitudes; for each �푡 = �퐶2�푗
√
log �푛 there

are at most �푂(�푑(log �푑 + log log �푛)/�푡2) terms of magnitude �푡, so the total contribution to the average

is also �푂(
√
�휂�푑(log �푑 + log log �푑)/�푛). The same argument applies symmetrically to 1

�푛

∑
�푖∈�퐵 〈�푥′�푖 − �푥′, �푣〉;

this proves our bound on ‖�푥 − �푥′‖.
We turn to the bound on ‖�푥 − �푥′‖∞. Fix a coordinate �푗 ∈ [�푑]. Then we have

�푥(�푗) − �푥′(�푗) = 1

�푛

∑
�푖∈�퐵

�푥�푖(�푗) − �푥′�푖(�푗) =
1

�푛

∑
�푖∈�퐵

�푥�푖(�푗) − �푥(�푗) − (�푥′�푖(�푗) − �푥′) + |�퐵 |
�푛

(�푥(�푗) − �푥′(�푗))

Each term in the average on the RHS is at most �푂(
√
log �푛�푑), so we obtain

|�푥(�푗) − �푥′(�푗)| ≤ �푂(�휂
√
log �푛�푑) .

�

Proposition E.3. There is an �휀-DP estimator which takes �푛 i.i.d. samples �푦1, . . . , �푦�푛 ∼ �풩(�휇, �퐼), assuming

‖�휇‖ ≤ �푅, and with high probability produces �̂휇 such that ‖�̂휇−�휇‖∞ ≤ �훼, as long as �푛 ≥ �̃푂(�푑 log�푅�휀 + �푑2/3

�훼�휀2/3
+

√
�푑

�훼�휀 + log �푑
�훼2).

Proof. Before we describe the �휀-DP estimator, we establish a few geometry statements. Define �퐵 to

be the intersection between the ℓ∞ ball of radius �훼 and the ℓ2 ball of radius �푐 �훼
√
�푑√

log �푑
, for some small

constant �푐. Let �푊�푑 be the volume of the �푑-dimensional unit ℓ2 ball. We claim that

1

2
·�푊�푑 ·

(
�푐

�훼
√
�푑√

log �푑

)�푑
≤ vol(�퐵) ≤ �푊�푑 ·

(
�푐
�훼
√
�푑√

log �푑

)�푑
.

The upper bound is simply because �퐵 is contained in the ℓ2 ball of radius �푐�훼
√
�푑/

√
log �푑. For the

lower bound, note that, having taken �푐 small enough, for a random �푧 in the ℓ2 ball of radius

�푐�훼
√
�푑/

√
log �푑, we have P(‖�푧‖∞ ≤ �훼) ≥ 1/2, and hence P(�푧 ∈ �퐵) ≥ 1/2, so �퐵 contains at least half the

volume of the ℓ2 ball of this radius.

Now we describe the estimator �̂휇. Let �̂휇0 be the robust estimator whose guarantees are described

in Proposition E.1. Given a dataset �풴, we define

�푆(�̃휇;�풴) = min
�풴′

�푑(�풴 ,�풴′) such that �̂휇0(�풴′) − �̃휇 ∈ �퐵 .

In words, the score of �̃휇 is the minimum distance from �풴 to a dataset �풴′ which causes the robust

estimator �̂휇0 to output a point which is both ℓ∞ and ℓ2-close to �̃휇. The estimator �̂휇 is given by

outputting a random draw from the exponential mechanism with score function �푆(·;�풴), over the

�푅-radius ℓ2 ball.

Privacy holds by construction, so we just have to analyze accuracy. We claim that any �̃휇 with

�푆(�̃휇;�풴) ≪ �훼�푛/
√
log �푛 has ‖�̃휇 − �휇‖∞ ≤ �훼/2, where �휇 = 1

�푛

∑
�푖≤�푛 �푦�푖 ; indeed, this follows from the ℓ∞

accuracy guarantee of �̂휇0. And, since �푛 ≫ (log �푑)/�훼2, with high probability we have ‖�휇−�휇‖∞ ≤ �훼/2.

So, we just need to show that the estimator outputs �̃휇 with score ≪ �훼/
√
log �푛 with high probability.

First of all, there’s a set �̃휇s of volume at least vol(�퐵) with score 0 – the set �퐵, centered at �̂휇0(�풴).

83

Now consider the set of�휇with score�휂�푛 for�휂 ≥ �훼/
√
log �푛. By the robustness guarantee of �̂휇0 and

the definition of �퐵, any �̃휇with score�휂�푛 has ‖�̃휇−�휇‖2 ≤ �푂(max(
√
�휂�푑 log �푛/�푛, �휂

√
log �푛)+�푐�훼

√
�푑/

√
log �푑),

so is contained in a ball around �휇 of volume at most

�푂
©­­«

√
�휂�푑 log �푛

�푛 + �휂
√
log �푛 + �푐�훼

√
�푑√

log �푑

�푐�훼
√
�푑√

log �푑

ª®®¬

�푑

· vol(�퐵) ≤ exp

(
�푂

(
�푑
√
�휂 log �푛

�훼
√
�푛

+
√
�푑�휂 log �푛

�훼

))
· vol(�퐵) .

Following the same argument as in Lemma 2.1, the mechanism outputs �̃휇 with �푆(�̃휇;�풴) ≪
�훼�푛/

√
log �푛 with high probability so long as for every 1/2 > �휂 ≥ Ω(�훼/

√
log �푛),

�푂
(
�푑
√
�휂 log �푛

�훼
√
�푛

+
√
�푑�휂 log �푛

�훼

)
+ log(�휂�푛)

�휂�휀
≪ �푛 .

This occurs so long as �푛 ≫ �̃푂(�푑2/3

�훼�휀2/3
+

√
�푑

�훼�휀). �

84

	1 Introduction
	1.1 Results
	1.2 Related Work

	2 Techniques
	2.1 Black-Box Reduction from Privacy to Robustness
	2.2 Algorithms

	3 Preliminaries
	4 A General Private Sampling Algorithm
	4.1 Sampling and volume computation with an imperfect oracle
	4.2 Proof of thm:puredpgeneralmain
	4.3 Proof of thm:approxdpgeneralmain

	5 Estimating the Mean of a Gaussian
	5.1 Main Theorem
	5.2 Resilience of First and Second Moments
	5.3 Robust Algorithm
	5.4 Score Function and its Properties
	5.5 Proof of Theorem 5.1
	5.6 The approx-DP setting

	6 Preconditioning the Gaussian
	6.1 Main Theorems
	6.2 Resilience of Moments
	6.3 Robust Algorithm
	6.4 Score Function and its Properties
	6.5 Proof of Theorem 6.1
	6.6 The approx-DP setting

	7 Learning a Gaussian in Total Variation Distance
	7.1 Robust Algorithm
	7.2 Score Function and its Properties
	7.3 Proof of thm:gaussian-tv-1
	7.4 Proof of Theorems 1.3 and 1.4

	A Omitted proofs for Private Sampling
	A.1 Preliminaries
	A.2 Sampling from a well-rounded convex body with an imperfect oracle

	B Sum-of-squares proofs
	B.1 Proofs of Accuracy Lemmas
	B.2 SoS bounds for arbitrary samples: Covariance estimation
	B.3 SoS bounds for arbitrary samples: Mean estimation

	C Computing Score Functions
	D High-Probability Bound for Stability of Covariance
	D.1 Preliminaries
	D.2 Main Probability Bound
	D.3 Proof of lem:resilience-of-moments-covariance

	E Mean Estimation in

