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Abstract

We study the relationship between adversarial robustness and differential privacy in high-
dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness
which can produce private estimators with optimal tradeoffs among sample complexity, ac-
curacy, and privacy for a wide range of fundamental high-dimensional parameter estimation
problems, including mean and covariance estimation. We show that this reduction can be
implemented in polynomial time in some important special cases. In particular, using nearly-
optimal polynomial-time robust estimators for the mean and covariance of high-dimensional
Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time
private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs.
Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
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1 Introduction

Parameter estimation is a fundamental statistical task: given samples Xj, ..., X, from a distribution
po(X) belonging to a known family of distributions # and indexed by a parameter vector 6 € © C
RP, and for a given a norm || - ||, the goal is find 6 such that |6 — é|| is as small as possible. Two
important desiderata for parameter estimation algorithms are:

Robustness: If an n-fraction of Xj, ..., X, are adversarially corrupted, we would nonetheless like
to estimate 0. This strong contamination model for robust parameter estimation dates from the
1960’s, but has recently been under intense study from an algorithmic perspective, especially in
the high-dimensional setting where X;,..., X, € R for large d. Thanks to these efforts, we now
know efficient algorithms for a wide range of high-dimensional parameter estimation problems
which enjoy optimal or nearly-optimal accuracy /sample complexity guarantees.

Privacy: A differentially private (DP) [DMNSO06] algorithm protects the privacy of individuals rep-
resented in a dataset Xj, ..., X, by guaranteeing that the distribution of outputs of the algorithm
given X1, ..., X, is statistically close to the distribution it would generate given X7, ..., X;, where
Xi,..., X differs from Xy, ..., X;; on any one sample X;.

Privacy and robustness are intuitively related: both place requirements on the behavior of an
algorithm when one or several inputs are adversarially perturbed. Already by 2009, Dwork and Lei
recognized that “robust statistical estimators present an excellent starting point for differentially
private estimators” [DL09]. More recent works continue to leverage ideas from robust estimation to
design private estimation procedures [BKSW19, KSU20, BGS*21, RC21, KMV22, LKO22, HKM?22,
GH22, RJC22] — these works address both sample complexity and computationally efficient algo-
rithms.

Despite robustness being useful as a tool in privacy, the relationship between robustness
and privacy remains murky. Consequently, for many high-dimensional estimation tasks, we
know polynomial-time algorithms which obtain (nearly) optimal tradeoffs among accuracy, sample
complexity, and robustness, but known private algorithms either require exponential time or give
suboptimal tradeoffs among accuracy, sample complexity, and privacy. Indeed, this is the case
even for learning the mean of a high-dimensional (sub-)Gaussian distribution, and for learning a high-
dimensional Gaussian in total variation distance.

We contribute a new technique to design private estimators using robust ones, leading to:

The first black-box reduction from private to robust estimation: Prior works using robust estimators to
design private ones are white box, relying on properties of those estimators beyond robustness.
Black-box privacy techniques such as the Gaussian and Laplace mechanisms are widely used, but
so far donot yield private algorithms for high-dimensional estimation tasks with optimal accuracy-
samples-privacy tradeoffs, even when applied to optimal robust estimators. For tasks including mean
and covariance estimation and regression, using any robust estimator with an optimal accuracy-samples-
robustness tradeoff, our reduction gives a private estimator with optimal accuracy-samples-privacy tradeoff.

Our basic black-box reduction yields estimators satisfying pure DP, which work assuming © is
bounded, and which don’t necessarily admit efficient algorithms. Two additional properties of an
underlying robust estimator can lead to potential improvements in the resulting private estimator:



1. If ® is convex and the robust estimator is based on the Sum of Squares (SoS) method, the
resulting private estimator can be implemented in polynomial time.

2. If the robust estimator satisfies a stronger worst-case robustness property, satisfied by many
high-dimensional robust estimators, we can remove the assumption that ® is bounded, at
the additional (necessary) expense of weakening from pure to approximate DP guarantees.

The first polynomial-time algorithms to learn high-dimensional Gaussian distributions with nearly-optimal
sample complexity subject to differential privacy: Using SoS-based robust algorithms and our privacy-
to-robustness reduction, we obtain polynomial-time estimators with nearly-optimal accuracy-
samples-privacy tradeoffs, for both pure and approximate DP, for learning the mean and/or
covariance of a high-dimensional Gaussian, and for learning a high-dimensional Gaussian in to-
tal variation. In addition, our private algorithms enjoy near-optimal levels of robustness. Prior
private polynomial-time estimators have sub-optimal samples-accuracy-privacy tradeoffs, losing
polynomial factors in the dimension d and/or privacy parameter log 1/6.

Our methods also yield a polynomial-time algorithm for private mean estimation under a
bounded-covariance assumption, recovering the main result of [HKM22] with slightly improved
sample complexity. We expect them to generalize to other estimation problems where © is convex
and nearly-optimal robust SoS algorithms are known — e.g., linear regression [KKM18] and mean
estimation under other bounded-moment assumptions [HL18a, KSS18].

Conclusions on Robust versus Private Estimation: Recent work [GH22] shows that private algorithms
with very high success probabilities are robust simply by virtue of their privacy guarantees. This
complements our results, which show a converse — from robust estimators with optimal samples-
accuracy-robustness tradeoffs we get analogous private estimators (with very high success prob-
abilities). Together, these hint at a potential equivalence between robust and private parameter
estimation, which can be made algorithmic in the context of SoS-based algorithms. Our results
show such an equivalence for “nice enough” parameter estimation problems, but the broader rela-
tionship between privacy and robustness is more subtle; in Section 2 we discuss situations where
optimal robust estimators don’t necessarily yield optimal private ones, at least in a black-box way.

1.1 Results

We first recall the definitions of differential privacy and the strong contamination model.

Definition 1.1 (Differential Privacy (DP) [DMNS06, DKM*06]). Let X be a set of inputs and X* be
all finite-length strings of inputs. Let O be a set of outputs. A randomized map (“mechanism”)
M : X* — O satisfies (¢, 0)-DP if for every neighboring X, X’ € X* with Hamming distance 1 and
every subset S € O, P(M(X) € S) < e*P(M(X’) € S) + 0. If 6 = 0, we say that M satisfies pure DP,
otherwise M satisfies approximate DP.

Definition 1.2 (Strong Contamination Model). For a probability distribution Dandn > 0,Y3,..., Y,
are n-corrupted samples from D if Xy, ..., X, ~ D iid. and Y; = X; for at least (1 — n)n indices i.



1.1.1 Learning High-Dimensional Gaussian Distributions in TV Distance

We begin with learning Gaussians in total variation distance.

Theorem 1.3 (Learning Arbitrary Gaussians, Pure DP, Subsection 7.4). Assume that 0 < «,f,¢ <1,
0 < n < 1" for some absolute constant n*, and K, R > 0. There is a polynomial-time (&, 0)-DP algorithm
with the following quarantees for every d € N and every u € R, L € R such that ||u|| < R and
+-1 < ¥ < K-1 Given n n-corrupted samples from N(u, L), the algorithm returns i, such that

dry(N(u, Z), N({1,£)) < a + 5(17) with probability at least 1 — B, if?

n>0

~ (d? +1og*(1/B) d*+1log(1/B) d2logK dlogR
+ + + .
a? ae € e

We are unaware of prior computationally efficient pure-DP algorithms for learning high-
dimensional Gaussians in TV distance; we believe that state of the art is based on the techniques
of [KLSU19],2 which would give an algorithm requiring n > d* samples (and lack robustness).

Pure-DP necessitates the a priori upper bounds R and K on uy and X in Theorem 1.3. Under
(e, 0)-DP these bounds are avoidable. But, obtaining a polynomial-time (¢, 6)-DP algorithm to
learn Gaussians with optimal samples-accuracy-privacy tradeoffs and without assumptions on
t, X has been a significant challenge, with progress in several recent works [AL22, KMS*22b,
KMV22, TCK*22] (see Table 1). These algorithms require a number of samples exceeding the
information-theoretic optimum by polynomial factors in either d, log(1/6), or both.

We give the first polynomial-time (¢, 6)-DP algorithm for learning an arbitrary high-dimensional
Gaussian distribution with nearly-optimal sample complexity with respect to all of: dimension,
accuracy, privacy, and corruption rate. Ours is the first O(d?)-sample polynomial-time robust and
private estimator; prior works require Q(d3-%) samples [AL22, TCK*22].

Theorem 1.4 (Learning Arbitrary Gaussians, (¢, 0)-DP, Subsection 7.4). Assume that0 < a,f8, 6, € <
1, and 0 < n < n* for some absolute constant n*. There is a polynomial-time (&, 0)-DP algorithm with the
following guarantees for every d € N, p € R, and £ € R, ¥ > 0.3 Given n n-corrupted samples from
N(u, L), the algorithm returns [, 3 such that dry(N(u, Z), N(f1, $) <a+ 5(17) with probability at least

1=, if

5 dz + log2(1/ﬁ) N d? + log(1/B) N log(1/6) .

n >
a? ae €

The sample-complexity guarantees of Theorems 1.3 and 1.4 are information-theoretically tight
up to logarithmic factors in d, @, ¢, and log 1/6. The log(1/p)/a¢e term in each is potentially im-
provable to min(log(1/p), log(1/6))/a e, and the log?(1/ B) term is potentially improvable to log(1/p).
However, this still means our algorithms succeed with exponentially small (¢~?) failure probability,
with no blowup in the sample complexity.

1With more careful analysis, we expect the error bound can be tightened to a + O(1 log 1/1), which is expected to be
tight for statistical query algorithms [DKS17]; the same goes for our other results on learning Gaussians.

2replacing the Gaussian mechanism with the Laplace mechanism

3We suppress running-time dependence on log K, where K is the condition number of X; logarithmic dependence on
the condition number orthogonal to ker(X) is necessary for learning Gaussians in TV, regardless of privacy or robustness.
Note that the sample complexity has no such dependence on log K.



1.1.2 Estimating the Mean of a Subgaussian Distribution

Mean estimation in high dimensions subject to differential privacy has also received substantial
recent attention [KV18, KLSU19, BS19, BKSW19, KSU20, LKKO21, BGS*21, LKO22, HKM22]. We
focus on the following simple problem: given (corrupted) samples from N(u, I), find [i such that
| = fi]l < a. In the pure-DP setting, exponential-time estimators are known which achieve this

guarantee using n = % + 2L samples [BKSW19, KSU20]. Existing polynomial-time estimators

ae
require n > min(ﬁ, @) samples or satisfy a weaker privacy guarantee [KLSU19, HKM22] (see

Table 2). We give the first nearly-sample-optimal pure-DP algorithm:

Theorem 1.5 (Estimating the Mean of a Spherical Subgaussian Distribution, Theorem 5.1). Assume
that 0 < a,B,e < 1,0 < n < n* for some absolute constant n*, and R > 0. There is a polynomial-time
(¢,0)-DP algorithm with the following guarantees for every d € N, every u € R? with ||u|| < R, and every
subgaussian distribution D on R® with mean y and covariance 1. Given n n-corrupted samples from D, the
algorithm returns [1 such that ||u — || < a + 5(17) with probability at least 1 — B, as long as

5 d +log(1/B) N d +log(1/B) N dlog R '

n =
a? ae e

It is natural to ask whether the identity-covariance assumption can be removed from Theo-
rem 1.5, since information-theoretically the assumption of covariance X < I is enough to obtain the
same guarantees. Removing this assumption while retaining polynomial running time and high-
probability privacy guarantees would improve over state-of-the-art algorithms for robust mean
estimation which have withstood significant efforts at improvement [HL19].

There is also an analogue (Theorem 5.2) for polynomial-time mean estimation subject to (¢, 0)-
DP without the ||u|| < R assumption, using @(% + a% + W) samples. We obtain this result
from our approx-DP framework similar to proving Theorem 1.4: one could alternatively combine

Theorem 1.5 with an (¢, §)-DP procedure that obtains an O(d)-accurate estimate, such as [EMN22].

Finally, we note that Theorems 1.3 and 1.5 are known to be near-optimal from standard packing
lower bounds [BKSW19], and Theorem 1.4 and Theorem 5.2 are also known to be near-optimal,
via the technique of fingerprinting [KLSU19, KMS22a], except, as in Theorems 1.3 and 1.4, that
log(1/B)/a¢ is potentially improvable to min(log(1/p), log(1/0))/ae. All our algorithmic results are
applications of Theorems 4.1, 4.2, which give general tools for turning SoS-based robust estimators
into private ones.

1.2 Related Work

Our work joins three bodies of literature too large to survey here: on private and high-dimensional
parameter estimation, on high-dimensional statistics via SoS (see [RSS18]), and on high-dimensional
algorithmic robust statistics (see [DK19]). We discuss other works at the intersections of these areas.

Private and Robust Estimators: [DL09] first used robust statistics primitives to design private algo-
rithms, a tradition continued by [BKSW19, KSU20, LKO22, BGS*21, RC21, KMV22, HKM22]. Other
works from the Statistics community also investigate connections between robustness and pri-
vacy [AM20, AM21, RJC22, SM22], including local differential privacy [LBY22]. Our black-box re-
duction from privacy to robustness can be seen as a generalization of methods of [BKSW19, KSU20],

4



‘ Paper Sample Complexity Robust? | Poly-time? Privacy
[KV18] Z+Ll+ M, d=1 No Yes Pure/Approximate
24/log 6~ 3/24/10 og o~
[KLSU19] z—z a \/L Eg o + i '] gEKl L No Yes Concentrated
[BKSW19] 47 4 Cloek Optimal No Pure
[AAK21] g—z g—i + % Optimal No Approximate
[LKO22] i—z g—i 10%2—1 Optimal No Approximate
[KMS*22b] z—z + (g—i + dsf) - (log 5~1)°W No Yes Approximate
1\
[KMV22] Z—i : (logf 1) Suboptimal Yes Approximate
24/log 6 oo &~ .
[AL22, TCK*22] 2y EVlog0 | dlogo! No Yes Approximate
= 45 T = PP
[AL22, TCK*22] d'al+g€5 Optimal Yes Approximate
Thm 1.3 Z—i + t‘i—i M%K Optimal Yes Pure
Thm 1.4 z—z + Z—i + % Optimal Yes Approximate

Table 1: Private covariance estimation of Gaussians in Mahalanobis distance, omitting logarithmic
factors. Optimal robustness means the algorithm succeeds even with Q(«a)-fraction of corruptions.

which also instantiate the exponential mechanism with a score function counting the minimum
point changes to achieve some accuracy guarantee, but for specific robust estimators. A recent line
of work focuses on simultaneously private and robust estimators for high-dimensional statistics
[BKSW19, GKMN21, LKKO21, EMN22, AL22, KMV22, TCK*22, LKO22]; see Tables 1, 2.

Recall that [GH22] observes that pure-DP algorithms which succeed with sufficiently high proba-
bility over the internal coins of the algorithm are automatically robust to a constant fraction of corrupted
inputs. While optimal inefficient private estimators often satisfy this high-probability requirement,
most existing polynomial-time private estimators do not. Our private estimators have not only
(nearly) optimal sample complexity but also (nearly) optimal success probability.

Private Estimators via SoS: [HKM22] and [KMV22] pioneer the use of SoS for private algorithm de-
sign. [HKM22] gives a polynomial-time algorithm for pure-DP mean estimation under a bounded
covariance assumption, using % samples, and [KMV22] gives a ~ d®-sample (¢, 5)-DP algorithm
for learning d-dimensional Gaussians. [GH22] uses SoS for private sparse mean estimation.

On a technical level, our work most resembles [HKM22]; we also employ SoS SDPs as score
functions and leverage tools from log-concave sampling. However, there are fundamental road-
blocks to using [HKM22]’s strategy for converting SoS proofs into private algorithms in settings
beyond mean estimation under bounded covariance, as we discuss in Section 2. We provide a

blueprint for converting a much wider range of SoS-based robust algorithms to private ones.

Inverse Sensitivity Mechanism: In [AD20b, AD20a], Asi and Duchi design private polynomial-time
algorithms for statistical problems with an inverse sensitivity mechanism which is closely related to
our black-box reduction, as described in (1). However, the focus of their work is rather different,
as they investigate applications to instance-optimal private estimation, whereas our goal is to
understand private estimation through the lens of robustness. Furthermore, their study is centered



‘ Paper ‘ Sample Complexity Robust? | Poly-time? Privacy

s M, d=1 No Yes Pure/Approximate
[KV18] L+ L 4 minllogRlog? pp
[KLSU19] % d\/l;f o + Ve loglzlog o No Yes Concentrated
[BKSW19] % + dl;fR Optimal No Pure
[KSU20] % + % + @ Optimal No Pure
[AAK21] % + % + @ Optimal No Approximate
3/2 -1
[LKKO21] % + d+g6 Optimal Yes Approximate
[BKSW19, LKO22] 444 + log877 Optimal No Approximate
[HKM?22] % + % Suboptimal Yes Pure
Theorem 1.5 4+ 4 leSgR Optimal Yes Pure
Theorem 5.2 % + % + @ Optimal Yes Approximate

Table2: Private mean estimation of identity-covariance Gaussians in fo-norm, omitting logarithmic
factors. Optimal robustness means the algorithm succeeds even with Q(«a) fraction of corruptions.

on one-dimensional statistics, and their analysis is not black-box.

Contemporaneous work: In independent and simultaneous work, Alabi, Kothari, Tankala, Venkat,
and Zhang also design efficient robust and private algorithms for learning high-dimensional Gaus-
sians with nearly-optimal sample complexity with respect to dimension; however, their algorithms
require poly(1/¢,log1/0,1/a)-factors more samples than those we present [AKT*22].

2 Techniques

2.1 Black-Box Reduction from Privacy to Robustness

Consider a deterministict robust estimator & : datasets — © fora parameter 0 € R4 a distribution
family #, and anorm || - ||, with the following guarantee: for a non-decreasing function« : [0, 1] —
R and some n € N, with probability 1 —  over samples X;,..., X, ~ pg € P, for every n € [0, 1],
given any n-corruption of Xj, ..., X, the estimator obtains || -0 || < a(n). Thatis, « is a function
that quantifies the error achieved by the estimator for every corruption level . Let X denote an
n-vector dataset X, ..., X,, and d(X, X’) be the Hamming distance between the datasets X, X’'.

Our key conceptual contribution is the following instantiation of the exponential mechanism [MT07]:
Given € > 0, Xj, ..., X, and a threshold ng € [0, 1], the mechanism picks a random 6 € ® + a(1no) -
B||.|| with:

P(6) o exp(—¢ - scorex(0)) where scorex (6) = min{d(X, X’) : [|6(X’) - 6] < amo), @)

4If we are not concerned with running time, the deterministic assumption is without loss of generality, as any
randomized estimator can be converted to a deterministic one with at most a constant-factor loss in accuracy, by
enumerating over all choices of the estimator’s internal random coins and selecting an output which is contained in a
ball which contains at least 50% of the mass of the estimator’s output distribution.



where By is the unit ball of || - ||. In words: the mechanism assigns each 0 within distance a())
of © a score given by the number of input samples which would have to be changed to obtain
a dataset X’ for which the robust estimator §(X’) is close to 6, and samples 6 with probability
o exp(—e¢ - scorex(0)). If ® is unbounded these probabilities are not well defined; in that case
pure-DP guarantees are not obtainable anyway, due to packing lower bounds [HT10]. Later, we
use a truncated version of (1) to allow unbounded © with (¢, 0)-DP.

The general idea to instantiate the exponential mechanism where the score of some 0 is the
number of inputs which must be changed to make some function 6 take the value (approximately) O
appears to be folklore; see for instance the inverse sensitivity mechanism of [AD20b]. Our contribution
is (a) to show that for (1) to have nontrivial utility guarantees, it suffices for 0 to be robust to
adversarial corruptions, and (b) to show how to implement variants of (1) in polynomial time.

To elucidate the role of and how to set the threshold parameter ): if the target bound on the
error of our private estimator is some value a, we can think of 7y as the maximum amount of
contamination a robust estimator could tolerate if the goal was to achieve the same error a. This
will depend on the distribution class P; for example, if we consider the class of distributions with
bounded covariance ¥ < I, then the appropriate setting is 9 = @(«?) [DKK*17, SCV18].

The exponential mechanism enjoys (2¢, 0)-DP, but the question of utility remains. Suppose that
X1,...,Xn ~ per. How small is ||0 — 0*||? The following lemma bounds this quantity in terms of
the robustness of 6. Despite its simplicity, we are not aware of a similar result in the literature.

Lemma 2.1. Suppose a dataset X1, ..., X, ~ po-, where the parameter vector 0* € ® C RP. For any
threshold 1o € [0, 1], a random O drawn according to (1) has ||0 — 0*|| < 2a(no) with probability at least

1- 26, if

D -log i‘égi +log(1/B) + O(log nn)
> .
"= n?é%)s(l ne

(2)
20 > Dlog2if n < 2.

The sample complexity in (2) is a maximum over the parameter 17; we pay a cost in samples
depending on the underlying robust estimator’s robustness profile, taking the worst case over all
corruption levels . The price at each 1 scales roughly as the log-volume of the set of solutions
which satisfy the robust estimator’s accuracy level under n-corruptions. The more robust the
estimator is, the smaller this volume will be, matching the intuition that settings which permit
more robust estimation also are easier to privatize.

A robust analogue of Lemma 2.1, in which the dataset Xy, ..., X}, is a contamination of ii.d.
samples from pg-, follows by a similar proof.

Observe that the O(log nn) term in (2) is negligible compared to D log

Proof. Condition on the (1—pf)-probable event that the robustness guarantees of 6 hold with respect
to X. Consider 0 with score nn. By definition, ||6 — O(X")|| < a(no) for some X’ with d(X, X’) < 1.
By robustness, 16(X") — 6*|| < a(n). Using triangle inequality, || — 67| < a(no) + a(n) < 2a(n),
assuming 1 > 1)o. In summary, any 6 with score nn is within distance 2a(n) of 6"

Let V; be the volume of a radius 7 || - ||-ball. Any O such that [|6 — é(X)ll < a(no) has score
0. The normalizing factor implicit in (1) can be lower bounded by the contribution due to these
points, or V() - exp(—¢ - 0) = V(). Combining this with the argument above, the probability of



2ﬂ(n)

seeing O with score nn with n > 1 in a draw from (1) is at most exp(—éenn). Summing over
(no)

all scores > non, the overall probability of seeing some 0 with score greater than ) is at most

Vou(t/n) o VZac(t/n)

Via(no)

xp(—¢t) = zn:

t=non

xp(—et)-+2-1/t2 < O(1)- max {(qn)2 T exp( er}n)}

a(no) a(no)

t=non

where the inequality is Holder’s. This quantity is at most  for n as in (2). So, with probability at
least 1 — 8 the random 6 will have score at most 17pn, meaning |6 — 0*|| < 2a(no). O

Consequences of Lemma 2.1: Applied to robust mean estimators with optimal error rates under
bounded k-th moment assumptions, for any k > 2, Lemma 2.1 gives optimal pure-DP estima-
tors under those same assumptions, recovering the main results of [KSU20], applied to robust
linear regression (with known covariance) [DKS19], it yields a pure-DP analogue of the nearly-
optimal regression result of [LKKO21], and so on. The same argument can be adapted to perform
covariance-aware mean estimation® and covariance-aware linear regression, recovering pure-DP
versions of the results of [LKKO21, BGS*21], using a robust estimator of mean and covariance.

To illustrate, we apply Lemma 2.1 to Gaussian mean estimation. With n > d/a? samples from
a d-dimensional Gaussian N(y, I), it is possible to estimate the mean under n-contamination with
error ||1—p|| < O(a+n),if n < 1/2. For e-DP guarantees, we need to restrict to the case of ||u|| < R
for some (large) R > 0; we will assume that even forn > 1/2, ||fi]| < R.

Plugging such a robust [i into Lemma 2.1, and choosing 1y = «, there are two interesting
cases: 1 = O(np) and 7 = 1. In the former, a(2n9)/a(no) = O(1), so we get the requirement
n oz O(W}, and in the latter a(1) = R, so we get the additional requirement n > dlngR,
meaning that we obtained an ¢-DP estimator with accuracy O(a) using n samples,

d + log(1
s + log( /ﬁ)+dlogR+d

ae € a?
This is tight up to constants [HT10, BKSW19]. Similarly tight results can be derived for mean
estimation under bounded covariance, covariance estimation, linear regression, and more. We
remind that the resulting private algorithms are not computationally efficient, though we will see
how this approach can be made efficient for several interesting cases.

When Is Lemma 2.1 Loose? More refined analyses of the construction (1) are possible. In particular,
if the robust estimator 6 enjoys the property that the volume of the sets of possible values it assumes
under 7-corrupted inputs are substantially smaller than Vy,(,), the bound in Lemma 2.1 can be
improved accordingly. (At the cost of breaking black-box-ness in the analysis.)
As an example, consider estimating the mean of a Gaussian N(u,I) to ¢ error a. Using a
similar argument as in the ¢, example above, Lemma 2.1 gives a sample-complexity upper bound
f @ + % + dlngR. But, because dry (N (u, I), N(¢/, 1)) = ||u—p’||2, it’s possible to construct a robust
estimator [I such that under n-corruptions, ||l — ||« can only be as large as n if ||fi— |2 = || — ||
otherwise ||{i — il is much smaller. This affords better control over the volumes of candidate

outputs with a given score nn than the n-radius ¢, ball would offer. Using this, we show in

Appendix E that é(k;de + ;22/?3 + g + leTgR) samples are enough, in the pure-DP setting.

5a.k.a., mean estimation in Mahalanobis distance



From Robustness to (&, 0)-DP: If 0 has a nontrivial breakdown point — i.e., a fraction of corruptions
n beyond which it admits no error guarantees, then Lemma 2.1 doesn’t give a nontrivial private
estimator. For example, in the Gaussian mean estimation setting, if we remove the assumption
|u]] £ R, then when n > 1/2 no estimator has a finite accuracy guarantee (i.e., a(n) is unbounded
for such 7).

By relaxing from pure to (¢, )-DP, however, we can design private estimators even starting
with robust estimators & which have a breakdown point. Our reduction in this case, however,
requires 6 to satisfy a worst-case robustness property, because we will need to appeal to robustness
to ensure privacy, as well as accuracy as in Lemma 2.1.

Simple adaptations of standard robust estimators of mean and covariance, and robust regression
algorithms, have such worst-case robustness guarantees. This approach gives an alternative to the
high-dimensional propose-test-release framework of [LKO22], and the approach of [BGS*21], for
building approx-DP estimators from robust estimation primitives; we can recover their results on
covariance-aware mean estimation and linear regression with (¢, 6)-DP guarantees. This approach
carries the advantages of black-box-ness and potential polynomial-time implementability, since
SoS-based robust estimators for mean and covariance have the required worst-case behavior.

Consider again a deterministic robust estimator 0 : datasets — © U {rgject} for a parameter
0 € R?, which takes n inputs and returns either some element of ® or rgject. Let P be a distribution
family, || - || be a norm, a : [0,1] — R be a nondecreasing function, n € N, and ng,n* € [0, 1].
We continue to employ scorex(0) as defined in (1). Suppose as before that with probability
1 — B over samples Xj,..., X, ~ pg € P, for every < 1%, given any n-corruption of X, ..., X,,
16 - 6] < a(n). And, suppose that 8 has the following worst-case robustness property: for any
input X = Xy,...,X,, if é(X) # REJECT, then for every n < n*, given any n-corruption X’ of X,
either 6(X’) = ryEcr, or ||6(X’) - H(X)|| < a(n’).

Lemma 2.2. Let g < n* € [0, 1] be such that n*n is a sufficiently large constant. For every €, 6 > 0, there
is an (O(¢), O(e%6))-DP mechanism which, for any 6%, takes X1, ..., X, ~ po- and with probability 1 — B
outputs 0 such that |0 — 0*|| < 2a(no), if

2
D -log 240+ log(1/B) +log . 10g(1/5)
n > 0| max +
no<n<n’ ne me

Before proving the lemma, we need a preliminary claim.

Claim 2.3. Suppose for a dataset X there exists O such that scorex(0) < 0.2n*n. Then there exists a ball
of radius 2a(n*) which contains every 6’ with scorex(0”) < 0.4n*n.

Proof. Since there exists some 6 such that scorex(0) < 0.27n, there’s some Y ~g.,+ X such that
Q(Y) # REJECT: this is because we can consider any such Y which has scorey(6) = 0, and thus
6(Y) outputs an element of ® and not reject. Similarly, for any other 6’ with scorex(0’) < 0.4n"n,
there’s some Z ~g4,» X such that |0 — 6(Z)|| < a(no). By triangle inequality, Z ~q6, Y, so by
worst-case robustness of 8, |6’ = B(Y)|| < |6’ = 8(2)|| +16(Z) - 6(Y)|| < a(no)+a(n’) < 2a(y*). O

Proof of Lemma 2.2. First,let ¢ : Z — Rbe a function with the following properties: for t < 0.1n*n,
g(t)=1,fort > 0.2n'n, g(t) = 0, and for all £, e7¢g(t + 1) — 0 < g(t) < e®g(t +1) + 6. Such a
function exists since n > log % /€.



This is not hard to show: one could, for example, consider the function which, for ¢ over the
interval [0.1nn, 0.2n*n], first decreases by a multiplicative factor of e (i.e., g(t +1) = e~*g(t)) until
some point t* when g(t*) < 6. Then, we set g(t) = 0 for all t > t*. This satisfies the requirements on
the function forall t < t*with 6 = 0,and fort > t*with ¢ = 0. Weneed that > exp(—(t—0.1n*n)e)is
satisfied by some t in the interval [0.1n*n, 0.2nn ] (roughly speaking, to allow enough multiplicative
e~ ¢ decreases to accumulate in order to cancel out the remainder with a subtractive 0 shift), which
we can take to be t*. Rearranging the inequality, we get t > log(1/6)/¢ + 0.1n"n. But for ¢* to
lie in the stated interval, we need log(1/0)/e + 0.1n"n < t < 0.2n"n, which is satisfied as long as
n > log(1/6)/n"¢, as claimed.

The mechanism is as follows. Given X = Xj,..., X, let T = mingeg scorex(0). First, output
REJECT with probability 1 — ¢(T). If rejecT is not output, output a sample from the distribution on
O + a(no)B).| where

P(O) «

scorex(0) if scorex(0) < 0.3n*n
otherwise

and By is the unit ball for the norm || - ||.

Proof of privacy: The rejecT phase of the mechanism clearly satisfies (¢, 6)-DP, because scorex (0)
can change by at most 1 when X is replaced with neighboring X’, and based on the definition of g.

Now we turn to the sampling phase. Let X, X’ differ on one sample. Let T, T’ be the numbers
computed in the rejecT phase of the mechanism; we may assume T, T” < 0.2n*n, since otherwise
on both X, X’ the mechanism outputs rReject with probability at least 1 — 6. We show that the
mechanism above, conditioned on not rejecting, satisfies (O(¢), O(e?¢5))-DP; then the overall result
follows by composition.

For brevity, we abbreviate scorex to sx. Forany S € ®+a(1o)- B, we can bound its associated
weight via

/ e~#x0) . 1(sx(0) < 0.3n"n) < ef/ e~#x'O) . [1(sx/(0) < 0.3n"n) + 1(sx-(6) € [0.25n"n,0.35n" n]].
0eS 0eS

To see why, first note that for any 6 we have [sx(0) — sx/(0)| < 1. This implies that e~esx(0) <
efe™#x' () Similarly, if sx(0) < 0.3n°n, it also implies that at least one of the following must be
true (potentially both): sx/(0) < 0.3n*n or sx/(0) € [0.25n"n,0.35n*n] (we use the fact that n*n is at
least a sufficiently large constant).

Normalizing to get a probability, we have

PO € 5) < et Joes €X' O - [1(sx:(0) < 0.3n"n) + 1(sx(0) € [0.250°n, 0.351"n])]
se -
i e=esx(0) - 1(sx(0) < 0.3n*n)

/9€®+a(r10)3”.”
Joeg €7 O [1(sx:(0) < 0.3n*n) + 1(sx(6) € [0.25n"n, 0.35n"n])]
e~esx(0) - [1(sx/(0) < 0.3n*n) — 1(sx(6) € [0.257*n, 0.35n7*n])]

<e-
e /é€®+a(qo)B‘|.‘|

The denominator is split into two terms with a similar argument as used for the numerator.
We next simplify the denominator. Because, by assumption, there is 6" such that scorex/(6”) <
0.2n"n, there is a ball of radius a(r)g), contained in @ +a(1o)- B.|, of points with score at most 0.2n*n;
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we can hence lower-bound the first term / e~ex(0) . 1(sx,(0) < 0.37"n) > exp(—¢ - 0.2n*n) - Va(o)s
where V() is the volume of a || - ||-ball of radius a(1o).

We can use Claim 2.3 to upper-bound the magnitude of the second term in the denominator,
/ e~ex(0) . 1(sx/(0) € [0.251"11,0.35n"1]) < exp(—¢ - 0.25n7"n) - Voo, which is at most ¢ times the
lower bound on the first term, under our hypotheses on the lower bound for n. Overall, we obtain

_ fees e~ e5x(0) . 1(sx/(0) < 0.3q*n)+/€€5e-fsw<9> -1(sx/(0) € [0.25m*n, 0.35n*n])
e=esx(0) . 1(sx/(0) < 0.31*n)

PO cs) < o
<
X( € )_1—6

2¢
= 16_ 5 ’ (;I(D,(Q € S) + E(SX/(Q) € [0.251]*71,0.351]*1’1])).

/é€®+a(qo)B‘|.‘|

Using Claim 2.3 in the same fashion to bound the last term, this is at most e?¢ Px/(6 € S) + O(e2¢0),
which completes the privacy proof.

Proof of accuracy: Observe that with probability at least 1 — § over samples Xj, ..., X;;, the REJECT
phase of the mechanism accepts with probability 1. Conditioned on it doing so, the remainder of
the accuracy proof parallels the proof of Lemma 2.1, except instead of allowing 1 € [0, 1] we can
now limit it to ) € [no, *]. m]

2.2 Algorithms

Even if the robust estimator 6 can be computed in polynomial time, the sampling problem in (1)
lacks an obvious polynomial-time algorithm, for two reasons. First, computing the score of a single
0 € O given an input dataset X appears to require solving a minimization problem over all other
datasets X’. Second, even if computing the scores were somehow made efficient, the resulting
sampling problem might still be computationally hard. Our main technical contribution is to
overcome both of these hurdles in the context of learning high-dimensional Gaussian distributions.
The Sum of Squares method (S0S) uses convex programming to solve multivariate systems of
polynomial inequalities. It is extremely useful for designing polynomial-time robust estimators.

Definition 2.4 (SoS Proof). Let pi(x) > 0, ..., pm(x) > 0 be a system of polynomial inequlities in
variables xi,...,x,. An inequality g(x) > 0 has a degree d SoS proof from p; > 0,...,py = 0,
written {p1 > 0,...,pm > 0} ] q > 0, if for each multiset S C [m] there exists a sum of squares
polynomial gs(x), such that deg(gs(x) - [1;es pi(x) < d) and such that

9= > as@)-[ [pito).

Sclm] ies
SoS proofs form a convex set described by a semidefinite program (SDP), so they have duals:

Definition 2.5 (Pseudoexpectation). Let R[x]<; be the set of degree at most d polynomials in
variables x1, ..., x,. Alinear operator E : R[x]<; — R is a degree d pseudoexpectation if E1 = 1 and
Ep? > 0 for any p of degree at most d/2. A pseudoexpectation E satisfies a system of polynomial
inequalities p; > 0,...,py, > 0, written E = p1 =20,...,pm > 0, if for every S C [m] and every
p, we have Elics pi - p? > 0 when the degree of this polynomial is at most d, where ||p|| is the
fy-norm of the vector of coefficients of p in the monomial basis.

11



The by-now standard approach to use SoS to robustly estimate a D-dimensional parameter 0
in a norm || - || works as follows. For n-corrupted X = Xj, ..., X, from pg-, define a degree-O(1)
system of polynomial inequalities A(X, 0, z) where 6 = 04,...,0p,z = zy,..., Z(yp)o) are some
indeterminates. With high probability, A(X, 6, z) should (a) be satisfied by some choice of z when
0 = 07, and (b) should have A(X, 0, z) Fo1) (0 — 0%, v) < a for every v in the dual ball of || - [|.

To give a robust estimation algorithm, on input n-corrupted X, we can obtain E which satisfies
A(X, 0, z) using semidefinite programming,® and then output 6 = Eo. Applying E to the SoS

proofs A l—g’(zl) (8- 6°,0) < a, we get |[EO - 0| < a.

Lemma 2.6 (Informal, implicit in [KMZ22]). There exists A with the above properties with respect to
n > d/n? n-corrupted samples from N(6*,1), for any 0* € R?, where || - || = by, and o = O(n).

2.2.1 Robustness to Privacy, Algorithmically

For this technical overview, we focus on mean estimation in the pure-DP setting; similar ideas
extend to covariance estimation and (¢, 6)-DP. Even for the SoS-based robust mean estimation
algorithm described above, which we call xmz, given X we do not know how to efficiently compute

scorex(0) = min{d(X, X’) : |[xkmz(Y) - 6] < a}, (3)

much less sample from the distribution (1). At a very high level, will tackle these challenges by
using the polynomial system A(X, 0, z) underlying xmz to design an SoS-based relaxation of the
above score function, SoS-scorex (6), which has favorable enough convexity properties that we will
be able to both efficiently compute it and sample from the distribution it induces (both up to small
error). The SoS robustness proofs which (A enjoys will be enough for us to apply an argument like
Lemma 2.1 to prove accuracy of the resulting estimator, and it will be private by construction.
First, we describe an attempt at an SoS relaxation of SoS-score, which will have several flaws
we’ll fix later. We can introduce more indeterminates Xi, oo, X, wy, ..., wy, 07, and consider

n
B, = {wlz =w;, Z wi=n-—t, w;X; = wiX{,} UAX',0,2), 4)
i=1

which is satisfied when X’ is a dataset with d(X, X’) < t and A(X’, 0’, z) is satisfied. Let
SoS-scorex(0) = min f s.t. 3 degree O(1) E in variables X', w,0’,z, E|E B, |[EO’ - 6| < a. (5)

Privacy and Accuracy for SoS-score: Suppose for a moment that SoS-score solves our computational
problems. Does it lead to a good private estimator, when we sample from the distribution P(0) o
exp(—e¢ - SoS-scorex(0))? Standard arguments show privacy; the main question is accuracy.

It turns out the relaxation is tight enough that the proof of Lemma 2.1 still applies! The key step
in that proof is to argue via robustness that if 6 has low score, then ||0* — 0| is small. To establish
the corresponding statement for SoS-score, we need to show that if X;,..., X, ~ N(0",1) and
E |= B; for t = nn, then |[E0’ — 6°|| < é(n). This is slightly stronger than what we already know

6This ignores some issues of numerical accuracy which turn out to be important; see below.
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from the SoS proofs associated to A, because now we have indeterminates X’ which represent 7-
corrupted samples, rather than a fixed collection of n-corrupted samples, and we need B; X

o(1)
(0" - 0*,v) < O(n). Luckily, the SoS proofs of [KMZ22] readily generalize to show this.

In fact, [KMZ22]’s SoS proofs already show this in part because within the “auxiliary” inde-
terminates z they already use variables like our X’ and w. This means that (4), (5), while closely
following our black-box reduction strategy, contain an unnecessary layer of indirection. When we
implement this strategy in detail in Sections 5, 6, and 7, we remove this indirection for simplicity.

On “Satisfies”: Animportant technical difference between our score function and that of [HKM22] is
that the Es it involves must have E |= Y., wi = n—t,rather than something weaker, like E Y wi =
n —t. While in some applications of SoS this “satisfies” versus “in expectation” distinction is minor,
it is actually crucial for our accuracy guarantees — if we only required E Y/, w; = n — t, we could
have E which satisfies the rest of 8; but has ||[E6’ — 6*|| > Q(R), just by taking E to be the moments
of a distribution which has all w; = 0 with probability 1/t.

However, this creates two significant technical challenges. First, for bit-complexity reasons, no
polynomial-time algorithm to check if there exists E satisfying a given system of polynomials is
known — existing techniques to find Es work best in the context of satisfiable polynomial systems
[RW17]. We sidestep this challenge by generalizing a technique from the robust statistics literature,
which searches for E which approximately satisfies a system of polynomials, to the setting where
those polynomials may be unsatisfiable — see Appendix C. Ultimately, we find a further-relaxed
score function SoS-score’,, which we evaluate to error 7 in (ndlog 1/ 7)™ time.

Quasi-Convexity, Sampling, and Weak Membership: The second challenge is that SoS-scorex (0) need
not be convexin 0 —if it were, we could sample from P(0) o« exp(—e-SoS-scorex(6)) with log-concave
sampling techniques, as in [HKM22]. Indeed, consider 6y and 0; with corresponding scores tg,
witnessed by Eo, E;. The problem is that %(}7]0 + El) need not satisfy Zl’-lzl w; =n-— %(to +t1), even
though it does have %(Eo + ]3_‘,1)[217-;1 wil>n-— %(to + t1).

SoS-scorex (0) is quasi-convex in 6, meaning that its sub-level sets S; = {6 : SoS-scorex(6) < t}
are convex for all t. This is good news: if we discretize the range of possible scores [0, 1] into
t1,...,t,o0) (replacing SoS-score with a version rounded to the nearest t;), we can hope to compute
the volumes V; = Vol(Sy,), as well as sample uniformly from the S;s, using standard techniques
for sampling from a convex body. Then, we could sample O by first sampling a score t; with
probability proportional to e~¢i(1 — e~¢(i+17))V; then drawing uniformly from S,.

Approximate sampling and volume algorithms for convex bodies typically access the body via
a weak membership oracle, meaning that the oracle is allowed to give incorrect answers to query
points very near the body’s boundary.” We have access to an oracle which computes SoS-scorex (0)
up to exponentially-small errors. Ideally, we’d create a weak membership oracle by answering a
query about S, by checking if SoS-scorex(0) < t;, but if SoS-scorey is not Lipschitz, a small error
in computing this value may translate to answering a query incorrectly about some 6 far from the
boundary of S;,. That is, we may not notice if S;,+2- is much larger than Sy,.

However, because SoS-scorey is bounded in [0, 7] and the sublevel sets are convex, we are able

"It seems to be folklore that volume computation algorithms, e.g. the seminal [DFK91], work given only weak
membership oracles, as opposed to e.g. weak separation oracles. For completeness, in Appendix A, we analyze a
hit-and-run sampling algorithm which uses a weak membership oracle, tracking the numerical errors this creates.
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to show that Sy, ;o-» could only be much larger than S;, at a small-measure set of t;s. Thus, if we
choose our discretization ¢y, . . ., t,,oq) randomly, with very high probability our approximate score
oracle for SoS-scorey translates to a weak membership oracle for the S;;s (Lemma 4.7).

Putting it Together: Thus, by modifying SoS-scorex by (a) rounding to the nearest threshold t¢;,
thresholds chosen randomly, and (b) accounting for some numerical errors, we obtain a polynomial-
time-samplable proxy for (1). Theorems 4.1 and 4.2 capture this strategy formally.

3 Preliminaries

First, we note a few notational conventions. We will use 0 to denote the origin in R4 (orin Euclidean
space generally). For x € R? and r > 0, we define B(x, r) to be the f»-ball of radius r around x.
We note a series of important definitions that we will use in our analysis.

Definition 3.1 (sensitivity). We say that a function f(6, X) has sensitivity A with respect to X if
for all 6 and all neighboring datasets X, X’ (i.e., datasets that differ in exactly one data point),
|f(6,X)—-f(0,X")| < A. We will implicitly assume that sensitivity is with respect to the dataset.

Definition 3.2 (quasi-convexity). A function f : S — R, defined on a convex subset S of a real
vector space is quasi-convex if for all x, y € S and A € [0, 1] we have

fAx + (1= A)y) < max{f(x), f(y)}.

Next, we note some important distance metrics for mean vectors and covariance matrices. We
will use || - [ to denote Frobenius norm and || - ||,, to denote the operator norm (a.k.a. spectral
norm) of a matrix.

Definition 3.3 (Mahalanobis distance). Given two vectors p, ' € RY and a positive definite co-
variance matrix £ € R™?, we define the Mahalanobis distance between u and y’ with respect to T,
written as || — 1’|z, to equal [|[Z72(u — )]l

In addition, given two covariance matrices X, Z" € R
between X and ¥’ to equal ||[Z71/22/ZY2 — ||f.

dxd e define the Mahalanobis distance

Note that there are two different definitions of Mahalanobis distance, though which definition
we are using will be clear from context.

It is well known that Mahalanobis distance captures total variation distance. Namely, if ||y —
Wz =a <1, then dry(N(u, X), N(u’, X)) = O(a), and if X, ¥" have Mahalanobis distance o < 1,
then drv(N(0,Z), N(0,Y)) = O(a).

It is well-known that Mahalanobis distance between covariance matrices is roughly symmet-
ric: namely, ||[Z7Y22/27Y2 — 1| = @(||Z- V22712 — [||p) if either is at most 0.5. In addition,
= PR — e = |ZVPETIEY2 — Il and [|[2TPER YR ~ | = (IR IV —

Definition 3.4 (Spectral distance). Given two covariance matrices ¥, Y’ € RA*4 we define the
spectral distance between T and I’ to equal || Z~Y/25/2712 — ]|,

Similarly, we have || Z~1/25/271/2 — ]|, = ||£V/2271E1/2 — [||,,,, which are asymptotically equal
to [|Z"Y22E 2 — ]| = ||ZY2E L EY2 — 1)), if either is at most 0.5.

Finally, we define the notions of flattening and tensor powers.
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Definition 3.5 (Tensor power). Given two vectors x € RY, y € R?, the tensor product x ® y is the
vector in R*?, with entries indexed by (i,]) € [d] x [d’], such that (x ® y);; = x; - ;.
We also will define x®? := x ® x.

Definition 3.6 (Flattening). Given a matrix M € R™%, we define the flattening M" to be the vector
in R4 with (M");; = M, ;.

Note that for any vectors x, y, x ® y equals (xyT)".
To represent linear functionals and polynomials, we look at the value of the linear functional
over monomials.

Definition 3.7 (monomial vector). A monomial vector of degree 4 is a n°@_dimensional vector
v4(x) indexed by multisets S C [n], |S| < d, where the entry v,(x)s is the monomial

v4(x)s = 1—[ Xi.

i€S
Remark. The definition of n for number of variables and d for degree is a slight abuse of notation,
as in the rest of the paper n represents the number of data points and d is the dimension of the

data points. We will only use the former definition here and in Appendix C.

Linear functionals over the set of polynomials of up to degree d over R" form an n9-

dimensional vector space and we can represent them as follows numerically.

Definition 3.8 (numerical representation of linear functionals and polynomials). Suppose L is a
linear functional over polynomials of up to degree d over R". We define the representation of L,
R(L) € R* indexed by multisets S C [n], |S| < d, as

R(L)s = L(va(x)s).
Similarly, for a polynomial g, we define its representation R(q) € R to be

R(q)s = coefficient of x° in g.

4 A General Private Sampling Algorithm

In this section, we prove two general theorems showing that if one has a score function correspond-
ing to a robust algorithm for parameter estimation from samples, with a few important properties,
then one can construct a differentially private algorithm. The results can either generate a pure-DP
algorithm (Theorem 4.1), or an approx-DP algorithm (Theorem 4.2), depending on the properties
we assume about the robust algorithm.

Assuming the robust algorithm and score function can be computed efficiently, and we have
another property that we call quasi-convexity, the private algorithms also run in polynomial time.
One can also generate analogous statements by removing these assumptions, but the algorithm no
longer runs in polynomial time. To avoid rewriting, we color certain parts of Theorems 4.1 and 4.2
in blue: one can read the same theorems and ignore what is written in blue to obtain an inefficient
private algorithm arising from an inefficient robust algorithm.

We first state our theorem for creating a pure-DP algorithm.
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Theorem4.1. Let0 < 1, r < 1 < R befixed parameters. Suppose we have a score function S(6,Y) € [0, n]
that takes as input a dataset Y = {y1,..., Yy} and a parameter 0 € © C R (where © is convex and
contained in a ball of radius R), with the following properties:

o (Bounded Sensitivity) For any two adjacent datasets Y , Y andany 6 € ©, |S(0, Y)-S(0,Y’)| < 1.

o (Quasi-Convexity) For any fixed dataset Y, any 0,0 € ©, and any 0 < A < 1, we have that
S(A0+(1-1)0",Y) <max(8(0,Y),8(0",Y)).

e (Efficiently Computable) For any given 6 € © and dataset Y, we can compute S(6,Y) up to error y
in poly(n,d,log R, log y 1) time for any y > 0.

o (Robust algorithm finds low-scoring point) For a given dataset Y, let T = ming, S(0y, Y). Then,
we can find some point O such that for all 0" within distance v of 6, S(0’,Y) < T + 1, in time
poly(n,d,log 75)

o (Volume) For any given dataset Y and ' > 1, let V,(Y) represent the d-dimensional volume of
points 0 € ® C R¥ with score at most n'n. (Note that V1(Y) is the full volume of ®).

Then, we have a pure e-DP algorithm A on datasets of size n, that runs in poly(n,d,log %) time,

with the following property. For any dataset Y, if there exists 0 with S(0,Y) < nn and if n >

0 log(Vy (¥)/Vy(¥))+log(1/(B-1))
nm<’<1 e’

bility 1 — .

, then A(Y) outputs some 6 € © of score at most 2nn with proba-

We remark that this theorem has several important conditions. The bounded sensitivity of
the score is important as it ensures that if we sample according to the exponential mechanism,
the sampling probability of any 6 does not change significantly between adjacent datasets. The
conditions of quasi-convexity, computability, and finding a low-scoring point are only required for
the algorithm to run in polynomial time. Indeed, the latter two of these conditions are important
for the robust algorithm to succeed, and the quasi-convexity assumption generalizes a convexity
assumption on the score, which roughly corresponds to sampling from log-concave distributions.
Finally, the sample complexity is dictated both by the number of samples needed for the robust
algorithm to succeed and by bounds on the volume of low versus high scoring points.

Along with a general result for pure-DP algorithms, we also prove a similar result for approx-DP
algorithms, which we now state.

Theorem 4.2. Let 0 < n < 0.1 and r < 1 < R be fixed parameters. Suppose we have a score function
S(0,Y) € R that takes as input a dataset Y = {y1,...,yn} and a parameter 6 € © C R (where © is

convex and contained in a ball of radius R), with the same properties as in Theorem 4.1.

In addition, fix some parameter n* € [10n, 1]. Suppose that n > Q (1og(1/5)+1og(lg;gy)/vo,8,f(y))) for

all Y such that there exists 6 with S(6,Y) < 0.71*n. Then, we have an (&, d)-DP algorithm A that
runs in poly(n, d,log %) time, such that for any dataset M, if there exists 0 with S(0,Y) < nn and if
log(Vyy (Y)/Vy(¥))+log(1/(B-n))

<t <o’ e
probability 1 — B.

n>Q

, then A(Y) outputs some 6 € © of score at most 2nn with
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The main difference in the approx-DP setting is that we set some threshold 1", and only consider
volumes of points of score up to n* - n. This is because, roughly speaking, we will sample using a
truncated exponential mechanism until score roughly n*n. (In reality, we need to be more careful
about how we truncate.) But because of this truncation, the volume bound will be crucial for
not only bounding sample complexity but also ensuring privacy, to make sure the probability of
sampling a point near the threshold score is low.

We will only prove Theorems 4.1 and 4.2 for the efficient case. In the proofs, one can verify that
the requirements of quasi-convexity, efficient computability, and efficiently finding a low-scoring
point, as well as the promise that © is convex and bounded, are only needed for our sampling
algorithms to run in polynomial time. Hence, the inefficient algorithm results also follow.

4.1 Sampling and volume computation with an imperfect oracle

To prove the main results of this section, we heavily rely on the theory of sampling and volume
computation for convex bodies, given only membership oracle access (as opposed to membership
and separation oracle access). While one may wish to directly apply these techniques, we cannot
afford to do so, because, to the best of our knowledge, all such results have been written assuming
infinite-precision arithmetic and perfect membership oracles. In our setting, we must show such
results are possible even if we only have bounded precision arithmetic and imperfect membership
oracles. This will be crucial because we assume we cannot perfectly compute the score function,
but can only approximately compute it. We now formally define approximate membership oracles.

Definition 4.3. Given two nested convex bodies K; C Ky, a (K;, K2)-membership oracle O is an
oracle that, if given an input x € K;, outputs YES, if given an input x ¢ Ky, outputs NO, and if
given an input x € Ky\K;, may output either YES or NO.

In addition, we will wish for multiplicative approximations for the sake of pure-DP, meaning
each point (in a sufficiently fine net) in the convex body should be sampled in a way that is point-
wise close to uniform, as opposed to close to uniform in total variation distance. While one could
use the techniques of [MV22] to achieve the point-wise guarantee, they still make an assumption
of using perfect membership oracles and infinite-precision arithmetic.

To deal with the issues of precision and imperfect oracles, we apply the known analyses of hit-
and-run sampling, made discrete in an appropriate fashion, and make sure that the probability of
ever being near the boundary of the convex body, where the membership oracle may be incorrect,
is low. To ensure the multiplicative approximation, we make a final step where we slightly perturb
and then discretize the sample further, and show that this is sufficient. Since most of the analysis
derives from known results, we defer the proofs to Appendix A, and here we simply state the
results we need.

Lemma 4.4. (Main convex body sampling lemma) Fix any parameter yg < d~'°C and r < 1 < R. Let
K1, Ky be convex bodies such that B(0,r) € Ky € Ky C B(0,R), and vol(Ky) — vol(Ky) < (%)d , for
some y1 such that log 7/1‘1 = poly(d, log %, log 7/6‘1). Suppose we have a (K, Kg)-membership oracle O.
Then, in poly(d, log %, log yg 1) time and queries to O, we can output a point z that is (1 + yg)-pointwise
close to uniform on the set of points in R¥ with all coordinates integer multiples of ys that are accepted by
O, for ys = 5.
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Lemma 4.5. (Volume sampling) Set ys = and set y1,ys, along with r, R, Ky, Ko, O, as in

4100 logg(R/r) ’
Lemma 4.4. Fix any ¢ < 0.5. Then, for any y < 1, in poly(d, log &, 1,logy ™) time and oracle accesses,
we can approximate the number of points in R with all coordinates integer multiples of s that are accepted

by O, up to a 1 + € multiplicative factor, with failure probability 7y .

Remark. Our parameters skip to y5 and yg since we define auxiliary parameters y2, y3, ¥4 in the
proofs of Lemmas 4.4 and 4.5.

4.2 Proof of Theorem 4.1

Our algorithm will roughly sample each 0 based on the exponential mechanism, where each 0
is sampled proportional to e~¢50¥)_ In the following lemma, we apply Lemmas 4.4 and 4.5 to
obtain a desired sampling procedure.

We note the following fact, which we will prove in Appendix A, while proving Lemma 4.5.

Fact 4.6. Suppose K C R is a convex body that contains a ball of radius r. Suppose y is a parameter
which is at most 4z. Then, the number of points in K that have all coordinates integral multiples of y is
(1+0O(1/d)) - vol(K)/y*.

Lemma 4.7. Set y1, Vs, V6 as in Lemma 4.5, and let © be the set of points in © with all coordinates integral
multiples of ys. Then, in poly(n,d,1,log %) time, we can sample from each 0 € © with probability
proportional to e=¢S0Y) . px0(),

Proof. First, we set some additional parameters. Finally, we define yg := §-e™ - (y5/ 2R)? and
7= ys- (07 122R)A).

We now describe our algorithm. Define T := maxg, S(6p,Y). Even if T is unknown, in time
poly(n, d, log 1) we can find some point 0 such that S(6’, Y) < T +1 for all 8’ within r of 6. We can
also get some estimate T’ between T and T +1. We pick a uniformly random number between T” +1
and T’ + 2 that is an 1ntegral multiple of y7. Call this number T: note that T < ming S(0y, V) + 3.
Now, for any point 6 € ©, let t(8) be the smallest nonnegative integer ¢ such that the estimate
(where the estimate has accuracy y7) of the score S(0, ) is at most T+t

Our goal will be to produce an e*°()-pointwise sample from the distribution proportional to
e~¢*0). For each integer t > 0, define K(1 ) to be the convex body of points in ® with (true) score at
most T + ¢ — y7, and K(Zt) to be the convex body of points in ® with (true) score at most T+t+ V7.
We will apply Lemmas 4.4 and 4.5, with O as the (K(lt), K(;))—oracle that accepts if the estimate of

the score is at most T + t,i.e., if t(0) < t. (Note that while K(lt) may not contain 0, it contains a ball of
radius r around an efficiently computable point 8, which is sufficient.) Also, let S N® to be the
set of and number of points in 0, respectively, such that t(@) < t.Sincet(0) € {0,1,...,n}, we can
write Yy g ¢ M0 = NO+ 3 e~et(NO-NC-D) = 317 o (e7t (1 = e )NW) +e~e" N, Assuming
that vol(K( )) vol(K(t)) < ()/1 r) for all ¢, then we can prov1de a e—g factor approximation N® for
each N¥), with failure probability at most g, in time poly(d, log £ R, 1,logyg!), by Lemma 4.5.

Our final algorithm will sample eachnumber t € {0, 1, ..., n—1} with probability proportional
to e~¢*(1 — e¢)N® and t = n with probability proportional to e=¢" N, Then, we use Lemma 4.4
to sample (1 + yg)-pointwise close to uniform from the set S® in time poly(d, log %, log yg .
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Overall, assuming that vol(Kg)) - VOI(K(lt)) < ()/1 r) for all t, since g < &, we obtain an e*2¢-

pointwise approximation to sampling from the distribution proportional to e~¢*(?) for 0 € @, with
failure probability at most yg. In addition, note that t(6) = S(0,Y) — T + O(1), which means in
fact we are sampling proportional to e~¢S(%¥) up to a e*°(¢) pointwise approximation. There are
two ways for this to fail: if either there is some t with vol(K(;)) - vol(K(lt)) > (%)d or in the yg
probability event that some estimate N*) is incorrect. Note however, that this volume represents
the set of points with score between T" +t + 1+ u —yyand T +t + 1 + u + y7, where u € [0, 1) is
chosen at random to be an integer multiple of y7. Therefore, the expectation E,, [vol(Kg)) - vol(K(lt))]
is at most 2 - y7 times the volume difference of points with score atleast T +t + 2and T" +t + 1,
which is at most vol(®) < (2R)?. So, by Markov’s inequality, vol(K( ) - vol(K(t)) > (M) with
probability at most (2y7 - (2R)Y) /(% V)d = Vs.

Therefore, with probability at least 1 — 2ys, we are sampling 6 € © from a distribution
proportional to e~¢S0Y) . ¢*0()  However, note that the number of points in @ is at most
vol(@®)/(ys5)* - (1 + 0(1)) < (2R/ys5)? by Fact 4.6, so each point in © is selected with probability at
least Q(e™" - (y5/2R)%). So, since we set yg = S-e - (ys/ 2R)“, we are still sampling each element
with probability proportional to e=¢S(0¥) . p+0(e), m]

Proof of Theorem 4.1. The algorithm is the same as in Lemma 4.7. To see why this implies a private
algorithm, for any two adjacent datasets Y/, Y’, the score of any point changes by at most 1, which
means the distribution does not change by more than a e*°(¢) factor multiplicatively for any fixed
0 between Y and Y’. So, if we could approximately sample from this distribution, the distribution
still does not change by more than a e*9(®) factor multiplicatively. This ensures the algorithm will
be O(¢)-DP.

The runtime has already been verified, with the fact that n > Q(1/¢) is already known, so we
can ignore polynomial runtime dependencies on 2.

Finally, we check accuracy. Assume there exists a 0 € ® with score at most nn. By Fact 4.6, if
¥5 < 73, then for any convex body K containing a ball of radius r, vol(K) = (1 £ o(1)) - (ys)* - N if
Nk is the number of points in K N @. Now, for any j > 1, we bound the probability that we select
a 6 € O with score between 2/ - nn and 2/*! - nn. If we consider K j to be the convex body of points
in © with score at most 2/*1 - jn, then the probability of sampling a point with a score between
2/ - nn and 2/*! - yn is proportional to at most e=e2m . vol(Kj)/(y5)d - (14 0(1)). However, the set
of points with score at most nn + 1 contains a ball of radius r, so the probability of sampling such
a point is proportional to at least e~e(m+l) Vn/(y5)d -(1=o0(1)).

So, to select a point with score at most 2nn with probability 1 — O(p), it suffices to check that

Z“OgQ(l/nﬂ e (@ -1)n vol(K;)/Vy, < B. Now, by setting f’ = 2/*! - 17, we have that vol(K;)/V,, =
Vy /Vy, and o=@V < pmen'n/4 Thus, if n > 8log(Vyy /V}) - then e=¢1 /8 < ZL Also, if n >
7]

s e
%ﬁﬁﬂ)) then e=¢7""/8 < B-n. Therefore, e=¢""/4 < —”-ﬁ-n,whmhmeansZﬂogﬂl/m —e@-1)yn,
VOI(K’ Zﬂog2(1m” VOKK) B VOI(K} < B. Thus, the algorithm is accurate with 1—§ probability. O
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4.3 Proof of Theorem 4.2

In this subsection, we prove Theorem 4.2. We start by describing the algorithm.

First, we define the function g : Z — [0, 1] as follows. First, for t < 0.3n*n, we let g(t) = 1, and
fort > 0.7n"n, we let g(n) = 0. For 0.3-n*'n <t < 0.5n1"n, we let g(t) = max (%, 1-0- ef(t‘o'grl*”)),
and for 0.5n'n < t < 0.7°n, we let g(t) = min (3,6 - e¥@7=1)). The first step of the algorithm
is to compute some T, which equals mingee S(6,Y) up to additive error 1. The first part of the
algorithm, which we call A;, will accept the dataset Y with probability g(f).

If A, rejects Y, the overall algorithm A outputs nothing. If A; accepts YV, the algorithm
proceeds to the second phase. The second phase, ata high level, attempts to sample a 0 proportional
to e=¢50Y) as long as S(0,Y) < 0.97*n. This may be impossible as we cannot perfectly compute
0. Instead, if we define the function h(t) to equal e~ for t < 0.97*n and 0 for t > 0.9n*n, we prove
the following.

Lemma 4.8. Let © be as in Lemma 4.7. Then, in time poly(n,d,+ <, log %) time and with failure probability

at most min(p, 6), we can sample from each 6 € © with probability proportional to h'(0), where h'(0) is a
function satisfying h(S(0,Y) + O(1)) - e~ < W'(0) < h(S(6,Y) — O(1)) - e°©).

Proof. The proof is nearly identical to that of Lemma 4.7. We again define #(0) to be the smallest
nonnegative t such that our estimate of S(6, V) is at most T+t. This time, rather than approximately
sampling with probability proportional to e ~¢/(%), we approximately sample proportional to /1(t(0)+
T). (Note that £(0) +T = S(6,Y) + O(1).) As in Lemma 4.7, we define S®), N® to be the set of
and number of points in O, respectively, such that £(0) < t. We can write } . h(t(0) + f“) =

W) - NO + 3 (F + NG - NG-D) = 31 (h(f + ) —h(+t+ 1)) N®, since h(f +n) = 0.

Again, we can compute each N up to a e*¢ multiplicative factor (to get estimates N(), choose
t proportional to N®. (h(f +t)— h(f +t +1)), and then sample (1 + y5)-pointwise close to uniform
on S*), where we ensure y < ¢. The algorithm fails with probability 2ys. This time we cannot
charge this error to multiplicative error (since some points may have large enough score that they

will be sampled with probability 0), so we additionally ensure that yg < w as well. (I.e., we
set yg := min (g, 0,£.e7m. ()/5/2R)d).) Note that as long as 7 > log 67! + log 7!, the runtime is

still poly(n, d, é,log 7). m|

Proof of Theorem 4.2. The algorithm is as described, where the second phase samples (with failure
probability at most min(B, 6)) proportional to /’(6). We recall that by Fact 4.6, for the convex body
N® of points with score at most ¢ + T, vol(K®)) = (1 + 0(1)) - yd . NO.

First, we check privacy. Itis clear that the first phase of the algorithm is (O(e), O(6))-DP as long

asn > 10?271 , since for any two adjacent datasets, maxgee S(6,Y) changes by at most 1, and our
estimate for this maximum is accurate up to error 1. So, T changes by at most O(1) between adjacent
datasets Y and Y’, which is sufficient. For the second phase, we sample each 0 proportional to
e~¢(SOY)x0M) if §(9, Y) < 0.97*n — O(1), and proportional to 0if S(6,Y) > 0.9n'n + O(1). So, the
sampling probability stays proportional between adjacent datasets, unless S(6, Y) = 0.97*n £ O(1).
So, we need to make sure the probability of sampling such a dataset is at most O(0), so that the

overall algorithm is (O(¢), O(6))-DP.
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To see why this is true, the probability of sampling a point 8 € © with score in the range
0.97"n + O(1) is proportional to at most e~ (0.9 n=0M)(1 4 o(1)) - ygd Voor+roamY) < 0Q1) -
e—€0.97n Vs 4. Vy(Y). Conversely, since we didn’t reject, we know that T < 0.7n*n, which means
the probability that we sample a point 6 € @ with score at most 0.857"n is proportional to at least
e~e(0:85'n+0() (1 — o(1)) - )/gd Vo.gsyr—o/m)(Y) = Q(1) - g=c0.85n'n ys_d - Vogp(Y). So, it suffices

—3091]11 7dV log(1/6)-log(V, Vo sn*
tO ShOW that — oy y:\d Vogi‘y(;) Og( / ) Og( Sr]n(;y)/ 0.8 (y))' Note

that this only has to be true for datasets Y such that ming S(6,Y) < 0.7n*n, since otherwise the
algorithm would have already rejected in the first phase.

To check efficiency, note that we can compute T in poly(n, d, log %) time, using the condition
that the robust algorithm can find a low-scoring point up to error 1. Then, in time poly(n, d, log %),
since 7 > (1), we can sample proportional to /’(0), using Lemma 4.8.

Checking accuracy will be very similar to as in the proof of Theorem 4.1. Suppose there exists
O such that S(6,Y) < nn. Then, T < < nn+ O(1) < 0.1n*n + O(1), which means the first part
of the algorithm will succeed. For the second phase, we sample each 6 € @ with probability
proportional to h’(0), with failure probability at most f. The probability of sampling a point
with score at most nn + 1 is proportional to at least e~ (1+O() . V,,(y)/()/5)d (1 =0(1)). Also,
if we define K; to be the convex body of points in ® with score at most 2/*! - nn, then the

< 0, which is true as long as n >

probability of selecting a 0 € © with score between 2/ - nn and 2/*! - nn is proportional to at most
e~ @nn=0Q1)) . min(vol(Kj), Vn*(y))/(%)d (14 0(1)), by Lemma 4.8 and the definition of h.

Hence, we wish to check that Z]D:lgé(”*/ M p=e@=1)n min(vol(K;), V;(¥))/V;(Y) is at most :
it suffices to show that e~ 1m/2. min(vol(K;), Vi (¥))/Vy(Y) < B-nforany 1 < j < [logy(n*/n)]. If

2/+1 < 77* then by setting 1’ = 2/*1 we are assuming that n > Q (log(v”'(y)/v”g))ﬂog(l/(ﬁ -17)))' This
V() vol(K;)

means =212 min(vol(Ky), Vi (U))/Vy(Y) < e vol(Kp) Vo) < - Ssfd = B
(y)/V (y))+log(1/(ﬁ'f1))). This
(Y)

en
—e-9). . —et V(YY) Vi

means e~ ””/2-m1n(vol(Kj), Vi (M) Vy(Y) < e”®1 ”/4-Vn*(y)/Vn(y) < Vn]*(y) pn- VZ,(y) =p-n.

Hence, the algorithm is accurate.

If 2/*1 .11 > n*, then by setting 1’ = 1*, we are assuming that n > Q (bg(

5 Estimating the Mean of a Gaussian

5.1 Main Theorem

Our main theorem in this section is a polynomial time and pure-DP algorithm for private mean
estimation of an identity-covariance Gaussian, with optimal sample complexity.

Theorem 5.1 (Private Mean Estimation of a (Sub-)Gaussian). Assume that0 < a,p, & < land R > 0.
Let u € R, where ||u|la < R, be unknown. There is an e-DP algorithm that takes n i.i.d. samples from
N(u, I) (or in general, a subgaussian distribution with mean p and covariance I) and with probability 1 — 8
outputs y such that ||y — [i||2 < a, where

d+log(1/ﬁ) d+1log(1/B) dlogR
a? ae * €
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Here, o) only hides logarithmic factors in 1/a. Moreover, this algorithm runs in time poly(n,d), and
succeeds with the same accuracy even if n = Q(a) fraction of the samples are adversarially corrupted,
assuming 1 < n* for some universal constant n*.

For pure-DP algorithms, the 41osR torm is required by a standard packing lower bound. How-

&
log(1/6)
&€

ever, in the approximate-DP setting, we can replace this term with , as we now state.

Theorem 5.2 (Private Mean Estimation of a (Sub-)Gaussian with Approx-DP). Let u € RY, where
llull2 < R, be unknown. There is an (&, 6)-DP algorithm that takes n i.i.d. samples from N(u,I) (or a
subgaussian distribution with mean u and covariance 1) and with probability 1 — B outputs u such that
I = fill2 < a, where
=5 d +log2(1/ﬁ) N d +10gF1/ﬁ) N log(?/é) '
a ae €

Moreover, this algorithm runs in time poly(n, d,log R), and still succeeds with the same accuracy even if
n = Q(a) fraction of the samples are adversarially corrupted.

Note that the runtime dependence on log R is required as even reading the input up to O(1)-
precision requires log R time.
We note that one could alternatively prove Theorem 5.2 by combining Theorem 5.1 with

[EMN22, Corollary 5] (or alternatively [GKM21, TCK*22]), which allows us to learn u up to radius

og(1/p).

O(d) first. However, this method is slightly suboptimal in that the final term would be
The rest of this section is devoted to proving Theorem 5.1 and Theorem 5.2.

5.2 Resilience of First and Second Moments

In this subsection, we note some known concentration inequalities for subgaussian random vari-
ables (commonly known as resilience or stability conditions) that will be crucial for our analysis.

Lemma 5.3 (Resilience of First and Second Moments, Proposition 3.3 in [DK22]). Let n > O((d +

log(1/B))/ &), for some a = 5(77). Let {x;}?, L. D, where D is a subgaussian random variable with
mean i € R and covariance I. Then, with probability 1—p, for all vectors b € [0, 1]" such that E; b; > 1-n
and all unit vectors v € R?, we have

|Ei bi{v,x; — y)| <a.

In addition,
|El‘ bi{v, x; — y>2 - 1| <a.

Corollary 5.4. Let u, D, {x;}, a,n be as in Lemma 5.3. Then, with probability 1 — B, the following all hold
for all unit vectors v simultaneously.

1. |Ei<xi - [J,U>| <a.

2. |Ei<xi 'y Z)>2 - 1| < .

3. For any real values ay,...,a, € [0,1] such that Y7 a; < n-n, |E;ja;{(x; —y,v)| < «a and

|Ei ai<xi 'y Z)>2| <a.
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4. E; |(xi - Uu, U>| < O(1).

Proof. Fix a vector v and let z; := (x; — u, v). Suppose the events of Lemma 5.3 hold.

Parts 1 and 2 are immediate from Lemma 5.3, by setting b; = 1 for all i. Part 3 follows by setting
a; = 1 — b;, and then noticing that |% iy a,'z,'| < |% 2y zi| + |% 2y bizi| < 5(77).

Finally, to check part 4, we may consider 1 = 0.1 and then apply part 3, to obtain that
|% >y aizi| < O(1)foranya € [0,1]" with ) a; < 0.1n. Since every vectorin [—1, 1]" can be written
as a sum of at most 20 vectors a € [0, 1]" with ) a; < 0.1n, we thus have that |% han c,'zi| < 0(1)
for all choices of ¢; € {1, 1}" simultaneously. Thus, % Yy |zil £ O(1). O

Remark. The conditions in Corollary 5.4 will be the only conditions we will require about the
samples we draw. So in fact, our algorithm will output a point close to u if given an n-corrupted
version of X for any X satisfying Corollary 5.4.

We also note that if y1, {x;} satisfy Corollary 5.4, then for all symmetric H with [|[H - I||op < a,
Hu, {Hx;} also satisfies Corollary 5.4 (up to replacing @ with O(«)). To see why, assume without
loss of generality that u = 0. Then, using Condition 1, for all unit vectors v, |E;(Hx;, v)| =
|Ei{xi, Ho)| < - ||Ho|l2 < @ - (1 + @) < 2a. We can repeat the same argument for the 2nd, 3rd,
and 4th conditions.

5.3 Robust Algorithm

Here, we describe the robust algorithm that will inspire our score function to generate a differen-
tially private algorithm. The robust algorithm, as well as the algorithms used in the covariance
settings, are essentially the same as in [KMZ22].

Suppose {x;}! , are samples from N(u,I) (or a subgaussian distribution with mean u and
covariance I). Let {y;} be an arbitrary n-corruption of the {x;}. Consider the following pseudo-
expectation program with input points {y;} and domain the degree-4 pseudo-expectations with
{wi}, {xi}, {M;;} as indeterminates. (M = {M; ;} will represent a d X d-matrix of indeterminates.)

find E
such that E satisfies w? = w;,
E satisfies Z w; > (1-n)n,
E satisfies wix; = Wwiy;,
E satisfies % Z(x: - u)(x} - )T+ MM = (1 + 5(77))1, where i = E;x;]

It can be proven that if 7 is as in Lemma 5.3, with probability 1 — § over the choice of {x;} and for
any 7-corruption {y;} of {x;}, then [|[Ey’ — ull2 = O(n) for any feasible pseudo-expectation E.

5.4 Score Function and its Properties

Our goal is to use Theorem 4.1, but to do so, we need to design a suitable score function. Our score
function will be very similar to the robust algorithm, but modified to deal with precision issues.

Before we define our score function, we make a definition of certifiable means, which modifies
the pseudoexpectation program in Section 5.3 to deal with approximate pseudoexpectations.

23



Definition 5.5 (Certifiable Mean). Let a, 7, ¢, T € R, y1,...y, € RY (with Y := {yi, .-, yn}),
and g € RY. We call the point fi an (, 1, ¢, T)-certifiable mean for Y if and only if there exists a
linear functional £ over the set of polynomials in indeterminates {w;}, {x;’].}, {M; x} of degree at
most 6 such that

1. L1=1,

2. for every polynomial p, where [[R(p)|l2 < 1 (where we recall that R(p) is the vector of
monomial coefficients of p):

(@) Lp* = -1-T,

(b) Vi, Lw] —wi)p® € [-1-T,7-T],

() LEw;—n+T)p?> = -51-T -n,

(d) Vi, j, Lwi(x]; - vij)p?€[-t-T,t-T],

(e) Vj,k: L ([% 2 =) (x! - T+ MMT - (1 + cx)I]j/k p2) €[-7-T,7-T], where x; =
{x;].}lsjsd, and u’ = E; x]. Note that here [...]; x denotes the (j, k) entry of a matrix,
which is a polynomial in indeterminates {w;}, {x}}, {M; «}. We write in this format for
the sake of conciseness.

3. Vi, Ly —uie[-p-1-T,¢+7-T]

In addition we will require ||R(L)|l2 < R’ + T - 7 for some sufficiently large R’ = poly(n,d, R),®
where we recall that R(L) is the vector which represents the value of £ applied to each monomial
of degree at most 6. (Note that R(L) has dimension polynomial in the number of variables, which
is polynomial in 7, d.) This requirement is only needed for computability purposes. For such Z,
we also say that L is an («a, 7, ¢, T)-certificate for Y.

Note that one may think of £ as an approximate pseudo-expectation. In addition, for each
constraint 2a) to 2e) we implicitly assume a bound on the degree of p so that £ is applied to a
polynomial of degree at most 6.

For our purposes, we will end up setting 7 = 1/(n - d)°), for a large enough O(1).
Now we use this definition to define a score function.

Definition 5.6 (Score Function). Let B?{ denote the ball of radius R in R? centered at the origin. Let
a,7,0,TeR, yy,...y, € R (with Y = {yi,...,yn})and u € R?. We define the score function
S: Bld{ — Ras

S, Y;a,1,¢) = mTin such that pis a (a, 7, ¢, T) certifiable mean for Y = {y1,..., ya}.

In the rest of this section we will prove the following properties for this score function. This
will allow us to use Theorem 4.1.

1. Bounded Sensitivity: Score has sensitivity 1 with respect to Y.

8See Lemma 5.11 for more details on how large we require R’ to be.
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2. Quasi-Convexity: Score is quasi-convex as a function of .

3. Accuracy: All points i that have score at most 77 - n have distance at most a = 5(17) away
from u. (Robustness for volume/accuracy purposes).

4. Volume: The volume of points that have score at most n - n is sufficiently large, and the
volume of points with score at most n" - n for > 1 is not too large.

5. Efficient Computability: Score is efficiently computable for any fixed y, Y.

6. Robust algorithm finds low-scoring point: Finding u that minimizes score (up to error 1) for
any fixed Y can be done efficiently.

5.4.1 Sensitivity

Before proving sensitivity we need to prove the following upper bound on the value of the score
function.

Lemma 5.7 (score function upper bound). The value of the score function S defined in Definition 5.6 is
less than or equal to n.

Proof. It suffices to show that in Definition 5.5 for T = n, there exists a linear functional £ such
that the constraints of Definition 5.5 are satisfied.

Let’s define L. For any monomial p we should assign a value to Lp. To begin, let L1 =1. If p
contains w; or M; x where j # k let Lp = 0. Now we need to define Lp for monomials that only
contain x;’j and M; ;. For such monomials p, let Lp be equal to (1 + n)B/2 . H?zl ﬁ?j, where «a; is
equal to the sum of the number of the factors of the form x;’j over all 7 in p, and f is equal to the
number of M; ; factors in p over all j. Basically, when applying £ to a polynomial we are treating
the indeterminates in the problem as if they were scalars and had the assignment w; = 0, x} = g,
and M = 4/(1 + ). In the non-relaxed version of the problem, this assignment would correspond
to changing every point to p. It is easy to check that all of the constraints would be satisfied under
this choice of L, even if T = 0. Therefore, the value of the score function S defined in Definition 5.6
is at most 7. O

Lemma 5.8 (sensitivity). The score function S as defined in Definition 5.6 has sensitivity 1 with respect
to its first input.

Proof. Suppose that Y, Y’ are two neighboring datasets, and i € R?. Moreover, assume S(ii, V) =
T. If we show that S(i, ¥’) < S(ii, ¥) + 1 = T + 1, by symmetry we are done. Since S(i, Y) =T,
we know that there exists some functional £ such that the constraints of Definition 5.5 are satisfied
for £, Y, and T. If we construct a new functional £’ such that the constraints of Definition 5.5 are
satisfied for £/, Y’ and T + 1, we have shown that S(i, Y’) < T + 1 and we are done.

Without loss of generality assume Y and Y’ differ on index j. In order to construct £, for any
monomial p, let

Lrp= {O if p has.a w;j factor, ‘
Lp otherwise
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Now let’s go through all of the constraints and verify them. The first condition holds since by
definition, £L'1 = L1 = 1. Now let’s prove the conditions in the second set of conditions. Suppose
llpll2 < 1and p = g + w;r, where g does not contain a monomial containing w;.

o L'p?2>—1-(T+1).

L’pQ:L’(q+w]-r)2:£’ 2=Lg?=-1-T>2-1-(T+1)
as desired, where we used the fact that ||g]|2 < ||p]|2 < 1.

o Vi: L'(w?—w)p? €[-t-(T+1),7-(T+1)]. If i = j, this would be zero, if not then we can
write p as g + w;r similar to the previous part and get the desired bounds.

o L'GCwi—n+(T+1)p?>-57-(T+1)-n.

L’(Z w; —n+(T+ 1));92 = L'(Z w; —n+(T+ 1))q2
- L’(Z w; —n + (T +1))g?

i#]
= L(Z w;—n+(T+ 1))q2

i#]

= L(Zwi -n +T)q2 —qu2 + q2

To bound the first term, we have that £(Zw; —n +T)g? > =57+ T -n. Tobound the second and
third terms, we have L[-w;q* + q?] = L[(1 - wj)q*] = L[(1 — w;)*q*] + L[(w; - w]?)q2]. We
know that [[(1-wj)qll2 < 2lqll2 < 2,50 L[(1-w;)?q?] = —47-T, and L[(w; - w]?)q2] >—1-T.
So together, we have a bound of at least =57 - T - n — 57 - T. Therefore it remains to prove that
—57-T-n—=>51-T > =5t (T +1) - n, which is trivial by Lemma 5.7.

o Vj,k: L ([% 2i(x) —u)(x} - w)T+ MMT - (1 + a)l]j,k p2) €[-7-T,7-T], where u’ = E; x'.
Similar to previous parts, we just need to plug in p = g + w;r, and we get the desired
inequality.

The last condition holds because L'y} — i; = Ly} — ;. Therefore we showed that there exists
a linear functional £” which satisfies the constraints of Definition 5.5 for y’, and T + 1. Finally,
note that ||R(L’)||2 < [|R(L)||2 clearly holds. Therefore the score function S has sensitivity 1 with
respect to its first input. O

5.4.2 Quasi-convexity

Lemma 5.9 (quasi-convexity). The score function S as defined in Definition 5.6 is quasi-convex in its
second input, (L.

Proof. Suppose S(u1,Y) = Th, S(u2, Y) = Ty, and suppose there exists £; and L, that satisfy the
constraints in Definition 5.5 with i1, T;, and s, To respectively. If we can construct a functional
L3 such that the constraints in Definition 5.5, are satisfied with s = Ay + (1 — Az, and T3 =

26



max{Ty, T>}, we are done. Let L3 = AL + (1 — A)L5. Then all of the constraints in Definition 5.5
will be satisfied trivially except for L3(> w; — n + T3)p? > =51 - Tz - n. Let’s verify this constraint.
Without loss of generality suppose T = T > Tj, then

Lg(zwi—”"'Tg)pZZ(/\Ll+(1_/\)~£2)(Zwi—”+T2)P2

= ALy (Y wi—n+ T pP o (L= ALy (D i = n 4 T) p? + AT = T L1p?
> 50 n(AT +(1-Nh) - AL -T) -t Ty

> -51-n(ATy + (1 - AT + ATz — Th)) (n > T, Lemma 5.7)
=-51t-T3-m,

as desired. O

5.4.3 Accuracy

We show that any point u of low score with respect to i.i.d. samples from N(u, I) must be close
to u. We remark that because of our sensitivity bound, this will also imply a similar result for
corrupted samples.

Lemma 5.10. Let a = 5(17) and suppose o, 1 are bounded by a sufficiently small constant. Let n >
d+lo+§l/ﬁ),andX ={x1,...,xu} ~N(,1I), forue RY,

Then, for any a* < a, and assuming © < 1/(nd)°"), with probability at least 1 — B, every point i € R?
that is (a*, T, ¢, T)-certifiable for X with T = nn and ¢ < a/Nd must satisfy |7 — p]|2 < O(a).

The proof of Lemma 5.10 essentially follows from the same argument as in [KMZ22], with slight
modifications to deal with our modified score function. Hence, we defer the proof to Appendix B.

5.4.4 Volume of Good Points

Lemma 5.11. Let X = {x1,...,x,} ~ N(u, 1), and let Y = {y1, ..., y,} represent an n-corruption of X.
Then, for any t, ¢ > 0and T = 1 - n, with probability at least 1 — B, there exists a 1’ such that every (i such
that ||g — 1 ||ee < ¢ is an (a, T, ¢, T)-certifiable mean for Y.

Proof. Our linear operator £ generalizes pseudo-expectations E. So, it suffices to find a pseudo-
expectation on variables {w;}, {x!}, {M;;} that satisfy the constraints of the robust algorithm. If
so, then by setting 11’ = 1 3 x/, we have that for all {i such that || - Ep/'||e < ¢, His an (a, T, §, T)-
certifiable mean.

Indeed, finding such a pseudo-expectation is quite simple to do: it will actually just be an
expectation over a single point. We just set every w; = 1 if y; = x; and 0 otherwise, and set every
x! = xi,s0 ' = %Zi x;. By Lemma 5.3, we have that %Z?:l (xi —u,0)? <1+ 5(77) for all unit
vectors v. In addition,

1 < e Ny , BN , BN :
2D xim o) = = (i) ), 0 = (o) D i 0 2 ) =i o),
=1 i=1 i=1 i=1
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So, % Yhxi—p, 0yt <1+ 5(17) for all unit vectors v, which means % i i —w)(xi -t < (14
5(17))[. Therefore, there exists a d Xd matrix M such that % 2 (xi—w)(xi—p) T+ MMT = (1+5(17))I.

Finally, we remark that every w;, x; j, and M, x isbounded by R-n. Therefore, the corresponding
linear operator £ satisfies ||R(L)||2 < (Rnd)°W. m]

Lemma 5.12. Let X = {x1,...,x,} ~ N(u,I), and let Y = {y1,...,yn} represent an n-corruption of
X. Then, for every integer T € [ - n,n* - n] for some fixed constant n* < 1, with probability at least 1 — B,
every (a, T, ¢, T)-certifiable mean with respect to Y has distance at most O(T /n) from p.

Proof. Since the score function has sensitivity at most 1 (Lemma 5.8), this means thatany («, 7, ¢, T)-
certifiable mean with respect to ¥ is an («, 7, ¢, T + nn)-certifiable mean with respect to X.

Now, define n’ := Ttl—"n = O(L). In this case, by setting a’ = O(1y') and since a = O() < a/,
we have that by Lemma 5.10 that any (a, 7, ¢, T + nn)-certifiable mean u must satisfy ||z — pl2 <
O(a’) < O(T/n). O

If we set ¢ = a/ Vd and 7 < 1/(nd)°®), this means the volume of («, 7, ¢, T)-certifiable
means for T = nn is at least (a/Vd)?. However, for any T = n’n for n < 1/ < 1, the volume of
(a, 7, d, T)-certifiable means is at most (O (1)) times the volume of a d-dimensional sphere, which

~ d
is (O(n’))d/ Vd . Finally, for T = n’n with " > 1", the volume of O, the set of all candidate means
i with |||z < R, is at most O(R/Vd)".

5.4.5 Efficient Computability

Verifying that we can efficiently compute the score roughly follows from the ellipsoid method
used in semidefinite programming. We had to modify the score accordingly (relaxing constraints
using 7) — however, we show in Theorem C.6, deferred to Appendix C, that for the score in
Definition 5.6, defined by the constraints in Definition 5.5, we can compute it up to error y in time
poly(n,d,log R,log y~!). Hence, this verifies the “efficiently computable” criterion for Theorem 4.1.

5.4.6 Efficient Finding of Low-Scoring Point

Verifying the “robust algorithm finds low-scoring point” criterion is also direct from Theorem C.6.
We simply remove the constraint that Ly — p; € [-¢, 7T + ¢ + 7 - T], and allow for the much
broader Ly’ € [-R, R]. We can apply Theorem C.6 in the same way to find some linear operator
£ with score at most ming S(, ¥) + 1. Then, we can compute L[u'] set r = ¢, and obtain that
every point within {; distance ¢ of L[] has score at most ming S(i, ) + 1.

5.5 Proof of Theorem 5.1

We apply Theorem 4.1, using the score function defined in Definition 5.6. Indeed, for r = ¢ = a/Vd,
we have verified all conditions, as long as n > O((d + log(1/B))/a?). Therefore, we have an ¢-DP
algorithm running in time poly(n, d, log %) = poly(n, d) that finds a candidate mean p of score at
most 2nn, as long as

050 max BV N/Vy(Y)) +log(L/(B 1))\
n'm<n’<1 €1
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Using Lemmas 5.11 and 5.12, we have that for " < n* for some n* = Q(1), Vy(¥)/V;)(¥Y) =
(5(77’)/77)d < (O(1/n))*. Forn’ > n*, we have that V;y(¥)/V,(¥) < (O(R/n))". So overall, it suffices
for

n>0 (d-l—loa—g2(1/ﬁ)) +0 (ng}fifr dlog(1/1) :'lz,g(l/(ﬁ 1)) b e dlog(R/n) +log(1/(B - 1))

<<l e-1

-0 (d+10g2(1/ﬁ) . d +log(1/B) N dlog R '
(22 E-x &

Hence, our algorithm, using this many samples, can find a point i of score at most 2njn. Finally,
by replacing 1 with 2 and applying Lemma 5.10, we have that any point p with score at most 21n
is within O(«a) of u. While we did not verify Lemma 5.10 for corrupted points, by our bound on
sensitivity, we know that for any Y which is an n-corruption of X, any point with score at most
2nn with respect to Y has score at most 3nn with respect to X, and therefore is within O(«) of p.
This completes the proof.

5.6 The approx-DP setting

In this subsection, we prove Theorem 5.2. In this setting, the score function is identical, but we can
afford fewer samples as we apply the algorithm of Theorem 4.2 instead of Theorem 4.1. The main
additional thing we must check is that for any dataset Y, if S(X, YY) < 0.7*n for some X, then the
volume ratio V;(Y)/Vo.sp(Y) is not too high.

Before proving our main result of this subsection, we must first establish the following “worst-
case robustness” guarantee, which is important for ensuring privacy. We defer the proof to
Appendix B.

Lemma 5.13. Fix n* to be a sufficiently small constant, and T = n*n. Also, suppose ¢ < a/ Vd. Then,
for a dataset Y with every y; bounded in ly norm by R - d*%0, if there exist 11, o € R? that are both
(a, T, ¢, T)-certifiable means with respect to Y, then |11 — pzll2 < O(1).

As a corollary of Lemma 5.13, we have the following result.

Corollary 5.14. Suppose that Y is a dataset with every y; bounded in ¢y norm by R - d'%° that has an
(a,t,¢,0.7n'n)-certifiable mean, and let I = L[u'] where L is an (a, T, ¢, 0.7n'n)-certificate. Also,
suppose ¢ < a/Nd. Then, the set of (a, T, ¢, 0.81"n)-certifiable means contains all i such that || — i||e <
¢, and any (a, T, P, n*n)-certifiable mean 1 must satisfy ||g — fil| < O(1).

Proof. If L is an (a, T, ¢,0.7n"n)-certificate, it is also an («, 7, ¢, 0.8n*n)-certificate. This means
every psuch that || — ]|« < ¢ is (a, 7, 0.81*n)-certifiable. To see why, note that fora (a, 7, 0.87*n)-
certificate £ of Y, Constraint 3 (which is the only constraint that deals with 1, which we recall
is not indeterminate) just requires that L[] —p; € [-¢p —7-T,¢ + 7 -T]. So, any such u is an
(a, T, 0.8n"n)-certifiable covariance.

The second part is immediate by Lemma 5.13. m]

Therefore, by setting ¢ := a/ Vd, the set of (a, T, ¢, n"n)-certifiable means has volume at most
O(1/¥d)?, since the volume of a unit sphere is O(1/ Vd)4. The set of (a, 1, ¢, 0.8n"n)-certifiable
means has volume at least ¢¢ > Q(1/Vd)“. So, the ratio Vo (M) Vosp (V) < O(1/a).
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We now prove Theorem 5.2, by applying Theorem 4.2. First, note that we may truncate the
samples so that no y; € Y has norm more than R - d'®. Since we are promised ||u|| < R,
the probability that any uncorrupted sample has this norm is at most e™'"". We will set n*
to be a sufficiently small constant (such as 0.01). We just showed, using Corollary 5.14, that
for all Y such that ming SE,Y) < 0.7'n, Vpu(Y) [ Vogy(Y) < O(1/a)*. So, as long as n >

O (W&M) , the algorithm of Theorem 4.2 is (¢, §)-differentially private. In addition, we

have already verified all of the conditions, so the algorithm is accurate as long as we additionally
have n > O((d + log(1/B))/n?) and

nzo( . log(Vn'(J/)/Vn(J/))+10g(1/(ﬁ-n’))).
nnsn'sn* e-n

By our volume bounds, this means it suffices for

03 (d +log2(1/ﬁ)) N o( oy Hlog(/m) +loig(1/(ﬁ ' n))) L0 (log(l/é) +dlog(1/a)
o n<n’'<n* €N &
_5 (d + 10g2(1/ﬁ) . d + log(1/B) N log(l/é)) ‘
o e-a €

This concludes the proof of Theorem 5.2.

6 Preconditioning the Gaussian

6.1 Main Theorems

Our goal is to obtain polynomial time algorithms for private covariance estimation of a unknown
Gaussian, with optimal sample complexity. Before achieving this, an important step is precon-
ditioning the Gaussian so that the samples come from a near-isotropic Gaussian. This requires
approximately learning the covariance up to spectral distance, which we focus on in this section.

We prove both a pure-DP and approx-DP result in this section, showing that one can privately
(and robustly) learn the covariance of a Gaussian up to spectral distance using roughly d? samples.
In addition, in the approx-DP setting, our sample complexity has no dependence on the parameter
K, which describes the ratio between a priori upper and lower bounds on the true covariance
matrix, though the runtime depends on log K.

Theorem 6.1 (Private Preconditioning of a Gaussian, Pure-DP). Let £ € R™? pe such that K™'I <
L < K- L. Then, there exists an e-differentially private algorithm that takes n i.i.d. samples from N(0,%)
and with probability 1 — B outputs T such that |[£~Y22L"Y2 — [||,, < a, for

a2 2 2 2
_5 d* + log (1/ﬁ)+d +log(1/ﬁ)+d log K ‘

a? ae e

Here O is hiding factors. Moreover, this algorithm runs in time poly(n,d), and succeeds with the same
accuracy even if n = Q(a) fraction of the points are adversarially corrupted.
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Theorem 6.2 (Private Preconditioning of a Gaussian, Approx-DP). Let & € R™? be such that
K™'I < © < K- I. Then, there exists an (&, 6)-differentially private algorithm that takes n i.i.d. samples
from N (0, L) and with probability 1 — B outputs ¥ such that |Z7V/22L"Y2 — [||,, < a, where

yo o[ THIOEALP) | P 4los1/p)  lox(1/5))
o ae &

Here O is hiding factors. Moreover, this algorithm runs in time poly(n, d,log K), and succeeds with the
same accuracy even if n = ((av) fraction of the points are adversarially corrupted.
6.2 Resilience of Moments

Similar to the mean estimation case, we will also require higher-order moment bounds, and stability
conditions that imply the top roughly 7 fraction of samples in any “covariance” direction cannot
be too large.

Lemma 6.3. Let {x;} ~ N(0,I) and n > O((d? + log®(1/B))/n?). Then, with probability 1 — B, the
following all hold for all symmetric P € R4 with ||P||r = 1 simultaneously, for some o = O(n).

1.

%Z?ﬂ«xix; - I)/‘/i,P)‘ <a.

2.

Ly ((xix] =1)/V2,P)? - 1( <a

3. For any real values aq, ..., a, € [0,1] such that 3,7 a; <1n-n, % P ﬂi((xixl-T _D)/NE, P < a
Ly aeix] - D/VE P <.

and

4 130 [(eixT = /N2, P)| < 0(1).

To our knowledge, such a result is not known with this number of samples. The best-known
result we know of can obtain the same bounds but requires O(d?log®(1/ B)/n?) samples [DKK*16],
which means the number of samples required is A% if we want exponentially small failure
probability. We prove Lemma 6.3 in Appendix D.

Remark. As in the mean estimation case, Lemma 6.3 will be the only conditions we will require
about the samples we draw. (Or if x; ~ N(0, Z), then {Z7/2x;} are resilient.)

6.3 Robust Algorithm

Suppose x;’s are samples from N(0,L). Let y;’s be an arbitrarily n-corruption of x;’s. Consider
the following pseudo-expectation program, where y;’s are the input points and the domain is the
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degree-12 pseudo-expectations with {w;}, {x;} as indeterminates.

find E
such that E satisfies w? = w;,
E satisfies Z w; > (1-nmn,
E satisfies w;x} = w;y;,

E@2+ 5(17)) -(vTx/v)? - % Z((v, x"y2 — v X'v)? has a degree 4-SoS proof of

1 n
nonnegativity in v € R?, where &’ = — Z(x:)(x:)T
n
i=1

To explain the last condition further, note that E [(2 +0@)) - (0TEv)? - 1Yo, x")? - UTZ’U)2]

is a degree 4 polynomial in v € R¥: the claim is that this polynomial has a degree-4 sum of squares
certificate of being nonnegative.

It can be proven that if n is as in Lemma 6.3, with probability 1 —  over the choice of x;’s, if we
output EY, then || Z/2(EX)2 /2 ~ I||,, = O().

6.4 Score Function and its Properties

Our goal is to use Theorem 4.1, so we relax the pseudo-expectation from the robust algorithm to a
linear operator that behaves as an approximate pseudoexpectation.

Definition 6.4 (Cerjiﬁable Covariance). Let a, 7, T € R=0, Yi,---Yn € R? and let & € R be PSD.
We call the point X an (a, 7, T)-certifiable covariance for y;’s if and only if there exists a linear
functional £ over the set of polynomials in indeterminates {w;}, {x;’].}, {Myj i, (k) } of degree at
most 12 such that

1. L1=1
2. for every polynomial p, where [|R(p)||l2 < 1
(a) LPZ > -T- T/
(b) Vi, L(w? - wij)p* € [-1-T,7-T],
() LEwi—n+T)p?>-57-T -n,
(d) Vi, Lwi(x} - yi)p* € [-7-T,t-T],

W

LY ((v,x))? - UTZ’U)2 + (0®2)TMTM0o®? — (2 + a)(vT £'v)?], as a degree-4 polynomial in

n
v = (v1,...,v4), has all coefficients between [—7 - T, 7 - T], where ¥/ := % Z(x;)(x;)T.

4. LA+ a)X - E] > —1-T-I,and L[E —(1-a)Z’] » =7t -T - I, where L applied to a matrix is
applied entrywise,

1

(e —T-T)- IS LE]<@K+7-T)-L
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We also require ||R(L)||2 < R’ + T - 7 for some sufficiently large R’ = poly(n, d, K). As in the mean
estimation case, this requirement is only needed for computability purposes. We will also say that
L is an («, 7, T)-certificate for Y.

Note that one may think of £ as an approximate pseudo-expectation, and it is clear that £
generalizes pseudo-expectations. In addition, for each constraint 2a) to 2d) we implicitly assume
a bound on the degree of p so that £ is applied to a polynomial of degree at most 12.

For our purposes, we will end up setting t = 1/(K - n - d)°1), for a large enough O(1).
Now we use this definition to define a score function.

Definition 6.5 (Score Function). Let &, 7, T € R20, yy,...,y, € RY (with Y := {y1,...,y,}), and
T € R be a symmetric matrix. We define the score function S : R™>? — R as

S (f, Y;a,1)= mTin such that Zis a (a, 7, T) certifiable covariance for y;’s .

In the rest of this subsection we will prove the following properties for this score function. This
will allow us to use Theorem 4.1.

1. Score has sensitivity 1.
2. Score is quasi-convex as a function of x.

3. All points Y that have score at most 1 - n have spectral distance at most O(n)) away from X.
(Robustness for volume/accuracy purposes).

4. The volume of points that have score at most 1 - n is sufficiently large, and the volume of
points with score at most 1" - n for " > n is not too large.

5. Score is efficiently computable.

6. We can approximately minimize score efficiently.

6.4.1 Existence of Low-Scoring X'

Before verifying the desired conditions of our score functions, we prove that for data points drawn
from N(0,L), with high probability some X" which is close to £ has low score. This will be
important both for sensitivity and for volume bounds. While such results are already known in
the literature [KS17] for certifiable fourth moment bounds, which we will need to verify Condition
3 of Definition 6.4, the previous result requires n = O(d?log?(1/ B)/a?), as opposed to our goal of
n = O((d? + log?(1/ B))/a?). As a result, we reprove some known results to establish a low-scoring
Y/, but with better failure probability bounds.
First, we note the following basic proposition which is immediate by Cauchy-Schwarz.

Proposition 6.6. For any two matrices A, B € R4, | Tr(AB)| < ||Alle - ||B]|E.
The following proposition is also well-known.

Proposition 6.7. For any two matrices A, B € R4, ||AB||r < lAllop-IBlle, [1Bllop-IAllF < [|Alle-1IBllE-
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Proposition 6.8. Let M € R4 be a real symmetric matrix, and let | € R be any real-valued matrix
(possibly not symmetric) such that ||J]7 = Illop < a. Then, ||JTM]|IZ = (1 £ 3a) - | M]|3.

Proof. Start by writing
"M = Te(("MDJTM])T) = Te(JTM]]TM]) = Te(M]]TM]]T).
Now, write J]" = I + H for some symmetric matrix H such that [|H||,, < a. Therefore,

Te(MJJTMJ]T) = Te(M(I + HYM(I + H))
= Tr(M?) + Te(MHM) + Tt(MMH) + Tr(MHMH)
= Tr(M?) + 2 Tr(MMH) + Tr(MH)?).

Now, by Propositions 6.6 and 6.7, we have that | Tr(MH)?)| < ||MH||% < ||M||% . ||H||§p. In
addition, | Tr(MMH)| < |M||r - [|MH||r < ||M||% “[|[H|lop. Since ||H|lop < a, this implies that
IJTMJ|I% = Te(M?) + 3a - [M|Z = (1 £ 3a) - |M]|3. O

d*+log*(1/p) -0 -
Lemma 6.9. Suppose n > O (0—2)’ and let « = O(n). Let X = {x1,...,x,} ~ N(0,%),
and let Y = {y1,...,yn} represent an n-corruption of X. Then, for any © > 0 and T = 1 - n, with
probability at least 1 — 5, there exists a L. such that every T of spectral distance at most « from ' (i.e.,

1(Z)V2E(x) Y2 ~ I||op < @) is an (@, T, T)-certifiable covariance for Y.

Proof. As in the case for mean estimation, we use the fact that our linear operators generalize
pseudo-expectations, which in turn generalize expectations over a single point. Again, we set
w; = 1if y; = x; and 0 otherwise, and x/ = x; for all i. For T = nn, it is clear that Constraints 1 and
2a-2d are all satisfied in Definition 6.4. _

To verify Constraint 3 in Definition 6.4, first note that Y2y, 22y, Ld- N(0,I). Now,
by part 2 of Lemma 6.3, where we replace a with a/4, we have 1 ?zl(Z‘l/zxixiTZ‘l/Q -1,P)? <
2+a/2)- ||P||12: with probability at least 1 — 3, for all d X d symmetric matrices P. We can write

i

(2_1/296136?2_1/2 _1,P) = Tr[(z_l/le'x;rz_1/2 -1)-P]
= Ti[x;x] - 71/2pE1/2 - p]
_ Tr[(xixl-T _y)- (2-1/2132—1/2)]
= (xix] — %, 5712pri2),

So, by replacing P with Y1/2py1/2 we have that for all symmetric matrices P,
1 n
- Z(xixiT ~%,P)2 < (2+a/2)- |EY2PE?)2.
i=1

Now, note that the empirical covariance &’ = L 3" | x;x; of the uncorrupted samples satisfies
|=-1/25/2-12 — || < @/100 with probability at least 1 — 8, by Condition 1 of Lemma 6.3 (replacing
a with a/200). Therefore, by setting | = X~1/2(X")"/2, we have ||JJT - I||r < @/100, which means
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[(ENY2P (222 = | ]T21/2P21/2]||F z (1-3a/100)-|Z*/2PLY/2||2 by Proposition 6.8. In addition,
since L’ is the empirical average of x;x.", this means for any symmetric P,

—Z<xl - ¥, P>2<—Z<xl -1, P)?

2 +a/2
= (1 -3a/100)
< (2 + 0() . “(21)1/213(21)1/2“12:‘

)P 12

For fixed x; (and thus fixed Y’), note that for a symmetric matrix P, (xl-xiT — X/, P) is a linear
functional mapping P to R, and (X’)"/2P(X/)'/2 is a linear map sending symmetric matrices P
to symmetric matrices. For a symmetric matrix P € R, let P’ € R? be the vector {Pij}ij<d,
and let (P") € RA@+1/2 pe the vector {Pij}i<j. So, if we consider the embedding P — Py,
there exist vectors vy, ...,v, € RY@*1/2 (corresponding to taking inner product with x;x x[ —-X)
and a @ X d(d+1) matrix | (corresponding to left- and right- multiplication by (X/)~/ 2) such
that % i (vi, (P Y2 <@2+a)-|J- (Pb)'||2. Therefore, there is some other matrix |/’ such that

T S 0i, (P2 + I (PPYII3 = (2 + @) - [I] - (P I3, meaning that
1 N 7 ’ ’ 7 ’
3 Z(xixiT =X+ (P I3 = 2+ @) - I(E)2P(E) 27

We can convert |/ € RH@+)/2d(d1)/2 jnto a matrix M € R¥@+D/2X® by replacing any column in
J’ corresponding to entry (i, ) for i < j with two copies for (i, ) and (j, i), each divided by 2.
Importantly, J* - (P’)’ = M - P’. Therefore, for any P = vv", since P’ = {vivj}ij<n = v®* and
(P*Y = {viv;}i<), there exists a matrix M € RA@+1)/2xd% g4 ch that

1 n
m Z ((, x;)* = UTZ'U)2 +(©®)TM™Mv®% = 2+ a)(v Z'0)>.

While M is lacking in rows (it should have d? rows and columns), we can simply add additional 0
rOWS.

Now, we have such a X’ so that the first 3 constraints are satisfied, and moreover Y’ has spectral
distance at most /100 from X, which means Constraint 5 is also satisfied since K -I<KIL<K-L
We can choose any ¥ between (1 - a)X and (1 + a)X/, since then (1 + a)X’ — Yand T - (1-a)x
are both PSD, so Constraint 4 is satisfied.

Finally, we remark that every w;, x; j, and Mg; x},{jk} is bounded by poly(n, d, K). Therefore,
the corresponding linear operator £ satisfies | R(L)||2 < (Knd)°W. m]

6.4.2 Sensitivity

The proof of sensitivity is similar to the mean estimation case. We again have an upper bound of
n on the value of the score function. This time we can essentially use Lemma 6.9.

Lemma 6.10 (score function upper bound). The value of the score function S defined in Definition 6.5
is less than or equal to n.
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Proof. We use the fact that our linear operators generalize pseudo-expectations, which generalize
expectations over a single point mass. In Lemma 6.9, we showed that for X = {x1,...,x,} i-i -
N(0,X), we can set x; = xj, and choose &’ = % > xl-xl.T and M to satisfy all of the constraints (where
Y= Y), with probability at least 1 — 5. So, there exists a set X that satisfies the constraints, which
means for a general set of data points Y = {yl, -y Yn }, the score is at most 1, since we can set
w; = 0and x = x; forall i. For T = n, it is clear that all constraints are satisfied. m]

Lemma 6.11 (sensitivity). The score function S as defined in Definition 6.5 has sensitivity 1 with respect
to its first input.

Proof. Suppose that Y, Y’ are two neighboring datasets, and Y € R Moreover, assume
S(X,Y) = T. If we show that S(Z, Y’) < S(X, ) =T + 1, by symmetry we are done.
Without loss of generality assume Y and Y’ differ on index j. In order to construct £’, for any
monomial p, let
Lip= {0 if p has.a w; factor, '
Lp otherwise

To verify the constraints, Constraints 1 and 2a-2d are identical to in the mean estimation case
(where checking Constraint 2c applies Lemma 6.10). Also, ||R(L")||2 < [|R(L)]|2 clearly holds. So,
we just need to verify Constraints 3, 4, and 5 in Definition 6.4.

However, note that these three constraints do not involve w; at all, so in fact their evaluation is
the same regardless of £ or £L’. The only difference is we are allowing the values L[] to have a
greater range, which makes it easier. m]

6.4.3 Quasi-convexity

Lemma 6.12 (quasi-convexity). The score function S as defined in Definition 6.5 is quasi-convex in its
second input, .

Proof. Suppose S (fl, N=T1,8 (ig, Y) = T,, and suppose there exists £; and L, that satisfy the
constraints in Definition 6.4 with El, Ti,and Eg, T> respectively. If we can construct a functional
L3 such that the constraints in Definition 6.4, are satisfied with ig = Ail +(1- )\)ig, and Tz =
max{Ty,To}, we are done. Let L3 = AL, + (1 — A)Ls. As in the mean estimation case, all of the
constraints in Definition 6.4 will be satisfied trivially except for Constraints 2c and 5, and Constraint
2c is the same as in the mean estimation case. So, the same verification implies that this constraint
is also satisfied. Constraint 5 is also straightforward, since if (ﬁ —1-T1)- I < L[] < 2K+71-Tqy)-1
and(%—’c-Tg)-I < Lo[¥2] < 2K+71-T) I, then(%—”c-max{Tl,Tg})-I SA-L[Z]+1=-A)-Lo[X] <
(2K+T -maX{Tl,Tg}) - 1. O

6.4.4 Accuracy

We show that any point T of low score with respect to i.i.d. samples from N(0, ) must be close to
¥ in spectral distance, i.e., [|[Z7V/22E7Y2 — I||,, < O(a).
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Lemma 6.13. Let a = 5(77) and suppose «,n are bounded by a sufficiently small constant. Let
_~ 2
n > O(w), and X = {x1,...,x,} ~ N(0,X), for K'I < £ < K-1I. Also, suppose
T < (ndK/e)=OW, N
Then, for any a* < a, with probability at least 1 — B, every symmetric matrix ¥. € R4 that is
(a*, 7, T)-certifiable for X with T = nn must satisfy | Z~Y/222"Y2 — I||,, < O(a).

As in the mean estimation case, the proof follows the same approach as [KMZ22], so we defer
this to Appendix B.
6.4.5 Volume of Good Points

Lemma 6.14. Let X = {xy,...,x,} ~ N(0,L), and let ¥ = {y1,..., Yn} represent an n-corruption of
X. Then, for every integer T € [ - n,n* - n] for some fixed constant n* < 1, with probability at least 1 — B,
every (a, t, T)-certifiable covariance with respect to Y has spectral distance at most O(T /n) from L.

Proof. Since the score function has sensitivity at most 1 (Lemma 6.11), this means that any («, 7, T)-
certifiable mean with respect to Y is an («, 7, T + nn)-certifiable mean with respect to X.

T _ (T . . , = . = ,
Now, define )’ := —— = O(5;). In this case, by setting &’ = O(n )~and since a = O(n) <a’,we
have that by Lemma 6.13 that any (a, 7, T +1n)-certifiable covariance £ must satisfy || Z71/22571/2 -
Ilop < O(a’) < O(T /n). O

So, for any 1 € [, "], the any X with score at most i/’ - n must be of the form (1 —a’)- X + 2’ - R
where0 < R<Zanda’ = O (). So, if we define Vx to the set of PSD matrices spectrally bounded
by X (where we think of symmetric matrices as vectors in RA@+1)/2) the set of (a, T, 17 n)-certifiable
covariance matrices has volume at most ¢°“?) . Vs, meaning V,, < O(l)"l2 - Vy for " € [n,n°].
In addition, by Constraint 5 of Definition 6.4, we know that L[X'] is always spectrally bounded
between 7% - I and 4K - I, and so Tis spectrally bounded between 0 and 8K - I < 8K? - ©. Thus, for
any 1’ € [, 1], Viy < O(K2)4* . Vg = £OW?logK) .y

Finally, by Lemma 6.9, with probability at least 1 — § every X within spectral distance a of
%Z xix] (where {x;} are the uncorrupted points) have score at most 7 - n. Since n > 5((512 +
log?(1/8))/n?), % 2 xix] has spectral distance at most a/10 away from X, which means every b
within spectral distance a/10 of = has score at most n - nn. So, V;; > Vx - (a/ 10)d2.

6.4.6 Efficient Computability

As in the mean estimation case, we apply Theorem C.6 in Appendix C. This time, there are
constraints where we wish to spectrally bound £ applied to a matrix. However, this constraint is
also captured by Theorem C.6. So, we have efficient computability.

6.4.7 Efficient Finding of Low-Scoring Point

To verify that the “robust algorithm finds low-scoring point”, we simply remove the constraint
that L[(1+a)Y =X] > —-t-T-I,and L[Z - (1 - a)X’] > —7- T - I. We can apply Theorem C.6 in
the same way to find some linear operator .£ with score at most ming S(X, Y) + 1. Then, we can
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compute L[X'] and set r < 7, and obtain that every matrix ¥ such that ||E — L[Z]||lr £ r has score
at most ming S(X, Y) + 1.

6.5 Proof of Theorem 6.1

We apply Theorem 4.1, using the score function defined in Definition 6.5 and thinking of the
candidate parameters X as lying in R¥@*1)/2 Indeed, for r = a/K°® and R = K°), we have
verified all conditions, aslong asn > O((d? +1og?(1/ B))/1n?). Therefore, we have an e-DP algorithm
running in time poly(n, d, log %) that finds a candidate covariance X of score at most 2nn, as long

i n>0 ( max log(Vyy (M) /Vy(Y)) +log(1/(B - 1')) |
nm<ny’<1 e 1

By our volume bounds, this means it suffices for

N O(d2+10g2(1/ﬁ)) +o( o d?log(1/n) +log(1/(B - n)) e d?log(K /1) +1og(1/(B - 1))
nsn'<n’

a? e-n <<l e-n
~ (d? +1og?(1 d? +log(1 2
:O( o) & +logl/p) | alogK)
a e €

Hence, our algorithm, using this many samples, can find a point T of score at most 2nn with
respect to Y, which means it has score at most 3nn with respect to the uncorrupted samples X.
Finally, by replacing n with 31 and applying Lemma 6.13, we have that any point T with score at
most 3nn with respect to X is within O(a) spectral distance of X. This completes the proof.

6.6 The approx-DP setting

In this subsection, we prove Theorem 6.2. In this setting, the score function is identical, but we can
afford fewer samples as we apply the algorithm of Theorem 4.2 instead of Theorem 4.1. The main
additional thing we must check is that for any dataset Y, if S(X, Y) < 0.7n*n for some X, then the
volume ratio V;(Y)/Vo.sp(Y) is not too high.

Before proving our main result of this subsection, we must first establish the following lemma,
which is important for ensuring privacy. We defer the proof to Appendix B.

Lemma 6.15. Fix n* to be a sufficiently small constant, and T = n*n. Then, for a dataset Y with every y;
bounded in {5 norm bz K-d 130, if there eag'st linear operators L1, Lo that are both («, T, T)-certificates for
Y, then ¥y < O(1)-Zoand Lo < O(1) - 1.

As a corollary of Lemma 6.15, we have the following result.

Corollary 6.16. Suppose that Y is a dataset with every y; bounded in by norm by K - d'%° that has an
(a, 7,0.7n)-certifiable covariance, and let T = L[X'] where L is an (a, t,0.70"n)-certificate. Then,
the set of (a, T,0.8n*n)-certifiable covariance matrices X. contains all matrices spectrally bounded between
(1—-a)L and (1+a)L, and the set of (a0, T, *n)-certifiable covariance matrices is spectrally bounded between
% -3 and C - ﬁfor some constant C = O(1).
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Proof. If L is an (a, t,0.7n*n)-certificate, it is also an («, 7, 0.8n*n)-certificate. This means every b
suchthat(1-a)L < T < (1+a)is (a, 1, 0.8n*n)-certifiable. To see why, note that fora («, 7, 0.8n'n)-
certificate £ of Y, Constraint 4 (which is the only constraint that deals with f, which we recall is
not indeterminate) just requires that L[(1+«a)XZ’ - E] > —1-T-Iand L[i— (1-a)X] > -1-T-I. So,
any b spectrally bounded between (1 — a)tand (1+a)Lisan (a, T, 0.81*n)-certifiable covariance.

The second part is immediate by Lemma 6.15. m]

Therefore, if we let Vi represent the volume of PSD matrices spectrally bounded above by
)3 (where we think of symmetric matrices as vectors in R4@+1)/2) the set of (a, T, n*n)-certifiable
covariance matrices has volume at most O(l)d2 -V and the set of (a, 7, 0.81"n)-certifiable covariance
matrices has volume at least a?” - Ve. So, the ratio V- (¥)/Vo.gp(Y) < O(1/ a)®.

We now prove Theorem 6.2, by applying Theorem 4.2. First, note that we may truncate the
samples so that no y; € Y has norm more than K - d'%. Since we are promised ||Z||,, < K, the

probability that any uncorrupted sample has this norm is at most e™4'"". We will set 1" to be a
sufficiently small constant (such as 0.01). We just showed, using Corollary 6.16, that for all Y/ such

that ming S(Z, Y) < 0.77°n, Vi (Y)/Vosr (YY) < O(1/a)®. So,aslongas n > O (log(l/é)wf 1°g(1/“)) ,

the algorithm of Theorem 4.2 is (¢, 6)-differentially private. In addition, we have already verified
all of the conditions, so the algorithm is accurate as long as n > O((d? + log?(1/ B))/n?) and

0> 0y “ECACTREUIE D)

< <y’ e-1

By our volume bounds, this means it suffices for

n>0 (dzﬂo—gj(l/ﬁ)) L0 (log(l/é) +d? 1og(1/a)) L0 ( i d2log(1/1n) +10,g(1/(ﬁ 1)
¢ € n<n'<n’ €1
_ 65(d2.+10%f(1/ﬁ) N d2-+10g(1/ﬁ)_klog(1/6))'
o - €

This concludes the proof of Theorem 6.2.

7 Learning a Gaussian in Total Variation Distance

The main result we prove in this section is is to privately learn the covariance X of a Gaussian up to
low Frobenius norm error, if we are promised all eigenvalues of X are between (1 — ) and (1 + «).

Theorem 7.1 (Privately Learning a Preconditioned Gaussian). Let X € R where (1 —a) -1 < X <
(1+ a) - I. There exists an e-differentially private algorithm that takes n i.i.d. samples from N(0, X) and
with probability 1 — B outputs ¥. such that ||Z — L||r < O(a), where

25 m+b%umﬂ+ﬁ+bgum.
a ae

Moreover, this algorithm runs in time poly(n,d), and succeeds with the same accuracy even if n = Q(a)
fraction of the points are adversarially corrupted.
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By combining Theorem 7.1 with Theorem 5.1 and Theorem 6.1 (or Theorem 5.2 and Theo-
rem 6.2), we will be able to prove our main results on privately learning Gaussians up to low total
variation distance, namely Theorems 1.3 and 1.4. We prove these theorems in Section 7.4.

7.1 Robust Algorithm
Suppose {x;} is asetof samples from N(0, ), where (1-a)-I < £ < (1+a)-I. Let{y;} be an arbitrary

n-corruption of {x;}. Consider the following pseudo-expectation program, where {y;} are the
input points and the domain is the degree-12 pseudo-expectations with {w;}, {x;}, {M; i}, (x,k} }
as indeterminates.
find B
such that E satisfies w? = w;,
E satisfies Z w; > (1-n)n,
E satisfies WwiX; = w;yi,
=1 - / ’ / ’ ’ nNT T _ A ’ _ 1 / ’
E EZ(xi@)xi -S)xi®x;-S5) + MM'| =(2+0O(n))l, where S’ = Ein@)xi.
i=1 i

We use X’ to represent %Z(xg)(x;)T: note that S’ is the flattening of X'. It can be proven that

if n is as in Lemma 6.3, with probability 1 —  over the choice of x;’s, if we output EY’, then
IEZ" - Z||lr = O().

7.2 Score Function and its Properties

Again, we need design a suitable score function based on the robust algorithm, this time for
learning covariance in up to low Frobenius norm error.

Definition 7.2 (Certifiable Covariance). Leta, 7, p, T € R*%,y1,...y, € R (with Y := {yi, -, yn}),
and T € RY. We call the point T an (a, 7, ¢, T)-certifiable covariance for Y if and only if there exists a
linear functional £ over the set of polynomials in indeterminates {w;}, {x;’j}, {M; x} of degree at
most 6 such that

1. L1=1
2. for every polynomial p, where [|R(p)||2 < 1:
(@) Lp?>-7-T,
(b) Vi, Lw? —w;)p* € [-1-T,7-T],
() LEw;—n+T)p?> = -51-T -n,
(d) Vl/ j/ Lwi(x;’j - %,j)PZ € [_T : T/ T- T]/

3.,k = L (35 ()2 = ()P = 8T + MMT = 2 + )l

where x; = {x;]‘}lﬁjﬁd/ and S’ = Ei x;®2.

]{j,j’},{k,k’}) el[-t-T,7-T],
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4.Vj keldl, L, ~Tjxel-p-1 T, +7-T]

We also require [|R(L)||2 < R” + T - © for some sufficiently large R’ = poly(n,d). As in the mean
estimation case, this requirement is only needed for computability purposes. We will also say that
Lisan (a, 1, ¢, T)-certificate for Y.

Again, we may think of £ as an approximate pseudo-expectation. In addition, for each
constraint 2a) to 2d) we implicitly assume a bound on the degree of p so that £ is applied to a
polynomial of degree at most 12.

For our purposes, we will end up setting t = 1/(n - d)°, for a large enough O(1).
Now we use this definition to define a score function.

Definition 7.3 (Score Function). Let &, 7, ¢, T € R=0, yy,...y, € RY (with Y = {y1,...,y,}) and
¥ € R4 We define the score function S : R™*? — R as

S(f,y; a,T,P) = mTin such that L is a (a, 7, @, T) certifiable covariance for Y = {y1,..., yu}.

In the rest of this section we will prove the following properties for this score function. This
will allow us to use Theorem 4.1.

1. Score has sensitivity 1.
2. Score is quasi-convex as a function of x.

3. All points T that have score at most n - n have IZ - S|l < 5(1}). (Robustness for vol-
ume/accuracy purposes).

4. The volume of points that have score at most 1 - n is sufficiently large, and the volume of
points with score at most 1" - n for " > 1 is not too large.

5. Score is efficiently computable.

6. We can approximately minimize score efficiently.

Checking these constraints will, for the most part, be identical to the cases for mean estimation
and covariance estimation in spectral distance. So for the sake of brevity, we omit any details that
are essentially identical to these cases.

7.2.1 Existence of Low-Scoring X’

As in the case of covariance estimation, we must show that for data points drawn from N(0, X),
that some X’ close to X has low score. In this setting, it actually turns out to be easier, because
the dataset has already been well-conditioned and since the robust algorithm/score function are
slightly easier to work with.

Lemma 7.4. Suppose that n > 0 (d2+10+22(1/m) and o = 5(17). Let X = {x1,...,xn} L N(0, %), where
IZ=1llop < a,and let Y = {y1,...,yn} represent an n-corruption of X. Then, with probability at least
1-p, for ¥ = L ¥ x;x][, every Y such that | — Z||p < ¢ is (a, T, ¢, nn)-certifiable.
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Proof. Again, we use the fact that £ generalizes pseudoexpectations, which generalize expectations

over a single data point. We will set w; = 1if x; = y; and 0 otherwise, and x/ = x; for all i. By part
2 of Lemma 6.3, we know that for all 4 X d symmetric matrices P with ||P||r = 1, if x; Ml 0,1),

then |%(xixl.T —1,P)% - 2| < O(a). But in our case, x; L. N(0,X), but by the same argument as
Lemma 6.9, we have

1 n
= > (xix] —E,P)? <2+ 0(a) - [IZ/2PEM?|I3
i=1

for any symmetric matrix P. Also, by Proposition 6.8,
IZV2PEY2|[E < (14 3a) - |IP]le.

So, by setting X’ to be the empirical average of x;x;", this means
1\ 1\
= > (xix] =X, P)’ < — 3 (wix] ~L,P)’ < (2+0(a))- [£°PZ2|2 < 2+ O(@)) - [IPI17
i=1 i=1

for any symmetric matrix P. Note, this is also true for non-symmetric matrices, because if P is
nonsymmetric, then % has smaller Frobenius norm but (xixl.T -Y,P)= (xixl.T -, P+TPT).
By flattening and defining S’ = (X’)°, we have that

n
% Z(xf"z’2 -5,0)? <2+ 0(a)
i=1

for all unit vectors v € R%*. Hence, % 2y (x:f’z’2 - S')(x:f’z’2 —S’)T has all eigenvalues at most 2+ O(«),
and thus we can find some positive semidefinite MM such that %Z?zl(xl@ - S’)(xfg’2 -9)7 +
MMT =2+ O(a). ~ ~

If Z;.’k —Ljk € [-¢, ¢]forall j, k, then T has score at most 17 - n. So, every covariance matrix X

with || - X/||F < ¢ has score at least 7] - 7.
Finally, we remark that every w;, x; j, and My; 1} (j ki is bounded by poly(n,d). Therefore, the
corresponding linear operator £ satisfies ||R(L)]|2 < (nd)°W, O

7.2.2 Sensitivity

Before proving sensitivity we need to prove the following upper bound on the value of the score
function.

Lemma 7.5 (score function upper bound). The value of the score function S defined in Definition 7.3 is
less than or equal to n.

Proof. The proof is identical to Lemma 6.10: we againsetw; = 0 and x} = x; foralli, withT =n. O
Lemma 7.6 (sensitivity). The score function S as defined in Definition 7.3 has sensitivity 1 with respect

to its first input.
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Proof. The proof is nearly identical to Lemma 6.11. Suppose that Y, Y’ are two neighboring
datasets, and & € R™?, Moreover, assume S(X, Y) = T. If we show that S(T, V') < S(T, Y) = T+1,
by symmetry we are done.

The only constraints that are different in our setting from Lemma 6.11 are Constraints 3 and 4
in Definition 7.2. However, note that these three constraints do not involve w; at all, so in fact their
evaluation is the same regardless of £ or £’. The only difference is we are allowing the values L[]
to have a greater range, which makes it easier. m]

7.2.3 Quasi-convexity

Lemma 7.7 (quasi-convexity). The score function S as defined in Definition 7.3 is quasi-convex in its
second input, .

Proof. Again, all of the constraints are satisfied trivially except 2c), and the same proof as in
Lemma 5.9 and Lemma 6.12 works for this case. O

7.2.4 Accuracy

We now show accuracy, meaning that any point Y of low score with respect to i.i.d. samples from
N(0, Z) must be close to L. Because of our sensitivity bound, this will also imply a similar result
for corrupted samples. Like for Lemma 5.10 and 6.13, we defer the proof to Appendix B.

Lemma 7.8. Let a = 5(17) and suppose «,n are bounded by a sufficiently small constant. Let n >
2 2
A Hoe WP ppd X = {x1,...,%:} ~N(0,%), for L € R with (1 - a)[ < Z < (1 +a)l.

a2 s
Then, for any a* < a, and assuming © < 1/(n d)°W, with probability at least 1 — B, any covariance
matrix ¥ € R that is (a*, T, ¢, T)-certifiable for X with T = nn and ¢ < a/d must satisfy ||Z - X|[r <

O(a).

7.2.5 Volume of Good Points

Finally, we use our accuracy bounds to get an upper bound for the volumes of V. We already can
obtain a lower bound from Lemma 7.4.

Lemma7.9. Let X = {x1,...,x,} ~ N(0,L) (where(1-a)l K Z< (1+a)l),andletY ={y1,...,yn}
represent an n-corruption of X. Then, for every integer T € [n - n,n* - n] for some fixed constant n* < 1,
with probability at least 1 — B, every (a, T, ¢, T)-certifiable covariance X. with respect to Y, for ¢ = a/d,
satisfies |£ — || < O(T/n).

Proof. Since the score function has sensitivity at most 1 (Lemma 7.6), this means thatany («, 7, ¢, T)-
certifiable covariance with respect to Y is an («, 7, ¢, T + nn)-certifiable covariance with respect to

X.

Now, define )’ := Tzﬂ = O(L). In this case, by setting a’ = o) and since a = 5(nl$ a’, we
have that by Lemma 7.8 that any (a, 7, ¢, T + nn)-certifiable covariance © must satisty [|X — Z[r <
O(a’) < O(T/n). O
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We think of the set of potential covariances as lying in R¥“+1)/2 by taking the upper-diagonal
entries. In addition, we know that the covariance has all eigenvalues between 1 — @ and 1 + a,
so in RY@+1/2 they all lie in a fy-norm ball of radius O(d) around the origin. If we set ¢ = a/d
and 7 < 1/(nd)°W, this means the volume of (a, 1, ¢, T)-certifiable covariances for T = nn is at
least (a/d)*@+D/2. However, for any T = n'n for n < i’ < n*, the volume of (a, 7, ¢, T)-certifiable
covariances is at most (O(n'))d(d“)/ 2 times the volume of a @-dimensional sphere, which is
O/ d)d(d”)/ 2. Finally, for T = n'n with i’ > 7", the volume of ©, the set of all candidate
covariances Z is at most 4°*).,

7.2.6 Efficient Computability

As in the mean estimation case, we apply Theorem C.6 in Appendix C: the proof is identical to
verify “efficient computability”.

7.2.7 Efficient Finding of Low-Scoring Point

To verify that the “robust algorithm finds low-scoring point”, we remove the constraint that
L[Z}’k -Yiklel-¢p—7-T,p+7-T]. We cin apply Theorem C.6 in the same way to find some
linear operator .£ with score at most ming S(XZ, YY) + 1. Then, we can compute L[XZ'] and set r < 1,
and obtain that every matrix X with [|Z — L[X]||F < r has score at most ming S(Z, Y) + 1.

7.3 Proof of Theorem 7.1

We apply Theorem 4.1, using the score function defined in Definition 7.3. Indeed, forr = ¢ = a/d,
we have verified all conditions, as long as n > O((d2 +1log?(1/ B))/a?). Therefore, we have an ¢-DP
algorithm running in time poly(n, d, log R) that finds a candidate covariance T of score at most
2nn, as long as

0> 0 ( - loa(Vy W)/ Vy(¥) +log(1/ (B - 1)
n:n<n’<1 c- n/

Using Lemmas 7.4 and 7.9, and by the commentary after Lemma 7.9, we have that for " < 1"
for some n* = Q(1), if we set ¢ = a/d, then Z,,/(M)/VU(M) < (O()/a)?@+DI2 < (O(1/n))4Ed+D/2,
For " > 1", we have that V;;(¥)/V,,(¥) < dO@) 8o overall, it suffices for

n zo(dz*gf“/ﬁ))m(  @log/m) +log(1/(Bm) | dlogd +log(1/(§ 1)

<< e-1 <<l e-1
_5 d? + log? (1/ﬁ) d* + log(1/B)
- a2 e a '

Hence, our algorithm, using this many samples, is ¢-DP, and can find a point ¥ of score at most
2nn with respect to Y. So, by replacing  with 217 and applying Lemma 7.8, we have that any point
L with score at most 21 with respect to Y must have ||Z Z||r £ O(a). This completes the proof.
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7.4 Proof of Theorems 1.3 and 1.4
By combining Theorems 6.1, 7.1, and 5.1, we are able to prove Theorem 1.3.

Proof of Theorem 1.3. Let the corrupted samples be vy, ..., y,, and let the uncorrupted samples be
X1ye0e,Xn.

We may assume without loss of generality that o = 5(17) (either by raising «a or n appropriately).
Via the standard method of pairing samples and subtracting them, we may first assume that the
mean is 0, and we will attempt to learn covariance. By Theorem 6.1, we can thus privately learn a
¥ such that || 27125, x-1/2 — Illop < a, given samples y1, ..., Ya.

Next, we learn X up to Mahalanobis distance rather than just spectral distance. Let §J; = f;l/ 2yi,

and let £; = f;l/zxi and x} = Y12y, Note that X i N(©,I),and %; = ] - x} for | = 511/221/2.
However, | may be adversarially dependent on the data points, as we chose T, based on the
samples Y°. Nevertheless, we may still apply Theorem 7.1, because it will turn out that the {£;}
samples will have the desired resilience conditions for every choice of ] with [|J]T = I||op < a.

Indeed, note that (%;2” — JJ7, P) = (Jxi(x))"]" = JJ,P) = {(x})(x})" = I,]TP]) for all ], and
lJTPJ||lr = (1 £3a) - ||P||r by Proposition 6.8, since J] T = 251/22511/2. Thus, assuming {x} satisfy
the resilience properties (Lemma 6.3), % (& -J]T, P)? < (2+ O(a)) - ||P||§ for all symmetric
matrices P. This is sufficient to ensure Lemma 7.4 holds, if we replace X with {%£;,...,%,} and
L with JJT = f;l/ 225;1/ ?. Likewise, Lemma 7.8 will also work in the same way, replacing each
x; with %;, and replacing ~ with JJT. The rest of the conditions also clearly hold (as they either
do not depend on the dataset or follow from Lemmas 7.4 and 7.8). Therefore, we can apply
Theorem 7.1 to privately and robustly find ¥, such that ||[Zy — JJT||r < O(a), by applying the
algorithm on /i, . .., J,. Since both X3 and JJ T are spectrally bounded between 1 + o, this implies
I - f;lpﬁTE;lpHF < O(a), which means ||I — ]TEEIIIIF < a. Note, however, that we can write
this as ||I — Zl/z(le/zfgllem)zlp||F < @, which implies that ¥ and Fii”igf}/z are a-close in
Mahalanobis distance. So, we can output > = f}/ 22221/ 2

Finally, we must decide on fi. To do so, we return to our original samples yi, ..., y, (Where
we did not do sample pairing and subtraction), and redefine §; = £71/2y;, £; = £-1/2x;. Also,
redefine x = Y Y2x;. Now, X~ NE 2y, 1),and £; = ] - x} for some new choice of | = y-l2yl/z)
and note ||J]JT = I|[r < «, but ] may be adversarial. However, this is sufficient to satisfy all
resilience conditions by the remark after Corollary 5.4. Hence, using Theorem 5.1 on the corrupted
samples ;, we learn ~~1/2y up to £, error O(a). Multiplying this by £'/2, we find i such that
lu—iilly < O(a), which implies drv (N({, 3), N(u, 3)) < O(a). Butsince T and 3 have Mahalanobis
distance at most O(a), this means dpv(N(u, £), N(i, Z)) < a. So, by the Triangle inequality, we
have drv(N(f, ), N (4, X)) < O(a), which completes the proof.

The privacy factor and increases by a factor of 3 via basic composition of privacy, the failure
probability also increases by a factor of 3, and the sample complexity is simply the maximum of
the sample complexities required by Theorems 6.1, 7.1, and 5.1. m]

The proof of Theorem 1.4 is very similar: this time, we combine Theorems 6.2, 7.1, and 5.2.

°0One may attempt to remove this issue by using different samples for this step, but due to the adversarial nature of
the strong contamination model, previous samples may affect how later samples are corrupted!
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Proof of Theorem 1.4. The proof is identical to the proof of Theorem 1.3. First, we privately learn X
such that ||[Z1/2Z, 2712 — [||,, < @, using Theorem 6.2. We then replace each y; with §; = E;l/zyi,
and via the same procedure we learn some 3. such that X, 3. are close in Mahalanobis distance.
Finally, we redefine §j; = -1 2y;, and learn I such that drv(N({, 2), N (u, L)) < O(a), using
Theorem 5.2, in the same way as we applied Theorem 5.1, to prove Theorem 1.3.

The privacy factor and failure probability increase by a factor of 3, and the sample complexity

is the maximum of the sample complexities required by Theorems 6.2, 7.1, and 5.2. m]
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A Omitted proofs for Private Sampling

In this section, we prove Lemmas 4.4 and 4.5.

A.1 Preliminaries

In this subsection, we note a few miscellaneous results that will be very important in proving
Theorems 4.1 and 4.2.

We need the following ellipsoid theorem, showing that convex bodies are contained in reason-
ably small ellipsoids but also contain reasonably large ellipsoids.

Theorem A.1. [KLS95, Theorem 4.1] Let K C R? be a convex body in isotropic position, meaning that
if X is uniformly drawn from K, E[X] = 0 and Cov(X) = 1. Then, for B the unit ball of radius 1,

2 . B c K C+fd(d+2)-B.
Next, we need the following basic proposition.

Proposition A.2. Suppose that K, K’ are convex bodies such that B(0,r) ¢ K c K’, and suppose that
K" ¢ (1 + y1)K, where (1 + y1)K represents K dilated by a factor 1 + y around the origin. Then,
vol(K’) — vol(K) > (%)d.

Proof. Since K’ ¢ (1 + y1)K, there exists a vector v such that v, (1 + %)v are both contained in K"\ K.
Now, let’s consider the ball of radius p around (1 + %)v for some small value p. We will show that
for p appropriately chosen, this ball is contained in K’ but is disjoint from K.

For any such point, we can write it as v + (%v + w) for some w with ||w||2 < p. If this point
were in K, then since v ¢ K, this means by convexity v — A(Z—lv + w) is notin K for all A > 0. By
choosing A = %, we have that —% -w is not in K. This is a contradiction if we choose p < %,
since this implies —% -w has norm at most r so it must be in K. Thus, if p < V%, the ball of radius
p around (1 + £!)v is disjoint from K.

Next, we alternatively write the point as (1 + %)v —( %v — w). To show it is in K’, note that
1+ %)v is in K’, so by convexity it suffices to show that (1 + %)v - A(%v — w) is in K’ for some
A > 1. By setting A = (1 + %1) . %, it suffices to show that (1 + %) . % ‘W = (% + 2) -wisin K’. But
this is similarly true as longas p < r/ (% + 2), which holds as long as p < ler

Therefore, K’\K contains a ball of radius %, which has volume at least %)d . m]
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A.2 Sampling from a well-rounded convex body with an imperfect oracle

In this subsection, our goal is to sample uniformly from a convex body, but we wish to do this even
if we only can afford polynomial bit precision and do not have a perfect membership oracle. To do
this, we will apply the well-known hit-and-run Markov chain, but with some minor adjustments
to avoid the issue of requiring infinite precision arithmetic.

First, we describe the standard hit-and-run Markov chain assuming infinite precision arith-
metic. Given a convex body K for which we have a membership oracle, the hit-and-run algorithm
starts with a point xg € K. At each step ¢, we move from x;_; € K to x; € K as follows. We first pick
a vector v at random from the unit sphere. We then let x; be uniformly chosen on the line segment
{xt-1 + A -v}ier N K, ie., the line segment parallel to v that goes through x;_;, but restricted by K
since we cannot sample outside K.

The main result of the hit-and-run algorithm we apply is the following, due to Lovasz and
Vempala.

Theorem A.3. [LV04] Let K be a d-dimensional convex body that contains the ball B(0, 1) and is contained
in the ball B(0, D). Then, for a sufficiently large constant C and forany 0 < y < %, afterm > Cd*D?log !
steps of hit-and-run starting from the origin (i.e., setting xq to be the origin), the distribution of the final
point x, has total variation distance at most 'y from the uniform distribution over K.

In our setting, we cannot directly use the hit-and-run algorithm for two reasons. The first
reason is that we cannot pick a truly uniform direction and sample truly uniformly along that
direction from a starting point. The second reason is that we don’t have a perfect membership
oracle. That being said, we will be able to make minor modifications to the algorithm and show
that we output a distribution that is “close” to uniform on K.

We assume we are given two unknown convex bodies K;, K, such that B(0,1) € K; C Ky C
(1 +y1)K; € B(0, D). One should think of D as polynomially large (we will later improve this to
being exponentially large) and y; as exponentially small. We also assume we have an (K, K2)-
membership oracle O.

For some small parameter y > 0, we define the hit-and-run algorithm with y precision as
follows. Given a point x;_;, we select a random unit vector v and round the coordinates of v to
multiples of y. Next, we attempt to sample along the line x;—; + A - v for A € R, restricted to K.
To do this with our oracle O, we perform a binary search to find a positive integer a; such that
O accepts x¢_; + a; - ¥ - v but rejects x;_; + (a; + 1) - y - v. Likewise we find a negative integer
—ay such that oracle accepts x;—1 — as - y - v but rejects x;—1 — (a2 + 1) - v - v. Finally, we compute
Xt = X¢—1 +a-)y-v, where a is an integer chosen uniformly at random betwen —a5 and a;, inclusive.
We note that it may be possible to choose x; that the oracle rejects, but we know that x; is always
in Kg.

Before analyzing the modified hit-and-run algorithm, we first show the following proposition.
Proposition A.4. Let K be any convex body. Suppose that x is a point and y > 0 is a parameter such that
the ball B(x, y) is contained in K, and let A\ be an arbitrary line passing through x. Define L to be the length

of AN K. Then, for any parameter 0 < A < 1, the length of points x” on A N K such that B(x’, A - y) is
contained in K is at least (1 — A) - L.
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Proof. Let A’ represent the segment of A that is contained in K, with endpoints y and z. Since the
ball B(x, y) is contained in K, we can consider the convex hull of this ball and the points y and z.
Note that the ball of radius A" - ¥ around A’x + (1 = A”)y or around A’x + (1 — A")z is contained in this
convex hull. So, all points x” on A’ such that B(x’, A - y) is not contained in K cannot be between
Ax +(1-A)y and Ax + (1 — A)z, so the length of the interval of such pointsis atleast (1-A)-L. O

Next, we show that the hit-and-run algorithm with y precision, assuming y is sufficiently small,
always stays within K; up to a small margin of error.

Proposition A.5. Let Ky, Ko be convex bodies such that B(0,1) c K; ¢ Ky € (1 + 1)Ky € B(0,D).
Consider running m steps of hit-and-run from the origin with y, precision, with x; being the point chosen
after the t step for all 0 < t < m. Then, for any 0 < T < 1 such that (t/2)"* > D - y1, we have that with
probability at least 1 — O(m - ), all the points x; satisfy the B(x;, (t/2)™) C Kj.

Proof. Suppose that after t steps of hit and run, the point selected is x;. Suppose that B(x;, y")) is
contained in K, for some positive real y*), which also means B(x;, y!)) c K,. Let A represent an
arbitrary line through x;. By making oracle calls to O using the binary search procedure, we obtain
some line segment A’ C A that goes entirely through K; but is contained in K. Let L represent the
length of the line segment we found, and L; represent the length of A N K;. Also, let L, represent
the length of ANKy,s0L; <L < Lo.

Recall that B(xt,y(t)) C Ky, but note that for any point x’ outside K;, B(x’,y1 - D) ¢ Ko.
y1-D
N0

Therefore, by Proposition A .4, the value of Ly — L is at most L, which assuming y(t) >2y1D

is at most 2);%)1) - L. In addition, the length of points x” in L; such that B(x’, T - y(”) ¢ Ky is at most

7Ly < 7-L. So, if we sample randomly from L even after discretizing by rounding coordinates to
the nearest multiples of y,, the probability of selecting a point x” such that B(x", T - y(” -y1) ¢ Ky

. D
isat most T + O (ylm )
Y

For t = 0, we assume xj is the origin, so we can set (¥ = 1. In general, we fix some parameter 7,
and let y**1) := 7. 9®) —y, 1f (/2)"*1 > D -y, then we will inductively have that y*) > (/2)! for

all0 <t < m,and so y;('tl)) < 1/2. Therefore, by a union bound over all 0 < t < m, we have that with

probability at least 1 —O(m - ), every x; selected satisfies B(x;, y*)) ¢ Ky, s0 B(x;, (t/2)") c K;. O

We show that the hit-and-run algorithm with limited precision outputs a distribution that is
“close” to uniform on the convex body K;. We will use the following formal definition of closeness.

Definition A.6. We define two distributions 9, D’ over Euclidean space R to be (y, y’)-close if
there exists a coupling of D, D’ such that P(, o)(p, o1 (la = cll2 > y) < .

Lemma A.7. Given parameters D, ys, ys, there exists yy such that log y;' = poly(d, D, log y5*, log y31),
and the following holds. If Ky, Ky are convex bodies such that B(0,1) c K; € Ky € (1+y1)K; € B(0, D),
then after m > O(d*D?log y3') steps of hit-and-run starting from the origin with y, precision, the final
point is ()2, y3)-close to the uniform distribution over K;.

Proof. We create a coupling between running hit-and-run with perfect precision and running hit-
and-run with y; precision. After t steps, let x; be the point we sampled for hit-and-run with
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perfect precision, and let x; be the point we sampled for hit-and-run with y; precision. We start
with xo = x|, as the origin.

Let A be the random line drawn through x;, and let A’ be the rounded random line drawn
through x;. We will couple the lines so that with 1 -7 probability, the lines are essentially parallel
up to y1 error. Let’s write A = {x; + A-v;}1er and A’ = {x] + A - 0]} er, where v;, v} are unit vectors
with [|v; — 02 < Vd - y1 with probability at least 1 — y;. If B(x;, (t/2)") € Kj, then the probability
that a random point x’ on A N K satisfies B(x’, (t/2)"*!) ¢ K; is at most T + O (( T2y ), by the

argument of Proposition A.5. Likewise, if B(x], (7/2)") C Kj, then the probability that a random
point x” on A’ in the segment selected by step t + 1 of the algorithm satisfies B(x’, (t/2)"*!) ¢ K3

. y1-D
isatmost 7+ O (—(7/2)'” )

Now, suppose that B(x, (t/2)"), B(x],(t/2)") € K1, and ||x; — x/||> < 7 for some parameter
™ < (7/2)" - 2D - y1. Then, if we selected A uniformly such that x; + Av; € Ky, then x} + Av] has

distance at most ©®) + 2D - y1 from x; + Av; (even after rounding off A to the nearest multiple of
71). This means that with probability at most 7 + O (();/121))"1 ), x; + Av; € K;. Likewise, if we selected

A" according to the distribution from hit-and-run on x; with y-precision, then x; + A’v; € K; with

probability at most 7+ O (( oy ) (even after replacing A’ with a uniformrealin [A"—y1/2, A" +y1/2]
to “un-round” it). So, by keeping A the same (up to rounding) whenever possible (which can
happen with at most O (T + /2)"1) failure probability, we have that [|x;11 — x],[l2 < 19D . 71
if B(xy, (1/2)™), B(x{, (1/2)™) € Ky, [lx; = x}[l2 < 7, and 1) < (¢/2)" — 2D - y.

To finish the proof, we set ) = 2Dy, - t. We assume that 7l) < (1/2)" — 2Dy, so it suffices for
4Dmy, < (t/2)". Let &; be the event that B(x;, (7/2)™), B(x], (7/2)") C Ky, and [|x; — x}||2 < ®,
Then, if &; holds, the probability that ||x;41 —x], [l2 < T (t+1) does not hold is at most O (T + (1/125,, )
In addition, the probability that B(x;11, (7/2)"), B(x},,(t/2)") C K; does nothold for any choice of
t+1isatmost O(m-7)if (r/2)"*! > D-y1, by Proposition A.5. So, P(E;\Er41) < O(m- T+T+(T/z)m)

771)1

which means that the probability that &,, doesn’t hold is at most O (m T+ T ), as long as

4Dmy; < (t/2)". Assuming &, we have that ||x,, — x},||2 < 2Dmy;, and by Theorem A.3, if
m > Cd*D?log y~! then the distribution of x,, is y-far from uniform over K.

To summarize, we have that there exists a coupling of x;, (which is the random walk af-
ter m steps of hit-and-run with yl—precision) with a uniform distribution x over K; such that

P((]lx — x},]l2 < 2Dmy1) <0 ()/ +m3T + @ /2)m) as long as 4Dmy; < (t/2)", Dy, < (t/2)"*,

and m > Cd?D?log y~!. Given some small parameters )2, y3, we set y = cys, m = Cd?D?log ™},

2Dm’ mD 7 4Dm
conditions are satisfied and P (||x — x/,[|2 = y2) < O(y) < ys. O

m m+1
and T = # for some small constant c. Finally, we set y; = min ( J2 o y/2" %) so that the

Next, we must show that, rather than having K, Ko € B(0, D) for some polynomially sized D,
we can have K1, Ko € B(0, R) for R exponentially large. In other words, one can avoid issues when
the convex body is poorly conditioned.

Lemma A.8. Let 2, y3 beasin Lemma A.7, and let y1 be defined as in the end of Lemma A.7, assuming D :=
2d3. Forsomer < 1 < R, Let Ky, Ko be convex bodies witha (K1 , Ky )-membership oracle, such that B(0, 1) C
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K1 € Ky € B(0, R), and vol(K3) —vol(K7) < ()/1 r) Then, there exists a poly(d, log Jog st log yzt)-
time algorithm that can find an affine transformation A such that A(K;) is contazned in B(0,2d3) but
contains B(0, 1).

Proof. The proof is an ellipsoid method, modified to deal with the fact that we do not have a perfect
membership oracle and that we do not have a separation oracle. We will keep track of an interior
ellipsoid E; C K; and an exterior ellipsoid E; D K>, and keep trying to either grow E; or shrink Es.
The way we do this will be inspired by some recent work on sampling and volume computation
of convex bodies [JLLV21].

Given current interior ellipsoid E; and exterior ellipsoid Es, let A be some affine transformation
that sends E; to the ball B(0,1) = AE;, and where the largest axis of AE is parallel to the first
coordinate direction. (Note that AE; may not have center as the origin.) Atevery step, we will only
increase the volume of E; and decrease the volume of E 2, and since E; started outas B(0, r), the affine
transformation A multiplies the volume by at most (£ ) Therefore, vol(AK3) — vol(AK;) < (& )d.

We may assume that this largest axis of AE, has length at least D := 2d3, or else we are already
done. Define K/ := AK;NB(0, D) and K, := AK2NB(0, D). Note that vol(K?,) —vol(K/) < vol(AKz)—

vol(AK;) < (@) ,and B(0, 1) C K, so by Proposition A.2, AKy C (1+7y1)AK; and K, C (1+y1)K].
Given (K1, Kz)-membership oracle access, it is simple to obtain (K7}, Kf,)-membership oracle access.
Therefore, by Lemma A.7, we can produce a sample from a distribution that is ()2, y3)-close to
uniform over K/ in poly(d, D, log y;*, log Vs 1) time.

Assuming without loss of generality that s, 3 < d71%, we can repeat the sampling poly(d, D) =
d°0) times and approximately learn the mean y; and covariance X, of the uniform distribution
with respect to K7, up to ¢ norm (resp., Frobenius norm) error 1 by using the empirical mean fI,
and empirical covariance 51 as our estimates.

First, suppose that one of our (approximate) samples from K| was a point x with £ norm at least
25d. Then, if we define y = (1-y1)x, theny € AK; and ||y||2 > 20d. If we rotate the space R? and as-

2
sume y = (y1,0,0,...,0) € R for y; > 20d, then the ellipse E = {z (- 10)2 + Z ((1—Zf/d)) < 1}

is contained in the convex hull of B(0, 1) and y. The volume ratio vol(E)/vol(B(0, 1)) is 10-(1— %)d_l >
% > 2, so we can replace AE; = B(0, 1) with the larger ellipsoid E C AKj.

Alternatively, every sample we drew has {3 norm at most 254, which means that the empirical
covariance 31 has operator norm at most 254. Thus, X1 has operator norm at most 30d, meaning
x"Xix < 30d for all ||x||2 = 1. Now, by Theorem A.1, K C {x (= p)TE N = ) < d(d + 2)}.
So if x C K7, then (x — [ul)TZIl(x — 1) < d(d + 2), and since the minimum eigenvalue of ZII is at
least 25d+1, this means that ||x — uq||* < d(d + 2)(25d + 1) for all x € K. Since the origin is in K},
this implies that every point in K/ has norm bounded by O(d%/?).

Recall that the original convex bodies K;, Ky are known to be in E;, and AE; has largest axis
parallel to the first coordinate direction. If the major radius of AE; is some F, then we claim

that all points in AK; or AKj have first coordinate bounded in magnitude by O ( d3/2) To see

why, for any x € AKjy, x - f is in K; by convexity. Moreover, since ||x|l2 < F, this means that

|| - %||2 <Dsox- % € Kj. Therefore, we actually have ||x . %” < 0O(d3/?), which means that
x|l < O(F - d3/2/D) = O(F/d%/?). This implies that |x;| is at most O(F/d>/?) for all x € AK;: this

therefore is also true for all x € AKy. The intersection of the ellipsoid AE, with the set of points
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with first coordinate at most O(F/d3/2) is contained in the ellipsoid E which shrinks the first axis of
AE; by a factor of 10 and grows all other directions by 1 + . So, we can replace AE, with another
ellipsoid E > AKj with volume at most {5 < 0.5 times the Volume of AEs.

Therefore, unless 2d3 - AE; > AEs, we can find elther a new larger E; or a new smaller E5 in
polynomial time. Each time this takes poly(d, D, log y2 ,logys 1Y = poly(d, log )/2 ,logys 1) time.
However, the volume ratio of the original ellipsoids B(0, r) and B(0, R) is (R/ ), so we can only
repeat this process at most O(d log %) times. O

We combine Lemma A.7 and Lemma A.8 to obtain the following corollary.

Corollary A.9. For any parameters r,y2,y3 < 1 < R, there exists some y1 such that logy;*
poly(d, log & -, logyy I log Vs 1) and the following holds. If Ky, Ky are convex bodies such that B(0, r) C

Ky € K5 C B(0, R) and vol(K3) — vol(Ky) < (545 r) then there is a poly(d, log &, log y51,log y3')-time
algorithm that can sample from a distribution that is (y2, y3)-close to uniform on Kj.

Proof. First, use Lemma A.8 to find an affine transformation A such that A applied to K; contains
B(0, 1) but is contained in B(0, 243). Then, if we define vy = (R/l;ﬁ, we can produce a sample that
is (4, y3)-close to uniform on AK;. Finally, undo the affine transformation and the sample will
still be (2, v3)-close to uniform. |

Unfortunately, being (y2, v3)-close to uniform does not necessarily ensure privacy. This is
because one may extract information about the data based on minor perturbations of the generated
sample. To fix this, we convert this version of closeness to pointwise closeness to uniform on a fine
grid of points.

Lemma A.10. (Convex body sampling, Lemma 4.4) Fix any parameters yg < d"' and r < 1 < R.

Let Ky, Ko be convex bodies such that B(0,r) C Ky € Ky C B(0,R), and vol(K2) — vol(Ky) < (&5 7)0l ,
for y1 that will be defined in terms of ys. Suppose we have a (K;, Ky)-membership oracle O. Then, in
poly(d,log &, log y51) time and queries to O, we can output a point z that is (1 + yg)-pointwise close to

uniform on the set of points in RY with all coordinates integer multiples of ys that are accepted by O, for

6
ys = 128,

Proof. First, we will define parameters y; through ys based on r, R, and yg. Define y4 := £ and

)5)6 )4

ys = L% Next, define 5 := and y3 := (—)d - L2 Finally, define y; to be the value for y;
that appears when applying Corollary A9 with y5 and ys.

Let K} = (1+3)K; and K}, = (1+ 1)Ks. Let D be the uniform distribution over K/ . By applying
Corollary A.9 on (Kj, K3) and then scaling the point by 1 + %, we obtain a point ¢ ~ D, where D,
is (2, v3)-close to D;.

Our algorithm works as follows. First, replace ¢ with ¢ + y, where each coordinate y; was
uniformly chosen from [—v4, y4] with precision ;. Then, round each coordinate of ¢ + y to the
nearest multiple of y5 to get a point z. Finally, we run a rejection sampling algorithm by checking
whether the (K;, K2)-membership oracle accepts z. If so, we return z. If not, we restart the
procedure until we accept some z. It will be simple to see that each step of the rejection sampling
algorithm succeeds with probability (1-C(5 1))@ > ()(1) because z will be in K; with this probability,
so we can stop the rejection sampling after O(log y3?) steps, to incur additional additive error y3.
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We now analyze the accuracy. Let D3 be a distribution so that we have a coupling between
Dy, D3, Dy such thatif (a,b, c) ~ Dy, D3, Dy, then ||a—bl|2 < v, with probability 1, and P(b # ¢) <
y3. Now, for any point z with all coordinates multiples of y5 such that the (K;, K3)-membership
oracle accepts z, we compute the probability of sampling z. In order to sample z, we must have
sampled c and y so that ¢ + y rounds to z. This probability is the same as the probability that
b + y rounds to z, up to additive error y3. If we condition on choosing a such that ||a — z|[e <
ya—(y1+y2+7y5), then ||[b—z||e < y14—(y1+7s5), soif each coordinate y; were chosen uniformly from
[—74, y4] with perfect precision, the probability that b + y rounds to z will exactly be (y5/(2y4))".
Due to precision issues, the actual probability that b + y rounds to z is ((y5 = O(y1))/ (2y4))".
Likewise, if we choose a such that ||a — z||e = Y4+ (Y1 + Y2+ ¥5), then ||b — z||e = V4 + (Y1 +)5), 50O
we will never select b + y to round to z. Finally, if y4 —(y1+v2+7V5) < [a—z|lo < Va+(y1+7v2+7V5),
then the probability that b + y rounds to z is between 0 and ((y5 + O(y1))/(2y4))".

Since 4 is truly uniform from K = (1 + 1)K;, we claim that the probability of selecting an a
with ||a = zl|le < ya+ (1 + Y2+ ¥5) is 2(ya + (y1 + y2 + y5)))d/vol(K’1). For this to be true, we
need every point a with ||a — z||e < y4 + (y1 + Y2 + P5) to be in K. Since O accepts z, this means
z € Ko € (1+ 1)Ky, so every point within ¢, distance (% —y1)-r of z is contained in (1 + %)Kl =K].
So, it suffices for Vd - Y1+ y2+ya+7ys) < (% —y1) - r. Likewise, the probability of selecting an a
with [|a — zlle < y4 — y5 — y2is (2(y4 — y5 — 72))?/vol(K}).

So, the overall probability that b+ rounds to z is at least (2(y4 — (y1 + 2 +y5)))?/ vol(KY) - ((ys—
O(1))/(2y4))* and at most (2(y4 + (y1 + y2 +75)))?/ VOI(K') ((y5 + O(y1))/(2y4))?. Assuming that

d-y1,72 < ysand d-ys < )4, these bounds equal OI(K,) (1 +0 (dyzf’ + dngl )) We also need that

Y1 << < \/_, so that Vd - (y1 +yo + 74 + 75) < (3 = y1) - r. Finally, we had an additive error of y; due
to the coupling of the points b and c, as well as another y3 for the rejection algorithm failing. So,
the final probability of choosing some point z with all coordinates integer multiples of y;5 that is

accepted by the (K;, Kz)-membership oracle is (d;il)d : VOI(Kl) (1 £0 (M + 40 )) + O(y3), where

ve s
we used the fact that vol(K/) = vol(Ky) - (1 + %)d.
Based on how we set 1, ..., ¥5, all the conditions hold, and we can simplify the probability as

(%)d : VOI(;) (1+0 (%)) + (g—;)d - y6. However, since vol(K;) < (2R)? and (%)d > 1 in total

[

d d . . L
this equals (5%)" - > . (1+0 (£)). So, our sampling algorithm is pointwise accurate up to a

vol(K1)
1+ O (%) factor. m|

Finally, we show that our sampling algorithm can also allow us to approximately compute the
volume of points accepted by the oracle O. More accurately, we can approximate the number of
points in the grid of precision y5 that are accepted by O.

Lemma A.11. (Volume sampling, Lemma 4.5) Let all notation be as in Lemma 4.4. Fix any ¢ <
0.5, and set 7/6 < ‘;R and y1,...,Ys in terms of ye as in Lemma 4.4. Then, for any y < 1, in

poly(d,log & e L log )/‘1) time and oracle accesses, we can approximate the number of points in R? with all
coordinates integer multiples of ys that are accepted by O, up to a 1 + € multiplicative factor, with failure
probability y.

Proof. For some p € [r, R], let K(lp) = K1 N B(0, p) and K(Qp) = Ky N B(0, p). Clearly, B(0,r) C K(lp) -
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K;p) C B(0,R), and vol(K;p)) - VOI(K(lp)) < (%)d. Also, let ) be the set of points in K(Zp) with all
coordinates multiples of y5 that are accepted by the oracle, and let N := |S(P)|,

Since y2 < y5 < 43, we have that VOI(K(lp)) = (1+o0(1)) -N®. ()/5)d. To see why, suppose x
is a point that, after rounding each coordinate to the nearest multiple of 5, is in (1 — yST\/E) . K(lp )
Then, since x moved by at most )/5\/3 in absolute value, and since B(0,r) C K(lp ), x must be in
K(lp) VST\/E)"I : VOI(K(lp)) which means
Vol(K(lp)) < (1+0(1)) - N - (y5)?. For the other direction, any point that is in K(p) C(l+y )K(p) if
we change each coordinate by up to ys, is still in (1 + y2) - (1 + 7/5\/—) K(p ) Therefore (y5)4 - N©®) <
vol(K¥)) - (14 0(1)).

Now, if p" < (1 + %)p, note that K(zp’) c(1+ %)K(zp). Therefore, this means vol(K(lp,)) < (e+

0(1)) - vol(K(lp)), which means that N*) < (e + 0(1)) - N®). Given this, by Lemma 4.4, we can
generate 1 + yg-pointwise random samples from S?) and check the fraction of them that are in
S by determining for each sample if its £ norm is at most p. By Hoeffding’s inequality, for any

and so is accepted by the oracle. Therefore, ()/5)d "N > (1 -

N((p,) with failure probability y up to an additive error of +O(¢’ + y5) in

O((¢’)?log y~!) random samples, and since 1 < N (( 7 < e +0(1), this also implies we can compute
the ratio up to a multiplicative factor of 1 + O(¢’), assuming y¢ < €.
Now, considerr = pg, p1,p2,.--,PM = R,where% < 1+%. Wecanlet M = O(d log B) Then, by

N pt+1)
N(Pt)

time, with failure probability £r. By multiplying all of our estimates to form a telescoping product,

¢’ < 1 we can compute

setting ¢’ = 7; wecan compute up to multiplicative error eCE/M) in poly (d log & ~, log y6 ,log 71 e )

we can compute N((,) up to a multiplicative factor e*0¢) with failure probability y;. Our goal is

precisely to compute N®), so it suffices to compute N). But since B(0,7) C Kj, this is just the

number of points with all coordinates integral multiples of y5 that are in B(0, r). By the argument
d d

of the above paragraph, this is just ygd - vol(B(0, 1)) - (1 + y“‘T\/E) = (VLs) etysd?r vol(B(0, 1)).

Since y5 = %, ys - d32/r < yg < e. Therefore, since the volume of a d-dimensional sphere

has an explicit representation we can compute N® up to multiplicative error e*°¢) in time

poly(d,log &, log y51, L,1og 1) = poly(d, log &,1,1og y~!) time. |

B Sum-of-squares proofs

In this section, we prove sum-of-squares proofs that are crucial in establishing accuracy of our
algorithms, as well as privacy in the approx-DP setting. These include both results both when
the data points are sampled from a Gaussian, and for worst-case results. Due to precision issues
when solving a semidefinite program, our bounds must hold with respect to not only all pseudo-
expectations but also with respect to linear operators that are “approximate pseudoexpectations”.
The exponentially-small numerical errors this introduces are manageable by observing that the
coefficients in the SoS proofs we use to analyze these approximate pseudoexpectations are at most
some fixed polynomial in the bit-representation of the input; see e.g. the discussion in [HL18b].
In Appendix B.1, we recall the sum-of-squares results from [KMZ22], and use these to establish
accuracy for Gaussian data. Namely, we show that a low-scoring point with respect to samples
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drawn from a Gaussian (or more generally for samples with the required resilience samples) must
be a good estimate for the mean/covariance of the Gaussian. Next, we prove two sum-of-squares
results showing that any set of data points, no matter how corrupted, cannot have a very large
volume of potential means (or covariances) which all have low scores. This differs from accuracy
results proven in prior work, which assume that a large fraction of the points come from some
distribution. This establishes a “worst-case accuracy” result, which is crucial to establishing privacy
in our approx-DP algorithms. We prove a result for covariance estimation in Appendix B.2 and a
result for mean estimation in Appendix B.3.

B.1 Proofs of Accuracy Lemmas

In this subsection, we prove the accuracy results for mean and covariance estimation (Lemmas
5.10, 6.13, and 7.8).

The main sum-of-squares result that we apply is the following lemma due to Kothari, Manohar,
and Zhang.

Lemma B.1. [KMZ22, Lemma 4.1, restated] Let x1,...,x, € R?, and let Ho = % 2oy Xi be the sample
mean. Let V(u,v) for v € R be a degree at most 2 polynomial in y, that is always nonnegative for all
u € R and v in some fixed subset S C RY. Suppose that for all vectors a € [0,1]" with Y1 a; > (1-n)n,
and for all v € S, we have

1 n
'; D aidxi = o, v)

i=1

n

3 il = 0,2 = Vo, 0)]| < O) - V(po, o).

i=1

< 0(n) - \V(po,v) and

Let E be a degree-6 pseudoexpectation on {x!} | and {w;}!_| such that
1. Vi € [n], E satisfies w? = w;,
2. Vi €[n], E satisfies w;x; = w;x;,
3. E satisfies Y, w; > (1 -n)n,
4. Forallve S, E [% iy (x =, v)z] <1+ 5(17)) . E[V(y’, v)], where u’ := % Yy X7
Then, for every unit vector v € S, the following two inequalities hold:
E [(4' — uo,0)?] < O) - (E[V(, 0)] + V (o, v)).
[(EIW] - po, )] < Oln) - V(po,0) + B[V (1, 0)] + O - BIV (', )] = V(ao, o))

We first prove Lemma 5.10.

Proof of Lemma 5.10. Since ¢ < a/ Vd, it suffices to show that any (a*, 7, ¢, T)-certificate L for X
satisfies || L[y'] — pl| £ O(a). If we assume 7 = 0 and a = 5(77), then in fact £ is a degree-6
pseudoexpectation that precisely satisfies the four required conditions of Lemma B.1, if we set
V(4',v) := 1 and define S to be the set of unit vectors in R?. In addition, by Corollary 5.4, the
required conditions on x; hold up to replacing a with 2a and the sample mean po with the true
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mean p. However, Corollary 5.4 implies that ||y — uoll2 < @, so [{x; — uo,v) — {(xi — u,v)| < a and
[(xi = po, 0)% = (xj — w, 0)*| < a(l + [{x; — w,v)]). But 2 37 [(xi — p,v)| < O(1). Together this
means that the conditions of Lemma B.1 hold up to replacing a with O(«a).

Therefore, for any unit vector v, [( L[] — 1, v)| < 5(17) < O(a) by Lemma B.1, as desired.

While our proof was for exact pseudoexpectations since we set 7 = 0, as mentioned in [KMZ22],
the proof also extends to approximate pseudoexpectations for small 7, since the coefficients at each
step in the sum-of-squares proof are polynomially bounded (see, e.g., the discussion in [HL18b]
or [KMZ22]). Here, we must make the assumption that every x; has magnitude bounded by
(ndR)°™M, which holds automatically assuming the resilience properties. m]

Next, we prove Lemma 6.13.

Proof of Lemma 6.13. Given samples x1,...,x, and d-dimensional indeterminates x/, ..., x;, we
define the indeterminates z7,...,z; as z; := (x})(x])" (note that each z! is a d x d-dimensional
matrix), and ¥’ := % 2. z;. We also define z; := x,'xiT and Xg := % > zi.

We will apply Lemma B.1, but replacing d with d?, x; with z;, x; with z7, ug with ¥y, and p/
with X/. We also define S to be the subset of vectors of the form vv ™ where v is a d-dimensional
unit vector. (Note that voT is d?-dimensional and has ; norm 1 when flattened). Finally, for
Y, M e R we define V(Z, M) :=2- (L, M)2.

Now, for any (a*, 7, T)-certificate £ with a* < a, it suffices to show that for any unit vector
v eRY, (1-0(a)0 Lo < L[vTE0] < (1 + O(a))v"Zo. This would imply that (1 — O(a))Z <
L[X] < (1 + O(@))Z, which means for T < 1/poly(n,d, K), (1 - O(a))L < = < (1 + O(a))Z.

We start by assuming 7 = 0, so £ is actually a degree-12 pseudoexpectation. Then, L satisfies
w? = w;, wi(x})(x))T = wix;x], and Y w; > (1 —n)n. In addition, since £ [||(0®%)TMTMo®?|2] =
L [lIMv®?||2] > 0, this means

n

L %Z ((x;,z)>2 _ UTZ/U)2 <2+ 6(1})) L [(UTZ/U)Z] ‘

i=1
But note that V(u’, v) is precisely replaced with 2 - (¥, v0")? = 2(v"X'v)%. In addition, (x/, v)* -
v X' = (z/ - X', vv"). Hence, the 4 conditions in Lemma B.1 are satisfied.
In addition, to apply Lemma B.1 we need to verify the desired conditions for z;. By the
resilience properties (Lemma 6.3) of {Z7/2x;}, we have that (1-a)|[v]|2 < £ 3 0TZ 1 2xx] 57120 <
(1 + a)||v||2, which means by replacing v with £!/20, we have

(1-a)(v o) <0 'Zov < (1+a)o'Lo. (6)

Now, for any unit vectorvand ay, . .., a, € [0, ]with ¥ a; > (1-n)n, | T, a,((v, Z712x)2 - 1)| =
|1 0 ai (T 2x)(Z72x)T = 1,ooT)| < O(y) if {Z72x;} satisfyjhe resilience properties. By
Ly ai((v, Z712x;)2 - ||v||§)| < O() - ||v||?, which means by

n

scaling, for general vectors v,
replacing v with £1/20, we have |1 37, a;((v, x;)? =0T Xv)| < O(n)) - v Zo. By (6), this implies

n

1 ~
- le ai{vv’,zi —Zo)| < O(n) - (vo ', Lo).
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Next, note that
(zi = X0, 00 )2 =(z; =L, 00" V2 + 2T = Lo, 00" ) - (z; = Z, 00" ) + (L — Z¢, 0" )2
=(z;i =Z,00 )22 0(a)- (v Zv)- |(zi — Z,00")| £ O(a?) - (v Zv)>.

We can rewrite (z; — X, v07) = (L 1/2x;, £1/2p)2 — ||Zl/zv||§. This means by applying Lemma 6.3
with P = (£1/20)(X/20)T, we have that

% Z(zi 2,002 =2+ 0() - |IZV2%0]|2 = 2+ O(a)) - (v Zv)>.
i=1

and

n
% Z |<Zi -X, UUT>| <0(1)- ”21/20“3 =0(1) - (UTZU).
i=1
Together, this implies that

% Z ai(vv",zi—Lo)?= 2+ 0(a) - (v Zv)? = (1 = O(a)) - V(Zg,v07).
i=1

Since )} a; > (1 — n)n, this completes the verification of the conditions.
Now, we may apply Lemma B.1. We first have that

L[(0T(Z' = Zo)v)’] < O - (LI 0] + L0 Zo0)]) -
By Cauchy-Schwarz, we know that
L[(©TZ0)*] < 2- (LI(0TZ00)*] + L[0T (X' - Lo)o)*])
which means
L[0T (X = Zo)0)*] < O() - (LI@T(Z' = Zo)o)’] + L[(0Zv)*])

and therefore,
L[(0T(X - Zo)v)*] < O(n) - (v Lgv)?

since v, Ly are fixed determinates. This also implies that L[(vTZ'v)?] < O(1) - (v Zgv)>.

Let A := v"Zyv, and B := L[vT (X — Zo)v]. Then, V(XZg,v07) = 242, L[V(Z/,v07)] = O(A?),
and L[V(X,00")] - V(Zg,vvT) =2 L[(vTZ0)? - (v Zgv)?] =2 L[0T (X' = Zg)v)?] +4A - B. In
addition, we know that L[(vT (X’ — Z¢)v)?] < O(1) - A%. Hence, Lemma B.1 implies that

B < O(n)- A++/O() - On)- A2+ Oln) - A- B < O(n) - A ++/Oln) - A~ BI.

This means that |B| < 5(17) - A, which means that L[v"2'v] = (1+ 5(17)) 02w = (120(a))-v" Lo,
where the last equation follows by (6).

This completes the proof for true pseudoexpectations. Again, the proof extends to approximate
pseudoexpectations, since the coefficients at each step in the sum-of-squares proof are polynomially
bounded. m]
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Finally, we prove Lemma 7.8.

Proof of Lemma 7.8. As in Lemma 6.13, we apply Lemma B.1 with some replacements. This time,
we replace d with d?, x; with z; = x?z, x) with z/ = (x)®2, po with So = 3, z;, and p’ with
S = % 2i z;- In addition, the set S R4 will represent all vectors P of norm 1 such that the d x d
matrix M such that M” = P is symmetric. Finally, we define V(S, P) := 2.

For any (a*, 7, ¢, T)-certificate £ with ¢ < a/d and a* < q, it suffices to show that || L[Z'] —
|l < a, since L[Z'];x — Zjx < O(a/d) for all indices j, k < d.

We again assume 7 = 0, so L is actually a degree-12 pseudoexpectation. Then, L satisfies
w? = wi, Yw; > (1 -n)n, and wi(x))®* = w;x®. Next, forany P € S, (z/ - §',P)* = PT((x))®* —
$/)((x))®2 ~ )P, and we are assuming L[((x))? - S')((x})®2 = §)T] < 2+ ) L[I] = 2+ a) - I,
where I refers to the d?x d-identity matrix. Hence, L[(z/-5’, P)?] < 2+a < (1+0(n))- L[V (S, P)]
since V = 2, so the 4 conditions in Lemma B.1 are satisfied.

Next, we must verify the desired conditions for z;. Note that (x?z - Sy, P) = (xixz.T -
Zo,Pﬂ> (where P% is the symmetric matrix that flattens to P). Also, note that (xixiT - Z,Pﬂ) =
(Z7V2xxT27Y2 — [, £V2PETY2) . Writing Q = IY/2P*Ll/2, by Proposition 6.8 we have that
IQIlr = 1 + O(a). This implies, using the resilience of {X~*/2x;} (Lemma 6.3) that

1 n
‘E Z ai{xix; — v, P

i=1

n

1 _ -
Ezai@ YPxx[ 272 - 1,Q)

i=1

< O(a),

1< 1 v
- Z ai{xix] — ¥, PH? = - Z ai<Z_1/2xixiTZ_1/2 -1,0)2 =2+ O(a).
i=1 i=1

In addition, note that || —Xy||r < a due to the resilience guarantees (Lemma 6.3), which means
(x;ixT = o, P#) = (xl-xl.T — %, P¥ + . In addition, Lemma 6.3 implies that % > |(xixl.T - Z,Pﬁ>| =
13 (Z2xxT 272 — 1, Q)| < O(1). This immediately implies that

1 n
‘; ZW(Zi - So, P)

i=1

< O(a),
i=1

1 n
= 'E Z a;(xix] - Xo, P*)

n n

1 1
— D ai(zi =50, P’ = — 3" aixia] — %o, PH? =25 O(a).
i=1 i

i=1

Since V' = 2, this immediately implies we can apply Lemma B.1. Doing so, we obtain [(L[S"] -
So, PY| = {L[X] - Lo, PH)| < 5(77) for all symmetric P¥ with [|P¥||r = 1. Hence, || L[] - Zollr <
O(a), which means || L[Z'] — Z||r < O(«) as well.

This completes the proof for true pseudoexpectations. Again, the proof extends to approximate
pseudoexpectations, since the coefficients at each step in the sum-of-squares proof are polynomially
bounded. m]

B.2 SoS bounds for arbitrary samples: Covariance estimation

In this subsection, we prove Lemma 6.15, which is our worst-case robustness result for covariance
estimation. First, we establish a 1-dimensional Sum-of-Squares result that will be crucial in proving
Lemma 6.15.
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Lemma B.2. Let z1, ...,z be a set of n reals, such that the 95th percentile of the z? values is 1. Suppose
that there exists a degree-6 pseudoexpectation E on the variables {w;}, {z}} such that:

1. Vi, E satisfies w? —w; =0,
2. E satisfies Y w; — 0.99n > 0,
3. Vi, E satisfies wi(z} - zi) =0,
4. E[L 3:((2))% - 0")?] < 3-E|[(0")?], where we define o’ := 1 3(z/)>.
Then, E[c’] = ©(1). Moreover, if the 95th percentile of z7 is less than 1, we still have E[o’] < 0(1).
Proof. First, let’s show that E[¢’] = Q(1). To prove this, note that by Constraint 1, E satisfies

wi =w?>0and (1 -w;) = (1 -w;)? > 0. So,

E[o’] = % Z E[wi(z§)2 +(1- wi)(z;)2] (Definition of ¢”)
i=1

1O
> - Z E[wi(z;)Z] (Positivity of 1 — w;)
i=1
1 n
= E[wiz?] (Constraint 3)
i=1
1 n
= Z?E[wi] (Linearity)

Since E[w;] is bounded between 0 and 1 (as Ew; = wa and E[1 - w;] = E[(1 - w;)?]), and since
> E[w;] > 0.991, the minimum possible value of }’ Z?E[wi] is the sum of 21.2 over the 0.99n smallest
values of z?. Since the 95th percentile of the 21‘2 values is 1, this means ), Z?E[wi] > 0.04n. Thus,
E[o’] = 0.04.

Next, we must show that E[¢’] < O(1), if the 95th percentile of the 21.2 values is at most 1. To do
this, we consider restricting E to the (at least) 0.951 indices S where 21.2 < 1 (note that z; are fixed
real numbers, not variables). More formally, we define E’ to be a pseudoexpectation where on any
monomial p, E'p = 0 if p has a positive power of some w; for i ¢ S, and E’p = Ep otherwise. It is
clear that E is still a degree-6 pseudoexpectation, since E'1=El1=1,and ]:]’[pz] = E[(p’)z] where
p’ is the polynomial that removes all monomials containing some w; for i ¢ S. In addition, if we
replace E with E’, Constraint 4 is unchanged. Constraints 1 and 3 are unchanged for i € S, and
trivially hold for i ¢ S. Finally, since E satisfies w; < 1foralli (since E’ satisfies 1-w; = (1-w;)? > 0),
we thus have that E satisfies Y;cq Wi + Yigs 1 — 0.99n > 0, which means ;e w; > 0.94n. So, E/
satisfies Y w; — 0.94n > 0. Overall, by replacing E with E’, we have the constraints are unchanged
except 2, and the goal of showing E’[¢’] < O(1) is sufficient.

We also remark that we can rewrite Constraint 4 (now with E’) as
Ly
) l

" 2
=/ £/ ’ _ £/ 1 ’
E <4-F[0)?]=4-F (E ;(zi)Q) . 7)
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Now, note that

1 ™/ N . n4a T/ 1 C N4 :
- -E le(l —w;i)(z}))"| <E ;le(zi) ] (Constraint 1)
A
1 ¢ ’
™/ N2 .
<4-E ;le(zi) ) (Equation (7))
i=

[ 2
-y 1 < N2 1 N N2
=4.E EZ;“ —w)(z)? + E,lewi(zi)
1= 1=

[ n 2 n 2
1 1
<8-FE - Z(l - wi)(zg)z) + (E Z wi(z;)z) (Cauchy-Schwarz)
i=1 i=1

= %(E’ (Zl(l - wi)(z;)z) +E (Zl wiz?)

B

(Constraint 3).

Note that E/ [( " wiz?)2] =2 jes E[wiwj]z?z]?. Inaddition, forany i, j, E[w;w;]

IN
N|—
—_—
=h
S
o
+
=h
g
no
N
IA

1. So, since 0 < z? < 1 forall i € S, we have that E [(Z?zl wiziz)z] < n2. Therefore,

8

1
A< . .
- A< 2 B+38 (8)
Also,
n
0.06n-A=F Z(l - wi)(zg)‘l) . 0.0611] (Definition of A)
L \i=1
n
=F Z(l - wi)Q(Z;)A‘ : 0.0611] (Constraint 1)
| \i=1
n n
> E Z(l —w;)*(z))*] - (Z(l - wi)2) (Constraints 1 and 2)
[ \i=1 i=1
o )
= Z(l - wi)z(zg)2 (Cauchy-Schwarz),
i=1

Therefore, 0.06n - A > B, but (8) tells us that n - A < 8B + n?). So, B < 0.06n - A
0.48 - (B + n2), which means B < n2. Therefore, by Cauchy-Schwarz, £’ [1 3" (1 — wi)(zg)z]2

E [(% - wi)(z;)2)2] = L . B <1, whichmeans ' [1 ¥, (1 — w;)(z})?] < 1. In addition, we

IAIA
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know that E’ [% Yy wi(z;)2] <E [% iy wiz?] < 1. So overall, since ¢’ has no coefficients with
w;, we obtain
+E

o] = #[0] = B [% Yy =#

<2 |

231 - wi)()?
n i=1

1 n
~ > wilz)”
i=1

Proof of Lemma 6.15. Our main goal will be to show that £;[X’], L5[X’] are close in spectral distance.
To do so, we show that for any unit vector v, v 75 v and v 7 £, are equal up to an O(1) multiplicative
factor. This will imply that £;[Z'] < O(1) - Lo[Z'] and Lo[X'] < O(1) - Ly[Z].

Assume first that £;, L, are actual pseudoexpectations (i.e., if T = 0). We define z; := (x;,v)
and z; = (xf, v). If £y, L5 are («, 7, T)-certificates for t = 0 and T < 0.01n, then it is clear that £;
and L satisfy Constraints 1, 2, and 3 of Lemma B.2. To check Constraint 4, note that by Constraint
3 of Definition 6.4,

L % ;((22)2 - -2+ a)(a')2] -7 [% ; ((x!,v)2 - 0TE0)? — (24 a)- (0TE0)?
= —L [IMv®*||3]
<0,

for either £ = £ or L = L5, where ¥’ := 1 2(x)(x)T and 0’ := %Z(z;)z.

Hence, both we can apply Lemma B.2 for both £; and L. If the 95th percentile of (y;, v)? is
equal to 1, this implies that £1[0TX'v], Lo[vTX'v] are both @(1). If the 95th percentile of (y;, v)? is
some value G, we may rescale and use linearity to say that £1[vT 2'v], Lo[vT X'v] are both ©(G?).

Hence, this implies that £;[X’] and L2[Y’] are within O(1) spectral distance of each other, at
least when t = 0. For general 7, we note that again the coefficients at each step in the sum-of-squares
proof are bounded by poly(n, d, K). The only possible issue is the rescaling, if G > (n dK)°W or
G < (ndK)=°, We avoid the former case because we are assuming that every sample is bounded
by poly(n, d, K) in magnitude, using truncation. In the latter case, we use the fact that if the 95th
percentile of z7 is less than 1, then £L[¢’] < O(1) in Lemma B.2. In this case, by scaling by 25, we

have L[v"2/v] < %, which violates Constraint 5 of Definition 6.4.

In summary, we have that £;[X'] < O(1) - L3[X'] and Lo[X] < O(1) - £1[X'], and both are
spectrally bounded between ﬁ and 4K. Since we have the requirements that (1-a) L[X']-7-T-I <
T < 1+ a)L[Z]+ 7T -, this implies that T < O(1) .Yy and X, < O(1) - T O

B.3 SoS bounds for arbitrary samples: Mean estimation

In this subsection, we prove Lemma 5.13, which is our worst-case robustness result for mean
estimation. First, we establish a 1-dimensional Sum-of-Squares result that will be crucial in proving
Lemma 5.13.

Lemma B.3. Let zy,...,z, be a set of n reals, such that at least n /4 of the z;’s are at least 20. Then, for
any degree-6 pseudoexpectation E on the variables {w;}, {z} such that

1. Vi, E satisfies w? —w; =0,
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2. E satisfies Y w; — 0.99n = 0,
3. Vi, E satisfies wi(zg —2z;)=0,
4. E[p'] =0, where ' =1 ¥ 2/,
we must have that E [% 2z = [J')z] > 2.

Proof. Using the fact that E satisfies w? = w;, we have that (1 — w;w j)2 = (1 = w;wj), which means
w;w; < 1is satisfied. In addition, E satisfies w;w j= wizw]? > 0, and also satisfies wiw; > wi+w;—1,
since wiw; — (w; + wj — 1) = (1 —w;)(1 —wj) = (1 — w;)*(1 — wj)*.

This means

n

E Z (z - z;-)2 > B Z wiw;(z; — z;)2
. B _

i,j=1

>E Z wiwj(z; — z]-)2 (Condition 3)
g _
= Z(Zi - Zj)2 B [wiwj] (Linearity)
Lj
> > (zi - zj)* - max(E[w;] + E[w;] - 1,0). )

Now, C; and Cz be the 25th and 75th percentiles, respectively, of the elements z; sorted in
increasing order. We show that we may assume Cy — C; < 8. Otherwise, there exists a set S of
0.251 elements z; that are at least C; + &, and a set T of 0.25n elements that are at most C;. In this
case, we can bound (9) as at least

2 > (2 -z - max(Blw;] + Blw;] - 1,0)
i€S,jeT

> 2. Z 82 - (B[w;] + E[w;] - 1)
i€S,jeT

=2 |64(n/4) - Z Elw;] + 64(n/4) - Z Blw;] - 64(n/4)>
i€S jeT
> 4-64(n/4)(n/4—0.01n) — 2 - 64(n/4)?

> 6712,

where the penultimate inequality uses the fact that E[w;] € [0,1] and >y E[w;] > 0.99n. Overall,
t~his means E[Y; ;(z] - z;.)z] > 6n2. But, 2iim(z] - z;.)2 = 2n - Y, (z! — ¢)?, which means
E [Z?zl(z; - [J')z] > 3n, as desired.

Hence, we may assume that the 25th and 75th percentiles are within 8 of each other. Re-define
S C [n] to be the set of indices of size 1 /2 between the 25th and 75th percentile. By our assumption
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in the lemma that at least n /4 values are at least 20, z; € [C—4,C +4] foralli € S, for some C > 16.
Note that

E Zwiz; :E

ieS

2w

ieS

:Z E[w;] > (C - 4)- ZE 1> (C—4)-(0.49n),  (10)

i€eS ieS

but
2 2
E (Z wiz;) =E (Z wizi) = Z ziz]'ﬁ)[wiwj] < (C+4)*-(0.5n)2. (11)
i€eS ieS i,jeS

In addition, if we assume E[% Z?zl(z; — 1)?] < 2, then since S is fixed and has size 1/2,

2
- N2 AV ’ ’
EZ(zi) <E Z(z) +E E(Zzi—|5|.y)
ieS | ieS ieS
.
=E Z(Z w)? +%]~3 (Zz:)
| ieS | | ieS |
_ " - 1 r 2'
<E 2 —u)? |+ = E z!
S|+ 8| (5]
) i
<2n+|?1| E (Zz:) . (12)
ieS

Making use of the fact that E satisfies (1 — w;) = (1 — w;)?, we have

2
E (Z(l - wi)z;) <E (Z(l - wi)) . (Z(l - wi)(zf)z)] (Cauchy-Schwarz)

i€eS ieS ieS

A

<0.0ln-E Z(l - wi)(z;)zl (Condition 2)

| i€S
<0.0ln-B Z(z;)2 (Condition 1)

| ieS

2
<0.01-[E|2 (Z z;) +2n2 (Equation (12))
i€S
2 2
< 0.01-(4E (Z(l — wi)zf) +4E (Z wiz;) +2n?|. (Cauchy-Schwarz)
i€S i€S
A
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Hence, we have that A < 0.05E [(Zies wiz;)2] +0.03n2 < 0.02C2n2 for C > 16, using (11).

So, by Cauchy-Schwarz, we have that |E [Zies(l - wi)z;” < 0.15Cn. But E [Zies wizg] >
(C —4)-0.49n > 0.35Cn by (10), which means E [ZieS z:] > 0.2Cn.

However, if E [Y]., 2] = 0, then E Y52/ - $ 2L, z/] > 0.2Cn. By Cauchy-Schwarz, this
means E [(Zies A DY z;)z] > 0.04C%n?. Since S is a fixed set of size /2, defining T := [n]\S,
we have

1S N\ 1
E (Zz:—§ Z:)]:ZE

i€eS i=1 i€eS ieT ]

1 2

= B ( > (z;—z<))

ieS,jeT |

1 = ’ "2
< 7 -E Z (z] —zj) . (Cauchy-Schwarz)

ieS,jeT

This implies that E [ZieS,jeT(Z; - z;)Z] > 0.16C2n2, which means 2n-E [ :.‘zl(z; - P")Z] =E [ ?,j=1(22 - z;)Z] >
0.32C%n2. So, E [21, (2, — w)?] > 0.16C%n > 3n. O

Proof of Lemma 5.13. Our main goal will be to show that {i; := Li[y], 2 := Lo[y’] are close in ¢,
distance. To do so, we show that for any unit vector v, (L;[u'] — Lao[p'], v) < O(1).

We first focus on L;: suppose L; is an actual pseudoexpectation (i.e., if T = 0). We define
zi :=(x; — {1, v) and z := (x] — i1, v). If £y is an (a, 7, T)-certificate for t = 0 and T < 0.01#, then
it is clear that £ satisfies Constraints 1, 2, and 3 of Lemma B.3. To check Constraint 4, note that
Li[132] = LS Lil(x), 0) — (i, 0)] = 0.

Hence, by Lemma B.3, if the median of (x;—{i1, v) was greater than 20, then £; [% 2{x =, v)2] >
2, where 1/ := % > x; . This, however, contradicts Condition 2e in Definition 5.5. For general 7,
we note that again the coefficients at each step in the sum-of-squares proof are bounded by
poly(n,d, K). So, this implies that if £; is an (a”, 7, ¢, T)-certifiable mean, then for every unit
vector v, {{i1, v) is at most 20 away from the median of (x;, v). (This is true in both directions since
we can replace v with —v).

Likewise, the same is true for L5, which means that |([f11, v) — ({2, v)| < 40 for all vectors v.
Therefore, ||{i; — fi2]|2 < 40. Finally, we note that || — {1leo, |lti2 — 2]l € ¢ +7-T < O(a/Vd),
so ||ty — piall2 < 42. O

C Computing Score Functions

In this section we will describe how we can compute the value of the score functions efficiently.
In our problems, we usually have some family of properties {Pr}, parameterized by T. The
higher values of T' correspond to more lenient settings and the lower values of T correspond to
more stringent settings. We are interested in how well (or poorly) a parameter O satisfies these
properties. We can easily define a score function to measure this. These score functions are later
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used to run the exponential mechanism and design private algorithms. These score functions are
defined in the following fashion.

S(0) := irTlf such that O satisfies Py .

As mentioned, because Pr’s are increasingly lenient, 0 satisfies Pr for all T > S(0), and
does not satisfy Pr for all T < S(6). In our problems we describe {Pr} through systems of
polynomial inequalities and the existence of linear functionals that approximately satisfy them.
We define polynomial constraints g1 > 0, ..., gx > 0, which depend on T and 0, and if there exists a
linear functional (an approximate pseudo-expectation) that approximately satisfies these polynomial
constraints, we say that 0 satisfies Pr. We first make some assumptions on these generic polynomial
constraints and after that we will define approximate satisfiability formally in definition C.2.

Assumption C.1. We make the assumption that in problems that we deal with parameterized
families of polynomials {QT};H:BX that are in the following form and may include the following
different types of constraints.

1. Regular constraints: g > 0.
2. PSD constraints: Vi, where ||k||; = 1: gh? > 0.

3. T-constraint: Each Qr, has exactly one constraint that depends on T. We call this constraint
the "T-constraint".The other constraints do not depend on T, and are the same over all Q7’s.
Let g7 denote this constraint. This constraint is also a PSD constraint and it appears only in
the form of Vh : grh? > 0. We also make the assumption that g depends linearly on T and

VO <T,T" < Thax : (g7 = q7) = (T = T")/(2Tinax)-
Note that this is a polynomial identity.
4. Matrix PSD constraints: g > 0.

Definition C.2 (approximate satisfiability). Suppose R > 1, and a parameterized family of poly-
nomials {Qr} of up to degree d, over R" are given as in assumption C.1. We say a linear functional
L over the set of polynomials of degree at most d over R", T-approximately satisfies Qr and write
L k¢ Qr if and only if

1. L1=1,
2. Lh? > —7- T, for every polynomial / such that 2deg h < d and ||k]|2 < 1.
3. Lg > —1-T, for every polynomial g € Qr that is a regular constraint.

4. Lgh? > —7-T, for every polynomial g € Qr that is a PSD constraint and every polynomial /
such that 2deg h + degg < d and ||h]|2 = 1.

5. Lg » —t-T -1, for every polynomial g € Qr, that is a matrix PSD constraint.

6. IRL)J2<R+7-T.
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In addition, for any y > 0 we write £ k., Qr if the above conditions hold but replacing 7 - T with
7+ (T + ). (Note that the constraint Qr has not been replaced with Qr4,.)

Remark. In order to run the ellipsoid algorithm, we should have a full dimensional ball of positive
volume. If we attempt to run the ellipsoid algorithm over the set of functionals with L1 = 1,
this is trivially not going to be the case. Therefore, instead we only consider the space of linear
functionals excluding the S = ¢ index, which corresponds to the monomial 1.

Lemma C.3 (efficient functional search). Suppose R > 1, and Qr is a set of polynomial constraints of
up to degree d, over R" as in Assumption C.1, with fixed parameter T. Let R(L)g denote the representation
of a functional L for every multiset of size up to d, excluding the empty set index. Then, for any r,y > 0,
there exists an algorithm that runs in time poly(n?, Size(Qr), log(R’ /1), log(1/y)) that either

1. finds the representation of a linear functional L such that ||[R(L)zll2 < R’, and L ¥ o, Qr; or,

2. shows that the volume of representations of functionals L such that ||R(L)z|l2 < R and L e Qr,
when projected to the entries S # @, is less than the volume of a ball of radius r,

where R’ = 4/(R + 7 - T)? — 1. Note that here R(L) € R(<), and R(L)g € RED=L, and the volume in the

. . n —_—
second case is measured with respect to R(z)-L,

In essence, we use reductions to semi-definite programs. For a textbook treatment of this
approach see Chapter 3 of [FKP19].

Proof. Firstly note that under the assumption that R(L£), = 1, we have that [|[R(L)||2 < R is
equivalent to ||R(L)z|l2 < R’. Let

K={R(L) | LF: Qr}, K5 = {R(L)s | L Qr}-

It is easy to see that K C R(Z) is equal to K5 C R(Za)-! with the adjustment that all of its members
have the additional @ entry 1. We want to apply the ellipsoid algorithm over the ball of radius R
in R(snd)'l, if we show that

1. Kz is convex; and,

2. Kz admits an efficient (approximate) membership and separation oracle,

we are done and we obtain the desired guarantees via the ellipsoid algorithm.

Convexity. Inorder toshow that K is convex, it suffices to show that K is convex. let M, M3 € K,
we need to prove that Va € [0, 1], M3 = aM; + (1 — a)Ms € K. By triangle inequality it is easy to
see that || M|z < a||Mz|l2 + (1 — a)||Mz|l2 < R. Let L1, L2, L3 be the corresponding functionals of
M, My, Ms. It suffices to show that L3 £ Qt. Let’s verify this.

1. .£31 = 0(.511 + (1 — (X)Lgl =1.

2. Lsg=alig+ (1 —a)Leg > —1-T, for every regular constraint g € Q.
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3. Lsh?=aLlih?+(1—a)Loh? > —at-T—(1—-a)t-T =—1-T, for every polynomial h such
that 2deg(h) < d.

4. Lagh? = aLigh?>+ (1 - a)Logh? > —at-T—(1-a)t-T = —1- T, for every PSD polynomial
constraint g € Qr and every polynomial / such that deg g + 2deg(h) < d.

5. Lyg=aLlig+(1-a)Log > —at-T-1-(1-a)t-T-1=-1-T-1, for every matrix PSD
polynomial constraint 4 € Q7 and every polynomial / such that deg q + 2deg(h) < d.
6. [[R(La)ll2 < al|R(L)l2 + (1 = )|R(L)]l2 = R+ 7-T.

Therefore K is convex as desired.

Membership/Separation oracle. Suppose M € RED s given. We need to verify M € Kg, or
not. Let M’ be equal to M with the additional entry M = 1. Then it is easy to see that M € Kg, if
and only if M’ € K. Suppose L is the linear functional with M’ as its representation. We need to
come up with membership /separation oracles for each of the constraints in Definition C.2.

Regular Constraints.
Lg > —1-T, for every regular constraint g € Qr.

In order to check this constraint we can just compute the value (M’, R(q)). If its value is greater
than or equal to —7 - T, then that means £g > —7 - T is satisfied, and this constraint does not refute
L k¢ 0(y), and we would be in the setting where L k. o(,) Qr, if all of the other constraints hold as
well.

If this is not the case then let H € R(&) be as

H =R(q).

Then (M, Hg) = (M’,H) — H, < =1 - T — H,. Moreover, for every N € K, we have that (N, Hz) >
—7 - T — Hy. Therefore H, is a separating hyperplane. Therefore we have an efficient separation
oracle as desired.

PSD Constraints. These constraints are in the following form.

Lgh* > —t - T, for every polynomial & where |R(h)||2 < 1,and deg g +2degh < d,

and for every polynomial g that is either 1 or a PSD constraint in Q7.

Suppose q = (a,v4(x)), h = (b,v4(x)). Then,

20 = £ 3 faun) | 0021 3 )

u Vv w
=L Z anVbW . xU+V+W
uvw

= Z bybw [Z ﬂul:(xmww)] .
VW u
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n n
Define the matrix X € R{st-desay X (su-degr2) as

XV,W — Z au£(xu+v+w)
0]
= Z RDuR(L)u+v+w-
u

Then
th2 =b"Xb.

Our goal is to verify whether L£gh? is larger than —7 - T for every &, where ||R(/)||2 < 1 or not.
This is equivalent to b' Xb being larger than —7 - T for every b, where ||b||2 < 1. We can check this
by looking at the spectral value decomposition of X. Suppose that the spectral decomposition of
X = PDPT, where D is a diagonal matrix whose entries are the eigenvalues of X, and the rows
of P are the corresponding eigenvectors. This decomposition can be computed in polynomial
time using standard algorithms for obtaining eigenvalue decompositions. More accurately, for any
y > 0, we can learn the minimum eigenvalue up to error 7 - y in time poly(n?, log TL)/) Then, if
(our estimate of) the minimum eigenvalue is at least —7 - (T + 3y), this means that the constraint
Lgh? > t- (T + 4y) is satisfied, and this constraint does not refute £ Fr,0(y), and we would be in
the setting where £ k. o(,) Qr, if all of the other constraints hold as well.

If this is not the case then we know that the minimum eigenvalue is less than —7 - (T + 2y),
and we need to return a separating hyperplane that separates M and K3. Suppose the minimum
eigenvalue of X is less than —7 - (T +2y). Then we can find a vector ¢ such that c" X¢ < —7- (T + y).
Let the vector H € R(snd) be as

HS = Z CuR(q)V.
uuv=s

Note that we can compute this vector efficiently. Then we have that

(M',Hy = Lg{c, Vg-degq)/2(x))*

=c'Xc

<—=1-(T+y).

Since M/ = 1, we have that (M,Hg) = (M’,H) - H, < —t- (T + y) — Hy. Now assume N € Kj.
Similarly, we can show that (N,Hz) > —7-T — H,. Therefore Hy is a separating hyperplane.
Therefore we have an efficient separation oracle as desired.

Matrix PSD Constraints.
Lg > —1-T, for every matrix PSD constraint g € Q.

Note that here g is a square matrix with polynomials as its entries. We use g; ; to denote the (i, j)-
entry of this matrix, which is a polynomial. In order to check this constraint just define X as

Xij=Lqij=(M,R(qi;)).
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In order to check the constraint £g > —7 - T, we can check the spectral value decomposition
of X. Suppose that the spectral decomposition of X = PDPT, where D is a diagonal matrix
whose entries are the eigenvalues of X, and the rows of P are the corresponding eigenvectors.
This decomposition can be computed in polynomial time using standard algorithms for obtaining
eigenvalue decompositions. More accurately, for any y > 0, we can compute the minimum
eigenvalue of to error 7 -y in time poly(n?, log %). Then, if our estimate of the eigenvalue is at least
—7 - (T + 3y), this means that the constraint Lg > —7 - (T + 4y) - I is satisfied, and this constraint
does not refute £ F; o(,)0;, and we would be in the setting where L k. o(,) Qr, if all of the other
constraints hold as well.

If this is not the case then we know that the minimum eigenvalue is less than —7 - (T + 2y),
and we need to return a separating hyperplane that separates M and K. Suppose the minimum
eigenvalue of X is less than —7 - (T +2y). Then we can find a vector ¢ such that ¢" Xc¢ < —7 - (T +7).
Now consider ¢' £gc, and assume ¢ and g are constants and £ is variable. We can write this as

c"Lgc= Z Hy L(xY),
T

for some Hy;’s that depend only on g and c. Moreover, give g and ¢ we can compute this H
efficiently. Now since ¢' Xc < —1 - (T + y), we have that

(R(L),H)=(M',H) < —t- (T + ),

and therefore (M, Hg) = (M’,H) — H, < —7 - (T + y) — H,. Similarly, if N € K3, we can show that
(N,Hgz) > =1 - T — H,. Therefore Hy is a separating hyperplane. Therefore we have obtained an
efficient separation oracle as desired.

Norm Bound Constraints.

IRl <R+7-T.
In order to check this constraint we just compute || M ||§. If its value is less than or equal to R,
then that means ||{R(L)||l2 < R + 7 - T is satisfied. If this is not the case then let H € R() be as
H = R(L) = M’. Note that ||H||2 > R, since ||M||2 > R’. Then (M, Hg) = (M’,H) — Hp, = ||H||§ - 1.
Moreover, for every N € Kz, we have that (N, Hz) < R||H||2 — 1. Therefore Hj is a separating
hyperplane. m]

Lemma C.4 (robust satisfiability). Consider the family of polynomial constraints {Qr} of up to degree
d over R" as in Assumption C.1. Moreover, suppose that there exists some linear functional Lo, such that
Lo & Qr,. Then there exists a set of linear functionals F such that

{R(L);| LeF}

contains a full-dimensional ball of radius r = poly(1/poly(n?), 7,v,1/k, 1/[|R(Qmn) ), and for all
L € F, we have that L . QT,1y. Here ||R(Qr,)||0 denotes the infinity norm over all coefficients that
appear in Q..

Proof. Suppose E € R(<2) be such that IEzll2 < r and E, = 0. Let £ be the linear functional with

the representation R(L) = R(Ly) + E. Our goal is to choose 7, in a way that for every choice Eg,
where ||E5l[2 < 7, we can prove that £ £ Qr4,.
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L1=Lol=1
. For every regular constraint q, we have that

Lqg=Log+<(E,R(q)) =2 ~-7-Tp — r||q||co-

. For all i such that 2deg h < d and ||}]|2 < 1 we have that

Lh? = Loh? + (E,R(h?)) > —1 - Ty — r poly(n?).

. For every PSD constraint g, excluding the T-constraint, and every polynomial & such that
2degh < d—deggq, and ||h||2 < 1 we have that
Lqh? = Logh? + (E, R(gh?))
>~ Ty - r|R(q)lles - poly(n).

. Let ¢ = 1/2Thac. For the T-constraint gr,1,, and every polynomial & such that 2degh <
d — deg q1y+y, and || l1||2 < 1, we have that

LqTo+Vh2 = L(qTo + CV)h2
= Logr,h? + cy Lh? + (E, R(qr,h?))

>-t-Tp—cy (T -To + rpoly(nd)) — 7 |R(g7,)leo - pOLy(12%)

. Let & be the corresponding linear functional for E. For every k X k matrix PSD constraint q,
we have that

1Eqll2 < VklIEG e
= VEmax|(E, R(q;,)]

< r-Vk - poly(n?) - max||R(qi)|co-
)

Therefore

Lg> Log+Eq > —1-T 71 Vk-poly(n') - max||R(qi /)l co-
L]

7. We have

IR(cL)ll2 < IR(Lo)ll2 + IEll < R+7-Tp + 7.

Therefore it suffices to take r such that

1. 7 - poly(n?) < 7y. In order to do this take r < Ty /poly(n?).

2. cyrpoly(n?) +r - ||R(g1,)lleo - poly(n?) < 7y/2. In order to do this take  to be

r < . min Y , 1 ,
4poly(n?) [R(g7)||..” Tnax
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3. r-Vk - poly(n?) - max; j||R(g;,j)ll < T-y. Inorder for this to hold take r to be

Y

r< .
Vk poly(nd) max; ;[|R(qi,)llco

Therefore there exists a ball of radius poly(1/poly(n¥), t,y,1/k,1/||R(Q1,)|l) such that for
every R(L); in that ball we have that £ £; Qr,+,, as desired.
O

Lemma C.5. Consider the family of polynomial constraints {Qr} of up to degree d over R" as in Assump-
tion C.1. Suppose there exists some linear functional L such that L k., Q. Then if y < Tiyax/2, we have

Proof. All of the inequalities in £ k; Qr4, will be trivially satisfied because of L k., Qr except
for the T-constraint. So we should prove the inequality for the T-constraint. Suppose & is a
polynomial such that ||| < 1, and 2deg h < d — deg gr. Then

4y

Tmax

Ln?

Lgriayh® = Larh® + 5

2 -1-(T+y)=2yt- (T +y)/Tnax
>-1-(T+y)-3yt
>—-1-(T+4y),

as desired.
O

Theorem C.6 (computability of score functions). Consider the family of polynomial constraints {Qr}
of up to degree d over R" as in Assumption C.1. Let

Ty = irTlf such that there exists L such that L £ Qr.

Then we can compute Ty in time poly(n?, Size(Qr),10og(R), log(Tmax), log(1/y),log(1/7)) up to error
O(y). Note that R is as in Definition C.2.

Proof. We apply binary search in order to estimate Ty. Suppose T is given, run the ellipsoid
algorithm from Lemma C.3, either we can find some functional .£ such that £ £, Qr, or a proof
that no ball of radius r(y) of functionals L that satisty £ £; Qr exists. Note that () here is as
in Lemma C.4. If we are in the first case, by Lemma C.5 we know that £ F; Qr44). Therefore,
T +4y > Ty, and we decrease the value of T. If we are in the second case, we must have T < Ty + v,
since otherwise we know that by Lemma C.4 there should exists a ball of radius r(y). This gives
us an efficient algorithm for approximating the score function. m]
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D High-Probability Bound for Stability of Covariance

D.1 Preliminaries

Lemma D.1. [DKK*19, Corollary 4.8, rephrased] There exists & = O(nlog %), such that for any n >
O (W) and X4, ..., X, L. N(0,1), then with probability at least 1 — t, for all symmetric matrices

P e R4 with Frobenius norm 1 and all b € [0,1]" with E;b; > 1 — n,
1 n
m Z bi(xix] —1,P) < a.
i=1

Lemma D.2 (Hanson-Wright Inequality). Let x ~ N(0, I) be a d-dimensional Gaussian vector. Then,
there exists a universal constant ¢ such that for any symmetric matrix P and for all t > 0,

t2 t
P|[{(xx" —I,P)| > t| < 2exp|—c-min|—=, ——||.
! [>1] PIZ TPy

Proposition D.3 (Theorem 4.5, [Ver18]). Let A be a rectangular m X n-dimensional matrix with each
entryi.i.d. N(0,1). Then, thereexists a constant Cy such that forany t > 0,P(||Allop > Co(Nm++vn+t)) <
2=,

Proposition D.4. For some fixed 1 < k < d, let P be the set of symmetric d X d matrices with Frobenius
norm at most 1 and all nonzero eigenvalues at least /1/k in absolute value. Then, for any 0 <y < 1/2, P
has a y-net (in the Frobenius norm distance) of size (1/ y)o(k'd).

Proof. ForsuchaP € P, note that P must have rank at most k. Therefore, we can write P = UDU,
where D is a diagonal matrix of Frobenius norm at most 1 and U is a d X k-dimensional matrix
with orthonormal columns. Let 7 be a y/10-net of the d-dimensional unit sphere, of size (1/ y)o(d).
Define V € Rk to be the set of d X k-matrices where each column is in 7. Then, every orthogonal
U € R has a corresponding V € V such that each corresponding column in U,V are unit
vectors of distance at most y/10. Therefore, there exists a set ‘W of orthogonal matrices in R¥>*
such that every U has a corresponding W where ||[U — W||g < k - y/5. ‘W is created by choosing a
single representative near each V € V, should one exist, which means |'W| < (1/y)°@5. Finally,
let 77 be a y/5-net of the unit ball in k-dimensions, which corresponds to a y/5-net O of diagonal
matrices of Frobenius norm at most 1.

Now, we claim that the set of matrices WD'WT, for W € ‘W and D’ € D, form a y-net for the
set of P. Indeed, for any P = UDU T, we associate U with W such that each column of U and of W
differ by at most y/5 in ¢>-distance, and D with D’ such that ||[D — D’||r < y/5. We want to show
that [UDUT - WD'WT||F < 7.

Note we can bound [[UDUT - WD'WT||g < [UDMU - W)T|[r + ||((U - W)DWT||g + [W(D’ -
D)W T||f, so it suffices to bound each of these terms by y/5. Since U and W are orthogonal
matrices, ||[UM|r = [WM|r = |IM|lr and ||MUT||f = |IMWT||r = ||[M||f for any matrix M
(fitting the dimensions). Therefore, it suffices to show that [|[D(U — W)T ||, |[(U — W)D||r, and
ID’—=D||r < y/5. Indeed, we already know ||D’ = D||r < y/5,and |D(U-W)T|[r = [[(U-W)D||r
since D is diagonal, so we just need to show ||[(U —W)D||r < y/5. To prove this, note that U — W is
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a d X k-dimensional matrix with very column having ¢, norm at most y /5. When we multiply by
D, this multiplies the ith column of U — W by D;;, the ith diagonal entry of D. Therefore, the ith
column of (U — W)D has {» norm at most y/5 - Dj;. Therefore, the Frobenius norm of (U — W)D is

at most || S, (y/5)2 - D2 = /5 Sk, D2 = y/5.

Finally, the size of this net is at most | W/| - |D| < (1/)°@H) . (1/7)0%) = (1/y)0@k), O

D.2 Main Probability Bound

Lemma D.5. Let n > O (W]w) and let x1,...,%X, i-i - N(0,1). Then, with probability at least
1 =9, for any d x d symmetric matrix P with Frobenius norm < 1, and for any subset S C [n] of size at
mostn - n,

Z(xixiT -I,P)?<0 (17 log? l) 1.

i€S n
Proof. For simplicity, we may assume without loss of generality that 6 = e™?. This is because if
5 > e~ we can decrease the failure probability to e~ Likewise, if 6 < e™?, then d < log(1/), so
we may increase the dimension to log(1/0) by sampling additional random standard Gaussians for
the rest of the coordinates of x;, and then only proving the result for all P with all nonzero values
supported on the first d rows and columns.

Let R be a 1/2-net of the set of symmetric matrices with Frobenius norm at most 1, and suppose

we successfully prove the lemma for all P € R. Then, for a general P, we can write P = 3,7 271R;,
for each R; € R. Then, for any i,

<x1-xiT - I,Z 2_iRi> = (Z 27l . (xix| — I,Ri)) < (Z 2_i) . (Z 2_i<x,'xiT - I,Ri)2) ,
i=0 i=0 i=0

i=0

using the Cauchy-Schwarz inequality. Then, we can write

Z(xixiT -1,P)?<2. (i 271 . Z(xixiT —I,Ri>2) <4- 5(17) N,
i=0

i€S i€S
So it suffices to show the theorem for the net R.
Next, note that for a sufficiently large constant Cy,

Z(xixiT —I,P)%= Z/ 1[t < (xix] —1,P)?] dt
= jes Y1=0

:/ #{iES:<xixiT—I,P)22t}dt
t

=0
® 1
< (Colog(1/m))? - nn +/ # {i (wix] —1,P)? > t} - (tlog?t) - S—dt
t=(Co log(1/1))? tlog™t
< (Colog(1/n)? - nn + tlog?t-# {i: (xjx] —1,P)> >t
(Colog(1/m)* 1 Q(cj’ff;ii/q»z( og?t - # {i: (xix; )2 > t})

2 27 2 ST ‘
< (Colog(1/n)) nn+czc?lgg(1/q) (Clog®C #{z.|<x1xl I,P>|ZC})
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The second-to-last line uses the fact that /300 @dt < 1, and the last line is just a substitution
C =t

Therefore, it will suffice to show that for all C > Cylog(1/7n), with probability at least 1 — e /C
the following holds. For all P € R, the number of i € [n] such that [{x;x[ — I, P)| > C is at most
n -11/(C%log? C). The probability bound is sufficient since it suffices to prove this for all C that is a

power of 2, and the sum of e /C over C a power of 2 is e~%. m]
So, to prove Lemma D.5, it suffices to prove the following lemma.
Lemma D.6. Suppose bg';on >0 (fl—;) and let x1,...,%X, iid. N(0,1). Then, there exists a sufficiently

large constant Co and a 1/2-net R for d X d symmetric matrices with Frobenius norm at most 1, such that
for any C > Cqlog(1/1), with probability at least 1 — e /C, for any P € R, the number of indices i € [n]
such that (xixl.T —1,P) > Cisat most n -n/(C? log? C).

Proof. First, assume that C < \nn/(log’ n - d). For j =1 letPibeay;:= (1/(10j2))-net of the
matrices in # with all nonzero eigenvalues in the range [-2/ Va2i, -1 / \/E] U1/ V27, 2 / \/5]. Also,
let Q; be a 1/10-net of the set of matrices in # with all eigenvalues below 1/ V2/ in absolute value.

Now, for some fixed P, suppose we can write P = Py + Py + -+ + Ppjog, c21 + Q, where each
P; € Pj and Q € Qqog,c2- Then, if the event that (P,xx™ —I) > C holds, then we must
have that either (Pj,xx™ —I) > C/(4j%) for some j or (Q,xx" —I) > C/2. For any fixed
choice of {Pj}1<j<[iog,c21 and Q, the probability that this event occurs for each P; is at most

exp (—cl min ((]:—42, C]22] ~ )) < exp (—cl : C'].QZ/Q ), by the Hanson-Wright inequality and since 2//2 < 2C
for j < [log, C?]. The probability that this event holds for Q, by Hanson-Wright, is at most

exp (—01 - min (CZ, C - 2Mogs CQ]/Z)) < exp (—C1 . C2) .

For a fixed P = Py + Py + -+ + Ppjog, c21 + Q, and for xq,..., x, L. N(0,I), we bound the
probability of the event that (P, x,'xl.T — Iy > C for at least - n/(C? - log? C) different choices of
i € [n]. For simplicity we define C = C2.(logC)?/ n. Now, if the event holds, then either some
(Pj, xix[ —1I) > C/(4j?) for n/(4Cj?) indices, or (Q, xix[ —I) > C/2 for n/(2C) different choices of
i € [n]. For fixed j < [log, C?], the probability of this occurring for Pj is at most

n C-212 ) - =2 C-2112 n
- . .e —C1——— - — Soczn/(4cf)e (—C . - T)
(n/<4c]2>) Xp( v age) 2O S U TS/
sexp|—C——=—7—
C.]6
n2]/2n
_exp(_CQ'W)'

where we used the fact that log(Cj2) < O(log(C /1)), which is much smaller than C < O(C - 2//%/j*)
since C > Cqlog(1/n).
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Likewise, the probability of this occurring for Q is at most
n n = = n
= |-exp[-c1-C* —| < O(C)"O) . ex (—C -Cz-—_)
[tacy) o (e 35 < 0@ [t

< exp (—c2 .C?. %)

n-n
= exp —CQ‘W .

Finally, recall that |P;| < O(]'2)2j'd = Ologj2d) ang 1Qfiog, c21l = e0@) So overall, the
probability of there even existing such a P that can be written as Py + - - + Pfiog, c21 + Q where each
Pj e Pjand Q € Q[ioq, c27 is at most

[ogy C21 n-9i2. n
C(logC)? - j

n .

) -exp (Cy - logj - 2. d) + exp (—c2 . —77) -exp (Cq - d2) . (13)

P (_CQ ' (log C)2

=1

. 9j/2. .
Since C < 4/nn/(log’ n - d) and 2/ < 2C?, this means %C)g_j@. > logj -2/ -d. To see why, this is

n

equivalent to 17 - % > C(log C)? - j%log j - 2//2, and since 2//2 < 2C and C < n, this is implied by

n-% > C?*(logn)®. In addition, assuming that n > (log n)* - d /1), we also have that % > d2.
Therefore, we can further bound (13) by

n 2 + "0 <(n+1) 17 <e/C
n js[%gxcﬂ exp [ —c3 ClogOF o exp [—c3 s CF) < n exp C4C(10g o7 < e .

So, our probability bound is sufficient, but we need to make sure that the set R of matrices that
can be written as Py + - -+ + Piog, c21 + Q for P; € P and Q € Q[iog, c21 is a 1/2-net. However, by
looking at the singular value decomposition of any symmetric matrix P with [|P||r = 1, we can write
itas Py +-- -+15[10g2 c2 +0Q, where 15]' has allnonzero eigenvalues in [—2/\/5, —1/\/5] U [1/\/5, 2/\/5]
and O has all eigenvalues at most 1/V2[log: C?1 in absolute value. In addition, each 15]- is within
distance 1/(10j2) of some P; € Pjand Q is within distance 1/10 of some Q € Qiog, c?1- So, by the
triangle inequality, R is a 1/2-net.

Next, suppose C > (/nn/ (log’n - d),but C < \nn/ (log?n)so C < n. Then, for any fixed choice
of n/C =n-n/(C%(log C)?) indices S, the probability that there exists P € R such that ||P||r = 1
and (x;x —1I,P) > Cforall i € S is at most

P(EP:Z(xl-xiT—I,P) zc%)

ieS

>C-
F

P Z(xixiT )

ieS

O =

IA
la~]
R
=
-4
\Y
=
Ol -
@)
|
m‘: Oil=
Iz
S —

A\

la~]

R

=

Sl

\Y
) =
ﬁlﬁ
S —
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The second line is true because the Frobenius norm of I is Vd so the Frobenius norm of |$| - I is
”T\-/E. The third line is true because C > 2Vd if n > 4d? log” n/n.

So, for the final event to occur, it is equivalent for ||AAT||F > %, where A is the (n/C) x d-
dimensional matrix with each row of A being x; for i € S. Since A and therefore AA™ have rank at

T nC . [C s ¥nC _ Vi7
Nl

Assuming n > d? log? n/n, then TlogC > d. Also, assuming n > d?log'® n/n, then \nn >

most 11/C, this requires ||A||

dlog? n, which means nm < "— < C2.1og C. This means that CQ(lnog oz < 2\1/(; So, this
\/'7_

means o= > d + &, which means that by Proposition D.3, the probablhty of ||A||0p > 2\/1?(: is at

most 2 exp (—Q (ﬂ))
Therefore, for any fixed choice of 7/C? indices, the probability that there exists P €

that ||P||r = 1 and (x'xT —I,P) > Cforalli € Sisat most 2exp (—Q (%)) There are at most

R4 guch

(,/c) <es™ n/C < odlog"n/log”C Note that L8 « YTT g6 any 1 > dlog® n/n. So, this means

log? C logC
that the overall failure probability is at most 2 exp (—Q ( l\g_g )) e=/C.

The final case is if C > /1 - n/(log? ). In this case, the probability that even a single index has
llxix[ —I||r = C means ||x;x] || > C which means ||x;[|3 > g We can again apply Hanson-Wright
to conclude that, since C > d, the probablhty that ||x1||§ > C is at most 2e~C) which means the

probability that this is true for even a single x; is at most 2ne QA0 < e/ C. m]

D.3 Proof of Lemma 6.3
First, we note the following corollary of Lemma D.5.

Corollary D.7. With probability at least 1 — f, every d X d symmetric matrix P with Frobenius norm
exactly 1, % ?:1<xixiT -I,P)?=2+0 (17 -log? %

Proof. Suppose x1, ..., x, has the property of Lemma D.5. Now, for a fixed P with ||P||r = 1, note
that Y7 (x;x] —1,P)* < ¥, min ((x-xT —1,P)?2,Cy log2 l) +0(n-n-log? l). This is because the

number of indices i such that (x; x —1,P)2 > Cylog?* 1s at most O(n - n) by Lemma D.5, and for

those indices, we know that 3 (x;x| — I, P)? is at most O(n -1 - log? %).

Now, note that for any fixed P with ||[P||r = 1, Exno,n{xx" — I,P)? = 2. Indeed, this is
simple to see if P is diagonal (using the fact that the fourth moment of a Gaussian is 3), and
for general symmetric P we can diagonalize P and use the same diagonalization on each x;, to
show this is true. Therefore, since P((xx™ —I,P)2 > 2) < 2¢7Q(") by Hanson-Wright, this means

if Cp is sufficiently large, E, o,y min ((xxT —1,P)?,Cglog? %) € [2 - 1n,2]. In addition, this
variable is bounded between 0 and Cjlog? %, so by Hoeffding’s inequality, the probability that

1

o2 flogt 1
4. > min ((xxT —1,P)?,Cqylog? %) is not in the range [2 — 21, 2 + 2] is at most e 2 /log” 5

n

We can union bound over a 1/n2-net of symmetric matrices with Frobenius norm 1, which has
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4
size eO(@*logd) 1o say that if n > fl]—z -log n log? %, then with probability at least ¢~ log %, every P
in the net satisfies % - 2L, min ((xxT —1,P)2,Cylog? %) €[2-2n,2+2n].

For a general P, write P = Py + P/, where Py is in the net and ||P’||r < 1/n%. Assuming the
event of Lemma D.5, for every choice of P’ and every choice of x;, (xixl.T —-1,P) < % Therefore,

the difference between min ((xxT —1,P)2,Cylog? %) and min ((xxT —1,Py)?, Cylog? %) is always

at most O (% -log? %) < 1. So, for every symmetric matrix P with Frobenius norm 1, we have that

1.3 min ((xxT —1,P)?, Cylog? %) € [2 - 3n, 2 + 3n] with probability at least 1 — 3, as long as
n> 5 ((d+1oi(21/ﬁ))2).
Therefore, Z?:1<xixiT —1,P)? = (2 + 5(17 -log? %)) - n, as desired. |

Proof of Lemma 6.3. Part 1 and the first half of Part 3 are immediate from Lemma D.1. The second
half of Part 3 follows from Lemma D.5 and Part 2 follows from Corollary D.7. Finally, Part 4 follows
from Lemma D.1 in the same way that Part 4 of Corollary 5.4 follows from Lemma 5.3. For instance,
we can set ) = 0.01 to obtain that for any subset S of size at most 0.01#, % - Dies Ci (xixl.T -I1,P) < 0O(1)
for any choice of ¢; € {—1, 1}, which means % - Yies [{(xix] =1, P)] < O(1). We can then partition
[n] into 100 such sets S. O

E Mean Estimation in /.

In this section, we start by providing an algorithm for robust Gaussian mean estimation in f,
distance (Proposition E.1). We then show that this robust algorithm allows us to derive a pure
DP algorithm with better sample complexity than a black-box application of Lemma 2.1 (Proposi-
tion E.3).

Proposition E.1. There is a robust estimator iy : (RY)* — R such that for every u € R and small-
enough n > 0, with high probability over x1,...,x, ~ N(u,I), letting x = 2 ¥ | x;, given any 1-

corruption Y1, ..., Yn of X1, ..., Xn, ||(y1, ..., Yn)=X||2 < O(y/nd(log n)/n+nvlogn) and || i =X || <
OmVlogn), as long as n > d.

To prove the proposition, we establish a few facts about x1, ..., x, ~ N(u, I).

Fact E.2. The following all hold with high probability for x1,...,x, ~ N(u,I), with u € R?, and letting

- _ 1 n Lo
X =i X, ifn>d.

1. For a big-enough constant C and all t € {C+/logn,2C+logn,4C+logn, ..., d}

sup Z 1[{(x; =%, v) > t] < O(d(log d + loglog n)/t?),

loll=1 %

2. |lxi = X|| < O(Vd + Vlog n)
3. every coordinate i € [d] and j, k < n have |(x}); — (xx);| < O(Vlognd).
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Proof. First, the following simultaneously occur with high probability by standard Gaussian con-
centration arguments:

e each x; has ||x;|| < Vd + O(v/log ), and

o |IX]| < O(d/n).

Now, let S be a 6-net of the {5 unit sphere; we can take S to have 20(dlog(1/0)) elements. For any
X1,...,Xpand t > 0, let n; = supyeg Di<y 1[{xi, v) > t]. We claim that

Z 1[(xi =%, 0) > H] < My ma |- I7)

i<n

To see this, we can write v = w + A, where w € S and ||A|| < 6. Then (x; — X, v) = (x;, w) — (X, v) +
(xi, Ay > tonly if (x;, w) > t + (x,v) — (x;, A) > t — ||x|| = 6]|x;||. If max; ||x;]| <1/(20) and n > d,
then we get >}, 1[{xi,v) > t] < ny_y.

We just need to establish a high-probability upper bound on n;_; for 6 < 1/ (Vd + O(ylogn))
and t € {Cylogn,2\logn,...,d}. If x1,...,x, ~ N(0, ), then for any fixed v € S and fixed t, we
have

P (Z 1[{x;, v) > t] > s) < n® exp(=Q(st?)).

i<n

via a union bound over n° choices of s indices i € [n]. Ift > C+/logn and s = O(d max(log d, loglog n)/t?),
we can take a union bound over the net S and get that for any fixed ¢, >};, 1[{x;,v) > t] <
O(d max(log d, log log ) /t?) with probability at least 1 — e~ D), the proof for (1) is finished by a
union bound over O(log d) choices of ¢.

The proof for (2) is standard Gaussian concentration, and the proof for (3) is a union bound
over n?d pairs (x;);, (xk);. |

Proof of Proposition E.1. Define the estimator i as: given yi,...,Yy,, find any x’l, ..., x;, which
(a) agree with the y;s on (1 — n)n vectors and (b) have both properties in Fact E.2, and output
p=Liyr, x!. If no such set {x’} exists, output 0.

With high probability over xi,...,x, ~ N(u, I), by Fact E.2, such a set of x’s exists, since the xs
are such a set.

Let’sbound ||X — x’||2. Let B C [n], |B| < 2nn, be the indices where x; # x’. For any unit v € R,

(X —x",0) = %Z(xi—x;,v) = %Z(xi—f,v)—%z<x;—?,v)+

i<n ieB i€B

Bl — —
” (x—x',v).

For each of the sums, we group terms in the average by their magnitudes. Terms smaller than
O(Vlog 1) can only contribute O(nvlog 7). Atmostnn terms are smaller than /d(log d + log log 1)/ (nn);
they contribute at most \/nd(log d +loglogn)/n. So we have

\/ndaog d +log logn>) .\ 3 (xi=X,0).

n
i |{(x;~%,v)|>/d(log d+log log n)/nn

% Z(xi—f, v) < O(nylogn)+0O

i€B
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The remaining terms on the RHS we can group by their magnitudes; for each t = C2/4/log n there
are at most O(d(log d + log log n1)/t?) terms of magnitude ¢, so the total contribution to the average
is also O(\/nd(log d +loglog d)/n). The same argument applies symmetrically to % 2iep{X;— X, 0);

this proves our bound on ||X — x’||.
We turn to the bound on ||X — x||. Fix a coordinate j € [d]. Then we have

Bl -2)

T() = %) = = > w() - 2() = = > x0() - TG) - () - ) +

i€eB i€eB
Each term in the average on the RHS is at most O(v/log nd), so we obtain
%) = ()] < O(log nd).
O

Proposition E.3. There is an e-DP estimator which takes n i.i.d. samples y1, ..., yn ~ N(u, I), assuming

dlogR  42/3
e T ae?/3 +

lull < R, and with high probability produces fi such that ||fi — ule < a, as long as n > O(

Vd log d
ae T ag2 )-

Proof. Before we describe the ¢-DP estimator, we establish a few geometry statements. Define B to
avd
Vlogd
constant ¢. Let W, be the volume of the d-dimensional unit ¢; ball. We claim that

oy fel oV )
2 Vlog d Viogd/)

The upper bound is simply because B is contained in the f, ball of radius caVd/vilogd. For the
lower bound, note that, having taken ¢ small enough, for a random z in the ¢, ball of radius
caVd/\logd, we have P(||z||e < @) > 1/2, and hence P(z € B) > 1/2, so B contains at least half the
volume of the ¥¢; ball of this radius.

Now we describe the estimator [i. Let fig be the robust estimator whose guarantees are described
in Proposition E.1. Given a dataset Y/, we define

be the intersection between the {,, ball of radius « and the ¢ ball of radius ¢ , for some small

d
) < vol(B) < Wy - (c

S(u; Y) = ”}ipd(y’yl) such that fio(Y’) — u € B.

In words, the score of y is the minimum distance from Y to a dataset Y’ which causes the robust
estimator [ip to output a point which is both {., and fs-close to . The estimator [ is given by
outputting a random draw from the exponential mechanism with score function S(-; Y), over the
R-radius ¢, ball.

Privacy holds by construction, so we just have to analyze accuracy. We claim that any [i with
S(i;Y) < an/+logn has || — lle < a/2, where i = 1 3., y;; indeed, this follows from the fu
accuracy guarantee of {lo. And, since n > (log d)/a?, with high probability we have |[g—u||e < /2.
So, we just need to show that the estimator outputs fi with score < a//+/log n with high probability.

First of all, there’s a set fis of volume at least vol(B) with score 0 — the set B, centered at [iy(Y).
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Now consider the set of g with score nn forn > a/+/log n. By the robustness guarantee of [ip and
the definition of B, any fi with score nn has ||fi—i||2 < O(max(+/nd log n/n, nylog n)+caVd/vlog d),

so is contained in a ball around @ of volume at most

d
dlo vd
\J1dosn ng”+17 logn+%gd dynlogn  Vdnlogn
O -vol(B) < exp [O + vol(B).
call avn ¢

Following the same argument as in Lemma 2.1, the mechanism outputs fi with S(i;Y) <
an [+/log n with high probability so long as for every 1/2 > n > Q(a/vlog n),

d/mlo Vdnlo
O( \/j\/ﬁgn + L g”) + log(nn)
<n.
ne
. = 42/3 ﬂ
This occurs so long as n > O(= 55 + 77)- m]
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