Flexile: Meeting bandwidth objectives almost always

Chuan Jiang
Purdue University
jlang486@purdue.edu

Sanjay Rao
Purdue University
sanjay@ecn.purdue.edu

ABSTRACT

Wide-area cloud provider networks must support the bandwidth
requirements of network traffic despite failures. Existing traffic
engineering (TE) schemes perform no better than an approach that
optimally routes traffic for each failure scenario. We show that this
results in sub-optimal routing decisions that hurt performance, and
are potentially unfair to some traffic across scenarios. To tackle this,
we develop Flexile, which exploits and discovers opportunities to
improve network performance by prioritizing certain traffic in each
failure state so that it can meet its bandwidth requirements. Flexile
seeks to minimize a desired percentile of loss across all traffic flows,
while modeling diverse needs of different traffic classes. To achieve
this, Flexile consists of (i) an offline phase that identifies which
failure states are critical for each flow; and (ii) an online phase,
which on failure allocates bandwidth prioritizing critical flows for
that failure state, while also judiciously allocating bandwidth to
non-critical flows. For tractability, Flexile’s offline phase uses a
decomposition algorithm aided with problem-specific accelerations.
Evaluations using real topologies, and validated with emulation
testbed experiments, show that Flexile outperforms state-of-the-art
TE schemes including SWAN, SMORE, and Teavar in reducing flow
loss at desired percentiles by 46% or more in the median case.

CCS CONCEPTS
» Networks — Data path algorithms;

KEYWORDS

network optimization, network resilience

ACM Reference Format:

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani. 2022. Flexile:
Meeting bandwidth objectives almost always. In The 18th International
Conference on emerging Networking EXperiments and Technologies (CONEXT
’22), December 6-9, 2022, Roma, Italy. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3555050.3569119

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT 22, December 69, 2022, Roma, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9508-3/22/12.

https://doi.org/10.1145/3555050.3569119

Zixuan Li
Purdue University
li3566@purdue.edu

Mohit Tawarmalani
Purdue University
mtawarma@purdue.edu

1 INTRODUCTION

Cloud providers must ensure that their networks are designed
so as to ensure business-critical applications continually operate
with acceptable performance [4, 8, 21]. Networks must meet their
performance objectives while coping with failures, which are the
norm given the global scale and rapid evolution of networks [17,
18, 21, 29, 33, 41].

Network requirements must typically be met a desired percent-
age of time. For instance, a network may be required to ensure "a
bandwidth of at least B for latency-sensitive traffic between New
York and San Francisco 99.9% of the time". The requirements of
flows (a term we use to represent traffic between a pair of sites
belonging to a given priority class) must be met taking into account
the likelihood that the network may experience different failure
states (e.g., a particular set of link failures), and the performance
that is feasible under each failure state.

Most state-of-the-art traffic engineering (TE) schemes, unfortu-
nately, do not explicitly provide ways to optimize performance at
a desired percentile. We show that Teavar[10], one of the repre-
sentative and few schemes that do consider percentiles, provides
extremely conservative guarantees. The poor performance stems
partially from the fact that Teavar uses a common set of failure
states to evaluate the percentile loss of all flows. Moreover, Teavar
is approximate since it minimizes an overestimate of percentile loss,
and uses a less flexible routing strategy. Teavar’s performance is
improved by flexibly and optimally routing traffic in each scenario
(an approach advocated by SMORE [25]). Nevertheless, the band-
width is allocated such that some of the traffic continues to see
significant loss at desired percentile. The key reason is that such
a scenario-centric approach optimizes traffic unilaterally for each
failure state, which leads to sub-optimal decisions across states.
For example, the same flow may be penalized in many bandwidth
constrained network states.

Contributions. To tackle these issues, we present Flexile (FLEX-
ibily choose scenarios for each flow to evaluate loss percentILE).
Flexile (i) ensures all flows see as low a loss as possible at a de-
sired percentile; (ii) supports multiple traffic classes (e.g., minimize
99.9%ile loss for latency-sensitive traffic, and 99%ile for other traf-
fic); and (iii) directly optimizes loss percentiles. Flexile does so by
allowing flows to meet their bandwidth requirements in a possibly
different subset of critical states that occur with sufficient probabil-
ity. Although this couples bandwidth allocation decisions across
failure states, Flexile decouples them by identifying critical states
for each flow in an offline phase. Then, on failure, Flexile efficiently

https://doi.org/10.1145/3555050.3569119
https://doi.org/10.1145/3555050.3569119

CoNEXT ’22, December 6-9, 2022, Roma, Italy

— Capacity: 1, failure probability = 0.01
1,\
f1: A->B needs 1 unit of traffic with probability of 0.99
f2: A->C needs 1 unit of traffic with probability of 0.99
Figure 1: Illustrating Flexile’s opportunity. Flow 1 can be fully
sent over link A-B 99% of time. Flow 2 can be fully sent over
link A-C 99% of time.

allocates bandwidth online, while paying more attention to critical
flows.

We evaluate Flexile on 20 topologies, including many large topolo-
gies, and validate our results on an emulation testbed. We show
that Flexile consistently outperforms existing TE strategies such
as SWAN, SMORE and Teavar. Across topologies, the median re-
duction in flow loss at desired percentiles with Flexile is 46% for
SMORE, and 63% for Teavar, and the benefits are even higher for
SWAN. Flexile outperforms Teavar for various reasons that include
evaluation of losses at flow level, more flexible rerouting, and opti-
mization of percentile instead of an overestimate. For comparison,
we design and compare Flexile with generalizations of Teavar that
route flexibly and evaluate losses at flow level. While these gen-
eralizations help, Flexile continues to out-perform. By exploiting
various problem characteristics, we show that Flexile’s offline de-
composition algorithm runs quite efficiently in practice, and is an
order of magnitude faster than Teavar for the largest topology. Fi-
nally, Flexile maintains the online reaction times of existing TE
schemes [20, 25]. We have made our code publically available at
https://github.com/Purdue-ISL/Flexile/.

2 BACKGROUND

Much early work on wide area TE schemes for failure recovery
focuses on quickly re-routing traffic to restore connectivity [26, 27,
31, 36, 45]. However, these schemes are insufficient to prevent con-
gestion under failures - e.g., [28] shows that failures can frequently
lead to links getting 10 — 20% more traffic than their capacity which
can negatively impact the performance of demanding applications
such as online retail, Web search, and video streaming. We dis-
cuss schemes that have emerged in recent years to ensure good
performance under failures:

Congestion-free local mechanisms. A first class of schemes [23,
28, 37, 43] proactively guarantee the network remains congestion-
free over a specified set of failure scenarios (e.g., all scenarios with f
simultaneous link failures. See §4.1 for a formal definition of failure
scenarios.), while only allowing the network to respond to fail-
ures using local rerouting mechanisms. For concreteness, consider
FFC [28], a representative approach, which is set in the context of
tunnel-based forwarding where traffic for each flow is carried over
a set of pre-selected tunnels. On failure, traffic is proportionally
rescaled on live tunnels associated with each flow. FFC conserva-
tively admits traffic in a manner that guarantees the network does
not experience congestion when local proportional routing is used

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

in the failure scenarios that it plans for. Specifically, given a set
of flows each associated with a traffic demand, and a parameter
f, FFC solves a robust optimization problem offline (i.e., prior to
any failure) which determines (i) how much bandwidth to allocate
to each flow; and (ii) how the bandwidth must be split across the
flow’s tunnels so that the allocated bandwidth can be supported in
any scenario where f or fewer links fail simultaneously.

Local mechanisms meeting performance percentiles. Most
congestion-free mechanisms [23, 37, 43] including FFC design for f
or fewer simultaneous failures. Recently, researchers [10, 11] have
argued that the approach can be conservative given that service
level objectives typically need bandwidth requirements to be met
a desired percentage of time, and since the failure probabilities of
links is highly heterogeneous. We focus on Teavar [10], a repre-
sentative scheme that extends FFC to take failure probabilities into
account while using the same proportional routing scheme. Given
an enumerated set of failure scenarios, and the probability of each
scenario, Teavar seeks to allocate bandwidth to flows so that there
are sufficient scenarios (that together occur with probability of at
least %) where every flow sees acceptable loss. The loss of each
flow is the fraction of its unfulfilled demand, and we use ScenLoss
to denote the loss of the worst flow in each scenario.

Definition 2.1. Let g be a scenario, F be the set of all flows and
loss 74 be the loss of flow f in scenario g, we define the loss of worst
flow in scenario q as

ScenLossg = max loss 1
g eF fa ()

Ideally, Teavar must find bandwidth allocations that minimize
the ﬁth percentile of ScenLoss, but the problem is challenging, and
instead Teavar uses a conservative approximation (see §5).

Flexible rerouting. Rather than use a local recovery scheme,
another approach is to optimally reroute traffic when a failure
occurs. While reaction time is a potential concern, a recent proposal
(SMORE [25]) argues for a light-weight recovery mechanism that
involves splitting traffic optimally among live tunnels (with the
tunnels themselves not changing since adding new tunnels is a
heavier weight operation)!. Depending on the target metric m, we
term a scheme ScenBest(m) if it always reroutes traffic to optimize
the metric m when a failure occurs. Note that when m is MLU 2,
ScenBest(MLU) performs identically to SMORE. We henceforth
refer to ScenBest(MLU) as ScenBest for simplicity. Clearly, for any
failure scenario, Teavar can perform no better than ScenBest given
its local mechanism. Hence, Teavar cannot achieve a percentile
performance any better than ScenBest.

3 FLEXILE MOTIVATION

While ScenBest provides the best percentile performance among
existing schemes, it optimizes performance unilaterally for each
failure state. In this section, we illustrate with an example that
doing so may lead to sub-optimal decisions across states. We then

'While SMORE [25] does not extensively discuss SMORE’s failure recovery mecha-
nisms, we clarified this from the authors and the source code [3]

2Minimizing ScenLoss is equivalent to minimizing the maximum link utilization (MLU)
of all links, the metric used in SMORE [25]. It is also equivalent to maximizing the
demand scale factor using a maximum concurrent flow formulation [28]. See Appendix

Flexile: Meeting bandwidth objectives almost always

®/\
X

(a) (b)

@

CoNEXT ’22, December 6-9, 2022, Roma, Italy

AB and AC both| Only AB Only AC | Others

Scenariols) |*jive (98.01%) |fails (0.98%)| fails (0.98%)| (0.03%)

Throughput of _
flow 1 (A->B) f U= US
Throughput of B
flow 2 (A->C) U oS oS

(c)

Figure 2: Bandwidth objectives cannot be met for topology in Fig.1 by existing TE schemes. Each column in 2(c) represents one
or more scenarios — e.g., the 2nd column represents all scenarios where AB and AC are both alive.

fi: A->B

P TaEINS
Pty

Figure 3: In Teavar’s design, fi and f; are both split equally
among 2 paths.

f2: A->C

AB fails, AC | Both AB, AC |AB alive, AC| Others

Scenario(s) | e (0.99%) | alive (98.01%)| fails(0.99%) | (0.01%)
Critical for
flow 1 (A->B) X X

Critical for X N
flow 2 (A->C)

Figure 4: Critical scenarios for Fig. 1.

show Flexile has the potential to do better by optimizing different
flows in different states.

Consider Fig.1, where a network must carry traffic corresponding
to aflow fi from source A to destination B, and a flow f; from source
A to destination C. Consider a requirement that each of f; and f,
must support 1 unit of traffic 99% of the time. Each link has a
capacity of 1 and a failure probability 0.01. We make the following
observations:

The network can easily meet the bandwidth requirements.
This follows from the simple routing strategy which sends f; on
link A-B and f; on link A—C. Clearly, the requirements of f; (resp.
f2) are met whenever link A—B (resp. A—C) is alive, which occurs
99% of the time.

State-of-the-art TE schemes cannot meet the requirements
of flows. Unfortunately, ScenBest can only support 0.5 units for f
and f» 99% of the time. To illustrate this, consider the scenarios in
Fig 2(a) and Fig 2(b) where link A—B and link B—C fail respectively.
Since ScenBest optimizes ScenLoss (i.e., the loss of the worst flow)
in each scenario, it sends 0.5 units of each flow as shown in Fig 2(a)
and Fig 2(b) so that neither flow will have loss worse than 50%.
Fig.2(c) summarizes the throughput achieved by each flow under
different failure scenarios. Since each of the scenarios shown in
Fig 2(a) and Fig 2(b) occurs 0.98% of the time, to meet its bandwidth
requirement, a flow must be able to send necessary traffic in at least

one of the scenarios. Consequently, neither f; nor f; can support
more than 0.5 units 99% of time.

Teavar [10] too cannot support more than 0.5 units 99% of time
for both flows. Fig. 3 shows Teavar’s designed routing for the topol-
ogy in Fig. 1 for 99% availability. We can see that in Teavar’s design,
fi is split equally across A-B and A-C-B, and f; is split equally
across A-C and A-B-C. This way, for 99% of time, both flows will be
able to send 0.5 units of traffic. It is also easy to see that when A-B
link fails or A-C link fails, the remaining traffic is exactly the same
as depicted in Fig. 2. Thus, like SMORE, Teavar cannot support
more than 50% traffic for both flows 99% of time.

Flexile’s approach. Flexile determines the critical scenarios
associated with each flow where its loss must be acceptable so
the flow objectives can be met. Unlike ScenBest which seeks to
ensure all flows in a scenario see as low a loss as possible, Flexile
prioritizes critical flows in any given scenario. Fig. 4 illustrates this
for the topology in Fig. 1. The critical scenarios associated with
fi (resp. f2) are all those scenarios where A—B (resp. A—C) is alive.
Clearly, each flow may be associated with a different set of critical
failure scenarios. Flexile can support 1 unit of each of f; and f; by
prioritizing them in their critical scenarios.

Another way to interpret the above example is that Flexile re-
quires less capacity to be provisioned to meet desired bandwidth
objectives than existing TE schemes. In Fig.1, ScenBest and Teavar
would require each link to be upgraded by 2X to meet the desired
flow bandwidth objectives, while Flexile requires no additional ca-
pacity.

A potential concern with Flexile is that in individual scenarios,

non-critical flows may see higher loss relative to ScenBest with
Flexile. However, Flexile mitigates the penalty through many tech-
niques:
® Our evaluations show that after assigning necessary bandwidth to
critical flows, there is significant residual capacity available in each
scenario. Flexile judiciously uses this residual capacity to ensure
good performance even for non-critical flows in any failure state.
o Flexile supports flows of multiple traffic classes (interactive, and
elastic), and ensures favorable treatment for higher priority inter-
active traffic in all failure states.
e Flexile allows architects to control the loss penalty that non-
critical flows may incur in any scenario, trading off the bandwidth
guaranteed at a desired percentile. For instance, in Fig. 4, if f; and
f> could tolerate an additional loss [in their non-critical scenarios,
Flexile can guarantee 0.5 + [for both flows 99% of the time.

Flexile on a real-world topology. Fig.5 shows a CDF of the
99.9%ile loss seen by flows across failure scenarios for Teavar,
ScenBest and Flexile for the IBM topology (see §6 for evaluation
details). There are many flows for which Teavar and ScenBest lead

CoNEXT ’22, December 6-9, 2022, Roma, Italy

to a significant 99.9%ile loss. Most flows have 40% loss at 99.9%ile
with Teavar for reasons outlined in §2. For 10% of flows ScenBest
leads to a 99.9%ile loss of 16% or higher. In contrast, Flexile ensures
all flows see no loss 99.9% of the time.

Even though Flexile does not explicitly minimize scenario loss, it
does not increase this loss much. For concreteness, see Fig.6 which
shows a CDF of the loss penalty paid by Flexile relative to ScenBest
(i.e., the increase in loss for the worst flow in each scenario relative
to optimal for that scenario). For comparison, we also show loss
penalties incurred by Teavar. For scenarios that occur 99.9% of time,
Flexile incurs no loss penalty. The loss penalty at 99.99%ile is only
4%. In contrast, the loss penalty with Teavar is significant — at least
10% in every scenario, while the 99.9% (resp 99.99%) values are 40%
(resp 100%).

Other benefits. In the Appendix, we discuss additional bene-
fits of Flexile. Specifically, (i) Flexile ensures bandwidth guarantees
never degrade with additional links, while we present an exam-
ple to show this is not the case for ScenBest; and (ii) existing ap-
proaches that are fair in each scenario may in fact be unfair when
performance across scenarios is considered - in contrast, Flexile can
mitigate this effect.

4 FLEXILE DESIGN

Given bandwidth requirement for a set of flows and a set of failure
scenarios with their associated probabilities, Flexile allocates band-
width to each flow in each failure scenario so that the bandwidth
loss at a given percentile is minimized. Further, Flexile models flows
corresponding to different traffic classes with different percentile
targets for these classes. (e.g., a 99.9% requirement for latency-
sensitive, and a 99% requirement for other traffic). Minimizing loss
at a given percentile (also referred to as Value at Risk or VaR) is a
hard problem, and has only recently received attention from the
networking research community. While it is possible to approxi-
mate percentiles as done by Teavar [10], we show in §5 that the
approximation is weak.

Flexile tackles these challenges through two components:
o Efficient offline algorithm for determining critical scenar-
ios. Flexile tackles the hard problem of optimizing flow loss per-
centiles through a decomposition algorithm that decouples the
failure states by identifying the critical states associated with each
flow in an offline phase. For efficiency, we have developed sev-
eral problem-specific accelerations. Our evaluations confirm the
algorithmic strategy is efficient.
o Light-weight online bandwidth allocation to critical and
non-critical flows. On failure, Flexile efficiently allocates band-
width to all flows while taking particular care of critical flows in
addition to favoring higher priority traffic classes. This step also
ensures that after critical flows are handled, residual capacity can
be appropriately allocated to non-critical flows. To achieve this,
we have developed a light-weight adaptation of SWAN [20] that
incorporates information about critical flows. However, it is also
possible to easily extend other bandwidth allocation mechanisms
such as SMORE with information regarding critical flows identified
by Flexile.

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

We start by presenting Flexile’s model for optimizing flow loss
percentiles, and next discuss the two components above. We then
discuss several generalizations related to Flexile.

4.1 Optimizing flow loss percentiles

Consider a network topology, represented as a graph G = (V, E).
K represents the set of traffic classes. Each traffic class k € K is
associated with a target probability fj. for which the bandwidth
requirement must be met for a set of flows F in this class. For
instance, high priority traffic may have a 99.9% requirement, while
lower priority traffic may have a 99% requirement, reflecting diverse
service level objectives (SLOs) that the network supports. Each flow
f € Fy is associated with traffic demand d that must be sent along
the source-destination pair pr(f).

Failure scenarios and probabilities. Q represents the set of
considered failure scenarios with pg denoting the probability of
q € Q. In our discussions so far, each failure scenario g represents a
network state where a particular subset of links fail while others are
alive. More generally, network failures are modeled using Shared
Risk Link Groups (SRLGs), where each SRLG captures a group of
links that fail together (e.g., owing to the failure of a shared optical
component [40]). Each failure scenario q represents a network state
where a particular subset of SRLGs fail while others are alive. Note
that failure scenarios are disjoint with each other. Flexile’s models
do not assume independent SRLG failures, and can model correlated
SRLG failures if provided the joint probability of multiple SRLG
failures occurring together. However, for practicality of estimating
probabilities, SRLG failures are typically independent [10, 17, 29].
Failure probabilities may be obtained from historical failure data —
e.g., given data from Microsoft’s WAN on the status of links in every
time epoch over a long period, Teavar [10] estimates the mean time
between failure which it converts into failure probability. Further [8,
44] indicate that Facebook and Google have failure probability data
available and are already using the same in simulation testing [4].
A similar approach has been used by past works [10, 11, 38].

Modeling desired percentile of flow loss. First, we define
FlowLoss(f, Py)-

Definition 4.1. In each traffic class k, for each flow f € Fy,
FlowLoss(f, fr) is the ﬂltch percentile of loss for flow f. That is,
there exist failure scenarios that together occur with probability
Pr, where flow f encounters a loss less than FlowLoss(f, fi)-

For each traffic class k, in order to make sure that every flow
sees small loss, we are interested in reducing the maximum of the
ﬁltch percentile loss across all flows f € Fy.

Definition 4.2. We define the following metric that we refer to
as PercLoss (and may abbreviate as ay.).

ay = PercLoss; = max FlowLoss(f, f) (2)
feF

Fig. 7 depicts this pictorially. Each row corresponds to a flow
(f), each column to a failure scenario (q), and each cell shows the
bandwidth loss I, seen by flow f in scenario g. To meet flow

level requirements, Flexile computes the 5 percentile of each row,

computes the max across rows, and minimizes the result.
Considering different traffic classes. Each class k € K is as-

sociated with a weight wy to compute its penalty for loss, which

Flexile: Meeting bandwidth objectives almost always

CoNEXT ’22, December 6-9, 2022, Roma, Italy

2 Z 0.9999 X
g 0.9 = ql | 92 | g3 | g4 Bth percentile
« 0. ©
5 g~ 0.999 Flow 1 112 | 113 | 114
§ ol . gg 0.99 Flow 2 {127 [122 | 123 [124
g > cavar 53 Flow 3 |131[132| 133 | 134
E —— Flexile g 0.9 Teavar
wo e ScenBest Es —— Flexile
8 o0 S 0.0 Flow n | In1 |1n2| 1n3 | 1n4| | \/
0 10 20 30 40 50 60 70 80 90100 0 102030405060 70 80 90100 max
99.9 percentile loss (%) o Loss penalty in scenario (%)

Figure 5: CDF of 99.9%ile loss across

flows for IBM topology.
H Notation H Meaning H
Q Set of considered scenarios
K Set of traffic classes
Fy. Set of flows in traffic class k
P Set of source-destination pairs
Ry (i) Pair i’s tunnels for class k
E Set of edges
Qe The maximum of the ,b’]tch percentile loss across

all flows f € Fp.
Br Target probability for which the bandwidth re-
quirement must be met for class k

pr(f) Pair along which flow f is sent

dr Traffic demand of flow f

Pq Probability of scenario q

W Weight of traffic class k

Ytq 1 if tunnel t is alive in scenario g, else 0

Megq 1if edge e is alive in scenario g, 0 otherwise
Xktq Allocated bandwidth on tunnel ¢ for traffic class

k in scenario g(routing variable)
leq Loss of flow f in scenario ¢
Zfq 1 if scenario q is critical for flow f, else 0

Table 1: Notation.

reflects the relative importance of this class. Thus, the penalty in-
curred for loss of traffic class k can be represented as wy .. We focus
on a formulation where Flexile determines a bandwidth allocation
such that the sum of penalty across all traffic classes, X ;g Wik
is minimized. For instance, a 2 class setting can be handled with a
large weight for the higher priority class, and a small weight for
the lower priority class. Other priority policies are easily modeled
(§4.4).

Modeling critical scenarios. To ensure each flow’s objectives,
Flexile must for each flow f € Fj select scenarios that together
occur with probability f such that f sees loss less than aj in these
scenarios. We denote these scenarios as critical scenarios for that
flow. We use a binary variable zf, to indicate whether scenario q is
critical for flow f. If zp, = 1, q is critical for f, and the loss of flow
f cannot exceed PercLossy, i.e., Iy < PercLoss.

D zpapg = P VKEK f€F 3)
qeQ
ap 2lpg—1+zp4 VkeK feF,qeQ 4)

Here, (3) ensures that for each flow in k, we select enough critical
scenarios to cover the probability ;. When z7, = 1, (4) becomes
PercLoss > Iy, meaning we care about the loss l¢,. When z g, = 0,

Figure 6: Increase in ScenLoss rela- Figure 7: Meeting bandwidth requirements requires
tive to ScenBest (optimal).

computing the pth percentile of flow losses.

(4) is satisfied no matter what PercLoss and If, are, implying we
don’t care about the loss [¢.

We next present the formulation below which determines the
best routing and choice of critical scenarios that minimize the sum
of penalty incurred by loss in different traffic classes. Each link e € E
is associated with a link capacity c.. We use P to represent the set
of source-destination pairs. Each pair i in traffic class k can use a
set of tunnels Ry (i) to route the traffic. This reflects that different
traffic classes may have different routing options and requirements
(e.g. background traffic classes can have more tunnel options than
delay-sensitive traffic classes). Let y;q represent whether a tunnel ¢
is alive in scenario g. We use xg; to denote the bandwidth assigned
to tunnel ¢ in scenario q for traffic class k, i.e., our designed routing.
Table 1 summarizes notation.

(I) min Z Wi o
zx,la ek
s.t. (3),(4)

Z xktqytqu(l—lfq)df VkeK,ieP,geQ (5

tE€R (1) pr(f)=ifeFk

Z Xrrg Sce Ve€EqeQ (6)
keK.ect
Xkiq 20 VK€K, i€PteR(i)geQ (7)
zpg €{0,1} VK€K, f€FrqeQ (8)
0<lpg<1 VkeK feF,qeQ. 9)

(5) ensures that there is enough bandwidth allocated to each pair.
The LHS of (5) is the total amount of traffic required to be sent
on pair i, and the RHS is the total allocated bandwidth on tunnels
connecting pair i. This constraint was modeled like [10]. (6) and
(7) ensure the allocated bandwidth on tunnels will not exceed any
link’s capacity, and the allocation is non-negative. The final two
constraints indicate the z variables are binary, and ensure the loss
fractions are between 0 and 1. The number of constraints in the
above formulation depends on the total number of scenarios in
Q. While the total number of possible scenarios the network may
encounter is large, we note that Q only need to contain sufficient
scenarios that occur with probability higher than . Nevertheless,
the formulation is large, which we tackle next.

4.2 Efficiently finding critical scenarios

The above problem is a Mixed Integer Program (MIP), which can be
challenging to solve. To tackle this, we tailor a systematic decom-
position strategy [34], to our domain with many problem specific

CoNEXT ’22, December 6-9, 2022, Roma, Italy

First stage: determine critical scenarios

Master problem
Propose critical
scenarios
Subproblem 2 [Subproblem N

Second stage: compute routes given critical
scenarios, and learn constraints

Learned constraints

Subproblem 1

(compute routes in
scenario 1)

Figure 8: Systematic decomposition approach.

optimizations to enable faster convergence, and reduce running
times. We discuss the basic strategy, followed by our optimizations.

Basic decomposition strategy. The original problem (I) simul-
taneously determines (i) the critical scenarios for each flow; and
(ii) how the traffic should be routed in each failure scenario taking
into account for which flows that scenario is critical. Instead, we
decompose the problem into (i) a master problem that proposes the
critical scenarios for each flow; and (ii) a sub-problem which routes
traffic when given the proposed set of critical scenarios for each
flow. The sub-problem learns new constraints that are added to the
master problem, which then proposes another set of critical sce-
narios. By iterating, the process converges finitely with an optimal
solution (we discuss why in the Appendix).

We now discuss optimizations over the standard approach.

Subproblem decomposition. Instead of writing the subprob-
lem as a large LP, we observe that the subproblem can be decom-
posed into multiple subproblems, since routing in each scenario
can be derived independently of other scenarios. Each smaller sub-
problem determines routing for one failure scenario given critical
flows for that scenario. Each second stage subproblem provides the
learned constraints to the master problem so that the master can
alter its critical scenario proposal in the next iteration. Each LP
subproblem is small and solves quickly. Moreover, further speed up
is attained by solving the subproblems in parallel. Fig. 8 illustrates
our procedure. Formally, for each scenario g, we have the following
smaller subproblem (note that z¢, is a parameter here):

(Sg) min Z AW

x,La

keK
s.t.ag > lfq—l+qu Vk € K, f € Fy. (10)
0<lpg<1 VkeK feF (11)

3 xequig = Y (1-lp)dy VkeKieP (12)

teRk (i) feFpr(f)=i

Z Xptg Sce Ve€E (13)
keK,ect
Xkrq 20 Vk €K i€ Pt €R(i). (14)

Formally, we rewrite (I) as
) mzin Penalty(z) s.t. (3),(8) (15)

Penalty(z) = mlin Z arwi s.t. (4),(5),(6),(7), (9) (16)
ThE ek

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

Reformulating the subproblem. To achieve further speed
ups, we reformulate each subproblem S4 to make the LHS of the
constraints the same across all scenarios, so the only change is in
the RHS. This ensures that the the dual solution space is common
across the LPs for different scenarios. This allows LP solvers to
memorize the intermediate results from solving one scenario to
speed up the solution of the next scenario. Specifically, we rewrite
(12) and (13) as:

D kg 2

Z (1-lg)ds VkeKieP (17)

t€R (i) feFrpr(f)=i
Z Xktq < CeMeq Ve € E. (18)
keK,ect

Rather than Ytq variables that capture tunnel failure, our reformu-
lation introduces meq variables which represent whether an edge
e is alive in scenario q. The reformulation adjusts the capacity of
failed links based on their failure state rather than cancel alloca-
tions on failed tunnels. These changes ensure only the RHS varies
for different scenario gq.

Master problem with decomposed subproblems We next
present the master problem which derives an underestimate of the
minimal penalty. This is improved by adding cut constraints learnt
from solutions of the dual of S4.

(M) min Penalty
z,Penalty
s.t. (3), (8)
Penalty > g4(z.q) Vg€ G,Vq € Q. (19)

G represents the set of all cuts computed so far. Note that since the
subproblem is decomposed into (S4) by scenarios, each g € G is
expressed as a set of cuts g4 (z.q), each constraining critical flows
in one scenario q. We present exact cut constraints in the appendix.

Ensure better stability. To speed up convergence and avoid os-
cillations around the optimal, we restrict the step when we update z.
We achieve this by adding a constraint in (M) to limit the hamming
distance between current z variable and z variable achieved from
last iteration. We present more details in Appendix.

Pruning scenarios. We further accelerate the decomposition
strategy by recognizing that not all subproblems need to be solved
each iteration. First, we prune out perfect scenarios where all flows
can be simultaneously handled without loss. Second, we prune
out scenarios for which the set of critical flows does not change.
Third, the reformulation of (S4) discussed earlier allows further
optimization. We can generate cuts for many scenarios even though
only a few subproblems for a subset of scenarios are solved. See
appendix for details.

Identifying a good starting point. It is desirable to start with
a good initial choice of z so that the algorithm requires fewer it-
erations to converge. We observe that a flow must be connected
in a failure scenario for that scenario to be critical. Thus, we add
constraints z¢, = 0 in (M) if flow f is disconnected in scenario
g, and zg4 = 1 otherwise. We have the proposition below which
indicates this heuristic is a good starting point (we defer a proof to
the appendix).

Flexile: Meeting bandwidth objectives almost always

PROPOSITION 1. At the initial step of our algorithm (prior to any
iteration of the master), the guarantee from our algorithm is already
at least as good as TeaVar or ScenBest.

Algorithm 1 summarizes our decomposition algorithm (Line
17-19 can be executed in parallel). In the algorithm, z denotes the
selection of critical scenarios for every flow (i.e., z = {zf4I¥f, q})
and x4 denotes the set of all routing variables in scenario g (i.e., xq =
{Xktq|Vk, t}). We remark that in each iteration, the algorithm yields
a routing strategy, and the corresponding Penalty can be computed
easily by sorting the optimal values for (S4) and computing the ﬁth
percentile.

Algorithm 1 Decomposition algorithm

1: function solve_master(G,z’)

2 Add hamming distance constraint with z’ to (M)
3 Solve (M) with G, and get new variable z

4: return z

5. function solve_subproblem(z,q)

6 Solve (Sq) and construct cut constraint g4

7 return Xq> 9q

8: function MAIN(max_iterations)
: Initialize z, to be 1if f is connected in g and 0 otherwise
10: Initialize x4 to be @ for all g € Q

11: cur_iteration < 0

12: G0

13: while cur_iteration < max_iterations do
14: g0

15: forq € Q do

16: if g cannot be pruned then

17: Xq»9q < solve_subproblem(z, q)
18: g.add(gq)

19: G.add(g)

20: z « solve_master (G, z)

21: cur_iteration « cur_iteration + 1

22: return x

4.3 Critical flow-aware online allocation

The offline phase identifies the critical failure scenarios for each
flow and guides which flows to prioritize in the online phase. Over
long time scales (every 5-10 minutes), the offline problem is solved
using a prediction of traffic matrix, and an estimation of failure
probabilities. When a failure occurs, the controller solves an online
LP to generate the routing weights to be installed in the routers
(similar to SMORE and SWAN). This online LP makes sure that
necessary bandwidth is first allocated to critical flows. However,
there is typically significant residual capacity remaining, which
this LP then allocates to non-critical flows while also favoring high
priority traffic.

To achieve this, Flexile uses an adaptation of SWAN’s max-min
allocation algorithm [20], but with some important changes. A first
major change is that Flexile assigns necessary bandwidth for critical
flows as pre-decided by the offline phase. Then, a max-min approach
is used to allocate bandwidth to non-critical flows, and additional

bandwidth beyond the pre-determined minimum to critical flows.
Like [20], allocations are first done for higher priority traffic classes.

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Second, SWAN determines the allocation for each traffic class,
as well as the routing, before allocating residual capacity to a lower
class. We implement an optimization where we decide how much
traffic the higher class gets, but do not pre-determine the routes.
When solving for the lower priority class, we force a minimum
required allocation for the higher priority class, and then simul-
taneously determine (i) the routing for both classes; and (ii) the
allocation for flows in the lower priority class. Third, rather than
do max-min allocations on bandwidth, we instead consider flow
loss, and do a max-min allocation on flow loss.

More generally, Flexile can work with any online bandwidth
allocation algorithm, not just SWAN, depending on the secondary
design objective beyond minimizing flow loss percentiles. For in-
stance, formulation (S4) could be used online to allocate traffic so as
to minimize the weighted loss of high and low priority flows given
a set of critical flows, while in single class settings, ScenBest could
be easily augmented to minimize MLU while prioritizing critical
flows.

Flexile’s approach to identify traffic of different priority classes,
and to ensure each flow of a class gets its share is the same as
existing systems such as SWAN. For instance, SWAN uses DSCP
bits to identify traffic of different priority classes; and uses a token
bucket in each end host that regulates traffic to the destination. The
same approach is applicable to Flexile - the only difference is in
terms of how much traffic is allocated to each flow when a failure
happens.

With Flexile, routers only maintain forwarding entries associated
with the current failure scenario. Hence the storage required at
each router is identical to existing TE schemes. The only additional
storage required is for storing the information of critical flows
in the centralized controller. This requires a single bit for each
combination of scenario and flow and requires O(MN) space where
M is the number of scenarios and N is the total number of flows.
For a topology of 100 nodes, and 1000 failure scenarios, this storage
requirement is only 1.25MB.

4.4 Generalizations

Constraining loss on non-critical flows. While §4.3 already en-
sures non-critical flows may be allocated bandwidth using residual
capacity, we may explicitly constrain loss on non-critical flows in
each scenario through a small change to (I). Suppose for scenario g,
the optimal ScenLoss is lossq. We can add constraints of the form
lfq <y +lossq, where y is a constant representing the maximum
factor by which the flow’s loss may increase in that scenario. y then
serves as a knob that trades off the increase the flow sees in that
scenario with PercLoss. By setting y appropriately, we can ensure
optimal performance in each scenario.

More general scenarios. It is easy to extend Flexile to design
for a set of traffic matrices given their probability. In model (I),
each scenario q € Q corresponds to a traffic matrix. The demand of
flow f in (5) will become d?, reflecting different traffic matrices in
different scenarios. Flexile’s decomposition algorithm still applies.

Explicit priority with multiple traffic classes. In Flexile, by
altering the weight in the objective, more emphasis can be placed
on PercLoss for high-priority traffic. Futher, our online allocation
algorithm favors high-priority traffic when using residual capacity,

CoNEXT ’22, December 6-9, 2022, Roma, Italy

which usually ensures high-priority traffic does not see loss across
scenarios (Fig 13). If the PercLoss of low-priority traffic is even sub-
ordinate to sending high-priority traffic in a non-critical scenarios
then Flexile can be adapted as follows. First, Flexile determines criti-
cal flows to minimize PercLoss only considering high-priority traffic.
Then Flexile uses the algorithm in §4.3 to push as much non-critical
high-priority traffic as possible in each scenario. Next, Flexile may
be used to design for low-priority traffic with additional constraints
to meet bandwidth levels for high-priority traffic determined in
the first step. The approach is easily generalized to multiple traffic
classes.

Capacity augmentation to meet flow percentiles. Flexile can
be generalized to perform minimum-cost capacity augmentation
on the network which is more cost-effective than a scenario-centric
approach (see Appendix).

Handling imperfect probability prediction. Flexile can toler-
ate errors in the probabilities of individual scenarios so long as the
cumulative probability of the scenarios it designs matches the SLO
target. When the predicted probabilities are imperfect, applying
Flexile directly may design for 99% but the true probability of the
scenarios it designs for is lower, implying the actual guarantee is
weaker. To compensate, we can design for a slightly higher target
probability, sufficient to tolerate prediction error. Note that we do
not need to know the probability of all failure scenarios. It suffices
to know the probability of a subset of scenarios that occur with
sufficiently high probability.

5 FLEXILE VS. TEAVAR

While Flexile minimizes the th percentile of losses (or Value at Risk
or VaR), Teavar [10] approximates the same using the Conditional
Value at Risk (CVaR). CVaR minimizes the expected loss of the
worst (100 — j) th percentile of scenarios. For example, consider a
flow which sees a loss of 0%, 5% and 10% in three scenarios that
respectively occur with probability 0.9,0.09, and 0.01. Then, the 904"
percentile loss (VaR) is 0%, but the CVaR is 5%0.09+100.01 = 1.45%.

Recall there are two other differences between Teavar and Flexile.
First, Teavar considers the ﬂth percentile of ScenLoss, unlike Flexile
which focuses on the ﬁth percentile of flows. Second, on failure,
Teavar rescales traffic of each source destination pair on live tun-
nels so the same proportion is maintained. In contrast, Flexile like
SMORE [25] allows greater flexibility in how traffic is split across
tunnels.

To analyze the advantages of directly considering VaR in Flex-
ile, and decouple these benefits from other benefits of Flexile, we
design two new CVaR-based TE schemes, which may be viewed
generalizations of Teavar:

o Cvar-Flow-St. Here, we use CVaR to approximate the computa-
tion of PercLoss. Instead of directly computing " percentile loss
for flow f, i.e., FlowLoss(f, ff), we use CVaR of flow f (denoted
by CVaR(f, p)) to approximate it. Then we seek to optimize the
maximum CVaR of all flows, which we denote as MaxFlowCVaR.
Formally,

MaxFlowCVaR = 1}131):(CVaR(f, p) (20)
€

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

. ® Cvar-Flow-Ad. This is similar to Cvar-Flow-St except that we
allow greater flexibility in terms of how traffic may be split across
tunnels on failure.

We develop Linear Programming (LP) models for computing the
routing and bandwidth allocations associated with these schemes,
which we present in the appendix. We have the following proposi-
tion.

PROPOSITION 2. There exists a setting where PercLoss found by
Teavar, and all CVaR strategies is at least 48% even though there exists
an optimal strategy where the network can achieve a PercLoss of zero.

The proof follows from an analysis of Fig. 1, and we defer details
to the appendix. The proposition shows that these more general
strategies are still quite conservative, and there is significant po-
tential to doing better with Flexile by directly considering VaR. We
empirically show the benefits in §6.2.

6 EVALUATIONS

We compare Flexile with state-of-the-art TE schemes on multiple
topologies, and validate the results on an emulation testbed. We
discuss our methodology and then results.

Schemes compared. We compare Flexile with

e Teavar and other CVaR schemes: We consider Teavar and
two enhanced CVaR schemes (Cvar-Flow-St and Cvar-Flow-Ad) that
we developed (§5). These schemes enable us to separate Flexile’s
benefits related to directly optimizing loss percentiles (rather than
approximate with CVaR), and its benefits related to considering
flow losses.

e SMORE: SMORE split traffic optimally among live tunnels
upon failures. This is identical to ScenBest discussed in section §2
when the optimized metric is MLU.

e SWAN: We consider both variants of SWAN [20], which we
refer to as SWAN-Throughput and SWAN-Maxmin. For each sce-
nario, both schemes allocate bandwidth to higher priority traffic
classes before lower priority ones. SWAN-Throughput maximizes
throughput while SWAN-Maxmin uses an iterative algorithm to
approximate max-min fairness.

We include SWAN because like Flexile, it can handle multiple
traffic classes. In contrast, Teavar and SMORE are designed for
single traffic class. Thus, our comparisons with SWAN are based
on two traffic classes (a latency-sensitive class, and a lower priority
class), while the comparisons with SMORE and Teavar consider a
single traffic class.

When feasible (for smaller topologies), we also compare Flex-
ile with IP, which uses the optimal routing designed by the MIP
formulation (I). Our implementation of Flexile includes both the
decomposition algorithm (§4.2) for the offline phase (run for a max-
imum of 5 iterations), and the online phase run on failure. We
implement all our optimization models in Python, and use Gurobi
8.0 [22] to solve them.

Performance metric. Our primary performance metric for all
schemes is the PercLoss for each class achieved by the scheme (i.e.,
we consider the ¢ h percentile of loss of each flow in a class, and
take the maximum across flows.). We evaluate all the schemes based
on post-analysis. For each scheme, we determine the routing and
bandwidth allocation in each failure scenario, compute the loss of
each flow in each scenario, and then compute PercLoss.

Flexile: Meeting bandwidth objectives almost always

CoNEXT ’22, December 6-9, 2022, Roma, Italy

80 1 50
70 | : 20 |
.60 4 : s
X X
%50 1 I 730
3 40 - ! S
° ! S 20 A
5 30 1 ! 3]
a 1 a
20 A 1 10 A
10 4 :
0 - o -
Flexile SWAN- Flexile SWAN-
Maxmin Maxmin

99.9%ile loss on
high-priority traffic

()

99.9%ile loss on
low-priority traffic

Flexile =~ SMORE Teavar

1.00 T T T T

0.99]

CDF (Frac. of flows across scenarios)
f=1
K=
3
.
.

0.96 |- R
99.9%ile loss on 0.95 I I I
single class traffic -0.5 00 05 1.0 1.5 2.0
Emulation loss% - model loss%
(b) ()

Figure 9: (a) Emulation testbed results. (a) Flexile vs. SWAN. (b) Flexile vs. Teavar and SMORE. (c) Comparing flow losses across

scenarios in emulations with model predicted losses.

Topologies and traffic model. We evaluate the schemes on 20
topologies obtained from [24] and [25] (see Table 2 in the Appendix).
Our largest network contains 151 edges and 103 nodes. We remove
one-degree nodes in the topologies recursively so that the networks
are not disconnected with any single link failure. For each topology,
M, where K is the number of traffic
classes and N is the number of nodes. We choose tunnels balancing
latency and disjointness like prior works [10, 23, 28]. For latency-
sensitive high-priority traffic we choose three shortest paths that
are not disconnected by single link failures. For low-priority traffic
which is not as latency-sensitive, we add three additional tunnels
from a larger pool of shortest paths prioritizing disjointness. Our
single class experiments use three physical tunnels per pair that
are as disjoint as possible, preferring shorter ones when there are
multiple choices. We used the gravity model [48] to generate traffic
matrices with the utilization of the most congested link (MLU) in
the range [0.5, 0.7] across all topologies. The resulting traffic matrix
was used as such for the single traffic class experiments. For the
two-class experiments, the traffic of each pair was randomly split
into high and low priority. We then scaled low priority traffic by a
factor of 2 given the network can run closer to saturation with low
priority traffic.

Failure scenarios. For each topology, we use the Weibull distri-
bution to generate the failure probability of each link, like [10]. We
choose the Weibull parameter so that the median failure probability
is approximately 0.001, matching empirical data characterizing fail-
ures in wide-area networks [17, 29, 41]. Given a set of link failure
probabilities, we sample failure scenarios based on the probability
of the occurrence. Our evaluations assume independent link failures
but Flexile’s approach generalizes to shared risk link groups with
correlated failures (§4.1). We discard scenarios with insignificant
probability (< 107°). For single-class experiment, our design target
is set to as high a probability target as possible, while ensuring all
flows remain connected for the sampled scenarios. This is because
the network will trivially see a PercLoss of 1 for any higher target.
We also use this as the design target for high-priority class in two-
class experiments. For low-priority class, we always use 0.99 as the
design target.

Emulation setup. Our emulations are conducted on a Mininet
cluster [2] running on six Cloudlab servers [1]. Link bandwidths

the number of flows is K

were set to 10 Mbps to avoid software switch bottlenecks. The traf-
fic demands generated using the approach above was accordingly
normalized. Tunneling was implemented using MPLS labels. We
emulate the performance of a TE scheme in a failure scenario by
starting the network in the normal condition and failing the appro-
priate set of links. The source switch uses select groups supported
by Open vSwitch, and weights are set so each tunnel is chosen with
a probability determined by the appropriate TE scheme. The TE
scheme also determines how much data each flow is permitted to
transmit. We measure the loss seen by each flow on the emulation
testbed relative to the original demand requested, accounting for
both throttling required by the TE scheme, and losses in the testbed.
We compute loss at a desired percentile for each flow given the
emulated losses for each scenario, and its probability, which in turn
enables us to compute the PercLoss for each traffic class.

6.1 Comparisons on emulation testbed

We emulate the IBM topology which has 17 switches, and 23 links,
generating necessary traffic using 34 end hosts. The comparisons
with SWAN used two traffic classes for all 272 pairs (544 flows in
all), while the comparisons with Teavar and SMORE used a single
traffic class for all pairs. Each scheme was emulated in each of 138
sampled scenarios (which cover more than 99.992% probability) five
times.

Flexile vs. SWAN. Fig. 9a shows PercLoss achieved by Flexile and
SWAN-Maxmin on the IBM topology for both high and low priority
traffic. Each bar shows the median PercLoss across 5 runs. The error
bars show the minimum and maximum. For high priority traffic, we
consider the 99.9%ile loss of each flow, while for low priority traffic,
we consider the 99%ile of each flow. The figure shows that PercLoss
is nearly zero for both schemes for high priority traffic indicating
all high priority flows can be sustained without loss 99.9% of the
time. However, while PercLoss is nearly zero for low priority with
Flexile, it is fairly high (> 60%) for SWAN-Maxmin. This indicates
that Flexile can carry all low priority flows with almost no loss 99%
of the time, but some flows may see large loss with SWAN-Maxmin
99% of the time.

Flexile vs. SMORE and Teavar. Fig. 9b compares Flexile with
SMORE and Teavar using a single traffic class considering the
99.9%ile loss for flows. The PercLoss with Flexile is nearly zero

CoNEXT ’22, December 6-9, 2022, Roma, Italy

@ Flexile ® SWAN-MaxMin SWAN-Throughput

100

—_ oo ® o o

R 75 °

Tn/ e 0 e ° ¢ ¢ ‘ ‘

1%} []

8 50 o L 3

[

o 25 ° *

K *
0000000660006 ¢

Topologies

Figure 10: Flexile Vs. SWAN. Flexile matched optimal when-
ever it was computable. Vertically aligned dots correspond
to the same topology.

indicating it can support all flows with minimal loss 99.9% of the
time, while the PercLoss achieved by SMORE and Teavar is 17%
and 40% respectively indicating some flows could see significant
99.9%ile loss.

Models vs. Emulation. While our models assume continuous
split ratios and traffic demands, Open vSwitch only takes inte-
ger weights in select groups, and some discretization occurs since
testbed traffic is packet-based. To assess the impact of such dis-
cretization, we compare the losses observed in the emulations, and
losses predicted by the optimization models of TE schemes across
all flows and all scenarios using the Pearson Correlation Coefficient
(PCC). The PCC values are more than 0.999 in both single-class and
two-class setting. Fig. 9c shows a CDF of the losses observed in
emulation and simulation across all flows and scenarios. There is
no difference in over 99% of the cases, and a difference of less than
1.67% in all cases. For all schemes, and all runs, PercLoss in the em-
ulations is within 1.67% of the models, which is much smaller than
the performance gap across the schemes. These results indicate
that the emulation results closely match our optimization models.

6.2 Comparisons across topologies

Flexile vs. SWAN. We compare Flexile with both SWAN variants —
SWAN-Throughput and SWAN-Maxmin. For high priority traffic,
all schemes achieve PercLoss of zero across all topologies. Fig. 10
compares the PercLoss for low priority traffic across topologies.
Clearly, Flexile significantly outperforms both SWAN variants for
most topologies. The median PercLoss across topologies for Flexile
is 0%, while the median for SWAN-Maxmin is 58%. In some cases,
SWAN-Maxmin sees PercLoss as high as 93%. Interestingly, SWAN-
Throughput sees extremely high PercLoss of 100% in many cases
(median across topologies is 100%). This is because optimizing
throughput may lead to significant unfairness across flows. Some
flows may be consistently sacrificed without any demand serviced
in many scenarios. As an example, consider a path A-B-C with
each link having unit capacity. Here, SWAN-Throughput would
prioritize sending one unit of demand for the AB and BC flows, and
allocate no traffic to the AC flow, as this maximizes throughput.
Finally, in the Appendix we show that with Flexile, lower priority
traffic can be scaled by a larger factor while ensuring zero PercLoss.

Flexile vs. Teavar and our CVaR variants. Fig. 11 compares
Flexile relative to Teavar and the new CVaR-based schemes that we
designed (§5) for the single traffic class setting. Each curve shows
a CDF of the PercLoss achieved by a particular scheme across all
topologies.

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

g0 :
8 0.8 ! i
2 ! '
2 0.6 ! !
5 A --- Teavar

c 04 A R Cvar-Flow-St
% 0.2+ Ir : ,———.— Cvar-Flow-Ad
o i ST —-— Flexile
00, ~ >~ 0
fa 0 10 20 30 40 50 60 70 80 90100
o

PercLoss (%)

Figure 11: Flexile Vs. Teavar and our CVaR variants.

First, we see that Flexile (left-most curve) achieves significantly
lower PercLoss relative to Teavar (right-most curve). Interestingly,
Teavar achieves an PercLoss of 100% in many cases. To understand
this, consider a failure scenario that disconnects the network. Teavar
cannot count such a scenario towards meeting the requirement of
any flow since it optimizes the maximum loss across all source-
destination pairs in that scenario. If the topology is connected less
than % of the time, Teavar can only achieve a 100% loss at the
P%ile. In contrast, each individual flow could still be connected
in scenarios that occur % of the time or higher, allowing Flexile
to achieve a much lower loss at the f%ile (in some extreme cases,
Flexile could guarantee 0% loss for all flows). We also evaluate
Teavar in more richly connected topologies later.

Second, our enhanced schemes Cvar-Flow-Ad and Cvar-Flow-St
(which both consider flow losses) significantly outperform Teavar,
but still see high PercLoss relative to Flexile. This is because the
schemes use CVaR to approximate the percentile, while Flexile
directly optimizes the percentile. Cvar-Flow-Ad does better than
Cvar-Flow-St as expected because of more adaptive routing.

Finally, Cvar-Flow-St significantly reduces PercLoss relative to
Teavar, with a reduction of more than 50% in the median case. This
indicates considering flow losses offers significant benefits despite
limited routing flexibility, and the CVaR approximation.

Flexile vs. SMORE. SMORE, like Teavar, optimizes the loss
across all flows in each scenario. Since the topology may get dis-
connected, we considered a variant of SMORE where in each sce-
nario we turned off traffic for disconnected flows. This approach
performed similar to Flexile in many cases although there were
topologies where Flexile still gave benefits. Even so, Flexile can
verify that the network cannot perform better, while SMORE is
unable to do so.

We also compare Flexile with SMORE in more richly connected
settings, which we create by assuming each link consists of two
sub-links that fail independently. We ensure the topology remains
connected in all sampled failure scenarios. Fig.12 compares the
PercLoss achieved by Flexile, SMORE and Teavar in these more richly
connected topologies. Flexile consistently outperforms Teavar and
SMORE in most topologies. In the median case, the % reduction in
PercLoss achieved by Flexile over SMORE is 46% and over Teavar is
63%. In a few cases, we do not report results for Teavar since it did
not finish within several hours.

6.3 Does Flexile increase loss in scenarios?

While Flexile optimizes performance across failure scenarios, this
could potentially be at the expense of performance of non-critical

Flexile: Meeting bandwidth objectives almost always

Teavar ® SMORE ¢ Flexile

60
S °
40 T .':
8 ° o ®
| P)
020 g 00 0 e 00 66000 °
o S
o * ®

ﬁ

Topologies
Figure 12: Flexile Vs. SMORE and Teavar in richly connected
topologies. TLE indicates Time Limit Exceeded.

flows within a scenario. We evaluate how well Flexile’s techniques
(§3 and §4.4) can mitigate the impact.

Single class traffic: We evaluate Flexile with respect to Scen-
Loss (§2) focusing on the loss of the worst performing connected
flow in each scenario. For all but the IBM topology, Flexile achieves
identical ScenLoss as ScenBest (which is optimal for each scenario).
For IBM, Flexile achieves only modestly higher loss than ScenBest
as already shown in §3 (Fig. 6). In contrast, Teavar performs poorly
— the 99.9%ile ScenLoss with Teavar is 100% for all except 4 topolo-
gies while Flexile and ScenBest achieve ScenLoss under 17% for all
topologies.

Multiple class traffic: Fig. 13 shows a distribution of the loss
of the worst performing flow in each traffic class for the Sprint
topology. ScenBest-Multi generalizes ScenBest for two classes and
represents the optimal scheme when performance within each
scenario is considered. For high priority traffic, Flexile incurs no loss
for any flow in any scenario. Note that all three schemes see no
loss and overlap on the left. For low priority traffic, the loss for
the worst flow is only modestly higher with Flexile compared to
ScenBest-Multi, and much better than SWAN-Maxmin. Note that
ScenBest-Multi performs poorly in PercLoss which looks across
scenarios.

Flexile achieves similarly strong results for most other topologies.
In a few cases, Flexile did see slightly higher loss penalties relative
to optimal in some scenarios, but this was limited to low priority
traffic. Further, here, a variant of Flexile which added a constraint
limiting the increase in loss of non-critical flows (§4.4) worked well.
For instance, for the Quest topology, the variant only increased the
loss of the worst low priority flow by at most 5% in each scenario,
yet significantly outperformed in PercLoss (the variant achieved an
PercLoss of 16%, compared to 35% for ScenBest-Multi and 57% for
SWAN-Maxmin). Overall, the results show Flexile can bound the
loss in scenarios, yet substantially improve flow loss at a desired
percentile.

6.4 Evaluating other aspects of Flexile

Convergence to optimality. We next compare Flexile to the opti-
mal PercLoss that the network can achieve for topologies for which
we could compute the optimal. Fig. 14 shows the CDF of the opti-
mality gap (PercLoss achieved by Flexile - optimal PercLoss) across
topologies after each iteration of Flexile’s decomposition algorithm
(§4.2) for the two-class traffic setting. Across all topologies, Flexile
achieves the optimal in 5 iterations, frequently achieving it in fewer
iterations. Interestingly, for 40% of the topologies, Flexile achieves
the optimal in the first iteration showing the effectiveness of our

CoNEXT ’22, December 6-9, 2022, Roma, Italy

starting point heuristic. We found Flexile typically converged to
optimal even faster in the single-class experiments.

Solving time. Fig. 15 presents the solving time (Y-Axis) for
different topology sizes (X-Axis) for IP and Flexile, assuming 5
iterations for Flexile. Note that this is the offline solving time and
done prior to failure. Flexile solves multiple small LP subproblems in
each iteration, and a master problem (a MIP). For Tinet (one of our
larger topologies), each subproblem takes 0.10-0.15 seconds. The
master problem is much smaller than the IP (I), and takes less than
0.10 seconds for Tinet. We report the solving time of the master and
all subproblems, based on solving up to 10 subproblems in parallel.

Fig. 15 shows that Flexile reduces solving time significantly, and
is under 15 seconds for all topologies except the largest (Deltacom)
which takes 118 seconds. In contrast, IP cannot finish within 1 hour
for Deltacom and takes more than 40 minutes for Tinet. Further op-
timizations are possible for Flexile - e.g., the PercLoss for Deltacom
was under 1% after 2 iterations indicating we could have stopped
earlier.

Note that the solving time depends on (i) the number of iter-
ations; and (ii) the time spent on subproblems in each iteration.
Empirically, the number of iterations does not grow with size, and
the majority of the time is spent on the subproblems. The number
of these subproblems is the number of scenarios we consider. For
each subproblem, the number of variables grows linearly with the
number of flows, and the number of constraints grows linearly with
the number of edges in the network. We solve each subproblem
using the simplex algorithm. Smoothed analysis shows that the
complexity is polynomial in the size of the LP and the perturbation
to its data [13] while empirical performance has been observed to
be linear in the number of constraints and variables [35].

Interestingly, we found that Teavar has significantly higher solv-
ing times than Flexile — e.g., Teavar is unable to finish Deltacom
even after several hours. Although Teavar solves a single LP, its solv-
ing time can be large since it bundles all the enumerated scenarios
in a single problem.

Finally, the online phase only solves one subproblem. Hence
solving time grows with the time to solve one subproblem. The
scaling is similar to existing TE schemes such as SMORE and SWAN.
We found that the online solving time incurred on failure is com-
parable to SWAN-Maxmin, and typically under 3 seconds. Further
reductions are achievable with coarse buckets for the max-min
scheme, or using an even lighter-weight scheme such as SMORE
augmented with critical flows.

7 RELATED WORK

In this section, we only discuss related work not discussed in §2.
There has been recent interest in designing TE schemes with prob-
abilistic requirements [10, 11, 47]. Lancet [11] focuses on local
rerouting using a link bypass rather than Flexile’s flexible rerouting
approach, and does not consider flow losses. Beta [47] tackles an
orthogonal problem where traffic arrives incrementally and decides
whether to accept the demand in an online fashion. However, the
admission decision can be overly conservative, and newly arriving
higher priority traffic may be rejected because of existing lower
priority traffic. Given router configurations and failure probabilities,
NetDice [38] verifies path lengths are under a threshold with desired

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

= High priority traffic |1 , g 1.01 L] 7 =
% 0.9999 : (all schemes) i i ' 'gn 0.8l /./ = 1031
: ! - * s
g’ﬁ 0.9997 : j"“ e’ 2 0.6 .f'/ —-+ lteration 1 g , vty
a.2 e o L] J Iteration 2 510%y = .
E g 099! ! so4 e Iteration 3 2 "a
B8 gofi = SWAN-Maxmin(low) 1 S 021 —- lteration 4 210" ua — 1 hitruncated)
wn . ; — N
5“5 : — = Flexile (low) _ H 5 —— lteration 5 3 . uda P .
S 0.0 1 ==+ ScenBest-Multi (low) _! E 0.01 100 r'y Flexile
A . ; — — — —— . [y 1 Waam
= 0 102030 40 50 60 70 80 90100 0 1020 3gpt4ig1a5”0ty6§ago 80 90100 20 40 60 80 100120 140
a i :
O Loss of mosrcs(tar?:rrifé)@:;ng flow 8 (Flexile PercLoss % - Optimal PercLoss % Number of links

Figure 13: Flexile sees modest penalty in Figure 14: Performance improvement
with each iteration.

ScenLoss relative to the optimal.

probability. Other work [15] models packet delivery probability on
failures.

Recent work [5] shows how an MCF problem could be solved
quickly on failure through decomposition which enables flexible
routing with fast reaction time. This may be viewed as a variant
of a ScenBest scheme that trades off optimality for computation
speed. In contrast Flexile optimizes across scenarios to meet flow
percentile requirements. Researchers have explored robust network
design under single link or node failures [6, 9, 14, 19, 32, 40, 49],
verified link utilizations under failure [12, 39], and explored robust
design across traffic matrices [6, 7, 42, 46]. While we focus on IP
topology failures, ARROW [50] allows restoration of link capacity
by readjusting the underlying fiber path on fiber failure. Decom-
position techniques have been explored in other contexts such as
distributed SDN controllers [16].

8 CONCLUSIONS

In this paper, we have presented Flexile, a new system to minimize
flow loss at a desired percentile in a cloud provider WAN, while
modeling the diverse needs of different traffic classes. Flexile ex-
ploits a key opportunity that each flow could meet its bandwidth
requirements over a different set of failure states. Evaluations over
20 real topologies validated with emulation testbed experiments
show Flexile out-performs existing TE schemes. Across topologies,
the median reduction in flow loss at desired percentiles with Flex-
ile is 46% for SMORE, and 63% for Teavar, while the benefits are
even higher for SWAN. Finally, its decomposition approach aided
with problem-specific optimizations ensures solving times of under
15 seconds for most topologies and Flexile is an order of magni-
tude faster than Teavar for the largest topology. Overall, the results
show the promise of Flexile. This work does not raise any ethical
issues.

9 ACKNOWLEDGEMENTS

We thank our shepherd, Gabor Rétvari, and the anonymous review-
ers for their feedback which greatly helped improve the paper. This
work was funded in part by the National Science Foundation (NSF)
Award 1910234.

REFERENCES

[1] Cloudlab. https://cloudlab.us/.

[2] Mininet. http://mininet.org/.

[3] SMORE source code. https://github.com/cornell-netlab/yates/.

[4] Cisco WAN automation engine (WAE), 2016. http://www.cisco.com/c/en/us/
products/routers/wan-automation-engine/index html.

[5]

[6

7

[8

ey
et

[16

(17]

oy
&

[19

[20

[21

~
£,

Figure 15: Reduction in solving time
with Flexile

Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei Zaharia,
and Peter Bailis. Contracting wide-area network topologies to solve flow prob-
lems quickly. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 175-200. USENIX Association, 2021.

David Applegate, Lee Breslau, and Edith Cohen. Coping with network failures:
Routing strategies for optimal demand oblivious restoration. In Proceedings of the
Joint International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’04/Performance '04, pages 270-281, 2004.

David Applegate and Edith Cohen. Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental tradeoffs.
In Proceedings of ACM SIGCOMM, pages 313-324, 2003.

Ajay Kumar Bangla, Alireza Ghaffarkhah, Ben Preskill, Bikash Koley, Christoph
Albrecht, Emilie Danna, Joe Jiang, and Xiaoxue Zhao. Capacity planning for the
google backbone network. In ISMP 2015 (International Symposium on Mathemati-
cal Programming), https://research.google/pubs/pub45385/, 2015.

Randeep S. Bhatia, Murali Kodialam, T. V. Lakshman, and Sudipta Sengupta.
Bandwidth guaranteed routing with fast restoration against link and node failures.
IEEE/ACM Transactions on Networking, 16(6):1321-1330, December 2008.
Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjorner,
Asaf Valadarsky, and Michael Schapira. Teavar: Striking the right utilization-
availability balance in wan traffic engineering. In Proceedings of ACM SIGCOMM,
2019.

Yiyang Chang, Chuan Jiang, Ashish Chandra, Sanjay Rao, and Mohit Tawar-
malani. Lancet: Better network resilience by designing for pruned failure sets.
Proceedings of the ACM on Measurement and Analysis of Computing Systems,
3:1-26, 12 2019.

Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani. Robust validation of network
designs under uncertain demands and failures. In 14" USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 347-362, 2017.
Daniel Dadush and Sophie Huiberts. Smoothed Analysis of the Simplex Method,
page 309-333. Cambridge University Press, 2021.

Bernard Fortz and Mikkel Thorup. Robust optimization of OSPF/IS-IS weights.
In Proceedings of International Network Optimization Conference, pages 225-230,
2003.

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexan-
dra Silva. Probabilistic netkat. In Proceedings of the 25th European Symposium on
Programming Languages and Systems - Volume 9632, pages 282-309, 2016.

A. Ghosh, Sangtae Ha, E. Crabbe, and J. Rexford. Scalable multi-class traffic
management in data center backbone networks. IEEE Journal on Selected Areas
in Communications, 31:2673-2684, 2013.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network
failures in data centers: Measurement, analysis, and implications. In Proceedings
of ACM SIGCOMM, pages 350-361, 2011.

Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
Evolve or die: High-availability design principles drawn from googles network
infrastructure. In Proceedings of ACM SIGCOMM, pages 58-72, 2016.

Fang Hao, Murali Kodialam, and T. V. Lakshman. Optimizing restoration with
segment routing. In Proceedings of IEEE INFOCOM, pages 1-9, April 2016.
Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven
wan. In Proceedings of ACM SIGCOMM, pages 15-26, 2013.

Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,
Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang,
Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt
Tierney, Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and after:
Managing hierarchy, partitioning, and asymmetry for availability and scale in
google’s software-defined wan. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages 74-87, 2018.

Gurobi Optimization Inc. Gurobi optimizer reference manual, 2016. http://www.
gurobi.com.

https://cloudlab.us/
http://mininet.org/
https://github.com/cornell-netlab/yates/
http://www.cisco.com/c/en/us/products/routers/wan-automation-engine/index.html
http://www.cisco.com/c/en/us/products/routers/wan-automation-engine/index.html
https://research.google/pubs/pub45385/
http://www.gurobi.com
http://www.gurobi.com

Flexile: Meeting bandwidth objectives almost always

[23]

[24

[25

[26

[
)

[28

[29

[30]
[31]

[32]

[33

[40

(41

[42]

[43

[44

[45

[46

[47

Chuan Jiang, Sanjay Rao, and Mohit Tawarmalani. Pcf: Provably resilient flexible
routing. In Proceedings of ACM SIGCOMM, page 139-153, 2020.

Simon Knight, Hung Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. The internet topology zoo. IEEE Journal on Selected Areas in Commu-
nications, 29:1765 — 1775, October 2011.

Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr La-
pukhov, Chiun Lin Lim, and Robert Soulé. Semi-oblivious traffic engineering:
The road not taken. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 157-170, 2018.

Kin-Wah Kwong, Lixin Gao, Roch Guérin, and Zhi-Li Zhang. On the feasibility
and efficacy of protection routing in ip networks. IEEE/ACM Transactions on
Networking, 19(5):1543-1556, October 2011.

Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson,
Scott Shenker, and Ion Stoica. Achieving convergence-free routing using failure-
carrying packets. In Proceedings of ACM SIGCOMM, pages 241-252, 2007.
Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David
Gelernter. Traffic engineering with forward fault correction. In Proceedings of
ACM SIGCOMM, pages 527-538, 2014.

Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee
Chuabh, Yashar Ganjali, and Christophe Diot. Characterization of failures in an
operational ip backbone network. IEEE/ACM Trans. Netw., 16(4):749-762, 2008.
Manfred Padberg. Linear optimization and extensions, volume 12. Springer Science
& Business Media, 2013.

P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-TE for LSP
Tunnels. RFC 4090, May 2005.

Michal Piéro and Deepankar Medhi. Routing, Flow, and Capacity Design in
Communication and Computer Networks. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2004.

Rahul Potharaju and Navendu Jain. When the network crumbles: An empirical
study of cloud network failures and their impact on services. In Proceedings of the
4th Annual Symposium on Cloud Computing, SOCC 13, pages 15:1-15:17, 2013.
Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei.
The benders decomposition algorithm: A literature review. European Journal of
Operational Research, 259(3):801 — 817, 2017.

Ron Shamir. The efficiency of the simplex method: A survey. Management Science,
33(3):301-334, 1987.

M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714, January 2010.
R. K. Sinha, F. Ergun, K. N. Oikonomou, and K. K. Ramakrishnan. Network
design for tolerating multiple link failures using Fast Re-route (FRR). In 2014
10th International Conference on the Design of Reliable Communication Networks
(DRCN), pages 1-8, April 2014.

Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev.
Probabilistic verification of network configurations. In Proceedings of ACM
SIGCOMM, page 750-764, 2020.

Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya
Akella. Detecting network load violations for distributed control planes. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2020, page 974-988, 2020.

Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer
Rexford. Network architecture for joint failure recovery and traffic engineering.
SIGMETRICS Perform. Eval. Rev., 39(1):97-108, 2011.

Daniel Turner, Kirill Levchenko, Alex C. Snoeren, and Stefan Savage. Califor-
nia fault lines: Understanding the causes and impact of network failures. In
Proceedings of the ACM SIGCOMM 2010 Conference, pages 315-326, 2010.

Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert
Greenberg. COPE: Traffic engineering in dynamic networks. In Proceedings of
ACM SIGCOMM, pages 99-110, 2006.

Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi, Yin Zhang, Lili Qiu, and
Yang Richard Yang. R3: Resilient routing reconfiguration. In Proceedings of ACM
SIGCOMM, pages 291-302, 2010.

Yiting Xia, Ying Zhang, Zhizhen Zhong, Guanqing Yan, Chiun Lin Lim, Satya-
jeet Singh Ahuja, Soshant Bali, Alexander Nikolaidis, Kimia Ghobadi, and Manya
Ghobadi. A social network under social distancing: Risk-Driven backbone man-
agement during COVID-19 and beyond. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages 217-231. USENIX Associa-
tion, April 2021.

B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng. Keep forwarding: Towards k-link
failure resilient routing. In Proceedings of IEEE INFOCOM, pages 1617-1625, April
2014.

C. Zhang, Zihui Ge, J. Kurose, Y. Liu, and D. Towsley. Optimal routing with
multiple traffic matrices tradeoff between average and worst case performance.
In Network Protocols, 2005. ICNP 2005. 13th IEEE International Conference on, 2005.
Han Zhang, Xingang Shi, Xia Yin, Jilong Wang, Zhiliang Wang, Yingya Guo, and
Tian Lan. Boosting bandwidth availability over inter-dc wan. In Proceedings
of the 17th International Conference on Emerging Networking EXperiments and
Technologies, page 297-312, New York, NY, USA, 2021. Association for Computing
Machinery.

CoNEXT ’22, December 6-9, 2022, Roma, Italy

[48] Yin Zhang, Zihui Ge, Albert Greenberg, and Matthew Roughan. Network anomog-
raphy. In Proceedings of the 5th ACM SIGCOMM Conference on Internet Measure-
ment, pages 30-30, 2005.

[49] Jiagi Zheng, Hong Xu, Xiaojun Zhu, Guihai Chen, and Yanhui Geng. We’ve got

you covered: Failure recovery with backup tunnels in traffic engineering. In 2016

IEEE 24th International Conference on Network Protocols (ICNP), pages 1-10, 2016.

Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yiting Xia, and

Ying Zhang. Arrow: Restoration-aware traffic engineering. In Proceedings of the

2021 ACM SIGCOMM 2021 Conference, SSIGCOMM ’21, page 560-579, New York,

NY, USA, 2021.

[50

APPENDIX
A. Supporting materials for §2 and §3

Equivalence of minimizing ScenLoss, minimizing MLU and
maximum concurrent flow formulations. Many TE schemes [25,
43] optimize the utilization of the most congested link (Maximum
Link Utilization or MLU), or alternately,solve the maximum concur-
rent flow, and maximize the fraction z (that we also refer to as scale
factor) of demand the network can handle. Minimizing MLU, or max-
imizing z is equivalent to minimizing ScenLoss (the maximum loss
across all pairs in a given scenario), since ScenLoss = max{0, 1 — z},
and ScenLoss = max{0,1 — 1/MLU}.

Unlike existing TE schemes, Flexile ensures bandwidth
guarantees never degrade with additional links. Consider
Fig. 16, which is similar to the topology in Fig. 1, except that link
B—C is removed. It is easy to verify that ScenBest always routes
1 unit of fi’s traffic on link A—B whenever the link is alive, and
likewise always routes 1 unit of f;’s traffic on link A—C whenever
that link is alive, thereby meeting the requirements of both flows.
Thus, while ScenBest meets flow requirements in Fig. 16, it cannot
meet requirements in Fig 1 which has an additional link. Flexile
prevents such anomalies since it ensures for any network that all
flows see a loss percentile that is as small as possible.

Fair allocation in each scenario may not translate to fair-
ness across scenarios. We show that if max-min scheme is used
for every scenario, it may not lead to fairness across scenarios while
Flexile can mitigate this effect. To see this, consider Fig 17, which
depicts a topology similar to Fig. 1, except that links are directional.
Notice that fi’s traffic can only be carried via link A—B, while f5’s
traffic can be carried over two disjoint paths. Consider a require-
ment that f; and f> must each carry 1 unit of traffic 99% of the time.
We make the following points:

® The network can meet the bandwidth objectives of both flows
by always routing fi along A-B and f; along A—C respectively
whenever the appropriate link is alive.

e With max-min, f; cannot meet the target. This follows from
the fact that (i) f; can only be carried on A-B which is alive 99%
of the time; and (ii) there are some scenarios where A—B is alive,
yet max min only supports 0.5 units of f; (e.g., the scenario shown
in Fig 17(b)). In contrast, f> meets the target with max-min. This is
because whenever A—C is alive (which occurs with 99% probability),
max-min routes 1 unit of f> on A—C (since it is the only flow that
can be carried on A—C). Note that this includes a scenario such as
the one shown in Fig 17(a) where no fj traffic can be carried.

o Flexile can however meet the target for both flows 99% of
the time by prioritizing critical flows. For instance, the scenario
shown in Fig 17(b) is critical for fi but not f2, and hence Flexile will
prioritize fi.

CoNEXT ’22, December 6-9, 2022, Roma, Italy

Capacity: 1, failure probability = 0.01

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

=3 Capacity: 1, failure probability = 0.01

@) ©
\

N
®X ®\ @

f1: A->B needs 1 unit of traffic with prob. = 0.99

f1: A->B needs 1 unit of traffic with prob. = 0.99
f2: A->C needs 1 unit of traffic with prob. = 0.99

f2: A->C needs 1 unit of traffic with prob. = 0.99
(a) (b)

Figure 16: ScenBest can meet objectives in Figure 17: Example topology to illustrate unfairness with max-min across scenar-
above topology but not in Fig.1 which has ios. While the network can meet the 99% requirement for both flows, max-min

an additional link.
B. Supporing materials for §4

Intuition behind decomposition strategy. We present some
high-level intuition for the inner workings of the decomposition
approach.

First, we show that the optimal objective value for the inner
problem (16) is convex in z. This follows from the fact that if, for all
i, (x', I, ') minimizes Y. axwy in (16) and yields Penalty(z') when
z = 7%, then for some multipliers A; > 0 such that }}; A; = 1, the
solution 3°; A; (x%, I}, a') is feasible to (16) when z = }; A;2, and the
corresponding objective value is 3'; A; Penalty(z'). This shows that
Penalty(z') is no more than 3; A;Penalty(z'). Therefore, the inner
problem (16) is convex in z. This property of linear programming
problems is well-known; see, for example, Section 6.5 in [30].

The dual form of (16) provides a cut of PercLoss(z) because its
feasible region does not depend on z). The decomposition algo-
rithm essentially searches for the minimizer of Penalty(z) itera-
tively. Although the exact shape of Penalty(z)’s is unknown at any
point in the algorithm, solving (16) gives us one point on the func-
tion Penalty(z). Moreover, the dual form of (16) provides a cut of
Penalty(z). Thus, we can derive an underestimation of Penalty(z)
by evaluating it at various z. Each cut is a lower bound of func-
tion Penalty(z), and the pointwise maximum of these cuts is an
underestimate of Penalty(z). Then, we can find the current esti-
mated minimizer of the estimated function. Solving (16) at the
estimated minimizer gives a new cut and a more accurate estimate
of Penalty(z). The process converges in finite time with an optimal
solution. To understand why, consider that the inner problem is
always feasible with (x, [, @) = (0, 1, 1) and bounded between 0 and
1. If we use an extreme point of the dual feasible region to generate
a cut (as is the case using dual simplex algorithm), in finitely many
iterations, a cut is developed for each extreme point, and we have
an accurate representation of PercLoss(z).

Explaining cut constraints in detail. Suppose we get a dual
solution of (Sg), and the dual variables of (10), (11), (17) and (18)
are Wi fq, Ok fq» Ukiq @nd teq respectively. Then, solving (S¢) results
in the following cuts which are added to the master problem in the
subsequent iteration.

9azg) = D, Grg=Dwipg+ . Okfq
k.feFk k.feFx

+ Z Ukl'qdf + Z UegCeMeq (21)
k.i, f€Fr,pr(f)=i €

meets the requirements for f> but not f;.

As explained in §4.2, our reformulation ensures a common dual
solution space for all decomposed subproblems. Thus, the dual
solution w4, Ok r¢» Ukig @nd ueq of (Sqg) is also a dual solution
of (S¢) for any ¢’ € Q. So we can construct the following cut to
constraint critical flows in scenario ¢’ without solving (S¢).

gg,(z.q/)= Z (qu/—l)wqu+ Z Okfq
k,fGFk k,fEFk

+ Z Okigdy + Z UegCeMeq’ (22)
k.i.feFe.pr(f)=i €

Ensure better stability. We avoid oscillations in our algorithm
by adding the following constraint in (M) to limit the hamming
distance between current z variable and z variable achieved from
last iteration.

Z |27q = 2l < Limit. (23)
keK,feFy,qeQ

Here, 2z’ is the z variable achieved from last iteration and Limit is
the maximal hamming distance we allow. Another benefit of con-
straining z’s change over iterations is that more scenarios will have
the same critical flows as in the last iteration. So the subproblem
(Sq) will stay unchanged for these scenarios and does not need to be
solved again. The Hamming distance constraint can be relaxed to
prevent the solution from getting stuck in a local minima. However,
we did not encounter this situation in our empirical evaluations.
Generating many cuts by solving a few subproblems. Our
reformulation of (Sq) ensures that in (Sg) only the RHS varies for
different g, and, so, all (S4) share the same dual solution space. Thus,
by solving only each (Sq) optimally, not only do we get a cut g4(z.q)
for scenario ¢, but also cuts g7, (z.q') for other scenarios ¢’ € Q. As
a result, solving a few subproblems can give us many cuts.
Capacity augmentation to meet flow percentile require-
ments. To generalize Flexile to perform minimum-cost capacity aug-
mentation for percentile metric, we may require that, for each k € K,
PercLossy is constrained to be below a specified value and minimize
Yle Wele, Where J, is the added capacity to link e, which changes
the RHS of (6) to ce + J¢, and w, is the per-unit cost of adding
capacity. (If there is a fixed-cost, we can include it by introducing a
binary variable a, which takes value 1 if link e is augmented, and
add ', feae to the cost. To ensure fixed-cost is charged with any
augmentation, we add upper-bounding constraints 0 < 8, < uede,

Flexile: Meeting bandwidth objectives almost always

where u, is an upper bound on the augmentation.) The decomposi-
tion strategy of §4.2 generalizes to this setting where c, is replaced
with ¢, + 8¢ in (21) and this cut now describes a cut of Penalty in
the (z,) space.

C. Supporing materials for §5

Formulations for CVaR-based schemes The following formu-
lation, Cvar-Flow-Ad, minimizes the maximum conditional value
at-risk across all flows. It allows the routing strategy to depend on
each scenario.

min 0
x,t,0,a,s
st. 020f VfeF (29)
1
ef Zaf‘l'm ququ erF (25)
q€Q

ap+spgzlpg VfEFqeQ (26)
Sfqg20 VfeFqeQ (27)

(5).(6)
Here, lf, is the loss for flow f in scenario g, 0y models the

conditional value-at-risk for flow f, and 6§ models max ¢ 6.

The following formulation, CVar-Flow-St, is derived from CVar-
Flow-Ad by requiring that the routing strategy is the same across
all scenarios, i.e., we add the requirement that x4 = x; for all g.
More concretely, we obtain:

min 0
x,t,0,a,s
st. 620, VfeF (28)
1
O 2 ar+ 1= > pasrq VFEF (29)
q€Q
af"'squlfq VfeFqeQ (30)
sfq 20 VfeF,qeQ (31)
Z (1-lp)dy < Z Xtyrg VieP,geQ (32)
pr(f)=i teR(i)
th <c. VeeE (33)
ect
x>0 VieP (34)

Proof of Proposition 1. Let g denote the maximum loss across
all flows in scenario g, ie., ag is the optimal value of Sq with z fq =1
for all f. Let Q’ be any minimal subset of Q such that 2qeo Pg 2
pandforq € Q" and g ¢ Q’, @y > ag. Then, we define v =
maxg cor ag, which is the B percentile of (ag)geo- In our first
step of the algorithm, we set zg = 1 for all f and ¢’ € Q". By
definition, 2 4co’ PgZaq = - In particular, for each flow f and
qeqQ’, lgq < v. Therefore, for each f, the B percentile of lgg <o
So, our performance guarantee, which is the maximum across all f
of the g percentile of [£ is no more than v. To see that TeaVar
guarantees a performance no better than v, let x; be the routing
strategy obtained using TeaVar and observe that the maximum
loss across all flows using x; for a scenario g is at least ag. Let
r=(1-p) - Lg¢o Pg- G € Q" be any scenario with ag = v, and
s be the corresponding optimal sg (in TeaVar formulation). Then,

CoNEXT ’22, December 6-9, 2022, Roma, Italy

H Topology #nodes # edges Topology #nodes # edges H

B4 12 19 Janet Backbone 29 45
IBM 17 23 Highwinds 16 29
ATT 25 56 BTNorthAmerica 36 76
Quest 19 30 CRLNetwork 32 37
Tinet 48 84 Darkstrand 28 31
Sprint 10 17 Integra 23 32
GEANT 32 50 Xspedius 33 47
Xeex 22 32 InternetMCI 18 32
CWIX 21 26 Deltacom 103 151
Digex 31 35 1 27 55

Table 2: Topologies used in evaluation.

observe that r < pg and @ +s > az = v, where the inequality
follows because there is at least one flow with a loss of «g since
ag is the minimum possible loss attainable across all flows for
scenario §. Then, we have that TeaVar objective is no less than a +
ﬁ Yqeo Pysq + ﬁrs > ﬁ (Xqreqr P aq +rv) 2 v, where
the first inequality is because X yrcor pgr +r=1-f, a+sq > ag,
and a+s > v. The second inequality is because 2y cor pg +r = 1-J
and agr > v for ¢ € Q'. Moreover, ScenBest guarantees a loss of v,
since the guarantee for flows in any scenario ¢’ not in Q” is arg. It
follows that the guarantee from the initial step of our algorithm is
at least as good as the one obtained from either ScenBest or TeaVar.
(]

Proof of Proposition 2. Refer to Fig. 1. Consider a strategy
that distributes f4p equally over disjoint paths A—B and A—-C—B.
Similarly, fac is distributed equally along the disjoint paths A—C
and A—B-C. Since each flow is carried along two disjoint paths, it
follows that in all scenarios where at most one link fails, none of
the flows experiences a loss of more than 50%. Since single and no
link failures cover 0.999702 probability, it follows that the CVargo,
for this strategy is no more than 0.5 % 0.9702 + (1 —0.9702) = 0.5149.
Observe that the strategy described above is non-adaptive and
the best adaptive strategy cannot perform worse. In other words,
optimal CVarggy, is no more than 0.5149. Now, consider the case
where link A—C fails. Since CVarggg, is the maximum expected loss
across all flows and all sets of scenarios that occur with 1% or more
probability, it follows that 0.5149 > CVarggy, > 1 — min{fag, fac}
which implies that min{fsp, fac} > 0.4851. Since, both f4p and
fac must use link A—B, we have min{ fap, fac} + max{fap, fac} =
faB + fac < 1. It follows that max{fap, fac} < 0.5149 which
implies that both the flows experience at least 48.51% loss in this
scenario. A similar argument shows that both flows experience at
least 48.51% loss also in the scenario where link A—C fails. Since
the two scenarios cover a probability of 1.9602%, it follows that
PercLoss1y, > 0.4851. The alternate non-adaptive strategy that sends
fap along link A—B and fyc along link A—C experiences no loss at
the 99" percentile since each of the links does not fail with 0.99
probability. O

D. Supporing materials for §6

Topologies summary Our evaluation is done using 20 topologies
obtained from [24] and [25]. The number of nodes and the number
of edges of each topology is shown in Table 2.

Sensitivity to scale factor. By default, in our experiments of
two class traffic, we scale low priority traffic by a factor of 2 (see

CoNEXT ’22, December 6-9, 2022, Roma, Italy

B Flexile B SWAN-Maxmin

<@
820

€15
1.0
0.5
0.0

S

Maximu

IBM Sprint CWIX Quest
Figure 18: Flexile can achieve higher traffic scale.

§6). We next study the impact of scaling low priority traffic by
different factors. Fig. 18 shows the maximum factor we can scale
without incurring any 99%tile loss using Flexile and SWAN-Maxmin
on different topologies. We can see that Flexile can support much
higher scale factor than SWAN-Maxmin.

Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

	Abstract
	1 Introduction
	2 Background
	3 Flexile Motivation
	4 Flexile design
	4.1 Optimizing flow loss percentiles
	4.2 Efficiently finding critical scenarios
	4.3 Critical flow-aware online allocation
	4.4 Generalizations

	5 Flexile Vs. Teavar
	6 Evaluations
	6.1 Comparisons on emulation testbed
	6.2 Comparisons across topologies
	6.3 Does Flexile increase loss in scenarios?
	6.4 Evaluating other aspects of Flexile

	7 Related work
	8 Conclusions
	9 acknowledgements
	References

