
Flexile: Meeting bandwidth objectives almost always
Chuan Jiang

Purdue University

jiang486@purdue.edu

Zixuan Li

Purdue University

li3566@purdue.edu

Sanjay Rao

Purdue University

sanjay@ecn.purdue.edu

Mohit Tawarmalani

Purdue University

mtawarma@purdue.edu

ABSTRACT
Wide-area cloud provider networks must support the bandwidth

requirements of network traffic despite failures. Existing traffic

engineering (TE) schemes perform no better than an approach that

optimally routes traffic for each failure scenario. We show that this

results in sub-optimal routing decisions that hurt performance, and

are potentially unfair to some traffic across scenarios. To tackle this,

we develop Flexile, which exploits and discovers opportunities to

improve network performance by prioritizing certain traffic in each

failure state so that it can meet its bandwidth requirements. Flexile
seeks to minimize a desired percentile of loss across all traffic flows,

while modeling diverse needs of different traffic classes. To achieve

this, Flexile consists of (i) an offline phase that identifies which

failure states are critical for each flow; and (ii) an online phase,

which on failure allocates bandwidth prioritizing critical flows for

that failure state, while also judiciously allocating bandwidth to

non-critical flows. For tractability, Flexile’s offline phase uses a

decomposition algorithm aided with problem-specific accelerations.

Evaluations using real topologies, and validated with emulation

testbed experiments, show that Flexile outperforms state-of-the-art

TE schemes including SWAN, SMORE, and Teavar in reducing flow

loss at desired percentiles by 46% or more in the median case.

CCS CONCEPTS
• Networks → Data path algorithms;

KEYWORDS
network optimization, network resilience

ACM Reference Format:
Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani. 2022. Flexile:

Meeting bandwidth objectives almost always. In The 18th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
’22), December 6–9, 2022, Roma, Italy. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3555050.3569119

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’22, December 6–9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9508-3/22/12.

https://doi.org/10.1145/3555050.3569119

1 INTRODUCTION
Cloud providers must ensure that their networks are designed

so as to ensure business-critical applications continually operate

with acceptable performance [4, 8, 21]. Networks must meet their

performance objectives while coping with failures, which are the

norm given the global scale and rapid evolution of networks [17,

18, 21, 29, 33, 41].

Network requirements must typically be met a desired percent-

age of time. For instance, a network may be required to ensure "a

bandwidth of at least 𝐵 for latency-sensitive traffic between New

York and San Francisco 99.9% of the time". The requirements of

flows (a term we use to represent traffic between a pair of sites

belonging to a given priority class) must be met taking into account

the likelihood that the network may experience different failure

states (e.g., a particular set of link failures), and the performance

that is feasible under each failure state.

Most state-of-the-art traffic engineering (TE) schemes, unfortu-

nately, do not explicitly provide ways to optimize performance at

a desired percentile. We show that Teavar[10], one of the repre-

sentative and few schemes that do consider percentiles, provides

extremely conservative guarantees. The poor performance stems

partially from the fact that Teavar uses a common set of failure

states to evaluate the percentile loss of all flows. Moreover, Teavar

is approximate since it minimizes an overestimate of percentile loss,

and uses a less flexible routing strategy. Teavar’s performance is

improved by flexibly and optimally routing traffic in each scenario

(an approach advocated by SMORE [25]). Nevertheless, the band-

width is allocated such that some of the traffic continues to see

significant loss at desired percentile. The key reason is that such

a scenario-centric approach optimizes traffic unilaterally for each

failure state, which leads to sub-optimal decisions across states.

For example, the same flow may be penalized in many bandwidth

constrained network states.

Contributions. To tackle these issues, we present Flexile (FLEX-
ibily choose scenarios for each flow to evaluate loss percentILE).

Flexile (i) ensures all flows see as low a loss as possible at a de-

sired percentile; (ii) supports multiple traffic classes (e.g., minimize

99.9%ile loss for latency-sensitive traffic, and 99%ile for other traf-

fic); and (iii) directly optimizes loss percentiles. Flexile does so by

allowing flows to meet their bandwidth requirements in a possibly

different subset of critical states that occur with sufficient probabil-

ity. Although this couples bandwidth allocation decisions across

failure states, Flexile decouples them by identifying critical states

for each flow in an offline phase. Then, on failure, Flexile efficiently

https://doi.org/10.1145/3555050.3569119
https://doi.org/10.1145/3555050.3569119

CoNEXT ’22, December 6–9, 2022, Roma, Italy Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

A

B

C

Capacity: 1, failure probability = 0.01

1.0

f1: A->B needs 1 unit of traffic with probability of 0.99
f2: A->C needs 1 unit of traffic with probability of 0.99

1.0

Figure 1: Illustrating Flexile’s opportunity. Flow 1 can be fully
sent over link A-B 99% of time. Flow 2 can be fully sent over
link A-C 99% of time.

allocates bandwidth online, while paying more attention to critical

flows.

We evaluate Flexile on 20 topologies, includingmany large topolo-

gies, and validate our results on an emulation testbed. We show

that Flexile consistently outperforms existing TE strategies such

as SWAN, SMORE and Teavar. Across topologies, the median re-

duction in flow loss at desired percentiles with Flexile is 46% for

SMORE, and 63% for Teavar, and the benefits are even higher for

SWAN. Flexile outperforms Teavar for various reasons that include

evaluation of losses at flow level, more flexible rerouting, and opti-

mization of percentile instead of an overestimate. For comparison,

we design and compare Flexile with generalizations of Teavar that

route flexibly and evaluate losses at flow level. While these gen-

eralizations help, Flexile continues to out-perform. By exploiting

various problem characteristics, we show that Flexile’s offline de-

composition algorithm runs quite efficiently in practice, and is an

order of magnitude faster than Teavar for the largest topology. Fi-

nally, Flexile maintains the online reaction times of existing TE

schemes [20, 25]. We have made our code publically available at

https://github.com/Purdue-ISL/Flexile/.

2 BACKGROUND
Much early work on wide area TE schemes for failure recovery

focuses on quickly re-routing traffic to restore connectivity [26, 27,

31, 36, 45]. However, these schemes are insufficient to prevent con-

gestion under failures – e.g., [28] shows that failures can frequently

lead to links getting 10− 20%more traffic than their capacity which

can negatively impact the performance of demanding applications

such as online retail, Web search, and video streaming. We dis-

cuss schemes that have emerged in recent years to ensure good

performance under failures:

Congestion-free localmechanisms.Afirst class of schemes [23,

28, 37, 43] proactively guarantee the network remains congestion-

free over a specified set of failure scenarios (e.g., all scenarios with 𝑓

simultaneous link failures. See §4.1 for a formal definition of failure

scenarios.), while only allowing the network to respond to fail-

ures using local rerouting mechanisms. For concreteness, consider

FFC [28], a representative approach, which is set in the context of

tunnel-based forwarding where traffic for each flow is carried over

a set of pre-selected tunnels. On failure, traffic is proportionally

rescaled on live tunnels associated with each flow. FFC conserva-

tively admits traffic in a manner that guarantees the network does

not experience congestion when local proportional routing is used

in the failure scenarios that it plans for. Specifically, given a set

of flows each associated with a traffic demand, and a parameter

𝑓 , FFC solves a robust optimization problem offline (i.e., prior to
any failure) which determines (i) how much bandwidth to allocate

to each flow; and (ii) how the bandwidth must be split across the

flow’s tunnels so that the allocated bandwidth can be supported in

any scenario where 𝑓 or fewer links fail simultaneously.

Local mechanisms meeting performance percentiles. Most

congestion-free mechanisms [23, 37, 43] including FFC design for 𝑓

or fewer simultaneous failures. Recently, researchers [10, 11] have

argued that the approach can be conservative given that service

level objectives typically need bandwidth requirements to be met

a desired percentage of time, and since the failure probabilities of

links is highly heterogeneous. We focus on Teavar [10], a repre-

sentative scheme that extends FFC to take failure probabilities into

account while using the same proportional routing scheme. Given

an enumerated set of failure scenarios, and the probability of each

scenario, Teavar seeks to allocate bandwidth to flows so that there

are sufficient scenarios (that together occur with probability of at

least 𝛽%) where every flow sees acceptable loss. The loss of each

flow is the fraction of its unfulfilled demand, and we use ScenLoss
to denote the loss of the worst flow in each scenario.

Definition 2.1. Let 𝑞 be a scenario, 𝐹 be the set of all flows and

𝑙𝑜𝑠𝑠𝑓 𝑞 be the loss of flow 𝑓 in scenario 𝑞, we define the loss of worst

flow in scenario 𝑞 as

ScenLoss𝑞 = max

𝑓 ∈𝐹
𝑙𝑜𝑠𝑠𝑓 𝑞 (1)

Ideally, Teavar must find bandwidth allocations that minimize

the 𝛽𝑡ℎ percentile of ScenLoss, but the problem is challenging, and

instead Teavar uses a conservative approximation (see §5).

Flexible rerouting. Rather than use a local recovery scheme,

another approach is to optimally reroute traffic when a failure

occurs. While reaction time is a potential concern, a recent proposal

(SMORE [25]) argues for a light-weight recovery mechanism that

involves splitting traffic optimally among live tunnels (with the

tunnels themselves not changing since adding new tunnels is a

heavier weight operation)
1
. Depending on the target metric𝑚, we

term a scheme 𝑆𝑐𝑒𝑛𝐵𝑒𝑠𝑡 (𝑚) if it always reroutes traffic to optimize

the metric𝑚 when a failure occurs. Note that when𝑚 is MLU
2
,

𝑆𝑐𝑒𝑛𝐵𝑒𝑠𝑡 (𝑀𝐿𝑈) performs identically to SMORE. We henceforth

refer to 𝑆𝑐𝑒𝑛𝐵𝑒𝑠𝑡 (𝑀𝐿𝑈) as ScenBest for simplicity. Clearly, for any

failure scenario, Teavar can perform no better than ScenBest given

its local mechanism. Hence, Teavar cannot achieve a percentile

performance any better than ScenBest.

3 FLEXILE MOTIVATION
While ScenBest provides the best percentile performance among

existing schemes, it optimizes performance unilaterally for each

failure state. In this section, we illustrate with an example that

doing so may lead to sub-optimal decisions across states. We then

1
While SMORE [25] does not extensively discuss SMORE’s failure recovery mecha-

nisms, we clarified this from the authors and the source code [3]

2
Minimizing ScenLoss is equivalent to minimizing the maximum link utilization (MLU)

of all links, the metric used in SMORE [25]. It is also equivalent to maximizing the

demand scale factor using a maximum concurrent flow formulation [28]. See Appendix

Flexile: Meeting bandwidth objectives almost always CoNEXT ’22, December 6–9, 2022, Roma, Italy

A

B

C 0.5

0.5
A

B

C

0.5
0.5

Scenario AB and AC both
alive (98.01%)

Only AB
fails (0.98%)

Only AC
fails (0.98%)

Others
(0.03%)

Throughput of
flow 1 (A->B) 1 0.5 0.5 -

Throughput of
flow 2 (A->C) 1 0.5 0.5 -

(a) (b) (c)

Scenario(s)

Figure 2: Bandwidth objectives cannot be met for topology in Fig.1 by existing TE schemes. Each column in 2(c) represents one
or more scenarios – e.g., the 2nd column represents all scenarios where AB and AC are both alive.

A

B

C

f1: A->B

0.5

0.5

0.5

f2: A->C

0.5

Figure 3: In Teavar’s design, 𝑓1 and 𝑓2 are both split equally
among 2 paths.

Scenario AB fails, AC
alive (0.99%)

Both AB, AC
alive (98.01%)

AB alive, AC
fails(0.99%)

Others
(0.01%)

Critical for
flow 1 (A->B) x x

Critical for
flow 2 (A->C) x x

Scenario(s)

Figure 4: Critical scenarios for Fig. 1.

show Flexile has the potential to do better by optimizing different

flows in different states.

Consider Fig.1, where a networkmust carry traffic corresponding

to a flow 𝑓1 from source𝐴 to destination 𝐵, and a flow 𝑓2 from source

𝐴 to destination 𝐶 . Consider a requirement that each of 𝑓1 and 𝑓2
must support 1 unit of traffic 99% of the time. Each link has a

capacity of 1 and a failure probability 0.01. We make the following

observations:

The network can easily meet the bandwidth requirements.
This follows from the simple routing strategy which sends 𝑓1 on

link 𝐴−𝐵 and 𝑓2 on link 𝐴−𝐶 . Clearly, the requirements of 𝑓1 (resp.

𝑓2) are met whenever link 𝐴−𝐵 (resp. 𝐴−𝐶) is alive, which occurs

99% of the time.

State-of-the-art TE schemes cannotmeet the requirements
of flows. Unfortunately, ScenBest can only support 0.5 units for 𝑓1
and 𝑓2 99% of the time. To illustrate this, consider the scenarios in

Fig 2(a) and Fig 2(b) where link 𝐴−𝐵 and link 𝐵−𝐶 fail respectively.

Since ScenBest optimizes ScenLoss (i.e., the loss of the worst flow)
in each scenario, it sends 0.5 units of each flow as shown in Fig 2(a)

and Fig 2(b) so that neither flow will have loss worse than 50%.

Fig.2(c) summarizes the throughput achieved by each flow under

different failure scenarios. Since each of the scenarios shown in

Fig 2(a) and Fig 2(b) occurs 0.98% of the time, to meet its bandwidth

requirement, a flow must be able to send necessary traffic in at least

one of the scenarios. Consequently, neither 𝑓1 nor 𝑓2 can support

more than 0.5 units 99% of time.

Teavar [10] too cannot support more than 0.5 units 99% of time

for both flows. Fig. 3 shows Teavar’s designed routing for the topol-

ogy in Fig. 1 for 99% availability. We can see that in Teavar’s design,

𝑓1 is split equally across A-B and A-C-B, and 𝑓2 is split equally

across A-C and A-B-C. This way, for 99% of time, both flows will be

able to send 0.5 units of traffic. It is also easy to see that when A-B

link fails or A-C link fails, the remaining traffic is exactly the same

as depicted in Fig. 2. Thus, like SMORE, Teavar cannot support

more than 50% traffic for both flows 99% of time.

Flexile’s approach. Flexile determines the critical scenarios
associated with each flow where its loss must be acceptable so

the flow objectives can be met. Unlike ScenBest which seeks to

ensure all flows in a scenario see as low a loss as possible, Flexile
prioritizes critical flows in any given scenario. Fig. 4 illustrates this

for the topology in Fig. 1. The critical scenarios associated with

𝑓1 (resp. 𝑓2) are all those scenarios where 𝐴−𝐵 (resp. 𝐴−𝐶) is alive.
Clearly, each flow may be associated with a different set of critical

failure scenarios. Flexile can support 1 unit of each of 𝑓1 and 𝑓2 by

prioritizing them in their critical scenarios.

Another way to interpret the above example is that Flexile re-
quires less capacity to be provisioned to meet desired bandwidth

objectives than existing TE schemes. In Fig.1, ScenBest and Teavar

would require each link to be upgraded by 2X to meet the desired

flow bandwidth objectives, while Flexile requires no additional ca-

pacity.

A potential concern with Flexile is that in individual scenarios,

non-critical flows may see higher loss relative to ScenBest with

Flexile. However, Flexile mitigates the penalty through many tech-

niques:

•Our evaluations show that after assigning necessary bandwidth to

critical flows, there is significant residual capacity available in each

scenario. Flexile judiciously uses this residual capacity to ensure

good performance even for non-critical flows in any failure state.

• Flexile supports flows of multiple traffic classes (interactive, and

elastic), and ensures favorable treatment for higher priority inter-

active traffic in all failure states.

• Flexile allows architects to control the loss penalty that non-

critical flows may incur in any scenario, trading off the bandwidth

guaranteed at a desired percentile. For instance, in Fig. 4, if 𝑓1 and

𝑓2 could tolerate an additional loss 𝑙 in their non-critical scenarios,

Flexile can guarantee 0.5 + 𝑙 for both flows 99% of the time.

Flexile on a real-world topology. Fig.5 shows a CDF of the

99.9%𝑖𝑙𝑒 loss seen by flows across failure scenarios for Teavar,

ScenBest and Flexile for the IBM topology (see §6 for evaluation

details). There are many flows for which Teavar and ScenBest lead

CoNEXT ’22, December 6–9, 2022, Roma, Italy Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

to a significant 99.9%ile loss. Most flows have 40% loss at 99.9%ile

with Teavar for reasons outlined in §2. For 10% of flows ScenBest

leads to a 99.9%ile loss of 16% or higher. In contrast, Flexile ensures
all flows see no loss 99.9% of the time.

Even though Flexile does not explicitly minimize scenario loss, it

does not increase this loss much. For concreteness, see Fig.6 which

shows a CDF of the loss penalty paid by Flexile relative to ScenBest
(i.e., the increase in loss for the worst flow in each scenario relative

to optimal for that scenario). For comparison, we also show loss

penalties incurred by Teavar. For scenarios that occur 99.9% of time,

Flexile incurs no loss penalty. The loss penalty at 99.99%ile is only

4%. In contrast, the loss penalty with Teavar is significant – at least

10% in every scenario, while the 99.9% (resp 99.99%) values are 40%

(resp 100%).

Other benefits. In the Appendix, we discuss additional bene-

fits of Flexile. Specifically, (i) Flexile ensures bandwidth guarantees

never degrade with additional links, while we present an exam-

ple to show this is not the case for ScenBest; and (ii) existing ap-

proaches that are fair in each scenario may in fact be unfair when

performance across scenarios is considered - in contrast, Flexile can
mitigate this effect.

4 FLEXILE DESIGN
Given bandwidth requirement for a set of flows and a set of failure

scenarios with their associated probabilities, Flexile allocates band-
width to each flow in each failure scenario so that the bandwidth

loss at a given percentile is minimized. Further, Flexile models flows

corresponding to different traffic classes with different percentile

targets for these classes. (e.g., a 99.9% requirement for latency-

sensitive, and a 99% requirement for other traffic). Minimizing loss

at a given percentile (also referred to as Value at Risk or VaR) is a

hard problem, and has only recently received attention from the

networking research community. While it is possible to approxi-

mate percentiles as done by Teavar [10], we show in §5 that the

approximation is weak.

Flexile tackles these challenges through two components:

• Efficient offline algorithm for determining critical scenar-
ios. Flexile tackles the hard problem of optimizing flow loss per-

centiles through a decomposition algorithm that decouples the

failure states by identifying the critical states associated with each

flow in an offline phase. For efficiency, we have developed sev-

eral problem-specific accelerations. Our evaluations confirm the

algorithmic strategy is efficient.

• Light-weight online bandwidth allocation to critical and
non-critical flows. On failure, Flexile efficiently allocates band-

width to all flows while taking particular care of critical flows in

addition to favoring higher priority traffic classes. This step also

ensures that after critical flows are handled, residual capacity can

be appropriately allocated to non-critical flows. To achieve this,

we have developed a light-weight adaptation of SWAN [20] that

incorporates information about critical flows. However, it is also

possible to easily extend other bandwidth allocation mechanisms

such as SMORE with information regarding critical flows identified

by Flexile.

We start by presenting Flexile’s model for optimizing flow loss

percentiles, and next discuss the two components above. We then

discuss several generalizations related to Flexile.

4.1 Optimizing flow loss percentiles
Consider a network topology, represented as a graph 𝐺 = ⟨𝑉 , 𝐸⟩.
𝐾 represents the set of traffic classes. Each traffic class 𝑘 ∈ 𝐾 is

associated with a target probability 𝛽𝑘 for which the bandwidth

requirement must be met for a set of flows 𝐹𝑘 in this class. For

instance, high priority traffic may have a 99.9% requirement, while

lower priority trafficmay have a 99% requirement, reflecting diverse

service level objectives (SLOs) that the network supports. Each flow

𝑓 ∈ 𝐹𝑘 is associated with traffic demand 𝑑𝑓 that must be sent along

the source-destination pair 𝑝𝑟 (𝑓).
Failure scenarios and probabilities. 𝑄 represents the set of

considered failure scenarios with 𝑝𝑞 denoting the probability of

𝑞 ∈ 𝑄 . In our discussions so far, each failure scenario 𝑞 represents a

network state where a particular subset of links fail while others are

alive. More generally, network failures are modeled using Shared

Risk Link Groups (SRLGs), where each SRLG captures a group of

links that fail together (e.g., owing to the failure of a shared optical

component [40]). Each failure scenario 𝑞 represents a network state

where a particular subset of SRLGs fail while others are alive. Note

that failure scenarios are disjoint with each other. Flexile’s models

do not assume independent SRLG failures, and can model correlated

SRLG failures if provided the joint probability of multiple SRLG

failures occurring together. However, for practicality of estimating

probabilities, SRLG failures are typically independent [10, 17, 29].

Failure probabilities may be obtained from historical failure data –

e.g., given data fromMicrosoft’s WAN on the status of links in every

time epoch over a long period, Teavar [10] estimates the mean time

between failure which it converts into failure probability. Further [8,

44] indicate that Facebook and Google have failure probability data

available and are already using the same in simulation testing [4].

A similar approach has been used by past works [10, 11, 38].

Modeling desired percentile of flow loss. First, we define
FlowLoss(𝑓 , 𝛽𝑘).

Definition 4.1. In each traffic class 𝑘 , for each flow 𝑓 ∈ 𝐹𝑘 ,

FlowLoss(𝑓 , 𝛽𝑘) is the 𝛽th
𝑘

percentile of loss for flow 𝑓 . That is,

there exist failure scenarios that together occur with probability

𝛽𝑘 , where flow 𝑓 encounters a loss less than FlowLoss(𝑓 , 𝛽𝑘).
For each traffic class 𝑘 , in order to make sure that every flow

sees small loss, we are interested in reducing the maximum of the

𝛽𝑡ℎ
𝑘

percentile loss across all flows 𝑓 ∈ 𝐹𝑘 .
Definition 4.2. We define the following metric that we refer to

as PercLoss (and may abbreviate as 𝛼𝑘).

𝛼𝑘 := PercLoss𝑘 = max

𝑓 ∈𝐹𝑘
FlowLoss(𝑓 , 𝛽) (2)

Fig. 7 depicts this pictorially. Each row corresponds to a flow

(𝑓), each column to a failure scenario (𝑞), and each cell shows the

bandwidth loss 𝑙𝑓 𝑞 seen by flow 𝑓 in scenario 𝑞. To meet flow

level requirements, Flexile computes the 𝛽𝑡ℎ percentile of each row,

computes the max across rows, and minimizes the result.

Considering different traffic classes. Each class 𝑘 ∈ 𝐾 is as-

sociated with a weight𝑤𝑘 to compute its penalty for loss, which

Flexile: Meeting bandwidth objectives almost always CoNEXT ’22, December 6–9, 2022, Roma, Italy

0 10 20 30 40 50 60 70 80 90 100
99.9 percentile loss (%)

0.99

0.9

0.0CD
F

(fr
ac

tio
n

of
 fl

ow
s)

Teavar
Flexile
ScenBest

Figure 5: CDF of 99.9%ile loss across
flows for IBM topology.

0 10 20 30 40 50 60 70 80 90100
Loss penDlty Ln sFenDrLo (%)

0.9999

0.999

0.99

0.9

0.0
CD

)
(F

um
ul

Dt
ed

 p
ro

bD
bL

lLt
y

 o
f s

Fe
nD

rLo
s)

7eDvDr
)lexLle

0 10 20 30 40 50 60 70 80 90100
Loss penDlty Ln sFenDrLo (%)

0.9999

0.999

0.99

0.9

0.0

CD
)

(F
um

ul
Dt

ed
 p

ro
bD

bL
lLt

y
 o

f s
Fe

nD
rLo

s)

7eDvDr
)lexLle

Figure 6: Increase in ScenLoss rela-
tive to ScenBest (optimal).

q1 q2 q3 q4 … βth percentile
Flow 1 l11 l12 l13 l14 … …
Flow 2 l21 l22 l23 l24 … …
Flow 3 l31 l32 l33 l34 … …

… …
Flow n ln1 ln2 ln3 ln4 … …

max
Figure 7: Meeting bandwidth requirements requires
computing the 𝛽𝑡ℎ percentile of flow losses.

Notation Meaning

𝑄 Set of considered scenarios

𝐾 Set of traffic classes

𝐹𝑘 Set of flows in traffic class 𝑘

𝑃 Set of source-destination pairs

𝑅𝑘 (𝑖) Pair 𝑖’s tunnels for class 𝑘

𝐸 Set of edges

𝛼𝑘 The maximum of the 𝛽𝑡ℎ
𝑘

percentile loss across

all flows 𝑓 ∈ 𝐹𝑘
𝛽𝑘 Target probability for which the bandwidth re-

quirement must be met for class 𝑘

𝑝𝑟 (𝑓) Pair along which flow 𝑓 is sent

𝑑𝑓 Traffic demand of flow 𝑓

𝑝𝑞 Probability of scenario 𝑞

𝑤𝑘 Weight of traffic class 𝑘

𝑦𝑡𝑞 1 if tunnel 𝑡 is alive in scenario 𝑞, else 0

𝑚𝑒𝑞 1 if edge 𝑒 is alive in scenario 𝑞, 0 otherwise

𝑥𝑘𝑡𝑞 Allocated bandwidth on tunnel 𝑡 for traffic class

𝑘 in scenario 𝑞(routing variable)

𝑙𝑓 𝑞 Loss of flow 𝑓 in scenario 𝑞

𝑧𝑓 𝑞 1 if scenario 𝑞 is critical for flow 𝑓 , else 0

Table 1: Notation.
reflects the relative importance of this class. Thus, the penalty in-

curred for loss of traffic class𝑘 can be represented as𝑤𝑘𝛼𝑘 .We focus

on a formulation where Flexile determines a bandwidth allocation

such that the sum of penalty across all traffic classes,

∑
𝑘∈𝐾 𝑤𝑘𝛼𝑘

is minimized. For instance, a 2 class setting can be handled with a

large weight for the higher priority class, and a small weight for

the lower priority class. Other priority policies are easily modeled

(§4.4).

Modeling critical scenarios. To ensure each flow’s objectives,

Flexile must for each flow 𝑓 ∈ 𝐹𝑘 select scenarios that together

occur with probability 𝛽𝑘 such that 𝑓 sees loss less than 𝛼𝑘 in these

scenarios. We denote these scenarios as critical scenarios for that
flow. We use a binary variable 𝑧𝑓 𝑞 to indicate whether scenario 𝑞 is

critical for flow 𝑓 . If 𝑧𝑓 𝑞 = 1, 𝑞 is critical for 𝑓 , and the loss of flow

𝑓 cannot exceed PercLoss𝑘 , i.e., 𝑙𝑓 𝑞 ≤ PercLoss𝑘 .∑︁
𝑞∈𝑄

𝑧𝑓 𝑞𝑝𝑞 ≥ 𝛽𝑘 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹𝑘 (3)

𝛼𝑘 ≥ 𝑙𝑓 𝑞 − 1 + 𝑧𝑓 𝑞 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹𝑘 , 𝑞 ∈ 𝑄 (4)

Here, (3) ensures that for each flow in 𝑘 , we select enough critical

scenarios to cover the probability 𝛽𝑘 . When 𝑧𝑓 𝑞 = 1, (4) becomes

PercLoss𝑘 ≥ 𝑙𝑓 𝑞 meaning we care about the loss 𝑙𝑓 𝑞 . When 𝑧𝑓 𝑞 = 0,

(4) is satisfied no matter what PercLoss and 𝑙𝑓 𝑞 are, implying we

don’t care about the loss 𝑙𝑓 𝑞 .

We next present the formulation below which determines the

best routing and choice of critical scenarios that minimize the sum

of penalty incurred by loss in different traffic classes. Each link 𝑒 ∈ 𝐸
is associated with a link capacity 𝑐𝑒 . We use 𝑃 to represent the set

of source-destination pairs. Each pair 𝑖 in traffic class 𝑘 can use a

set of tunnels 𝑅𝑘 (𝑖) to route the traffic. This reflects that different

traffic classes may have different routing options and requirements

(e.g. background traffic classes can have more tunnel options than

delay-sensitive traffic classes). Let 𝑦𝑡𝑞 represent whether a tunnel 𝑡

is alive in scenario 𝑞. We use 𝑥𝑘𝑡𝑞 to denote the bandwidth assigned

to tunnel 𝑡 in scenario 𝑞 for traffic class 𝑘 , i.e., our designed routing.

Table 1 summarizes notation.

(𝐼) min

𝑧,𝑥,𝑙,𝛼

∑︁
𝑘∈𝐾

𝑤𝑘𝛼𝑘

s.t. (3), (4)∑︁
𝑡 ∈𝑅𝑘 (𝑖)

𝑥𝑘𝑡𝑞𝑦𝑡𝑞 ≥
∑︁

𝑝𝑟 (𝑓)=𝑖,𝑓 ∈𝐹𝑘
(1 − 𝑙𝑓 𝑞)𝑑𝑓 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃, 𝑞 ∈ 𝑄 (5)∑︁

𝑘∈𝐾,𝑒∈𝑡
𝑥𝑘𝑡𝑞 ≤ 𝑐𝑒 ∀𝑒 ∈ 𝐸, 𝑞 ∈ 𝑄 (6)

𝑥𝑘𝑡𝑞 ≥ 0 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑅𝑘 (𝑖), 𝑞 ∈ 𝑄 (7)

𝑧𝑓 𝑞 ∈ {0, 1} ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹𝑘 , 𝑞 ∈ 𝑄 (8)

0 ≤ 𝑙𝑓 𝑞 ≤ 1 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹𝑘 , 𝑞 ∈ 𝑄. (9)

(5) ensures that there is enough bandwidth allocated to each pair.

The LHS of (5) is the total amount of traffic required to be sent

on pair 𝑖 , and the RHS is the total allocated bandwidth on tunnels

connecting pair 𝑖 . This constraint was modeled like [10]. (6) and

(7) ensure the allocated bandwidth on tunnels will not exceed any

link’s capacity, and the allocation is non-negative. The final two

constraints indicate the 𝑧 variables are binary, and ensure the loss

fractions are between 0 and 1. The number of constraints in the

above formulation depends on the total number of scenarios in

𝑄 . While the total number of possible scenarios the network may

encounter is large, we note that 𝑄 only need to contain sufficient

scenarios that occur with probability higher than 𝛽 . Nevertheless,

the formulation is large, which we tackle next.

4.2 Efficiently finding critical scenarios
The above problem is a Mixed Integer Program (MIP), which can be

challenging to solve. To tackle this, we tailor a systematic decom-

position strategy [34], to our domain with many problem specific

CoNEXT ’22, December 6–9, 2022, Roma, Italy Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

problem
(choose flows)

problem
(choose flows)

. . .

Master problem

First stage: determine critical scenarios

Second stage: compute routes given critical
scenarios, and learn constraints

Subproblem 1
(compute routes in

scenario 1)
Subproblem 2 Subproblem N

Propose critical
 scenarios Learned constraints

Figure 8: Systematic decomposition approach.

optimizations to enable faster convergence, and reduce running

times. We discuss the basic strategy, followed by our optimizations.

Basic decomposition strategy. The original problem (I) simul-

taneously determines (i) the critical scenarios for each flow; and

(ii) how the traffic should be routed in each failure scenario taking

into account for which flows that scenario is critical. Instead, we

decompose the problem into (i) a master problem that proposes the

critical scenarios for each flow; and (ii) a sub-problem which routes

traffic when given the proposed set of critical scenarios for each

flow. The sub-problem learns new constraints that are added to the

master problem, which then proposes another set of critical sce-

narios. By iterating, the process converges finitely with an optimal

solution (we discuss why in the Appendix).

We now discuss optimizations over the standard approach.

Subproblem decomposition. Instead of writing the subprob-

lem as a large LP, we observe that the subproblem can be decom-

posed into multiple subproblems, since routing in each scenario

can be derived independently of other scenarios. Each smaller sub-

problem determines routing for one failure scenario given critical

flows for that scenario. Each second stage subproblem provides the

learned constraints to the master problem so that the master can

alter its critical scenario proposal in the next iteration. Each LP

subproblem is small and solves quickly. Moreover, further speed up

is attained by solving the subproblems in parallel. Fig. 8 illustrates

our procedure. Formally, for each scenario 𝑞, we have the following

smaller subproblem (note that 𝑧𝑓 𝑞 is a parameter here):

(𝑆𝑞) min

𝑥,𝑙,𝛼

∑︁
𝑘∈𝐾

𝛼𝑘𝑤𝑘

s.t. 𝛼𝑘 ≥ 𝑙𝑓 𝑞 − 1 + 𝑧𝑓 𝑞 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹𝑘 (10)

0 ≤ 𝑙𝑓 𝑞 ≤ 1 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹𝑘 (11)∑︁
𝑡 ∈𝑅𝑘 (𝑖)

𝑥𝑘𝑡𝑞𝑦𝑡𝑞 ≥
∑︁

𝑓 ∈𝐹𝑘 ,𝑝𝑟 (𝑓)=𝑖
(1 − 𝑙𝑓 𝑞)𝑑𝑓 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃 (12)∑︁

𝑘∈𝐾,𝑒∈𝑡
𝑥𝑘𝑡𝑞 ≤ 𝑐𝑒 ∀𝑒 ∈ 𝐸 (13)

𝑥𝑘𝑡𝑞 ≥ 0 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑅𝑘 (𝑖) . (14)

Formally, we rewrite (I) as

(𝐼 ′) min

𝑧
Penalty(𝑧) s.t. (3), (8) (15)

Penalty(𝑧) = min

𝑥,𝑙,𝛼

∑︁
𝑘∈𝐾

𝛼𝑘𝑤𝑘 s.t. (4), (5), (6), (7), (9) (16)

Reformulating the subproblem. To achieve further speed

ups, we reformulate each subproblem 𝑆𝑞 to make the LHS of the

constraints the same across all scenarios, so the only change is in

the RHS. This ensures that the the dual solution space is common

across the LPs for different scenarios. This allows LP solvers to

memorize the intermediate results from solving one scenario to

speed up the solution of the next scenario. Specifically, we rewrite

(12) and (13) as:∑︁
𝑡 ∈𝑅𝑘 (𝑖)

𝑥𝑘𝑡𝑞 ≥
∑︁

𝑓 ∈𝐹𝑘 ,𝑝𝑟 (𝑓)=𝑖
(1 − 𝑙𝑓 𝑞)𝑑𝑓 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑃 (17)∑︁

𝑘∈𝐾,𝑒∈𝑡
𝑥𝑘𝑡𝑞 ≤ 𝑐𝑒𝑚𝑒𝑞 ∀𝑒 ∈ 𝐸. (18)

Rather than 𝑦𝑡𝑞 variables that capture tunnel failure, our reformu-

lation introduces𝑚𝑒𝑞 variables which represent whether an edge

𝑒 is alive in scenario 𝑞. The reformulation adjusts the capacity of

failed links based on their failure state rather than cancel alloca-

tions on failed tunnels. These changes ensure only the RHS varies

for different scenario 𝑞.

Master problem with decomposed subproblems We next

present the master problem which derives an underestimate of the

minimal penalty. This is improved by adding cut constraints learnt

from solutions of the dual of 𝑆𝑞 .

(𝑀) min

𝑧,Penalty
Penalty

s.t. (3), (8)

Penalty ≥ 𝑔𝑞 (𝑧 ·𝑞) ∀𝑔 ∈ 𝐺,∀𝑞 ∈ 𝑄. (19)

𝐺 represents the set of all cuts computed so far. Note that since the

subproblem is decomposed into (𝑆𝑞) by scenarios, each 𝑔 ∈ 𝐺 is

expressed as a set of cuts 𝑔𝑞 (𝑧 ·𝑞), each constraining critical flows

in one scenario 𝑞. We present exact cut constraints in the appendix.

Ensure better stability. To speed up convergence and avoid os-
cillations around the optimal, we restrict the step when we update 𝑧.

We achieve this by adding a constraint in (M) to limit the hamming

distance between current 𝑧 variable and 𝑧 variable achieved from

last iteration. We present more details in Appendix.

Pruning scenarios. We further accelerate the decomposition

strategy by recognizing that not all subproblems need to be solved

each iteration. First, we prune out perfect scenarios where all flows
can be simultaneously handled without loss. Second, we prune

out scenarios for which the set of critical flows does not change.

Third, the reformulation of (𝑆𝑞) discussed earlier allows further

optimization. We can generate cuts for many scenarios even though

only a few subproblems for a subset of scenarios are solved. See

appendix for details.

Identifying a good starting point. It is desirable to start with

a good initial choice of 𝑧 so that the algorithm requires fewer it-

erations to converge. We observe that a flow must be connected

in a failure scenario for that scenario to be critical. Thus, we add

constraints 𝑧𝑓 𝑞 = 0 in (M) if flow 𝑓 is disconnected in scenario

𝑞, and 𝑧𝑓 𝑞 = 1 otherwise. We have the proposition below which

indicates this heuristic is a good starting point (we defer a proof to

the appendix).

Flexile: Meeting bandwidth objectives almost always CoNEXT ’22, December 6–9, 2022, Roma, Italy

Proposition 1. At the initial step of our algorithm (prior to any
iteration of the master), the guarantee from our algorithm is already
at least as good as TeaVar or ScenBest.

Algorithm 1 summarizes our decomposition algorithm (Line

17-19 can be executed in parallel). In the algorithm, 𝑧 denotes the

selection of critical scenarios for every flow (i.e., 𝑧 = {𝑧𝑓 𝑞 |∀𝑓 , 𝑞})
and 𝑥𝑞 denotes the set of all routing variables in scenario𝑞 (i.e., 𝑥𝑞 =

{𝑥𝑘𝑡𝑞 |∀𝑘, 𝑡}). We remark that in each iteration, the algorithm yields

a routing strategy, and the corresponding Penalty can be computed

easily by sorting the optimal values for (𝑆𝑞) and computing the 𝛽th

percentile.

Algorithm 1 Decomposition algorithm

1: function 𝑠𝑜𝑙𝑣𝑒_𝑚𝑎𝑠𝑡𝑒𝑟 (𝐺, 𝑧′)
2: Add hamming distance constraint with 𝑧′ to (𝑀)

3: Solve (𝑀) with 𝐺 , and get new variable 𝑧

4: return 𝑧
5: function 𝑠𝑜𝑙𝑣𝑒_𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚(𝑧,𝑞)

6: Solve (𝑆𝑞) and construct cut constraint 𝑔𝑞
7: return 𝑥𝑞 , 𝑔𝑞
8: function main(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

9: Initialize 𝑧𝑓 𝑞 to be 1 if 𝑓 is connected in 𝑞 and 0 otherwise

10: Initialize 𝑥𝑞 to be ∅ for all 𝑞 ∈ 𝑄
11: 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0

12: 𝐺 ← ∅
13: while 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
14: 𝑔← ∅
15: for 𝑞 ∈ 𝑄 do
16: if 𝑞 cannot be pruned then
17: 𝑥𝑞, 𝑔𝑞 ← 𝑠𝑜𝑙𝑣𝑒_𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚(𝑧, 𝑞)
18: 𝑔.𝑎𝑑𝑑 (𝑔𝑞)
19: 𝐺.𝑎𝑑𝑑 (𝑔)
20: 𝑧 ← 𝑠𝑜𝑙𝑣𝑒_𝑚𝑎𝑠𝑡𝑒𝑟 (𝐺, 𝑧)
21: 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑐𝑢𝑟_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1
22: return 𝑥

4.3 Critical flow-aware online allocation
The offline phase identifies the critical failure scenarios for each

flow and guides which flows to prioritize in the online phase. Over

long time scales (every 5-10 minutes), the offline problem is solved

using a prediction of traffic matrix, and an estimation of failure

probabilities. When a failure occurs, the controller solves an online

LP to generate the routing weights to be installed in the routers

(similar to SMORE and SWAN). This online LP makes sure that

necessary bandwidth is first allocated to critical flows. However,

there is typically significant residual capacity remaining, which

this LP then allocates to non-critical flows while also favoring high

priority traffic.

To achieve this, Flexile uses an adaptation of SWAN’s max-min

allocation algorithm [20], but with some important changes. A first

major change is that Flexile assigns necessary bandwidth for critical
flows as pre-decided by the offline phase. Then, a max-min approach

is used to allocate bandwidth to non-critical flows, and additional

bandwidth beyond the pre-determined minimum to critical flows.

Like [20], allocations are first done for higher priority traffic classes.

Second, SWAN determines the allocation for each traffic class,

as well as the routing, before allocating residual capacity to a lower

class. We implement an optimization where we decide how much

traffic the higher class gets, but do not pre-determine the routes.

When solving for the lower priority class, we force a minimum

required allocation for the higher priority class, and then simul-

taneously determine (i) the routing for both classes; and (ii) the

allocation for flows in the lower priority class. Third, rather than

do max-min allocations on bandwidth, we instead consider flow

loss, and do a max-min allocation on flow loss.

More generally, Flexile can work with any online bandwidth

allocation algorithm, not just SWAN, depending on the secondary

design objective beyond minimizing flow loss percentiles. For in-

stance, formulation (𝑆𝑞) could be used online to allocate traffic so as

to minimize the weighted loss of high and low priority flows given

a set of critical flows, while in single class settings, ScenBest could

be easily augmented to minimize MLU while prioritizing critical

flows.

Flexile’s approach to identify traffic of different priority classes,

and to ensure each flow of a class gets its share is the same as

existing systems such as SWAN. For instance, SWAN uses DSCP

bits to identify traffic of different priority classes; and uses a token

bucket in each end host that regulates traffic to the destination. The

same approach is applicable to Flexile - the only difference is in

terms of how much traffic is allocated to each flow when a failure

happens.

With Flexile, routers only maintain forwarding entries associated

with the current failure scenario. Hence the storage required at

each router is identical to existing TE schemes. The only additional

storage required is for storing the information of critical flows

in the centralized controller. This requires a single bit for each

combination of scenario and flow and requires𝑂 (𝑀𝑁) space where
𝑀 is the number of scenarios and 𝑁 is the total number of flows.

For a topology of 100 nodes, and 1000 failure scenarios, this storage

requirement is only 1.25MB.

4.4 Generalizations
Constraining loss on non-critical flows. While §4.3 already en-

sures non-critical flows may be allocated bandwidth using residual

capacity, we may explicitly constrain loss on non-critical flows in

each scenario through a small change to (I). Suppose for scenario 𝑞,

the optimal ScenLoss is 𝑙𝑜𝑠𝑠𝑞 . We can add constraints of the form

𝑙𝑓 𝑞 ≤ 𝛾 + 𝑙𝑜𝑠𝑠𝑞 , where 𝛾 is a constant representing the maximum

factor by which the flow’s loss may increase in that scenario. 𝛾 then

serves as a knob that trades off the increase the flow sees in that

scenario with PercLoss. By setting 𝛾 appropriately, we can ensure

optimal performance in each scenario.

More general scenarios. It is easy to extend Flexile to design
for a set of traffic matrices given their probability. In model (I),

each scenario 𝑞 ∈ 𝑄 corresponds to a traffic matrix. The demand of

flow 𝑓 in (5) will become 𝑑
𝑞

𝑓
, reflecting different traffic matrices in

different scenarios. Flexile’s decomposition algorithm still applies.

Explicit priority with multiple traffic classes. In Flexile, by
altering the weight in the objective, more emphasis can be placed

on PercLoss for high-priority traffic. Futher, our online allocation

algorithm favors high-priority traffic when using residual capacity,

CoNEXT ’22, December 6–9, 2022, Roma, Italy Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

which usually ensures high-priority traffic does not see loss across

scenarios (Fig 13). If the PercLoss of low-priority traffic is even sub-

ordinate to sending high-priority traffic in a non-critical scenarios

then Flexile can be adapted as follows. First, Flexile determines criti-

cal flows to minimize PercLoss only considering high-priority traffic.

Then Flexile uses the algorithm in §4.3 to push as much non-critical

high-priority traffic as possible in each scenario. Next, Flexile may

be used to design for low-priority traffic with additional constraints

to meet bandwidth levels for high-priority traffic determined in

the first step. The approach is easily generalized to multiple traffic

classes.

Capacity augmentation to meet flow percentiles. Flexile can
be generalized to perform minimum-cost capacity augmentation

on the network which is more cost-effective than a scenario-centric

approach (see Appendix).

Handling imperfect probability prediction. Flexile can toler-

ate errors in the probabilities of individual scenarios so long as the

cumulative probability of the scenarios it designs matches the SLO

target. When the predicted probabilities are imperfect, applying

Flexile directly may design for 99% but the true probability of the

scenarios it designs for is lower, implying the actual guarantee is

weaker. To compensate, we can design for a slightly higher target

probability, sufficient to tolerate prediction error. Note that we do

not need to know the probability of all failure scenarios. It suffices

to know the probability of a subset of scenarios that occur with

sufficiently high probability.

5 FLEXILE VS. TEAVAR
While Flexileminimizes the 𝛽𝑡ℎ percentile of losses (or Value at Risk

or VaR), Teavar [10] approximates the same using the Conditional
Value at Risk (CVaR). CVaR minimizes the expected loss of the

worst (100 − 𝛽)𝑡ℎ percentile of scenarios. For example, consider a

flow which sees a loss of 0%, 5% and 10% in three scenarios that

respectively occurwith probability 0.9, 0.09, and 0.01. Then, the 90𝑡ℎ

percentile loss (VaR) is 0%, but the CVaR is 5∗0.09+10∗0.01 = 1.45%.

Recall there are two other differences between Teavar and Flexile.
First, Teavar considers the 𝛽𝑡ℎ percentile of ScenLoss, unlike Flexile
which focuses on the 𝛽𝑡ℎ percentile of flows. Second, on failure,

Teavar rescales traffic of each source destination pair on live tun-

nels so the same proportion is maintained. In contrast, Flexile like
SMORE [25] allows greater flexibility in how traffic is split across

tunnels.

To analyze the advantages of directly considering VaR in Flex-
ile, and decouple these benefits from other benefits of Flexile, we
design two new CVaR-based TE schemes, which may be viewed

generalizations of Teavar:

• Cvar-Flow-St. Here, we use CVaR to approximate the computa-

tion of PercLoss. Instead of directly computing 𝛽𝑡ℎ percentile loss

for flow 𝑓 , i.e., FlowLoss(𝑓 , 𝛽), we use CVaR of flow 𝑓 (denoted

by 𝐶𝑉𝑎𝑅(𝑓 , 𝛽)) to approximate it. Then we seek to optimize the

maximum CVaR of all flows, which we denote as MaxFlowCVaR.
Formally,

MaxFlowCVaR = max

𝑓 ∈𝐹
𝐶𝑉𝑎𝑅(𝑓 , 𝛽) (20)

. • Cvar-Flow-Ad. This is similar to Cvar-Flow-St except that we
allow greater flexibility in terms of how traffic may be split across

tunnels on failure.

We develop Linear Programming (LP) models for computing the

routing and bandwidth allocations associated with these schemes,

which we present in the appendix. We have the following proposi-

tion.

Proposition 2. There exists a setting where PercLoss found by
Teavar, and all CVaR strategies is at least 48% even though there exists
an optimal strategy where the network can achieve a PercLoss of zero.

The proof follows from an analysis of Fig. 1, and we defer details

to the appendix. The proposition shows that these more general

strategies are still quite conservative, and there is significant po-

tential to doing better with Flexile by directly considering VaR. We

empirically show the benefits in §6.2.

6 EVALUATIONS
We compare Flexile with state-of-the-art TE schemes on multiple

topologies, and validate the results on an emulation testbed. We

discuss our methodology and then results.

Schemes compared. We compare Flexile with
• Teavar and other CVaR schemes: We consider Teavar and

two enhanced CVaR schemes (Cvar-Flow-St and Cvar-Flow-Ad) that
we developed (§5). These schemes enable us to separate Flexile’s
benefits related to directly optimizing loss percentiles (rather than

approximate with CVaR), and its benefits related to considering

flow losses.

• SMORE: SMORE split traffic optimally among live tunnels

upon failures. This is identical to ScenBest discussed in section §2

when the optimized metric is MLU.

• SWAN: We consider both variants of SWAN [20], which we

refer to as SWAN-Throughput and SWAN-Maxmin. For each sce-

nario, both schemes allocate bandwidth to higher priority traffic

classes before lower priority ones. SWAN-Throughput maximizes

throughput while SWAN-Maxmin uses an iterative algorithm to

approximate max-min fairness.

We include SWAN because like Flexile, it can handle multiple

traffic classes. In contrast, Teavar and SMORE are designed for

single traffic class. Thus, our comparisons with SWAN are based

on two traffic classes (a latency-sensitive class, and a lower priority

class), while the comparisons with SMORE and Teavar consider a

single traffic class.

When feasible (for smaller topologies), we also compare Flex-
ile with IP , which uses the optimal routing designed by the MIP

formulation (I). Our implementation of Flexile includes both the

decomposition algorithm (§4.2) for the offline phase (run for a max-

imum of 5 iterations), and the online phase run on failure. We

implement all our optimization models in Python, and use Gurobi

8.0 [22] to solve them.

Performance metric. Our primary performance metric for all

schemes is the PercLoss for each class achieved by the scheme (i.e.,

we consider the 𝛽𝑡ℎ percentile of loss of each flow in a class, and

take the maximum across flows.). We evaluate all the schemes based

on post-analysis. For each scheme, we determine the routing and

bandwidth allocation in each failure scenario, compute the loss of

each flow in each scenario, and then compute PercLoss.

Flexile: Meeting bandwidth objectives almost always CoNEXT ’22, December 6–9, 2022, Roma, Italy

0
10
20
30
40
50
60
70
80

Flexile SWAN-
Maxmin

Flexile SWAN-
Maxmin

Pe
rc
Lo
ss
(%

)

99.9%ile loss on
high-priority traffic

99%ile loss on
low-priority traffic

99.9%ile loss on

high-priority traffic

99.9%ile loss on

low-priority traffic

(a)

0

10

20

30

40

50

Flexile SMORE Teavar

Pe
rc
Lo
ss
(%

)

99.9%ile loss on
single class traffic
99.9%ile loss on

single class traffic

(b)

C
D

F
(F

ra
c.

 o
f f

lo
w

s a
cr

os
s s

ce
na

rio
s)

1.00

0.99

0.98

0.97

0.96

0.95

Emulation loss% - model loss%
-0.5 0.0 0.5 1.0 1.5 2.0

(c)

Figure 9: (a) Emulation testbed results. (a) Flexile vs. SWAN. (b) Flexile vs. Teavar and SMORE. (c) Comparing flow losses across
scenarios in emulations with model predicted losses.

Topologies and traffic model. We evaluate the schemes on 20

topologies obtained from [24] and [25] (see Table 2 in the Appendix).

Our largest network contains 151 edges and 103 nodes. We remove

one-degree nodes in the topologies recursively so that the networks

are not disconnected with any single link failure. For each topology,

the number of flows is 𝐾
𝑁 ∗(𝑁−1)

2
, where 𝐾 is the number of traffic

classes and 𝑁 is the number of nodes. We choose tunnels balancing

latency and disjointness like prior works [10, 23, 28]. For latency-

sensitive high-priority traffic we choose three shortest paths that

are not disconnected by single link failures. For low-priority traffic

which is not as latency-sensitive, we add three additional tunnels

from a larger pool of shortest paths prioritizing disjointness. Our

single class experiments use three physical tunnels per pair that

are as disjoint as possible, preferring shorter ones when there are

multiple choices. We used the gravity model [48] to generate traffic

matrices with the utilization of the most congested link (MLU) in

the range [0.5, 0.7] across all topologies. The resulting traffic matrix

was used as such for the single traffic class experiments. For the

two-class experiments, the traffic of each pair was randomly split

into high and low priority. We then scaled low priority traffic by a

factor of 2 given the network can run closer to saturation with low

priority traffic.

Failure scenarios. For each topology, we use the Weibull distri-

bution to generate the failure probability of each link, like [10]. We

choose the Weibull parameter so that the median failure probability

is approximately 0.001, matching empirical data characterizing fail-

ures in wide-area networks [17, 29, 41]. Given a set of link failure

probabilities, we sample failure scenarios based on the probability

of the occurrence. Our evaluations assume independent link failures

but Flexile’s approach generalizes to shared risk link groups with

correlated failures (§4.1). We discard scenarios with insignificant

probability (< 10
−6

). For single-class experiment, our design target

is set to as high a probability target as possible, while ensuring all

flows remain connected for the sampled scenarios. This is because

the network will trivially see a PercLoss of 1 for any higher target.

We also use this as the design target for high-priority class in two-

class experiments. For low-priority class, we always use 0.99 as the

design target.

Emulation setup. Our emulations are conducted on a Mininet

cluster [2] running on six Cloudlab servers [1]. Link bandwidths

were set to 10 Mbps to avoid software switch bottlenecks. The traf-

fic demands generated using the approach above was accordingly

normalized. Tunneling was implemented using MPLS labels. We

emulate the performance of a TE scheme in a failure scenario by

starting the network in the normal condition and failing the appro-

priate set of links. The source switch uses select groups supported

by Open vSwitch, and weights are set so each tunnel is chosen with

a probability determined by the appropriate TE scheme. The TE

scheme also determines how much data each flow is permitted to

transmit. We measure the loss seen by each flow on the emulation

testbed relative to the original demand requested, accounting for

both throttling required by the TE scheme, and losses in the testbed.

We compute loss at a desired percentile for each flow given the

emulated losses for each scenario, and its probability, which in turn

enables us to compute the PercLoss for each traffic class.

6.1 Comparisons on emulation testbed
We emulate the IBM topology which has 17 switches, and 23 links,

generating necessary traffic using 34 end hosts. The comparisons

with SWAN used two traffic classes for all 272 pairs (544 flows in

all), while the comparisons with Teavar and SMORE used a single

traffic class for all pairs. Each scheme was emulated in each of 138

sampled scenarios (which cover more than 99.992% probability) five

times.

Flexile vs. SWAN. Fig. 9a shows PercLoss achieved by Flexile and
SWAN-Maxmin on the IBM topology for both high and low priority

traffic. Each bar shows the median PercLoss across 5 runs. The error
bars show the minimum and maximum. For high priority traffic, we

consider the 99.9%𝑖𝑙𝑒 loss of each flow, while for low priority traffic,

we consider the 99%𝑖𝑙𝑒 of each flow. The figure shows that PercLoss
is nearly zero for both schemes for high priority traffic indicating

all high priority flows can be sustained without loss 99.9% of the

time. However, while PercLoss is nearly zero for low priority with

Flexile, it is fairly high (> 60%) for SWAN-Maxmin. This indicates

that Flexile can carry all low priority flows with almost no loss 99%

of the time, but some flows may see large loss with SWAN-Maxmin

99% of the time.

Flexile vs. SMORE and Teavar. Fig. 9b compares Flexile with
SMORE and Teavar using a single traffic class considering the

99.9%𝑖𝑙𝑒 loss for flows. The PercLoss with Flexile is nearly zero

CoNEXT ’22, December 6–9, 2022, Roma, Italy Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani
P

er
cL

os
s

(%
)

0

25

50

75

100

hig
hw

ind
s

jan
etb

ac
kb

on
e iij att

sp
rin

t
ge

an
t

Tine
t

ibm qu
es

t

BTNort
ha

meri
ca

xs
pe

diu
s

crl
ne

tw
ork

Delt
ac

om
dig

ex

da
rks

tra
nd cw

ix
xe

ex b4

int
ern

etm
ci

int
eg

ra

Flexile SWAN-MaxMin SWAN-Throughput

Topologies
Figure 10: Flexile Vs. SWAN. Flexile matched optimal when-
ever it was computable. Vertically aligned dots correspond
to the same topology.

indicating it can support all flows with minimal loss 99.9% of the

time, while the PercLoss achieved by SMORE and Teavar is 17%

and 40% respectively indicating some flows could see significant

99.9%𝑖𝑙𝑒 loss.

Models vs. Emulation.While our models assume continuous

split ratios and traffic demands, Open vSwitch only takes inte-

ger weights in select groups, and some discretization occurs since

testbed traffic is packet-based. To assess the impact of such dis-

cretization, we compare the losses observed in the emulations, and

losses predicted by the optimization models of TE schemes across

all flows and all scenarios using the Pearson Correlation Coefficient

(PCC). The PCC values are more than 0.999 in both single-class and

two-class setting. Fig. 9c shows a CDF of the losses observed in

emulation and simulation across all flows and scenarios. There is

no difference in over 99% of the cases, and a difference of less than

1.67% in all cases. For all schemes, and all runs, PercLoss in the em-

ulations is within 1.67% of the models, which is much smaller than

the performance gap across the schemes. These results indicate

that the emulation results closely match our optimization models.

6.2 Comparisons across topologies
Flexile vs. SWAN. We compare Flexile with both SWAN variants –

SWAN-Throughput and SWAN-Maxmin. For high priority traffic,

all schemes achieve PercLoss of zero across all topologies. Fig. 10

compares the PercLoss for low priority traffic across topologies.

Clearly, Flexile significantly outperforms both SWAN variants for

most topologies. The median PercLoss across topologies for Flexile
is 0%, while the median for SWAN-Maxmin is 58%. In some cases,

SWAN-Maxmin sees PercLoss as high as 93%. Interestingly, SWAN-

Throughput sees extremely high PercLoss of 100% in many cases

(median across topologies is 100%). This is because optimizing

throughput may lead to significant unfairness across flows. Some

flows may be consistently sacrificed without any demand serviced

in many scenarios. As an example, consider a path A-B-C with

each link having unit capacity. Here, SWAN-Throughput would

prioritize sending one unit of demand for the𝐴𝐵 and 𝐵𝐶 flows, and

allocate no traffic to the 𝐴𝐶 flow, as this maximizes throughput.

Finally, in the Appendix we show that with Flexile, lower priority
traffic can be scaled by a larger factor while ensuring zero PercLoss.

Flexile vs. Teavar and our CVaR variants. Fig. 11 compares

Flexile relative to Teavar and the new CVaR-based schemes that we

designed (§5) for the single traffic class setting. Each curve shows

a CDF of the PercLoss achieved by a particular scheme across all

topologies.

0 10 20 30 40 50 60 70 80 90 100
3erFLoss (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
)

(f
rD

Ft
Lo

n
of

 to
po

lo
gL

es
)

7eDvDr
CvDr-)low-6t
CvDr-)low-Ad
)lexLle

0 10 20 30 40 50 60 70 80 90 100
3erFLoss (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
)

(f
rD

Ft
Lo

n
of

 to
po

lo
gL

es
)

7eDvDr
CvDr-)low-6t
CvDr-)low-Ad
)lexLle

Figure 11: Flexile Vs. Teavar and our CVaR variants.

First, we see that Flexile (left-most curve) achieves significantly

lower PercLoss relative to Teavar (right-most curve). Interestingly,

Teavar achieves an PercLoss of 100% in many cases. To understand

this, consider a failure scenario that disconnects the network. Teavar

cannot count such a scenario towards meeting the requirement of

any flow since it optimizes the maximum loss across all source-

destination pairs in that scenario. If the topology is connected less

than 𝛽% of the time, Teavar can only achieve a 100% loss at the

𝛽%𝑖𝑙𝑒 . In contrast, each individual flow could still be connected

in scenarios that occur 𝛽% of the time or higher, allowing Flexile
to achieve a much lower loss at the 𝛽%𝑖𝑙𝑒 (in some extreme cases,

Flexile could guarantee 0% loss for all flows). We also evaluate

Teavar in more richly connected topologies later.

Second, our enhanced schemes Cvar-Flow-Ad and Cvar-Flow-St
(which both consider flow losses) significantly outperform Teavar,

but still see high PercLoss relative to Flexile. This is because the
schemes use CVaR to approximate the percentile, while Flexile
directly optimizes the percentile. Cvar-Flow-Ad does better than

Cvar-Flow-St as expected because of more adaptive routing.

Finally, Cvar-Flow-St significantly reduces PercLoss relative to
Teavar, with a reduction of more than 50% in the median case. This

indicates considering flow losses offers significant benefits despite

limited routing flexibility, and the CVaR approximation.

Flexile vs. SMORE. SMORE, like Teavar, optimizes the loss

across all flows in each scenario. Since the topology may get dis-

connected, we considered a variant of SMORE where in each sce-

nario we turned off traffic for disconnected flows. This approach

performed similar to Flexile in many cases although there were

topologies where Flexile still gave benefits. Even so, Flexile can

verify that the network cannot perform better, while SMORE is

unable to do so.

We also compare Flexile with SMORE in more richly connected

settings, which we create by assuming each link consists of two

sub-links that fail independently. We ensure the topology remains

connected in all sampled failure scenarios. Fig.12 compares the

PercLoss achieved by Flexile, SMORE and Teavar in thesemore richly

connected topologies. Flexile consistently outperforms Teavar and

SMORE in most topologies. In the median case, the % reduction in

PercLoss achieved by Flexile over SMORE is 46% and over Teavar is

63%. In a few cases, we do not report results for Teavar since it did

not finish within several hours.

6.3 Does Flexile increase loss in scenarios?
While Flexile optimizes performance across failure scenarios, this

could potentially be at the expense of performance of non-critical

Flexile: Meeting bandwidth objectives almost always CoNEXT ’22, December 6–9, 2022, Roma, Italy

P
er
cL
os
s(
%
)

0

20

40

60
Teavar SMORE FlexileTLE

TopologiesP
er
cL
os
s(
%
)

0

20

40

60

Teavar SMORE Flexile

P
er
cL
os
s(
%
)

0

20

40

60

Teavar SMORE Flexile

P
er
cL
os
s(
%
)

0

20

40

60

Teavar SMORE Flexile

Figure 12: Flexile Vs. SMORE and Teavar in richly connected
topologies. TLE indicates Time Limit Exceeded.

flows within a scenario. We evaluate how well Flexile’s techniques
(§3 and §4.4) can mitigate the impact.

Single class traffic: We evaluate Flexile with respect to Scen-
Loss (§2) focusing on the loss of the worst performing connected

flow in each scenario. For all but the IBM topology, Flexile achieves
identical ScenLoss as ScenBest (which is optimal for each scenario).

For IBM, Flexile achieves only modestly higher loss than ScenBest

as already shown in §3 (Fig. 6). In contrast, Teavar performs poorly

– the 99.9%ile ScenLoss with Teavar is 100% for all except 4 topolo-

gies while Flexile and ScenBest achieve ScenLoss under 17% for all

topologies.

Multiple class traffic: Fig. 13 shows a distribution of the loss

of the worst performing flow in each traffic class for the Sprint

topology. ScenBest-Multi generalizes ScenBest for two classes and

represents the optimal scheme when performance within each

scenario is considered. For high priority traffic, Flexile incurs no loss
for any flow in any scenario. Note that all three schemes see no

loss and overlap on the left. For low priority traffic, the loss for

the worst flow is only modestly higher with Flexile compared to

ScenBest-Multi, and much better than SWAN-Maxmin. Note that

ScenBest-Multi performs poorly in PercLoss which looks across

scenarios.

Flexile achieves similarly strong results for most other topologies.

In a few cases, Flexile did see slightly higher loss penalties relative

to optimal in some scenarios, but this was limited to low priority

traffic. Further, here, a variant of Flexile which added a constraint

limiting the increase in loss of non-critical flows (§4.4) worked well.

For instance, for the Quest topology, the variant only increased the

loss of the worst low priority flow by at most 5% in each scenario,

yet significantly outperformed in PercLoss (the variant achieved an

PercLoss of 16%, compared to 35% for ScenBest-Multi and 57% for

SWAN-Maxmin). Overall, the results show Flexile can bound the

loss in scenarios, yet substantially improve flow loss at a desired

percentile.

6.4 Evaluating other aspects of Flexile
Convergence to optimality. We next compare Flexile to the opti-

mal PercLoss that the network can achieve for topologies for which

we could compute the optimal. Fig. 14 shows the CDF of the opti-

mality gap (PercLoss achieved by Flexile - optimal PercLoss) across
topologies after each iteration of Flexile’s decomposition algorithm

(§4.2) for the two-class traffic setting. Across all topologies, Flexile
achieves the optimal in 5 iterations, frequently achieving it in fewer

iterations. Interestingly, for 40% of the topologies, Flexile achieves
the optimal in the first iteration showing the effectiveness of our

starting point heuristic. We found Flexile typically converged to

optimal even faster in the single-class experiments.

Solving time. Fig. 15 presents the solving time (Y-Axis) for

different topology sizes (X-Axis) for IP and Flexile, assuming 5

iterations for Flexile. Note that this is the offline solving time and

done prior to failure. Flexile solves multiple small LP subproblems in

each iteration, and a master problem (a MIP). For Tinet (one of our

larger topologies), each subproblem takes 0.10-0.15 seconds. The

master problem is much smaller than the IP (I), and takes less than

0.10 seconds for Tinet. We report the solving time of the master and

all subproblems, based on solving up to 10 subproblems in parallel.

Fig. 15 shows that Flexile reduces solving time significantly, and

is under 15 seconds for all topologies except the largest (Deltacom)

which takes 118 seconds. In contrast, IP cannot finish within 1 hour

for Deltacom and takes more than 40 minutes for Tinet. Further op-

timizations are possible for Flexile – e.g., the PercLoss for Deltacom
was under 1% after 2 iterations indicating we could have stopped

earlier.

Note that the solving time depends on (i) the number of iter-

ations; and (ii) the time spent on subproblems in each iteration.

Empirically, the number of iterations does not grow with size, and

the majority of the time is spent on the subproblems. The number

of these subproblems is the number of scenarios we consider. For

each subproblem, the number of variables grows linearly with the

number of flows, and the number of constraints grows linearly with

the number of edges in the network. We solve each subproblem

using the simplex algorithm. Smoothed analysis shows that the

complexity is polynomial in the size of the LP and the perturbation

to its data [13] while empirical performance has been observed to

be linear in the number of constraints and variables [35].

Interestingly, we found that Teavar has significantly higher solv-

ing times than Flexile – e.g., Teavar is unable to finish Deltacom

even after several hours. Although Teavar solves a single LP, its solv-

ing time can be large since it bundles all the enumerated scenarios

in a single problem.

Finally, the online phase only solves one subproblem. Hence

solving time grows with the time to solve one subproblem. The

scaling is similar to existing TE schemes such as SMORE and SWAN.

We found that the online solving time incurred on failure is com-

parable to SWAN-Maxmin, and typically under 3 seconds. Further

reductions are achievable with coarse buckets for the max-min

scheme, or using an even lighter-weight scheme such as SMORE

augmented with critical flows.

7 RELATEDWORK
In this section, we only discuss related work not discussed in §2.

There has been recent interest in designing TE schemes with prob-

abilistic requirements [10, 11, 47]. Lancet [11] focuses on local

rerouting using a link bypass rather than Flexile’s flexible rerouting
approach, and does not consider flow losses. Beta [47] tackles an

orthogonal problem where traffic arrives incrementally and decides

whether to accept the demand in an online fashion. However, the

admission decision can be overly conservative, and newly arriving

higher priority traffic may be rejected because of existing lower

priority traffic. Given router configurations and failure probabilities,

NetDice [38] verifies path lengths are under a thresholdwith desired

CoNEXT ’22, December 6–9, 2022, Roma, Italy Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

0 10 20 30 40 50 60 70 80 90100
Loss of worst performLng flow

 Ln sFenDrLo (%)

0.9999

0.999

0.99

0.9

0.0

CD
)

(F
um

ul
Dt

ed
 p

ro
bD

bL
lLt

y
 o

f s
Fe

nD
rLo

s)

6WA1-0DxmLn (low)
)lexLle (low)
6Fen%est-0ultL (low)

0 10 20 30 40 50 60 70 80 90100
Loss of worst performLng flow Ln sFenDrLo

0.9999

0.999

0.99

0.9

0.0

CD
)

(F
um

ul
Dt

ed
 p

ro
bD

bL
lLt

y
 o

f s
Fe

nD
rLo

s)

6WA1-0DxmLn (low)
)lexLle (low)
6Fen%est-0ultL (low)

0 10 20 30 40 50 60 70 80 90100
Loss of worst performLng flow Ln sFenDrLo

0.9999

0.999

0.99

0.9

0.0

CD
)

(F
um

ul
Dt

ed
 p

ro
bD

bL
lLt

y
 o

f s
Fe

nD
rLo

s)

6WA1-0DxmLn (hLgh)
6WA1-0DxmLn (low)
)lexLle (low)
6Fen%est-0ultL (low)

0 10 20 30 40 50 60 70 80 90 100
Loss of worst performLng flow Ln sFenDrLo (%)

0.9999

0.999

0.99

0.9

0.0

CD
)

(F
um

ul
Dt

ed
 p

ro
bD

bL
lLt

y
 o

f s
Fe

nD
rLo

s)

6WA1-0DxmLn (low)
)lexLle (low)
6Fen%est-0ultL (low)

High priority traffic
(all schemes)

Figure 13: Flexile sees modest penalty in
ScenLoss relative to the optimal.

0 10 20 30 40 50 60 70 80 90 100
2ptLmDlLty gDp

()lexLle 3erFLoss % - 2ptLmDl 3erFLoss %)

0.0

0.2

0.4

0.6

0.8

1.0

CD
)

(f
rD

Ft
Lo

n
of

 to
po

lo
gL

es
)

IterDtLon 1
IterDtLon 2
IterDtLon 3
IterDtLon 4
IterDtLon 5

0 10 20 30 40 50 60 70 80 90 100
2ptLmDlLty gDp

()lexLle 3erFLoss % - 2ptLmDl 3erFLoss %)

0.0

0.2

0.4

0.6

0.8

1.0

CD
)

(f
rD

Ft
Lo

n
of

 to
po

lo
gL

es
)

IterDtLon 1
IterDtLon 2
IterDtLon 3
IterDtLon 4
IterDtLon 5

Figure 14: Performance improvement
with each iteration.

20 40 60 80 100 120 140
Number of links

100

101

102

103

So
lv

in
g

tim
e(

s)

1 h(truncated)
IP
Flexile

Figure 15: Reduction in solving time
with Flexile

probability. Other work [15] models packet delivery probability on

failures.

Recent work [5] shows how an MCF problem could be solved

quickly on failure through decomposition which enables flexible

routing with fast reaction time. This may be viewed as a variant

of a ScenBest scheme that trades off optimality for computation

speed. In contrast Flexile optimizes across scenarios to meet flow

percentile requirements. Researchers have explored robust network

design under single link or node failures [6, 9, 14, 19, 32, 40, 49],

verified link utilizations under failure [12, 39], and explored robust

design across traffic matrices [6, 7, 42, 46]. While we focus on IP

topology failures, ARROW [50] allows restoration of link capacity

by readjusting the underlying fiber path on fiber failure. Decom-

position techniques have been explored in other contexts such as

distributed SDN controllers [16].

8 CONCLUSIONS
In this paper, we have presented Flexile, a new system to minimize

flow loss at a desired percentile in a cloud provider WAN, while

modeling the diverse needs of different traffic classes. Flexile ex-
ploits a key opportunity that each flow could meet its bandwidth

requirements over a different set of failure states. Evaluations over

20 real topologies validated with emulation testbed experiments

show Flexile out-performs existing TE schemes. Across topologies,

the median reduction in flow loss at desired percentiles with Flex-
ile is 46% for SMORE, and 63% for Teavar, while the benefits are

even higher for SWAN. Finally, its decomposition approach aided

with problem-specific optimizations ensures solving times of under

15 seconds for most topologies and Flexile is an order of magni-

tude faster than Teavar for the largest topology. Overall, the results

show the promise of Flexile.This work does not raise any ethical
issues.

9 ACKNOWLEDGEMENTS
We thank our shepherd, Gábor Rétvári, and the anonymous review-

ers for their feedback which greatly helped improve the paper. This

work was funded in part by the National Science Foundation (NSF)

Award 1910234.

REFERENCES
[1] Cloudlab. https://cloudlab.us/.

[2] Mininet. http://mininet.org/.

[3] SMORE source code. https://github.com/cornell-netlab/yates/.

[4] Cisco WAN automation engine (WAE), 2016. http://www.cisco.com/c/en/us/

products/routers/wan-automation-engine/index.html.

[5] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei Zaharia,

and Peter Bailis. Contracting wide-area network topologies to solve flow prob-

lems quickly. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 175–200. USENIX Association, 2021.

[6] David Applegate, Lee Breslau, and Edith Cohen. Coping with network failures:

Routing strategies for optimal demand oblivious restoration. In Proceedings of the
Joint International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’04/Performance ’04, pages 270–281, 2004.

[7] David Applegate and Edith Cohen. Making intra-domain routing robust to

changing and uncertain traffic demands: Understanding fundamental tradeoffs.

In Proceedings of ACM SIGCOMM, pages 313–324, 2003.

[8] Ajay Kumar Bangla, Alireza Ghaffarkhah, Ben Preskill, Bikash Koley, Christoph

Albrecht, Emilie Danna, Joe Jiang, and Xiaoxue Zhao. Capacity planning for the

google backbone network. In ISMP 2015 (International Symposium on Mathemati-
cal Programming), https://research.google/pubs/pub45385/, 2015.

[9] Randeep S. Bhatia, Murali Kodialam, T. V. Lakshman, and Sudipta Sengupta.

Bandwidth guaranteed routing with fast restoration against link and node failures.

IEEE/ACM Transactions on Networking, 16(6):1321–1330, December 2008.

[10] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjorner,

Asaf Valadarsky, and Michael Schapira. Teavar: Striking the right utilization-

availability balance in wan traffic engineering. In Proceedings of ACM SIGCOMM,

2019.

[11] Yiyang Chang, Chuan Jiang, Ashish Chandra, Sanjay Rao, and Mohit Tawar-

malani. Lancet: Better network resilience by designing for pruned failure sets.

Proceedings of the ACM on Measurement and Analysis of Computing Systems,
3:1–26, 12 2019.

[12] Yiyang Chang, Sanjay Rao, andMohit Tawarmalani. Robust validation of network

designs under uncertain demands and failures. In 14𝑡ℎ USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 347–362, 2017.

[13] Daniel Dadush and Sophie Huiberts. Smoothed Analysis of the Simplex Method,
page 309–333. Cambridge University Press, 2021.

[14] Bernard Fortz and Mikkel Thorup. Robust optimization of OSPF/IS-IS weights.

In Proceedings of International Network Optimization Conference, pages 225–230,
2003.

[15] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexan-

dra Silva. Probabilistic netkat. In Proceedings of the 25th European Symposium on
Programming Languages and Systems - Volume 9632, pages 282–309, 2016.

[16] A. Ghosh, Sangtae Ha, E. Crabbe, and J. Rexford. Scalable multi-class traffic

management in data center backbone networks. IEEE Journal on Selected Areas
in Communications, 31:2673–2684, 2013.

[17] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network

failures in data centers: Measurement, analysis, and implications. In Proceedings
of ACM SIGCOMM, pages 350–361, 2011.

[18] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.

Evolve or die: High-availability design principles drawn from googles network

infrastructure. In Proceedings of ACM SIGCOMM, pages 58–72, 2016.

[19] Fang Hao, Murali Kodialam, and T. V. Lakshman. Optimizing restoration with

segment routing. In Proceedings of IEEE INFOCOM, pages 1–9, April 2016.

[20] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan

Nanduri, and RogerWattenhofer. Achieving high utilization with software-driven

wan. In Proceedings of ACM SIGCOMM, pages 15–26, 2013.

[21] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,

Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang,

Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt

Tierney, Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and after:

Managing hierarchy, partitioning, and asymmetry for availability and scale in

google’s software-defined wan. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages 74–87, 2018.

[22] Gurobi Optimization Inc. Gurobi optimizer reference manual, 2016. http://www.

gurobi.com.

https://cloudlab.us/
http://mininet.org/
https://github.com/cornell-netlab/yates/
http://www.cisco.com/c/en/us/products/routers/wan-automation-engine/index.html
http://www.cisco.com/c/en/us/products/routers/wan-automation-engine/index.html
https://research.google/pubs/pub45385/
http://www.gurobi.com
http://www.gurobi.com

Flexile: Meeting bandwidth objectives almost always CoNEXT ’22, December 6–9, 2022, Roma, Italy

[23] Chuan Jiang, Sanjay Rao, and Mohit Tawarmalani. Pcf: Provably resilient flexible

routing. In Proceedings of ACM SIGCOMM, page 139–153, 2020.

[24] Simon Knight, Hung Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew

Roughan. The internet topology zoo. IEEE Journal on Selected Areas in Commu-
nications, 29:1765 – 1775, October 2011.

[25] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr La-

pukhov, Chiun Lin Lim, and Robert Soulé. Semi-oblivious traffic engineering:

The road not taken. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 157–170, 2018.

[26] Kin-Wah Kwong, Lixin Gao, Roch Guérin, and Zhi-Li Zhang. On the feasibility

and efficacy of protection routing in ip networks. IEEE/ACM Transactions on
Networking, 19(5):1543–1556, October 2011.

[27] Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson,

Scott Shenker, and Ion Stoica. Achieving convergence-free routing using failure-

carrying packets. In Proceedings of ACM SIGCOMM, pages 241–252, 2007.

[28] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David

Gelernter. Traffic engineering with forward fault correction. In Proceedings of
ACM SIGCOMM, pages 527–538, 2014.

[29] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee

Chuah, Yashar Ganjali, and Christophe Diot. Characterization of failures in an

operational ip backbone network. IEEE/ACM Trans. Netw., 16(4):749–762, 2008.
[30] Manfred Padberg. Linear optimization and extensions, volume 12. Springer Science

& Business Media, 2013.

[31] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-TE for LSP

Tunnels. RFC 4090, May 2005.

[32] Michal Pióro and Deepankar Medhi. Routing, Flow, and Capacity Design in
Communication and Computer Networks. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2004.

[33] Rahul Potharaju and Navendu Jain. When the network crumbles: An empirical

study of cloud network failures and their impact on services. In Proceedings of the
4th Annual Symposium on Cloud Computing, SOCC ’13, pages 15:1–15:17, 2013.

[34] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei.

The benders decomposition algorithm: A literature review. European Journal of
Operational Research, 259(3):801 – 817, 2017.

[35] Ron Shamir. The efficiency of the simplex method: A survey. Management Science,
33(3):301–334, 1987.

[36] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714, January 2010.

[37] R. K. Sinha, F. Ergun, K. N. Oikonomou, and K. K. Ramakrishnan. Network

design for tolerating multiple link failures using Fast Re-route (FRR). In 2014
10th International Conference on the Design of Reliable Communication Networks
(DRCN), pages 1–8, April 2014.

[38] Samuel Steffen, TimonGehr, Petar Tsankov, Laurent Vanbever, andMartin Vechev.

Probabilistic verification of network configurations. In Proceedings of ACM
SIGCOMM, page 750–764, 2020.

[39] Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya

Akella. Detecting network load violations for distributed control planes. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2020, page 974–988, 2020.

[40] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer

Rexford. Network architecture for joint failure recovery and traffic engineering.

SIGMETRICS Perform. Eval. Rev., 39(1):97–108, 2011.
[41] Daniel Turner, Kirill Levchenko, Alex C. Snoeren, and Stefan Savage. Califor-

nia fault lines: Understanding the causes and impact of network failures. In

Proceedings of the ACM SIGCOMM 2010 Conference, pages 315–326, 2010.
[42] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert

Greenberg. COPE: Traffic engineering in dynamic networks. In Proceedings of
ACM SIGCOMM, pages 99–110, 2006.

[43] Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi, Yin Zhang, Lili Qiu, and

Yang Richard Yang. R3: Resilient routing reconfiguration. In Proceedings of ACM
SIGCOMM, pages 291–302, 2010.

[44] Yiting Xia, Ying Zhang, Zhizhen Zhong, Guanqing Yan, Chiun Lin Lim, Satya-

jeet Singh Ahuja, Soshant Bali, Alexander Nikolaidis, Kimia Ghobadi, and Manya

Ghobadi. A social network under social distancing: Risk-Driven backbone man-

agement during COVID-19 and beyond. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages 217–231. USENIX Associa-

tion, April 2021.

[45] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng. Keep forwarding: Towards k-link

failure resilient routing. In Proceedings of IEEE INFOCOM, pages 1617–1625, April

2014.

[46] C. Zhang, Zihui Ge, J. Kurose, Y. Liu, and D. Towsley. Optimal routing with

multiple traffic matrices tradeoff between average and worst case performance.

In Network Protocols, 2005. ICNP 2005. 13th IEEE International Conference on, 2005.
[47] Han Zhang, Xingang Shi, Xia Yin, Jilong Wang, Zhiliang Wang, Yingya Guo, and

Tian Lan. Boosting bandwidth availability over inter-dc wan. In Proceedings
of the 17th International Conference on Emerging Networking EXperiments and
Technologies, page 297–312, New York, NY, USA, 2021. Association for Computing

Machinery.

[48] Yin Zhang, Zihui Ge, Albert Greenberg, andMatthew Roughan. Network anomog-

raphy. In Proceedings of the 5th ACM SIGCOMM Conference on Internet Measure-
ment, pages 30–30, 2005.

[49] Jiaqi Zheng, Hong Xu, Xiaojun Zhu, Guihai Chen, and Yanhui Geng. We’ve got

you covered: Failure recovery with backup tunnels in traffic engineering. In 2016
IEEE 24th International Conference on Network Protocols (ICNP), pages 1–10, 2016.

[50] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yiting Xia, and

Ying Zhang. Arrow: Restoration-aware traffic engineering. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 560–579, New York,

NY, USA, 2021.

APPENDIX
A. Supporting materials for §2 and §3
Equivalence of minimizing ScenLoss, minimizing MLU and
maximumconcurrent flow formulations.ManyTE schemes [25,

43] optimize the utilization of the most congested link (Maximum

Link Utilization or MLU), or alternately,solve the maximum concur-

rent flow, and maximize the fraction 𝑧 (that we also refer to as scale

factor) of demand the network can handle. MinimizingMLU, ormax-

imizing 𝑧 is equivalent to minimizing ScenLoss (the maximum loss

across all pairs in a given scenario), since ScenLoss = max{0, 1 − 𝑧},
and ScenLoss = max{0, 1 − 1/MLU}.

Unlike existing TE schemes, Flexile ensures bandwidth
guarantees never degrade with additional links. Consider
Fig. 16, which is similar to the topology in Fig. 1, except that link

𝐵−𝐶 is removed. It is easy to verify that ScenBest always routes

1 unit of 𝑓1’s traffic on link 𝐴−𝐵 whenever the link is alive, and

likewise always routes 1 unit of 𝑓2’s traffic on link 𝐴−𝐶 whenever

that link is alive, thereby meeting the requirements of both flows.

Thus, while ScenBest meets flow requirements in Fig. 16, it cannot

meet requirements in Fig 1 which has an additional link. Flexile
prevents such anomalies since it ensures for any network that all

flows see a loss percentile that is as small as possible.

Fair allocation in each scenario may not translate to fair-
ness across scenarios.We show that if max-min scheme is used

for every scenario, it may not lead to fairness across scenarios while

Flexile can mitigate this effect. To see this, consider Fig 17, which

depicts a topology similar to Fig. 1, except that links are directional.

Notice that 𝑓1’s traffic can only be carried via link 𝐴−𝐵, while 𝑓2’s
traffic can be carried over two disjoint paths. Consider a require-

ment that 𝑓1 and 𝑓2 must each carry 1 unit of traffic 99% of the time.

We make the following points:

• The network can meet the bandwidth objectives of both flows

by always routing 𝑓1 along 𝐴−𝐵 and 𝑓2 along 𝐴−𝐶 respectively

whenever the appropriate link is alive.

•With max-min, 𝑓1 cannot meet the target. This follows from

the fact that (i) 𝑓1 can only be carried on 𝐴−𝐵 which is alive 99%

of the time; and (ii) there are some scenarios where 𝐴−𝐵 is alive,

yet max min only supports 0.5 units of 𝑓1 (e.g., the scenario shown

in Fig 17(b)). In contrast, 𝑓2 meets the target with max-min. This is

because whenever𝐴−𝐶 is alive (which occurs with 99% probability),

max-min routes 1 unit of 𝑓2 on 𝐴−𝐶 (since it is the only flow that

can be carried on 𝐴−𝐶). Note that this includes a scenario such as

the one shown in Fig 17(a) where no 𝑓1 traffic can be carried.

• Flexile can however meet the target for both flows 99% of

the time by prioritizing critical flows. For instance, the scenario

shown in Fig 17(b) is critical for 𝑓1 but not 𝑓2, and hence Flexile will
prioritize 𝑓1.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

A

B

C

Capacity: 1, failure probability = 0.01

1.0

f1: A->B needs 1 unit of traffic with prob. = 0.99
f2: A->C needs 1 unit of traffic with prob. = 0.99

1.0

Figure 16: ScenBest can meet objectives in
above topology but not in Fig.1 which has
an additional link.

A

B

C 0.5

0.5

A

B

C

1.0

Capacity: 1, failure probability = 0.01

f1: A->B needs 1 unit of traffic with prob. = 0.99
f2: A->C needs 1 unit of traffic with prob. = 0.99

(a) (b)
Figure 17: Example topology to illustrate unfairness with max-min across scenar-
ios. While the network can meet the 99% requirement for both flows, max-min
meets the requirements for 𝑓2 but not 𝑓1.

B. Supporing materials for §4
Intuition behind decomposition strategy. We present some

high-level intuition for the inner workings of the decomposition

approach.

First, we show that the optimal objective value for the inner

problem (16) is convex in 𝑧. This follows from the fact that if, for all

𝑖 , (𝑥𝑖 , 𝑙𝑖 , 𝛼𝑖) minimizes

∑
𝑘 𝛼𝑘𝑤𝑘 in (16) and yields Penalty(𝑧𝑖) when

𝑧 = 𝑧𝑖 , then for some multipliers 𝜆𝑖 ≥ 0 such that

∑
𝑖 𝜆𝑖 = 1, the

solution

∑
𝑖 𝜆𝑖 (𝑥𝑖 , 𝑙𝑖 , 𝛼𝑖) is feasible to (16) when 𝑧 =

∑
𝑖 𝜆𝑖𝑧

𝑖
, and the

corresponding objective value is

∑
𝑖 𝜆𝑖Penalty(𝑧𝑖). This shows that

Penalty(𝑧𝑖) is no more than

∑
𝑖 𝜆𝑖Penalty(𝑧𝑖). Therefore, the inner

problem (16) is convex in 𝑧. This property of linear programming

problems is well-known; see, for example, Section 6.5 in [30].

The dual form of (16) provides a cut of PercLoss(z) because its
feasible region does not depend on 𝑧). The decomposition algo-

rithm essentially searches for the minimizer of Penalty(z) itera-
tively. Although the exact shape of Penalty(z)’s is unknown at any

point in the algorithm, solving (16) gives us one point on the func-

tion Penalty(z). Moreover, the dual form of (16) provides a cut of

Penalty(z). Thus, we can derive an underestimation of Penalty(z)
by evaluating it at various 𝑧. Each cut is a lower bound of func-

tion Penalty(z), and the pointwise maximum of these cuts is an

underestimate of Penalty(z). Then, we can find the current esti-

mated minimizer of the estimated function. Solving (16) at the

estimated minimizer gives a new cut and a more accurate estimate

of Penalty(z). The process converges in finite time with an optimal

solution. To understand why, consider that the inner problem is

always feasible with (𝑥, 𝑙, 𝛼) = (0, 1, 1) and bounded between 0 and

1. If we use an extreme point of the dual feasible region to generate

a cut (as is the case using dual simplex algorithm), in finitely many

iterations, a cut is developed for each extreme point, and we have

an accurate representation of PercLoss(z).
Explaining cut constraints in detail. Suppose we get a dual

solution of (𝑆𝑞), and the dual variables of (10), (11), (17) and (18)

are𝑤𝑘 𝑓 𝑞 , 𝑜𝑘𝑓 𝑞 , 𝑣𝑘𝑖𝑞 and 𝑢𝑒𝑞 respectively. Then, solving (𝑆𝑞) results

in the following cuts which are added to the master problem in the

subsequent iteration.

𝑔𝑞 (𝑧 ·𝑞) =
∑︁

𝑘,𝑓 ∈𝐹𝑘
(𝑧𝑓 𝑞 − 1)𝑤𝑘 𝑓 𝑞 +

∑︁
𝑘,𝑓 ∈𝐹𝑘

𝑜𝑘𝑓 𝑞

+
∑︁

𝑘,𝑖,𝑓 ∈𝐹𝑘 ,𝑝𝑟 (𝑓)=𝑖
𝑣𝑘𝑖𝑞𝑑𝑓 +

∑︁
𝑒

𝑢𝑒𝑞𝑐𝑒𝑚𝑒𝑞 (21)

As explained in §4.2, our reformulation ensures a common dual

solution space for all decomposed subproblems. Thus, the dual

solution 𝑤𝑘 𝑓 𝑞 , 𝑜𝑘𝑓 𝑞 , 𝑣𝑘𝑖𝑞 and 𝑢𝑒𝑞 of (𝑆𝑞) is also a dual solution

of (𝑆𝑞′) for any 𝑞
′ ∈ 𝑄 . So we can construct the following cut to

constraint critical flows in scenario 𝑞′ without solving (𝑆𝑞′).

𝑔
𝑞

𝑞′ (𝑧 ·𝑞′) =
∑︁

𝑘,𝑓 ∈𝐹𝑘
(𝑧𝑓 𝑞′ − 1)𝑤𝑘𝑓 𝑞 +

∑︁
𝑘,𝑓 ∈𝐹𝑘

𝑜𝑘 𝑓 𝑞

+
∑︁

𝑘,𝑖,𝑓 ∈𝐹𝑘 ,𝑝𝑟 (𝑓)=𝑖
𝑣𝑘𝑖𝑞𝑑𝑓 +

∑︁
𝑒

𝑢𝑒𝑞𝑐𝑒𝑚𝑒𝑞′ (22)

Ensure better stability. We avoid oscillations in our algorithm

by adding the following constraint in (M) to limit the hamming

distance between current 𝑧 variable and 𝑧 variable achieved from

last iteration. ∑︁
𝑘∈𝐾,𝑓 ∈𝐹𝑘 ,𝑞∈𝑄

|𝑧𝑓 𝑞 − 𝑧′𝑓 𝑞 | ≤ 𝐿𝑖𝑚𝑖𝑡 . (23)

Here, 𝑧′ is the 𝑧 variable achieved from last iteration and 𝐿𝑖𝑚𝑖𝑡 is

the maximal hamming distance we allow. Another benefit of con-

straining 𝑧’s change over iterations is that more scenarios will have

the same critical flows as in the last iteration. So the subproblem

(𝑆𝑞) will stay unchanged for these scenarios and does not need to be

solved again. The Hamming distance constraint can be relaxed to

prevent the solution from getting stuck in a local minima. However,

we did not encounter this situation in our empirical evaluations.

Generating many cuts by solving a few subproblems. Our
reformulation of (𝑆𝑞) ensures that in (𝑆𝑞) only the RHS varies for

different 𝑞, and, so, all (𝑆𝑞) share the same dual solution space. Thus,

by solving only each (𝑆𝑞) optimally, not only do we get a cut 𝑔𝑞 (𝑧 ·𝑞)
for scenario 𝑞, but also cuts 𝑔

𝑞

𝑞′ (𝑧 ·𝑞′) for other scenarios 𝑞
′ ∈ 𝑄 . As

a result, solving a few subproblems can give us many cuts.

Capacity augmentation to meet flow percentile require-
ments.To generalize Flexile to performminimum-cost capacity aug-

mentation for percentile metric, wemay require that, for each𝑘 ∈ 𝐾 ,
PercLoss𝑘 is constrained to be below a specified value and minimize∑
𝑒 𝑤𝑒𝛿𝑒 , where 𝛿𝑒 is the added capacity to link 𝑒 , which changes

the RHS of (6) to 𝑐𝑒 + 𝛿𝑒 , and 𝑤𝑒 is the per-unit cost of adding

capacity. (If there is a fixed-cost, we can include it by introducing a

binary variable 𝑎𝑒 which takes value 1 if link 𝑒 is augmented, and

add

∑
𝑒 𝑓𝑒𝑎𝑒 to the cost. To ensure fixed-cost is charged with any

augmentation, we add upper-bounding constraints 0 ≤ 𝛿𝑒 ≤ 𝑢𝑒𝑎𝑒 ,

Flexile: Meeting bandwidth objectives almost always CoNEXT ’22, December 6–9, 2022, Roma, Italy

where 𝑢𝑒 is an upper bound on the augmentation.) The decomposi-

tion strategy of §4.2 generalizes to this setting where 𝑐𝑒 is replaced

with 𝑐𝑒 + 𝛿𝑒 in (21) and this cut now describes a cut of Penalty in

the (𝑧, 𝛿) space.

C. Supporing materials for §5
Formulations for CVaR-based schemes The following formu-

lation, Cvar-Flow-Ad, minimizes the maximum conditional value

at-risk across all flows. It allows the routing strategy to depend on

each scenario.

min

𝑥,𝑡,𝜃,𝛼,𝑠
𝜃

s.t. 𝜃 ≥ 𝜃 𝑓 ∀𝑓 ∈ 𝐹 (24)

𝜃 𝑓 ≥ 𝛼 𝑓 +
1

1 − 𝛽
∑︁
𝑞∈𝑄

𝑝𝑞𝑠𝑓 𝑞 ∀𝑓 ∈ 𝐹 (25)

𝛼 𝑓 + 𝑠𝑓 𝑞 ≥ 𝑙𝑓 𝑞 ∀𝑓 ∈ 𝐹, 𝑞 ∈ 𝑄 (26)

𝑠𝑓 𝑞 ≥ 0 ∀𝑓 ∈ 𝐹, 𝑞 ∈ 𝑄 (27)

(5), (6)

Here, 𝑙𝑓 𝑞 is the loss for flow 𝑓 in scenario 𝑞, 𝜃 𝑓 models the

conditional value-at-risk for flow 𝑓 , and 𝜃 models max𝑓 𝜃 𝑓 .

The following formulation, CVar-Flow-St, is derived from CVar-

Flow-Ad by requiring that the routing strategy is the same across

all scenarios, i.e., we add the requirement that 𝑥𝑡𝑞 = 𝑥𝑡 for all 𝑞.

More concretely, we obtain:

min

𝑥,𝑡,𝜃,𝛼,𝑠
𝜃

s.t. 𝜃 ≥ 𝜃𝑎 ∀𝑓 ∈ 𝐹 (28)

𝜃 𝑓 ≥ 𝛼 𝑓 +
1

1 − 𝛽
∑︁
𝑞∈𝑄

𝑝𝑞𝑠𝑓 𝑞 ∀𝑓 ∈ 𝐹 (29)

𝛼 𝑓 + 𝑠𝑓 𝑞 ≥ 𝑙𝑓 𝑞 ∀𝑓 ∈ 𝐹, 𝑞 ∈ 𝑄 (30)

𝑠𝑓 𝑞 ≥ 0 ∀𝑓 ∈ 𝐹, 𝑞 ∈ 𝑄 (31)∑︁
𝑝𝑟 (𝑓)=𝑖

(1 − 𝑙𝑓 𝑞)𝑑𝑓 ≤
∑︁

𝑡 ∈𝑅 (𝑖)
𝑥𝑡𝑦𝑡𝑞 ∀𝑖 ∈ 𝑃, 𝑞 ∈ 𝑄 (32)∑︁

𝑒∈𝑡
𝑥𝑡 ≤ 𝑐𝑒 ∀𝑒 ∈ 𝐸 (33)

𝑥𝑡 ≥ 0 ∀𝑖 ∈ 𝑃 (34)

Proof of Proposition 1. Let 𝛼𝑞 denote the maximum loss across

all flows in scenario 𝑞, i.e., 𝛼𝑞 is the optimal value of 𝑆𝑞 with 𝑧𝑓 𝑞 = 1

for all 𝑓 . Let𝑄 ′ be any minimal subset of𝑄 such that

∑
𝑞′∈𝑄 ′ 𝑝𝑞′ ≥

𝛽 and for 𝑞′ ∈ 𝑄 ′ and 𝑞 ∉ 𝑄 ′, 𝛼𝑞 ≥ 𝛼𝑞′ . Then, we define 𝑣 =

max𝑞′∈𝑄 ′ 𝛼𝑞′ , which is the 𝛽th percentile of (𝛼𝑞)𝑞∈𝑄 . In our first

step of the algorithm, we set 𝑧𝑓 𝑞′ = 1 for all 𝑓 and 𝑞′ ∈ 𝑄 ′. By
definition,

∑
𝑞∈𝑄 ′ 𝑝𝑞𝑧𝑎𝑞 ≥ 𝛽 . In particular, for each flow 𝑓 and

𝑞 ∈ 𝑄 ′, 𝑙𝑓 𝑞 ≤ 𝑣 . Therefore, for each 𝑓 , the 𝛽th percentile of 𝑙𝑓 𝑞 ≤ 𝑣 .
So, our performance guarantee, which is the maximum across all 𝑓

of the 𝛽th percentile of 𝑙𝑓 𝑞 is no more than 𝑣 . To see that TeaVar

guarantees a performance no better than 𝑣 , let 𝑥𝑡 be the routing

strategy obtained using TeaVar and observe that the maximum

loss across all flows using 𝑥𝑡 for a scenario 𝑞 is at least 𝛼𝑞 . Let

𝑟 = (1 − 𝛽) −∑𝑞′∉𝑄 ′ 𝑝𝑞 , 𝑞 ∈ 𝑄 ′ be any scenario with 𝛼𝑞 = 𝑣 , and

𝑠 be the corresponding optimal 𝑠𝑞 (in TeaVar formulation). Then,

Topology # nodes # edges Topology # nodes # edges

B4 12 19 Janet Backbone 29 45

IBM 17 23 Highwinds 16 29

ATT 25 56 BTNorthAmerica 36 76

Quest 19 30 CRLNetwork 32 37

Tinet 48 84 Darkstrand 28 31

Sprint 10 17 Integra 23 32

GEANT 32 50 Xspedius 33 47

Xeex 22 32 InternetMCI 18 32

CWIX 21 26 Deltacom 103 151

Digex 31 35 IIJ 27 55

Table 2: Topologies used in evaluation.

observe that 𝑟 ≤ 𝑝𝑞 and 𝛼 + 𝑠 ≥ 𝛼𝑞 = 𝑣 , where the inequality

follows because there is at least one flow with a loss of 𝛼𝑞 since

𝛼𝑞 is the minimum possible loss attainable across all flows for

scenario 𝑞. Then, we have that TeaVar objective is no less than 𝛼 +
1

1−𝛽
∑
𝑞′∈𝑄 ′ 𝑝𝑞′𝑠𝑞′ + 1

1−𝛽 𝑟𝑠 ≥
1

1−𝛽
(∑
𝑞′∈𝑄 ′ 𝑝𝑞′𝛼𝑞′ + 𝑟𝑣

)
≥ 𝑣 , where

the first inequality is because

∑
𝑞′∈𝑄 ′ 𝑝𝑞′ + 𝑟 = 1 − 𝛽 , 𝛼 + 𝑠𝑞′ ≥ 𝛼𝑞′ ,

and𝛼+𝑠 ≥ 𝑣 . The second inequality is because∑𝑞′∈𝑄 ′ 𝑝𝑞′+𝑟 = 1−𝛽
and 𝛼𝑞′ ≥ 𝑣 for 𝑞′ ∈ 𝑄 ′. Moreover, ScenBest guarantees a loss of 𝑣 ,

since the guarantee for flows in any scenario 𝑞′ not in 𝑄 ′ is 𝛼𝑞′ . It
follows that the guarantee from the initial step of our algorithm is

at least as good as the one obtained from either ScenBest or TeaVar.

□
Proof of Proposition 2. Refer to Fig. 1. Consider a strategy

that distributes 𝑓𝐴𝐵 equally over disjoint paths 𝐴−𝐵 and 𝐴−𝐶−𝐵.
Similarly, 𝑓𝐴𝐶 is distributed equally along the disjoint paths 𝐴−𝐶
and 𝐴−𝐵−𝐶 . Since each flow is carried along two disjoint paths, it

follows that in all scenarios where at most one link fails, none of

the flows experiences a loss of more than 50%. Since single and no

link failures cover 0.999702 probability, it follows that the CVar99%
for this strategy is no more than 0.5 ∗ 0.9702+ (1− 0.9702) = 0.5149.

Observe that the strategy described above is non-adaptive and

the best adaptive strategy cannot perform worse. In other words,

optimal CVar99% is no more than 0.5149. Now, consider the case

where link 𝐴−𝐶 fails. Since CVar99% is the maximum expected loss

across all flows and all sets of scenarios that occur with 1% or more

probability, it follows that 0.5149 ≥ CVar99% ≥ 1 −min{𝑓𝐴𝐵, 𝑓𝐴𝐶 }
which implies that min{𝑓𝐴𝐵, 𝑓𝐴𝐶 } ≥ 0.4851. Since, both 𝑓𝐴𝐵 and

𝑓𝐴𝐶 must use link𝐴−𝐵, we havemin{𝑓𝐴𝐵, 𝑓𝐴𝐶 } +max{𝑓𝐴𝐵, 𝑓𝐴𝐶 } =
𝑓𝐴𝐵 + 𝑓𝐴𝐶 ≤ 1. It follows that max{𝑓𝐴𝐵, 𝑓𝐴𝐶 } ≤ 0.5149 which

implies that both the flows experience at least 48.51% loss in this

scenario. A similar argument shows that both flows experience at

least 48.51% loss also in the scenario where link 𝐴−𝐶 fails. Since

the two scenarios cover a probability of 1.9602%, it follows that

PercLoss1% ≥ 0.4851. The alternate non-adaptive strategy that sends

𝑓𝐴𝐵 along link 𝐴−𝐵 and 𝑓𝐴𝐶 along link 𝐴−𝐶 experiences no loss at

the 99
th
percentile since each of the links does not fail with 0.99

probability. □

D. Supporing materials for §6
Topologies summary Our evaluation is done using 20 topologies

obtained from [24] and [25]. The number of nodes and the number

of edges of each topology is shown in Table 2.

Sensitivity to scale factor. By default, in our experiments of

two class traffic, we scale low priority traffic by a factor of 2 (see

CoNEXT ’22, December 6–9, 2022, Roma, Italy Chuan Jiang, Zixuan Li, Sanjay Rao, and Mohit Tawarmalani

M
ax

im
um

 S
ca

le

0.0

0.5

1.0

1.5

2.0

2.5

IBM Sprint CWIX Quest

Flexile SWAN-Maxmin

Figure 18: Flexile can achieve higher traffic scale.

§6). We next study the impact of scaling low priority traffic by

different factors. Fig. 18 shows the maximum factor we can scale

without incurring any 99%tile loss using Flexile and SWAN-Maxmin

on different topologies. We can see that Flexile can support much

higher scale factor than SWAN-Maxmin.

	Abstract
	1 Introduction
	2 Background
	3 Flexile Motivation
	4 Flexile design
	4.1 Optimizing flow loss percentiles
	4.2 Efficiently finding critical scenarios
	4.3 Critical flow-aware online allocation
	4.4 Generalizations

	5 Flexile Vs. Teavar
	6 Evaluations
	6.1 Comparisons on emulation testbed
	6.2 Comparisons across topologies
	6.3 Does Flexile increase loss in scenarios?
	6.4 Evaluating other aspects of Flexile

	7 Related work
	8 Conclusions
	9 acknowledgements
	References

