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Abstract

1. Matrix population models are frequently built and used by ecologists to analyse

demography and elucidate the processes driving population growth or decline.
Life Table Response Experiments (LTREs) are comparative analyses that de-
compose the realized difference or variance in population growth rate (4) into
contributions from the differences or variances in the vital rates (i.e. the matrix
elements). Since their introduction, LTREs have been based on approximations

and have not included biologically relevant interaction terms.

. We used the functional analysis of variance framework to derive an exact LTRE

method, which calculates the exact response of A to the difference or variance
in a given vital rate, for all interactions among vital rates—including higher-order
interactions neglected by the classical methods. We used the publicly available
COMADRE and COMPADRE databases to perform a meta-analysis comparing
the results of exact and classical LTRE methods. We analysed 186 and 1487

LTREs for animal and plant matrix population models, respectively.

. We found that the classical methods often had small errors, but that very high er-

rors were possible. Overall error was related to the difference or variance in the ma-
trices being analysed, consistent with the Taylor series basis of the classical method.
Neglected interaction terms accounted for most of the errors in fixed design LTRE,
highlighting the importance of two-way interaction terms. For random design LTRE,
errors in the contribution terms present in both classical and exact methods were
comparable to errors due to neglected interaction terms. In most examples we ana-
lysed, evaluating exact contributions up to three-way interaction terms was suf-

ficient for interpreting 90% or more of the difference or variance in A.

. Relative error, previously used to evaluate the accuracy of classical LTREs, is

not a reliable metric of how closely the classical and exact methods agree. Error
compensation between estimated contribution terms and neglected contribu-
tion terms can lead to low relative error despite faulty biological interpretation.
Trade-offs or negative covariances among matrix elements can lead to high rela-

tive error despite accurate biological interpretation. Exact LTRE provides reliable
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1 | INTRODUCTION

Matrix population models are widely used for demographic studies
of both plant and animal populations, including for conservation and
management. These models relate population structure (e.g. age,
size or developmental stage) to vital rates and population growth,
yet are simple to build from field-collected census data. Once built,
the models can be used to calculate a variety of population- and
individual-level metrics. The asymptotic population growth rate (4),
given by the largest eigenvalue of the population projection matrix,
is of particular interest; others include the stable population struc-
ture, the expected number of offspring over an individual's lifespan
(Ry), and the expected time between generations.

In addition to studying the dynamics of a single population, ma-
trix population models are valuable tools for comparative demogra-
phy. They enable us to investigate the processes driving variation in
populations across locations, treatments, or points in time. An im-
portant analysis for comparative demography is Life Table Response
Experiment, or “LTRE,” which relates observed variation in vital rates
to observed variation in a population-level metric. A direct com-
parison of the vital rates between populations can be misleading
because a large difference in a given vital rate will not necessarily
produce a large difference at the population level (e.g. 1). On the
other hand, LTREs account for both the sensitivity of A to the vital
rates and the observed changes in those same rates, including the
covariation among different vital rates (Caswell, 1989). For example,
the A of a matrix population model might be highly sensitive to seed
survival in the seedbank, but this may explain little of the observed
variation in A if seed survival showed very limited variation in the
populations being analysed. Because of their grounding in observa-
tions that account for covariation among vital rates, the results of
LTRE analysis can be used to understand the processes driving pop-
ulation dynamics (e.g. Caswell, 1996; Fréville & Silvertown, 2005).
This can be particularly important for understanding human im-
pacts on endangered, declining, or harvested species (e.g. Bruna &
Oli, 2005; Oro & Doak, 2020).

Fundamentally, an LTRE analysis decomposes the difference or
variance in an observed population outcome into the contributions
from a set of parameters or vital rates that vary across two or more
matrices. The population growth rate () is most commonly used
and will be our focus, but any population outcome (e.g. Ry, expected
lifespan, generation time) can be analysed with these methods. We
define the contribution of a given vital rate or matrix element to be
the observed effect on A when all else is held constant. For example,
the contribution of the observed difference in juvenile survival is the

and accurate biological interpretation, and the R package exactLTRE makes the

exact method accessible to ecologists.

demography, life history, Life Table Response Experiment, matrix population model, population

difference in A that results from allowing only juvenile survival to dif-
fer between two matrices of interest, with all other matrix elements
held at appropriate baseline (or standard-of-reference) values. The
vital rates are rarely independent from one another (e.g. trade-offs
between survival and reproductive output), and A tends to be a
strongly non-linear function of the matrix elements, so we would
expect interactions between/among vital rates to contribute to ob-
served changes in A. These interaction terms may have important
biological meaning. For instance, higher adult reproductive output
will have a stronger effect on A when juvenile survival is high. There
also may be important interactions among adult survival and fertil-
ity, juvenile survival and first-year reproductive output, and growth
of multiple pre-reproductive size classes (because of the effect on
time to first reproduction).

LTREs were invented and popularized for ecology by
Caswell (1989, 1996). The analyses as formulated therein depend
on Taylor series expansions to approximate 4 as a function of the
matrix elements (Caswell, 1989).1 As such, these approximations do
not consider the effects on A of many of the possible interactions
among matrix elements, but instead provide estimated contributions
from a limited range of terms (main effects and, sometimes, two-way
interaction terms). Thus, classical LTRE methods are both incomplete
(they omit potentially important higher-order interactions) and ap-
proximate (the terms that they do include are based on approxima-
tions that may not be accurate across the range of matrices being
analysed).

Functional analysis of variance (FANOVA; Ellner et al., 2019;
Hooker, 2007) provides a theoretical framework for designing an
exact version of LTRE in which the contributions of each matrix
element, and their interactions, are obtained directly from the dif-
ference or variance in A caused by each combination of matrix ele-
ments, accounting for lower-order terms. Specifically, the response
of interest is decomposed as a sum,

AA or Var(A) = ZMain effect of matrix entry q;;
ij
+ Zlnteraction between a; and a;,
ijilm
+ 2 Three—way interaction among a;;,d,,dp,, -

ij,k,m,n,0

+ Z k —way interactions

+Total contribution of all interactions of order (k+1) or higher.
1)

Below, we suggest k = 2 or 3, because 4-way and higher-order
interactions are hard to interpret. The methods we present enables
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the calculation of all higher-order interactions for any set of matri-
ces, though custom code may be required for large matrices. Our R
package is limited by the maximum allowable vector size in R (cur-
rently 2 x 109), so it can calculate all possible interaction terms for
matrices of up to 30 matrix elements that vary, and can calculate
terms up to k = 3 for up to 2289 matrix elements that vary.? Relative
to classical LTRE, Equation (1) includes interaction terms (up to some
order) that classical LTRE omits (which may be its main benefit for
some users), and it is exact in that each term is computed exactly
(up to the precision of computer arithmetic) and their sum is exactly
equal to A or Var(A).

In what follows, we focus on the two most flexible and frequently
used “classical” LTRE analyses: one-way fixed design and random
design. There are additional forms of LTRE that are appropriate for
different experimental settings or data sets. For example, regres-
sion LTRE analyzes a continuous curve giving the response of 4 to
a continuous treatment variable x; it uses the chain rule to exactly
decompose di /dx in terms of the sensitivity of each vital rate to the
treatment, and the sensitivity of A to each vital rate (Caswell, 2001,
pp. 273-274). Factorial LTRE accounts for interactions among multi-
ple treatments, using a first-order Taylor approximation with respect
to matrix entries (Caswell, 1989, 2001, p. 263). The fANOVA-based
methods that we present here can be applied to both regression and
factorial LTRE designs, but we do not focus on those applications
in this paper. Appendix E provides a “recipe” for how our methods
and R package could be used to calculate an fANOVA-based exact
factorial design LTRE.

The next three sections of this paper present methods and
theory for exact LTRE. We first review the classical methods
(Section 2). We then introduce the formulas and algorithms for
performing exact LTRE (Section 3) and an R package that contains
functions for both classical and exact LTRE methods (Section 3.2
and Table S1). After that, we present a meta-analysis of LTREs
from a wide array of matrix population models for both plants and
animals. We first characterized the scale and distribution of er-
rors in classical LTRE methods, and then focused on three primary
research questions: (1) How do errors arise in classical LTRE and
how do they affect interpretation?, (2) Is the relative error a use-
ful measure for evaluating the accuracy of classical LTRE?, and (3)
How important are higher-order terms in LTRE analyses? Section 4
describes the design of this meta-analysis and how we defined and
identified errors. We then present the results and several instruc-
tive examples of LTREs with errors (Section 5) and discuss the im-
plications of our meta-analysis for the use of exact LTRE methods
(Section 6).

As we show, the errors from the approximate classical methods
can be large and can change our interpretation of population dynam-
ics. Second-order terms matter a lot, and higher-order terms can also
be quite important. Although the classical methods work well when
there are small differences between the matrices being examined,
the relative error is an unreliable measure of accuracy. Meanwhile,
the exact method will always yield the true contributions, and our R
package makes evaluation of exact LTRE easy.

2 | BACKGROUND: CLASSICAL LTRE
CALCULATIONS

Many of the analytical techniques for matrix population models
rely on the existence of a unique real-valued eigenvalue that is
larger than all others, and which has corresponding right and left
eigenvectors that have real non-negative values. The Perron-
Frobenius Theorem guarantees the existence of such an eigen-
value for non-negative matrices that are irreducible and primitive
(Caswell, 2001).

The calculations presented here were introduced in Caswell (1989)
and Brault and Caswell (1993). We closely follow the notation in the
Caswell (2001) monograph (p. 261 and 269). Terminology for the ma-

trices used in LTRE analyses is summarized in Table 1.

2.1 | One-way fixed design

A fixed design LTRE is used when the particular treatment levels or
conditions that a population faced are themselves of interest. A one-
way fixed design LTRE decomposes the difference in A between a pair
of matrices, one identified as the reference matrix and the other as cor-
responding to treatment level “m”. The difference in A can be attributed
to the differences in the elements of the matrices according to

Ad =AM _ 30 z (a?.'") —a" )) 94 2)

i ij -
i oa;

A"
where aj is the (i,j) entry of a population projection matrix, and ;—:U is
given by the (i,)) entry of the sensitivity matrix evaluated at the pivot
matrix A", The term involving a; is called the contribution of the (i, )
matrix entry to AA.

In principle, the pivot matrix A" can be any matrix between the
reference and treatment matrices, but it is generally recommended

to choose A" equal to the mean matrix,

Al =A= % (A™ + A7), (3)

to maximize the expected accuracy of the linear approximation for 4 as
a function of matrix entries (see Appendix A.1 for the technical details).
The sensitivity matrix, the derivatives of 4 with respect to each entry
of A, is calculated from the right eigenvector (w) and left eigenvector
(v) corresponding to 4,
VWT
v-w'

S=
2.2 | Random design
A random design LTRE decomposes the variance in A into contri-

butions from the variance and covariance in the matrix elements,

according to

Var(l) ~ Z ZC(U,kI)SijSkh (5)

ij kil
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TABLE 1 Definitions of matrices used in Life Table Response
Experiment (LTRE) calculations

Matrix name Analyses used in Meaning

Treatment matrix Classical fixed The two matrices being

A™ and design compared in a classical
Reference one-way fixed design
matrix A

Classical fixed The matrix at which
design, sensitivities are evaluated.
classical We introduce this term
random design here, consistent with
terminology for the point
about which a Taylor
series is expanded

Pivot matrix A’

Classical fixed Calculated by taking the mean

Mean matrix A

design, of each matrix element
classical across all matrices in a set
random design, of interest

exact fixed

design, exact
random design

Observed
matrices

The set of matrices for which
the difference or variance
is being decomposed

Classical random
design, exact
fixed design,
exact random
design

Baseline matrix Exact fixed design, The matrix from which we

exact random evaluate how changes

design in matrix elements and
their interactions affect
lambda, in the functional
analysis of variance-based
exact LTRE method

where C(ij, kl) is the covariance of a; and ay;, and the sensitivities s; and
s, are the (i,j) and (k, ) entries of the sensitivity matrix S evaluated at
the pivot matrix. For random design LTRE, the pivot matrix is always
chosen to be the mean matrix across the observed matrices for which
variance is being decomposed.

3 | EXACT LTRE, FROM fANOVA
PRINCIPLES

Like the classical methods, a fixed design exact LTRE decomposes
the difference in A, while a random design exact LTRE decomposes
the variance in A.

As stated previously, LTRE decomposes the difference or vari-
ance in a population-level outcome (such as 1) into contributions
from different vital rates and their interactions. From here on, “vital
rates” will refer to elements of the projection matrix, and the func-
tions in our R package also operate at the level of projection matrix
elements. However, we note that the methods we present can be
applied to underlying parameters that define matrix elements. For
example, if a matrix element a4 5 is computed as the product of sur-
vival probability s; and growth probability g, while as 5 is analo-
gously computed as s3gs 5, our methods can be applied to sz, 343, §53

and other parameters defining other matrix entries, rather than to
the matrix entries themselves. The methods can also be applied to
models other than matrix population models.

We carry out exact LTRE analyses using fANOVA (Ellner
et al., 2019; Hooker, 2007; see Appendix A.4 for a detailed general
introduction to fANOVA) to decompose the observed difference or
variance in A into contributions from each individual matrix element,
and from their interactions. We start with a set of observed matrices
and select a reasonable baseline matrix. In random design LTRE, the
baseline is always the mean matrix, that is, the matrix composed of
mean values for each matrix element across all observed matrices
used in the calculation. In fixed design LTRE, we recommend using
a “control,” “undisturbed,” or some other edge case population as
the baseline; if such a matrix is unavailable, then we recommend
using the mean matrix (K in Equation 3: see Section 3.1 for more
discussion of choosing a baseline in fixed design exact LTRE). We
then change matrix elements from the baseline one by one, and in
all possible combinations, and calculate the difference (fixed design)
or variance (random design) in A under each hypothetical situation.
fANOVA then gives us a general recipe for converting the set of
responses to changes in matrix elements into a set of main effects
of each element, and a set of higher-order interactions, whose sum
equals the effect of simultaneously changing all matrix elements
from the baseline to the observed values.

For example, suppose that we have several projection matri-
ces for a population with two stages, using a pre-breeding census.
Juveniles (stage 1) are approximately 1year old, and adults (stage
2) include all individuals that are approximately 2years old or older.
New juveniles are produced by reproductive activity of adults. The
projection matrix takes the form

wheref, is the per-capita reproduction by adults, s, is the probability of
ajuvenile surviving to the adult stage, and s, is the probability of adults
surviving for another year.

Everything that follows in this section will be written for fixed
design LTRE, a decomposition of the difference in 4 between two
matrices. For a random design LTRE, A should be replaced with
var(4). The example below is a directional analysis, meaning that
one of the two observed projection matrices is used as the baseline
for perturbations; an alternative symmetric analysis is explained in
Section 3.1 and Appendix A.5.

Specifically, suppose that we have projection matrices for two
laboratory populations, one a control population (represented by
A9) and the other exposed to a pollutant (A®) that has a negative

effect on all non-zero matrix elements,

A© = 0 3 AP — 0 1
0.6 0.9
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The control population is growing (4 = 1.87)% and the pollutant-
exposed population is declining (1 = 0.89). The difference in 1 due to
the pollutant is — 0.98. How much of this difference comes from the
three individual effects of decreasing one matrix element, and how
much from interactions among those decreases?

To calculate these contributions using our fANOVA approach, we
construct hypothetical (or “counterfactual”) matrices where only some
of the matrix elements differ from the baseline. Since we are inter-
ested in understanding how the pollutant caused changes from the
control conditions, we use the control matrix as the baseline matrix.

Thus, we calculate the main effect of the change in juvenile survival by

0 3 0 3
¢ =A =4 —A = —0.296. (6)
035 0.9 0.6 09

The first matrix above (with s, = 0.35) does not correspond to
any real population. But it tells us exactly what would have happened
to Aif only juvenile survival differed between treatment and control.

Likewise, the main effect of changes in adult fertility is what
would have happened to A if only adult fertility differed in the treat-
ment population,

0 1 0 3
o= Ada = ) .y
06 0.9

= -0519. (7)

To evaluate the interaction between adult fertility and juvenile
survival, we need to know the effect of changing both,

0 1 0 3
AASrfa = -2 = -0672. (8)
0.35 0.9 0.6 0.9

In this case, the interaction term cf does not equal AA%fe.
Rather, the interaction of juvenile survival and adult fertility is de-
fined as the difference between their combined effect, and the sum

of their individual main effects,

e = AASfa — (¢ + cl) = 0.143. (9)

The interaction is positive, which has an intuitive biological interpre-
tation. The intuition is that a decrease in adult fertility f, has a bigger ef-
fect when juvenile survival s, is high, than it does when juvenile survival
is low. The lower s, in the treatment population thus reduces the nega-
tive impact of the lower f,, hence the interaction term is positive (i.e. the
interaction turns a negative number into a smaller negative number). We
could also interpret the interaction by saying that a change in juvenile
survival has a bigger effect on A when adult fertility is high than it does
when adult fertility is low—both ways of looking at it are equally valid.

This biological interpretation illustrates an important general
point: interaction between juvenile survival and adult fertility is
a genuine component of the change in A between treatment and

control. A decomposition of the change that only included main
effects—such as the classical LTRE—is biologically incomplete be-
cause meaningful components of the change are omitted.

The main effect of s, and the other pairwise interactions are cal-
culated following the same pattern. Finally, the contribution from
the three-way interaction of juvenile survival, adult survival, and
adult fecundity, is

cSfota = AJSHarSe — (€ + cfo + ¢ + o 4 ¢ 4 cfe%e) = — 0.005.

That is, the three-way interaction is the effect of changing all three
matrix entries from control to treatment values, above and beyond
the sum of the three main effects and the three pairwise interactions.

This pattern extends to higher orders of interaction. In
Appendix A.5, we present a fully worked symmetric fixed design
exact LTRE with three varying parameters, with all terms and matri-
ces in fANOVA notation.

To handle situations where any number of matrix elements can
vary, a general operator matrix can be defined that calculates all main
effects and interaction terms from the vector of A values for the
different counterfactual matrices. In Appendix B, we present these
calculations using standard notation from fANOVA, and provide a
proof of the form of our general operator matrix. In Appendix C, we
present a method, developed for the analysis of epistasis (Poelwijk
et al., 2016), that is computationally efficient when all possible in-
teraction terms are to be calculated, but requires more memory and
is therefore limited to a smaller number of varying matrix entries.
Our R package uses either the epistasis form of the operator matrix
or our general form, depending on the requested interaction order
and the number of matrix elements that vary.

It is often useful to calculate a subset of contributions up to a
chosen interaction order, for two reasons. First the number of inter-
action terms increases very rapidly with the number of varying ma-
trix elements. Second, contributions from the interactions of three
or more matrix elements become difficult to interpret biologically.
However, when interactions above a chosen order are not calculated,
itis important to ask whether the omitted terms are too important to
neglect. Because exact LTRE defines a set of contributions that sum
to the exact difference or variance in 4, the discrepancy between
the sum of computed contributions and the observed difference or
variance, equals the net effect of all uncomputed interactions. Users
should check that this discrepancy is small (i.e. less than 5%-10% of
the total difference). A small discrepancy is not a guarantee that all
higher-order interactions are small, because terms of opposite sign
can cancel each other out. But a large discrepancy implies that some

higher-order interactions are too large to neglect.

3.1 | Directional versus symmetric fixed
design LTRE

The classical method for one-way fixed design LTRE, as presented
here and Caswell (2001), is a symmetric analysis in the following
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sense (see Appendix A.1 for more details). Because it is recom-
mended (for good reasons) that eigenvalue sensitivities are calcu-
lated at a pivot matrix equal to the average of the treatment and
reference matrices (A), interchanging the treatment matrix A™ with
the reference matrix A” changes the sign of all contributions but
does not affect their magnitude. The relative importance of con-
tributions from different matrix entries remains exactly the same.
Neither matrix has a privileged role in determining the relative im-
portance of different contributions. The analysis thus provides an
answer to the question, why are the treatment and reference matrices
different from each other? This is appropriate when none of the treat-
ment matrices has a special status as a “control” (or undisturbed, or
some other edge case such as lowest elevation, etc.) while the others
represent different levels of some treatment. For example, if a fixed
design LTRE is used to compare two nearby lakes without any ex-
perimental manipulations (Figure 1), neither one should play a privi-
leged role and a symmetric analysis is appropriate. Either lake can be
chosen as reference with the other lake as treatment, and the choice
is immaterial so long as the Ais used as the pivot matrix.

But experimental designs are often not symmetric in this
sense, instead comparing a “control” with one or more treatment
populations (e.g. applications of various pesticides). In such cases
there is a meaningful difference between the populations, with
the control population privileged as the standard of reference to
which the treatment population is compared. The research ques-
tion then becomes why is the treatment population different from
the control? More precisely, how do each of the changes in matrix
entries from control value a(”
to AM — 207

Unlike the classical method, the fANOVA method for fixed de-

sign LTRE has the option of being formulated as either symmetric

to treatment value a,fj'") contribute

(why are these populations different from each other?) or asymmet-
ric and directional (why is the treatment different from the control)?
This is determined by the choice of baseline matrix for the analysis.
If the mean matrix A is used as the baseline for fANOVA, the analysis
is symmetric. Each term in the decomposition measures the effect
on the A1 between the two observed matrices when some entries in
each matrix take their true (observed) values, rather than the aver-
age value. As in the classical LTRE, this implies that interchanging the
two observed population matrices only affects the sign of contribu-
tions, not their absolute magnitude. The two observed matrices play

Pest|0|de 1 Peshcnde 2 Lake Site 2
A

Symmetric

Directional Directional h
fixed effects fixed effects fIXeET??ffEects
LTRE LTRE

4

Lake Site 1

FIGURE 1 Example scenarios calling for directional versus
symmetric fixed effects Life Table Response Experiment (LTRE)
analyses.

Control

equivalent roles with neither being privileged. For a fully-worked
example of a symmetric exact LTRE, see Appendix A.5.

However, if one of the observed matrices is used as the baseline
in the ANOVA decomposition, the results are directional. Each term
in the decomposition measures the A relative to the baseline matrix
that results from taking some elements of the baseline matrix, and
replacing them with the corresponding elements of the observed
treatment matrix (see the worked directional example in Section 3
above). Each term in the fANOVA decomposition can therefore be
interpreted as reflecting one (or some) of the ways that the treat-
ment affected the reference population. The fANOVA exact LTRE
thus has the added flexibility of allowing the user to choose between
a symmetric analysis comparing two populations with neither play-
ing a privileged role and a directional analysis with one population
identified as the baseline standard of reference.

In our meta-analysis comparing the exact LTRE methods with the
classical methods (Section 4), we always used the symmetric fixed
design for the exact LTREs. However, we also determined whether
the LTREs we identified were more appropriate for symmetric or di-
rectional analysis. We classified studies as directional if they com-
pared a control with a treatment, an unharvested or unperturbed
population with a human-impacted population, or if the comparison
was between the center and an edge of the population range. In ex-
amples from animal species, 56 of the 97 (58%) fixed design LTREs
were appropriate for directional analysis. For the data on plant spe-
cies, we found 230 out of 645 (36%) fixed design LTREs were appro-

priate for directional analysis.

3.2 | The R package exacTLTRE

The R package exacTLTRE contains the functions required to evaluate
LTREs on an arbitrary set of matrices (Table S1). It includes functions
for both the approximate and exact methods as presented here. The
functions include options to select random or fixed design, and to
select the maximum interaction order to be calculated for exact
LTRE. For fixed design exact LTRE, the user can specify whether the
analysis will be directional or symmetric.

The exacTLTRE R package also includes functions to calculate the
fundamental matrix, net reproductive rate (Ry), lifespan, generation
time, and the variance-covariance matrix for a set of population
projection matrices (Table S1). The package documentation includes
examples of usage, and our code for analysing the large number of
LTREs from the databases of animal and plant matrix population
models is available in Supplemental Materials (Hernandez et al.
2022).

4 | METHODS: META-ANALYSIS
COMPARING EXACT AND CLASSICAL LTRE

Exact LTRE is preferable to the classical methods in principle,
but ecologists may wonder if switching is necessary in practice.
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Additionally, they might wonder if past classical analyses, by them-
selves or other researchers, need to be re-visited. Because the clas-
sical approximate methods are familiar and have seen wide use in
ecology, we were interested in characterizing the scale of errors in
the classical methods and the prevalence of qualitative (interpreta-
tion) errors. It would also be valuable if we could identify situations
where the classical methods are reliably accurate, to help in evaluat-
ing previous LTRE analyses.

The exact and classical LTREs each generate a vector of con-
tributions. The exact LTRE extends to a user-selected order in
Equation (1) (here we use k = 3) and uses exact evaluation of each
term (c) by the methods explained in Section 3. The general formulas
for the terms are derived and explained in Appendices A.4 and A.5.
The vector c includes the final term in Equation (1), the sum of all
interactions of order k + 1 or higher that are not computed individu-
ally, so the sum of all terms in c is exactly equal to the response, A1
or Var(4). The classical LTRE extends to first (fixed design) or second
(random design) order, and uses approximate evaluations of terms (¢)
as explained above in Section 2.

We define the total or overall error (E) of the classical LTRE as
the distance between the vectors of contributions estimated by the

classical and exact methods
E=llc-Cly, (10)

where € has been extended to the same length as ¢ by adding a zero
value for each of the higher-order terms that are missing from €. The
1-norm of a vector is the sum of the absolute values of the vector
entries.

The overall error E comes from the combined effect of approx-
imation error (the discrepancy between approximate and exact
values of terms that are present in both methods) and truncation
error (error due to the higher-order terms not included in the
classical method). The approximation errors represent the mis-
match between a Taylor expansion approach to LTRE that relies
on calculating sensitivity % and the direct calculation of how
each observed change in g;; caused changes to 4. We compute the
approximation and truncation errors by taking the 1-norm of the
corresponding portions of (¢ - ¢).

We also wanted to investigate whether these errors show any
patterns with other characteristics of the matrices or species life his-
tory. As covariates, we considered the distance between or among
matrices, difference or standard deviation in 4, the value of 1 at the
mean matrix, the matrix dimension, the net reproductive output (Ry),
lifespan, and generation time. The distance between or among ma-

trices is calculated as

(1) (2) z
Dbetween = Z | aii - a,'j | or Damong = Var(aij)' (11)
i ij

Lifespan and R, are calculated using the fundamental matrix,
which gives the expected number of timesteps that an individual
spends in each stage/age/size class. We used the Bienvenu and
Legendre (2015) definition of generation time as the average time

between two birth events in an individual's ancestral genealogy, cal-

culated as

_ w
vIFw’

(12)

where v and w are the left and right eigenvectors, respectively, of the
projection matrix A, and F is a matrix containing all the fertility transi-
tions and zeros elsewhere.

In the past, researchers have often evaluated how well the classi-
cal method performed by calculating the relative error of the sum of
contributions compared to the observed difference or variance in A

YEDNG)

Erel = T (13)

where ¢; is one of the contribution terms in the classical (approximate)
LTRE. In the case of random design LTRE, A4 would be replaced by
var(A). This relative error has the advantage that it can be calculated
from only the results of the classical method. We used the Pearson cor-
relation coefficient to evaluate how well the relative error (Equation 13)

predicts the overall error of the contribution vector (Equation 10).

4.1 | Selection of matrices for the meta-analysis

We used the COMADRE and COMPADRE databases (Salguero-
Gomez et al., 2015, 2016) to compile a list of all LTREs (fixed or
random design) that could reasonably be conducted. These data-
bases archive published matrix population models in a form that is
easily accessed from R, with a variety of accompanying metadata.
COMADRE contains matrix population models on animals, and
COMPADRE contains those on plants. We will present the results
from LTREs on animal and plant species separately, because there
are a few notable differences between these groups. There are far
more published matrix population models on plants than on animals.
Plant life cycles are more likely to be size-classified and to include
shrinkage, while animals are typically age- or stage-classified with-
out a possibility of regression. Plant models are also more likely to
include multiple types of offspring, such as reproduction into the
seed bank and reproduction directly to seedlings.

Matrices were chosen from COMADRE version 4.21.1.0 (release
date 25 January 2021) and COMPADRE version 6.21.1.0 (release
date 25 January 2021). During our screening and analysis the da-
tabases had ongoing edits for quality control, so the analyses pre-
sented here were performed using COMADRE version 4.21.8.0
(release date 20 August 2021) and COMPADRE version 6.21.8.0
(release date 20 August 2021).*

We first performed automated screening to identify potential
LTRE analyses. We excluded matrices with missing values, and re-
quired matrices to be ergodic, primitive, and irreducible. We only
considered studies with at least 2 matrices from the same species.
We removed studies that did not measure fertility transitions, or
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that did not observe fertility in any matrix (where each matrix cor-
responds to one time period, site or treatment) for the study pop-
ulations. Furthermore, we removed studies that observed clonal
reproduction of plants, unless the publication noted that clonal re-
production was rare. Because such studies often do not have a con-
sistent definition of an individual (i.e. genets vs. ramets), estimates
of population growth rate from the resulting matrix model are less
reliable.

These automated screening steps (given in the file comadre-
compadre_inventory.R) generated spreadsheets of matrices that
could potentially be included in LTRE analyses, which were then
manually screened. We eliminated matrices that represented post-
hoc manipulations of collected data rather than unique measure-
ments (e.g. a hypothetical scenario where fertility is reduced by
10% and adult survival increased by 10%), matrices where not all
life stages were measured (for example, where seed viability was
measured in 1year and applied to multiple years), as well as matrices
with errors in the definition of the life cycle (Kendall et al., 2019).°
We identified all possible LTRE decompositions for the set of matri-
ces from each study and species. This could include multiple fixed
and random design comparisons, across time, space, or experimental
treatments. In the plant matrices, we encountered issues with cal-
culating lifespan and generation time due to apparent immortality,
arising from very high survival (including retrogression) in the old-
est/largest class. Among the 2181 plant population matrices that we
selected for LTRE analyses, there were 478 (22%) where the final
column sum of the survival matrix U was above 0.99. We decided to
adjust these survival matrices by scaling down the final column so
that the survival probability matched a more reasonable estimate
from the same study and species. More details on these corrections
are in Appendix D.

We set the maximum interaction order for these analyses to
three for the exact LTRE, meaning that we calculate contributions
from all main effects, two-way interactions, and three-way interac-
tions, and the sum of all higher-order (4+ order) interactions is calcu-
lated as one additional term.

5 | RESULTS: COMPARISON OF
APPROXIMATE AND exact LTRE

We calculated 186 LTREs for animal species, including 97 fixed de-
sign and 89 random design LTREs. These came from 76 species/study
combinations (note that a single species could be in multiple studies,
and a single study could include multiple species). The fixed design
LTREs included 52 species, and the random design LTREs included
67. For fixed design, the majority (72%) of the approximate analyses
had an overall error of less than 0.05 (Figure 2a).° The highest error
for fixed design LTREs on animals was 4.63, in a decomposition of
the effect of pollutants on a laboratory population of Caenorhabditis
elegans. Likewise for the random design LTREs for animal species,
the overall error of the classical method was below 0.01 for most
of the analyses (79%; Figure 3a).” The three largest errors for the

random design LTREs on animals were 0.80 and 0.33 for two tem-
poral decompositions on woolly sculpin (Clinocottus analis) and 0.23
for a comparison among treatment levels for the same model of C.
elegans that had high errors in fixed design LTRE.

For plant species, we calculated 1487 LTREs, 643 fixed design
and 844 random design. In total there were 209 species/studies
combinations. Of these species, 136 were represented in the fixed
design LTREs and 205 were represented in the random design
LTREs. This sample size was much larger than for animals, and we ob-
served more large errors (Figures 2 and 3), and a larger range in the
covariates (Figures S1 and S2). The maximum overall error observed
in fixed design LTREs on plants was 2.27 in a herbivory exclusion ex-
periment for Tidestrém's lupine (Lupinus tidestromii). In fixed design
LTREs on plants, only 41% of the decompositions we examined had
an error of 0.05 or less. Likewise for classical LTREs on plants, 41%
of the LTREs examined had an overall error under 0.01. The plant
random design LTRE with the highest error was 5.9 in a temporal
comparison for the upright prairie coneflower (Ratibida columnifera).

Truncation errors seemed to be driving overall error in fixed de-
sign LTRE, while approximation and truncation errors played similar
roles in driving overall error in random design LTRE. This suggests
that second-order terms, which are present in random design LTRE
but not in fixed design, are very important. In fixed design LTREs,
we found that the distribution of overall errors more closely fol-
lows the distribution of truncation rather than approximation errors
(Figure 2). The correlation between overall and truncation error
(0.937 and 0.966 for animals and plants, respectively; Figure S3) is
stronger than that between overall and approximation error (0.861
and 0.269 for animals and plants, respectively). On the other hand,
in random design LTREs, the distributions of overall, approximation,
and truncation errors look more similar to one another, without an
indication that one kind of error is playing a stronger role than the
other. Likewise, the correlation between approximation and trun-
cation errors in plant LTREs is stronger and much closer to the 1:1
line in random design (R?2 = 0.387; Figure 3h) than in fixed design
(R2 = 0.124; Figure 2h).

We found that our reduced decomposition (up to 3-way inter-
action terms) performed very well, with the exception of random
design LTREs on plant populations. We calculated the proportion of
the true difference or variance in A for all the LTREs that had at least
4 matrix elements that varied. We specified that higher-order terms
were too large to neglect if the 4+ term accounted for 10% or more
of the total difference or variance in . We found that higher-order
terms could not be neglected in 3% of fixed design LTREs on animals,
6% of fixed design LTREs on plants, and 4% of random design LTREs
on animals. However, the 4 + term contributed more than 10% of the
variance in 4 for 32% of the random design LTREs in plants. In fact,
the 4+ term contributed more than 50% of the variance in 13% of
the random design LTREs in plants.

We tested a number of covariates that could be predictive of
large errors, and the only relationships that seem notable are those
that arise from the Taylor expansion. For fixed design LTREs in
both plants and animals (Figures S1 and S4), the overall error was
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positively correlated with both the distance between matrices
(r =0.526,0.380 for animals, plants) and the absolute value of the
difference in A (r = 0.537,319 for animals, plants). Similarly, in ran-
dom design LTREs (Figures S2 and S5), the overall error was posi-
tively correlated with both the sum of variances of matrix elements
(r =0.514,0.361 for animals, plants) and the standard deviation of 1
(r =0.651,0.524 for animals, plants). These are all, essentially, mea-
sures of how far apart the matrices being tested are—when the ma-
trices being tested are far apart, the Taylor expansion will lead to
greater errors. For random design LTREs in plants, there was also
a negative relationship between generation time and overall error
(Figure S2G, r = — 0.400). In very long-lived and late-maturing (so
presumably slow-growing) species, the time scale of variation in
matrix elements may be much longer than the observation period,
such that species with long generation times are more likely to have
matrices that are very close together. In accordance with this, we
observed a negative relationship between generation time and the
sum of variances in matrix elements (Figure S2H, r = — 0.252).
Importantly, the relative error cannot be considered a reliable
measure of how well the classical method has performed. There is
a weak correlation between the relative error (calculated only using
results from the classical method) and our overall error (E) that mea-
sures the distance between the classical and exact methods. The
Pearson correlation coefficient ranges from 0.02 to 0.48 (Figure 4). In

Truncation Error

the random design LTREs on animal projection matrices, there does
seem to be a weak relationship. However, with the much larger sam-
ple size in plant projection matrices, that relationship does not hold.

The first reason that relative error can be a poor proxy for accu-
racy of the classical method is compensation between approximation
and truncation errors, that is, some effects of interactions are instead
attributed to main effects. This is generally what will happen in a clas-
sical fixed design LTRE when the pivot matrix is selected such that
the main effect terms sum exactly to the difference in A. In a fixed
design LTRE for the sand olive (Dodonaea angustifolia; Bekele, 2000),
the relative error was 2.2% (Figure 5). The largest contributions are
four first-order terms, two of which are underestimated by the classi-
cal method. In the exact LTRE, the larger first-order terms are offset
by negative interaction terms. The exact and classical (approximate)
LTREs give the same total effect A4, but do so for different reasons.
We saw a similar pattern in another fixed design LTRE for sand olive
(Figure S7) and one for Eisenia fetida (Figure S8).

The other reason that relative error can be a bad proxy is when
large positive and negative contributions from different matrix ele-
ments or interactions nearly cancel out, giving a small difference or
variance in A.This can result in a very large relative error in the overall
response, despite a small absolute error and uniformly small errors
in each of the contributions. This is seen in a fixed design LTRE for
ground squirrels (Spermophilus armatus, Oli et al., 2001), where the
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main effects almost entirely cancelled one another out, as did the
contributions of two-way interactions (Figure S9). The sum of main
effect (order 1) contributions was two orders of magnitude smaller
than the main effects themselves. As a result, despite close agree-
ment in interpretation between the classical and exact methods,
the relative error of the classical method is large (in fact, the sum of
approximate contributions has the opposite sign as A4). Similarly, in
a random design LTRE for garlic mustard (Alliaria petiolata), the ob-
served variance in Ais very tiny, and the relative error is nonsensically
high: 674,042% (Figure S10). Most of the main-effect contributions
are positive, while most of the two-way interaction contributions are
negative. The classical method overestimates the largest first-order
term and underestimates the two largest second-order terms, and
the neglected third-order terms are as large as some of the first- and
second-order terms. But again, relative error in the overall response
to the variation in all matrix elements is not informative about how
well the classical method estimates the individual contributions.

6 | DISCUSSION

We have introduced an exact version of LTREs, a widely used de-
mographic analysis tool. The classical methods in use for several
decades rely on Taylor series approximations that require lower

Truncation Error

computational effort, at the cost of approximating lower-order
terms and neglecting higher-order interactions, which can be bio-
logically meaningful.

We found that errors arising in the classical method were usually
small (Figures 2 and 3). But the error distributions had long tails—
the error is sometimes large. The overall error was most strongly
related to the distance between/among the matrices being analysed:
the Taylor series is less accurate when the matrices being compared
are very different (Figures S1, S2, S4, and S5). In fixed design LTREs,
the overall error was driven strongly by truncation errors, because
the classical one-way fixed design LTRE evaluates only main effects
(Figure 2; Figure S3). Inrandom design LTREs, truncation and approx-
imation errors contributed more evenly to overall error (Figure 3;
Figure Sé). This difference between fixed and random design LTREs
underscores the importance of the two-way interaction terms.

While the two- and three-way interaction terms are likely to
make important contributions to changes in 4, the 4+ order term
tended to be very small. In most cases that we investigated, calcu-
lating the exact contributions of main effects, two-way interactions,
and three-way interactions was sufficient for decomposing 90%
or more of the total effects on A. This does not guarantee that the
higher-order terms are small, but it suggests that they are either
small or cancel one another out. However, we note that many of the
random design LTREs on plants (32% of the studies with 4 matrix
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elements or more) had a large discrepancy between the sum of con-
tributions up to three-way interactions and the observed variance in
A (i.e. the 4 + term was >10% of var(1)).

In past LTRE applications using the classical methods, relative
error was sometimes (but not universally) reported as a measure
of how well the approximation performed. Our results suggest that
relative error is not a reliable measure. When there is compensa-
tion between approximation and truncation errors, important (but
neglected) interaction effects may be subsumed into the approxi-
mate contributions, causing the sum of approximate contributions
to be very close to the observed difference or variance—thus the
classical method will have a small relative error but incorrect inter-
pretation. Alternatively, small relative term-by-term errors can cause
a very large relative error when terms are large but trade off against
one another, such that the true difference or variance of A is very
small—in this case, the classical method will have a large relative
error but generally correct interpretation.

Ultimately, interpretation is more important than quantitative
errors, because the goal of LTRE is to understand how observed
variation in vital rates drives population dynamics via effects on A
(and, for that matter, effects on the structure of the stable popula-
tion). The results of LTRE analyses can also inform conservation and
management (Bruna & Oli, 2005; Oli et al., 2001; Oro & Doak, 2020),
by providing a more mechanistic understanding of the effects of
interventions or variation on population dynamics. Therefore, the
numerical contribution of changes in each vital rate to A may be
less important than understanding the relative roles of all of the

Rel. Error of X(contributions)

vital rates or stage classes. Exact LTRE removes any need to decide
whether the classical LTRE results are reliable.

Another important way that classical LTRE can lead to faulty
interpretation is when a directional experiment is analysed using a
symmetric LTRE. In our meta-analysis we compared the results from
the approximate fixed design method with a symmetric exact fixed
design, because the standard application of the classical method
is symmetric (Equation 2). However, we found that 58% and 36%
of the published fixed design LTREs that we identified for animal
and plant species, respectively, were directional in design. Using the
exact directional rather than symmetric analysis will change the re-
sulting contributions and is likely to change the interpretation of the
difference in conditions. For example, in the ground squirrel LTRE
discussed earlier, the two matrices being compared were before and
after an experimental manipulation of population density, so a direc-
tional fixed design LTRE would be more appropriate. In Figure S11,
we show that the contributions of the terms differ substantially be-
tween directional and symmetric LTRE. When the analysis matched
the experimental design, we see important positive contributions
from second-year fertility and survival, and important negative con-
tributions from first-year survival and the two-way interaction of
adult survival and first-year fertility.

We have applied LTREs at the level of matrix elements in our
meta-analysis and R package, in line with how the classical methods
are typically introduced (Caswell, 1989, 2001). There are two primary
reasons for this. First, the matrices archived in the COM(P)ADRE
databases record simply the numerical values of matrix elements,
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FIGURE 5 Comparison of the classical and exact methods for
fixed design Life Table Response Experiment (LTRE) in Dodonaea
angustifolia, comparing a protected open habitat patch and a
disturbed slope habitat patch. (a) Comparison of the sum of terms
by order; X, is the sum of all main effects (first-order terms); £, is
the sum of all pairwise interactions (second order terms), and so
on; A for the classical method is given by the sum of all estimated
contributions. (b) Term-by-term comparison of the first-order terms
for the classical and exact methods. (c) Two-way and three-way
interaction terms which are present only in the exact LTRE. The
inset matrix shows the structure of the projection matrix, with
parameters corresponding to the labels in panels b and c. Note the
difference in scale between the three panels. The overall error of
the classical method was E = 1.09 and the relative error was 2.2%.

so significant effort would be required to look through the source
materials and formulate matrix elements as functions of lower-level
parameters. Secondly, analysis of lower-level parameters would ei-
ther require unique functions for each matrix model, or more sophis-
ticated functions utilizing symbolic programming of matrices based
on lower-level parameters. For our meta-analysis and for users who
are interested in performing LTRE at the level of matrix elements,
our code is sufficient. However, for matrices that can be formulated
in terms of underlying parameters, the decomposition can (and prob-
ably should) be carried out in terms of lower-level vital rates. This is
particularly important when considering fertility parameters, which
are not independent from adult survival in a post-breeding census

design. Our methods can certainly be used to perform a decomposi-
tion of contributions from lower-level vital rates and our R package
may provide some useful utilities for the calculation, but it would
require bespoke analysis code.

In conclusion, we suggest that exact LTRE methods be pre-
ferred for future calculations of one-way fixed design and random
design LTRE, because the exact methods allow direct calcula-
tion of the contributions of parameters and their interactions.
Although the classical methods may often lead to accurate biolog-
ical interpretation, the relative error of the classical LTRE method
is an unreliable predictor of accuracy and therefore is there is no
way to “check” the accuracy of the classical method. With the
introduction of the exacTLTRE package in R, together with exist-
ing tools for working with matrix population models (e.g. poPDEMO
and Race packages), the use of exact LTRE methods is straight-
forward and accessible. Given the utility of LTRE for management
and conservation, we should aim for interpretations of observed
population dynamics that are as accurate as possible. Future di-
rections of this work could include extensions to analyse effects
on other population metrics (e.g. generation time, R) in addition
to 4, finer partitioning of interaction terms in random design LTRE
into contributions from joint variation and from covariance (Ellner
et al., 2019), and extension of the exacTLTRE package to analyse
integral projection models (IPMs).
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ENDNOTES

1 We present much more detailed background information, including
the Taylor series expressions, in Appendix A.

2 We note that computation times can become quite long for matrices
with more than ~100 elements that vary and k = 3. Users should con-
sider what terms are of interest to them and what computational time
they are comfortable with. We found that an exact LTRE with k = 3took
only a few minutes on a good 2022 desktop computer for the maximum
size included in our meta-analysis: 59 matrix elements that vary.

w

This 4 value is high but not unrealistic for a laboratory population that
is well-fed and protected from predation and disease.

IS

The database corrections produced a few changes in matrix iden-
tification numbers. The identification numbers provided in the
Supplemental Data Files comadre_ltres_torun.csv and compadre_ltres_
torun.csv match the latter versions of the databases (i.e. the versions
of the databases that we used for calculations).

w

In the course of screening, we manually corrected matrices from
three animal species where the publication represented the life cycle
correctly but there had been a mistake in digitization: Puma concolor,
Ursus americanus subsp. floridanus and Esox lucius. See exactLTRE_
LoadDatabases.R for details of these manual corrections.

o

The error E is in the same units as 4 or var(1), and is the sum of the abso-
lute value of differences between the results of the exact and classical
methods. To help with interpreting these error values, we have stated
the value of E for all of the figures for example LTRE comparisons
(Figure 5; Figures S7-510).

7 Note that, in general, values of var(1) and E in random design LTREs
tended to be much smaller than values of a1 and E in fixed design
LTREs.
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factorial design; and (F) Supplemental Figures and Tables.
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