
Journal of Scientific Computing (2020) 82:52
https://doi.org/10.1007/s10915-020-01152-w

Kernel Based High Order “Explicit” Unconditionally Stable
Scheme for Nonlinear Degenerate Advection-Diffusion
Equations

Andrew Christlieb1,2 ·Wei Guo3 · Yan Jiang4 · Hyoseon Yang1

Received: 22 May 2019 / Accepted: 1 February 2020 / Published online: 12 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, we present a novel numerical scheme for solving a class of nonlinear degenerate
parabolic equations with non-smooth solutions. The proposed method relies on a special
kernel based formulation of the solutions found in our early work on the method of lines
transpose and successive convolution. In such a framework, a high order weighted essentially
non-oscillatory methodology and a nonlinear filter are further employed to avoid spurious
oscillations. High order accuracy in time is realized by using the high order explicit strong-
stability-preserving (SSP) Runge-Kutta method. Moreover, theoretical investigations of the
kernel based formulation combined with an explicit SSP method indicate that the combined
scheme is unconditionally stable and up to third order accuracy. Evaluation of the kernel
based approach is done with a fast O(N ) summation algorithm. The new method allows for
much larger time step evolution compared with other explicit schemes with the same order
accuracy, leading to remarkable computational savings.
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1 Introduction

In this paper, we are interested in numerically solving the following nonlinear, possibly
degenerate, parabolic equation

ut + f (u)x = g(u)xx , x ∈ [a, b], (1.1)

where g′(u) ≥ 0 and g′(u) can vanish for some values of u. Such an equation arises in a
wide range of applications, e.g., collisional transport models in plasmas, radiative transport,
porous medium flow, etc. The Eq. (1.1) has similar properties to hyperbolic conservation
laws, including possible existence of discontinuous solutions and sharp fronts, and a finite
speed of propagation of wave fronts. When considering models of the form of Eq. (1.1), it is
necessary to design a numerical scheme capable of capturing these features.

A variety of schemes have been developed in the literature, e.g., finite volume schemes [8],
finite difference schemes [36], local discontinuous Galerkin methods [46], kinetic schemes
[3], and relaxation schemes [16], among others. Most of these methods are in the method
of lines (MOL) framework, meaning that the spatial variable is first discretized, then the
numerical solution is updated in time by coupling a suitable time integrator. The most com-
monly used time evolution methods are the strong-stability-preserving Runge-Kutta (SSP
RK) schemes and SSP multi-step schemes [24,25,42]. SSP methods preserve the strong sta-
bility in some desired norm of an appropriate spatial discretization in conjunction with the
forward Euler time stepping, thus preventing spurious oscillations near spatial discontinu-
ities. However, it is well known that an explicit time discretization does have a restriction
on the time step in order to maintain stability. For example, for advection problems, main-
taining stability usually requires the time step �t ∝ �x , where �x is the spatial mesh size.
Solving diffusion problems with explicit time stepping methods introduces a more stringent
restriction �t ∝ �x2 for stability. Hence, using an explicit SSP method for Eq. (1.1) means
that satisfying the stability condition demands �t ∝ �x2. There are two other approaches
one can utilize in these situations including Implicit-Explicit (IMEX) methods and fully
implicit methods [5,28]. Both of these approaches are effective in the sense that they permit
larger time steps without stability issue. Except for the backwards Euler method and the
second order fully implicit method proposed by Ketcheson [32], this class of methods often
requires that �t ∝ �x to maintain non-oscillatory numerical solutions near discontinuities
or steep gradients that arise from the Eq. (1.1). Meanwhile, in this approach, one needs to
invert matrices or nonlinear operators resulting from the spatial discretization at each time
step. This typically involves the use of some form of iterative solvers, Krylov or multi-grid
methods. In practice, full matrix inversions for problems in the form of Eq. (1.1) may become
prohibitively complicated and costly, especially when memory is extremely limited.

An alternative approach to solving (1.1) is the method of lines transpose (MOLT ), also
known as Rothe’s method or transverse method of lines [13,39,40] in the literature. In the
MOLT framework, the discretization is first carried out for the temporal variable, resulting in a
boundary value problem (BVP) at discrete time levels. Then a preferred BVP solver is applied
to advance the numerical solution. A notable advantage of the MOLT approach is that an
implicit method, e.g. the backward Euler method, can be used in the first step, and then in the
second step, the operator of the BVP, e.g, the modified Helmholtz operator for solving wave
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equations, is inverted analytically using an integral formulation based on a Green’s/kernel
function. Because the method utilizes direct inversion of the operator, the MOLT approach
eliminates the need to solve linear systems at each time step.Moreover,manywell-established
fast convolution algorithms can be readily used in reducing the computational complexity of
the scheme fromO(N 2) toO(N )with N being the number of discrete mesh points [7,15,26].
In [12,14], a novel technique known as successive convolution (or resolvent expansions) is
developed and analyzed for the wave equation and the Allen-Cahn equation. The resulting
scheme is unconditionally stable, but would be rarely applied on general nonlinear problems
possibly due to the complex formulation. Additionally, the MOLT framework has been
studied to solve the linear and non-linear heat equation [11,12,30,33], Maxwell’s equations
[17] as well as others. Recently, an implicit high order SSP RK method and a robust WENO
integral formulation have been incorporated into the MOLT framework so that the method
can be applied to the advection equation and the Vlasov equation [20]. With the help of
the SSP property and the WENO based quadrature, the method is able to take large time
steps, and at the same time, generate a solution being free of oscillations. Unfortunately, this
scheme as designed does not directly extend to problems in the form of Eq. (1.1).

In this paper, we will propose a novel numerical scheme following the MOLT philosophy
of employing a kernel based approach for degenerate parabolic equations of the form (1.1).
Themajor distinction between the newly proposed scheme and our previous work [20], is that
we employ explicit time steppingmethods that are traditionally used in theMOL formulation.
In particular, we start with explicit SSP RK methods for the time discretization, which can
be easily applied to nonlinear problems. Following the idea of solving the BVP as in the
MOLT framework, we transform the spatial derivatives into a kernel based representation.
This approach makes the method effectively “implicit” at each stage of the explicit SSP
RK method, but without the need to invert any matrices. The robust WENO methodology
in conjunction with a new nonlinear filter is adopted with the aim to effectively capture
sharp gradients of the solution without producing spurious oscillations. In addition, a special
parameter β is introduced in the scheme formulation and we are able to make this scheme
A-stable through a careful choice of β. The unconditional stability property of the scheme can
be established accordingly. In summary, the proposed scheme we have designed for solving
Eq. (1.1) is robust, high order accurate (up to third order), matrix free, unconditionally stable,
and efficient.

The paper is organized as follows. In Sect. 2, we represent the spatial derivatives as infinite
series, in which each term relies on a special kernel based formulation of the solution. In
Sect. 3, the approximation accuracy of the associated partial sum is studied. We introduce
the WENO-based quadrature as well as the nonlinear filter for evaluation of the partial sum
in Sect. 4. The fully-discrete scheme for solving (1.1) is designed by coupling the partial sum
formulation with the high order explicit SSP RK method, and a stability analysis for linear
problems is established in Sect. 5. This method can be extended directly to high dimensional
problems, and we discuss the details of the two-dimensional formulation in Sect. 6. We
present several numerical tests in Sect. 7 to verify the performance of the proposed scheme.
Finally, we conclude with a brief discussion in Sect. 8.

2 Representation of Differential Operators

In this section, we will review a class of representations of the first spatial derivative ∂x and
the second spatial derivative ∂xx from the nonlinear convection-diffusion Eq. (1.1). Such
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representations are based on a successive convolution of the underlying kernel functions and
will serve as the key building block of the proposed scheme. Below, we first introduce the
operator L and the associated operator D. Then, both differential operators ∂x and ∂xx are
represented by infinite series ofD. Such an idea was first used in [14] for designing anMOLT

A-stable scheme for solving linear wave equations. If the underlying equation is written in
the form of ut + f (u)x = (ν(u)ux )x , we then first convert it into the original form (1.1), i.e.
ut + f (u)x = g(u)xx , where the function g(u) satisfies g′(u) = ν(u).

2.1 The Second Order Derivative @xx

We consider the following differential operator:

L0 = I − 1

α2 ∂xx , x ∈ [a, b], (2.1)

whereI is the identity operator andα > 0 is a constant. Supposew(x) satisfies the differential
equation

L0[w, α](x) = w(x) − 1

α2 wxx (x) = v(x), (2.2)

where v(x) is a given function. Then, by analytically inverting operator L0, we can obtain
the explicit expression of w(x) as

w(x) = L−1
0 [v, α](x) = I 0[v, α](x) + A0e

−α(x−a) + B0e
−α(b−x), (2.3)

where

I 0[v, α](x) := α

2

∫ b

a
e−α|x−y|v(y)dy, (2.4)

and A0 and B0 are constants determined by the boundary conditions, see [13]. For example,
for periodic boundary conditions, i.e., w(a) = w(b) and wx (a) = wx (b), we have

A0 = I 0[v, α](b)
1 − μ

and B0 = I 0[v, α](a)

1 − μ
, (2.5)

with μ = e−α(b−a).
We then define the operator D0 as

D0 = I − L−1
0 . (2.6)

Clearly, L0 = (I − D0)
−1. Moreover, by the definition (2.1), the second derivative can be

rewritten as

1

α2 ∂xx = I − L0 = L0(L−1
0 − I) = −D0(I − D0)

−1 = −
∞∑
p=1

D p
0 , (2.7)

where D p
0 is successively defined as D p

0 = D0[D p−1
0 ]. Hence, g(u)xx from (1.1) can be

represented as

g(u)xx = −α2
∞∑
p=1

D p
0 [g(u), α](x). (2.8)
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2.2 The First Derivative @x

Following a similar idea, we are able to deal with the first derivative ∂x as well. Note that,
when designing a numerical method for solving a hyperbolic conservation law

ut + f (u)x = 0, (2.9)

we have to consider the propagation direction of the wave solution to ensure stability of the
scheme. To this end, we introduce operators LL and LR and the associated operatorsDL and
DR to account for waves traveling in opposite directions:

LL = I + 1

α
∂x , DL = I − L−1

L ; (2.10)

LR = I − 1

α
∂x , DR = I − L−1

R , (2.11)

where x ∈ [a, b] and α > 0 is a constant.
Let us consider LL and DL first. Assume w(x) satisfies the differential equation

LL [w, α](x) = w(x) + 1

α
∂xw(x) = v(x),

where v(x) is a given function. As with L0, we can analytically invert LL as follows:

L−1
L [v, α](x) = I L [v, α](x) + ALe

−α(x−a), (2.12)

where

I L [v, α](x) = α

∫ x

a
e−α(x−y)v(y)dy, (2.13)

and the constant AL is determined by the boundary condition. For example, for periodic
boundary conditions, AL is taken as

AL = I L [v, α](b)
1 − μ

. (2.14)

Similar to 1
α2 ∂xx , we are able to represent 1

α
∂x using an infinite series of the operator DL

1

α
∂x = LL − I =

∞∑
p=1

D p
L , (2.15)

where DL is given in (2.10),

DL [v, α](x) = v(x) − α

∫ x

a
e−α(x−y)v(y)dy − ALe

−α(x−a).

Note that, the integral IL [v, α](x) only depends on the function values of v from the left
end point a to x . On the other hand, it is well-known that, for the hyperbolic conservation
law (2.9), the information of the solution propagates from left to right over time if the flux
function f (u) has a positive derivative, i.e., f ′(u) ≥ 0. Hence, it is reasonable to represent
f (u)x as

∂x f (u) = α

∞∑
p=1

D p
L [ f (u), α](x). (2.16)
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Similarly, when f ′(u) ≤ 0, we can represent f (u)x using the following infinite series of
DR :

∂x f (u) = −α

∞∑
p=1

D p
R[ f (u), α](x), (2.17)

where DR is given in (2.11) with

L−1
R [v, α](x) = I R[v, α](x) + BRe

−α(b−x), (2.18)

I R[v, α](x) = α

∫ b

x
e−α(y−x)v(y)dy, (2.19)

and BR is a constant determined by the boundary conditions. For example, for periodic
boundary conditions,

BR = I R[v, α](a)

1 − μ
. (2.20)

In the case of f (u) not being a monotone function of u, we employ the following global
“flux splitting” strategy:

f (u) = f +(u) + f −(u), (2.21)

with d f +(u)/du ≥ 0 and d f −(u)/du ≤ 0. We then use (2.16) to represent f +(u)x , and
(2.17) to represent f −(u)x . The most commonly used splitting strategy is the Lax-Friedrichs
splitting

f ±(u) = 1

2
( f (u) ± cu), with c = max

u
| f ′(u)|,

which has been widely used in the design of high order finite difference schemes for conser-
vation laws [44].

In summary,− f (u)x +g(u)xx can be represented as a linear combination of three infinite
series:

−αL

∞∑
p=1

D p
L [ f +(u), αL ] + αR

∞∑
p=1

D p
R[ f −(u), αR] − α2

0

∞∑
p=1

D p
0 [g(u), α0]. (2.22)

3 Approximation of Partial Sums

So far, we have shown that the derivatives ∂x and ∂xx can be represented as infinite series. In
numerical simulations, we have to truncate the series and only compute the corresponding
partial sum. In particular, (2.22) is approximated by the kth partial sum

− f (u)x + g(u)xx ≈ −αL

k∑
p=1

D p
L [ f +(u), αL ] + αR

k∑
p=1

D p
R[ f −(u), αR]

− α2
0

k∑
p=1

D p
0 [g(u), α0]. (3.1)

In this section, we will theoretically investigate the truncation error incurred. Below, we
restrict our attention to two special cases
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1. u is a smooth periodic function

u(a, t) = u(b, t), u p
x (a, t) = u p

x (b, t), p ≥ 1, t ≥ 0, (3.2)

2. u satisfies following special homogeneous condition

∂
p
x u(a, t) = 0, ∂

p
x u(b, t) = 0, p ≥ 1, t ≥ 0. (3.3)

Note that a function that is constant near the boundary satisfies such a condition.

We remark that (3.2) is a necessary smoothness assumption to attain high order accuracy
for the partial sum approximation. The extension to other boundary conditions is considered
in our future work.

3.1 Periodic Boundary Conditions

In the case of periodic boundary conditions (3.2), it is straightforward to require

D p
0 [g(u), α0](a) = D p

0 [g(u), α0](b),
D p

L [ f +(u), αL ](a) = D p
L [ f +(u), αL ](b),

D p
R[ f −(u), αR](a) = D p

R[ f −(u), αR](b), (3.4)

for p = 1, 2, 3, . . . , k. Consequently, we can obtain the coefficients A0, B0, AL , and BR

by (2.5), (2.14) and (2.20).
With the boundary treatments (3.4), we are able to establish the following theorem, which

provides error estimates when the infinite series (2.8), (2.16) and (2.17) are truncated by the
corresponding kth partial sum.

Theorem 3.1 Suppose v(x) is a periodic smooth function.

1. Consider the operator D0 with the boundary treatment D0(a) = D0(b), If v(x) ∈
C2k+2[a, b], then we have

‖∂xxv(x) + α2
k∑

p=1

D p
0 [v, α](x)‖∞ ≤ C

(
1

α

)2k

‖∂2k+2
x v(x)‖∞ (3.5)

where C is a constant only depending on k.
2. Consider the operator DL and DR with the boundary treatment DL(a) = DL(b) and

DR(a) = DR(b), respectively. If v(x) ∈ Ck+1[a, b], then we have

‖∂xv(x) − α

k∑
p=1

D p
L [v, α](x)‖∞ ≤ C

(
1

α

)k

‖∂k+1
x v‖∞, (3.6)

and

‖∂xv(x) + α

k∑
p=1

D p
R[v, α](x)‖∞ ≤ C

(
1

α

)k

‖∂k+1
x v‖∞, (3.7)

where C is a constant depending only on k.

To prove this theorem, we first introduce the following lemma regarding operator D∗,
where ∗ can be 0, L and R.

Lemma 3.2 Suppose v(x) is a periodic smooth function.
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1. For the operator D0 with the boundary treatment D0(a) = D0(b), we have

D0[v, α](x) = −
k∑

p=1

(
1

α

)2p

∂
2p
x v(x) −

(
1

α

)2k+2

L−1
0 [∂2k+2

x v, α](x). (3.8)

if v(x) ∈ C2k+2[a, b].
2. For the operatorsDL andDR with the boundary treatmentDL (a) = DL(b) andDR(a) =

DR(b), respectively, we have

DL [v, α](x) = −
k∑

p=1

(
− 1

α

)p

∂
p
x v(x) +

(
− 1

α

)k+1

L−1
L [∂k+1

x v, α](x), (3.9a)

DR[v, α](x) = −
k∑

p=1

(
1

α

)p

∂
p
x v(x) −

(
1

α

)k+1

L−1
R [∂k+1

x v, α](x), (3.9b)

if v(x) ∈ Ck+1[a, b].
The proof of the lemma heavily relies on integration by parts and is provided in the

appendix. Below, we prove Theorem 3.1.

Proof For brevity, we only show the details of the proof for case 1. Following a similar
argument, one can easily prove the case 2.

First, by repeating the proof of Lemma 3.2 with D0(a) = D0(b), we have the following
equality for any m with 0 ≤ m < k:

D0[∂2mx v, α](x) = −
k∑

p=m+1

(
1

α

)2(p−m)

∂
2p
x v(x) −

(
1

α

)2(k+1−m)

L−1
0 [∂2k+2

x v, α](x).

Meanwhile, it is easy to verify that ∂xxL−1
0 [v, α](x) = α2L−1

0 [v, α](x) − α2v(x) =
−α2D0[v, α](x). Therefore, we have ∂xxD0[v, α](x) = ∂xxv(x) + α2D0[v, α](x). Fur-
thermore, for 0 ≤ p ≤ k, there is a general form

∂
2p
x D0[v, α](x) =

p∑
m=1

α2(p−m)∂2mx v(x) + α2pD0[v, α](x)

= −
k∑

m=p+1

(
1

α

)2(m−p)

∂2mx v(x) −
(
1

α

)2(k+1−p)

L−1
0 [∂2k+2

x v, α](x).

Next, let us consider the operatorD2
0 = D0[D0]. Since the periodic boundary treatment (3.4)

is imposed for D0, we deduce that

D2
0[v, α](x) = −

k−1∑
p=1

(
1

α

)2p
∂
2p
x D0[v, α](x) −

(
1

α

)2k
L−1
0 [∂2kx D0[v, α], α](x)

= −
k−1∑
p=1

(
1

α

)2p
⎛
⎝−

k∑
m=p+1

(
1

α

)2(m−p)
∂2mx v(x) −

(
1

α

)2(k+1−p)
L−1
0 [∂2k+2

x v, α](x)
⎞
⎠

−
(
1

α

)2k
L−1
0 [− 1

α2
L−1
0 [∂2k+2

x v, α], α](x)
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=
k∑

p=2

(p − 1)

(
1

α

)2p
∂
2p
x v(x) + (k − 1)

(
1

α

)2k+2
L−1
0 [∂2k+2

x v, α](x)

+
(
1

α

)2k+2 (
L−1
0

)2 [∂2k+2
x v, α](x).

Therefore,

D0[v, α](x) + D2
0[v, α](x) = − 1

α2 ∂xxv(x) +
k∑

p=3

(p − 2)

(
1

α

)2p

∂
2p
x v(x)

+
(
1

α

)2k+2

Q2(x),

where Q2(x) = (k−2)L−1
0 [∂2k+2

x v, α](x)+
(
L−1
0

)2 [∂2k+2
x v, α](x). Repeating the process,

and finally, we arrive at

k∑
p=1

D p
0 [v, α](x) = − 1

α2 ∂xxv(x) +
(
1

α

)2k+2

Qk(x),

where Qk(x) is a linear combination of functions
(
L−1
0

)p [∂2k+2
x v, α](x), p = 1, 2, . . . , k.

Note that, for any w(x) ∈ C[a, b], we have
‖L−1

0 [w, α](x)‖∞ ≤ C0‖w‖∞,

where C0 is a constant independent of w and α. Then, there is a constant C only depending
on k, such that

‖∂xxv(x) + α2
k∑

p=1

D p
0 [v, α](x)‖∞ = ‖

(
1

α

)2k

Qk(x)‖∞ ≤ C

(
1

α

)2k

‖∂2k+2
x v(x)‖∞,

which completes the proof. ��
Remark 3.3 For the numerical schemes formulated below, we will choose

α0 =
√

β

q�t
, q = max

u
|g′(u)|, (3.10a)

αL = αR = β

c�t
, c = max

u
| f ′(u)|, (3.10b)

in (3.1). Here, �t denotes the time step and β is a prescribed constant independent of �t .
Define

H[u](x) = − β

c�t

k∑
p=1

D p
L

[
f +(u),

β

c�t

]
(x) + β

c�t

k∑
p=1

D p
R

[
f −(u),

β

c�t

]
(x)

− β

q�t

k∑
p=1

D p
0

[
g(u),

√
β

q�t

]
(x), (3.11)

which approximates − f (u)x + g(u)xx with accuracy O(�tk).
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3.2 Homogeneous Boundary Condition

With the boundary condition ∂
p
x u(a) = 0 and ∂

p
x u(b) = 0, p ≥ 1, we require

D p
0 [g(u), α0](a) = 0, D p

0 [g(u), α0](b) = 0,

αLD p
L [ f +(u), αL ](a) − αRD p

R[ f −(u), αR](a) = 0,

αLD p
L [ f +(u), αL ](b) − αRD p

R[ f −(u), αR](b) = 0, (3.12)

for p = 1, 2, 3, . . . , k. The coefficients are obtained from the following formula:

• The operator D0 is required to satisfy

D0[v, α](a) = D0[v, α](b) = 0 (3.13)

with a given function v(x). Then, we have

A0 = μ
(
I 0[v, α](b) − v(b)

) − (
I 0[v, α](a) − v(a)

)
1 − μ2 , (3.14)

B0 = μ
(
I 0[v, α](a) − v(a)

) − (
I 0[v, α](b) − v(b)

)
1 − μ2 . (3.15)

• The operators DL and DR are required to satisfy

DL [v1, α](a) − DR[v2, α](a) = 0, and DL [v1, α](b) − DR[v2, α](b) = 0 (3.16)

with given functions v1(x) and v2(x). Then,

AL = μ
(
v2(b) − v1(b) + I L [v1, α](b)) − (

v2(a) − v1(a) − I R[v2, α](a)
)

1 − μ2 , (3.17)

BR =
(
v2(b) − v1(b) + I L [v1, α](b)) − μ

(
v2(a) − v1(a) − I R[v2, α](a)

)
1 − μ2 . (3.18)

By analogy with Theorem 3.1, we can establish the error estimate for the partial sum (3.1).
We omit the proof, since it is quite similar to that of Theorem 3.1.

Theorem 3.4 Suppose v(x) is a function defined on [a, b] with the homogeneous boundary
condition that ∂ p

x v(a) = ∂
p
x v(b) = 0, for p ≥ 1.

1. Consider the operator D0 with the boundary treatment (3.13). If v(x) ∈ C2k+2[a, b],
then we have

‖∂xxv(x) + α2
k∑

p=1

D p
0 [v, α](x)‖∞ ≤ C

(
1

α

)2k

‖∂2k+2
x v(x)‖∞, (3.19)

where C is a constant only depending on k.
2. Assume v(x) = v1(x)+v2(x) and both v1(x) and v2(x) satisfy the homogeneous bound-

ary condition. Consider the operator DL and DR with the boundary treatment (3.16). If
v1(x), v2(x) ∈ Ck+1[a, b], then we have

‖∂xv(x) −
⎛
⎝α

k∑
p=1

D p
L [v1, α](x) − α

k∑
p=1

D p
R[v2, α](x)

⎞
⎠ ‖∞ ≤ C

(
1

α

)k

‖∂k+1
x v(x)‖∞,

(3.20)

where C is a constant depending only on k.

123



Journal of Scientific Computing (2020) 82 :52 Page 11 of 29 52

Remark 3.5 For the homogeneous boundary condition case, we can still use (3.11) to approx-
imate − f (u)x + g(u)xx with accuracy O(�tk).

4 Spatial Discretization

In this section, we present the details about the spatial discretization of H[u] in (3.11). The
proposed algorithm is based on our early work on a high order WENO MOLT schemes for
transport problems. Suppose the domain [a, b] is divided by N + 1 uniformly distributed
grid points

a = x0 < x1 < · · · < xN−1 < xN = b,

with the mesh size �x = b−a
N . Denote uni as the numerical solution at the spatial location xi

and time level tn . At each grid point xi , we further denote I ∗[v, α](xi ) as I ∗
i , where ∗ can

be 0, L and R. Note that the convolution integrals I Li and I Ri satisfy a recursive relation

I Li = I Li−1e
−αL�x + J L

i , i = 1, . . . , N , I L0 = 0, (4.1a)

I Ri = I Ri+1e
−αR�x + J R

i , i = 0, . . . , N − 1, I RN = 0, (4.1b)

respectively, where

J L
i = αL

∫ xi

xi−1

v(y)e−αL (xi−y)dy, J R
i = αR

∫ xi+1

xi
v(y)e−αR(y−xi )dy. (4.2)

Therefore, once we have computed J L
i and J R

i for all i , we then can obtain I Li and I Ri
via the recursive relation. In addition, the convolution integral I 0[v, α0](x) can be split into
I L [v, α0](x) and I R[v, α0](x), i.e.,

I 0[v, α0](x) = 1

2
(I L [v, α0](x) + I R[v, α0](x)).

Thus, I 0i is evaluated in the same way as I Li and I Ri , see [15].
A distinct feature of the Eq. (1.1) is that discontinuous solution structures and sharp fronts

may develop. The WENO methodology has long been a standard tool to solve hyperbolic
problems with discontinuous solutions, which can achieve sharp and non-oscillatory shock
transitions and high order accuracy in smooth regions [31,41,43]. Recently, in [36], the
authors developed a finite differenceWENO scheme to solve degenerate parabolic equations.
Such an approach directly approximates the second derivative term using a conservative flux
difference formulation. In [20], a WENO-based high order quadrature was developed to
evaluate J L

i and J R
i . Some related works in the literature about the WENO-based quadrature

include [18,19,35]. In this work, we still employ the WENO-based quadrature from [20]
with the aim to avoid spurious oscillations when solving discontinuous problems. For the
reader’s convenience, we will briefly review the main procedure. Note that, as suggested
in our numerical results, the WENO methodology itself may not be adequate to suppress
solution overshoots. To enhance robustness of the method, we propose to further incorporate
a nonlinear filter. Such a filter is constructed via the information from the WENO procedure
and hence will not increase the cost significantly. Moreover, we apply theWENO quadrature
only for approximating operators with p = 1 in (3.11), and use cheap high order linear
quadrature for those with p > 1. The numerical evidence indicates that by doing so we can
reduce the cost and the scheme is still high order accurate and free of oscillations.
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Fig. 1 The structure of the stencils in WENO integration

4.1 WENO-based Quadrature

Below, the fifth order WENO-based quadrature for approximating J L
i = J L [v, α](xi ) is

provided as an example. The corresponding stencil used is shown in Fig. 1, and all coefficients
can be found in [20]. The process to obtain J R

i is mirror symmetric to that of J L
i with respect

to point xi .

1. As with the standard WENO methodology, we first choose the three small stencils as
Sr (i) = {xi−3+r , xi−2+r , xi−1+r , xi+r }, r = 0, 1, 2. On each small stencil, there is a
unique polynomial pr (x) of degree at most three which interpolates v(x) at the nodes in
Sr (i). Then we are able to compute three candidates for J L

i denoted by J L
i,r , r = 0, 1, 2

J L
i,r = α

∫ xi

xi−1

e−α(xi−y) pr (y)dx =
3∑
j=0

c(r)
−3+r+ jvi−3+r+ j ,

where the coefficients c(r)
−3+r+ j depend on α and the cell size �x , but not on v.

2. On the entire big stencil S(i) = {xi−3, . . . , xi+2}, there is a unique polynomial p(x) of
degree at most five interpolating v(x) at the nodes in S(i). Then we have

J L
i,S = α

∫ xi

xi−1

e−α(xi−y) p(y)dx =
5∑
j=0

c−3+ jvi−3+ j =
3∑

r=0

dr J
L
i,r (4.3)

that approximates J L
i with the linear weights dr .

3. Replace the linear weights dr with the nonlinear weights ωr that are defined as

ωr = ω̃r∑2
s=0 ω̃s

, with ω̃r = dr
(ε + SIr )2

, r = 0, 1, 2. (4.4)

Here, ε > 0 is a small number to avoid a zero denominator, and we take ε = 10−6 in our
numerical tests. The smoothness indicators SIr that measure the relative smoothness of
the function v(x) in the stencil Sr (i) are defined as

SI0 =781

720
(−vi−3 + 3vi−2 − 3vi−1 + vi )

2 + 13

48
(vi−3 − 5vi−2 + 7vi−1 − 3vi )

2

+ (vi−1 − vi )
2,
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SI1 =781

720
(−vi−2 + 3vi−1 − 3vi + vi+1)

2 + 13

48
(vi−2 − vi−1 − vi + vi+1)

2

+ (vi−1 − vi )
2,

SI2 =781

720
(−vi−1 + 3vi − 3vi+1 + vi+2)

2 + 13

48
(−3vi−1 + 7vi − 5vi+1 − vi+2)

2

+ (vi−1 − vi )
2.

4. Lastly, J L
i is approximated by J L

i,W , where J L
i,W =

2∑
r=0

ωr J
L
i,r .

4.2 Nonlinear Filter

As mentioned above, the kth order accuracy in time is attained via the kth partial sum.
However, it is observed from the numerical results that, when k ≥ 2, spurious oscillations
will appear for some non-smooth problems, even though the WENO quadrature is applied to
compute the partial sum H. Therefore, to further enhance robustness and to avoid spurious
oscillations, we introduce a nonlinear “filter” denoted by σ when approximating ∂x . Note
that such a filter is only needed for the convection part. Below, we only consider periodic
boundary conditions to illustrate the idea and the proposed methodology can be extended
straightforwardly to handle the special homogeneous boundary condition.

The key idea of the proposed nonlinear filter is that, unlike (3.1), we use the following
modified formulation to approximate ∂x :

∂x ≈ β

c�t
DL + β

c�t

k∑
p=2

σ
p−1
L,i D p

L , and ∂x ≈ − β

c�t
DR − β

c�t

k∑
p=2

σ
p−1
R,i D p

R, (4.5)

where the filters σL,i and σR,i are incorporated. In this work, the filters are designed to fulfill
several requirements: (a) σL,i and σR,i are 1 + O(�xk) when the solution is continuous,
thus maintaining the original high order accuracy; (b) they are close to 0 when the grid point
xi is in the vicinity of a discontinuity, thus decreasing the influence of the high order terms
which may lead to oscillations; (c) the associated computational overhead is relatively low.
To achieve this goal, the design of the filter is based on the smoothness indicators from the
WENO methodology and the underlying idea is similar to that proposed in [9].

Below, we provide the details of construction of the filter. Assume that we have obtained
the approximation to the integral J L

i based on the WENO-based quadrature using the six-
point stencil S(i) = {xi−3, . . . , xi+2} and the associated three small stencils S0(i), S1(i) and
S2(i) given in Sect. 4.1. Following the idea in [9], we introduce a new parameter τi , which
is simply defined as the absolute difference between the smoothness indicators SI0 and SI2,
namely,

τi = |SI0 − SI2|.
Note that τi can be obtained with little cost since SI0 and SI2 are already available. If v(x)
is smooth on the entire stencil S(i), applying the Taylor expansion to SI0 and SI2 gives

SI0 = (v′
i−1/2)

2�x2 + 1

12

(
13(v′′

i−1/2)
2 + v′

i+1/2v
(3)
i−1/2

)
�x4 + 1

2880

(
3129(v(3)

i−1/2)
2

− 1820v′′
i−1/2v

(4)
i−1/2 + 3v′

i−1/2v
(5)
i−1/2

)
�x6 + O(�x7),
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SI2 = (v′
i−1/2)

2�x2 + 1

12

(
13(v′′

i−1/2)
2 + v′

i+1/2v
(3)
i−1/2

)
�x4 + 1

2880

(
3129(v(3)

i−1/2)
2

− 1820v′′
i−1/2v

(4)
i−1/2 + 3v′

i−1/2v
(5)
i−1/2

)
�x6 + O(�x7).

Thus, we deduce that τi = O(�x7). We further define

ξi = 1 + τ 2i /(SImax + ε)2

1 + τ 2i /(SImin + ε)2
,

where

SImax = max(SI0, SI2), and SImin = min(SI0, SI2).

Note that SImax and SImin are bothO(�x2) in amonotone region, andO(�x4) near a critical
point. A simple Taylor expansion applying to ξi yields

ξi = 1 + O(�x6).

Here, we take ε = 10−6 to avoid a zero denominator. On the other hand, if the solution
v(x) contains a discontinuity within the interval [xi−3, xi−1] or [xi , xi+2], we can show that
ξi = O(�x4) via a Taylor expansion. Meanwhile, if v(x) is discontinuous within [xi−1, xi ],
then ξi may be O(1), while we have ξi+1 = O(�x4) which is defined at the neighboring
grid point xi+1. The nonlinear filter is defined as

σL,i = min(ξi , ξi+1).

σR,i is mirror symmetric to σL,i with respect to xi , and it reads

σR,i = min(ξi−1, ξi ),

where ξi is obtained through the smoothness indicators that are used for computing J R
i,W .

5 Time Discretization and Stability

In this section, we introduce the time discretization methods for evolving (1.1) based on the
partial sum approximation (3.11), and then analyze the linear stability property. Denote un as
the semi-discrete solution at time tn . In this work, we propose to use the classic explicit SSP
RK methods [25] to advance un to un+1. For example, the first order scheme is the forward
Euler scheme

un+1 = un + �tH[un]. (5.1)

The second order SSP RK scheme is given as

u(1) = un + �tH[un],
un+1 = 1

2
un + 1

2

(
u(1) + �tH[u(1)]

)
. (5.2)

And the third order SSP RK scheme is given as

u(1) = un + �tH[un],
u(2) = 3

4
un + 1

4

(
u(1) + �tH[u(1)]

)
,
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Table 1 βmax in Theorem 5.1,
Remark 5.2 and Theorem 5.3 for
k = 1, 2, 3

k β1,k,max β2,k,max βk,max

1 2 2 1

2 1 1 0.5

3 1.243 0.8375 0.4167

un+1 = 1

3
un + 2

3

(
u(2) + �tH[u(2)]

)
. (5.3)

Note that, to achieve kth order accuracy in time, we should employ the kth order SSP RK
method as well as the kth partial sumH[u]. A remarkable advantage of the proposed scheme
is that, even though the explicit SSP RKmethod is used for time integration, unlike the MOL
approach [1,8,29,36,46] , the scheme can be A-stable and hence allowing for large time step
evolution if β in (3.11) is appropriately chosen. In particular, we establish linear stability of
the scheme in the following theorem.

Theorem 5.1 (a) For the linear advection equation ut + c ux = 0 with periodic boundary
conditions, there exists constant β1,k,max > 0 for k = 1, 2, such that the scheme is
A-stable provided 0 < β ≤ β1,k,max;

(b) For the linear diffusion equation ut = q uxx with q > 0 and periodic boundary condi-
tions, there exists constant β2,k, max > 0 for k = 1, 2, 3, such that the scheme is A-stable
provided 0 < β ≤ β2,k,max.
The constants β1,k,max and β2,k,max are summarized in Table 1.

Proof Here, we only show the proof for k = 1 for brevity. Given the ansatz un = ûneiκx , we
can obtain the amplification factor λ via a Von Neumann analysis. The scheme is uncondi-
tionally stable if |λ| ≤ 1 for any κ and time step �t .

(a) We present the proof for the case c > 0. For c < 0, the proof can be established in the
same way. Upon the definitions of DL and LL , by taking the Fourier transform in space,
we obtain that L̂L = 1 + (iκ)/αL , and then

D̂L = 1 − 1/L̂L = iκ/αL

1 + iκ/αL
.

For the forward Euler scheme un+1 = un − �t αL DL [cun, αL ] with the parameter
αL = β/(c�t), we could compute the amplification factor λ

λ = 1 − β
iκc�t/β

1 + iκc�t/β
.

Then, we have |λ| ≤ 1 when β ≤ 2, which implies the scheme is A-stable. Hence, for
the first order scheme k = 1, we can choose β1,1,max = 2.

(b) Similarly, for the forward Euler scheme un+1 = un − �t α2
0 D0[qun, α0] and α0 =√

β/q�t , the amplification factor λ is

λ = 1 − βD̂0 with D̂0 = 1 − 1/L̂0 = (κ/α0)
2

1 + (κ/α0)2
∈ [0, 1].

Then, we still have β ≤ 2 to ensure |λ| ≤ 1. Thus, we let β2,1,max = 2.

��
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Remark 5.2 Note that, for the linear advection equation ut +cux = 0 with periodic boundary
conditions, the third order scheme (Eq. (3.11) with k = 3 coupled with third order SSP RK)
can only be A(α)-stable. But, fortunately, we find that if the scheme is modified as

H[u](x) = − β

c�t

3∑
p=1

D p
L

[
f +(u),

β

c�t

]
(x) + β

c�t

3∑
p=1

D p
R

[
f −(u),

β

c�t

]
(x)

− β

q�t

3∑
p=1

D p
0

[
g(u),

√
β

q�t

]
(x)

+ β

c�t
D0

[
D2

L

[
f +(u),

β

c�t

]
− D2

L

[
f −(u),

β

c�t

]
,

β

c�t

]
(x), (5.4)

still with the periodic boundary treatment for the last term, then the scheme coupled with the
third order SSP RK integrator is also A-stable provided 0 < β ≤ β1,3,max. In light of Lemma
3.2, the extra term in (5.4) is in fact an approximation to fxxxx . It will enhance the stability
of the scheme and make H[u](x) fourth order accurate for the case q � c, i.e., convection
dominates. For the homogeneous boundary condition case, we can similarly add the extra
term with the treatment (3.13) and make the scheme A-stable. The parameter β1,3,max is
given in Table 1.

Below, we provide a Fourier analysis for the fully discrete scheme with the sixth order
linear quadrature rule

J L
j =

2∑
r=−3

crv j+r , and J R
j =

2∑
r=−3

crv j−r . (5.5)

Without loss of generality, we take c = 1 and q = 1 for simplicity. Under the assumption
that unj = ûneiκx j , we can obtain

D̂L = 1 −
∑2

r=−3 cr e
irκ�x

1 − e−α�x−iκ�x
(5.6)

and

D̂0 = 1 − 1

2

(∑2
r=−3 cr e

irκ�x

1 − e−α�x−iκ�x
+

∑2
r=−3 cr e

−irκ�x

1 − e−α�x+iκ�x

)
(5.7)

Moreover, it is straightforward to check that the amplification factor λ for the linear advection
equation ut +ux = 0 depends on β, κ�x and�t/�x , while for the linear diffusion equation
ut = uxx , λ depends on β, κ�x and �t/�x2. Even though it is very tedious and difficult to
derive analytically the condition of λ ≤ 1, as a common practice, we can still numerically
verify that, if 0 < β < β·,k,max, for k = 1, 2, 3, then |λ| ≤ 1 for any κ�x ∈ [0, 2π], �t
and �x . In Fig. 2, we plot the contours of |λ| with β = β·,k,max to justify this property. In
other words, the scheme is unconditionally stable if β is appropriately chosen according to
Table 1.

Combining the both cases in Theorem 5.1, Remark 5.2 and above analysis, we can
easily establish a similar unconditional stability property of the scheme for solving linear
convection-diffusion problems.

Theorem 5.3 Consider the linear convection-diffusion problem

ut + c ux = q uxx , (5.8)
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(a)k = 1. β = 2. (b)k = 2. β = 1. (c)k = 3. β = 1.243.

(d)k = 1. β = 2. (e)k = 2. β = 1. (f)k = 3. β = 0.8375.

Fig. 2 Contours of |λ|. Upper: linear advection equation ut + ux = 0; below: linear diffusion equation
ut = uxx

with periodic boundary conditions. c and q are both constants and q ≥ 0. Suppose the
scheme employs the kth order SSP RK method, the kth partial sum in (3.11) or (5.4) for
k = 1, 2, 3, and the linear quadrature rule (5.5). Then, the scheme is unconditionally stable
if 0 < β ≤ βk,max, where βk,max := 1

2 min(β1,k,max, β2,k,max), and the constants β1,k,max

and β2,k,max are summarized in Table 1.

Remark 5.4 The unconditional stability is only established for the scheme for solving (5.8)
with periodic boundary conditions. Such an analysis cannot be extended to the case of a
Dirichlet boundary condition, as the ansatz used does not hold. The G-K-S theory [27] may
be applicable, and we leave the investigation to the future study.

Remark 5.5 The WENO methodology together with the nonlinear filter are used to suppress
unphysical oscillations. As with the standard finite volume/difference approach, it is numer-
ically confirmed that the use of WENO and the filter is able to enhance the robustness and
nonlinear stability, while preserving the linear stability of the original scheme. In other words,
the scheme with WENO and the filter is free of unphysical oscillations and unconditional
stable at the same time. We cannot provide a theoretical analysis now in this regard now.

To close this section, we summarize the proposed method for approximating one-
dimensional problem (1.1) in the following algorithm flowchart.
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Given the function un , the approximation order k ≤ 3, the mesh size �x and the time
step �t .

1. Choose β from the Table 1. Compute q and c at time tn .
2. On each inner stage of the kth order SSP RK scheme:

(a) Compute q and c, and then obtain parameters α0,L,R by (3.10).
(b) Convection part:

i. Split f (u) into f ±(u).
ii. Apply DL and DR on f + and f −, respectively. Use the WENO quadrature

to calculate J L,R and at the same time obtain the nonlinear filter σL,R .
Compute I L,R via (4.1) and then calculate the parameter AL and BR based
on the boundary condition. Combine I L,R , AL and BR to constructDL [ f +]
andDR[ f −].

iii. For k > 1, further construct D p
L [ f +] = D p−1

L [DL [ f +]] and D p
R[ f −] =

D p−1
R [DR[ f −]] by a similar procedure for 1 < p ≤ k. WENO quadrature is

not needed for construction of these high order terms.
(c) Diffusion part: follow a similar procedure of (b) to construct the partial sum

approximation to g(u)xx using operatorD0.
(d) Substitute the partial sum approximations from (b) and (c) into (3.11) and update

the solution accordingly.

6 Two-dimensional Implementation

Consider the following two-dimensional problem

ut + f1(u)x + f2(u)y = g1(u)xx + g2(u)yy . (6.1)

The proposed one-dimensional formulation can be directly extended to solving (6.1) based
on a dimension-by-dimension approach, namely, approximating ∂x and ∂xx for fixed y j and
approximating ∂y and ∂yy for fixed xi . More specifically, for periodic boundary conditions

g1(u)xx |(xi ,y j ) ≈ −α2
0,x

k∑
p=1

D p
0 [g1(·, y j ), α0,x ](xi ),

g2(u)yy |(xi ,y j ) ≈ −α2
0,y

k∑
p=1

D p
0 [g2(xi , ·), α0,y](y j ),

where α0,x = √
qx/(β�t) and α0,y = √

qy/(β�t) with qx = maxu |g′
1(u)|, qy =

maxu |g′
2(u)|. To approximate f1(u)x and f2(u)y , the flux splitting strategy is still needed:

f ±
1 (u) = 1

2
( f1(u) ± cxu), f ±

2 (u) = 1

2
( f2(u) ± cyu),

123



Journal of Scientific Computing (2020) 82 :52 Page 19 of 29 52

where cx = maxu | f ′
1(u)| and cy = maxu | f ′

2(u)|. Then, the dimension-by-dimension
approach can be similarly applied. Again, for periodic boundary conditions,

− f1(u)x |(xi ,y j )≈ − αL,x

k∑
p=1

D p
L [ f +

1 (·, y j ), αL,x ](xi )+αR,x

k∑
p=1

D p
R[ f −

1 (·, y j ), αR,x ](xi ),

− f2(u)y |(xi ,y j ) ≈ −αL,y

k∑
p=1

D p
L [ f +

2 (xi , ·), αL,y](y j )+αR,y

k∑
p=1

D p
R[ f −

2 (xi , ·), αR,y](y j ),

or with a modified term for k = 3. In addition, in the x-direction, we choose αL,x = αR,x =
β/(cx�t), and in the y-direction, we choose αL,y = αR,y = β/(cy�t).

In the two-dimensional case, βmax needs to be chosen as half of that for one-dimensional
problems to attain the unconditional stability for the scheme.

Remark 6.1 We remark that the method is based on a dimension-by-dimension approach for
solving high-dimensional problems, and hence suitable for parallel implementation specially
in GPU architecture or distributed shared-memory machines. Furthermore, the scheme can
be implemented in complex geometry with non-uniform meshes. In [21], we provided a
technique together with numerical examples to handle complex geometry in the context of
the Hamilton-Jacobi equations. The methodology proposed in [21] can be directly adapted
to nonlinear degenerate advection-diffusion equations considered in this paper.

7 Numerical Results

In this section, we present the numerical results to demonstrate efficiency and efficacy of the
proposed scheme. The code implements our algorithm in Python is available on the Web.
See [22] for details of this implementation and some sample results.

For one-dimensional problems, we choose the time step as

�t = CFL
�x

q + c
, (7.1)

while for two-dimensional problems, the time step is set as

�t = CFL

max((qx + cx )/�x, (qy + cy)/�y)
.

Note that time step �t is chosen in a form similar to a standard MOL type method. It
will enable us to conveniently test accuracy and compare the scheme with other methods. We
remark that the CFL number can be chosen arbitrarily large due to the unconditional stability.
Meanwhile, the larger the CFL number, the larger the numerical error. If the problem does
not have an analytical solution, we will use the numerical solutions by the following first
order numerical scheme

uni = uni − �t

�x

(
f +
i − f +

i−1

) − �t

�x

(
f −
i+1 − f −

i

) + �t

�x2
(gi+1 − 2gi + gi−1)

with N = 3000 grid points and �t = 0.1�x2/(c�x + 2q) as a reference solution.
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Example 1 We test the accuracy of the scheme for the one-dimensional linear advection-
diffusion problem

{
ut + c ux = q uxx , −π ≤ x ≤ π,

u(x, 0) = sin(x),
(7.2)

with the 2π-periodic boundary condition.Here, c andq ≥ 0 are given constants. This problem
has the exact solution ue(x, t) = e−qt sin(x − ct).

In Tables 2 and 3, we summarize the convergence study for the case of c = 1, q = 0.01
and c = 1, q = 1 at final time T = 2, and the L∞ errors and the associated orders of
accuracy are provided. It is observed that the use of the kth partial sum yields kth order
accuracy, thereby verifying the analysis presented in Sect. 3. Moreover, the scheme allows
for large CFL numbers due to its unconditionally stability.

To demonstrate the efficiency, we compare the proposed method with the famous
Kurganov-Tadmor (KT) method [34] for solving the linear advection-diffusion problem.
Note that KT method is second order accurate and explicit, hence subject to CFL time step
restriction

�t = CFL

q/�x2 + c/�x
,

where CFL is chosen to be 0.125 as suggested in [34]. For a fair comparison, we choose k = 2
(second order accurate) and CFL= 0.125 for the proposed scheme as well, but pointing out
that the scheme is up to third order accurate and unconditionally stable. We summarize the
comparison result in Fig. 3, where we plot the CPU time versus L∞ error for both schemes.
It is observed that, for the convection-dominated case (c = 1, q = 0.01), the KT method
performs slightly better than the proposed scheme, but the slopes are comparable; when
considering the diffusion-dominated case, the proposed scheme becomes more efficient,
since the KT method suffers the stringent CFL condition (�t = O(�x2)). We remark that
the choice of the step �t in the method is only an accuracy concern instead of stability. One
has the flexibility to choose the “optimal” �t to balance the CPU cost and the accuracy.

Example 2 We test the porous medium equation (PME) [4,37]

ut = (um)xx , (7.3)

for some m > 1. This equation describes a gas flowing isentropically in a porous medium,
where the quantity u represents density of the gas considered. However, for the PME, the
classical solutions may not exist in general, even if the initial solution is smooth. Therefore,
weak solutions must be considered, and their existence and uniqueness are studied in [2,23,
38].

One famous weak solution of PME is the Barenblatt solution [6,45], which is defined as

Bm(x, t) = t−p[(1 − p(m − 1)

2m

|x |2
t2p

)
+
]1/(m−1)

, m > 1,

where u+ = max(u, 0) and p = (m + 1)−1. For any time t > 0, the solution has a compact
support [−am(t), am(t)] with

am(t) = t p
√

2m

p(m − 1)
.
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Table 2 Example 1: L∞ errors and orders of accuracy at T = 2. c = 1 and q = 0.01

CFL Nx k = 1. β = 1. k = 2. β = 0.5. k = 3. β = 0.4.

Error Order Error Order Error Order

0.5 40 7.260E−02 – 4.729E−02 – 2.559E−03 –

80 3.715E−02 0.967 1.218E−02 1.957 1.712E−04 3.902

160 1.885E−02 0.979 3.077E−03 1.985 1.091E−05 3.972

320 9.473E−03 0.992 7.703E−04 1.998 6.865E−07 3.990

640 4.750E−03 0.996 1.928E−04 1.999 4.357E−08 3.978

1 40 1.388E−01 – 1.697E−01 – 3.263E−02 –

80 7.260E−02 0.935 4.729E−02 1.843 2.559E−03 3.672

160 3.717E−02 0.966 1.218E−02 1.956 1.712E−04 3.902

320 1.885E−02 0.980 3.077E−03 1.986 1.091E−05 3.973

640 9.473E−03 0.992 7.703E−04 1.998 6.864E−07 3.990

2 40 2.474E−01 – 4.375E−01 – 2.313E−01 –

80 1.388E−01 0.834 1.697E−01 1.366 3.271E−02 2.822

160 7.260E−02 0.935 4.733E−02 1.842 2.561E−03 3.675

320 3.717E−02 0.966 1.218E−02 1.958 1.713E−04 3.902

640 1.885E−02 0.980 3.077E−03 1.986 1.091E−05 3.973

Table 3 Example 1: L∞ errors and orders of accuracy at T = 2. c = 1 and q = 1

CFL Nx k = 1. β = 1. k = 2. β = 0.5. k = 3. β = 0.4.

Error Order Error Order Error Order

0.5 40 1.047E−02 – 1.821E−03 – 1.912E−04 –

80 5.272E−03 0.990 4.953E−04 1.879 2.787E−05 2.779

160 2.646E−03 0.995 1.293E−04 1.937 3.751E−06 2.893

320 1.326E−03 0.997 3.307E−05 1.968 4.870E−07 2.946

640 6.637E−04 0.998 8.361E−06 1.984 6.206E−08 2.972

1 40 2.043E−02 – 6.088E−03 – 1.117E−03 –

80 1.047E−02 0.964 1.822E−03 1.741 1.924E−04 2.537

160 5.272E−03 0.990 4.955E−04 1.878 2.788E−05 2.787

320 2.646E−03 0.995 1.293E−04 1.938 3.752E−06 2.893

640 1.326E−03 0.997 3.307E−05 1.968 4.869E−07 2.946

2 40 3.941E−02 – 1.747E−02 – 4.522E−03 –

80 2.045E−02 0.946 6.098E−03 1.518 1.118E−03 2.016

160 1.047E−02 0.966 1.822E−03 1.743 1.924E−04 2.539

320 5.273E−03 0.990 4.955E−04 1.878 2.788E−05 2.787

640 2.646E−03 0.995 1.293E−04 1.938 3.752E−06 2.894

Here, we choose t = 1 as the initial time and the computation domain [−6, 6] with a zero
boundary condition u(±6, t) = 0. We plot the numerical solutions and exact solutions at
T = 2 with 200 grid points, respectively, with m = 2, 5 and 8 (Fig. 4). Here, we only
plot the results for the third order scheme, i.e. k = 3, and β is taken as 0.8. It is observed
that our scheme is able to approximate the Barenblatt solution accurately without noticeable
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Fig. 3 Example 1: Comparison of CPU time against L∞ error between the KT scheme and our scheme with
k = 2. β = 0.5. CFL = 0.125

-6 -4 -2 0 2 4 6
0

0.4

0.8 CFL=0.5
CFL=1
CFL=2
Exact

(a)m = 2.

-6 -4 -2 0 2 4 6
0

0.4

0.8

CFL=0.5
CFL=1
CFL=2
Exact

(b)m = 5.

-6 -4 -2 0 2 4 6
0

0.4

0.8

CFL=0.5
CFL=1
CFL=2
Exact

(c) m = 8.

Fig. 4 Example 2: Barenblatt solution for PME. N = 200 grid points. k = 3. β = 0.8

oscillations even with a large CFL number. On the other hand, the method with a smaller
CFL generates sharper interface transition around |x | = am .

Example 3 Now, we consider the interaction of two boxes for PME (7.3). Such a model
describes how temperature changes when two hot spots are suddenly placed in the domain.
Here, we choose the initial condition as

u(x, 0) =
⎧⎨
⎩
1, x ∈ (−4,−1),
2, x ∈ (0, 3),
0, otherwise,

(7.4)

in which the two boxes have different heights. We let m = 6 in (7.3). In Fig. 5, we show
the numerical solution at several instances of time for k = 3. The computational domain is
chosen as [−6, 6] and a zero boundary condition u(±6, t) = 0 is imposed. Here, we use
N = 400 grid points. Note that the exact solution is unknown and we benchmark the scheme
against the reference. It is observed that the scheme is able to capture the sharp interface
even though a large CFL number is used and numerical solutions agree with the reference
solution very well. We also would like to remark that the scheme can choose large CFLs due
to its unconditionally stable property. Meanwhile, the approximation quality deteriorates due
to the corresponding large temporal error. The CFL is chosen as a trade-off between CPU
efficiency and accuracy.

Example 4 Next, let us consider the Buckley-Leverett equation [10]

ut + f (u)x = ε(ν(u)ux )x . (7.5)
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(c) t = 0.12.

Fig. 5 Example 3: Interaction of the two-Box solution with different heights. N = 400 grid points. k = 3.
β = 0.8. The small figures are the enlarged view inside the rectangles

In fluid dynamics, this equation is used to model two-phase flow in porous media, such as
displacing oil by water in a one-dimensional or quasi-one-dimensional reservoir. We choose

ν(u) =
{
4u(1 − u), 0 ≤ u ≤ 1,
0, otherwise,

(7.6)

and consider the flux without gravitational effects

f (u) = u2

u2 + (1 − u)2
, (7.7)

as well as with gravitational effects

f (u) = u2

u2 + (1 − u)2
(1 − 5(1 − u)2). (7.8)

In the simulation, we let ε = 0.01. Here, the initial condition is

u(x, 0) =
{
0, 0 ≤ x < 1 − 1√

2
,

1, 1 − 1√
2

≤ x ≤ 1.

Up to the final time T = 0.2, the solutions keep constant on both endpoints, meaning
u(0, t) = 0 and u(1, t) = 1.

Numerical solutions for k = 3 are presented in Fig. 6. It is observed that the scheme with
a small CFL, e.g. 0.5 outperforms the one with a large CFL, e.g. 2. In fact, even though the
scheme is unconditionally stable, the performancemaynot be satisfactorywhen a exceedingly
large CFL number is used, which will introduce toomuch numerical diffusion and thus smear
the interface. Nevertheless, when a small CFL number is used, the scheme is able to solve
both Riemann problems accurately without generating noticeable spurious oscillations, and
the solution is benchmarked against the results reported in [34,36].

Example 5 In this example, we consider a strongly degenerate parabolic convection-diffusion
equation

ut + f (u)x = ε(ν(u)ux )x . (7.9)

We take ε = 0.1, f (u) = u2, and

ν(u) =
{
0, |u| ≤ 0.25,
1, |u| > 0.25.

(7.10)
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Fig. 6 Example 4: Buckley-Leverett equation. T = 0.2. N = 200 grid points. k = 3. β = 0.4
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Fig. 7 Example 5: 1D strong degenerate parabolic equation. T = 0.7. N = 200 grid points

The choice of ν will lead to an interesting fact that the equation is hyperbolic when u ∈
[−0.25, 0.25] and parabolic elsewhere. We solve the problem with the initial function

u(x, 0) =

⎧⎪⎨
⎪⎩
1, − 1√

2
− 0.4 < x < − 1√

2
+ 0.4,

−1, 1√
2

− 0.4 < x < 1√
2

+ 0.4,

0, otherwise,

(7.11)

and a zero boundary condition u(±2, t) = 0 is imposed before final time T = 0.7. Numerical
results are presented in Fig. 7. In particular, we compare the performance of the schemes
with different orders of accuracy, i.e, k = 1, 2, 3. It is observed that the high order scheme
performs better in capturing the sharp interface as well as the kinks where the equation
changes its type. As expected, the performance deteriorates when a large CFL number is
used.

Example 6 We test the accuracy of the proposed scheme for the two-dimensional linear
advection-diffusion problem

ut + c ux + c uy = q uxx + q uyy, (7.12)

on [−2, 2] × [−2, 2] with the initial function

u(x, y, 0) = sin

(
x + y

2
π

)
.
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Table 4 Example 6: L∞ errors and orders of accuracy at T = 1. c = 1 and q = 0.01

CFL Nx × Ny k = 1. β = 0.5. k = 2. β = 0.25. k = 3. β = 0.2.

Error Order Error Order Error Order

0.5 20 × 20 2.03e-01 – 2.53e-01 – 1.45e-01 –

40 × 40 1.09e-01 0.904 7.23e-02 1.806 2.07e-02 2.806

60 × 60 5.62e-02 0.948 1.86e-02 1.955 2.69e-03 2.944

160 × 160 2.86e-02 0.977 4.69e-03 1.991 3.40e-04 2.983

320 × 320 1.44e-02 0.987 1.18e-03 1.996 4.27e-05 2.993

1 20 × 20 3.54e-01 – 6.03e-01 – 5.81e-01 –

40 × 40 2.03e-01 0.805 2.53e-01 1.255 1.45e-01 2.003

60 × 60 1.09e-01 0.902 7.23e-02 1.806 2.07e-02 2.806

160 × 160 5.62e-02 0.948 1.86e-02 1.955 2.69e-03 2.944

320 × 320 2.86e-02 0.976 4.69e-03 1.991 3.40e-04 2.984

2 20 × 20 5.61e-01 – 8.50e-01 – 8.03e-01 –

40 × 40 3.57e-01 0.652 6.03e-01 0.496 5.84e-01 0.459

60 × 60 2.03e-01 0.814 2.53e-01 1.252 1.45e-01 2.006

160 × 160 1.09e-01 0.905 7.23e-02 1.809 2.07e-02 2.810

320 × 320 5.62e-02 0.948 1.86e-02 1.955 2.69e-03 2.945

Here, we test with constants c = 1 and q = 0.01 and the periodic boundary condition.
The L∞ errors and the associated orders of accuracy are provided in Table 4. The kth order
accuracy is observed with the use of the kth partial sum, k = 1, 2 and 3 allowing for several
CFL numbers. We note that βmax needs to be chosen as half of that for one-dimensional
problems to attain the unconditional stability for the scheme.

Example 7 We consider the two-dimensional strongly degenerate parabolic convection-
diffusion equation

ut + f (u)x + f (u)y = ε(ν(u)ux )x + ε(ν(u)uy)y, (7.13)

in which, ε, f (u), ν(u) are the same as the one-dimensional case. The initial function is given
as

u(x, y, 0) =
⎧⎨
⎩
1, (x + 0.5)2 + (y + 0.5)2 < 0.16,
−1, (x − 0.5)2 + (y − 0.5)2 < 0.16,
0, otherwise.

(7.14)

The solutions at T = 0.5 computed by the third order scheme with β = 0.2,CFL = 0.5 and
200 × 200 grid points are shown in Fig. 8, which agree well with results provided in [36].

Example 8 As the last example, we solve the two-dimensional Buckley-Leverett Equation

ut + f1(u)x + f2(u)y = ε(uxx + uyy), (7.15)

where ε = 0.01 and the flux functions are given as

f1(u) = u2

u2 + (1 − u)2
, f2(u) = (1 − 5(1 − u)2) f1(u).
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Fig. 8 Example 7: 2D strong degenerate parabolic equation. k = 3. T = 0.5. CFL = 0.5. 200 × 200 grid
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Fig. 9 Example 8: 2D Buckley-Leverett Equation. k = 3. T = 0.5. CFL = 0.5. 200 × 200 grid points

We compute the problem on [−1.5, 1.5] × [−1.5, 1.5], with the initial condition

u(x, y, 0) =
{
1, x2 + y2 < 0.5,
0, otherwise.

Here, we only show the results computed by the third order scheme with β = 0.2 and
200 × 200 grid points in Fig. 9. The result agrees with that reported in [34], demonstrating
the effectiveness of the scheme for solving this challenging two-dimensional problem.

8 Conclusion

In this paper, we proposed a novel numerical scheme to solve the nonlinear degenerate
parabolic equations with non-smooth solutions. In such a framework, the spatial derivatives
were represented as a special kernel based formulation of the solutions found in the method
of lines transpose framework, and a fast summation algorithm was used to reduce the com-
putational complexity of the kernel based approach to O(N ). The kernel based formulation
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used in this work is as fast as explicit time stepping methods. In time, we coupled the scheme
with the high order explicit SSP RK method. Theoretical investigations indicated that the
proposed scheme is unconditionally stable up to third order accuracy. Therefore, the new
method allowed for much larger time step evolution compared with other explicit schemes
with the same order accuracy. Moreover, to avoid spurious oscillations, a high order WENO
methodology and a nonlinear filter are further employed. A collection of numerical tests
verified the performance of the proposed scheme, demonstrating both its designed high order
accuracy and the ability to produce non-oscillatory shock transitions for discontinuous solu-
tions. Future work consists of extending the scheme to other equations and deal with general
boundary conditions.

Appendix A. Proof of Lemma 3.2

Here, we only give the proof for the case ofD0 andDL . ForDR , the proof can be established
by a similar idea.

Using the definition of I 0 and integration by parts twice, we have

I 0[v, α](x) = v(x) + 1

α2
I 0[vxx , α](x) −

(
1

2
v(a) − 1

2α
vx (a)

)
e−α(x−a)

−
(
1

2
v(b) + 1

2α
vx (b)

)
e−α(b−x). (A.1)

Thus,

D0[v, α](x) = − 1

α2
I 0[vxx , α](x) −

(
A0[v, α] − 1

2
v(a) + 1

2α
vx (a)

)
e−α(x−a)

−
(
B0[v, α] − 1

2
v(b) − 1

2α
vx (b)

)
e−α(b−x).

Here, A0[v, α] and B0[v, α] are obtained from the boundary treatment of D0[v, α] (2.5).
Moreover, based on (A.1), A0[v, α] and B0[v, α] can be rewritten as

A0[v, α] = 1

1 − μ

(
1

α2 I
0[vxx , α](b) − 1

2

(
v(a) − 1

α
vx (a)

)
μ + 1

2

(
v(b) − 1

α
vx (b)

))
,

B0[v, α] = 1

1 − μ

(
1

α2 I
0[vxx , α](a) + 1

2

(
v(a) + 1

α
vx (a)

)
− 1

2

(
v(b) + 1

α
vx (b)

)
μ

)
.

Therefore, we have

D0[v, α](x) = − 1

α2 I
0[vxx , α](x) − 1

α2

I 0[vxx , α](b)
1 − μ

e−α(x−a) − 1

α2

I 0[vxx , α](a)

1 − μ
eα(b−x)

= − 1

α2L
−1
0 [vxx , α](x) = − 1

α2 vxx (x) + 1

α2D0[vxx , α](x)
Upon iterating this process k times, we obtain that

D0[v, α](x) = −
k∑

p=1

1

α2p ∂
2p
x v(x) − 1

α2k+2L
−1
0 [∂2k+2

x v, α](x).

Similarly, we can do integration by parts on I L , and have

I L [v, α] = − 1

α
I L [vx , α](x) + v(x) − v(a)e−α(x−a),
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AL [v, α] = − 1

α
AL [vx , α] + 1

1 − μ

(
v(b) − v(a)e−α(b−a)

)
= − 1

α
AL [vx , α] + v(a).

Therefore, we have

DL [v, α] = 1

α
I L [vx , α](x) + 1

α
AL [vx , α]e−α(x−a) = 1

α
L−1
L [vx , α](x)

= 1

α
vx (x) − 1

α
DL [vx , α](x)

= −
k∑

p=1

(
− 1

α

)p

∂
p
x v(x) +

(
− 1

α

)
L−1
L [∂k+1

x v, α](x),

and the lemma is proved.
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