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A Kernel-Based Explicit Unconditionally Stable Scheme for
Hamilton-Jacobi Equations on Nonuniform Meshes

Andrew Christlieb’*, William Sands"! and Hyoseon Yang!*

Abstract

In [11], the authors developed a class of high-order numerical schemes for the Hamilton-Jacobi (H-J)
equations, which are unconditionally stable, yet take the form of an explicit scheme. This paper extends
such schemes, so that they are more effective at capturing sharp gradients, especially on nonuniform
meshes. In particular, we modify the weighted essentially non-oscillatory (WENO) methodology in
the previously developed schemes by incorporating an exponential basis and adapting the previously
developed nonlinear filters used to control oscillations. The main advantages of the proposed schemes are
their effectiveness and simplicity, since they can be easily implemented on higher-dimensional nonuniform
meshes. We perform numerical experiments on a collection of examples, including H-J equations with
linear, nonlinear, convex and non-convex Hamiltonians. To demonstrate the flexibility of the proposed
schemes, we also include test problems defined on non-trivial geometry.

Key Words: Hamilton-Jacobi equation; Kernel based scheme; Unconditionally stable; High order
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1 Introduction

In this paper, we propose a class of high-order, weighted essentially non-oscillatory numerical schemes for
approximating the viscosity solution to the Hamilton-Jacobi (H-J) equation

{qﬁt +H(V¢)=0, zeR? )

QZS((L'70) = ¢0($)7

where ¢ = ¢(x,t) is a scalar function and H is a Lipschitz continuous Hamiltonian. The H-J equations play a
significant role among many fields, including optimal control, geometric optics, differential games, computer
vision and image processing, as well as variational calculus. It is well known that as time evolves, the H-J
equations develop continuous solutions, of which, associated derivatives might be discontinuous, even for
smooth initial conditions. If the solution is redefined in a weak sense, regularity conditions on the function
¢ can be relaxed; however, such solutions may not be unique. To identify the unique, physically relevant
solution, the concept of vanishing viscosity was introduced [13,14]. In subsequent papers, [15,32], authors
addressed the convergence of general approximation schemes to the viscosity solution of (1.1).

There have been many numerical schemes developed to solve the H-J equations. Methods among the ex-
isting literature include essentially non-oscillatory (ENO) schemes [26,27], weighted ENO (WENO) schemes
[21,36], Hermite WENO schemes [28,29, 37, 38], as well as discontinuous Galerkin methods [7,8, 20,24, 35].
These schemes are typically categorized within the Method of Lines (MOL) framework, in which the spatial
variable is discretized first, then the resulting initial value problems (IVPs) are solved by coupling with a
suitable time integrator. This work takes an alternative approach: First, discretization is completed on the
temporal variable, then, the resulting boundary value problems (BVPs) are solved at discrete time levels.
To solve the BVPs, the continuous operator (in space) is inverted analytically, using an integral solution.
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We refer to this approach as the Method of Lines Transpose (MOLT), which is also known as Rothes’s
method [3,30,31]. These methods are formally matrix-free, in the sense that there is no need to solve linear
systems at each time step. Moreover, this integral solution extends the so-called domain-of-dependence, so
that the method does not suffer from a CFL restriction. The kernel used in this formulation also exhibits
pleasant numerical properties with several developments. To approximate the integral equations in the BVP,
one could use a fast multipole method (FMM) [16,23], or a Fourier-continuation alternating-direction (FC-
AD) algorithm, which yields unconditionally stability at the cost of O(N log N) [1,25]. Instead, Causley et
al. [5], with the aid of a three-term recurrence relation, managed to reduce the computational complexity
of the method from O(N?) to O(N). A variety of schemes, based on the MOLT formulation, have been
developed for solving a range of time-dependent PDEs, including the wave equation [3], the heat equation
(e.g., the Allen-Cahn equation [4] and Cahn-Hilliard equation [2]), Maxwell’s equations [6], and the Vlasov
equation [9].

Recent work on the MOL” has involved extending the method to solve more general nonlinear PDEs,
for which an integral solution is generally not applicable. This work includes the nonlinear degenerate
convection-diffusion equations [10], as well as the H-J equations [11]. The key idea of these papers involved
exploiting the linearity of a given differential operator, rather than requiring linearity in the underlying
equations. This allowed derivative operators in the problems to be expressed through kernel representations
developed for linear problems. Formulating applicable derivative operators in this way ultimately facilitated
the stability of the schemes, since a global coupling was introduced through the integral operator. As part
of this embedding process, a kernel parameter 8 was introduced, and through a careful selection, was shown
to yield schemes which are A-stable. Remarkably, it was shown that one could couple these representations
for the derivative operators with an explicit time-stepping method, such as the strong-stability-preserving
Runge-Kutta (SSP-RK) methods [17] and still obtain schemes which maintain unconditional stability [10,11].
To address shock-capturing and control non-physical oscillations, the latter two papers introduced quadrature
formulas based on WENO reconstruction, along with a nonlinear filter.

This paper seeks to extend the work in [10,11] to the H-J equations (1.1) defined on non-uniformly
distributed spatial domains. In particular, several improvements are given. First, we develop the MOL” for
mapped grids using a general coordinate transformation function, which allows for a non-uniform distribution
of grid points. We show that, with this mapping, our numerical scheme is able to preserve the conservation
property for the derivative of the solution to the H-J equation. We also describe a novel WENO-based
quadrature for the spatial discretization, which uses a basis consisting of exponential polynomials, to improve
the shock capturing capabilities of the method. Another difference in this paper, compared to our previous
work on H-J equations, is that we propose a different nonlinear filter, which, we believe, is more effective at
minimizing oscillations in the derivative of the solution to the PDE (1.1).

The paper is organized as follows. We first review the kernel-based representations for first and second
order derivative operators, and address boundary conditions for both periodic and non-periodic problems,
in Section 2. In Section 3, we present our numerical scheme for H-J equations on nonuniform grids with an
algorithm flowchart. A collection of numerical examples is presented to demonstrate the performance of the
proposed method in Section 4. In Section 5, we conclude the paper with some remarks and directions of
future work.

2 Review for the approximation of differential operators

We start with a brief review on construction of derivative operators using the methodologies proposed
in [10,11]. The second order derivative, e.g., Oy, shall described first, as it will be used in the representation
of first derivatives. Note that representations are formed using 1D examples, but the line-by-line approach
allows us the reuse these expressions, with an appropriate swapping of the direction.



2.1 Second order derivative 0,

In this section we will develop an approximation to d,, based on a fast kernel method. The starting point is a
Helmholtz operator of the “right sign”, meaning that the inverses is represented by a “compact” kernel. Here
“compact” refers to a kernel that is represented as a function instead of an infinite sum. This representation
is used to build an approximation to 0.

Motivated by work done for parabolic equations (see e.g., [2,4]), we define the differential operator

1
Lo:=T— ?am, x € la,b], (2.1)

where 7 is the identity operator, and « is a positive constant, which shall be specified later. We now suppose
that there are two functions w(x) and v(x), which satisfy the equation

(I - %Bm) w(z) = v(x). (2.2)
Noting that this is a linear equation of the form
Lolw; a](x) = v(x),
it follows that the solution can be obtained through an analytic inversion of the operator Lg:
w(e) = £5 ' fos ol @).

Written more explicitly, the expression for w(z) can be determined to be

w(z) = Iy[v; o) (z) + Age™ @~ 4 Byeab=), (2.3)
where .
Iy[v; o] (x) == %/ e~ lz=sly(s) ds, (2.4)

is a convolution integral and the constants Ay and By are determined by boundary conditions. If the
PDE is linear, e.g., the heat equation, then (2.3) is a valid expression for the update, and Ag and By can
be determined using the boundary conditions specified by the problem. Otherwise, they will need to be
carefully prescribed to maintain consistency. We will address this issue in Sections 2.3 and 2.4.

To develop a suitable expression for the second derivative, we introduce the related operator Dy, which
is defined as
Dy=T-Ly" (2.5)

Through some algebraic manipulations, one can write an alternative definition for £y in terms of Dy, i.e.,
Lo=(T—-Dy) ".

If the operator norm for Dy is bounded by unity, then, using the definition (2.1), we can express the second
derivative operator as a Neumann series:

1

50 =T — Lo=Lo(Lo—T) =Dy (I-Do) "' =-> D}
p=1

Here, each term in the expansion is defined successively from the previous term, i.e., Df = Do[Dg_l].
Therefore, the action of 9., on a generic function v(x) is given by

Ozav(z) = —0* > Dh[v; 0)(x), (2.6)

As previous noted, expressions in multiple spatial dimensions can be obtained by simply changing labels,
e.g., x toy.



2.2 First order derivative 0,

As with the last section, we will use the same basic idea to construct an approximation to 9, that will
allow us to build an integral representation that provides an up wind and down wind approximation to our
operator.

In order to obtain a representation for the first derivative, we introduce two operators: Ly and Lg
to account for waves traveling in different directions. The subscript on an operator is used to identify
the direction associated with wave propagation, so that “L” and “R” correspond to downwinding and
upwinding, respectively. The operands for this decomposition would, of course, come from a monotone
splitting, depending on the problem. With this convention, we define

1 1
Ly =T——-0,, Lr=T4+—0;, x€ [CLb], (27)
(0% (0%

where Z is the identity operator and, again, « is a strictly positive constant. Using an integrating factor, we
can invert these operators, similar to the case for Ly to find that

L7 v, a(x) = IL[v,o)(x) + Bre =) (2.8a)
L' v, a](x) = In[v,0](x) + Age™*""), (2.8b)
where
b
I, o)(z) = a/ e 6= 2)y(s) ds, (2.9a)
Ig[v, a](x) = a/w e~ ==y (s) ds, (2.9b)

with constant Ar and Bj, being determined by the boundary condition imposed for the operators. These
expressions depend on the problem, so handling the general case requires a substantial amount of care.

As with the second derivative operator, we introduce the operators
Dp=I-L;", Dr=I-Ly", x¢€]ab] (2.10)

and expand each of these into a Neumann series:

1
o =7- = 1Ty =—-D./(T - Dr) E D 2.11
Oé(9$ ,CL EL(EL ) L/( L ( a)
1. P

— 7 = — 11
~0, =Lp—T=Lr(T-Ly')=Dr/(I—Dr)= § 2 (2.11b)

As before, these operators are defined successively, but we leave the operand at each p as a generic function
v(z). Moreover, the + signs on the expressions for the derivatives in (2.11a) and (2.11b) do not reflect the
direction of propagation. Instead, they represent the direction of approach at an interface. For example, we
use 97 to indicate the right-sided approximation of the derivative, in x, along an interface.

2.3 Periodic boundary conditions

In this section we show how to impose periodic boundary conditions for the line by line MOL” formulation
we leverage in this work.

For problems with periodic boundary conditions, we make the requirement that

Di[vial(a) = Dplv;a](b), Dglv;el(a) = Dilv;e](b), Dglv;al(a) = Dylval(h), p=>1. (2.12)



Using the definition of these operators (2.10) and (2.5), the above condition shows that at each level, we
should select

_ Ilvial(b)

_ Liof(@) oy Dolviel®) g Dolviel(e)
I—p

A
R 1—p 1—p 1—uw

, Br , (2.13)

where = e=*(*=%)_ Hence, following the idea in [10], when ¢ is a periodic function, we can approximate

the first derivative ¢F with (modified) partial sums in (2.11),

—a é D} [¢; a](x), k=12,
of () = Pl ;o) (z) = P (2.14a)
*ap; DY [¢; a](z) + aDo x Di [¢; 0] (x), k = 3.
k
o ¥ Dhlosal(a), F=12

¢, (x) = Piip; 0] (x) = (2.14b)

@ 3% Dhlo:al(e) Dy« Dylosal(@), k=3

Note that there is an extra term for k¥ = 3. As remarked in [10], such a term is needed for attaining uncon-
ditional stability of the scheme. An error estimate for the approximation (2.14) regarding the truncation of
the infinite sum, carried out in [10], showed that keeping k terms of the partial sums led to

k
0:6(2) ~ PEIgsal(@)loe < € () 10576(2)

k
[0.6(2) ~ PElgral @)l < C (5 ) 1000 o

for the representation of the first derivative and

k 1 2k
10206(2) + 0> 3 DElosal @)l < O (=) 102+ 60l

p=1
for the second derivative

In numerical simulations, we will take v = §/(cAt) in (2.14), with ¢ being the maximum wave propagation
speed. Here, At denotes the time step and [ is a constant independent of A¢. Hence, the partial sums
approximate ¢, with accuracy O(At¥).

2.4 Non-periodic boundary conditions

In this subsection, we will focus on the application of non-periodic boundary conditions to (1.1). Specific
details for the error analysis, as well as more generic boundary conditions, can be found in our previous work
on the H-J equation [11].

For non-periodic problems, additional requirements imposed on the operators D, need to be consistent
with the boundary condition specified on ¢. Otherwise, this can lead to order reduction in the method.
Using integration by parts, one can identify the source of the order reduction, which involves evaluations
of ¢ and its derivatives, along the boundaries. To address this issue, the partial sums, as presented above,
were modified to annihilate terms which resulted in the order reduction. Before introducing the modified
partial sums, we specify certain requirements on the coefficients A, and B, used in the construction of a
given operator D,.



2.4.1 Conditions for A, and B,

For reconstructions of first derivatives, suppose that C, and C} are given numbers. We will explain, later,
how these values are obtained. If we require

Drlv,a](a) = Ca, Drv,a](b) = Cy,
then one can use the definition (2.10) to show that we should select
Agp =v(a) — Co, Br =v(b)— Cy. (2.16)
As an example, suppose we wish to use a first order approximation of the first partial derivative, i.e.,

¢y = —aDr[¢i0)(z), ¢, ~ aDrle;a](x). (2.17)

According to an analysis of the truncation error, we should select

1 1
Ca ~ a(b:r(a)a Cb ~ _a¢z(b)v

to obtain a convergent approximation. The derivatives can be constructed using finite differences of a suitable
order.

The case for the second derivative is a bit more cumbersome, however, it works in essentially the same
way. Again, if require
Dolv, a](a) = Co, Dolv, a](b) = Cy,

where C, and C} are chosen to obtain appropriate approximation order, i.e.,

1 1
Ca ~ _?Qéxx(a); Cb ~ _?Qﬁmx(b)a

then the coefficients Ay and By are given as

Ao = 1 _1M2 (1 (Io[v, & (b) — v(b) + Cy) — (Io[v, a](a) — v(a) + Ca)), (2.18a)
By = 1 _1M2 (1 (Ip[v, a](a) —v(a) + Cy) — (Io[v, a](b) — v(b) + Cy)) . (2.18b)

The process of determining C, becomes difficult to generalize if more terms in the partial sums are
required. Instead, another modification was proposed in [11]: Rather than specify the conditions for A,
and B,, the partial sums were modified so that boundary-related terms, which led to order reduction, were
automatically removed.

2.4.2 The modified partial sums

In developing the modified sums for the first derivative, we assume that the derivatives of ¢ have been
constructed, in some way, at the boundaries, i.e., 9*¢(a) and 97*¢(b), m > 1. Using this information, the
schemes presented in [11], which address non-periodic boundary conditions, were, as follows:

_ & 3° Dyl pi0(x), k=12
¢y (x) ~ Pllgial(x) = P (2.19a)
a 1DR[¢1,p; al(r) — aDy[¢1 35 (), k=3,
=
k
o) Dy [2,p; 0](z), k=1, 2,
=

¢F (z) =~ PE[p:a)(z) = (2.19b)

~a 3% Daléaiale) +aDuloaaialie), k=3



And ¢; p and ¢9,, are given as

¢11 =0,
k 1 m
= . — E __ m —a(x—a)
Pra Pl m_z( a) ot ’ (2.20a)
k 1 m
b13=Drlpro;a] + Y (m—1)(—=] ¢(a)e =",
1,3 L|¥1,2 — ( a)
$2,1 = ¢,
- (L) (b-a)
=Dglga1;0] = Y (=) Od(b)e =),
Poa = Drlniel m_2<a) Hoe (2.20b)
k \™
925 = Drlpozial + 3 (m=1) (=) o¢(b)e 0™,
o0 = Palarel + -0 ()

with the boundary conditions for the operators
aDg(p1,1;0](a) = ¢z(a), aDL[p2,1;0](b) = —¢a(b),
oDy [¢1p; @)(a) = aDr[¢2,p;a](b) =0, for p > 2,
aDo[p+ 3;a)(a) = aDg[ps,3;a](b) =0, = could be 1 or 2.

The modified partial sum (2.19) is constructed so that it agrees with the derivative values at the boundary,
to preserve consistency with the boundary condition imposed on ¢. Furthermore, the authors provided the
following theorem, which verifies the accuracy of these modified sums:

Theorem 2.1. Suppose ¢ € C¥*1[a,b], k =1, 2, 3. Then, the modified partial sums (2.19) satisfy

1
o

~ k
0:0(x) ~ PEig: )@l < (2 ) 105460l (221a)
~ 1\*
J0:6(2) ~ PFl6al() < € (1) 105 0(a) o (221)

Recalling that we defined o = 3/(cAt) shows that the modified partial sums (2.19) approximate ¢, with
accuracy O(AtF).

3 Extensions of the scheme to nonuniform grids

In this section, we describe the extension of the method to mapped grids. Section 3.1 reviews the fact
that the H-J equation, under a coordinate transformation, yields yet another H-J equation, which allows
us to develop a systematic approaches for both mapped and non-mapped grids. Next, in Section 3.2, we
develop quadrature approximations, which employ exponential WENO to operators appearing in the MOL”
formulation on mapped grids. Finally, in Section 3.3, we outline the mapped grid algorithm used to solve
the H-J equation.

3.1 Problem description on the physical domain

In the one-dimensional case, (1.1) becomes
¢t + H(dz) =0, a<z<b, (3.1)

with ¢(z,0) = ¢°(x). Assume that the spatial domain is a closed interval [a,b] and partitioned with N + 1
points

a=z9g<x1<--<xNy_1<xTN =D,



with Az; = ;41 —x; for i = 0,--- | N — 1. These grids of the physical domain could be nonuniform. Let
@i (t) denote the solution ¢(x;,t) at mesh point x; for i = 0,--- , N. We start with the transformation from
the physical domain to the computational domain. Let £ be the uniformly distributed coordinates on our
computational domain [0, 1]:

0=¢6 <& < <én1<énv=1,

so that & = iA¢ with A = 1/N, and define a one-to-one coordinate transformation by
z=xz(£):[0,1] = [a,0],

with (&) = z;, (0) = a and z(1) = b. With this transformation, we can convert the one-dimensional H-J
equation (3.1) to a new H-J equation

¢i+ H(ge) =0, 0<E<T1, (3.2)

where
H(¢¢) = H (& e). (3.3)
The proposed numerical scheme on the transformed spatial domain is developed according to the semi-

discrete equation

d 2

where H is a numerical Hamiltonian which is a Lipschitz continuous monotone flux consistent with H, i.e.,

H(u,u) = H(u).

Here (;55 ;, and d) . are the approximations to ¢¢ at & obtained by left-biased and right-biased methods,

respectively, to take into the account the direction of characteristics propagation of the H-J equation. In
this work, the local Lax-Friedrichs flux

2 - uT +ut ut —u~

L NS (35)

is used with o (u™,ut) = max, |H'(u)| where u € [min(u~,u"), max(u", u't)].

Lemma 3.1. The numerical scheme for (3.4) on the transformed domain with a newly defined numerical
Hamiltonian (3.5) using a coordinate transformation is conservative.

Proof. The equation (3.4) can be discretized with n-th timestep At by
oIt = o7 — AtH (g, 0,) (3.6)
where ¢™ denotes the semi-discrete solution at ¢"*. Then it can be proved easily following from the fact that

the scheme for (3.6) approximates hyperbolic conservation laws. First, we define a function ®(z,t), which
satisfies

L[ b —di ¢z
O(x;) = 1=0,---,N—-1,
and consider the time evolution of this function. Let ®} be the value of ® at z; at the n-th timestep ¢t and
so we obtain that

n n n+1 n n n
LT A a)

At Az At At



Denoting the Jacobian of the coordinate transformation J = x¢, we can find the relation d)ii = ng;tl where
Ji = Jl¢,;, and using this relation with (3.3) and (3.5), the equation (3.6) is converted to

o1t = 67 — ALH(Jidy 1, Jidi )

P J; +»—Ji iy
:¢?—At|:H( 1,12 z,z)_aH ¢x,z2 ¢,:|

with ag = ag(og ¢>2'Z) = max | H'(¢¢;)|. Using this relation, in addition to (3.7), we obtain

oIt — o1 _ L I Puit1 +¢;i+1 Canl LH = bt lu ¢;,i+¢;:r,i Cand ;r,i —Ou;
At Az 2 Y] 2 2 HY g ’

which is an update equation of the form

ot — or Lora, - + (b= . bF
T = —sz |:H(¢m,i+1’ ¢r1:,i+1) - H(¢T,z7 ’E,l)] .
We identify
A - + + — B
Hu ) = H (%) _aH(u*7u+)%’

with the relation

ap(u”,ut) = max |H' (u)| = max |H' (Ju)| = Jag
u u
as the monotone numerical Hamiltonian, which is consistent with H, i.e.,
H(u,u) = H(u).

In other words, this is a conservative approximation to the hyperbolic conservation law

O, + H(®), = 0.

3.2 Space discretization with exponential based WENO schemes

In this subsection, we present the detailed spatial discretization for the operators Dy, and Dgr. We can obtain
(2.9a) and (2.9b) via recurrence relations for the integral terms:

Ir[v;a](z;) = e A% 1 Tg[v; o (1) + Jrlv; o] (),

Ip[v;al(a;) = e A% I ;0] (wir1) + Jp[v; ] (2:),

where the local integrals are defined by

Jrlv; a)(z;) = a/%i e @)y (s) ds (3.10)
Jrlv;of(z;) = oz/gwr1 e~ =2y (s) ds. (3.11)

X4

By calculating the convolution integrals with this recurrence relation, we obtain a summation method which
has a complexity of O(N) instead of O(N?).

In order to compute Jy,[v; o (z;) and Jr[v; o](x;), we propose a high order exponential based approximation.
The process to approximate Ji,[v; o](z;) is simply mirror symmetric to that of Jg[v; a](z;) with respect to
point x;, so we will illustrate the process only for the term Jg[v; a](x;). In [18,19], the authors introduced
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Figure 3.1: The 6-point stencil S with three 4-point stencils Sy, 7 = 0,1 and 2.

a sixth-order WENO scheme based on the exponential polynomial space, which we shall follow for approxi-
mating Jg[v; a](x;). To begin, we consider an interpolation stencil consisting of k+ 1 points, which contains
z;—1 and x;:

S() ={wi—r, s Ticrin},

to find a unique polynomial of degree at most k, denoted as p(z), which interpolates v(x) at the points in
S(7) so that

T4

Jrlv; af(z;) =~ a/ e @i=%)p(s) ds.

In this paper, a six-point stencil S := S(i) = {x;_3, -+ , 242} is used and this stencil is subdivided into three
substencils Sy, - - , Sy defined by S, := S,.(i) = {®i—34r, "+ , iy, } for r = 0,1 and 2. The corresponding
stencil is shown in Figure 3.1.

Let {¢1, -+, ¢} be a set of exponential polynomials of the form ¢(x) = z"e**, with n € NU {0} and

A being a data-dependent “tension” parameter, which can be tuned to improve the approximation. For
example, we can choose A € R or A € iR (i = /—1), with the function ¢ being a trigonometric polynomial
if A is in iR. With these exponential polynomials as basis functions, we define a rank k space I'y by

[y := span{¢1, ..., ¢},

which satisfies
det(dn(s;) : jyn=1,....k) #0 (3.12)

for a k-point stencil {s; : j = 1,...,k}. It is recommended that the polynomial ¢(z) = 1 is contained within
the basis in order for an interpolation kernel to satisfy a partition of unity, so we choose

[ := span{1,z,22, 2%, e e} (3.13)
as the basis functions for global stencil S and similarly,
Ty :=span{l,z, e, e~} (3.14)

for the four-point substencils. Here, I's and I'y constitute extended Tchebysheff systems on R so that the
non-singularity of the interpolation matrices in (3.12) is guaranteed, see [18,22].

On the big stencil S(%), using the basis defined on I'g, we obtain the approximation as
Jht = a/ e @9 p(s) ds, (3.15)
Ti—1

where p is an interpolant for v that satisfies J* = Jg[v;a](x;) + O(Az®) if v is smooth on S(i). Similarly,
on each of the smaller stencils, we have

I ¢=a/ e =)p, (s) ds, (3.16)
Ti1

i—
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where p, is the interpolant to v using the basis from I'y on nodes S,.(i) which satisfies J}%. = Jr[v; o](z;) +
O(Ax*) for smooth v. When the function v is smooth, we would like to combine approximations on the
smaller stencils S, (i) so they are consistent with those on the larger stencil S(i), i.e.,

2
JE=>"d.Jf. (3.17)
r=0

The coefficients d, are the linear weights which satisfy 23:0 d, = 1.

The construction of smoothness indicators is as follows: First, for r = 0,1, 2, we use mth-order generalized
undivided differences (m = 2,3) on S, defined by

DM, = Z th’,Ll]v(xn), (3.18)
Tn €Sy (1)

which converge to Az™v(™ (x;) at a higher convergence rate than classical undivided differences. Let n,

indicate the number of points inside the stencil S, and define the coefficient vector ¢l := (cm} T Xy, € ST)T
in (3.18) by solving the linear system

V. elml = glml,

for the non-singular matrix

— )
V= (W:$nesra f:o,...,n,,-—l)

and 6" .= (Om,e:€=0,...,np — 1)T. Then a simple calculation with Taylor expansion shows that
DMy = Az™o™ (z;) + O(Az™), (3.19)
on the smooth region. We now define a measurement for the smoothness of data in each substencil by

1, for r=0,1,2, (3.20)

ﬂr = ’D?’Ullz + |D§’U1
and the global smoothness indicator 7 is simply defined as the absolute difference between [y and Ss, i.e.,
7= [Bo — Bal.
We form the final approximation using
2
AR =D w gl (3.21)
r=0

The nonlinear weights w;., in the above, are defined as

2 2
- ~ ~ T 1 Br)
- = W s r = Upr 1 Py y .22
Wy w/sgzow and @ d<+e—|—5r+2(e+7' ) (3.22)

where € > 0 is a small number to avoid the denominator becoming zero. In our experiments we take ¢ = 1076,
Note that we have employed the nonlinear weights based on the idea of the WENO-P+3 scheme proposed
in [34], which enjoys less dissipation and higher resolution compared with the classical WENO schemes. This
construction enables the approximation for Jg[v; @](z;) to retain a high order of accuracy and it is proven
in the following theorem.

Theorem 3.2. Assume that v is smooth on the global stencil S(i). Then the approzimation AJI defined in
(3.21) satisfies the relation

| Jr[v; o] (2:) — AT = O(Azf),

i.e., converges to Jrlv;a)(xz;) in 6th order accuracy.
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Proof. From the equations (3.17) and (3.21), it is easily obtained that

2
dTJfT> + ) (dr —wp) I
0 r=0

using the local approximations Jf. to Jg[v; o](x;). By definition of the linear weights d, in the (3.15) and
(3.17), the first term on the right-hand side has the designed order of accuracy so that it is sufficient to
consider the second term. Since the local integral Jﬁ is constructed to have convergence in (3.16) and both

weights {d,} and {w,} fulfill a partition of unity, we have

Jrlv; a)(x;) — AJiR = (JR[U;CX](II') -

2 2
Z(d” - wr)Jfr = Z(dr —w,) (Jrlv; o](z;) + O(Az?))
r=0 r=0
2
=) (d, — w,)0(AzY) = O(AxY),
r=0
where the last equality is straightforward from (3.19) and (3.22) if we select € = Az? in (3.22). O

Remark 3.3. In [10,11], the authors proposed to adapt nonlinear filters o; 1, and o; g to control oscillations
which arise when the derivative of the solution to the H-J equation develops discontinuities. For example,
in the periodic case, the approximation is given by

k
¢y, = aDg[p;al(z;) + Z i, RDR ¢ o (),
p=2

: (3.23)
¢r; = —aDig;al(z;) — a Z i, D7 [¢; o (z:).

The authors applied WENO quadrature to approximate the operators Dy and Dpg, but only for the first
step, which corresponds to p = 1 in (3.23). The filter was then adapted for the case p > 2, so that a cheaper
linear quadrature, defined on fixed stencils, can be used.

We design a filter by defining parameters 6; as

min, (|Dlv;| + [D2u,]) + ¢
max, ([Divi| + [DZvi]) + ¢

; = forr=20,---,3, (3.24)
where DFv; are undivided differences of order k on four three-point stencils around v;, defined in (3.19).
Then, we adopt a nondecreasing map p designed with cubic B-splines for 6;, in Figure 3.2 and the filter o;
is defined as

o = u(2-67). (3.25)

This definition for the filters allows us to preserve the approximation order of these schemes. If the big
stencil is determined to be smooth according to the definitions (3.18) and (3.24), then we see that o; ~ 1.
On the other hand, if a singularity develops in the vicinity of z;, then o; ~ 0.

uo) [

0 1 2
(4

Figure 3.2: The function u designed with cubic B-splines for filters o.
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3.3 Algorithm

In what follows, we will use H and the coordinates z, rather than H and coordinates &, for purposes of
convenience. For time integration, we propose to use the classic explicit SSP RK methods [17] to advance
the solution from time t" to t"*!. We denote ¢™ as the semi-discrete solution at time t”. In this work, we
use the following SSP RK methods, including the first order forward Euler scheme

oMt = " — AtH (7, ¢ (3.26)

the second order SSP RK scheme

o) = ¢" — AtH (o7, ¢7"),

G = 56+ o (o) — AL, 60 )) (3.27)
and the third order SSP RK scheme

o) =" — AtH(6p7, 97,

o) = 36"+ 7 (6 — AH(HO, 900 ),

G = 26"+ 2 (90— AH(HP T, 60)) (3.28)
In addition, linear stability of the proposed kernel-based schemes has been established in [11]:

Theorem 3.4. For the linear equation ¢y + cop, = 0, (i.e. the Hamiltonian is linear) with periodic boundary
conditions, we consider the k'™ order SSP RK method as well as the k' partial sum in (2.14), with o =
B/(|c|At). Then there exists a constant Bi maz > 0 for k =1, 2, 3, such that the scheme is unconditionally
stable provided 0 < 8 < Bk max- The constants By maz for k=1, 2, 3 are summarized in following:

k 1 2 3
Brmaz | 2 1 1.243

We summarize the proposed scheme for solving the one dimensional periodic boundary case in the fol-
lowing algorithm flowchart.

Algorithm: MOL”-type scheme for solving one-dimensional H-J equation on nonuniform grids

We solve (3.1) until the final time ¢ = T. Let the given nonuniform grid on the physical domain [a,b] be {z;},
i=0,...,N. We denote the numerical solution at n-th time step t = ¢™ by {¢? := ¢"(x;)}. Start withn =0
noting that {¢{} is given.

1. Define a computational grid {&;}, i =0,..., N, on [0, 1] with uniform distribution A = 1/N.
2. Approximate the associated Jacobian for the transformation x¢ by a fourth-order finite difference scheme:

i—2 — 8%;—1 + 8Ti11 — Tiyo
12A8

{weli =~ } (3.29)

and then we now solve the transformed H-J equation (3.2).

3. Set 3 depending on desired order k of the scheme according to Theorem 3.4 and the time step size At° by
CFL condition (4.1).
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While t < T, given ¢™ and At™ at time t =t", n > 0,

4. Approximate the integrals J; and Jg using the exponential polynomial based WENO quadrature. For
1=0,...,N,

(a) Construct the local approximations .J/,. and J/% based on exponential polynomials (3.16) on each
substencil S, for = 0,1,2, determine the linear weights d,, and form the approximation given by
equation (3.17).

(b) Compute the smoothness indicators of local data via (3.20) and construct nonlinear weights (3.22) for
the final approximations JF and JF in (3.21).

5. Using the previously computed approximations .A.J and AJ=, apply the recurrence relations (3.8) and (3.9)
to obtain the convolution integrals. Form the inverse operators (2.8a) and (2.8b) by applying boundary
conditions (see Section 2.3). Once we have £;' and L3', construct the operators Dy, and Dg defined in
(2.10).

6. Repeat step 4. and 5. k times to approximate the first derivatives ¢§_ and ¢Z with &k partial sums of D,
and Dg, respectively. If multiple terms in the partial sums are desired, i.e., k& > 2, then apply WENO
quadrature only to the first terms and use the cheaper linear quadrature on the remaining ones. For this
case, additional filters (3.25), obtained in WENO quadrature, are needed. Filters are applied according to
(2.14).

7. Form the local Lax-Friedrichs Hamiltonian (3.5) for the transformed H-J equation (3.4) using the inverse of
associated Jacobian (3.29), i.e., {£,}. Then, update the time step from t" to t"*1 = t" + At" by applying
an appropriate RK scheme (3.26) - (3.28). One should couple an order k& RK method to an approximation
for the partial derivatives of an equivalent order for consistency.

8. Ift"T1 < T, set the time step size At" ! by (4.1) with updated wave speeds. Otherwise, t"T1+ A"+ > T,
so we set At"T1 =T — "1 Execute another time step of the process, beginning with 4., until time 7T'.

3.4 Two-dimensional implementation

Consider the two-dimensional H-J equation

with ¢(z,y,0) = ¢°(z,y). We assume (x;,y;) refers to the (4,7)-th node of a two-dimensional orthogonal
grid. The spacing between points is denoted by Az; = z; — ;-1 and Ay; = y; — y;—1. In addition, we shall
take ¢(x;,y;,t) = ¢ ;(t) as the discrete solution to (3.30) on the grid.

As with the one-dimensional case, we assume the existence of one-to-one coordinate transformations
xz = z(&n) and y = y(&,n) from the computational domain [0,1] x [0,1] to the physical domain. Here,
the computational domain is distributed by a fixed uniform mesh given by & = iA{ and n; = jAn with
A& =1/N and An =1/N. Then, the H-J equation (3.30) defined on irregular domain becomes

¢+ H(gpe,py) =0 (3.31)

defined on uniform spatial domain, where ﬁ(qﬁg, ¢n) = H(ape + Nadn, Eyde + nydy). Below, we will use H
and coordinates x and y instead of H and coordinates ¢ and 5. In the two-dimensional examples, we shall
use the semi-discrete scheme

d ISP _
£¢i,j (t) + H(Qsz,i,j» Qs;i,j; ¢y,i,ja Qs;r,”) =0, (3~32)

where the numerical Hamiltonian H (u, u;v,v) is a Lipschitz continuous monotone flux that is consistent
with H. As in the one-dimensional case, we employ the local Lax-Friedrichs numerical Hamiltonian.
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4 Numerical results

In this section, we present the numerical results of the proposed scheme for one-dimensional and two-
dimensional Hamilton-Jacobi equations using regular and irregular grids discussed in Section 4.1, 4.2 and
4.3, respectively. The performance of proposed scheme is examined by comparing the results from the
previous kernel based unconditionally stable scheme [11]. The code implementation in Python with some
sample results are available on the web [12]. The parameter A > 0 in the exponential basis can be tuned
according to the problem, but in this paper, it is selected so that AAE = 1 in all experiments. While there
are examples with a CFL > 1, unless otherwise stated, the presented numerical results are computed by the
third-order scheme (i.e., k = 3) using CFL = 0.5 to demonstrate the performance.

4.1 One-dimensional cases

Here, we present convergence results for the schemes on a one-dimensional uniform mesh with Az = Ax; for
1 =20,---,N. The time step is set by

At — LAY, (4.1)
«

where « is the maximum wave propagation speed. We see the order of accuracy of proposed scheme for the
linear and non-linear problems and present numerical results for several H-J examples.

Example 4.1. We first solve the linear advection equation

¢t + ¢ =0 (4.2)

on the spatial domain [0, 1] with periodic boundary conditions. For the initial condition, we use the smooth
function

¢(x,0) = ¢1(x) := sin(27x).

In Table 4.1, we provide the L., errors at time 7" = 1 and along with the associated order of accuracy. We
can see that kth order of accuracy is achieved for kK = 2 and 3 cases and second order accuracy is observed
for the case kK = 1. Such superconvergence for the first order scheme, with k = 1, is expected by observing
that the proposed scheme, with § = 2, applied to the linear problem, is equivalent to the second order
Crank-Nicolson scheme [9].

In the second case, we use the following initial function

0 if0< <025,
P(@—1) if025 <z <04,

d(2,0) = ¢a(x) :=< 2 if 0.4 <z < 0.6,
(3 _p) if0.6 <z < 0.75,
0 if0.75 <z <1

which is a continuous and piecewise linear function. We plot the numerical solution and its derivative at time
T =1, using N = 80 grid points, in Figure 4.3. We see that the proposed scheme improves the accuracy of
the approximation near the jump discontinuity in the derivatives when compared to our previous scheme.

Example 4.2. In this example, we consider the Burgers’ equation

Gut 5 (60 1) =0, (13)

with the smooth initial function
¢(z,0) = — cos(mz)



on the spatial domain [—1, 1] with periodic boundary conditions at two different final times.
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Our first test for this problem stops at time 7' = 0.5/72, when the solution is still smooth. In Table 4.2,
we provide the L, errors and orders of accuracy for schemes with & = 1,2 and 3, which are shown to be

cFL | N k=1 g=2. k=2 g=1. k=3. 8=1.2.
error order error order error order
20 | 1.28e-02 — 1.73e-01 - 2.25e-03 -
40 | 3.23e-03  1.987 | 4.48e-02 1.947 | 1.72¢-04 3.707
0.5 80 | 8.07e-04 1.998 | 1.13e-02 1.990 | 1.74e-05 3.310
160 | 2.02e-04 2.000 | 2.82e-03 1.998 | 2.02e-06 3.104
320 | 5.05e-05 2.000 | 7.06e-04 2.000 | 2.40e-07 3.076
20 | 5.08e-02 - 5.61e-01 - 3.15e-02 -
40 | 1.29e-02 1.981 | 1.73e-01 1.698 | 2.35e-03 3.744
1 80 | 3.23e-03 1.996 | 4.48e-02 1.948 | 1.86e-04 3.660
160 | 8.07e-04 1.999 | 1.13e-02 1.990 | 1.80e-05 3.368
320 | 2.02e-04 2.000 | 2.82e-03 1.998 | 2.06e-06 3.129
20 | 1.94e-01 - 9.92e-01 - 3.08e-01 -
40 | 5.09e-02 1.931 | 5.66e-01 0.810 | 3.16e-02 3.283
2 80 | 1.29e-02 1.984 | 1.73e-01 1.710 | 2.36e-03  3.747
160 | 3.23e-03 1.996 | 4.48e-02 1.948 | 1.86e-04 3.661
320 | 8.07e-04 1.999 | 1.13e-02 1.990 | 1.80e-05 3.370

Table 4.1: Loc-errors and orders of accuracy for Example 4.1 with ¢ (x) at T = 1.

Figure 4.3: Numerical solution ¢ and its derivative ¢, for Example 4.1 with ¢o(z) at T = 1.
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—1.21 —21
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Figure 4.4: Numerical solution ¢ and its derivative ¢, for Example 4.2 at T = 3.5/72.



CFL | N k=1. g=2. k=2 =1 k=3.8=12.
error order error order error order
20 | 1.57e-02 - 1.69e-02 - 3.30e-04 -
40 | 7.94e-03 0.985 | 4.73e-03 1.839 | 3.63e-05 3.186
0.5 80 | 4.09e-03 0.958 | 1.29¢-03 1.881 | 4.58e-06 2.986
160 | 2.07e-03 0.980 | 3.31e-04 1.958 | 5.20e-07 3.137
320 | 1.05e-03 0.987 | 8.47e-05 1.966 | 6.00e-08 3.115
20 | 3.19e-02 - 5.48e-02 - 4.06e-03 -
40 | 1.57e-02 1.025 | 1.70e-02 1.691 | 5.08e-04 2.998
1 80 | 7.95e-03 0.980 | 4.76e-03 1.833 | 4.98¢-05 3.351
160 | 4.12e-03 0.947 | 1.29¢-03 1.890 | 5.00e-06 3.316
320 | 2.07e-03 0.992 | 3.31e-04 1.959 | 5.32e-07 3.234
20 | 9.14e-02 — 1.92e-01 - 3.36e-02 -
40 | 3.23e-02 1.501 | 5.67e-02 1.757 | 4.51e-03  2.898
2 80 | 1.57e-02 1.042 | 1.71e-02 1.731 | 5.12e-04 3.139
160 | 8.03e-03 0.966 | 4.76e-03 1.842 | 5.00e-05 3.356
320 | 4.12e-03  0.961 | 1.29e-03 1.890 | 5.01e-06  3.320

Table 4.2: Ly-errors and orders of accuracy for Example 4.2 at T = 0.5/72.
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k-th order. Provided in Figure 4.4 is a plot of the numerical solution at T'= 3.5/72, when the shock occurs.
Here, N = 40 grid points are used to compute the solution. It seems that the proposed scheme is as effective

as the previous result.

Example 4.3. We now solve the one-dimensional Riemann problem with a non-convex Hamiltonian

Here, we use the initial condition

on the fixed spatial domain [—1, 1] with the inflow Dirichlet boundary conditions ¢(+1,t) = —2. In Figure

bt 3 (62 -1) (2 —4) =0

o(x,0) = —2|z,

(4.4)

4.5, we show plots of the numerical solution, which is computed up to time T"= 1 using N = 80 grid points.
We measure convergence relative to a reference solution that is computed with N = 1600 grid points. Both
the previous and proposed methods are effective at resolving the reference solution.

71'0,

Figure 4.5: Numerical solution ¢ and its derivative ¢, for Example 4.3 at T = 1.
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4.2 Two-dimensional cases

For the two-dimensional cases with uniformly distributed grids, the time step is chosen as

CFL
A= (aaTBr + ayfAy)’ (45)

where o, and ay are the maximum wave propagation speeds in the x and y directions, respectively. To
demonstrate the performance of proposed scheme, we present the numerical solutions using CFL = 0.5 as
well as CFL = 2.

Example 4.4. For our first example, we consider the linear advection equation

Gt + (dr + dy + 1) =0, (4.6)

and we apply a periodic boundary condition in each direction. We first consider the smooth initial data
given by

¢($, Y, O) = ¢3(13, y) = COS(?T(.I’ + y)/2)7
which is defined on the spatial domain [—2,2] x [-2,2]. We report the L., error and orders of accuracy
at time T = 2 in Table 4.3. It is observed that the proposed scheme achieves the appropriate convergence

CFL | N, x N, k=1 pg=1. k=2. 5=0.5. k=3. =0.6.
error order error order error order

20 x 20 1.28e-02 - 1.73e-01 - 2.25e-03 -
40 x 40 3.22e-03  1.987 | 4.48e-02 1.947 | 1.69e-04 3.736
0.5 80 x 80 8.07e-04 1.998 | 1.13e-02 1.990 | 1.65e-05 3.356
160 x 160 | 2.02e-04 2.000 | 2.82e-03 1.998 | 1.90e-06 3.115
320 x 320 | 5.05e-05 2.000 | 7.06e-04 2.000 | 2.33e-07 3.032

20 x 20 5.08e-02 - 5.61e-01 - 3.15e-02 -
40 x 40 1.29e-02  1.981 | 1.73e-01 1.698 | 2.35e-03 3.744
1 80 x 80 3.23e-03  1.996 | 4.48¢-02 1.948 | 1.86e-04 3.662
160 x 160 | 8.07e-04 1.999 | 1.13e-02 1.990 | 1.80e-05 3.370
320 x 320 | 2.02e-04 2.000 | 2.82e-03 1.998 | 2.04e-06 3.135

20 x 20 1.94e-01 - 9.92e-01 - 3.08e-01 -
40 x 40 5.09e-02 1.931 | 5.66e-01 0.810 | 3.16e-02 3.283
2 80 x 80 1.29e-02  1.984 | 1.73e-01 1.710 | 2.36e-03  3.747
160 x 160 | 3.23e-03 1.996 | 4.48e-02 1.948 | 1.86e-04 3.661
320 x 320 | 8.07e-04 1.999 | 1.13e-02 1.990 | 1.80e-05 3.370

Table 4.3: L-errors and orders of accuracy for Example 4.4 with ¢3(x,y) at T = 2.

1.5 1.5
1.0 1.0
0.5 0.5
0.0
1.0 1.0
0.0 y 0.0 :
02 0; 06 o5 - <02 Y 02 0; 06 05 <027 Y
(a) Previous (b) Proposed

Figure 4.6: Numerical solutions for Example 4.4 with ¢4(z,y) at T = 1.
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orders as it does for the one-dimensional case in Example 4.1. As before, we have the superconvergence for

k =1 case.

In the second test problem, we test our method on a piece-wise continuous, i.e., C?, function

¢(z,y,0) = pa(z,y) ==

0
2
0

f(z,y)

ifz<0.2 or

y <02,

if 0.4<a,y<0.6,

ifx>0.8 or
otherwise

y > 0.8,

defined on the domain [0,1] x [0, 1], where f(x,y) is a real-valued piece-wise linear function defined so that
¢4 is continuous. We display the result obtained with the proposed scheme, as well as the previous approach
using a 100 x 100 grid of points. Plots of the numerical solutions at the time 7' = 1 are provided in Figure
4.6. As with Example 4.1, we can see the resolution improvements of the proposed scheme around sharp
edges, compared with the previous scheme.

Example 4.5. In this example, we solve the Burgers’ equation

with a smooth initial condition

Gut g (0e 0y + 17 =0

¢(x,y,0) = —cos(m(z +y)/2),

CFL | N, x N, k=1 pg=1. k=2 B=0.. k=3. 8=0.6.
error order error order error order
20 x 20 5.48e-02 — 1.68e-02 - 6.36e-04 —
40 x 40 2.98e-02 0.877 | 4.72¢e-03 1.836 | 5.11e-05 3.637
0.5 80 x 80 1.63e-02 0.874 | 1.28e-03 1.880 | 4.29¢-06 3.574
160 x 160 | 8.37e-03 0.961 | 3.30e-04 1.956 | 5.13e-07 3.065
320 x 320 | 4.27e-03 0.970 | 8.46e-05 1.965 | 6.03e-08 3.091
20 x 20 9.84e-02 — 5.89e-02 - 7.60e-03 —
40 x 40 5.54e-02 0.829 | 1.69e-02 1.801 | 9.22e-04 3.043
1 80 x 80 3.05e-02  0.860 | 4.74e-03 1.835 | 6.16e-05 3.904
160 x 160 | 1.63e-02 0.906 | 1.28e-03 1.887 | 4.75e-06 3.697
320 x 320 | 8.37e-03 0.961 | 3.30e-04 1.956 | 5.25e-07 3.177
20 x 20 1.66e-01 - 2.41e-01 - 5.63e-02 -
40 x 40 9.94e-02 0.739 | 5.96e-02 2.017 | 8.39e-03 2.745
2 80 x 80 5.64e-02 0.817 | 1.70e-02 1.810 | 9.15e-04 3.197
160 x 160 | 3.05e-02 0.886 | 4.74e-03 1.841 | 6.26e-05 3.871
320 x 320 | 1.63e-02 0.906 | 1.28e-03 1.886 | 4.76e-06 3.717

Table 4.4: Ly-errors and orders of accuracy for Example 4.5 at T = 0.5/72.

Figure 4.7: Numerical solutions for Example 4.5 with CFL = 0.5 (left) and CFL = 2 (right) at T = 1.5/7>.
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on the periodic spatial domain [—2,2] x [~2,2]. We compute the L, errors at time 7" = 0.5/7%, when the
solution is smooth. Table 4.4 shows the associated orders of accuracy measured for each of the schemes,
which match the expected orders. Also in Figure 4.7, is a plot of the numerical solutions using 40 x 40 grid
points at time T' = 1.5/72, when the solution has developed a discontinuous derivative.

Example 4.6. We now consider a Hamiltonian which is neither convex nor concave:

¢ — cos(¢y + ¢y +1) =0. (4.9)

Here the spatial domain [—2,2] x [—2,2] is defined with periodic boundary conditions in both z and y
directions. In Figure 4.8, we plot the numerical solutions at time 7" = 1.5/7% using a 40 x 40 grid with the
smooth initial data (4.8). We observe that the proposed schemes maintain good resolution when a larger
CFL number is used, i.e., CFL = 2, relative to CFL = 0.5.

(a) CFL = 0.5

(b) CFL = 2

Figure 4.9: Numerical solutions’ surfaces (left) and optimal controls (right) for Example 4.7 at T' = 1.
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Example 4.7. We solve the following optimal control problem related to cost determination:

o+ sin(y). + (sin(x) + sign(9,))é, — 3 sin’(y) — 1+ cos(x) = 0,
¢($7 y? 0) = 07

(4.10)

on the periodic spatial domain [—m, 7] x [—m,7]. We compute the numerical solutions up to T' = 1 using
grids of size 60 x 60 and provide plots of the numerical solution and the optimal control sign(¢,) in Figure
4.9. Proposed schemes capture the non-smooth structures of the solutions with both CFL = 0.5 and 2.

Example 4.8. In this example, we consider the two-dimensional Riemann problem with a non-convex

0.5

—0.5

(a) Proposed (CFL = 0.5)

(b) Proposed (CFL = 2)

1.0

= 0.0

—0.5

(c) Previous (CFL = 2)

Figure 4.10: Numerical solutions’ surfaces (left) and contours (right) for Example 4.8 at T = 1.
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Hamiltonian:

¢ +sin(¢, + ¢y) =0, (4.11)

on the spatial domain [—1,1] x [—1, 1], where outflow boundary conditions are imposed. Our initial data is
represented by the non-smooth function

d)(I,yvO) = 7T(|y‘ - |:E|)

We run the simulation using 80 x 80 grid points and track the solution up to time 7" = 1. Plots of the
numerical solutions are provided in Figure 4.10. Note that when a CFL number of 2 is used, the proposed
scheme reduces dissipation encountered by the previous scheme near the boundaries.

Example 4.9. The next problem is a prototypical model in geometric optics, which is a Cauchy problem
for H-J equation with a non-convex Hamiltonian:

b+ /P2 + 2 +1=0,

1 (4.12)
0(,9,0) = 7(cos(2mw) — 1)(cos(2my) — 1) — 1,

on a periodic domain [0,1] x [0,1]. We approximate the solution using 60 x 60 grids up to a final time
T = 0.6, during which the characteristics intersect. The surfaces and contour lines of the numerical solution
are shown in Figure 4.11. We note that sharp and symmetric regions are well-maintained in the solutions.

Example 4.10. In this test problem, we change the sign of Hamiltonian and use the same initial function
as the previous example to simulate a propagating surface:

o= 83+ 03 +1=0,

) (4.13)
¢(z,y,0)=1— E(COS(27T1‘) — 1)(cos(2my) — 1),

on the periodic domain [0, 1] x [0,1]. As above, 60 x 60 grid points are used and the snapshots of numerical
solutions at t = 0, 0.3, 0.6 and 0.9 are given in Figures 4.12. We have also included plots of the solutions,
which do not use the nonlinear filters (see Figures 4.12(c)) to demonstrate their effect.

4.3 Examples with irregular grids

In this section, we apply the proposed scheme to several examples defined on irregular grids = and y in
order to demonstrate the capabilities of the coordinate transformation x = z(§),y = y(n) using uniform
computational grids £ and 7. Here, we present the results with the time step
CFL
At = , (4.14)
(az/AE + oy /An)

where o, and o, are the maximum wave propagation speeds in the  and y directions, respectively.

Example 4.11. We first consider the two-dimensional Burgers’ equation

Gut 3 (bs 6, +1)° =0,
o(z,y,0) = —cos(m(z + y)/2),

(4.15)

on the periodic domain [—2,2] x [-2,2]. We generate a nonuniform mesh using random perturbations and
compute the L, errors and orders of accuracy at T = 0.5/m2 while the solution is still smooth. In Table
4.5, we confirm the convergence rates of the mapped scheme on nonuniform meshes.



CFL | N, x N, k=1 g=1. k=2. 6=0.. k=3. =0.6.
error order error order error order

40 x 40 1.09e-01 - 6.43e-02 - 7.76e-03 -
80 x 80 6.14e-02 0.835 | 1.66e-02 1.951 | 1.00e-03 2.952
0.5 160 x 160 | 3.30e-02 0.895 | 4.47e-03 1.894 | 7.88e-05 3.669
320 x 320 | 1.71e-02 0.945 | 1.19e-03 1.916 | 4.69e-06 4.069
640 x 640 | 8.72e-03 0.975 | 3.05e-04 1.959 | 3.36e-07 3.802

40 x 40 1.73e-01 - 1.98e-01 - 4.67e-02 -
80 x 80 1.09e-01  0.657 | 6.45e-02 1.621 | 7.72¢-03 2.598
1 160 x 160 | 6.15e-02 0.831 | 1.66e-02 1.961 | 9.92e-04 2.960
320 x 320 | 3.30e-02 0.898 | 4.46e-03 1.893 | 7.13e-05 3.799
640 x 640 | 1.71e-02 0.945 | 1.18¢-03 1.915 | 6.97e-06 3.354

40 x 40 2.16e-01 - 3.21e-01 - 1.73e-01 -
80 x 80 1.72e-01  0.327 | 1.98e-01 0.696 | 4.68e-02 1.888
2 160 x 160 | 1.10e-01  0.653 | 6.45e-02 1.621 | 7.72e-03 2.600
320 x 320 | 6.15e-02 0.835 | 1.66e-02 1.962 | 1.00e-03 2.948
640 x 640 | 3.30e-02 0.897 | 4.46e-03 1.894 | 7.62e-05 3.716

Table 4.5: Loo-errors and orders of accuracy for Example 4.11 at T = 0.5/72.
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0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

(b) CFL = 2

Figure 4.11: Numerical solutions’ surfaces (left) and contours (right) for Example 4.9 at T = 0.6.
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Figure 4.12: Propagating numerical solutions’ surfaces for Example 4.10 at T' = 0,0.3,0.6, and 0.9

Example 4.12. We solve the two-dimensional Riemann problem with a non-convex Hamiltonian

¢t +sin(¢z +¢y) =0, —1<zy<l1
¢, y,0) = w(|yl - [«])

which we considered in Example 4.8. To see the efficiency of the scheme, we construct a nonuniform mesh
consisting of 60 x 60 grid points using a geometric series, selecting the ratio between the smallest cell size
and the biggest cell size to be 1 : 7. The resulting mesh is displayed in Figure 4.13(a). On this nontrivial
grid, we plot the numerical solutions’ surfaces and contour lines at time 7" =1 in Figure 4.13.

(4.16)

Example 4.13. We consider the same problem of a propagating surface (4.13) in Example 4.10 with the
initial condition -
o(z,y,0) = sin (5(9[:2 + yQ))

defined on the unit disk 2% 4+ y? < 1 where the Dirichlet boundary condition
d(x,y,t) =1+t forall z?+y?=1

is imposed. The domain is discretized by embedding the boundary in a regular 60 x 60 Cartesian mesh so
that the irregular spacing occurs only near the boundary. The discretization of the domain is illustrated in
Figure 4.14(a). Blue and Red dots in the Figure indicate z and y directional boundary points, respectively.
Snapshots of the propagating surface taken at 7'=0,0.6 and 1.2 are given in Figure 4.14.

Example 4.14. As our last example on nonuniform meshes, we consider the “level set reinitialization”
equation [33]

e+ sign(go) (/@3 + ¢ — 1) =0, (4.17)
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(a) Nonuniform mesh

= 0.0

—0.5

(b) Numerical solutions’ surfaces (left) and contour (right)

Figure 4.13: Numerical solutions on nonuniform meshes for Example 4.12 at T = 1.

on the circular domain % < v/z? +y? < 1. We choose an initial function with the signed distance function
to the circle centered at the origin:

d(z,y,0) = do(z,y) = Va2 +y? — % (4.18)

The hole in the circular domain is discretized by, again, embedding the boundary in a regular Cartesian
mesh with 60 x 60 grid points. In Figure 4.15, we plot the resulting surface of the numerical solution at time
T =1 on the mesh.

5 Conclusion

In this paper, we proposed a class of high order unconditionally stable schemes to solve the Hamilton-Jacobi
equation. By leveraging a coordinate transformation, we implemented these schemes on two and three-
dimensional nonuniform meshes to compute numerical solutions on domains containing non-trivial geometry.
Our proposed scheme also makes use of an exponential basis to construct a novel WENO quadrature with
improved shock-capturing capabilities. The proposed schemes show significant improvement compared to
our previous work [10,11] on all examples tried in this work.

As previously mentioned, one of the advantages of using exponential polynomials (e.g., e**) is that they
can be tuned according to characteristics of the given data by changing the “tension” parameter \; however,
a proper selection of this parameter is not the focus of this paper. For our future study, we would like to
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develop a WENO scheme capable of choosing the optimal parameters using local properties of the underlying

data.

100 4
0.75 4
0.50 4
0.25
0.00
-0.25 A
—=0.50 A
—0.75 A

—1.00 A

Y
(b) Propagating numerical solutions with CFL = 0.5 (Left) and CFL = 2 (Right)
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Figure 4.14: Propagating numerical solutions at T=0, 0.6 and 1.2 on nontrivial meshes for Example 4.13
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(a) The domain (b) Solution

Figure 4.15: (a) The discretization of the domain which is embedded in a Cartesian grid. Blue and Red dots
indicate z and y directional boundary points, respectively. (b) Surface of the solution for Example 4.14.
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