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ABSTRACT
High power sources of electromagnetic energy often require complicated structures to support electromagnetic modes and shape electromag-
netic fields to maximize the coupling of the field energy to intense relativistic electron beams. Geometric fidelity is critical to the accurate
simulation of these High Power Electromagnetic (HPEM) sources. Here, we present a fast and geometrically flexible approach to calculate
the solution to Maxwell’s equations in vector potential form under the Lorenz gauge. The scheme is an implicit, linear-time, high-order,
A-stable method that is based on the method of lines transpose (MOLT). As presented, the method is fourth order in time and second order
in space, but the A-stable formulation could be extended to both high order in time and space. An O(n) fast convolution is employed for
space-integration. The main focus of this work is to develop an approach to impose perfectly electrically conducting (PEC) boundary condi-
tions in MOLT by extending our past work on embedded boundary methods. As the method is A-stable, it does not suffer from small time
step limitations that are found in explicit finite difference time domain methods when using either embedded boundary or cut-cell methods
to capture geometry. This is a major advance for the simulation of HPEM devices. While there is no conceptual limitation to develop this
in 3D, our initial work has centered on 2D. The extension to 3D requires validation that the proposed fixed point iteration will converge
and is the subject of our follow-up work. The eventual goal is to combine this method with particle methods for the simulations of plasma.
In the current work, the scheme is evaluated for EM wave propagation within an object that is bounded by PEC. The consistency and per-
formance of the scheme are confirmed using the ping test and frequency mode analysis for rotated square cavities—a standard test in the
HPEM community. We then demonstrate the diffraction Q value test and the use of this method for simulating an A6 magnetron. The abil-
ity to handle both PEC and open boundaries in a standard device test problem, such as the A6, gives confidence on the robustness of this
new method.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0019210

I. INTRODUCTION

The generation of coherent, high power electromagnetic
(HPEM) radiation via the interaction of vacuum electromagnetic
fields and intense relativistic electron beams continues to remain
an active area of research, despite tracing its roots to the days of
Hertz and Marconi and the intensive development of radar dur-
ing the Second World War. Modern applications include radar and
remote sensing, as well as novel schemes for high power, long-range
communication, atmospheric and ionospheric modification, space

propulsion, advanced electronic warfare, and the emerging fields
of directed energy technology.1 The power density of these novel
sources has demonstrated Moore’s law-like behavior for decades,
with a doubling time of roughly 26 months since the 1930s. Criti-
cal to this long-term, and on-going, technological advance has been
the advent of high fidelity and computationally efficient algorithms
to simulate these devices.2

The introduction of these advanced modeling tools has
re-invigorated the design of HPEM devices by allowing fully
three-dimensional structures combining low frequency features,
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to handle high DC applied fields, to co-exist with high frequency
“radio frequency” (RF) features, such as slow wave structures, which
combine to allow the kinetic energy stored in intense relativistic elec-
tron beams to be transferred to radiated electromagnetic fields with
power in 100s of megawatts to gigawatts that can then be used to pro-
duce useful applications. It is this combination of the need to model
both low frequency (DC) applied fields and high frequency (AC)
fields that leads to both strict requirements on geometric fidelity as
well as the need to handle multiple time scales in a time domain
simulation. The current state of the art for these simulation tools is
still predominantly the particle-in-cell method,3 with field solutions
based on a finite difference time domain (FDTD). These standard
Particle In Cell (PIC) methods often require highly parallel imple-
mentation to reduce the effect of the structure ortho-normal grid
and/or so-called “cut cells” where the geometry is approximated by
linear interpolation through the cells. Care must be taken in the
introduction of these cut cells to ensure that the resulting geometric
description does not have new numerical “surface” modes associ-
ated with the cut cell algorithm. Additionally, it is often the case that
these new “cut cells” still suffer from a Courant–Friedrichs–Lewy
(CFL) condition on the maximum time step. Even though the
FDTD based Yee scheme is a well-agreed method for Maxwell’s
equations and preserves divergence-free quantities, because of an
explicit scheme, it suffers from CFL restrictions and is not suit-
able for curved surfaces due to the cut-cell staircasing approxi-
mation. Another approach, the conformal finite difference time
domain (CFDTD) PIC method, treats cut-cells differently to main-
tain second-order accuracy for curved surfaces.4 The CFDTD
Dey–Mittra algorithm adjusts the area and lengths of cut cells in the
equation of Faraday’s law in Maxwell’s equation, but its stability is
limited by the CFL condition and it would not be scalable. The ADI-
FDTD is one of the most powerful schemes to solve Maxwell’s equa-
tions because it relies on simple, one-dimensional, tridiagonal sys-
tem solvers in contrast to a single large system solver as is required
by the Crank–Nicholson implicit method. However, the ADI-FDTD
method is mostly used to solve non-complicated domains such
as rectangular domain and is not applicable for complex geome-
tries because of showing only first-order accuracy for stair-stepped
curved boundaries. The ADI-FDTD method combined with the
Dey–Mittra embedded boundary method can model the curved
domains associated with complex structures and time step sizes
beyond the CFL limit.5 The efficiency of this method depends on
the one-dimensional tridiagonal solvers used underneath and that
will cause a major bottleneck issue and affects the scalability of the
scheme. Furthermore, the order of accuracy is limited to second
order.

These issues have motivated our use of an embedded boundary
method that exploits a vector potential description for the time evo-
lution of Maxwell’s equations. The rest of this paper presents this
new field solutions’ method, tests it against standard test problems
from the HPEM community, namely, rotated cavities, and the classic
A6 relativistic magnetron in two-dimensions, and finally discusses
the suitability for extension to a fully three-dimensional algorithm
that is mated to particle methods. In this paper, we show a novel
field advance algorithm.

Vector potential formulations of electromagnetism are widely
used in classical and quantum physics. Maxwell’s equations describe
the time evolution of four fields: the magnetic flux density (B), the

electric field intensity (E), the electric flux density (D), and the
magnetic field intensity (H). It is often convenient to employ a
formulation based on the magnetic vector potential A and electric
scalar potential ϕ. Maxwell’s equations then reduce to uncoupled
wave equations for the vector potential A and scalar potential ϕ
under the Lorenz gauge condition.6 We use the recently developed
implicit A-stable scheme7–11 to solve these wave equations using the
MOLT approach (also known as the transverse method of lines or
Rothe’s method)12–14 that first discretizes time and then obtains spa-
tially varying solutions using boundary-integral methods,15,16 which
are coupled algebraically at discrete times. An O(N), recursive fast
convolution algorithm is used for the line integration. Extension
to multi-dimensions is done using an ADI scheme, with each line
solved independently. The ADI method is extended to a fourth order
unconditionally stable scheme using successive convolution.8 The
coupled set of boundary-value problems that result from the time
integration yield a Partial Differential Equation (PDE), which is
solved using a Green’s function method.7–11 This approach avoids
the use of matrices, eliminating the main bottleneck in scaling
implicit methods. Stable solutions result for a wide range of mesh
sizes and potentials to leverage novel computing architectures, such
as Graphics Processing Unit (GPU).

A perfectly electrically conducting (PEC) boundary condition
is derived based on the continuity of the magnetic flux normal to the
boundary and is applied to the magnetic vector potential. Our for-
mulation avoids the additional compatibility conditions used in Ref.
17. The boundary condition is imposed using an embedded bound-
ary method,10 which supports complex boundaries. This embedded
PEC boundary condition is a slightly modified embedded Neumann
boundary condition. The fundamental difference is that one of the
partial spatial derivatives in the PDE is negative. As presented, the
current embedded boundary formulation is second order in space
but could be extended to higher order.

In this paper, we first derive wave equations for vector and
scalar potentials A and ϕ under the Lorenz gauge condition dis-
cussed in Sec. II, then we describe our two-dimensional high-order
implicit scheme using ADI splitting and the higher order embedded
PEC boundary conditions in Sec. III, and finally, we give numerical
results for several test cases in Sec. V.

II. 2D ELECTRIC SCALAR AND MAGNETIC VECTOR
POTENTIAL

The macroscopic Maxwell’s equations are as follows:

@tB = −∇ × E, (1)

@tD = ∇×H − J, (2)

∇ ⋅ B = 0, (3)

∇ ⋅D = ρ, (4)

where J is the electric current density and ρ is the electric charge
density. In a linear isotropic medium, D = εE and B = �H. The
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dielectric constant ε = �0�r , with �0 and �r being the free space
and relative permittivity, respectively, and the permeability � = �0�r ,
with �0 and �r being the free space and relative permeability,
respectively.

The electric scalar potential ϕ and magnetic vector potential A
are related to E and B by

E = −∇ϕ − @tA, (5)

B = ∇×A. (6)

For free space, Ampere’s law [Eq. (2)] is

1
c2 @tE = ∇× B − �0J, (7)

where the free space phase velocity c = 1�(�0�0) .
Substituting E and B using Eqs. (5) and (6) and imposing the

Lorenz gauge condition

1
c2 @tϕ = −∇A,

a wave equation in terms of the magnetic vector potential A results
in

1
c2 @

2
t A −∇2A = �0J. (8)

Similarly, by imposing the Lorenz gauge condition, a wave
equation for the scalar potential ϕ in free space is obtained,

1
c2 @

2
t ϕ −∇2ϕ = ρ

ε0
. (9)

A. Perfectly conducting boundary
The electric field (E) is continuous along the boundary, and the

magnetic flux (B) is continuous along the normal to the boundary.
Since the Perfectly Conducting Boundary (PEC) has infinite elec-
trical conductivity (σ =∞), there will be no interior electric field
(E2 = 0) in the perfect conductor (Fig. 1). It also follows that there
is no magnetic field (H2 = 0). The boundary conditions for the PEC
become

n × E1 = 0, (10)

n ×H1 = Js, (11)

n ⋅ B1 = 0, (12)

n ⋅D1 = ρs, (13)

where n is the unit normal vector to the boundary and Js and ρs are
the surface current density and charge density, respectively.

FIG. 1. Boundary surface between two regions with electric fields E1 and E2, mag-
netic fields H1 and H2, electric flux densities D1 and D2, and magnetic flux densities
B1 and B2. Here, Js is the surface current, ρs is the surface charge density, and n
is the normal vector pointed out from the region two (PEC).

Consider a two-dimensional vector/scalar potential. If we
choose to restrict B to the x–y plane, the vector potential A only has
a z component,

A = Az(x, y)z. (14)

Using Eq. (6) and the boundary condition represented by
Eq. (12), we get

n ⋅ (@yAz − @xAz) = 0. (15)

III. MOLT BASED NUMERICAL SCHEME
A. Semi-discrete implicit scheme

The multi-dimensional wave equation for the vector potential
A can be written as the initial boundary-value problem,

1
c2

@2A(k, t)
@t2 −∇2A(k, t) = �0J(k, t), k ∈ �, t > 0, (16)

A(k, 0) = f (k), k ∈ �,
At(k, 0) = g(k), k ∈ �,

with consistent boundary conditions.
Consider a scheme for two spatial dimensions. The two-

dimensional implicit scheme uses an alternating direction implicit
(ADI) scheme,7 and each ADI line is solved independently.

Using MOLT , we first perform a temporal discretization and
then approximate the modified Helmholtz operator. The discretiza-
tion begins with a time-centered finite different approximation,

An+1 − 2An +An−1

(c�t)2 −∇2�An + An+1 − 2An +An−1

β2 �
= �0Jn(k, t), (17)

where the averaging parameter β > 0. Without the β2 term, the
method would be central in time and thus an explicit method. To
make the method implicit, we introduce an averaging parameter β.
This new scheme is purely dispersive and fully implicit. The β should
be big enough to achieve the targeted order of accuracy and should
confirm the A-stability of the scheme. Based on local truncation
errors of the Pth order scheme, O((c�t�β)2P+2),7 the error constant
will decrease with increasing β. However, the value of β must be
below a limit for the scheme to maintain A-stability. For example,
the second order scheme is A-stable for 0 < β ≤ 2 (proved in Ref.
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7). An arbitral high order A-stable versions of the scheme are possi-
ble, accuracy 2P, with 0 < β ≤ βmax. As noted in Ref. 8, βmax depends
on P. Since the truncation error decreases with increasing β, βmax
should be an optimal choice for a specific order of accuracy in time.
However, based on Ref. 10, we need to choose β slightly less than
βmax for the embedded boundary scheme because of the artificial dis-
sipation term, which was introduced to ensure the A-stability of the
scheme. Reordering Eq. (17), we have the semi-discrete equation,

�1 − 1
α2∇2��An+1 + (β2 − 2)An +An−1�
= β2An + �0β2

α2 Jn(k, t), (18)

where α = β
c�t . As in Refs. 8 and 10, we decompose the modified

Helmholtz operator using ADI splitting in 2D,

1 − 1
α2∇2 = 1 − 1

α2 � @2

@x2 + @2

@y2 �
= �1 − 1

α2
@2

@x2 ��1 − 1
α2

@2

@y2 � − 1
α4 � @4

@x2@y2 �.

Hence, we make the temporal approximation,

1 − 1
α2∇2 =LxLy +O�(c�t)4�. (19)

It results in a semi-discrete equation, with

Lx = 1 − @xx

α2 and Ly = 1 − @yy

α2 ,

allowing us to express Eq. (18) as

LxLy�β2An +An+1 − 2An +An−1�
= β2An + �0β2

α2 Jn(k, t). (20)

Upon taking the inverse of the modified Helmholtz opera-
tors Lx and Ly, we obtain the semi-discrete solution for two
dimensions with second-order temporal accuracy,

An+1 − 2An +An−1

= −β2
D
(1)
xy [An] + β2

L
−1
y L

−1
x ��0

α2 Jn�(k, t), (21)

where the two-dimensional operator is

D
(1)
xy [A] ∶= A −L−1

y L
−1
x [A] (22)

with superscript 1, which denotes a second order scheme or level 1
computing (number of computing levels for 2pth order scheme is p
based on Refs. 8 and 11).

Using the free space Green’s function, the inverse of the mod-
ified Helmholtz operator L

−1
x in the x direction can be defined as

L
−1
x [A] ∶=α

2�
b

a
e−α�x−x′ �A(x′)dx′

���������������������������������������������������������������������������������������������������������������������������������
Particular solution

+ ax1e−α(x−xa) + bx1e−α(xb−x)
�����������������������������������������������������������������������������������������������������������������������������������������������������

Homogeneous solution

, (23)

where ax1 and bx1 are homogeneous boundary coefficients along
the x direction. Since the subscripts of the coefficients denote the
computing level, ax1 and bx1 are involved in the level 1 computing.
We can define L

−1
y in a similar way using homogeneous boundary

coefficients (ay1, by1).
Higher order accurate solutions are obtained by exchanging the

time derivative with the spatial derivative. As shown in Ref. 8, we can
introduce a new operator Cxy,

Cxy =L−1
y Dx +L−1

x Dy.

We can combine Dxy [Eq. (22)] to get a symmetrized form

C
(1)
xy =L−1

x +L−1
y −L−1

x L
−1
y −L−1

y L
−1
x .

As shown in Ref. 8, Taylor expanding An+1 − 2An +An−1 in time and
using a Lax–Wendroff procedure, and using what we know about the
operator C and D , we arrive at the high order method,

An+1 − 2An +An−1

= ∞�
p=1

p�
m=1
(−1)m 2β2m

(2m)!� p − 1
m − 1

�Cm
D

p−m[An]. (24)

This scheme is unconditionally stable for all �t and 0 ≤ β≤ βmax, with βmax obtained from Table I, as proved in Ref. 8. There-
fore, the second and fourth order two-dimensional schemes can be
expressed as

An+1 − 2An +An−1 = −β2
C
(1)
xy [An]. (25)

An+1 − 2An +An−1 = − β2
C
(1)
xy [An]

− �β2
D
(2)
xy − β4

12
C
(2)
xy �C(1)xy [An], (26)

where superscripts on the operators Cxy and Dxy denote level num-
bers. The fourth order scheme is implemented on two levels (p = 2).
At the first level, we compute C(1) acting on [An] using the second
order scheme (25) and then at the second level apply the operators
C
(2) and D

(2) to the computed C
(1)[An] to get the fourth order

correction. Using these level numbers, we can define boundary coef-
ficients related to level k computing, (axk, bxk) and (ayk, byk) along
the x and y directions, respectively.

B. Boundary conditions
In this section, we discuss enforcing boundary conditions with

the above method. For PEC boundary conditions, we extend our

TABLE I. βmax as a function of the method order P.

P 2 4 6 8 10
βmax 2 1.4840 1.2345 1.0795 0.9715
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previous work on Neumann boundary conditions to PEC.10 On a
domain � = [xa, xb] × [ya, yb], outflow boundary and PEC condi-
tions can be defined by the following:

1. PEC: @yAz(xa, t) = 0, −@yAz(xb, t) = 0, −@xAz(ya, t) = 0,
@xAz(yb, t) = 0.

2. Outflow boundary condition: @tA(xa, t) = c@xA(xa, t),
@tA(xb, t) = −c@xA(xb, t), @tA(ya, t) = c@yA(ya, t),
@tA(yb, t) = −c@yA(yb, t).

Unlike Neumann boundary conditions, the challenge here is
that PEC needs y derivatives during the x−sweeps and x derivatives
during the y−sweeps. This is challenging for an ADI method because
of the separation of directional information.

For a rotated square, the PEC boundary condition can use
a similar approach as used in the original method for Neumann
boundaries in Ref. 10 because the directions are coupled at the
boundary. Rotating the domain through any angle, say θ, as shown
in Fig. 2, we have the following:

(a) Left: cos(θ)@yAz − sin(θ)@xAAz = 0.
(b) Right: −cos(θ)@yAz + sin(θ)@xAz = 0.
(c) Up: sin(θ)@yAz − cos(θ)@xAz = 0.
(d) Down: −sin(θ)@yAz + cos(θ)@xAz = 0.

In Sec. III B 1, we demonstrate how to construct a solu-
tion for A given the Dirichlet boundaries, followed by an exten-
sion of the fixed point map for Neumann boundaries in Ref. 10
to the case of PEC to generate the Dirichlet boundary conditions
(including an adaptation for the mesh aligned case), and finally
give a short review of our method for outflow, which we detailed
in Ref. 11.

FIG. 2. A PEC square cavity rotated by an angle θ with normal vectors nL, nD, nR,
and nU along the left, down, right, and up boundaries, respectively.

1. Using Dirichlet boundary condition
for A to capture PEC boundary

In our embedded boundary method for Neumann, we con-
structed an efficient convergent Neumann to Dirichlet map, con-
verting a boundary condition on the outward normal derivative
of a function into a condition that constructs ghost points outside
the domain. The method is designed such that the generated ghost
points enforce the desired Neumann condition on the boundary. In
Sec. III B 2, we adapt this idea to PEC, which is a condition on the
tangential derivative.

We now show how to carry out the sweeps with the given val-
ues at the end of each line of the fourth order ADI method. In our
2D scenario, to construct the operator L−1

x and L
−1
y and to build

C
(1), C(2), and D

(2), each line is treated as a 1D problem, where
the lines are evaluated with x−sweeps and y−sweeps, respectively.10

We note that the operators that make up D
(k) and C

(k) have their
own boundary conditions to enforce at level k.

The objective is given the boundary condition, solve for each ax
and bx along the x−direction and ay and by along the y−direction.
We will denote A(ti, xa) = AL(ti), A(ti, xb) = AR(ti), A(ti, ya)= AD(ti), and A(ti, yb) = AU(ti). Here, [xa, xb] and [ya, yb] are hor-
izontal and vertical lines we make sweeps along. These permit the
boundary conditions to be incorporated into the method.

As we did for wave solvers in our early work,7 taking AL(ti) and
AR(ti) as fixed, for the L

−1
x component of the second order term

C
(1) along the line @� = [xa, xb], we arrive at two equations in two

unknowns,

AL(tn+1) + (β2 − 2)AL(tn) +AL(tn−1)
= β2�I�AL(tn) + �0

α2 Jn�(xa) + ax −Mxbx�,

AR(tn+1)(β2 − 2)AR(tn) +AR(tn−1)
= β2�I�AR(tn) + �0

α2 Jn�(xb) +Mxax + bx�,

where Mx = e−α(xb−xa). We can rearrange the linear system into
unknown and known values,

ax +Mxbx = wP
a ,

Mxax + bx = wP
b .

Solving the linear system for the unknowns ax and bx gives

ax = (wP
a −MxwP

b)(1 −M2
x) , bx = (wP

b −MxwP
a)(1 −M2

x) , (27)

where

wP
a = 1

β2 �AL(tn+1) + (β2 − 2)AL(tn) +AL(tn−1)�
− I�AL(tn) + �0

α2 Jn�(xa),
wP

b = 1
β2 �AR(tn+1) + (β2 − 2)AR(tn) +AR(tn−1)�
− I�AR(tn) + �0

α2 Jn�(xb).
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Taking AD(ti) and AU(ti) as fixed for L−1
y of the second order

term C
(1) along the line @� = [ya, yb], we arrive at two equations in

two unknowns for ay and by,

AD(tn+1)(β2 − 2)AD(tn) +AD(tn−1)
= β2�I�AD + �0

α2 Jn�(ya) + ay +Myby�,

AU(tn+1)(β2 − 2)AU(tn) +AU(tn−1)
= β2�I�AU + �0

α2 Jn�(yb) +Myay + by�,

where My = e−α(yb−ya). Solving the linear system for the unknowns
ay and by gives

ay = (wP
a −MywP

b)(1 −M2
y) , by = (wP

b −MywP
a)(1 −M2

y) , (28)

where

wP
a = 1

β2 �AD(tn+1) + (β2 − 2)AD(tn) +AD(tn−1)�,
− I�AD(tn) + �0

α2 Jn�(ya),
wP

b = 1
β2 �AU(tn+1) + (β2 − 2)AU(tn) +AU(tn−1)�
− I�AU(tn) + �0

α2 Jn�(yb). (29)

For the operator C
(2) + D

(2) acting on C
(1)[An], which is the

higher order correction, one can obtain similar equations, except
that the values of AL(ti), AR(ti), AD(ti), and AU(ti) at the bound-
aries are explicitly zero. This is due to linearity, and the leading order
operator satisfies the boundary condition exactly.

2. Embedded boundary method, an effective
Neumann to Dirichlet map for creating ghost points

Given that we know how to solve for the Dirichlet boundary
conditions for Eqs. (25) and (26), as in Ref. 8, we would like to extend
this process to the PEC case. As discussed in Ref. 10, the reason to
employ an embedded boundary approach for a differential boundary
condition has to do with stability. The difference here is we need to
develop an iterative map to find the homogeneous coefficients a and
b for each piece of the operator instead of directly computing these
coefficients.

Our embedded boundary method is based on our initial work
in Ref. 10. In this paper, we developed a second order embedded
boundary method for Neumann boundary conditions, which was
second order accurate in time and space. Using the same ideas, we
extended this method to PEC boundary conditions for the vector
potential in 2D. However, in Ref. 10, direct application through
the ADI of the operators is more direct. Extending this work to
the fourth order involves developing an approach to solving for the
boundary conditions for the operators C(1), C(2), and D

(2).
We use an iterative method to obtain the accurate values at the

boundaries using an initial approximation and correct it by impos-
ing our PEC boundary condition through a fixed point iteration.
The fixed point iteration is a multi-step process that converts the

derivative condition along the boundary to a Dirichlet boundary
condition, to be set at the ghost point. These Dirichlet boundary
values force the solution to satisfy the PEC condition at the bound-
ary to within the tolerance of iteration of the fixed point method. It
should be noted that the iteration is local at the boundary and does
not involve re-computing the interior sweeps, making this update
cost effective.

To understand the method, we start with considering a col-
lection of uniform points with a boundary passing through (see
Fig. 3). We define the ghost points to be the collection of points
that are greater than one half of a grid spacing away, but less than
two and a half grid spacings away, from the boundary. As in our
work in Ref. 10, starting from the ghost point, we define a normal
to the surface along which we will enforce the boundary condition.
We define the fixed point method along this normal. In Fig. 3, the
ghost point being considered is the red grid point labeled (xG, yG),
the blue point labeled (xB, yB) is the boundary point, and there
are three interior points needed that are related to the normal, at(xI , yI), (xII , yII), and (xIII , yIII). Their distances from the boundary
point (xB, yB) are ξI = �(xI , yI) − (xB, yB)� =√2�sI , ξII = �(xII , yII)− (xB, yB)� =√2�sI , and ξIII = �(xIII , yIII) − (xB, yB)� = 2�sI , where
we will typically take �sI =√2�x. The fixed point method starts
by assuming we know AI , AII , AIII , and @TAB, which is taken
as a solution at {(xI , yI), (xII , yII)and(xIII , yIII)} and the tangential
derivative of a solution at (xB, yB). Here, we enforce @TAB = 0 by
making @TP�(xB ,yB) = 0, one of the conditions we use to solve for
the coefficients of the Hermite–Birkhoff interpolating polynomial,
P(x, y) = c0 + c1x + c2y + c3xy. Enforcing that the Hermite–Birkhoff
interpolates these points and explicitly solving for AG give

Al+1
G = ΓIAl

I + ΓIIAl
II + ΓIIIAl

III +O(�x2), (30)

where

ΓI = 1 + γ3(γ4 + γ5) − γ6(γ1 + γ2)(γ4γ2 − γ5γ1) ,

ΓII = (γ6γ2 + γ3γ5)(γ4γ2 − γ5γ1) ,

ΓIII = (γ6γ1 + γ3γ4)(γ4γ2 − γ5γ1) ,

(31)

FIG. 3. Geometry of the 2D embedded PEC boundary method with a boundary
point (xB, yB), ghost point (xG, yG), and interpolation points (xI , yI), (xII , yII),
and (xIII , yIII).
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where
γ1 = xII − xI + yII − yI ,
γ2 = xI − xIII + yI − yIII ,
γ3 = xG − xI + yG − yI ,
γ4 = (xII − xI)(xB − yB) + xIyI ,
γ5 = (xI − xIII)(xB − yB) + xIIIyIII ,
γ6 = (xB − yB)(xG − x1) + xG(yG − y1).

(32)

We have introduced additional notation of l + 1 and l, which
designate how we will set up a fixed point iteration using the
Hermite–Birkhoff interpolant. The iteration itself is a simple first
order fixed point method. Let w(l) and w(l+1) be the solutions at the
lth and (l + 1)th iterations. We choose a tolerance tol, and maximum
number of allowed iterations mit, and define a stopping criterion as�w(l+1) −w(l)�∞ < tol or nit > mit, where nit is the current iteration
number. We will now discuss the quasi-local process for obtaining
w(l+1) given the rest of the information.

For each term in the operator on the right-hand side of the
second order solution given by Eq. (25) or fourth order in time
solution given by Eq. (26), we must identify the correct ghost
point that allows that term to guarantee that the tangential deriva-
tive is zero along the boundary. Taking the C

(1)[An] operator
and expanding the operator out, we have C

(1)[An] =L−1
x [An]+L−1

y [An] −L−1
y L

−1
x [An] −L−1

x L
−1
y [An]. The fixed point iter-

ation identifies the ghost point for wx =L−1
x [An], wy =L−1

y [An],
wxy =L−1

x [wy], and wyx =L−1
y [wx] such that when solving for

the boundary correction terms, the operator satisfies @Twx�@� = 0,
@Twy�@� = 0, @Twxy�@� = 0, and @Twyx�@� = 0.

Let us consider wx and wyx =L−1
y [wx], knowing that wy and

wxy are similar. The iterative process for wx starts by making an ini-
tial guess at the direct boundary values wx�@� using an extrapolate
in time wx

n+1,(0) ≈ 3wx
n − 3wx

n−1 + wx
n−2 at each boundary point

(Algorithm 1).

ALGORITHM 1. Compute wx�= L−1
x [A]�.

1: Compute the interior sweep (particular solution) In+1
x = Ix[An]

2: Initial guess wx
n+1(0) ≈ 3wx

n − 3wx
n−1 + wx

n−2

3: Initialize the iteration counter nit = 0
4: repeat
5: for k = 1 to ny do
6: Compute wxI(k), and wxII(k), at the interpolation points(xI(k), y(k)), and (xII(k), y(k)) and as well as at the interpolation

points along the right boundary using bilinear interpolation
7: Compute solution at the ghost points (xaG(k), y(k)) and(xbG(k), y(k)) using the Hermite–Birkhoff interpolant
8: Compute homogeneous coefficients a1(k) and b1(k) using the

fact wx
n+1(l) = In+1 + ax(k)e−α(x−xaG(k)) + bx(k)e−α(xbG(k)−x)

9: Compute solution and update boundary stencil wx
n+1(l+1)

= In+1 + ax(k)e−α(x−xaG(k)) + bx(k)e−α(xbG(k)−x)
10: end for
11: nit = nit + 1
12: until (�wx

n+1(l+1)− wx
n+1(l) � < tol OR nit > mit)

Given the update on wx, the next step is to consider wyx=L−1
y [wx]. The process starts with the initial guess wn+1,(0)

x ≈ 3An

− 3An−1 +An−2 at the boundary (Algorithm 2).
The same process is done for wy and wxy. The

Hermite–Birkhoff interpolant enforces that the tangential derivative
is zero for wx, wy, wxy, and wyx such that C

(1)[An] satisfies the
tangential derivative condition on @� to within tolerance.

For the fourth order formulation, we compute the boundary
conditions for C(1)[An], and then, we repeat the process for C(2)
and D

(2) acting onC(1)[An].
Further as detailed in Ref. 10, we need to include an artificial

dissipation term in order to maintain stability for these embedded
boundary domains. Thus, we have

An+1 − 2An +An−1 = −β2
C
(1)
xy [An]

− �β2
D
(2)
xy − β4

12
C
(2)
xy �C(1)xy [An] + εC(3)xy [An−1],

where ε is an artificial dissipation coefficient that satisfies 0 < ε < 1.
The value of C

(3)
xy [An] at the previous time step can be used in

place of C(3)xy [An−1] at the current time step, and we need to go to
one more computing level to obtain C

(3)
xy [An] (see Ref. 11 for fur-

ther details). We obtain AI , AII , and AIII approximately, using the
bilinear interpolation. Suppose that the interpolation point AI lies
in a rectangular cell with corners (xi, yj), (xi+1, yj), (xi+1, yj+1), and(xi, yj+1). Then, we have the following approximation for AI :

AI = w1Ai,j +w2Ai+1,j +w3Ai+1,j+1 +w4Ai,j+1, (33)

where

w1 = (xi+1 − xI)(yj+1 − yI)
�x�y

, w2 = (xI − xi)(yj+1 − yI)
�x�y

,

ALGORITHM 2. Compute wyx(= L−1
y [wx]).

1: Compute the interior sweep (particular solution) In+1
y = Iy[wn

x]
2: Initial guess wyx

n+1(0) ≈ 3An − 3An−1 +An−2

3: Initialize the iteration counter nit = 0
4: repeat
5: for k = 1 to nx do
6: Compute wyxI(k), and wyxII(k), at the interpolation points(x(k), yI(k), and (x(k), yII(k)) and as well as at the interpolation

points along the right boundary using bilinear interpolation
7: Compute solution at the ghost points (x(k), yaG(k)) and(x(k), ybG(k)) using the Hermite–Birkhoff interpolant
8: Compute homogeneous coefficients a1(k) and b1(k) using the

fact wyx
n+1(l) = In+1 + ay(k)e−α(y−yaG(k)) + by(k)e−α(ybG(k)−y)

9: Compute solution and update boundary stencil wyx
n+1(l+1)

= In+1 + ay(k)e−α(y−yaG(k)) + by(k)e−α(ybG(k)−y)
10: end for
11: nit = nit + 1
12: until (�wyx

n+1(l+1) − wyx
n+1(l) � < tol OR nit > mit)
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w3 = (xI − xi)(yI − yj)
�x�y

, w4 = (xi+1 − xI)(yI − yj)
�x�y

. (34)

We show how the inverse operators are performed along 2D
Cartesian lines for the 2D A6 magnetron in Fig. 4. The endpoints
of these lines are not restricted to residing at mesh points and can
always be chosen to lie on the boundary @�. We first perform x-
sweeps along with x-lines with actual boundary ends and obtain the

FIG. 4. (a) x-, (b) y-, and (c) xy-lines with exact A6 magnetron boundary points on
the mesh lines that are used for the ADI x (a) and y (b) sweeps.

intermediate solution and then apply y-sweeps over the intermedi-
ate solution, along with y-lines with actual boundary ends. The xy-
sweeps form a complete boundary of the A6 magnetron [Fig. 4(c)].
Similarly, we can perform y-sweeps first, x-sweeps next, and take an
average to obtain the solution.

3. Outflow boundary condition
For the open boundary cases, we derive an outflow bound-

ary condition by extending the domain � = [xa, xb] × [ya, yb] into
� = [xa − ctn, xb + ctn] × [ya − ctn, yb + ctn] and switch the spatial
integration with the time integration at the boundary points xa,
xb, ya, and yb. Consider a one-dimensional scheme as explained
in Ref. 11.

Let us work with the right boundary xb first,

bn
x ∶= α

2�
xb+ctn

xb

e−α(x′−xb)An(x′)dx′

= α
2�

ctn

0
e−α(x′)An(xb + x′, tn)dx′

= αc
2 �

tn

0
e−α(cs)An(xb, tn − s)ds. (35)

This can be written in a recursive form,

bn
x = β

2�
1

0
e−βzAn(xb, tn − z�t)dz + e−βbn−1

x .

We construct a time interpolant at the right boundary (x > xb)
using a Taylor series expression and truncate higher order error
terms to obtain fourth order accuracy using a five point backward
finite difference stencil. We obtain

An(xb, tn − z�t) ≈An(xb) − z�25
12

An(xb) − 4An−1(xb)
+ 3An−2(xb) − 4

3
An−3(xb) + 1

4
An−4(xb)�

+ z2

2
�35

12
An(xb) − 26

3
An−1(xb) + 19

2
An−2(xb)

− 14
3

An−3(xb) + 11
12

An−4(xb)� − z3

6
�5

2
An(xb)

− 9An−1(xb) + 12An−2(xb) − 7uAn−3(xb)
+ 3

2
An−4(xb)� + z4

24
�An(xb) − 4An−1(xb)

+ 6An−2(xb) − 4An−3(xb) +An−4(xb)�. (36)

We integrate this expression analytically using Lemma III.1 (see
Ref. 7 for a proof).

Lemma III.1 For integers m ≥ 0 and real v > 0,

Ψm ∶= v� 1

0

zm

m!
e−vzdz = 1

vm �1 − e−vPm(v)�,
where Pm(v) = m∑

l=0

vl

l! is the Taylor series expansion of order m of ev.

We arrive at

bn =e−βbn−1 + γ0An(xb) + γ1An−1(xb) + γ2An−2(xb)
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+ γ3An−3(xb) + γ4An−4(xb), (37)

where

γ0 =Ψ0(β) − 25
12

Ψ1(β) + 35
12

Ψ2(β) − 5
2

Ψ3(β) +Ψ4(β),
γ1 =4Ψ1(β) − 26

3
Ψ2(β) + 9Ψ3(β) − 4Ψ4(β),

γ2 = − 3Ψ1(β) + 19
2

Ψ2(β) − 12Ψ3(β) + 6Ψ4(β),
γ3 =4

3
Ψ1(β) + 14

3
Ψ2(β) + 7Ψ3(β) − 4Ψ4(β),

γ4 = − 1
4

Ψ1(β) + 11
12

Ψ2(β) − 3
2

Ψ3(β) +Ψ4(β).

(38)

Likewise, by considering the left boundary x < a, we get

an =e−βan−1 + γ0An(xa) + γ1An−1(xa) + γ2An−2(xa)
+ γ3An−3(xa) + γ4An−4(xa). (39)

IV. EXTENSION TO 3D
As in 2D, after we discretize the vector and scalar wave equa-

tions in time, we are left with a modified Helmholtz operator.
The three-dimensional extension of the scheme can be derived by
decomposing the modified Helmholtz operator using ADI splitting
in 3D, as we did in 2D,

1 − 1
α2∇2 = 1 − 1

α2 � @2

@x2 + @2

@y2 + @2

@z2 �
= �1 − 1

α2
@2

@x2 ��1 − 1
α2

@2

@y2 ��1 − 1
α2

@2

@z2 �
+ 1

α4 � @4

@x2@y2 + @4

@x2@z2 + @4

@y2@z2 �
− 1

α6
@6

@x2@y2@z2 .

Hence, the temporal approximation,

1 − 1
α2∇2 =LxLyLz +O�(c�t)4� , (40)

where, here, in addition to the modified Helmholtz operator Lx and
Ly, we use the operator Lz in the z direction. Now, we can express
the semi-discrete equation,

LxLyLz�β2An +An+1 − 2An +An−1�
= β2An + �0β2

α2 Jn(k, t). (41)

Upon inverting the modified Helmholtz operatorsLx,Ly, and
Lz , we can obtain a 3D version of the semi-discrete solution,

An+1 − 2An +An−1

= −β2
D
(1)
xyz [An] + β2

L
−1
z L

−1
y L

−1
x ��0

α2 Jn�(k, t), (42)

where the three-dimensional second order operator is

D
(1)
xyz [A] ∶= A −L−1

z L
−1
y L

−1
x [A] .

As in 2D, there are high order extensions. The fourth order exten-
sion in 3D needs the addition of the 3D operator Cxyz ,

Cxyz ∶=L−1
y L

−1
z Dx +L−1

z L
−1
x Dy +L−1

x L
−1
y Dz .

The second and fourth order 3D schemes are as follows:

An+1 − 2An +An−1 = −β2
C
(1)
xyz [An], (43)

An+1 − 2An +An−1 = − β2
C
(1)
xyz [An]

− �β2
D
(2)
xyz − β4

12
C
(2)
xyz �C(1)xyz [An]. (44)

This fourth order scheme is implemented on two levels as explained
in the 2D scheme and performs x−, y−, and z−sweeps as needed
based on the operators used.

The general approach for implementation of the 3D ADI
scheme follows the steps given below. Assume that the number of
x, y, and z lines is nx, ny, and nz , respectively.

At each time step,

1. Perform the x-sweep: Operate L
−1
x on An(x, yi, zk)+ �0

α2 Jn(x, yi, zk) along x and store the result into a tem-
porary variable wx(x, yi, zk) for 1 ≤ k ≤ nz and 1 ≤ i ≤ ny. The
boundary conditions are imposed at x = xa(ik) and xb(ik).

2. Perform the y-sweep: Operate L
−1
y on wx(xj, y, zk) along y

and store the result into a temporary variable wyx(xj, y, zk)
for 1 ≤ k ≤ nz and 1 ≤ j ≤ nx. The boundary conditions are
imposed at y = ya(jk) and yb(jk).

3. Perform the z-sweep: For 1 ≤ i ≤ ny and 1 ≤ j ≤ nx using
wyx(xj, yi, z), solve for the equation An+1 = 2An −An−1

− β2
Dxyz , where Dxyz = An −L−1

z [wyx]. The boundary con-
ditions are now applied at z = za(ij) and zb(ij).

For an example of 3D modeling, We show the geometrical setup
of the 3D A6 magnetron (Fig. 5), indicating key on/off mesh grid
points that are involving the application of the scheme.

A. 3D PEC boundary condition
We start by noting that the 3D boundary condition for out-

flow is exactly the same as in 2D, so we will not go over that hear.
However, PEC would require additional work, which we outline
below.

In Sec. III, we exploited the fact that in 2D @TAB = 0, to develop
our method for ghost points. In 3D, the conditions are more compli-
cated because the boundary condition B� = 0 means that the bound-
ary condition on the vector potential mixes the scalar components of
A. Here, we outline a possible method for extending these ideas by
considering one boundary of a 3D PEC box as an example.

Consider a Cartesian box with PEC boundaries and one bound-
ary set along z = 0. The B� = 0 at z = 0 gives
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FIG. 5. Key points used for the simulation of the 3D A6 magnetron: intersection,
boundary, ghost, and interpolation points required to obtain (a) x− and y−, and (b)
z−sweeps.

@xA2 − @yA1 = 0.

This means that the extension of the method proposed in Sec. IV
would need to enforce @xA2 = @yA1 at the z = 0 boundary. Here,
we develop the exact same process we did in Sec. III, except
for the following key changes: we would approximate @xA2 and
@yA1 by computing finite difference approximations to DxA2= @xA2 and DyA1 = @yA1 at the boundary using interiors data;
we set g = 1

2(DxA2 +DyA1); we would have our Hermite–Birkhoff
interpolant pass through @TAB = g instead of zero for both A1
and A2; we would compute ghost points in the z direction
for both A1 and A2 using the Hermite–Birkhoff interpolant; we
would update the solution A1 and A2 using the ghost points;
in additional iterations, we would use successive over relaxation,
i.e., g = (1 − ᾱ)g + ᾱ 1

2(DxA2 +DyA1).
For a PEC box, this process would be done at each of the

boundaries. The generalization of the method to other geometry
would follow what we have done in this paper in 2D for geome-
try. The full development of this method in 3D is the subject of our
next paper.

V. NUMERICAL EXPERIMENTS
A. Square cavity rotated through different angles

For this numerical experiment, we chose a square cavity
bounded by a PEC, placed a point source at the center of the cavity,
and performed a ping test and mode analysis. First, we computed
the vector potential A at a point inside the box using our scheme,
then computed the derived frequency by taking FFT over the time
history of the measured A, and finally analyzed the frequency modes
for varying CFL value, step size, and rotation angle.

We chose a square box 21 × 21 cm2 with PEC boundaries in a
domain (� = [−21 cm, 21 cm]2), placed a point source 1 at the cen-
ter of the box, (0, 0), and turned on it for a single time step t = �t ns.
The vector potential is measured at the point (3.36 cm, 3.36 cm) for
the time period t = [�t ns, T ns]. The derived frequencies for dif-
ferent CFL values (0.5, 1.0, 2.0), rotation angles (0○, 31.42○, 45○),
and resolutions are summarized in Tables II and III. Table III con-
sists of frequencies obtained for the CFL value 1. Here, we set the
wave speed c = 30 Gcms−1, averaging parameter β = 1.4, and dissi-
pation coefficient ε = 0.1. Figure 6 shows the frequency distribution
for θ = 31.42○, and Fig. 7 shows a frequency mode computed for
different resolutions with CFL 1. We see clear convergence to the
analytically computed 1-1 mode fundamental frequency 1GHz.

Figure 8 shows the time evolution of the potential A generated
by a point source sin(2πft)with f = 1GHz placed at the center of the
box. We chose the same domain as used in the previous test and set
the grid size to be 100 × 100, time step size �t = 7 ps.

TABLE II. Frequency (in GHz) obtained at the point (3.36 cm, 3.36 cm) using the
ping test.

CFL = 0.5, T = 50 ns CFL = 2, T = 200 ns

θ 45○ 31.42○ 0○ 45○ 31.42○ 0○

n

502 0.98 0.99 0.96 0.98 0.98 0.96
1002 1.00 1.00 0.98 1.00 0.99 0.98
1502 1.00 1.00 0.98 0.99 1.00 0.98
2002 1.00 1.00 1.00 1.00 1.00 0.99
2502 1.00 1.00 1.00 1.00 1.00 1.00

TABLE III. Frequency (in GHz) obtained at the point (3.36 cm, 3.36 cm) using the
ping test for CFL 1.

θ 0○ 31.42○ 45○

n

502 9.599 802 × 10−1 9.899 800 × 10−1 9.899 800 × 10−1

1002 9.899 800 × 10−1 9.999 800 × 10−1 9.999 800 × 10−1

1502 9.899 800 × 10−1 9.999 800 × 10−1 9.999 800 × 10−1

2002 1.000 015 × 100 1.000 115 × 100 1.000 015 × 100

2502 1.000 008 × 100 1.000 108 × 100 1.000 008 × 100
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FIG. 6. Frequency distribution for 31.42○ rotated 21 × 21 cm2 square cavity com-
puted using the measured vector potential at the point (3.36 cm, 3.36 cm) for the
impulse response, h = 0.084 cm.

FIG. 7. A strong fundamental mode for 31.42○ rotated 21 × 21 cm2 square cavity
computed for different resolutions.

1. Convergence studies and error analysis
We evaluate the consistency of our scheme via (1) the ping

test and (2) space–time convergence studies for the magnetic vector
potential A in the PEC square cavity.

First, we perform a convergence study given the initial
condition sin�mπx

L �sin� nπy
H � with frequency mode 3–2 (m = 3, n

= 2) over a square domain [0 cm, 21 cm]2 and compare our
numerical solution to the exact solution given by A(t, x, y)= cos�c�(mπ

L )2 + ( nπ
H )2t� sin�mπx

L � sin� nπy
H �, where the wave speed

c is chosen to be 30 Gcms−1. Our L2 norm error plots of the solution
at time T = 1.0 ns with varying resolutions and a fixed CFL(=1) for
the cases of mesh aligned and nonaligned (rotated by 45○) square
cavities show second-order accuracy [Fig. 9(a)]. We also note that
the tangential derivative along the boundary converges with third
order accuracy [Fig. 9(b)].

For the second evaluation, we compute error with our funda-
mental frequency computation using the ping test explained above

FIG. 8. Time evolution of a point source field sin(2πft) with f = 1GHz placed at
the center of a PEC square box of grid size 100 × 100 rotated by the angles 0○
[shown in (a) and (b)], 31.42○ [shown in (c) and (d)], 45○ [shown in (e) and (f)],
and time step size �t = 7 ps.

FIG. 9. Convergence plots for (a) space using entire solution and (b) space using
boundary derivative on a PEC square domain [0 cm, 21 cm]2. This study mea-
sures the L2 norm of the error at time T = 1.0 ns compared with the analytical
solution for the cases of mesh aligned and nonaligned (rotated by 45○).
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TABLE IV. Numerical error in the frequency computation using the ping test at the point (3.36 cm, 3.36 cm).
CFL = 0.5, T = 50 ns CFL = 2, T = 200 ns

θ 31.42○ 0○ 31.42○ 0○

n
50 1.001 980 × 10−2 4.501 910 × 10−2 1.501 970 × 10−2 4.501 910 × 10−2

100 1.999 960 × 10−5 2.001 960 × 10−2 5.019 900 × 10−3 2.001 960 × 10−2

150 1.999 960 × 10−5 2.001 960 × 10−2 1.999 960 × 10−3 1.501 970 × 10−2

200 1.999 960 × 10−5 1.500 023 × 10−5 5.015 075 × 10−4 4.985 075 × 10−4

250 8.000 006 4 × 10−6 8.000 064 × 10−6 5.008 0040 × 10−5 8.000 064 × 10−6

and summarize it in Table IV. The error is the difference between
the frequencies (1-1 mode) obtained analytically (= 1GHz) and
numerically using our scheme.

Finally, we perform a self-refinement study for time and space
convergence using a point source. Figure 10 shows the time and
space convergence plots for the cases of mesh aligned and non-
aligned (rotated by 45○) square cavities with the same configu-
ration as used in the above study done for the time evolution
of a point source field. For the time convergence test, we main-
tain the resolution at 320 × 320 and reduce the time step size
dt = 10.9 ps–0.3418 ps. For the space convergence test, we main-
tain the CFL value as 1 and reduce the spatial step size dx =
1.313 cm–0.082 cm. We obtained fourth order convergence in time
and second order in space.

B. Square cavity with a leak (diffraction Q)
In the second numerical experiment, an open boundary is

placed along the center of the right edge of the square cavity, and the
diffraction quality factor Q is obtained for an oscillating point source
[sin(2πft), f = 1GHz] placed at the center. Every configuration was
the same as above, except for imposing an outflow boundary con-
dition along the open boundary and keeping the Gaussian pulse
running for the entire time period [�t ns, T ns]. The vector potential
A is measured at the point (3.36 cm, 3.36 cm), and the computation
of Q is done for aligned and nonaligned mesh cases. For nonaligned

FIG. 10. Convergence plots for (a) time and (b) space on a PEC a square domain[0 cm, 21 cm]2. This study measures the L∞ norm of the error at time T = 1.0 ns
compared with the analytical solution for the cases of mesh aligned and nonaligned
(rotated by 45○).

meshes, we rotate the square by an angle θ = 45○,

Q = −π f (t2 − t1)
ln�A1t1

A2t2
� ,

where A1 and A2 are the vector potentials at time t1 and t2. Analytic
calculation18 of the quality factor treating an open cavity like a trans-
mission line with a load simulating free space (377 �) gives a value
of Q = 24. The Q values obtained from our scheme (Q = 26.5768 for
θ = 0○ and Q = 25.7875 for θ = 31.42○) are very close to the analyt-
ically obtained value. Figure 11 shows the time evaluation of vector
potential A at the point (3.36 cm, 3.36 cm) for both cases.

C. A6 magnetron
We chose a 2D A6 magnetron to evaluate the applicability of

our scheme to complicated geometry. For this study, a 2D domain
of � = [0 cm, 5 cm]2 is chosen with the radius of the vane resonators
rv = 4.11 cm, anode radius ra = 2.11 cm, cathode radius rc = 1.58 cm,
angular width of vane, 20○, and cavity angle, 40○. We set the grid
size to be 128 × 128, time step size �t = 39 ps, averaging parame-
ter β = 1.4, and dissipation coefficient ε = 0.1. The embedded PEC
boundary condition is imposed over the boundary stencil during
the x− and y−sweeps. Figure 12 shows the geometrical setup of the
A6 magnetron, indicating key on/off mesh grid points used by the
scheme for the x−sweeps.

FIG. 11. Time evaluation of A in (a) mesh aligned and (b) θ = 31.42○ rotated
square cavities with a leak imposed by the outflow boundary condition and
diffraction Q, which is obtained for an oscillating point source [sin(2πft),
f = 1GHz].
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FIG. 12. Key points: intersection, boundary, ghost, and interpolation points
required to obtain x−sweeps of the simulation of A6M.

This test was conducted for frequency mode analysis. A
point source was placed in the center of the A6M and the fre-
quency distribution examined using a ping test at the point(1.4063 cm, 0.8203 cm). We obtained six strong frequency modes
as shown in Fig. 13, associated with the first two passbands, clearly
showing the effects of all six symmetric resonances.

We further simulated the A6 magnetron with a transparent
cathode that is mimicked by using six emitters/point sources and
calculated the time evolution (Fig. 14) for the same configuration as
above. The formulation maintains symmetry and high accuracy for
relative coarse-grained solutions. For example, in the A6 magnetron
results, there are only 12 points across the neck of the magnetron
veins.

FIG. 13. Frequency spectrum of 2D A6M with vane resonators rv = 4.11 cm, anode
radius ra = 2.11 cm, cathode radius rc = 1.58 cm, angular width of vane, 20○, and
cavity angle, 40○; the grid size 128 × 128, time step size �t = 39 ps, averaging
parameter β = 1.4, and dissipation coefficient ε = 0.1.

FIG. 14. Evolution of the transparent cathode A6M at different times, (a)–(f),
with vane resonators rv = 4.11 cm, anode radius ra = 2.11 cm, cathode radius rc= 1.58 cm, angular width of vane, 20○, and cavity angle, 40○; the grid size 128× 128, time step size �t = 39 ps, averaging parameter β = 1.4, and dissipation
coefficient ε = 0.1.

VI. CONCLUSION
We developed a fast A-stable implicit scheme for the computa-

tion of electromagnetic potentials with an embedded PEC boundary
condition. We successfully evaluated it using EM wave propaga-
tion in different shaped objects in 2D, especially an A6 magnetron.
We obtained fourth order accuracy in time. Generalizing the stabi-
lization of our scheme for PEC boundary conditions and develop-
ing a solver for 3D EM problems with complex geometries will be
considered in the future.
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