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Abstract. The ideal magnetohydrodynamics equations are challenging because one needs to
maintain the divergence-free condition, V - B = 0. Many numerical methods have been developed to
enforce this condition. In this paper, we extend our work on mesh aligned constrained transport by
developing a new approach for the vector potential in two and three dimensions. The approach for
solving the vector potential is based on the method of lines transpose and is A-stable, eliminating
the need for diffusion limiters needed in our previous work in three dimensions. For problems with
strong shocks, this approach offers considerable improvements when compared with our previous
version of constrained transport. The method is robust and has been tested on the 2D and 3D cloud
shock, blast wave, and field loop problems.
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1. Introduction. The ideal magnetohydrodynamics (MHD) equations are one
of the most important classical models of plasma physics explaining the macroscopic
phenomena of a quasi-neutral plasma system. The model contains a set of transport
evolution equations for the quantities of mass, momentum, and energy density as well
as the magnetic field in a conducting fluid. Mathematically, the MHD equations are
a system of nonlinear hyperbolic conservation laws. What makes the MHD equations
challenging is the need to ensure that the magnetic field satisfies the divergence-free
condition over the duration of the simulation. While the MHD equations are hyper-
bolic, standard numerical methods for hyperbolic conservation laws fail to guarantee
VB = 0. Among the many approaches proposed to satisfy the involution V-B = 0,
there are four dominant approaches in the literature: 8-wave formulation [40, 41], pro-
jection methods [4, 46], hyperbolic divergence cleaning methods [23], and constrained
transport methods [47, 26, 21, 43, 7, 46, 37, 22, 27, 38, 2, 45, 42, 30, 20, 19, 44].

This work introduces a new high order method to satisfy the involution based on
an unstaggered constrained transport (CT) methodology. The original CT method
is considered to be a modification of the Yee method [48], from electromagnetics,
adapted for the ideal MHD equations. In the original CT methodology, staggered
electric and magnetic fields are used to create appropriate finite difference operators.
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These operators eventually lead to a globally divergence-free magnetic field. But as
with the Yee method, including geometry in a problem is challenging for this approach.
In the literature, various modifications of the CT methodology have been pre-
sented. In particular, high resolution shock capturing schemes have been a primary
focus. DeVore [24] presented an application of a flux corrected transport approach that
satisfies a divergence-free magnetic field. There are a range of approaches for building
the electric field using Ohm'’s law in a CT methodology, including those presented by
Balsara and Spicer [7], Dai and Woodard [21], and Ryu et al. [43]. Londrillo and Del
Zanna [37, 38] constructed one of the first high order upwind schemes building on the
work of Evans and Hawley. De Sterck [22] introduced a similar CT scheme on unstruc-
tured triangle grids based on multidimensional upwind advection schemes. Balsara
[1] described a divergence-free adaptive mesh refinement (AMR) method utilizing a
CT approach. Téth [46] compared several schemes that maintained the divergence-
free condition. This work demonstrated that the use of a staggered magnetic field is
unnecessary and, instead, focused on developing unstaggered methods for CT.

Unstaggered CT schemes have garnered increasing attention over the last few
years. Mesh aligned CT is not a new idea. Wilson [47] and Dorfi [25] were some of
the first to investigate the use of magnetic vector potential equations for a CT solution
to the MHD equations. However, modern shock capturing strategies were not used
in those works resulting in strong numerical diffusion. Londrillo and Del Zanna [37]
used the magnetic potential solutions in the context of shock capturing methods,
along with De Sterck [22] and Londrillo and Del Zanna [38]. Fey and Torrilhon [27]
developed one of the only unstaggered upwind methods satisfying the divergence-free
constraint in two dimensions for a direct update of the magnetic field. Rossmanith
[42] designed an ustaggered wave propagation scheme for MHD flows, based on the
algorithms in [35], using a CT method to maintain a divergence-free magnetic field.
Helzel, Rossmarith, and Taetz [30, 31] generalized the 2D unstaggered CT work to 3D
MHD equations so that the method is applicable on both Cartesian and rectangular
mapped grids.

The efficiency gains attributed to the use of high order methods, in a multi-
core computing setting, has motivated the development of high order schemes for the
ideal MHD equations. Balsara [3] designed third order, divergence-free, weighted es-
sentially nonoscillatory (WENO) methods for MHD equations using a Runge-Kutta
method with a staggered magnetic field. Balsara et al. [5, 6] introduced high ac-
curate ADER (Arbitrary DERivative)-WENO schemes for divergence-free MHD on
structured meshes, again using a staggered magnetic field. Li et al. [36, 28] and
Cheng et al. [14] developed central discontinuous Galerkin schemes for the ideal
MHD equations, which satisfy the divergence-free constraint globally. These methods
utilize primal and dual overlapping meshes and employ a different discretization for
the magnetic induction equations. Kawai [34] introduced a divergence-free high order
accurate finite difference scheme which has an effective shock capturing capability for
the MHD equations. The method is capable of capturing discontinuous behavior in
the magnetic field through the construction of artificial diffusion terms.

In our previous papers [20, 19, 44], we introduced a high order finite difference
WENO for the ideal MHD, in two and three dimensions, by developing unstaggered
CT methodology for the vector potential A, which is fifth order in space and third
order in time. We choose to solve the magnetic vector potential under the Weyl gauge,
which makes the vector potential a weakly hyperbolic system. The vector potential in
two dimensions is a Hamilton—Jacobi (HJ) equation and in three dimensions resembles
a modified HJ equation. In [20], WENO is applied to the central derivative of A,
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instead of the flux values at the grid points, to approximate the one-sided partial
derivative terms A, and A} that appear in the HJ equation. In three dimensions, if
explicit time stepping is used with the vector potential, the additional terms in the
modified HJ equation resemble a convection reaction equation. This system tends to
be unstable. To remedy this issue, in [20], we introduced an artificial resistivity terms
for the 3D case to stabilize it and to control unphysical oscillations in the magnetic
field.

In this paper, we build on our work [20, 19, 44] on mesh aligned CT by developing
a new approach for the magnetic vector potential to solve the ideal MHD equations in
two and three dimensions. The approach uses a kernel-based numerical scheme [16,
17, which is derived from the method of lines transpose (MOLT) [10, 13, 12, 15, 11]. A
novel discretization for the spatial operator is applied that uses a convolution integral
with a specific kernel. This formulation converts local operators, i.e., derivatives, into
global representations using convolutions with kernels, i.e. Green’s functions, and
is similar, in spirit, to taking a fast Fourier transform. This approximation to the
spatial operator provably yields a high order discretization of the HJ equation, which
is unconditionally stable for linear problems, and it behaves unconditionally stable
for nonlinear problems, such as the magnetic vector potential. Using ideas from fast
summation, the complexity of the method can be shown to be O(N) and is as fast as
an explicit method, such as the Yee scheme for electromagnetics [13, 11]. Within this
methodology, we update the predicted magnetic field obtained from the base scheme
using a corrected divergence-free magnetic field. The approach for solving the vector
potential is derived from our work in [17], eliminates the necessity of diffusion limiters
introduced in our previous work in three dimensions, [20], since the method employed
here appears to be unconditionally stable. The corrected magnetic field is computed
by fourth order accurate central finite difference operators that approximate the curl
of the magnetic vector potential. Our solver for the vector potential is coupled with
the fifth order finite difference WENO scheme of Jiang and Shu [33] as the base
scheme for the ideal MHD equations. Third order explicit strong stability preserving
(SSP) Runge-Kutta (RK) time stepping is used for the time discretization. The work
presented here offers a number of improvements over the previous method, especially
in the context of strong shocks. The primary benefit is that the proposed approach
eliminates the diffusion limiters required by our previous work. This method is robust
and has been tested on the 2D and 3D cloud shock, blast wave, and field loop problems.

The rest of this paper is organized as follows: in section 2, we briefly review the
MHD equations, CT method, and the evolution of the magnetic vector equations; in
section 3, we present our novel numerical scheme for 1D HJ equations and the multi-
dimensional solver; the resulting 2D and 3D schemes are tested on several numerical
problems in section 4; in section 5, we summarize the conclusions of the work.

2. The ideal MHD equations. In this section we present a brief review of the
ideal MHD equations, which is a first order hyperbolic system of conservation laws,
as well as the base CT methodology we employ in solving this system of equations.
The conservative form of the ideal MHD equations can be written as

p pu
pu pu@u+peil —-BeB
2.1 . =
(21) Or el v u(€ + piot) — B(u- B) 0,
B u®B-B®u
(2.2) V-B=0
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with the equation of state as

2 2
p__plul” B

2.3 £ =
(23) s -1t T T

where the total mass p, the momentum pu = (pul, pu?, pu®)T, the energy densities
£ of the plasma system, and the magnetic field vector B = (B!, B2, B*)T are all
conserved variables. The velocity u and the total pressure pior = p+ %||BH27 together
with the hydrodynamic pressure, which is given by the ideal gas law as

(2.0 p=r-1) (£~ 3IBI - Jolhul?).

are derived quantities. v = 5/3 is the ideal gas constant, and the notation | - || is
used for the purpose of the Euclidean vector norm. The MHD equations (2.1)—(2.2)
are derived and discussed in many standard plasma textbooks (e.g., [39]).

2.1. Outline of the CT methodology. The major challenge when dealing
with the numerical solution of the system (2.1)—(2.3) is to satisfy the divergence-free
condition (2.2). Although there is a variety of approaches to enforce this condition,
this work uses the CT method. Here we outline our high order CT framework.

The idea of CT is to advance the conserved variables q = (p,pu,&,B) in a
formulation that does not require a projection or the introduction of artifactual terms.
In the mesh aligned formulation presented here, we will make use of the magnetic
vector potential, A, which we outline in the next section. For our outline of CT, we
note that B = V x A and that given A, a fourth order central difference will produce
a provably locally divergence-free solution to B. Consider a semidiscrete system of
ordinary differential equations for MHD equations (2.1)

(2.5) Dna(t) = L1(dmna(t)),

where q,,nq(t) represents the grid function at time ¢ consisting of all pointwise values
of the conserved quantities in the ideal MHD system q,,na = (p, pu,&,B). In our
work, the details about £ (qmna(t)) are based on the finite difference WENO method,
which are presented in [20]. And the high order SSP RK method is used for temporal
discretization of the ideal MHD.

In the next section we will present the formulation of A and then the update.
Given that we have this A, a locally divergence-free version of B is given by a fourth
order central difference curl of A. The key steps advancing the solution from its
current time step ¢ = t" (or the initial condition at t°) to its new time step t"*! are
listed below:

e Step 0: Start with the given current time step q7,,; = (p", pu™, ", B™)T
and A".
e Step 1: Obtain q,;;, and A™"! separately, where

Apng = (P p" T €7 BY)

Here, £* and B* are given with a * superscript instead of n+1 to indicate that
the predicted B and £ will be corrected by a predictor-corrector constrained
transpose method before the end of the time step.

e Step 2: Replace B* to B"! by a discrete curl of A", for instance, using a
fourth order central difference,

B"t! = v x A™tL
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e Step 3: Set the corrected total energy density value £"*! based on one of the
following options:
Option 1: Keep the total energy conserved:

g71+1 _ g*
Option 2: Keep the pressure the same after updating the magnetic field:
n * 1 n 2 *(12
et =&+ (B = IB).

(Option 2 sometimes helps to prevent negative pressure).
We now describe the formulation of A and how we constraint the update for A?*!
using our kernel-based approach.

2.2. Magnetic vector potential. There have been many numerical methods
presented in the literature for numerically solving the MHD system, but a high order
version that addresses the main challenge of satisfying the divergence-free condition
on the magnetic field while easily embedding into AMR has remained plusive. Here,
we will derive the magnetic vector potential equation from the magnetic field equation
given in the (2.1)—(2.2) system. This will serve as the foundation of our CT framework.

Since the magnetic field is divergence-free, it can always be written as the curl of
a magnetic vector potential:

(2.6) B=VxA.

The key step of the CT scheme is to solve the magnetic potential for correcting the
magnetic field. The evolution of the magnetic field in (2.1) can be written in the
following form:

(2.7) B:+V x(Bxu)=0,
using the relation
V- (u@B-B®u)=Vx (B xu).

Since B is divergence-free, we set B = V x A and rewrite the evolution equation (2.7)
as

Vx{A;+(VxA)xu}=0.
This implies that there exists a scalar function 1 such that
A+ (VXA)xu= -V

There are various choices of the gauge conditions depending on how we chose the .
Helzel, Rossmanith, and Taetz [30] showed that using the Weyl gauge, i.e., setting
1 = 0, one can achieve stable solutions. This condition results in the evolution
equation for the magnetic vector potential, which can be written as

(2.8) O:A+ N1A; + NoAy + N3sA, =0

with
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0 —u? —u? w2 0 0 u 0 0
Ny =10 ! 0|, No= —ul 0 —ud , N3= 0 w0
0 0 ul 0 0 wu? —ul —u? 0

As discussed in [30, 20], the resulting system is only weakly hyperbolic since the
matrix of right eigenvectors of the flux Jacobian doesn’t have full rank in certain
directions. Hence our approach for solving the vector potential equations will rely on
an alternative discretization strategy that comes from studying HJ equations discussed
in section 3.

2.3. The proposed advantage of the new kernel-based method over the
previous finite difference WENO-HJ method. In this section, we outline the
advantage of our new CT method over our previous work [20].

The vector potential formulation in three dimensions is close to being a standard
HJ equation and in two dimensions is an HJ equation. For three dimensions, our
previous method, [20], required a stabilization. Consider the first component of (2.8)
in three dimensions:

ox2

where €! adjusts the strength of the diffusion limiter used in [20]. €' depends on a
smoothness indicator and is zero in smooth parts of the domain; see reference [20]
for details. The issue is that the vector potential is weakly hyperbolic and there can
be issues of stability at strong shocks or unphysical oscillations. This is a natural
consequence of the fact there is no obvious or direct way to add limiters into the
weakly hyperbolic formulation [20, 30, 31]. The above equation obeys the structure of
an HJ equation except for the two terms 9, A2 and 9, A3. In [20, 30, 31], stabilization
and limiting of unphysical oscillations are achieved through the use of a local diffusion
limiter, as above. This limiter is used in a small number of regions of the domain,
where there are either discontinuities or strong shocks. As discussed in [20], in two
dimensions, where these terms do not exist, one does not need a diffusion limiter,
and the base method works fine with a WENO-HJ discretization and no additional
limiter.

In the current work, we will circumvent the stabilization challenges by introducing
a new O(N) implicit method for the magnetic potential equation without artificial
resistivity terms. The rest of the scheme is still using the same WENO architecture
used in the previous work. In the next section we present an overview of the MOLT,
for HJ equations, which was presented in the previous work [17]. This formulation is
the basis of our new approach to CT.

(2.9) Al —u? A2 —uPAS 4 ’LLQA; +ulAl = e

3. HJ equations. In this section we introduce the main ideas in our kernel-based
method [16, 17], which is derived from the MOL” [9, 10, 13, 12, 15, 11]. The simplest
way to describe the MOLT is as follows: we start by discretizing the problem in time;
we then use a global approximation for the inherently local term (the derivative). By
doing this, we are able to make an explicit approximation unconditionally stable. As
for the global approximation, it is similar to an FFT, but with a different convolution
kernel. The form of the approximation is what facilitates the stability of the method.
Through the use of a three-term recurrence relation, the convolution integrals can be
evaluated using O(N) operations.

3.1. 1D HJ equations. We start with a 1D HJ equation,
(3.1) A+ H(A;) =0,  A(x,0) =A%), =€ a,b],
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where H is the Hamiltonian flux. For the time discretization, to evolve the solution
from time t" to t" 1, we use the classical explicit SSP RK schemes [29]. In this work,
we propose to use the following SSP RK schemes such as the first order forward Euler
scheme,

(3.2) AL = A" — AtH (A, AT,
the second order SSP RK scheme,
AW = A" — AtH(AD™, A
1 1 .
(3.3) N“:fWHU(NU—NHMQﬁAQﬂ%
2 2
and the third order SSP RK scheme,
AW =y — AtH (A, A,
A@ 3L TAD .~ 4D+
1 2 .
(3.4) A“¥>A”%(Nm7NHM9ﬁA9ﬂ>
3 3 z z
Here, At denotes the time step and H is the numerical Hamiltonian, i.e., the local

Lax—Friedrichs Hamiltonian flux [32]:

¢+ ot
2

(9" —¢7)

(3:5) H(¢™,¢")=H ( 5

) et o
with ¢(¢™,¢") = maxyeimin(o-,o+),max(o-,6+)) [H (). Ay and Al are one-sided
derivatives with left-biased and right-biased methods, respectively, to approximate
A,. Finding these derivatives is the dominant role in our work, and we will present
the details of the construction of them in the following subsection.

3.2. Approximation of the first order derivative 8,. Approximating the
partial spatial derivative terms with a kernel-based scheme is the major part of this
work. In this section we briefly review the construction of the 9, derivative approx-
imation using the kernel-based formulation established in [16]. We start by defining
the basic tools needed for the construction of 9,. These tools will depend on operators
L and Lg and their inverses Ezl and £§1 (defined below). In defining the inverse
operators, we will need to incorporate boundary information. These operators will
allow us to define 9, in terms of a convergent Neumann series containing the inverse
operators £Zl and Cgl. In other words, this redefines d, as a sum of successively
applied integrals, which we denote as the successive convolution approximation. With
each additional integral that is added to the successive convolution approximation,
the accuracy of our representations of 0, will be increased. Using fast summation,
this will give an O(N) approximation that is provably unconditionally stable for linear
HJ equations when coupled with explicit RK time stepping.

Let’s define operators £, and Lg on the closed interval [a,b] and their inverse
operators

1 xT
(3.6a) Lp=T+ 5890 = L;'[v,a](z) = a/ e @y (y)dy + Ape” =),
b

1
(3.6b) Lr=T- aﬁx = L3'[v,a](z) = a/ e W=y (y)dy + Bre= (=)

x
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where T is the identity operator and « is a positive constant. We use I* and I to
denote the convolution integral as

x

b
(3.7)  I*[v,a)(z) = a/ e @y dy, I, o](x) :a/ e~ W=y (y)dy.

a

We can see that I” depends on the function values of v from the left end point a to
x, and likewise with I, Also note that Ay and Bpr are determined by the boundary
conditions. For instance, if we assume periodic boundary conditions, i.e.,

L7 [v,0](a) = LT [v,a](b) and  L3'[v,a](a) = L7 [v,0](b),

then we obtain
(3.8) Ay = ——"—=—% and Bg= Y,

a(b=a) On the other hand, if we require

where = e~
L' v,a](a) =C, and L', al(d) = Cy
with given numbers C, and C} then the boundary coefficients are obtained as

(39) AL = Ca and BR = Ob.

To define the Neumann series approximation to d,, we now introduce two new
operators Dy, and Dg:

Dp=I-L;" and Dp=7I-Ly".

Then é@x can be represented using the infinite series of these operators as
1 o0
(3.10a) 0, =L, -T=LL(I—-L}")=DL(T-Dy)" =) DI,
p=1
1 3 3 oo
(3.10Db) ~0,=T—Ln =Lr(Ly' —I)=-Dr(ZT-Dg)"' =-) _ Df,
p=1

where DP is successively defined as DP = D[DP~1]. We will truncate the series (3.10)
and only compute the corresponding partial sum to approximate the AT in (3.2)-
(3.4). For stabilization of the high order form of the truncated Neumann series, we
need to introduce the additional operator Dy:

b
(07 —alr— _ _ —alb—

. 0lY, = . yvy Yy — Ap€ — Doe )
(3.11) Dolv, a] = v(a) 2/ e ele=vly(y)dy — Age™ @@= — Byem (=)

where Ay and By are determined by boundary conditions. For example, if Dy is a
periodic function such that

Dolv, a)(a) = Dolv,a(b) and 9, Dolv, af(a) = 0, Dolv, a(b),
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then we get

_ Plal) g _ folv.o)(a)

Nl
(3.12) o= =

with I°[v, a](z) = 2 [*

N e~lz=vly(y)dy. And, as before, if we require

Do[v,a)(a) =C, and Dyv,a](b) = Cy
with given numbers C, and Cj, then the boundary coefficients are obtained as

1

(3.13a) Ay = 5 (1 (I°[v, &) (b) — v(b) + Cy) — (I°[v, &](a) — v(a) + Ca)),

1
=12

(3.13b) By (1 (I°[v, &) (a) — v(a) + Cy) — (I°[v, a](b) — v(b) + Cy)) -

In the following, we will study the properties of the partial sums with different
boundary conditions. Additionally, we will discuss the parameter « and its role in
ensuring accuracy and unconditional stability.

3.2.1. Periodic boundary conditions. If A is a periodic function, we define
the approximations of the first derivatives AT using partial sums as

(3.14a)
azlgzl DYV[A, a](x), k=12,
AL =P [A ol(x) =
o 2221 DY [A,a)(z) — aDy * D[A, o](z), k=3,

and

(3.14b)
—a Yl DA, a](), k=12,
Al = PlA o](z) =

—a Yl DA, a(z) + aDo = D4[A, o] (z), k= 3.

Then, we have the following theorem, which gives an error estimate for the partial
sums approximation and has been proven in [16].

THEOREM 3.1. Suppose v(z) € C¥*1[a, b] is a periodic smooth function. Consider
the operators D, with the boundary treatment D,(a) = D.(b). Here, * can be L, R,
and 0. Then,

(3.15) 14z = P (A, allloo = O (1/0%) |4z = P [A, ofloo = O (1/0*).

Here, we take a = 8/(cAt), where ¢ is the maximum wave speed and f is a
constant independent of the time step At. Therefore, the accuracy for the approxi-
mation (3.14) to the 9, A is O(At*). Note that, to achieve kth order accuracy in time,
k = 1,2,3, we should employ the kth order SSP RK method (3.2)-(3.4) as well as P
in (3.14). Moreover, if 8 is chosen appropriately, the semidiscrete scheme (without
numerical approach to DP) is A-stable and hence allows for large time step evolution.
Additionally, the linear stability of the method, outlined in the following theorem,
has been proven in [16].
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TABLE 3.1
Bk, max in Theorem 3.2 for k =1, 2, 3.

k 1 2 3
Bromaz | 2 1 1.243

THEOREM 3.2. For the linear equation ¢y + cd, = 0, (i.e., the Hamiltonian is
linear) with periodic boundary conditions, we consider the kth order SSP RK method
as well as the kth partial sum in (3.14) with o = /(|c|At). Then there exists a
constant Bimaz > 0 for k =1, 2, 3 such that the scheme is A-stable provided 0 < 5 <
Bi,max- The constants B mae for k =1, 2, 3 are summarized in Table 3.1.

Note that for £ = 3, we modify the partial sum ’P3i with a extra term oDy * D?,
where * can be L or R. This is because we found that the scheme coupling the partial
sum, o 22:1 DYV[A, a](x) or —« 22:1 DY [A, of(x), with third order SSP RK method
could not maintain the A-stable property. In fact, —a?Dg[v,a] is an approximation
t0 V., which has been proven in [17]. Therefore, the extra terms aDg x D? in (3.14)
are approximations to (1/a%)d% A and hence help enhance the stability of our scheme
by adding extra fourth order numerical dissipation.

3.2.2. Outflow boundary conditions. In this section we will address outflow
boundary conditions. We will cast the needed data in terms of a general condition
which is discussed in [17]. To achieve a higher order accuracy for the nonperiodic
case, we need a modification of the partial sums (3.14). For nonperiodic boundary
conditions, this additional information is needed at the boundaries. This additional
information takes the form of derivative values at the boundary, i.e., 97" A(a) and
07 A(b), m > 1. For now assume we have this data, but later in this sections we will
summarize an approach for constructing this data for outflow. Using integration by
parts one can derive the following modified partial sums for £ < 3 to deal with the
nonperiodic boundary conditions:

_ a 3 Dr[A1p, af(z), k=1,2,
(3.16a) A, =~ P; [A,d](z) = ret
« ;1 Dp[A1,,a(z) — aDolA13,0](x), k=3,
(3.16b)
~ —a 3" Drldsp,al(2) bo12
AT = PlA d(x) = pt
-G 2::1 Dgr[Aszp, af(x) + aDy[Az 3, af(x), k=3.

And A, , and A, are given as

A=A,
k 1 m
Ma=Dildial= Y (<1) ora@e e,
(3.17a) 2 \"a
k 1 m
A1,3 = 'DL[ALQ,OZ] + (m — 1) <_a> a;nA(a)efoz(xfa)’
m=2
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A1 = A,
RN
oo = Daldzs o) = Y (1) om0,
) > (t
k m
1
Ay 3 = DpglAsz2, 0] + (m—1) (a> G?A(b)e—a(b—x)7
m=2

where the boundary conditions for the operators are imposed as

aDp[A11,a](a) = Az(a), oDgr[Az1,a](b) = —Az(D),
aDp A1, al(a) = aDgrl[As,,a](b) =0 for p > 2,
aDo[A, 3,a](a) = aDy[As3,a](b) =0, = could be 1 or 2.

Then, the modified partial sum (3.16) agrees with the derivative values at the
boundary: B B
Pr (A a](a) = Au(a), P [A,a)(b) = AL (D).

Furthermore, we have the following theorem, which is a result of the Theorem 2.3
from [17].

THEOREM 3.3. Suppose A € CF¥*L[a,b]. Then the modified partial sums (3.16)
satisfy

(3.18)
14: = Py [A, oo = O(1/a"), |4z = P[A,a]lls = O(1/0%), k=1,2,3.

Again, we take a = /(cAt), where ¢ is the maximum wave speed and § is the
same as in the case of the periodic boundary conditions; see Table 3.1.

As we have seen in (3.17), for high order we need the derivatives 97*A(a) and
O A(b), m > 1, for nonperiodic boundary conditions. Here, we will only focus on
the outflow boundary conditions. For outflow we construct the derivatives using
high order extrapolation at boundaries (that is, there are no physical boundaries
given). The details of the general nonperiodic conditions can be found in our previous
work [17].

3.2.3. Space discretization. According to the kernel-based method, the spa-
tial derivatives can be approximated by the partial sums based on an integral formu-
lation. A fully discrete numerical solution is then obtained by discretizing Dy, and Dg
operators in space. In this subsection we will give the details of the spatial discretiza-
tion of the Dy, and Dg operators and the WENO-based quadrature formulation to
approximate the convolution integrals appearing in the Dy and Dg operators.

Suppose we divide the domain [a, b] with N + 1 uniformly distributed grid points:

Az =(b—a)/N, z =a+iAz, i=0,1,...,N.

The convolution integrals I* = I'X[v,a](x;) and It = I%[v, o](x;) satisfy a recursive
relation:

(3.19a) IF=emodngl 4 gk i=1,...N, If=0,
(3.19b) If=eobmngl 4 gE i=0,...,N-1, If=0,
where
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T4 Tit1
(3.20) Jb = a/ v(y)e~ @y, JE = a/ v(y)e” W) gy,
Ti—1 a3
Since there is a unique polynomial p(z) of degree at most & that interpolates v(z)
at the nodes in the interpolation stencil S(i) = {z;—r,...,2;—rtr}, Which contains
z;_1 and x;, we can approximate JiL with kth order accuracy by

(3.21) Jh~ a/ ply)e @V dy,
Ti1

Note that the integral on the right-hand side can be evaluated exactly. Similarly, JF
can be approximated by

Ti+1
(3.22) Jlt =~ a/ p(y)e W=y
Xy
with polynomial p(x) interpolating v(z) on stencil S(i) = {Zitr—k,- .., Titr}, which
includes z; and z;41.

Since the quadratures with a fixed stencil for approximating the J& and J¥ may
develop spurious oscillations which violate the entropy solutions, we will use WENO-
based quadrature formula and the nonlinear filter to control oscillations and capture
the correct solution, which is proposed in [17]. Here we will provide a brief description.

To summarize, if A, is a periodic function, then we will be using the following
modified sums framework instead of (3.14) for approximation of AF at x;:

k
(3.23a) A, =aDr[A a](z;) + a Z 05227)’5 (A, o](z;),
p=2
k
(3.23b) A, = —aDg[A, a](z;) — o Z aiégD%[A, al(z;),
p=2

and if A, is a nonperiodic function, then we we will use the following formulation
instead of (3.16):

k
(3.24a) AL, =aDr[Ar,ol(z:) + @Y 0P *DifAr,, o) (),
p=2
k
(3.24b) Al = —aDglAzq,0)(zi) —a Y oV PDrlAz,, ol (x)).
p=2

Moreover, we only use the WENO formulation when p = 1 and apply a cheap high
order linear formulation (3.21) and (3.22) for the case p > 1. The filters o, 1, and o; g
are obtained based on the smoothness indicators from the WENO quadrature.

The fifth order WENO quadrature for J% is presented here as an example. The re-
lated stencil is given in Figure 3.1. We choose the big stencil as S(i) = {z;_3,..., 212}
and the three small stencils as Sy (¢) = {&;—345y .-, Tigr}, 7 =0,1,2.

1. We approximate the integrals on each small stencils S,.(i) as follows:

T; 3
(3.25) Jh =a / e p, (y)dz,= Y e Vvissyry,

i—1 j=0
where p,(z) is the polynomial interpolating v(x) on nodes S,(i), and the
coefficients cy) depend on « and the cell size Az but not on v.
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S

Sz

Fic. 3.1. The structure of the stencils in WENO integration.

2. Similarly, on the big stencil S(i), we obtain

(3.26) JE = a / |

i—1

2
e~ @ V) p(y)dw = Z d,JF,
r=0

with the linear weights d, satisfying 23:0 d, = 1.
3. We develop the following nonlinear weights w, using the linear weights d,.:

2
(3.27) W=,/ @y T=0, 1,2,

with

- 5
r=d,. [ 1+ .
w ( e—|—,@,«>

We take € = 107° as a small positive number, € > 0, in our numerical test
problems to avoid zero at the denominator. The smoothness indicator 3, is
determined as

- i 21—3 3lpr($) ’
(3.28) 5T=;/TM Ag? (W) dz,

which is used to measure the relative smoothness of the function v(z) in the
stencil S,.(2). Here, 75 = 8o — fB2|. Furthermore, we introduce a parameter &;
as

- )
/BWL(IJJ

which will be use to create the nonlinear filter. Here,

(3.29) &

T5 )2 7'5)2
6+min(507ﬁ2) ’ 6+m3,X(ﬁ0,52) .

Note that we have developed the nonlinear weights using the idea of the
WENO-Z method proposed in [8], which has less dissipation and higher res-
olution compared to the original WENO method.

4. Lastly, we obtain the approximation

ﬁmax:1+( /Bmm:1+<

2
(3.31) JE=>w gk
r=0
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The filter o; 1, is determined as
(332) 0i,L = min(fi_l, 51)

All coefficients are given in Appendix A. The process to obtain J7 and o; g is mirror
symmetric to that of J* and o; 1, with respect to point ;.

To close this section, we summarize the proposed method for approximating 1D
problem (3.1) in the following algorithm flowchart.

Given the function u™, the approximation order k& < 3, the mesh size Ax, and the time
step At

1. Choose S from Table 3.1. Compute ¢ = max |H'(¢)| at time t™.
2. On each inner stage of the kth order SSP RK scheme do the following:

(a) Compute ¢, and then obtain parameters o = /(cAt). For nonperiodic
boundary conditions, compute the derivatives 97" A(a) and 97*A(b), m =
1.k

(b) Apply Dr, and D on A, respectively. Use the WENO quadrature to calcu-
late JXE and at the same time obtain the nonlinear filter or,r. Compute
I%E via (3.19) and then calculate the parameter Ay, and By based on the
boundary condition. Combine IYE A;, and Bg to construct Dr[A] and
Dr[A4].

(c) Fork > 1, also construct DY [A] = D2~ ' [DL[A]] and D% [A] = D% ' [Dg|[A]],
or the modified funtions DLF[A; 5 4] in (3.17), by a similar procedure for
1 < p < k. WENO quadrature is not needed for construction of these high
order terms.

(d) Construct AF based on the the partial sum approximations (3.14) or (3.16).

(e) Substitute into the Lax—Friedrichs Hamiltonian flux (3.5) and update the
solution accordingly.

3.3. 2D magnetic potential equation. According to the CT formulation
described in section 2.1, we must update the solution of the magnetic potential equa-
tion by solving a discrete version of the following equation:

(3.33) A} +ul (2,9) A3 4w (x,y) A = 0,

where the velocity components u' and u? are known from the previous time step due
to the solution of the base part. Since the velocity functions are given, we can consider
(3.33) as an HJ equation

(3.34) A} + H(A3, A3) =0
with Hamiltonian flux
(3.35) H(AS, AD) = ul(z,y) AL + u®(z,y) A}

We can directly apply a 2D version of the framework presented in section 3.1. The
2D semidiscrete scheme can be written as
dA? (1)

(3.36) —g = —H (A3 |55, A3 5, AD 7 1ig, AT 5)
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at each point (x;,y,), where H is a Lipschitz continuous Hamiltonian flux. If we use
the global Lax—Friedrichs flux, (3.36) becomes

dA}; (1) :_u{j(wﬁu_uz (M)M

dt 2 b 2
A3t — A3- A3t — A3-
(3.37) +o (%) lii + c2 (%) li.

with

= max|u and c¢g = max|u

'LJ| 1]|

We remark that the scheme (3.37) with global wave speeds can be very dissipative for
some HJ equations. Instead, we can use the localized version of the Lax—Friedrichs
flux, in which the maximum is computed over local states.

The approximations A3*|; ; and Agi|i7j to the derivatives of functions A, (z,y)
and Ay(z,y) at (z;,y;), respectively, are being calculated directly using 1D formu-
lation of the scheme, e.g., when computing A3%, we fix y and apply 1D scheme in
z-direction. For example, when A, is periodic in z-direction, we get

k
A7 ~ DY [A(, ), anl(a) + a1 3 o DY A( ) (o),
p—2
A;_ ~ —OélpR[A(', y) — Q3 Zo_p QDP y),aﬂ(m).

Here, we choose a; = §/(c1At). Similarly, to approximate Ay , we fix z and obtain

A, ~ oD [A(x, )+ o ZCfp DY [A(z, ), a2] (y),

Y

A} ~ —asDrlA(, ), a2)(y) — az Z o? DAz, ), a2) (y)

p=2

with as = B/(c2At). Note that in the 2D case, we need to choose Bq. as half of
that for the 1D case to ensure the unconditional stability of the scheme.

In the case of nonperiodic boundary conditions, we still use extrapolation with
suitable order of accuracy for the derivative values at an outflow boundary, as in the
1D formulation. For the details, see [17].

3.4. 3D magnetic potential equation. Although the evolution equation for
the 3D magnetic potential (2.8) is significantly different from the evolution equation
for the 2D scalar magnetic potential (3.33), we can still directly apply the scheme
presented in section (3.1) to the 3D case. Writing out the magnetic vector potential
equation derived in section (2.2) in component form we have

(3.38) WA = u? (0, A%) + u? (0, A) — u?(9,A) — u?(9.A"Y),
(3.39) NA? = —ut (0, A%) + u'(9,A) + u?(0,A%) — u?(9,A?),
(3.40) NA? = —u' (0, A%) — u?(9,A%) + u' (9. AY) + u?(0,A?)
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with A = (A!, A%, A3) and u = (u',u? v®). While A in three dimensions is not
strictly an HJ equation, with the new implicit approach, we can simply apply the
ideas from the 2D case. Then we can obtain the following equations using the Lax—
Friedrichs flux splitting:

dA'(t) 2(ATT AT (AT AT (AT AT (A - AT

= U — Co u — C3
dt 2 2 2 2
AT+ AL Alm — ALY I+ 4 Al- 1-_ AL+
(341&) _ u2 ( Y 5 Y ) — ¢ ( Y 5 Y ) _ ’LL3 (Az ;— Az ) — ¢ (Az 5 Az ) ,
AAP(t) (AR AR (AR AR AT AT (A - A
dt 2 2 2 2
(A3t + A7) (A3= — A3+ (A2 + A27) (AZ= — A%H)
(3.41b) —I—’u,3 Y 5 Y —c3 Y 5 Y .3 z 5 z — e z 5 z ,
dA(t) _ (AT +AT) (AT AR LA HAT) (A Ay
at 2 ' 2 2 ? 2
V(AT AT (AT AT (AT AT (AT - AT
(341c) +Hu 5 c1 5 +u 5 Co 5

at (,9;, 2k), where

e = ?}f},ﬂ“z{j,kh cp = max ufjil, and ez = riflja;<|u§,j,k|~

2Js

Similarly, we use the 1D kernel-based formulation to approximate the derivatives

*

of the magnetic vector potential components A5*, A7*, and A, where * denotes
1,2, and 3. In addition, since the density or pressure may become negative in some
problems such as the blast wave problem, we use the positivity preserving limiter idea

developed in our previous work [20], which is fully described in [18, 19, 44].

3.5. The cost of the MOLT algorithm. The cost of the method is O(IV)
[10, 13, 11, 12, 15]. Due to our fast summation method [11], using the first order
form of the update for A with the proposed approach in the stages of third order
RK is literally no more expensive than the standard WENO method for the vector
potential in [20]. However, to be third order in time, at each stage value of the RK
method, we do 3 convolution operator corrections to give third order in time, which
means that the update for A is 3 times the cost of the old method in [20] for the
update of A. There are two points to make here. First, the new method has an
A-stable property which eliminates the need for the additional diffusive limiters in
the magnetic potential equation [20]. This is important for strong shocks, as will be
discussed in the next section. Second, a possible solution to the above concern is
to do a single step version of the method based on Adams—Bashforth (AB) and it
could solve the issue of cost. Using von Neumann analysis, it is easy to show that for
a linear HJ equation, AB combined with MOLT leads to an unconditionally stable
method. Hence, if cutting cost of the method is a priority, a straightforward line of
research would be to replace the RK update for A by a single step AB method and
cut the cost of computing A by a factor of 3. We have developed such an AB-MOL™
approach in one dimensions and this line of work is part of our future efforts.

4. Numerical results. In this section, we present the numerical results to
demonstrate the accuracy and efficiency of the new method. We use the third
order SSP RK method for the time discretization. Time step is chosen as
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CFL

em % cd’

(4.1) At =

where the CFL number is 0.5, em = max(A\3, \), cd = ﬁ + Aiy for two dimensions
and cd = ﬁ + Aiy + i for three dimensions.
4.1. Smooth vortex test in MHD. We first test the smooth vortex problem

in two dimensions with a nonzero magnetic field to show the accuracy of the method
within the CT formulation. The initial conditions are

(p’u1’u3’u37p’B17B27B3):(17171’0’]‘707070)
with perturbations on u', u?, B, B2, and p as
K 0.5(1—r2
(5u176u2> = %60 5 )(_y?x)v
(68,68%) = 7" (—y. ),

I e

)
p 82

And the initial condition for magnetic potential is

_T2

where 2 = 22 4+ y2. The vortex strength is taken as p = 5.389489439 and xk = V2
such that the lowest pressure is around 5.3 x 107!2 which happens in the center of
the vortex. The domain is [—10,10] x [—10,10], and periodic boundary conditions
are imposed. In Table 4.1, we present the errors of B at t = 0.05 with the mesh size
160 x 160. We observe fourth order accuracy in space for B. Note that we use the
fifth order WENO scheme for the solution of A, but since we take the derivative of
the magnetic potential equation to get the magnetic field, we lose an order of accuracy
for B; thus we get fourth order in space.

4.2. 2D Orszag—Tang vortex. The Orszang-Tang vortex problem is a stan-
dard model problem for testing V- B = 0 condition, since the solution of the problem
is sensitive to divergence errors at late times. The initial conditions are given as

(pa ula U2, U:37p, Bl7 327 B3) = (’YZa - Sin(y)v sin(a:), 07 Y Sin(y)7 SiIl(QQZ‘), O)a
where v = 5/3 is the ideal gas constant and the initial magnetic potential is

A3 = 0.5 cos(2z) + cos(y).

TABLE 4.1
Smooth vortex problem. Errors of B and orders of accuracy.

Nz X Ny L1 error Order Lo error Order
20 x 20 2.827E-03 - 1.479E-01 -
40 x 40 2.982E-04 3.245 1.839E-02 3.007
80 x 80 1.861E-05 4.003 1.327E-03 3.793

160 x 160 1.102E-06 4.078 1.126E-04 3.559

320 x 320 7.260E-08 3.924 1.170E-05 3.267
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(a) Kernel-based method. (b) Previous method [20].

Fic. 4.1. Orszag—Tang vortex problem. Contour plots of density at t = 3 with 192 x 192 grid
points.

The computational domain is [0, 27] x [0, 2], and periodic boundary conditions are
used everywhere. We test the schemes with 192 x 192 grid points. Although the
problem has a smooth initial condition, the solution generates an increasingly finer
vortex structure throughout the domain as time progresses, rapidly dropping below
the resolution of the mesh. In Figure 4.1, we show density p at time ¢ = 3 and
compare the results with our previous method [20]. We can see that they are in good
agreement.

4.3. Cloud shock. In this section we consider the 2D cloud shock interaction
problem, which models a strong shock passing through a dense stationary bubble.
The initial conditions include

(pa ulau27u37pa BlvBQa B3)
| (3.86859,11.2536,0,0,167.345,0,2.1826182, —2.1826182), «z < 0.05,
1 (1,0,0,0,1,0,0.56418958,0.56418958), z > 0.05,

and a circular cloud of density p = 10 and radius r = 0.15 centered at (z,y) =
(0.25,0.5). The computational domain is [0,1] x [0,1] with mesh 512 x 512. We use
an inflow boundary condition at left boundary and the high order outflow boundary
condition elsewhere else. The initial condition for magnetic potential is

4 _ [ —2.1826182(x —0.05), = <0.05,
~\ —0.56418958(z — 0.005), z > 0.05 .

Figure 4.2 presents Schlieren plots of ||B|| at ¢ = 0.06. The new method matches well
with our numerical results of our previous method [20].

4.4. 3D field loop. We tested an advecting field loop which moved diagonally
across the boundary with an arbitrary initial angle. The initial conditions are

(pou' u? 0w, p) = (1,2/V6,1/V6,1/6,1).
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(a) Kernel-based method. (b) Previous method [20].

Fic. 4.2. Cloud shock problem. Contour plots of ||B|| at t = 0.06 with 512 x 512 grid points.
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FiG. 4.3. 3D Field loop. Contour plots at time t = 1 with 128 x 128 grid points. The loop has
been advected around the grid once. (a) Magnetic pressure; (b) magnetic potential.

The initial conditions for magnetic field are determined by taking the curl of the
magnetic potential, which is given as magnetic potential:

43— 0.001(R-7r), <R,
10 otherwise,

where A' = 0, A2 =0, and r = /22 4+ 32 and R = 0.3. We use a domain size
[-0.5,0.5] x [—0.5,0.5] x [—0.5,0.5] with 128 x 128 x 128 mesh. Periodic boundary
conditions are applied to all sides. We observe that the field loop integrity is main-
tained, after advecting diagonally around the domain, until the final time, t = 1. The
results shown in Figure 4.3 are a 2D slice of the 3D solution taken at z = 0.

4.5. 3D blast wave. In this section we investigate the 3D version of the blast
wave problem to show the strength of the new method, which eliminates the need for
the diffusion limiter. The initial conditions are
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(p,u',u? v B', B%, B®) = (1,0,0,0,50/v2m,50/v/27,0)

with a spherical pressure pulse

{1000, r<0.1,
1 0.1 otherwise.

where r = \/22 + 92 + 22. The initial condition for magnetic potential is

A(0,z,y,2) = (0,0,50/v2ry — 50/ 27x).

We use a domain size [—0.5,0.5] x [-0.5,0.5] x [—0.5,0.5] with 150 x 150 x 150
mesh. Outflow boundary conditions are applied everywhere.The results presented in
Figure 4.4 and Figure 4.5 are the solutions cut at z = 0. The subplots highlight the
differences between the two methods. The key differences are that the new method
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Fic. 4.4. 3D blast wave problem. Contour plots at time t = 0.01 with 150 x 150 grid points.
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Fic. 4.5. 3D blast wave problem. Contour plots at time t = 0.01 with 150 x 150 grid points.
While the maz ||u|| value for the previous method is 261, it is 320 for the kernel-based method. Note
that this is 23% higher than the old method and is far less isotropic around the peak than the old
method.

has a maximum value that achieves a peak of 320, which is 23% higher than the old
method, and is far less isotropic around the peak than the old method. As demon-
strated in a latter test, the isotropic behavior and lower peak in the strong blast wave
are due to the diffusion limiter that was needed with the old explicit CT method.

4.6. Kernel-based method with diffusion terms. In this section we demon-
strate the advantage of the new approach in the context of strong shocks. In the
previous approach [20], we needed to add in a diffusion limiter to stabilize the up-
date for A in the vicinity of a sharp change in the solution. This had no impact on
smooth solutions and minimal impact on problems like the cloud shock. But in the
context of the blast wave problem, while the diffusion limiter stabilized the solution,
comparing |ju|| for both schemes, we have that the maximum value of the previous
method is 261, while it is 320 for the kernel-based method. This involved decreasing
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Fic. 4.6. 3D blast wave from the kernel-based method after adding the diffusion limiter. The
maz ||u|| value is 265. We note that these results are nearly identical to the old WENO-HJ method,
which required the diffusion limiter.

the maximum values, making the solution more isotropic, and changing the structure
of the contours away from the blast. In Figure 4.6, we show the solution generated
by the new method with the diffusion limiter used in our previous code. In this case,
the maximum value of |ju| is 265. These results confirm that the limiter is what is
causing a change in the solution structure for problems with strong shocks. Adding
the diffusion limiter caused the solution to revert from the results of the new method
to those obtained by the old method.

5. Conclusion. In this work we developed a kernel-based CT scheme based on
the magnetic vector potential equations in two and three dimensions for ensuring that
the solution of the magnetic field in ideal MHD is divergence-free. The development
of the method relies on a kernel-based formulation of the spatial derivatives. The
framework of the current method is derived from the MOLT methodology and the
key idea of successive convolution. The method relies on the idea of replacing a local
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operator with an O(N) global operator that is as efficient as an explicit method. Be-
cause the approximation is global, it provides a method that behaves unconditionally
stable for HJ equations when coupled with explicit time stepping. For time integra-
tion, we coupled the method with explicit SSP RK schemes. The most important
conclusion of this work is that the newly proposed method offers an approach to CT
that is mesh aligned for AMR and does not rely on a diffusion limiter for stability
in three dimensions, which we needed in our previous work [20]. This modification
considerably improves solutions where there are strong shocks and, as demonstrated
in numerical simulations, also works well for smooth problems. The method is robust
and has been tested on a range of 2D and 3D test problems, such as the field loop
and blast wave problems.

Appendix A. Formulation of WENO quadrature. Here, we show all
coefficients in WENO quadrature. We denote v = aAx; then we have

6 — 6v + 202 — (6 — v?)e ™

(O = - ,
RON 6 — 8v +3v? — (6 — 2v — 2v2)eV
L 23 ’
© 6—100+460% — (6 —4v — 2 + 203)e ™
@ = 23 ’
©  6—12v+11% —6° — (6 — 6v + 2v%)e "
G T 63 ’
1)y 6—v*—(6+6v+2w2)e
“ = 63 ’
1 6-2v— 202 — (6 +4v — v? — 203 )e "4
“a =- 23 ’
(1 6—4dv— v?2+20% — (6 + 20 — 2v%)e™"
@ = 2v3 ’
1y 6—6v+ 2% — (6 — 1/2)6_”
T 613 ’

(2) 6460 +207 — (64 120 + 1102 + 6v°)e ™
“ = 6v3 ’
@2  6+4v—v?—2° — (64 100 + 6v2)e "
“a =" 2v3 ’
2y 6420 —202 — (64 8v 4 3v%)e”
= 2u3 ’

2 6—1v2—(6+6v+22)e "
ey =— % .

And the linear weights are

6 — 12 — (64 6v + 2v2)e™
w(2-v)—(24v)er)’

dy = 60 — 60v + 1502 + 503 — 3v* — (60 — 1502 + 2vt)e™”

1002(6 — v2 — (6 + 6v + 2v2)e™V) ’

di =1—dgy — do.

do =
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The smoothness indicator 3, has the expressions as

[6]

[7]

(8]

[10]
(11]

(12]

18]

[19]

[20]

(21]

13 1
60 = E(*’Ui_g + 31)1‘_2 — 37}1’—1 + ’Ui)z + 1(1)1'_3 — 5”01'_2 + 7”01‘_1 — 3’01‘)2,
13 9 9
B = E(_Uz?Q +3v,-1 — 3v; +vig1)* + Z(Uz?Z —Vim1 — U+ Vig1)”,
13 , 1 ,
Bo = E(—Uz‘q + 3v; — 3vit1 +vig2)” + i(—?ﬂ)iﬂ + Tv; — 5vi41 + vig2)”
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