Journal of Scientific Computing (2021) 86:1
https://doi.org/10.1007/510915-020-01359-x

®

Check for
updates

Parallel Algorithms for Successive Convolution

Andrew J. Christlieb? - Pierson T. Guthrey'? . William A. Sands'(® -
Mathialakan Thavappiragasm'3

Received: 22 July 2020 / Accepted: 1 November 2020 / Published online: 8 December 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

The development of modern computing architectures with ever-increasing amounts of par-
allelism has allowed for the solution of previously intractable problems across a variety of
scientific disciplines. Despite these advances, multiscale computing problems continue to
pose an incredible challenge to modern architectures because they require resolving scales
that often vary by orders of magnitude in both space and time. Such complications have led
us to consider alternative discretizations for partial differential equations (PDEs) which use
expansions involving integral operators to approximate spatial derivatives (Christlieb et al.
in J] Comput Phys 379:214-236, 2019; Christlieb et al. J Sci Comput 82:52(3):1-29, 2020;
Christlieb et al. ] Comput Phys 415:1-25, 2020). These constructions use explicit information
within the integral terms, but treat boundary data implicitly, which contributes to the overall
speed of the method. This approach is provably unconditionally stable for linear problems
and stability has been demonstrated experimentally for nonlinear problems. Additionally, it
is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not
required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that
yields a method with a computational complexity of O(N), where N is the number of mesh
points along a coordinate direction. While much work has been done to explore the theory
behind these methods, their practicality in large scale computing environments is a largely
unexplored topic. In this work, we explore the performance of these methods by develop-
ing a domain decomposition algorithm suitable for distributed memory systems along with
shared memory algorithms. As a first pass, we derive an artificial Courant-Friedrichs—Lewy
condition that enforces a nearest-neighbor (N-N) communication pattern and briefly discuss
possible generalizations. We also analyze several approaches for implementing the parallel
algorithms by optimizing predominant loop structures and maximizing data reuse. Using a
hybrid design that employs MPI and Kokkos (Edwards and Trott in J Parallel Distrib Comput
74:3202-3216, 2014) for the distributed and shared memory components of the algorithms,
respectively, we show that our methods are efficient and can sustain an update rate > 1 x 108
DOF/node/s. We provide results that demonstrate the scalability and versatility of our algo-
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rithms using several different PDE test problems, including a nonlinear example, which
employs an adaptive time-stepping rule.

Keywords High-performance computing - Domain decomposition -
Method-of-lines-transpose - Integral solution - Fast algorithms - Numerical analysis

1 Introduction

In this work, we develop parallel algorithms using novel approaches to represent deriva-
tive operators for linear and nonlinear time-dependent partial differential equations (PDEs).
We chose to investigate algorithms for these representations due to the stability properties
observed for a wide range of linear and nonlinear PDEs. The approach considered here uses
expansions involving integral operators to approximate spatial derivatives. Here, we shall
refer to this approach as the Method of Lines Transpose (MOLT) though this can be more
broadly categorized within a larger class of successive convolution methods. The name arises
because the terms in the operator expansions, which we describe later, involve convolution
integrals whose operand is recursively or successively defined. Despite the use of explicit
data in these integral terms, the boundary data remains implicit, which contributes to both
the speed and stability of the representations. The inclusion of more terms in these opera-
tor expansions, when combined with a high-order quadrature method, allow one to obtain
a high-order discretization in both space and time. Another benefit of this approach is that
extensions to multiple spatial dimensions are straightforward as operators can be treated in a
line-by-line fashion. Moreover, the integral equations are amenable to fast-summation tech-
niques, which reduce the overall computational complexity, along a given dimension, from
O(N?) to O(N), where N is the number of discrete grid points along a dimension.

High-order successive convolution algorithms have been developed to solve a range of
time-dependent PDEs, including the wave equation [5], heat equation (e.g., Allen-Cahn [6]
and Cahn-Hilliard equations [7]), Maxwell’s equations [8], Vlasov equation [9], degenerate
advection-diffusion (A-D) equation [2], and the Hamilton-Jacobi (H-J) equation [1,3]. In
contrast to these papers, this work focuses on the performance of the method in parallel com-
puting environments, which is a largely unexplored area of research. Specifically, our work
focuses on developing effective domain decomposition strategies for distributed memory
systems and building thread-scalable algorithms using the low-order schemes as a baseline.
By leveraging the decay properties of the integral representation, we restrict the calcula-
tions to localized non-overlapping subsets of the spatial domain. The algorithms presented
in this work consider dependencies between nearest-neighbors (N-N), but, as we will see,
this restriction can be generalized to include additional information, at the cost of additional
communication. Using a hybrid design that employs MPI and Kokkos [4] for the distributed
and shared memory components of the algorithms, respectively, we show that our methods
are efficient and can sustain an update rate > 1 x 108 DOF/node/s. While experimentation on
graphics processing units (GPUs) shall be left to future work, we believe choosing Kokkos
will provide a path for a more performant and seamless integration of our algorithms with
new computing hardware.

Recent developments in successive convolution methods have focused on extensions to
solve more general nonlinear PDEs, for which an integral solution is generally not applica-
ble. This work considers discretizations developed for degenerate advection-diffusion (A-D)
equations [2], as well as the Hamilton-Jacobi (H-J) equations [1,3]. The key idea of these
papers exploited the linearity of a given differential operator rather than the underlying

@ Springer



Journal of Scientific Computing (2021) 86:1 Page3of44 1

equations, allowing derivatives in nonlinear problems to be expressed using the same rep-
resentations developed for linear problems. For linear problems, it was demonstrated that
one could couple these representations for the derivative operators with an explicit time-
stepping method, such as the strong-stability-preserving Runge-Kutta (SSP-RK) methods
[10] and still obtain schemes which maintain unconditional stability [1,2]. To address shock-
capturing and control non-physical oscillations, the latter two papers introduced quadratures
that use WENO reconstructions, along with a nonlinear filter to further control oscillations. In
[3], the schemes for the H-J equations were extended to enable calculations on mapped grids.
This paper also proposed a new WENO quadrature method that uses a basis that consists of
exponential polynomials that improves the shock capturing capabilities.

Our choice in discretizing time, first, before treating the spatial quantities, is not a new idea.
A well-known approach is Rothe’s method [11,12] in which a finite difference approxima-
tion is used for time derivatives and an integral equation solver is developed for the resulting
sequence of elliptic PDEs (see e.g., [13—19]). The earlier developments for successive con-
volution methods, such as [5], are quite similar to Rothe’s method in the treatment of the time
derivatives. However, successive convolution methods differ from Rothe’s method consider-
ably in the treatment of spatial derivatives for nonlinear problems, such as those considered
in more recent work on successive convolution (see e.g., [1-3]), as Newton iteration can be
avoided on nonlinear terms. Additionally, these methods do not require solutions to linear
systems. In contrast, Nystrom methods, which are used to discretize the integral equations in
Rothe’s method, result in dense linear systems, which are typically solved using an iterative
method such as GMRES [20]. Despite the fact that the linear systems are well-conditioned,
the various collective operations that occur in distributed GMRES solves can become quite
expensive on large computing platforms.

Similarly, in [21,22], Bruno and Lyon introduced a spectral method, based on the
FFT, for computing spatial derivatives of general, possibly non-periodic, functions known
as Fourier-Continuation (FC). They combined this representation with the well-known
Alternating-Direction (AD) methods, e.g., [23-25], dubbed FC-AD, to develop implicit
solvers suitable for linear equations. This resulted in a method capable of computing spa-
tial derivatives in a rapidly convergent and dispersionless fashion. A domain decomposition
technique for the FC method is described in [26] and weak scaling was demonstrated to
256 processors, using 4 processors per node, but larger runs were not considered. Another
related transform approach was developed to solve the linear wave equation [27]. This work
introduced a windowed Fourier methodology and combined this with a frequency-domain
boundary integral equation solver to simulate long-time, high-frequency wave propagation.
While this particular work does not focus on parallel implementations, they suggest several
generic strategies, including a trivially parallelizable approach that solves a collection of
frequency-domain integral equations in parallel; however, a purely parallel-in-time approach
may not be appropriate for massively parallel systems, especially if few frequencies are
required across time. This issue may be further complicated by the parallel implementation
of the frequency-domain integral equation solvers, which, as previously mentioned, require
the solution of dense linear systems. Therefore, it may be a rather difficult task to develop
robust parallel algorithms, which are capable of achieving their peak performance.

This paper is organized as follows: In Sect. 2, we provide an overview of the numerical
scheme used to formulate our algorithms. To this end, we first illustrate the connections
among several characteristically different PDEs through the appearance of common operators
in Sect. 2.1. Using these fundamental operators, we define the integral representation in
Sect. 2.2, which is used to approximate spatial derivatives. Once the representations have
been introduced, we briefly discuss the complications associated with boundary conditions
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and provide the relevant information, in Sect. 2.3, for implementing boundary conditions
used in our numerical tests. Sections 2.4 and 2.5 briefly review the spatial discretization
process (including the fast-summation method and the quadrature) and the coupling with
time integration methods, respectively. Section 3 provides the details of our new domain
decomposition algorithm, beginning with the derivation of the so-called N-N conditions
in Sect. 3.1. Using these conditions, we show how this can be used to enforce boundary
conditions, locally, for first and second derivative operators (Sects. 3.2 and 3.3, respectively).
Details concerning the implementation of the parallel algorithms are contained entirely in
Sect. 4. This includes the introduction of the shared memory programming model (Sect.
4.1), the definition of a certain performance metric (Sect. 4.2) used in both loop optimization
experiments and scaling studies (Sect. 4.3), the presentation of shared memory algorithms
(Sect. 4.4), and, lastly, implementation details concerning the distributed memory algorithms
(Sect. 4.5). Section 5 contains the core numerical results which confirm the convergence
(Sect. 5.1), as well as, the weak and strong scalability (Sects. 5.2 and 5.3, respectively) of
the proposed algorithms. In Sect. 5.4, we examine the impact of the restriction posed by the
N-N conditions. Finally, we summarize our findings with a brief conclusion in Sect. 6.

2 Description of Numerical Methods

In this section, we outline the approach used to develop unconditionally stable solvers mak-
ing use of knowledge for linear operators. We will start by demonstrating the connections
between several different PDEs using operator notation, which will allow us to reuse, or
combine, approximations in several different ways. Once we have established these connec-
tions, we define an appropriate “inverse" operator and use this to develop the expansions
used to represent derivatives. The representations we develop for derivative operators are
motivated by the solution of simple 1-D problems. However, in multi-dimensional problem:s,
these expressions are still valid approximations, in a certain sense, even though the kernels in
the integral representation may not be solutions to the PDE in question. While these approx-
imations can be made high-order in both time and space, the focus of this work is strictly
on the scalability of the method, so we will limit ourselves to formulations which are first-
order in time. Note that the approach described in Sects. 3 and 4, which considers first-order
schemes, is quite general and can be easily extended for high-order representations. Once we
have discussed our treatment of derivative terms, we describe the fast summation algorithm
and quadrature method in Sect. 2.4. Despite the fact that this work only considers smooth
test problems, we include the relevant modifications required for non-smooth problems for
completeness. In Sect. 2.5, we illustrate how the representation of derivative operators can
be used within a time stepping method to solve PDEs.

2.1 Connections Among Different PDEs

Before introducing the operators relevant to successive convolution algorithms, we establish
the operator connections appearing in several linear PDE examples. This process helps iden-
tify key operators that can be represented with successive convolution. Specifically, we shall
consider the following three prototypical linear PDEs:

e Linear advection equation: (9; — cdy)u = 0,
e Diffusion equation: (3; — vay)u = 0,
e Wave equation: (9;; — 29, )u = 0.
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Next, we apply an implicit time discretization to each of these problems. For discussion
purposes, we shall consider lower-order time discretizations, i.e., backward-Euler for the 9;u
and a second-order central difference for d;,u. If we identify the current time as ¢", the new
time level as 1", and Ar = "1 —¢" then we obtain the corresponding set of semi-discrete
equations:

e Linear advection equation: (Z — Atcd)u"tt =y,
e Diffusion equation: (Z — Afvd,)u"t! = u”,
e Wave equation: (Z — Ar2c29, )ut1 = 2u" — u"~1.
Here, we use Z to denote the identity operator, and, in all cases, each of the spatial derivatives

are taken at time level "*! to keep the schemes implicit. The key observation is that the
operator (Z + éax) arises in each of these examples. Notice that

1 1 1
<I_ 728'7CX> - <I_ 78X> (IJ’_ 78}‘) ,
o o o

where « is a parameter that is selected according to the equation one wishes to solve. For
example, in the case of diffusion, one selects
B
VAL

while for the linear advection and wave equations, one selects
_ B
oa=—"-:
cAt
The parameter 8, which does not depend on At, is then used to tune the stability of the

approximations. For test problems appearing in this paper, we always use 8 = 1. In Sect. 2.2,
we demonstrate how the operator (Z + éax) can be used to approximate spatial derivatives.

We remark that for second derivatives, one can also use (Z — a% dxx) to obtain a representation
for second order spatial derivatives, instead of factoring into “left" and “right" characteristics.
Next, we introduce the following definitions to simplify the notation:

1 1
L =T— -0, Lrp=T+ —0,. 2.1)
o o

Written in this manner, these definitions indicate the left and right-moving components of the
characteristics, respectively, as the subscripts are associated with the direction of propagation.
For second derivative operators, which are not factored into first derivatives, we shall use

1
Oxx- 2.2)

Lo=T— —

In order to connect these operators with suitable expressions for spatial derivatives, we
need to define the corresponding “inverse" for each of these linear operators on a 1-D interval
[a, b]. These definitions are given as

b
llzl[ Csalx) = O[/ e ™) () ds + Be @),
X

1] - 5 al(x) + Be @™, (2.3)
_ a/x e—a(xfs)(_)ds_i_Aefot(X*u),
a

=
x|
R
=
=
N
[I

Ig[ - al(x) + Ae @09, (2.4)
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These definitions can be derived in a number of ways. In Appendix Appendix A, we demon-
strate how these definitions can be derived for the linear advection equation using the
integrating factor method. In these definitions, A and B are constants associated with the
“homogeneous solution" of a corresponding semi-discrete problem and are used to satisfy
the boundary conditions. In a similar way, one can compute the inverse operator for definition
(2.2), which yields

b
ﬁgl[ csalx) = % / e P ds + Ae D 4 (=0
a
= Io[ - ;l(x) + Ae 0D 4 gemab=n), 2.5)

wn

In these definitions, we refer to as the operand and, again, « is a parameter selected
according to the problem being solved. Although it is a slight abuse of notation, when it is
not necessary to explicitly indicate the parameter or the point of evaluation, we shall place
the operand inside a pair of parenthesis.

If we connect these definitions to each of the linear semi-discrete equations mentioned ear-
lier, we can determine the update equation through an analytic inversion of the corresponding
linear operator(s):

e Linear advection equation: u"*! = EEI (u"), or u"t! = Lzl(u”),
e Diffusion equation: u"+! = £; (L' ™), or u"*! = £ ™),
e Wave equation: u" ! = £ (L' Qu" — u"=")), or ™! = £ Qu" — u),

with the appropriate choice of « for the problem being considered. We note that each of these
methods can be made high-order following the work in [1-3,6,28], where it was demonstrated
that these approaches lead to methods that are unconditionally stable to all orders of accuracy
for these linear PDEs, even with variable wave speeds or diffusion coefficients. Since the
process of analytic inversion yields an integral term, a fast-summation technique should
be used to reduce the computational complexity of a naive implementation, which would
otherwise scale as O(N?). Some details concerning the spatial discretization and the O(N)
fast-summation method are briefly summarized in Sect. 2.4 (for full details, please see [6]).
Next we demonstrate how the operator £, can be used to approximate spatial derivatives.

2.2 Representation of Derivatives

In the previous section, we observed that characteristically different PDEs can be described
in-terms of a common set of operators. The focus of this section shall be on manipulating
these approximations to obtain a high-order discretization in time through certain operator
expansions. The process begins by introducing an operator related to £ ! namely,

D,=1-L;", (2.6)

where x can be L, R, or 0. The motivation for these definitions will become clear soon.
Additionally, we can derive an identity from the definitions (2.6). By manipulating the terms
we quickly find that

Li=T—-Dy7", Q2.7)

again, where * can be L, R, or 0. The purpose of the identity (2.7) is that it connects the
spatial derivative to an expression involving integrals of the solution rather than derivatives.
In other words, it allows us to avoid having to use a stencil operation for derivatives.
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To obtain an approximation for the first derivative in space, we can use L, Lg, or both
of them, which may occur as part of a monotone splitting. If we combine the definition of
the left propagating first derivative operator in equation (2.1) with the definition (2.6) and
identity (2.7), we can define the first derivative in terms of the Dy, operator. Observe that

0F =a(T- L),
= (oL - L1),
=ac, (7' -1),
=—aty (T-£7"),
=—a (T ~DL)"' Dy,

=—«a i Dr, (2.8)
=1

where, in the last step, we used the fact that the operator Dy, is bounded by unity in an operator
norm. We use the + convention to indicate that this is a right-sided derivative. Likewise, for
the right propagating first derivative operator, we find that the complementary left-biased
derivative is given by

oo
- =a ZDI’;. (2.9)
Additionally, the second derivative can be expressed as
[o.¢]
Oy = —a> Y _Df. (2.10)

As the name implies, each power of D, is successively defined according to
k=, (k). @.11)

In previous work, [2], for periodic boundary conditions, it was established that the partial
sums for the left and right-biased approximations to d, satisfy

1 _ 1
o = —a ZDP+O( n+1> , 0 =« ZDP+O< n+]> . (212

=1 r=1

Similarly for second derivatives, with periodic boundaries, retaining n terms leads to a trun-
cation error with the form

1
ZDO—I—O( 2n+2> : (2.13)

In both cases, the relations can be obtained through a repeated application of integration by
parts with induction. These approximations are still exact, in space, but the integral operators
nested in D, will eventually be approximated with quadrature. From these relations, we
can also observe the impact of @ on the size of the error in time. In particular, if we select

a=0(/At)in 2.12)anda = O (1/«/ At) in (2.13), each of the approximations should
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have an error of the form O(Ar"). The results concerning the consistency and stability of
these higher order approximations were established in [1,2,28].

As mentioned earlier, this work only considers approximations which are first-order with
respect to time. Therefore, we shall restrict ourselves to the following operator representa-
tions:

dF ~ —aDp, 9 ~aDg, Oy ~ —a’Dy. (2.14)
This is a consequence of retaining a single term from each of the partial sums in equations
(2.8), (2.9), and (2.10). Consequently, computing higher powers of D, is unnecessary, SO
the successive property (2.11) is not needed. However, it indicates, clearly, a possible path
for higher-order extensions of the ideas which will be presented here. For the moment, we
shall delay prescribing the choice of « used in the representations (2.14), in order to avoid
a problem-dependent selection. As alluded to at the beginning of this section, an identical
representation is used for multi-dimensional problems, where the D, operators are now
associated with a particular dimension of the problem. The operators along a particular
dimension are constructed using data along that dimension of the domain, so that each of
the directions remains uncoupled. This completes the discussion on the generic form of the
representations used for spatial derivatives. Next, we provide some information regarding
the treatment of boundary conditions, which determine the constants A and B appearing in
the D, operators.

2.3 Comment on Boundary Conditions

The process of prescribing values of A and B, inside equations Eqgs. (2.3) to (2.5), which are
required to construct D, is highly dependent on the structure of the problem being solved.
Previous work has shown how to prescribe a variety of boundary conditions for linear PDEs
(see e.g., [5-7,28]). For example, in linear problems, such as the wave equation, with either
periodic or non-periodic boundary conditions, one can directly enforce the boundary condi-
tions to determine the constants A and B. The situation can become much more complicated
for problems which are both nonlinear and non-periodic. For approximations of at most third-
order accuracy, with nonlinear PDEs, one can use the techniques from [1] for non-periodic
problems. To achieve high-order time accuracy, the partial sums for this case were modified
to eliminate certain low-order terms along the boundaries. We note that the development
of high-order time discretizations, subject to non-trivial boundary conditions, for nonlinear
operators, is still an open area of research for successive convolution methods.

As this paper concerns the scalability of the method, we shall consider test problems that
involve periodic boundary conditions. For periodic problems defined on the line interval
[a, b], the constants associated with the boundary conditions for first derivatives are given
by

_ Ir[v; al(b) B_ I[v; a](a)

A ,
1—nu 1—u

) (2.15)

where I, and /g were defined in Egs. (2.3) and (2.4). Similarly, for second derivatives, the
constants can be determined to be

4= Io[v;a](b)’ B Io[v;a](a)7 2.16)

1—pu 1—n
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with the definition of Iy coming from (2.5). In the expressions (2.15) and (2.16) provided
above, we use

w= e—ot(b—a)’

where « is the appropriately chosen parameter. Note that the function v(x) denotes the generic
operand of the operator D,. This helps reduce the complexity of the notation when several
applications of D, are required, since they are recursively defined. As an example, suppose
we wish to compute dy,/s(u), where & is some known function. For this, we can use the
first-order scheme for second derivatives (see (2.14)) and take v = h(u) in the expressions
(2.16) for the boundary terms.

2.4 Fast Convolution Algorithm and Spatial Discretization

To perform a spatial discretization over [a, b], we first create a grid of N + 1 points:
xi=a+iAx;, i=0,...,N,
where
AX; = Xi41 — Xi.

A naive approach to computing the convolution integral would lead to method of complexity
O(N?), where N is the number of grid points. However, using some algebra, we can write
recurrence relations for the integral terms which comprise D:

IR[v; @](x;) = e %=1 [p[v; &l (xi—1) + Jrlv; @l(xi), Ir[v; al(xp) =0,
IL[v; @l(x;) = e M I [v; o) (xi41) + Jolvs al(xi),  Iplv; al(xy) = 0.

Here, we have defined the local integrals

Xi

Jrlv; al(x;) :a/ e 0y (s) ds, (2.17)

Xi—1

Xi+1
Jilv; a](x) =oz/ e~y (s) ds. (2.18)
Xi

By writing the convolution integrals this way, we obtain a summation method which has a
complexity of O(N). Note that the same algorithm can be applied to compute the convolution
integral for the second derivative operator by splitting the integral at a point x. After applying
the above algorithm to the left and right contributions, we can recombine them through
“averaging" to recover the original integral. While a variety of quadrature methods have been
proposed to compute the local integrals (2.18) and (2.17) (see e.g., [3,5-7,28,29]), we shall
consider sixth-order quadrature methods introduced in [2], which use WENO interpolation to
address both smooth and non-smooth problems. In what follows, we describe the procedure
for Jr[v; @](x;), since the reconstruction for Jz [v; a](x;) is similar. This approximation uses
a six-point stencil given by

S@) = {xj-3,..., xiy2},

which is then divided into three smaller stencils, each of which contains four points, defined
by S, = {xi—34r,..., Xiqr} for r = 0, 1, 2. We associate r with the shift in the stencil. A
graphical depiction of this stencil is provided in Fig. 1. The quadrature method is developed
as follows:
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1 —3 1 —2 i —1 i i+ 1 1+ 2

& ——®

.S‘()

Fig. 1 Stencils used to build the sixth-order quadrature [1,2]

1. On each of the small stencils S, (7)., we use the approximation

. 3
Xi
T s al(xi) ~ a/ e p(s)ds =Y ") vy, (219)

Xi—1 j=0
where p, (x) is the Lagrange interpolating polynomial formed from points in S, (i) and
cér) are the interpolation coefficients, which depend on the parameter @ and the grid
spacing, but not v.

2. In a similar way, on the large stencil S(i) we obtain the approximation

X
Jrv; al(x;) ~ a / e =9 p(s) ds. (2.20)
Xio1

3. When function v(x) is smooth, we can combine the interpolants on the smaller stencils,
so they are consistent with the high-order approximation obtained on the larger stencil,
i.e.,

2
Jrlv; @) = Y dr T [v; alxo), (2.21)
r=0

where d, > 0 are called the linear weights, which form a partition of unity. The problems
we consider in this work involve smooth functions, so this is sufficient for the final
approximation. For instances in which the solution is not smooth, the linear weights can
be mapped to nonlinear weights using the notion of smoothness. We refer the interested
reader to our previous work [1-3] for details concerning non-smooth data sets.

In Appendix Appendix C, we provide the expressions used to compute coefficients cfzr) and d,
for a uniform grid, although the non-uniform grid case can be done as well [30]. In the case of a
non-uniform mesh, the linear weights d, would become locally defined in the neighborhood
of a given point and would need to be computed on-the-fly. Uniform grids eliminate this
requirement as the linear weights, for a given direction, can be computed once per time step
and reused in each of the lines pointing along that direction.

2.5 Coupling Approximations with Time Integration Methods

Here, we demonstrate how one can use this approach to solve a large class of PDEs by
coupling the spatial discretizations in Sect. 2.4 with explicit time stepping methods. In what
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follows, we shall consider general PDEs of the form
U =F(,U),

where F (¢, U) is a collective term for spatial derivatives involving the solution variable U.
Possible choices for F might include generic nonlinear advection and diffusion terms

F(1,U) = 0,81 (U) + 9xx82(U),
or even components of the HJ equations
F@, U)=HU,dU).

To demonstrate how one can couple these approaches, we start by discretizing a PDE in
time, but, rather than use backwards Euler, we use an s-stage explicit Runge-Kutta (RK)
method, i.e.,

A
Unp1 =un + Y biki,
i=1

where the various stages are given by

ky = F@", u"),
ky = F(t" + caAt, u" + Atariky),

N
ks =F [ " +csAt,u" + At Zasjkj
j=I

As with a standard Method-of-Lines (MOL) discretization, we would need to reconstruct
derivatives within each RK-stage. To illustrate, consider the nonlinear A-D equation,

F(t,u) = 0,g1(u) + 0xxg2(u).

For a term such as g;, we would use a monotone Lax-Friedrichs flux splitting, i.e., g1 ~
%(gfr +g, ), where gf = %(gl (u) £ru) with r = max,, g/l (u). Hence, a particular RK-stage
can be approximated using

1 N 1 N B N
F(t,u)~ 2o > Dllef i el + S > DRlgy s al+a) > Dflga(); e l.
p=1 p=1 p=1

The resulting approximation to the RK-stage can be shown to be O(At*) accurate. Another
nonlinear PDE of interest to us is the H-J equation

F(t,u) = H(0xu).

In a similar way, we would replace the Hamiltonian with a monotone numerical Hamiltonian,
such as

. - + - _ 7t
Hou ,vh)=H <%) +r(, v*)u,
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where 7 (v, vT) = max, H'(v). Then, the left and right derivative operators in the numerical
Hamiltonian can be replaced with

s s
B;Lt:ozZDZ[u;a], Bju:—a ZDZ[%;O(],
p=1 p=1

which, again, yields an O(At*) approximation.

In previous work [1,2], for linear forms of F (¢, u), it was shown that the resulting methods
are unconditionally stable when coupled to explicit RK methods, up to order 3. Extensions
beyond third-order are, indeed, possible, but were not considered. For general, nonlinear
problems, we typically couple an s-stage RK method to a successive convolution approxi-
mation of the same time accuracy, so that the error in the resulting approximation is O(A¢*).

3 Nearest-Neighbor Domain Decomposition Algorithm

In this section, we provide the relevant mathematical definitions of our domain decomposition
algorithm, which are derived from the key operators used in successive convolution. Our goal
is to establish and exploit data locality in the method, so that certain reconstructions, which
are nonlocal, can be independently completed on non-overlapping blocks of the domain. This
is achieved in part by leveraging certain decay properties of the integral representations. Once
we have established some useful definitions, we use them to derive conditions in Sect. 3.1,
which restrict the communication pattern to N-Ns. Then in Sects. 3.2 and 3.3, we illustrate
how this condition can be used to enforce boundary conditions, in a consistent manner, for
first and second derivative operators, on each of the blocks. We then provide a brief summary
of these findings along with additional comments in Sect. 3.4.

Maintaining a localized stencil is often advantageous in parallel computing applications.
Code which is based on N-Ns is generally much easier to write and maintain. Additionally,
messages used to exchange data owned by other blocks may not have to travel long dis-
tances within the network, provided that the blocks are mapped physically close together
in hardware. Communication, even on modern computing systems, is far more expensive
than computation. Therefore, an initial strategy for domain decomposition is to enforce N-N
dependencies between the blocks. In order to decompose a problem into smaller, indepen-
dent pieces, we separate the global domain into blocks that share borders with their nearest-
neighbors. For example, in the case of a 1-D problem defined on the interval [a, b], we can
form N blocks by writing

a=cyop<cy<cp<---<cy=hb,

with Ac; = c¢j41 — ¢; denoting the width of block i. Multidimensional problems can be
addressed in a similar way by partitioning the domain along multiple directions. Solving a
PDE on each of these blocks, independently, requires an understanding of the various data
dependencies. First, we address the local integrals J,.. Depending on the quadrature method,
the reconstruction algorithm might require data from neighboring blocks. Reconstructions
based on previously described WENO-type quadratures require an extension of the grid in
order to build the interpolant. This involves a “halo" region (see Fig. 2), which is distributed
amongst N-N blocks in the decomposition. On the other hand, more compact quadratures,
such as Simpson’s method [29], do not require this data. In this case, the quadrature commu-
nication phase can be ignored.
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Fig.2 A sixth-order WENO quadrature stencil in 2-D

The major task for this work involves efficiently communicating the data necessary to
build each of the convolution integrals I,.. Once the local integrals J, are constructed through
quadrature, we sweep across the lines of the domain to build the convolution integrals. It is
this operation which couples the integrals across the blocks. To decompose this operation,
we first rewrite the integral operators /., assuming we are in block i, as

b
Ir[v; a](x) = O(/ e 6y (s) ds,

X

Citl CN
= a/ e~y (s)ds + a/ e ™y (s) ds,
X C

i+1

and

Ir[v; a](x) =« /x e )y (s) ds,

a

Ci X
= a/ e =Dy (s)ds + a/ e 0y (s) ds.
o Ci

These relations, which assume x is within the interval [c;, ¢;+1], elucidate the local and
non-local contributions to the convolution integrals within block i. Using simple algebraic
manipulations, we can expand the non-local contributions to find that
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N Nl Cj+1
[ e = 3 [T e as,
C, Cj

i+ j=itl
N_l . C'/.+1 o .
= Z e_“(‘f_x)/ e 0=y (s) ds,
j=i+1 €

and

‘. i-1 e

i Jj+1

/ e 0 y(s)ds = Z/ e 0 )y(s) ds,
(&) j—O C_/'

i—1 . i+l 3
— Ze*a(xfwﬂ) / e*a(cj+1*5)v(s) ds,
j=0 €

for the right and left-moving data, respectively. With these relations, each of the convolution
integrals can be formed according to

Ci+1 N-1 Cjt1
I [v; a](x) :01/ e 6y () ds + o Z ef"‘(cf*x)/ e Y =Dy(s)ds |,
x j=itl €
3.1
and
i1 ‘ i | N
Ig[v; a](x) =« Zeﬂx()“‘/“)/ e 17y (s) ds —i—oc/ e 4O y(s) ds.
) o

Jj=0 €
(3.2)

From Egs. (3.1) and (3.2), we observe that both of the global convolution integrals can
be split into a localized convolution with additional contributions coming from preceding
or successive global integrals owned by other blocks in the decomposition. These global
integrals contain exponential attenuation factors, the size of which depends on the respective
distances between any pair of sub-domains. Next, we use this result to derive the restriction
that facilitates N-N dependencies.

3.1 Nearest-Neighbor Criterion

Building a consistent block-decomposition for the convolution integral is non-trivial, since
this operation globally couples unknowns along a dimension of the grid. Fortunately, the
exponential kernel used in these reconstructions is pleasant in the sense that it automatically
generates a region of compact support around a given block. Examining the exponential
attenuation factors in (3.1) and (3.2), we see that contributions from blocks beyond N-Ns
become small provided that (1) the distance between the blocks is large or (2) « is taken to be
sufficiently large. Since we have less control over the block sizes e.g., Ac;, we can enforce
the latter criterion. That is, we constrain « so that

emobm <, (3.3)
where € < 1 is some prescribed error tolerance, typically taken as 1 x 1071°, and L,, =

min; Ac; denotes the length smallest block. Taking logarithms of both sides and rearranging
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the inequality, we obtain the bound

log(e)

—a <

m
Our next step is to write this in terms of the time step At, using the choice of «. However,
the bound on the time step depends on the choice of «. In Sect. 2.1, we presented two
definitions for the parameter o, namely

__F ,oro = p .
Cmax At VAL

Using these definitions for «, we obtain two conditions depending on the choice of «. For
the linear advection equation and the wave equation, we obtain the condition
B < log(e) BLm

< At < ————., 3.4
Cmax At Ly, Cmax log(e)

Likewise, for the diffusion equation, the restriction is given by

2
B _le© _ Ati;(ﬁLm) |
VvAt T Lp v \log(e)
Depending on the problem, if the condition (3.4) or (3.5) is not satisfied, then we use the
maximally allowable time step for a given tolerance €, which is given by the equality com-
ponent of the relevant condition. If several different operators appear in a given problem and
are to be approximated with successive convolution, then each operator will be associated
with its own «. In such a case, we should bound the time step according to the condition that
is more restrictive among (3.4) and (3.5), which can be accomplished through the choice

2
At < min (— ALm , ! < Bl ) ) ) (3.6)
Cmax log(€) v \log(e)

As before, when the condition is not met, then we use the equality in (3.6).

Restricting At according to (3.4), (3.5), or (3.6) ensures that contributions to the right
and left-moving convolution integrals, beyond N-Ns, become negligible. This is important
because it significantly reduces the amount of communication, at the expense of a potentially
restrictive time step. Note that in Sect. 5.4, we analyze the limitations of such restrictions for
the linear advection equation. In our future work, we shall consider generalizations of our
approach, which do not require (3.4), (3.5), or (3.6). In Sects. 3.2 and 3.3, we demonstrate how
to formulate block-wise definitions of the global £, I operators using the derived conditions
(3.4), (3.5), or (3.6).

(3.5)

3.2 Enforcing Boundary Conditions for 9,
In order to enforce the block-wise boundary conditions for the first derivative d,, we recall
our definitions (2.3) and (2.4) for the left and right-moving inverse operators:
L7 s al(x) = I[v; @)(x) + Be ™ * ™, 3.7)
Lx'v; al(x) = Iglv; @l (x) + Ae™ 9. (3.8)

We can modify these definitions so that each block contains a pair of inverse operators given
by

EZ,I,-[U; al(x) = I i[v; o] (x) + Bje~%cit1=X) (3.9)
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Ll v @l(x) = Ig i[v; a](x) + Aje @), (3.10)

i
)

where I, ; are defined as

Ci+1 X
I ilv; ¢](x) = a/ e 46y (s) ds, Ig.ilv; @](x) = oz/ e 0= y(s) ds,

(3.11)

and the subscript i denotes the block in which the operator is defined. As before, this assumes
x € [ci, ci+1]. To address the boundary conditions, we need to determine expressions for
the constants B; and A; on each of the blocks in the domain. First, substitute the definitions
(3.1) and (3.2) into (3.7) and (3.8):

Ci+1
£ s alx) = a/ e 4Ny (s) ds

X
N-1 Cj+1

+al| Y e—“@/—”/ e %D y(s)ds | + Be NI (3.12)
j=i+1 €i

il Cj+l
L' v a](x) =« Ze‘“("_cf“)/ e Cit1=)y(s) ds
j=0 Cj

X
+o / e 0TIy (s) ds + Ae YO, (3.13)
Ci

Since we wish to maintain consistency with the true operator being inverted, we require that
each of the block-wise operators satisfy

L' i al() = L vad(x),  Lp'[v:al(x) = Lg)[v: el(x),

which can be explicitly written as

N-1

Biem =0 = [ N om0 [vsal(e)) | + Be VY, (3.14)
j=i+1
i—1

AjeeG—c) — Ze‘“()‘_cﬂ‘)IR,j[v;ot](Cj+1) + Aemex—c0), (3.15)
Jj=0

Evaluating (3.14) at ¢;+1 and (3.15) at ¢;, we obtain

N—-1

Bi=| Y eV j[vial(c)) | + Be @), (3.16)
j=it1
i—1

A=Y e g v al(cjp) | + Aem 0, (3.17)
j=0

Modifying At according to either (3.4) or, if necessary (3.6), results in the communication
stencil shown in Fig. 3. More specifically, the terms representing the boundary contributions
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Fig. 3 Fast convolution communication stencil in 2-D based on N-Ns

in each of the blocks are given by

B, i=N-1,
Bi =
IR iv1lv; al(civ1), i <N —1,

and

A, 1=0,

Igi—1lv;al(c;), 0 <i.

These relations generalize the various boundary conditions set by a problem. For example,
with periodic problems, we can select

B = I o[v; a](co), A =Irn-1[v;al(cy).

This is the relevant strategy employed by domain decomposition algorithms in this work.

3.3 Enforcing Boundary Conditions for 8y

The enforcement of boundary conditions on blocks of the domain for the second derivative
can be accomplished using an identical procedure to the one described in Sect. 3.2. First, we
recall the inverse operator associated with a second derivative (2.5):

Lo s @l(x) = Io[v; a](x) + Ae™*E~D 4 g =0, (3.18)
and define an analogous block-wise definition of (3.18) as

Lo v al(x) = Ip,i[v: al(x) + Aje @70 + Bem@(N =),
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with the localized convolution integral
o Ci+1
lo,ilv; a](x) = 5/ e sty (s) ds.
¢

Again, the subscript i denotes the block in which the operator is defined and we take x €
[¢i, cix+1]. For the purposes of the fast summation algorithm, it is convenient to split this
integral term into an average of left and right contributions, i.e.,

£ v alx) = %(IL,i[v; a](x) + Ipilv: a](x)) + A0 § Breme@n Y (319)

where I, ; are the same integral operators shown in Eq. (3.11) used to build the first derivative.
As in the case of the first derivative, a condition connecting the boundary conditions on the
blocks to the non-local integrals can be derived, which, if evaluated at the ends of the block,
results in the 2 x 2 linear system

=

Aj + BieT*A = 3 Z e~ s al(c;)
j=i+1

=

+3 ;e—““fﬂf“)m. jlvsed(ejen)
]:

+ Ae—o(ci—co) +Be—(¥(CN—Ci), (3.20)
N—-1
1 .
Aie—aAc,- + B = 3 Z e—a(cj—cm)]L’j[v; al(cy)
j=i+l
i—1

1 e
+3 X(:)e A=) Ig jlv; @l(cji)
]:

+ Ae—%Ci+1—c0) + Be—(en—cit1) (3.21)

Equations (3.20) and (3.21) can be solved analytically to find that

Ar\ 1 1 —e A\ (g
B;] T 1 —e2eAq —e—YAc 1 rn)’

where we have used the variables ry and r; to denote the terms appearing on the right-hand
side of (3.20) and (3.21), respectively. Under the N-N constraints (3.5) or (3.6), many of the
exponential terms can be neglected resulting in the compact expressions

A =
Hri—ilv;al(e) = Ioi1[vial(c), 0<i,

and

B, i=N-1,

sl al(cizr) = loivilv @l(cip), i< N—1.
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3.4 Additional Comments

In this section, we developed the mathematical framework behind our proposed domain
decomposition algorithm. We derived a condition, which reduces the construction of a non-
local operator to a N-N dependency by leveraging the decay properties of the exponential
term within the convolution integrals. We wish to reiterate that this condition is not entirely
necessary. One could remove this condition by including contributions beyond N-Ns at the
expense of additional communication. This change would certainly result in a loss of speed
per time step, but the additional expense could be amortized by the ability to use much a
larger time step, which would reduce the overall time-to-solution. As a first pass, we shall
ignore these additional contributions, which may limit the scope of problems we can study,
but we plan to generalize these algorithms in our future work via an adaptive strategy. This
approach would begin using data from N-Ns, then gradually include additional contributions
using information about the decay from the exponential. In the next section, we shall discuss
details regarding the implementation of our methods and particular design choices made in
the construction of our algorithms.

4 Strategies for Efficient Implementation on Parallel Systems

In this section, we discuss strategies for constructing parallel algorithms to solve PDEs. We
provide the details related to our work on thread-scalable, shared memory algorithms, as
well as distributed memory algorithms, where the problem is decomposed into smaller, inde-
pendent problems that communicate necessary information via message-passing. Section
4.1 introduces the core concepts in Kokkos performance portability library, which is used to
develop our shared memory algorithms. Once we have introduced these ideas, we explore
numerous loop-level optimizations for essential loop structures in Sect. 4.3, using the per-
formance metrics discussed in Sect. 4.2. Building on the results of these loop experiments,
we outline the structure of our shared memory algorithms in Sect. 4.4. We then discuss the
implementation of the distributed memory component of our algorithms in Sect. 4.5, along
with modifications which enable the use of an adaptive time stepping rule. Finally, we sum-
marize the key findings and developments of the implementation which are used to conduct
our numerical experiments.

4.1 Selecting a Shared Memory Programming Model

Many programming models exist to address the aspects of shared memory paralellization,
such as OpenMP, OpenACC, CUDA, and OpenCL. The question of which model to use
often depends on the target architecture on which the code is to run. However, given the
recent trend towards deploying more heterogeneous computing systems, e.g., ones in which
a given node contains a variety of CPUs with one, or many, accelerators (typically GPUs), the
choice becomes far more complicated. Developing codes which are performant across many
computing architectures is a highly non-trivial task. Due to memory access patterns, code
which is optimized to run on CPUs is often not optimal on GPUs, so these models address
portability rather than performance. This introduces yet another concern related to code
management and maintenance: As new architectures are deployed, code needs to be tuned
or modified to take advantage of new features, which can be time consuming. Additionally,
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enabling these abstractions almost invariably results in either multiple versions of the code
or rather complicated build systems.

In our work, we choose to adopt Kokkos [4], a performance portable, shared mem-
ory programming model. Kokkos tries to address the aforementioned problem posed by
rapidly evolving architectures through template-metaprogramming abstractions. Their model
provides abstractions for common parallel policies (i.e., for-loops, reductions, and scans),
memory spaces, and execution spaces. The architecture specific details are hidden from the
users through these abstractions, yet the setup allows the application programmer to take
advantage of numerous performance-related features. Given basic knowledge in templates,
operator overloads, as well as functors and lambdas, one can implement a variety of program
designs. Also provided are the so-called views, which are powerful multi-dimensional array
containers that allow Kokkos iterators to map data onto various architectures in a perfor-
mant way. Additionally, the bodies of iterators become either a user-defined functor or a
KOKKOS_LAMBDA, which is just a functor that is generated by the compiler. This allows
users to maintain one version of the code which has the flexibility to run on various architec-
tures, such as the one depicted in Fig. 4. Other performance portability models, such as RAJA
[31], work in a similar fashion as Kokkos, but they are less intrusive with regard to memory
management. With RAJA, the user is responsible for implementing architecture dependent
details such as array layouts and policies. In this sense, RAJA emphasizes portability, with
the user being responsible for handling performance.

4.2 Comment on Performance Metrics

In order to benchmark the performance of the algorithms, we need a descriptive metric
that accounts for varying workloads among problem sizes. In our numerical simulations we
use a time stepping rule so that problems with a smaller mesh spacing require more time
steps, i.e., At ~ Ax. Therefore, one can either time the code for a fixed number of steps
or track the number of steps in the entire simulation ¢ € (0, 7] and compute the average
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time per time step. We adopt the former approach throughout this work. To account for
the varying workloads attributed to varying cells/grid points, we define the update rate as
Degrees-of-Freedom/node/s (DOF/node/s), which can be computed via

total variables x N¢
DOF/node/s = —o YAADes X 4.1)

total time (s) ’
nodes x ( total steps )

where d is the number of spatial dimensions. This metric is a more general way of comparing
the raw performance of the code, as it allows for simultaneous comparisons among linear
or nonlinear problems with varying degrees of dimensionality and number of components.
It also allows for a comparison, in terms of speed, against other classes of methods, such as
finite element methods, where the workload on a given cell is allowed to vary according to the
number of basis elements.! In Sect. 4.3, we shall use this performance metric to benchmark
a collection of techniques for prescribing parallelism across predominant loop structures in
the algorithms for successive convolution.

4.3 Benchmarking Prototypical Loop Patterns

Often, when designing shared memory algorithms, one has to make design decisions pre-
scribing the way threads are dispatched to the available data. However, there are often many
ways of accomplishing a given task. Kokkos provides a variety of parallel iteration tech-
niques — the selection of a particular pattern typically depends on the structure of the loop
(perfectly or imperfectly nested) and the size of the loops. In [32], authors sought to optimize
arecurring pattern, consisting of triple or quadruple nested for-loops, in the Athena++ MHD
code [33]. Their strategy was to use a flexible loop macro to test various loop structures
across a range of architectures. Athena++ was already optimized to run on Intel Xeon-Phi
platforms, so they primarily focused on approaches for porting to GPUs which maintained
this performance on CPUs. Our work differs in that we have not yet identified optimal loop
patterns for CPUs or GPUs and algorithms used here contain at least two major prototypi-
cal loop patterns. At the moment, we are not focusing on optimizing for GPUs, but, we do
our best to keep in mind possible performance-related issues associated with various paral-
lelization techniques. Some examples of recurring loop structures, in successive convolution
algorithms, for 3D problems, are provided in Listing 1 and Listing 2. Technically, there are
left and right-moving operators associated with each direction, but, for simplicity, we will
ignore this in the pseudo-code.

Another important note, we wish to make, concerns the storage of the operator data on
the mesh. Since the operations are performed “line-by-line" on potentially large multidi-
mensional arrays, we choose to store the data in memory so that the sweeps are performed
on the fastest changing loop variables. This allows us to avoid significant memory access
penalties associated with reading and writing to arrays, as the entries of interest are now
consecutive in memory.” For example, suppose we have an N —dimensional array with
indices x1, x2, ..., Xy, and we wish to construct an operator in the x; direction. Then, we

I Note that the update frequency does not account for error in the numerical solution. Certainly, in order to
compare the efficiency of various methods, especially those that belong to different classes, one must take into
account the quality of the solution. This would be reflected in, for example, an error versus time-to-solution
plot.

2 This is true when the memory space is that of the CPU (host memory). In device memory, these entries
will be “coalesced”, which is the optimal layout for threading on GPUs. This mapping of indices, between
memory spaces, is automatically handled by Kokkos.
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would store this operator in memory as operator (xz, ..., xn, x1) . The loops appearing
in Listing 1 and Listing 2 can then be permuted accordingly. Note that the solution variable
u(xy,x2,...,xy) is not transposed and is a read-only quantity during the construction of
the operators.

I for (int ix = 0; ix < Nx; ix++){
for (int iy = 0; iy < Ny; iy++){
// Perform some intermediate calculations
7l oo
// Apply 1-D algorithm to z-line data
6 for (int iz = 0; 1z < Nz; iz++) {

7 z_operator (ix,iy,1iz) =

8 }

0}

Listing 1 Pattern used in the construction of local integrals, convolutions, and boundary steps.

i for(int ix = 0; ix < Nx; ix++){
for (int iy = 0; iy < Ny; iy++){
for (int iz = 0; 1z < Nz; iz++) {
4 z_operator (ix,iy,iz) = u(ix,iy,iz) -
z_operator (ix,iy,1z) ;
5 z_operator (ix,iy,1z) *= alpha_z;
6 }
s }
Listing 2 Another pattern used to build “resolvent" operators. With some modifications, this same

pattern could be used for the integrator step. In several cases, this iteration pattern may require
reading entries, which are separated by large distances (i.e., the data is strided), in memory.

In an effort to develop an efficient application, we follow the approach described in [32], to
determine optimal loop iteration techniques for patterns, such as Listing 1 and Listing 2. Our
simple 2-D and 3-D experiments tested numerous combinations of policies including naive,
as well as more complex parallel iteration patterns using the OpenMP backend in Kokkos.
Our goals were to quantify possible performance gains attainable through the following
strategies:

1. auto-vectorization via #pragma statements or ThreadvVectorRange (TVR)

2. improving data reuse and caching behavior with loop tiling/blocking

3. prescribing parallelism across combinations of team-type execution policies and team
sizes

Vectorization can offer substantial performance improvements for data that is contigu-
ous in memory; however, several performance critical operations in the algorithms involve
reading data which is strided in memory. Therefore, it is not straightforward whether vector-
ization would offer any improvements. Additionally, for larger problems, the line operations
along certain directions involve reading strided data, so that benefits of caching are lost.
The performance penalty of operating on data with the wrong layout depends on the archi-
tecture, with penalties on GPUs typically being quite severe compared to CPUs. The use
of a blocked iteration pattern, such as the one outlined in Listing 3 (see Appendix B), is a
step toward minimizing such performance penalties. In order to see a performance benefit
from this approach, the algorithms must be structured, in such a way, as to reuse the data
that is read into caches, as much as possible. Naturally, one could prescribe one or more
threads (of a team) to process blocks, so we chose to implement cache blocking using the
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Fig.5 Plots comparing the performance of different parallel execution policies for the pattern in Listing 1 using
test cases in 2-D (left) and 3-D (right). Tests were conducted on a single node that consists of 40 cores using
the code configuration outlined in Table 1. Each group consists of three plots, whose difference is the value
selected for the team size. We note that hyperthreading is not enabled on our systems, so Kokkos : : AUTO ()
defaults to a team size of 1. In each pane, we use “best" to refer to the best run for that configuration across
different team sizes. Tile experiments used block sizes of 2562, in 2-D problems, and 323 in 3-D. We observe
that vectorized policies are generally faster than non-vectorized policies. Interestingly, among blocked/tiled
policies, construction of subviews appears to be faster than those that skip the subview construction, despite the
additional work. As the problem size increases, the performance of blocked policies improves substantially.
This can be attributed to the large number of idle thread teams when the problem size does not produce enough
blocks. In such cases, increasing the size of the team does offer an improvement, as it reduces the number
of idle thread teams. For non-blocked policies, we observe that increasing the team-size generally results in
minimal, if any, improvement in performance. In all cases, the use of blocking provides a more consistent
update rate when enough work is introduced

hierarchical execution policies provided by Kokkos. From coarse-to-fine levels of granu-
larity, these can be ordered as follows: TeamPolicy (TP), TeamThreadRange (TTR),
and ThreadvectorRange (TVR). For perfectly nested loops, one can achieve similar
behavior using MDRange and prescribing block sizes. During testing, we found that when
block sizes are larger than or equal to the size of the view, a segmentation fault occurs, so
this was avoided. The results of our loop experiments are provided in Figs. 5 and 6. For tests
employing blocking, we used a block size of 256 in 2-D, while 3-D problems used a block
size of 323. Information regarding various choices, such as compiler, optimization flags, etc.,
used to generate these results can be found in Table 1.

As part of our blocking implementation, we stored block information in views, which could
then be accessed by a team of threads. After the information about the block is obtained,
we compute indices for the data within the block and use these to extract the relevant grid
data. Then, one can either create subviews (shallow copies) of the block data or proceed
directly with the line calculations of the block data. We refer to these as tiling with and
without subviews, respectively. Intuitively, one would think that skipping the block subview
creation step would be faster. Among the blocked or tiled experiments, those that created
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Fig.6 Plots comparing the performance of different parallel execution policies for the pattern in Listing 2 using
test cases in 2-D (top) and 3-D (bottom). Tests were conducted on a single node that consists of 40 cores using
the code configuration outlined in Table 1. Each group consists of three plots, whose difference is the value
selected for the team size. We note that hyperthreading is not enabled on our systems, so Kokkos : : AUTO ()
defaults to a team size of 1. Tile experiments used a block size of 2562, in 2-D problems, and 323 in3-D. A tiled
MDRange was not implemented in the 2-D cases because the block size was larger than some of the problems.
The results generally agree with those presented in Fig. 5. For smaller problem sizes, using the non-portable
range_policy with OpenMP simd directives is clearly superior over the policies. However, when enough
work is available, we see that blocked policies with subviews and vectorization generally become the fastest.
In both cases, MDRange seems to have fairly good performance. Tiling, when used with MDRange, in the
3-D cases, seems to be slower than plain MDRange. Again, we see that the use of blocking provides a more
consistent update rate if enough work is available
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Table 1 Architecture and code configuration for the loop experiments conducted on the Intel 18 cluster at
Michigan State University’s Institute for Cyber-Enabled Research

CPU type Intel Xeon Gold 6148

C++ Compiler ICC 2019.03

Optimization flags -03 -xCORE-AVX512 -gopt-zmm-usage=high -gno-opt-prefetch
Thread bindings OMP_PROC_BIND=close, OMP_PLACES=threads

To leverage the wide vector registers, we encourage the compiler to use AVX-512 instructions. Hardware
prefetching is not used, as initial experiments seem to indicate that it hindered performance. Initially, we used
GCC8.2.0-2.31.1 as our compiler, but we found through experimentation that using an Intel compiler improved
the performance of our application by a factor of ~ 2 for this platform. Authors in [32] experienced similar
behavior for their application and attribute this to a difference in auto-vectorization capabilities between
compilers. An examination of the source code for loop execution policies in Kokkos reveals that certain
decorators, e.g., #pragma ivdep are present, which help encourage auto-vectorization when Intel compilers
are used. We are unsure if similar hints are provided for GCC

the subviews of the tile data were generally faster than those that did not. Using blocking
for smaller problems typically resulted in a large number of idle threads, which significantly
degraded the performance compared to non-blocked policies. In such situations, a user would
need to take care to ensure that a sufficient number of blocks are used to generate enough
work, i.e., each thread (or team) has at least one block to process. For larger problems,
blocking was faster when compared to variants that did not use blocking. We observe that the
performance of non-blocked policies begins to degrade once a problem becomes sufficiently
large, whereas blocked policies maintained a consistent update rate, even as the problem size
increased. By separating the key loop structures from the complexities of the application,
we were able to expedite the experimental process for identifying efficient loop execution
techniques. In Sect. 4.4, we use the results of these experiments to inform choices regarding
the design of the shared memory algorithms.

4.4 Shared Memory Algorithms

The line-by-line approach to operator reconstruction suggests that we employ a hierarchical
design, which consists of thread teams. Rather than employ a fine-grained threading approach
over loop indices, we use the coarse-grained, blocked iteration pattern devised in Sect. 4.3.
In this approach, we divide the iteration space into blocks of nearly identical size, and assign
one or more blocks to a team of threads. The threads within a given team are then dispatched
to one (or more) lines, with vector instructions being used within the lines. As opposed
to loop level parallelism, coarse-grained approaches allow one to exploit multiple levels of
parallelism, common to many modern CPUs, and load balance the computation across blocks
by adjusting the loop scheduling policy. In our implementation, we provide the flexibility
of setting the number of threads per block with a macro, but, in general, we let Kokkos
choose the appropriate team size using Kokkos: : AUTO (). If running on the CPU, this
sets the team size to be the number of hyperthreads (if supported) on a given core. For GPU
architectures, the team size is the size of the warp.

A hierarchical design pattern is used because the loops in our algorithms are not per-
fectly nested, i.e., calculations are performed between adjoining loops. Information related
to blocking can be precomputed to minimize the number of operations required to manipulate
blocks. The process of subview construction consists of shallow copies involving pointers to
vertices of the blocks, so no additional memory is required. With a careful choice of a base

@ Springer



1 Page260f44 Journal of Scientific Computing (2021) 86:1

block size, one can fit these blocks into high-bandwidth memory, so that accessing costs are
reduced. Furthermore, a team-based, hierarchical pattern seems to provide a large degree of
flexibility compared to standard loop-level parallelism. In particular, we can fuse adjacent
kernels into a single parallel region, which reduces the effect of kernel launch overhead and
minimizes the number of synchronization points. The use of a team-type execution policy
also allows us to exploit features present on other architectures, such as CUDA’s shared
memory feature, through scratchpad constructs. Performing a stenciled operation on strided
data is associated with an architecture-dependent penalty. On CPUs, while one wishes to
operate in a contiguous or cached pattern, various compilers can hide these penalties through
optimizations, such as prefetching. GPUs, on the other hand, prefer to operate in a lock-step
fashion. Therefore, if a kernel is not vectorizable, then one pays a significant performance
penalty for poor data access patterns. Shared memory, while slower than register accesses,
does not require coalesced accesses, so the cost can be significantly reduced. The advan-
tage of using square-like blocks of a fixed size, as opposed to long pencils,’ is that one can
adjust the dimensions of the blocks so that they fit into the constraints of the high-bandwidth
memory. Moreover, these blocks can be loaded once and can be reused for additional direc-
tions, whereas pencils would require numerous transfers, as lines are processed along a given
dimension. Such optimizations are not explored in this work, but algorithmic flexibility is
something we must emphasize moving forwards.

The parallel nested loop structures, such as the one provided in Appendix B (see Listing 3)
are applied during reconstructions for the local integrals J, and inverse operators £, !, as well
as the integrator update. The current exception to this pattern is the convolution algorithm,
shown in Listing 4, which is also provided in Appendix B. Here, each thread is responsible
for constructing 7, on one or more lines of the grid. Therefore, within a line, each thread per-
forms the convolution sweeps, in serial, using our O(N) algorithm. Adopting the team-tiling
approach for this operation requires that we modify our convolution algorithm considerably
— this optimization is left to future work. Additionally the benefit of this optimizations is not
large for CPUs, as profiling indicated that < 5% of the total time for a given run was spent
inside this kernel. However, this will likely consume more time on GPUs, so this will need
to be investigated.

If one wishes to use variable time stepping rules, where the time step is computed from a
formula of the form

Ax A
At = CFL min (—x —y) (4.2)
cx | cy

then one must supply parallel loop structures with simultaneous maximum reductions for
each of the wave speeds c¢;. This can be implemented as a custom functor, but the use
of blocking/tiling introduces some complexities. More complex reducers that enable such
calculations are not currently available. For this reason, problems that use time stepping rules,
such as (4.2), are constructed with symmetry in the wave speeds, i.e.,cy = ¢y = ... to avoid
an overly complex implementation with blocking/tiling. However, we plan to revisit this in
later work as we begin targeting more general problems. Next, in Sect. 4.5, we discuss the
distributed memory component of the implementation and the strategy used to employ an
adaptive time stepping rule, such as (4.2).

3 We refer to a pencil as a, generally, long rectangle (in 2-D) and a rectangular prism (in 3-D). The use of
pencils, as opposed to square blocks, would require additional precomputing efforts and, possibly, restrictions
on the problem size.
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4.5 Code Strategies for Domain Decomposition

One of the issues with distributed computing involves mapping the problem data in an intel-
ligent way so that it best aligns with the physical hardware. Since the kernels used in our
algorithms consume a relatively small amount of time, it is crucial that we minimize the
time spent communicating data. Given that these schemes were designed to run on Cartesian
meshes, we can use a “topology aware" virtual communicator supplied by MPI libraries.
These constructs take a collection of ranks in a communicator (each of which manages a
sub-domain) and, if permitted, attempt to reorganize them to best align with the physical
hardware. This mapping might not be optimal, since it depends on a variety of factors related
to the job allocation and the MPI implementation. Depending on the problem, these tools can
greatly improve the performance of an application compared to a hand-coded implementation
that uses the standard communicator. Additionally, MPI’s Cartesian virtual communicator
provides functionality to obtain neighbor references and derive additional communicator
groups, say, along rows, columns, etc. The send and receive operations are performed with
persistent communications, which remove some of the overhead for communication chan-
nel creation. Persistent communications require a regular communication channel, which,
for our purposes, is simply N-Ns. For more general problems with irregular communication
patterns, standard send and receive operations can be used.

One strategy to minimize exposed communications is to use non-blocking communi-
cations. This allows the programmer to overlap calculations with communications, and is
especially beneficial if the application can be written in a staggered fashion. If certain data
required for a later calculation is available, then communication can proceed while another
calculation is being performed. Once the data is needed, we can block progress until the
message transfer is complete. However, we hope that the calculation done, in between, is
sufficient to hide the time spent performing the communication. In the multi-dimensional
setting, other operators may be needed, such as d, and d,. However, in our algorithms,
directions are not coupled, which allows us to stagger the calculations. So, we can initial-
ize the communications along a given direction and build pieces of other operators in the
background.

A typical complication that arises in distributed implementations of PDE solvers concerns
the use of various expensive collective operations, such as “all-to-one" and “one-to-all" com-
munications. For implicit methods, these operations occur as part of the iterative method used
for solving distributed linear systems. The method employed here is “matrix-free", which
eliminates the need to solve such distributed linear systems. For explicit methods, these
operations arise when an adaptive time stepping rule, such as equation (4.2), is employed to
ensure that the CFL restriction is satisfied for stability purposes. At each time step, each of
the processors, or ranks, must know the maximum wave speeds across the entire simulation
domain. On a distributed system, transferring this information requires the use of certain
collective operations, which typically have an overall complexity of O(log N),), where N, is
the number of processors. While the logarithmic complexity results in a massive reduction
of the overall number of steps, these operations use a barrier, in which all progress stops
until the operation is completed. This step cannot be avoided for explicit methods, as the
most recent information from the solution is required to accurately compute the maximum
wave speeds. In contrast, successive convolution methods, do not require this information.
However, implementations for schemes developed in e.g., [1-3] considered “explicit" time
stepping rules given by Eq. (4.2) because they improved the convergence of the approxima-
tions. By exploiting the stability properties associated with successive convolution methods,
we can eliminate the need for accurate wave speed information, based on the current state,
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Fig.7 Task charts for the domain-decomposition algorithm under fixed (left) and adaptive (right) time stepping
rules. The work overlap regions are indicated, laterally, using gray boxes. The work inside the overlap regions
should be sufficiently large to hide the communications occuring in the background. To clarify, the overlap in
calculations for I is achieved by changing the sweeping direction during an exchange of the boundary data.
As indicated in the adaptive task chart, the reduction over the “lagged" wave speed data can be performed
in the background while building the various operators. Note the use of MPI_WATIT prior to performing the
integrator step. This is done to prevent certain overwrite issues during the local reductions in the subsequent
integrator step

and, instead, use approximations obtained with “lagged" data from the previous time step.
We present two, generic, distributed memory task charts in Fig. 7. The algorithm shown in the
left-half of Fig. 7, which is based on a fixed time step, contains less overall communication,
as the local and global reductions for certain information used to compute the time step are
no longer necessary. The second version, shown in the right-half of Fig. 7, illustrates the
key steps used in the implementation of an adaptive rule, which can be used for problems
with more dynamic quantities (e.g., wave speeds and diffusivity). In contrast to distributed
implementations of explicit methods, our adaptive approach allows us to overlap expensive
global collective operations (approximately) with the construction of derivative operators,
resulting in a more asynchronous algorithm (see Algorithm 1).

4.6 Some Remarks

In this section, we introduced key aspects that are necessary in developing a performant
application. We began with a brief discussion on Kokkos, which is the programming model
used for our shared memory implementation. Then we introduced one of the metrics, namely
(4.1), used to characterize the performance of our parallel algorithms. Using this performance
metric, we analyzed a collection of techniques for parallelizing prototypical loop structures in
our algorithms. These techniques considered several different approaches to the prescription
of parallelism through both naive and complex execution policies. Informed by these results,
we chose to adopt a coarse-grained, hierarchical approach that utilizes the extensive capabil-
ities available on modern hardware. In consideration of our future work, this approach also
offers a large degree of algorithmic flexibility, which will be essential for moving to GPUs.
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Algorithm 1 Distributed adaptive time stepping rule

Approximate the global maximum wave speeds cy, ¢y, ... using the corresponding “lagged" variables

Ex, Ey, e

1: Initialize the ¢;’s and ¢;’s via the initial condition (no lag has been introduced)

2: while timestepping do

Update the N-N condition (i.e., (3.4), (3.5), or (3.6)) using the “lagged" wave speeds Cx, Cy, - - -
Compute At using the “lagged" wave speeds and check the N-N condition

Start the MPT_Tallreduce over the local wave speeds cy, cy, - -

Construct the spatial derivative operators of interest

Post the MPT_WATIT (in case the reductions have not completed)

Transfer the global wave speed information to the corresponding lagged variables:

AR

Cy < Cx,

Cy < ¢y,

: Perform the update step and computes the local wave speeds cy, cy, - -
10:  Return to step 3 to begin the next time step

Finally, we provided some details concerning the implementation of the distributed memory
components of the parallel algorithms. We introduced two different approaches: one based
on a fixed time step, with minimal communication, and another, which exploits the stability
properties of the representations and allows for adaptive time stepping rules. The next section
provides numerical results, which demonstrate not only the performance and scalability of
these algorithms, but also their versatility in addressing different PDEs.

5 Numerical Results

This section provides the experimental results for our parallel algorithms using MPI and
Kokkos, together, with the OpenMP backend. First, in Sect. 5.1, we define several test prob-
lems and verify the rates of convergence for the hybrid algorithms described in Sects. 3 and
4. Next, we provide both weak and strong scaling results obtained from each of the example
problems discussed in Sect. 5.1. Section 5.4 provides some insight on issues faced by the
distributed memory algorithms, in light of the N-N condition (3.4), which was derived in
Sect. 3.1. Unless otherwise stated, the results presented in this section were obtained using
the configurations outlined in Table 2. Timing data presented in Figs. 9 to 11 was collected
using 10 trials for each configuration (problem size and node count) with the update metric
(4.1) being displayed relative to 10° DOF/node/s. Each of these trials, evolved the numer-
ical solution over 10 time steps. Error bars, collected from data involving averages, were
computed using the sample standard deviation.

5.1 Description of Test Problems and Convergence Experiments

Despite the fact that we are primarily focused on developing codes for high-performance
applications, we must also ensure that the parallel algorithms produce reliable answers.
Here, we demonstrate convergence of the 2-D hybrid parallel algorithms on several test
problems, including a nonlinear example that employs the adaptive time stepping rule outlined
in Algorithm 1. The convergence results used 9 nodes, with 40 threads per node, assigning 1
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Table 2 Architecture and code configuration for the numerical experiments conducted on the Intel 18 cluster
at Michigan State University’s Institute for Cyber-Enabled Research

CPU type Intel Xeon Gold 6148

C++ Compiler ICC 2019.03

MPI library Intel MPI 2019.3.199

Optimization flags -03 -xCORE-AVX512 -gopt-zmm-usage=high -gno-opt-prefetch
Thread bindings OMP_PROC_BIND=close, OMP_PLACES=threads

Team size Kokkos: :AUTO ()

Base block size 2562

CFL 1.0

B 1.0

€ 1x 10710

As with the loop experiments in Sect. 4.3, we encourage the compiler to use AVX-512 instructions and avoid
the use of prefetching. All available threads within the node (40 threads/node) were used in the experiments.
Each node consists of two Intel Xeon Gold 6148 CPUs and at least 83 GB of memory. We wish to note that
hyperthreading is not supported on this system. As mentioned in Sect. 4.3, when hyperthreading is not enabled,
Kokkos: : AUTO () defaults to a team size of 1. In cases where the base block size did not divide the problem
evenly, this parameter was adjusted to ensure that blocks were nearly identical in size. The parameter 8, which
does not depend on At is used in the definition of «. For details on the range of admissible B values, we refer
the reader to [1,2], where this parameter was introduced. Lastly, recall that € is the tolerance used in the NN
constraints

MPI rank to each node, for a total of 360 threads. The quadrature method used to construct the
local integrals is the sixth-order WENO-quadrature rule, described in Sect. 2.4, which uses
only the linear weights. The numerical solution, in each of the examples, remains smooth
over the corresponding time interval of interest. Therefore, it is not necessary to transform
the linear quadrature weights to nonlinear ones. According to the analysis of the truncation
error presented in [1,2], retaining a single term in the partial sums for D, should yield a
first-order convergence rate, depending on the choice of «. Convergence results for each of
the three test problems defined in Sect. 5.1 are provided in Fig. 8.

Example 1: Linear Advection Equation

The first test problem considered in this work is the 2D linear advection equation

du+ du+dyu =0, (x,y) €[0,2n]?,

1
uo(x, y) = (1 = cos(x))(l — cos(y)),
s.t. two-way periodic BCs.

We evolve the numerical solution to the final time 7 = 2. In the experiments, we used the
same number of mesh points in both directions, with oy = o, = B/At, with 8 = 1. While
this problem is rather simple and does not highlight many of the important features of our
algorithm, it is nearly identical to the code for a nonlinear example. For initial experiments,
a simple test problem is preferable because it gives more control over quantities which are
typically dynamic, such as wave speeds. Moreover, the error can be easily computed from
the exact solution

u(x,y, t)y =uplx —t,y —1t).
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Fig. 8 Convergence results for each of the 2-D example problems. Results were obtained using 9 MPI ranks
with 40 threads/node. Also included is a first-order reference line (solid black). Our convergence results indicate
first-order accuracy resulting from the low-order temporal discretization. The final reported Lo errors for

each of the applications, on a grid containing 52772 total zones, are 2.874 x 1073 (advection), 4.010 x 10~4
(diffusion), and 2.674 x 10—~ (H-J)

Example 2: Linear Diffusion Equation

The next test problem that we consider is the linear diffusion equation

du = dyu + dyyu,  (x,y) € [0,27]%,
up(x, y) = sin(x) + sin(y),

s.t. two-way periodic BCs.

The numerical solution is evolved from (0, 7], with T = 1, in order to prevent substantial
decay. As with the previous example, we use an equal number of mesh points in both direc-
tions, so that Ax = Ay. The fixed time stepping rule was used, with At = Ax. Compared
with the previous example, we used the parameter definitions o, = ay = 1/ V/At, which
corresponds to 8 = 1 in the definition for second derivative operators. The exact solution for
this problem is given by

u(x,y, t) = e"(sin(x) + sin(y)).

Characteristically, this example is different from the advection equation in the previous
example, which allows us to illustrate some key features of the method. Firstly, code developed
for advection operators can be reused to build diffusion operators, an observation made in Sect.
2.1. More specifically, to construct the left and right-moving local integrals, we used the same
linear WENO quadrature as with the advection equation in Example 1. However, we note that
this particular example could, instead, use a more compact quadrature to eliminate the halo
communication, which would remove a potential synchronization point. The second feature
concerns the time-to-solution and is related to the unconditional stability of the method.
Linear diffusion equations, when solved by an explicit method, are known to incur a harsh
stability restriction on the time step, namely, Az ~ AxZ, making long-time simulations
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prohibitively expensive. The implicit aspect of this method drastically reduces the time-to-
solution, as one can now select time steps which are, for example, proportional to the mesh
spacing. This benefit is further emphasized by the overall speed of the method, which can be
observed in Sects. 5.2 and 5.3.

Example 3: Nonlinear Hamilton-Jacobi Equation

The last test problem we consider is the nonlinear H-J equation

1 2 2
o+ 5 (1 + dyu + 8yu) =0, (x,y) €][0,2r],

uo(x,y) =0,
s.t. two-way periodic BCs.

To prevent the characteristic curves from crossing, which would lead to jumps in the deriva-
tives of the function u, the numerical solution is tracked over a short time, i.e., T = 0.5. We
applied a high-order linear WENO quadrature rule to approximate the left and right-moving
local integrals and used the same parameter choices for o, ay, and 8, as with the advection
equation in Example 1. However, since the wave speeds fluctuate based on the behavior of
the solution u, we allow the time step to vary according to (4.2), which requires the use of
the distributed adaptive time stepping rule outlined in Algorithm 1.

Typically, an exact solution is not available for such problems. Therefore, to test the
convergence of the method, we use a manufactured solution given by

u(x, y, 1) = t(sin(x) + sin(y)),

with a corresponding source term included on the right-hand side of the equation. Methods
employed to solve this class of problems are typically explicit, with a shock-capturing method
being used to handle the appearance of “cusps” that would otherwise lead to jumps in the
derivative of the solution. A brief summary of such methods is provided in our recent paper [3],
where extensions of successive convolution were developed for curvilinear and non-uniform
grids. The method follows the same structural format as an explicit method with the ability
to take larger time steps as in an implicit method. However, the explicit-like structure of this
method does not require iteration for nonlinear terms and allows for a more straightforward
coupling with high-order shock-capturing methods. We wish to emphasize that despite the
fact that this example is nonlinear, the only major mathematical difference with Example 1
is the evaluation of a different Hamiltonian function.

5.2 Weak Scaling Experiments

A useful performance property for examining the scalability of parallel algorithms describes
how they behave when the compute resources are chosen proportionally to the size of the
problem. Here, the amount of work per compute unit remains fixed, and the compute units
are allowed to fluctuate. Weak scaling assumes ideal or best-case performance for the parallel
components of algorithms and ignores the influence of bottlenecks imposed by the sequential
components of a code. Therefore, for N compute units, we shall expect a speedup of N. This
motivates the following definitions for speedup and efficiency in the context of weak scaling:
NT; SN T

Sy =1 Ey=2N="1
N= Ty NTN T Ty
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Therefore, with weak scaling, ideal performance is achieved when the run times for a fixed
work size (or, equivalently, the DOF/node/s) remain constant, as we vary the compute units.
To scale the problem size, we take advantage of the periodicity for the test problems. The
base problem on [0, 27r] x [0, 2] can be replicated across nodes so that the total work per
node remains constant. Provided in Fig. 9 are plots of the weak scaling data—specifically
the update metric Eq. (4.1) and the corresponding efficiency—obtained from the fastest of
10 trials of each configuration, using up to 49 nodes (1,960 cores).

These results generally indicate good performance, both in terms of the update frequency
and efficiency, for a variety of problem sizes. Weak scalability appears to be excellent up to 16
nodes (640 cores), then begins to decline, most likely due to network effects. The performance
behavior for advection and diffusion applications is quite similar, which is to be expected,
since the parallel algorithms used to construct the base operators are nearly identical. With
regard to the Hamilton-Jacobi application, we see that the performance is similar to the
other applications at larger node counts. This seems to indicate that no major communication
penalties are incurred by use of the adaptive time stepping method shown in algorithm
1, compared to fixed time stepping. Additionally, in the Hamilton-Jacobi application, we
observe a sharp decline in the performance at 9 nodes in Fig. 9. A closer investigation reveals
that this is likely an artifact of the job scheduler for the system on which the experiments
were conducted, as we were unable to secure a “contiguous” allocation of nodes. This has
the unfortunate consequence of not being able to guarantee that data for a particular trial
remain in close physical proximity. This could result in issues such as network contention
and delays that exacerbate the cost of communication relative to the computation as discussed
in Sect. 4. An non-contiguous placement of data is problematic for codes with inexpensive
operations, such as the methods shown here, because the work may be insufficient to hide this
increased cost of communication. For this reason, we chose to include plots containing the
averaged weak scaling data in Fig. 9, which contains error bars calculated from the sample
standard deviation. The noticeable size of the error bars in these plots generally indicates a
large degree of variation in the timings collected from trials.

To more closely examine the importance of data proximity on the nodes, we repeated
the weak scaling study, but with node counts for which a contiguous allocation count could
be guaranteed. We have provided results for the fastest and averaged data in Fig. 10. Data
collected from the fastest trials indicates nearly perfect weak scaling, across all applications,
up to 9 nodes, with a consistent update rate between 2 —4 x 108 DOF/node/s. For convenience,
these results were plotted with the same markers and formats so that results from the larger
experiments in Fig. 9 could be compared directly. A comparison of the fastest timings between
the large and small runs supports our claim that data proximity is crucial to achieving the
peak performance of the code. Furthermore, the error bars for the contiguous experiments
displayed in Fig. 10 show that the individual trials exhibit less overall variation in timings.

5.3 Strong Scaling Experiments

Another form of scalability considers a fixed problem size and examines the effect of varying
the number of work units used to find the solution. In these experiments, we allow the work
per compute unit to decrease, which helps identify regimes where sequential bottlenecks in
algorithms become problematic, provided we are granted enough resources. Applications
which are said to strong scale exhibit run times which are inversely proportional to the
number of resources used. For example, when N compute units are applied to a problem,
one expects the run to be N times faster than with a single compute unit. Additionally, if an
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Fig. 9 Weak scaling results, for each of the applications, using up to 49 nodes (1960 cores). For each of the
applications, we have provided the update rate and weak scaling efficiency computed via the fastest time/step
(top) and average time/step (bottom). Results for advection and diffusion applications is quite similar, despite
the use of different operators. The results for the H-J application seem to indicate that no major performance
penalties are incurred by use of the adaptive time stepping method. Scalability appears to be excellent, up to
16 nodes (640 cores), then begins to decline. While some loss in performance, due to network effects, is to
be expected, this loss appears to be larger than was previously observed. The nodes used in the runs were not
contiguous, which hints at a possible sensitivity to data locality

algorithm’s performance is memory bound, rather than compute bound, this will, at some
point, become apparent in these experiments. Supplying additional compute units should
not improve performance, if more time is spent fetching data, rather than performing useful
computations. This motivates the following definitions for speedup and efficiency in the
context of strong scaling:
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Fig. 10 Weak scaling results obtained with contiguous allocations of up to 9 nodes (360 cores) for each
of the applications. For comparison, the same information is displayed as in Fig. 9. Data from the fastest
trials indicates nearly ]Sjerfect weak scaling, across all applications, up to 9 nodes, with a consistent update
rate between 2—4 x10° DOF/node/s. A comparison of the fastest timings between the large and small runs
supports our claim that data proximity is crucial to achieving the peak performance of the code. Note that
size the error bars are generally smaller than those in Fig. 9. This indicates that the timing data collected from
individual trials exhibits less overall variation

T S
Sy = 71, Ey=—.
Tn N
Here, N is the number of nodes used, so that 77 and Ty correspond to the time measured
using a single node and N nodes, respectively. Results of our strong scaling experiments
are provided in Fig. 11. As with the weak scaling experiments, we have plotted the update
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Fig. 11 Strong scaling results for each of the applications obtained on contiguous allocations of up to 9
nodes (360 cores). Displayed among each of the applications are the update rate and strong scaling efficiency
computed from the fastest time/step (top) and average time/step (bottom). This method does not contain a
substantial amount of work, so we do not expect good performance for smaller base problem sizes, as the work
per node becomes insufficient to hide the cost of communication. Larger base problem sizes, which introduce
more work, are capable of saturating the resources, but will at some point become insufficient. Moreover,
threads become idle when the work per node fails to introduce enough blocks

metric eq. (4.1) along with the strong scaling efficiency using both the fastest and averaged
configuration data from a set of 10 trials. In contrast to weak scaling, strong scaling does not
assume ideal speedup, so one could plot this information; however, the information can be
ascertained from the efficiency data, so we refrain from plotting this data.

Results from these experiments show decent strong scalability for the N-N method. This
method does not contain a substantial amount of work, so we do not expect good performance
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for smaller base problem sizes, as the work per node becomes insufficient to hide the cost of
communication. On the other hand, larger base problem sizes, which introduce more work,
are capable of saturating the resources, but will at some point become insufficient. This
behavior is apparent in our efficiency plots. Increasing the problem size generally results
in an improvement of the efficiency and speedup for the method. Part of these problems
can be attributed to the use of a blocking pattern for loops structures discussed in Sect. 4.4.
Depending on the size of the mesh, it may be the case that the block size and the team size set
by the user result in idle threads. One possible improvement is to simply increase the team
size so that there are fewer idle threads within an MPI task. Alternatively, one can adjust the
number of threads per task, so that each task is responsible for fewer threads. While these
approaches can be implemented with no changes to the code, they will likely not resolve this
issue. Profiling seems to indicate that the source of the problem is the low arithmetic intensity
of the reconstruction algorithms. In other words, the method is memory bound because the
calculations required in the reconstructions are inexpensive relative to the cost of retrieving
data from memory. As part of our future work, we plan to investigate such limitations through
the use of detailed roofline models. We also plan to consider test problems in 3-D, which will
introduce additional work.

5.4 Effect of CFL

In order to enforce a N-N dependency for our domain decomposition algorithm, we obtained
several possible restrictions on At, depending on the problem and the choice of «. In the
case of linear advection, we would, for example, require that

A[ < _ﬂi
Cmax log(e€)

with the largest possible time step permitting N-N dependencies being set by the equality.
Admittedly, such a restriction is undesirable. As mentioned in Sect. 3.1, this assumption
can be problematic if the problem admits fast waves (cmax is large) and/or if the block
sizes are particularly small (L,, is small). In many applications, the former circumstance is
quite common. However, our test problem contains fixed wave speeds so this is less of an
issue. The latter condition is a concern for configurations which use many blocks, such as a
large simulation on many nodes of a cluster. Another potential circumstance is related to the
granularity of the blocks. For example, in these experiments, we use 1 MPI rank per compute
node. However, it may be advantageous to consider different task configurations, e.g., using
1 (or more) rank(s) per NUMA region of a compute node.

A larger CFL parameter is generally preferable because it reduces the overall time-to-
solution. Eventually, however, for a given CFL, there will be a crossover point, where the
time step restriction causes the performance to drop due to the increasing number of sequential
time steps. This experiment used a highly refined grid and varied the CFL number, using up
to 9 nodes. Results from the CFL experiments are provided in Fig. 12. The data was obtained
using an older version of our parallel algorithms, compiled with GCC 8.2.0-2.31.1, which
does not use blocking. By plotting the behavior according to the number of nodes (ranks)
used, we can fix the lengths of the blocks, hence L,,, and change the time step to identify
the breakdown region. We observe a substantial decrease in performance for the 9 node
configuration, specifically when the CFL number increases from 4 to 5. For more complex
problems with dynamic wave behavior, this breakdown may be observed earlier. In response
to this behavior, a user could simply increase or relax the tolerance, but the logarithm tends
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Fig. 12 Results on the N-N method for the linear advection equation using a fixed mesh with 53772 total
DOF and a variable CFL number. In each case, we used the fastest time-to-solution collected from repeating
each configuration a total of 20 times. This particular data was collected using an older version of the code,
compiled with GCC, which did not use the blocking approach. For larger block sizes, increasing the CFL
has a noticeable improvement on the run time, but as the block sizes become smaller, the gains diminish. For
example, if 9 MPI ranks are used, improvements are observed as long as CFL < 4. However, when CFL = 5,
the run times begin to increase, with a significant decrease in efficiency. As the blocks become smaller, At
needs to be adjusted (decreased) so that the support of the non-local convolution data not extend beyond N-Ns

to suppress the impact of large relaxations. Another option, which shall be considered in
future work is to include more information from neighboring ranks by either eliminating
this condition or, at the least, communicating enough information to achieve a prescribed
tolerance.

6 Conclusion

In this paper, we presented hybrid parallel algorithms capable of addressing a wide class of
both linear and nonlinear PDEs. To enable parallel simulations on distributed systems, we
derived a set of conditions that use available wave speed (and/or diffusivity) information,
along with the size of the sub-domains, to limit the communication through an adjustment
of the time step. Although not considered here, these conditions, which are needed to ensure
accuracy, rather than the stability of the method, can be removed at the cost of additional com-
munication. Using these restrictions, boundary conditions are enforced across sub-domains
in the decomposition. Results were obtained for 2-D examples consisting of linear advection,
linear diffusion, and a nonlinear H-J equation to highlight the versatility of the methods in
addressing characteristically different PDEs.

As part of the implementation, we used constructs from the Kokkos performance porta-
bility library to parallelize the shared memory components of the algorithms. We extracted
essential loop structures from the algorithms and analyzed a variety of parallel execution
policies in an effort to develop an efficient application. These experiments considered sev-
eral common optimization techniques, such as vectorization, cache-blocking, and placement
of threads. From these experiments, we chose to use a blocked iteration pattern in which
threads (or teams thereof) are mapped to blocks of an array with vector instructions being
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applied to 1-D line segments. These design choices offer a large degree of flexibility, which
is an important consideration as we proceed with experimentation on other architectures,
including GPUs, to leverage the full capabilities provided by Kokkos. By exploiting the sta-
bility properties of the representations, we also developed an adaptive time stepping method
for distributed systems that uses “lagged" wave speed information to calculate the time step.
While the methods presented here do not require adaptive time stepping for stability, it was
included as an option because of its ability to prevent excessive numerical diffusion, as
observed in previous work.

Convergence and scaling properties for the hybrid algorithms were established using at
most 49 nodes (1960 cores), with a peak performance > 10® DOF/node/s. Larger weak
scaling experiments, which used up to 49 nodes (1960 cores), initially performed reasonably
well, with all applications later tending to 60% efficiency corresponding (roughly) to 2 x 108
DOF/node/s. While some performance loss is to be expected from network related compli-
cations, we found this to be much larger than what was observed in prior experiments. Later,
it was discovered that the request for a contiguous allocation could not be accommodated so
data locality in the experiments was compromised. By repeating the experiments on a smaller
collection of nodes, which granted this request, we discovered that data locality plays a piv-
otal role in the overall performance of the method. We observe that a large base problem size
is required to achieve good strong scaling. Furthermore, when threads are prescribed work
at a coarse granularity (i.e., across blocks, rather than entries within the blocks), one must
ensure that the problem size is capable of saturating the resources to avoid idle threads. This
approach introduces further complications for strong scaling, as the workload per node drops
substantially while the block size remains fixed. Finite difference methods which, generally,
do not generate a substantial amount of work, are quite similar to successive convolution.
Therefore, we do not expect excellent strong scalability. Certain aspects of the algorithms can
be tuned to improve the arithmetic intensity, which will improve the strong scaling behavior.
At some point, the algorithms will be limited by the speed of memory transfers rather than
computation. We also provided experimental results that demonstrate the limitations of the
N-N condition in the context of strong scaling.

While we have presented several new ideas with this work, there is still much untapped
potential with successive convolution methods. Firstly, optimizations on GPU architectures,
which shall play an integral role in the upcoming exascale era, need to be explored and
compared with CPUs. A roofline model should be developed for these algorithms to help
identify key limitations and bottlenecks and formulate possible solutions. Although this work
considered only first-order time discretizations, our future developments shall be concerned
with evaluating a variety of high-order time discretization techniques in an effort to increase
the efficiency of the method. Lastly, the parallel algorithms should be modified to enable the
possibility of mesh adaptivity, which is a common feature offered by many state-of-the-art
computing libraries.
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Appendix A Example for Linear Advection

Suppose we wish to solve the 1D linear advection equation:
du+cdu=0, (x,1) e (ab) xR, (Appendix A.1)

where ¢ > 0 is the wave speed and leave the boundary conditions unspecified. The procedure
for ¢ < 0 is analogous. Discretizing (Appendix A.1) in time with backwards Euler yields a
semi-discrete equation of the form

n+1 _n
u"m(x) —u"(x) n

N cdu™(x) = 0.

If we rearrange this, we obtain a linear equation of the form

LI a)(x) = u" (x), (Appendix A.2)
where we have used
! L=T+ ! 0
o= —, = —Ox-
cAt a

By reversing the order in which the discretization is performed, we have created a sequence
of BVPs at discrete time levels. If we had discretized equation (Appendix A.1) using the
MOL formalism, then £ would be an algebraic operator. To solve Eq. (Appendix A.2) for
w1, we analytically invert the operator £. Notice that this equation is actually an ODE,
which is linear, so the problem can be solved using methods developed for ODE:s. If we apply
the integrating factor method to the problem, we obtain

Oy [e‘”u”“(x)] = ae“ u" (x).

To integrate this equation, we use the fact that characteristics move to the right, so integration
is performed from a to x. After rearranging the result, we arrive at the update equation

x
un+1(x) — e—oz(x—a)un+l(a) -l-()l/ e—a(x—s)un(s) ds,
a

= e—oz(x—a)An-H +a/x e—a(x—s)un(s) ds,

a

=7 a](x).

This update displays the origins of the implicit behavior of the method. While convolutions
are performed on data from the previous time step, the boundary terms are taken at time level
n+41.

Now that we have obtained the update equation, we need to apply the boundary conditions.
Clearly, if the problem specifies a Dirchlet boundary condition at x = a, then A"t =
u"*1(a). We can compute a variety of boundary conditions using the update equation

un+1(x) — efa(xfa)AnJrl ta /‘x e,a(x—s)uﬂ(s) ds,

a

where

ITu"; a](x) =oz/ eIy (5) ds.

a
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For example, with periodic boundary conditions, we would need to satisfy
" (a) = " (b), (Appendix A.3)

aeu N (a) = 0,u" T (b). (Appendix A.4)

Applying condition (Appendix A.3), we find that
b
An+l — e—a(b—a)An+l -l-O{/ e—a(b—s)un(s) ds.
a
Solving this equation for A”*! shows that
Iu"; o](b)
l—pu

Al’l+1 —

)

with 1 = e~*®=® _ Alternatively, we could have started with (Appendix A.4), which would
give an identical solution. While this particular procedure is only applicable to linear prob-
lems, this exercise motivates some of the choices made to define operators in the method.

Appendix B Kokkos Kernels

This section provides listings, which outline the general format of the Kokkos kernels used
in this work. Specifically, we provide structures for the tiled/blocked algorithms (Listing 3)
in addition to the kernel that executes the fast summation method along a line (Listing 4).

i1 // Distribute tiles of the array to teams of threads
dynamically

> Kokkos::parallel_for ("team loop over tiles",
team_policy (total_tiles, Kokkos::AUTO()),
KOKKOS_LAMBDA (team_type &team_member)

4+ {

5 // Determine the flattened tile index via the
team rank

6 // and compute the unflattened indices of the
tile T_{i,Jj}

7 const int tile_idx = team_member.league_rank () ;

3 const int tj = tile_idx % num_tiles_x;

9 const int ti = tile_idx / num_tiles_x;

1" // Retrieve tile sizes & offsets and

12 // obtain subviews of the relevant grid data on
tile T_{i,3}

13 //

15 // Use a team’'s thread range over the lines

16 Kokkos::parallel_for (Kokkos::TeamThreadRange <>

17 (team_member , Ny_tile), [&] (const int 1iy)

18 {

19 // Slice to extract a subview of my line’s
data and

20 // call line methods which use vector loops

21 //

Listing 3 An example of coarse-grained parallel nested loop structure.
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i1 // Distribute the threads to lines

> Kokkos::parallel_for ("Fast sweeps along x",
range_policy (0, Ny),
KOKKOS_LAMBDA (const int 4iy)

5 // Slice to obtain the local integrals to which
we apply

6 // the convolution kernel to the entire 1line

7 //

s }) s

Listing 4 Kokkos kernel for the fast-convolution algorithm.

Appendix C Sixth-Order WENO Quadrature

We provide the various expressions for the coefficients and smoothness indicators used in

the reconstruction process for J ,({) . Defining v = o Ax, the coefficients for the fixed stencils
are given in [2] as follows:

) _ 6 —6v+ 21)2 — (6 — \)2)671)

3= 6v3 ’

(0) 6 —8v+ 3% — 6—2v— 21)2)67”
cHh=— 3 ,

2v

©o 6—10v+ 6v2 — (6 — 4v — V2 4+ 202V
1= 203 ’

©  6— 120411 —6v3 — (6 — 6V +2v?)e™"
© =7 6v3 ’

1 6= —(6+6v+2vHe"
RON

-2 6\)3 ’

M 6—=20—202— (6+4v —1v? —2v3)e™"
1= 203 ’
1 6—4v—v2 4203 — (6420 —2v)e
o = 213 ’
1) 6 —6v+ 2% — 6 — V2)€7V
Cl = — 3 s

6v

@  6+6v+202— (64 120+ 112 +6v3)e™
e

-1 — 6])3 k]
@ 6+4v —v? — 203 — (64 10V + 6v?)e™
cy = — s

0 203
@ 6420 =202 —(6+8v+3v2)e"
¢ = s
! 203
@ 62— (6+6v+20%)e"
C =— 3 .
6v
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The corresponding linear weights are

6—vZ—(646v+2vH)e"

do =
32 —-—v—024v)e)
4= 60 — 60V + 1502 4+ 503 — 3v* — (60 — 1502 4+ 2vH)e™"
10vV2(6 — V2 — (6 + 6V + 2v%)e™") ’
di=1—dy—d>.

To obtain the analogous expressions for J ") we exploit the “mirror-symmetry" property of
WENO reconstructions. That is, one can keep the left side of each of the expressions, then
reverse the order of the expressions on the right. Expressions for calculating one particular
smoothness indicator, if interested, can be found in [2].
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