
Journal of Computational Physics 478 (2023) 111960

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Order enhanced finite volume methods through 

non-polynomial approximation

Andrew J. Christlieb a, William A. Sands b, Hyoseon Yang c,∗

a Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, United States
b Center for Predictive Engineering and Computational Science, Oden Institute for Computational Engineering and Sciences, The University of 
Texas at Austin, Austin, TX, 78712, United States
c Department of Mathematics, Kyung Hee University, Seoul, 02447, South Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 July 2022
Received in revised form 16 December 2022
Accepted 19 January 2023
Available online 31 January 2023

Keywords:
Finite volume methods
Optimal order
Radial basis functions
WENO
Conservation laws
Shape parameter

In this paper, we introduce an approximation method that establishes certain order 
enhancements by leveraging radial basis functions (RBFs) in the numerical solution of 
conservation laws. The use of RBFs for interpolation and approximation is a well developed 
area of research. Of particular interest in this work is the development of high order 
finite volume (FV) weighted essentially non-oscillatory (WENO) methods, which utilize RBF 
approximations to obtain required data at cell interfaces. The aforementioned improvement 
in the order of accuracy is addressed through an analysis of the truncation error, resulting 
in expressions for the shape parameters appearing in the basis. This paper seeks to address 
the practical elements of the approach, including the evaluations of shape parameters as 
well as a hybrid implementation. To highlight the effectiveness of the non-polynomial 
basis in shock-capturing, the proposed methods are applied to systems of one-dimensional 
hyperbolic and weakly hyperbolic conservation laws and compared with several well-
known WENO schemes in the literature. We also include a two-dimensional example 
for a scalar problem that demonstrates an extension to multiple dimensions. In the case 
of the non-smooth, weakly hyperbolic test problem, notable improvements are observed 
in predicting the location and height of the finite time blowup. The numerical results 
demonstrate that the proposed schemes attain notable improvements in accuracy, as 
indicated by the analysis of the reconstructions. A key contribution of this work is 
the development of robust third-order WENO method, which further demonstrates the 
effectiveness of the non-polynomial basis.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

This work concerns the development of numerical schemes to solve conservation laws, which are of the form

{
ut + ∇ · F (u) = 0, x ∈Rm,

u(x,0) = u0(x),
(1)
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Table 1
Commonly used global radial basis functions φ with a 
shape parameter λ.

RBFs φ(x)

Gaussian function e−(λx)2

Multiquadric
√

1 + (λx)2

Inverse quadric
1

1 + (λx)2

Thin-plate spline (λx)2 log(λx)

where F (u) is the flux function and u0(x) is the prescribed initial data. The significance of the problem (1) has motivated, 
to a large extent, the development of numerous high-order numerical methods. In this way, our paper seeks to develop 
high order schemes for conservation laws by leveraging features endowed through a non-polynomial basis. The resulting 
methods demonstrate enhanced rates of convergence, which will be discussed throughout the paper.

Finite volume (FV) schemes are among the most popular methods used to solve hyperbolic conservation laws. An attrac-
tive feature of such schemes is that they evolve cell average data, which makes the discretization naturally conservative. 
These conservation properties also make them suitable for use in, for example, adaptive mesh refinement algorithms, where 
data needs to be frequently transferred between levels within a hierarchy of grids. The use of cell average data, rather than 
point-wise values, greatly simplifies the task of making such transfers conservative. While there exist many approaches to 
obtain high order FV discretizations, we restrict our focus to the class of so-called weighted ENO (WENO) schemes [26,28], 
developed by Jiang and Shu [26], which shall be referred to as classical WENO or WENO-JS. These methods were built on 
the success, and, in a sense, the limitations of the essentially non-oscillatory (ENO) schemes [19,20,37,38], which employed 
an adaptive interpolation stencil on a small set of available candidate points, to construct approximations at cell interfaces. 
WENO approaches, such as [26], in contrast, make use of all available candidate points in the reconstruction through a con-
vex combination of substencils, so that higher order accuracy is recovered in smooth regions. In non-smooth regions, WENO 
reduces to making use of one of the substencils to obtain a properly winded, essentially non-oscillatory approximation. 
The notion of smoothness among each of the candidate substencils is assessed through a smoothness indicator that makes 
use of the first and second derivative information to identify non-smooth regions. Several other WENO schemes, which are 
more robust at shock-capturing and generate less dissipation, have been proposed in the literature (see e.g., [1,5,21,35]). 
Traditional WENO schemes were originally based on polynomial interpolation; however, algebraic polynomials are known 
to have limits in approximating data containing steep gradients or rapid variations due to their shift-and-scale invariant 
property. In order to address this problem, schemes were developed based on both trigonometric [48,49] and exponential 
[16,18] functions in the interpolation basis for ENO and WENO.

This paper proposes to use non-polynomial function approximations by formulating a WENO scheme in terms of RBFs 
and achieving enhanced convergence order by tuning the available shape or tension parameter. RBFs are widely used as a 
basis function for multivariate scattered data approximation problems [8,29,47], and RBF approximation methods for solving 
partial differential equations have been developed in a variety of contexts [34,41], including WENO quadratures [4,15]. 
A radial basis function φ : Rd → R is defined in the sense that φ(x) = φ(|x|), where | · | is the usual Euclidean norm. 
Because of its definition, the power of the RBF approximation is in its meshless property, which is particularly beneficial in 
modeling scattered data. Moreover, the basis is flexible, as it can be tuned to incorporate local features of the data through 
the shape parameter. For a given data set, an approximating function A f (x) with an RBF φ can be represented as

A f (x) =
M∑

j=1

α jφ(|x − ξ j|) (2)

where {ξ j : j = 1, · · · , M} is a set of reference points and α j is a weight associated with φ(· − ξ j) for j = 1, · · · , M . There are 
several ways to solve (2) depending on the constraints. For example, assuming f (%) is given, then the constraints satisfy

A f (x∗) = f (x∗), ∀x∗ ∈ %, (3)

which may represent the solution of an interpolation problem (if |%| = M) or an optimization problem (|%| ̸= M). In Table 1, 
we provide commonly used global radial basis functions φ with a shape parameter λ. We note that the RBF approximation 
scheme (2) using a Gaussian function as a basis, i.e., φ(x) = e−(λx)2

, has a conceptual resemblance with Gaussian Process 
(GP) modeling, which makes a probabilistic prediction instead of solving a linear system (3). In [30,31], the authors use GP 
regression to solve hyperbolic conservation laws.

The topic of order enhancing methods admits a vast array of literature. For example, several studies have explored the 
notion of superconvergence, with discontinuous Galerkin (DG) methods, on time evolution in ordinary differential equations 
[2,3], as well as hyperbolic and convection-diffusion PDEs [10,11,9,45]. In DG schemes, superconvergent behavior can be 
incorporated into the basis by using information from the exact solution, provided one is available. Spectral methods for 
PDEs can also achieve high order accuracy, when the solutions are analytic, for continuous problems. For PDEs that admit 

2



A.J. Christlieb, W.A. Sands and H. Yang Journal of Computational Physics 478 (2023) 111960

discontinuous solutions, the Gibbs phenomenon is known to contaminate solutions, resulting in non-uniform convergence 
[12]. However, in such instances, high order accuracy can be recovered through the use of certain post-processing techniques 
[32,33,13,39]. In the literature, non-polynomial based numerical schemes have successfully demonstrated improvements in 
accuracy. We refer the interested readers to the papers [15] and [17]. The latter work develops a WENO scheme with a basis 
consisting of exponential polynomials, while the former proposes an ENO scheme that uses RBF interpolation. Moreover, in 
recent work, RBF-ENO methods have been successfully applied to problems on unstructured meshes [23–25]. The primary 
objective of this paper is to devise high order FV schemes using compact, non-polynomial interpolation techniques, which 
achieve additional accuracy by exploiting the shape parameter available in the basis. As will be discussed in section 3, the 
convergence order of the scheme is related to the level of accuracy of the approximation for shape parameter λ2, which 
appears in the basis, e.g., φ(x) = e−(λx)2

.
The organization of this paper is as follows. In section 2, we begin with a general overview of RBF interpolation. Once 

we have introduced the interpolation problem, we demonstrate, in section 3, how the shape parameter in the basis can be 
exploited to obtain order enhanced convergent approximations. Then, in section 4, we briefly summarize the construction 
of FV WENO schemes for conservation laws, highlighting, in particular, subsection 4.2, which defines the smoothness indi-
cators employed by the proposed schemes. We then outline the key steps used in the implementation of the algorithms in 
section 5, which also contains details concerning extensions for two-dimensional problems. Experimental results, collected 
on a suite of test problems consisting of one-dimensional hyperbolic and weakly hyperbolic systems of conservation laws, 
as well as a two-dimensional nonlinear scalar test problem, are presented in section 6. Finally, in section 7, we summarize 
the ideas presented in this work.

2. RBF interpolation

In this section, we provide a brief overview of interpolation with radial basis functions, which shall be useful for in-
troducing our new WENO formulation. Suppose that a continuous function f : Rd → R is known only at a set of discrete 
points X := {x1, ..., xN } in % ⊂ Rd . A function φ : Rd → R is radial in the sense that φ(x) = φ(|x|), where | · | is the usual 
Euclidean norm. RBF interpolation for f on X starts by choosing a basis function φ, and then defines an interpolant by

A f X (x) :=
m∑

k=1

βk pk(x) +
N∑

j=1

α jφ(x − x j), (4)

where {p1, . . . , pm} is a basis for 'm and the coefficients α j and βi are chosen to satisfy the linear system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A f X (xi) =
m∑

k=1

βk pk(xi) +
N∑

j=1

α jφ(xi − x j) = f (xi), i = 1, · · · , N,

N∑

j=1

α j pk(x j) = 0, k = 1, · · · ,m.

(5)

Here 'm denotes the space generated by all algebraic polynomials of degree less than m on Rd . For a wide choice of 
functions φ and polynomial orders m, the existence and uniqueness of the solution of the linear system (5) is ensured when 
φ is a conditionally positive definite function.

Definition 2.1. Let φ :Rd →R be a continuous function. We say that φ is conditionally positive definite of order m ∈N if for 
every finite set of pairwise distinct points X = {x1, . . . xN } ⊂Rd and α = (α1, . . . , αN ) ∈RN\{0} satisfying 

∑N
j=1 α j p(x j) = 0

for ∀p ∈ 'm , the quadratic form

N∑

i=1

N∑

j=1

αiα jφ(xi − x j)

is positive definite.

This leads to the linear system (5) for α = (α1, . . . , αN) and β = (β1, . . . , βm), which is given in block-matrix form as
[
( P T

P O

][
αT

βT

]
=

[
fT

O

]
(6)

where ( = {φ(xi − x j) : i, j}, P = {pk(x j) : k, j} and f = { f (xi) : i}. If we assume m = 0 in (4), then from the equations (4)
and (6), the interpolant can be represented as
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A f X (x) =
N∑

j=1

α jφ(x − x j) =φ(−1fT , (7)

where φ = {φ(x − x j) : j}. We note that the product φ(−1, which appears as part of the representation (7), is completely 
independent of the function values f. Next, in section 3, expressions for the optimal shape parameters, i.e., λ2 in the non-
polynomial basis, are derived, which results in order enhancing approximations.

3. Order enhancing RBF schemes

In this section, we derive the expressions for optimal shape, or tension, parameters made available through RBF interpo-
lation. We perform our analysis in section 3.1 based on two reconstruction methods: a direct approach using integrals and 
a second approach that utilizes a primitive function. Here, we define the shape parameter λ2, for a given RBF φ, so that it 
maximizes the convergence order of the approximation. Once the techniques have been demonstrated, we generalize these 
results in sections 3.2 and 3.3, with the key points summarized in Theorems 3.1 and 3.3, respectively.

3.1. Optimal shape parameters for RBFs

In [16], the authors introduced a WENO scheme based on the space of exponential polynomials. Later, in the work [18], 
they improved the order of accuracy of their schemes by exploiting the control parameter λ ∈R or iR for exponential basis 
functions of the form eλx . We adopt a similar strategy in this work with the difference being the choice of the basis. Here, 
the basis functions consist of infinitely smooth RBFs φ (see Table 1) rather than exponential polynomials. We present the 
analysis using the Gaussian function

φ(x) = e−λ2x2
, λ ∈R or iR, (8)

in the case of N = 2, using two different approaches, but these techniques can be easily extended to other RBFs (see Table 1
for other options). For each approach, we provide analytical expressions for the optimal shape parameters, which allow the 
schemes to achieve optimal convergence order on a fixed reconstruction stencil.

3.1.1. Direct computation with integrals
Recall that the RBF approximation is given by

Au(x) :=
2∑

k=1

αkφ(x − x j+k−1) = α1φ(x − x j) + α2φ(x − x j+1). (9)

The goal is to form a high order approximation using the form (9), which preserves each of the cell averages. In other 
words, the approximation should satisfy the integral constraint

1
)x

∫

Ii

Au(ξ)dξ = ūi, i = j, j + 1. (10)

Using the RBF φ(x) defined in (8), it follows that the integrals of φ can be evaluated analytically, which resulting in a 
solvable linear system. Once the solution is determined, the final approximation at the cell boundary x j+ 1

2
is given by

Au(x j+ 1
2
) = 2λ)x exp(− λ2)x2

4 )
√

π
(
erf( λ)x

2 ) + erf( 3λ)x
2 )

) (ū j + ū j+1).

To determine the shape parameter, we Taylor expand the right-hand side of the previous equation, which yields

Au(x j+ 1
2
) ≈

(
1
2

+ λ2)x2

6
− 7λ4)x4

90

)
(ū j + ū j+1)

= u(x j+ 1
2
) + )x2

(
1
3
λ2u(x j+ 1

2
) + 1

6
u′′(x j+ 1

2
)

)

+ O()x4).

Hence, we have a second order approximation for the cell boundary point. Notice that we can obtain a fourth order approx-
imation if we choose the shape parameter with

λ2 = −
u′′(x j+ 1

2
)

2u(x j+ 1
2
)

+ O()x2).
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In practice, this parameter can be formed entirely from the available cell average data. Although there may be many ways 
to approximate these terms, our implementation considers finite difference approximations to the derivatives appearing in 
the expression for the optimal shape parameter. We provide additional details in Appendix A. Note that the cell average 
data can be shifted by some positive constant at the beginning and end of the reconstruction steps to prevent division by 
zero, if needed. In the next section, we perform a similar reconstruction using a primitive function.

3.1.2. Construction with a primitive function
To reconstruct the approximation at the cell boundary x = x j+ 1

2
from the cell averages {ū j, ̄u j+1}, we define a primitive 

function

U (x) =
x∫

x
j− 1

2

u(ξ)dξ

which can be explicitly written in terms of the available cell averages as

U (xi− 1
2
) = )x

i−1∑

ℓ= j

ūℓ for i = j, · · · , j + 2.

Using the available interpolatory data for the primitive function at the cell interfaces, we seek an RBF representation

AU (x) :=
2∑

k=0

αkφ
(

x − x j+k− 1
2

)
, (11)

which satisfies

AU (xi− 1
2
) = U (xi− 1

2
), i = j, j + 1, j + 2. (12)

Then the final approximation to u(x) at x = x j+ 1
2

is obtained by differentiating the RBF representation

AU ′(x) :=
2∑

k=0

αkφ
′(x − x j+k− 1

2
),

which approximates U ′(x) = u(x), i.e.,

AU ′(x j+ 1
2
) ≈ U ′(x j+ 1

2
) = u(x j+ 1

2
). (13)

The approximation with a Gaussian RBF φ(x) is found to be

AU ′(x j+ 1
2
) = 2λ2)x2 e3λ2)x2

e4λ2)x2 − 1
(ū j + ū j+1), (14)

with the basis coefficients calculated from (12) and (13). Applying a Taylor expansion to the right-hand side of this equation 
gives

AU ′(x j+ 1
2
) ≈

(
1
2

+ 1
2
λ2)x2 − 1

12
λ4)x4

)
(ū j + ū j+1)

= u(x j+ 1
2
) + )x2

(

λ2u(x j+ 1
2
) + 1

6
u′′(x j+ 1

2
)

)

+ O()x4).

Hence, we have the second order approximation for the reconstructed cell boundary point. Alternatively, we can obtain the 
fourth order approximation if we choose the shape parameter with

λ2 = −
u′′(x j+ 1

2
)

6u(x j+ 1
2
)

+ O()x2), (15)

which can be computed using the techniques explained at the end of section 3.1.1 and further described in Appendix A. 
Using this same machinery, we can generalize these approximations by considering the parity of N , which results in two 
theorems, which seek to address the overall convergence order.
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3.2. Three-point RBF schemes

Following the analysis of the previous section, we construct RBF interpolation schemes with optimal parameters when 
the number of the stencil points N is odd. Through a fairly direct construction, one obtains the following theorem:

Theorem 3.1. Let u be a smooth function on % and φ be a smooth radial basis function. Given a set of reference points {xk ∈ % : k =
1, · · · , N} for an odd integer N, there exists a set of coefficients {αk : k = 1, · · · , N} of the approximation

Au(x) =
N∑

k=1

αkφ(x − xk)

to the function u(x), which are constructed from cell averaged data {ū(x j) : x j ∈ %}. Furthermore, the approximation can be made 
(N + 1)st order accurate, i.e.,

Au(x) = u(x) + O()xN+1),

for x ∈ %.

We show an example for the case of N = 3 on behalf of the proof of Theorem 3.1. Suppose that we construct the 
approximation of a smooth function u at x = x j+ 1

2
using the cell averages {ū j : j = −1,0,1}. Using a primitive function

U (x) =
x∫

x
j− 1

2

u(ξ)dξ,

the approximation using a radial basis function φ(x) = e−λ2x2
is defined by

AU (x) :=
2∑

k=−1

αkφ(x − x j+k− 1
2
),

so that AU ′(x) ≈ u(x). Repeating the steps outlined in subsection 3.1.2, and Taylor expanding the RBF approximation, we 
find that

AU ′(x j+ 1
2
) = u(x j+ 1

2
) + )x3

(
λ2u′(x j+ 1

2
) + 1

12
u′′′(x j+ 1

2
)

)
+ O()x4).

Therefore the third order scheme can be improved to fourth order accuracy through the choice

λ2 = −
u′′′(x j+ 1

2
)

12u′(x j+ 1
2
)

+ O()x), (16)

which can be computed using the same techniques discussed in Appendix A.

Remark 3.2. Following the brief discussion in Appendix A, the approximation (16) requires one additional cell average value 
that lies outside of the three-point global reconstruction stencil for u−

j+ 1
2

. Since the derivatives in this approximation do not 
need to be winded, this cell average value can be selected to lie in the union of global reconstruction stencils used to form 
u−

j+ 1
2

and u+
j+ 1

2
, i.e., {ū j−1, ̄u j, ̄u j+1, ̄u j+2}. This is identical to the stencil used by the third order WENO-JS scheme when 

forming the flux at x j+1/2.

3.3. Four-point RBF schemes

Here we provide the following theorem for the case when N is even to complete the analysis of proposed scheme. Again, 
through a fairly straightforward construction, one obtains the general theorem, which is as follows:

Theorem 3.3. Let u be a smooth function on % and φ is a smooth radial basis function. Given a set of reference points {xk ∈ % : k =
1, · · · , N} for an even integer N, there exists a set of coefficients {αk : k = 1, · · · , N} of the approximation

Au(x) =
N∑

k=1

αkφ(x − xk)

6
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to the function u(x), which are constructed from cell averaged data {ū(x j) : x j ∈ %}. Moreover, the resulting approximation is (N + p)th 
order accurate, with 0 ≤ p ≤ 2, i.e.,

Au(x) = u(x) + O()xN+p),

for x ∈ %.

Here, we provide the analysis for the case N = 4. Using the cell averages {ū j : j = −1, · · · , 2}, the approximation is 
defined by

AU (x) :=
3∑

k=−1

αkφ(x − x j+k− 1
2
) (17)

and at the cell boundary x = x j+ 1
2

, we have that

AU (xi− 1
2
) = U (xi− 1

2
)

= )x
i−1∑

ℓ= j

ūℓ, i = j − 1, · · · , j + 3.
(18)

Proceeding as before, we can obtain the solution

AU ′(x j+ 1
2
) ≈

2∑

k=−1

Ckū j+k (19)

with coefficients Ck computed from equations (17) and (18). As before, these can be Taylor expanded about the cell bound-
ary x = x j+ 1

2
and we find that

AU ′(x j+ 1
2
) = u(x j+ 1

2
) + )x4

(
1

30
u(4)(x j+ 1

2
) + 2

3
λ2u′′(x j+ 1

2
) + 2u(x j+ 1

2
)λ4

)
+ O()x6).

Next, we choose λ2 to remove the O()x4) term, i.e.,

λ2 =
− 1

3 u′′(x j+ 1
2
) ±

√
1
9 u′′(x j+ 1

2
)2 − 1

15 u(x j+ 1
2
)u(4)(x j+ 1

2
)

2u(x j+ 1
2
)

+ O()xp), (20)

which can be computed using the same techniques discussed in Appendix A. Therefore we can obtain a optimal scheme, 
which is (4 + p)th order accurate with p ≤ 2. We now proceed to the discussion of WENO schemes in section 4, making 
use of the RBF approximations.

Remark 3.4. In contrast to Remark 3.2, evaluating the approximation (20), with p = 2, requires one additional cell average 
value that lies outside of the union of global reconstruction stencils, in the fifth order WENO-JS scheme, to compute u−

j+ 1
2

and u+
j+ 1

2
. On the other hand, when p = 1, the “effective stencil” is no larger than the global stencil used by the fifth order 

WENO-JS scheme in the construction of the flux at x = x j+ 1
2

.

4. WENO schemes

This section describes the general formulation of FV WENO schemes used to solve conservation laws. First, we provide a 
brief summary of the FV discretization in section 4.1. Then, in section 4.2, we introduce new smoothness indicators, which 
were motivated by numerical experimentation, and discuss the mapping for the WENO weights.

4.1. Formulation of a finite volume scheme

Consider one-dimensional variant of (1), which takes the form

ut + f (u)x = 0, x ∈R,

u(x,0) = u0(x).
(21)

7
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Fig. 1. Three two-point substencils Sk , k = 0,1,2 and a three-point substencil S+
2 .

To develop a FV discretization, we let the computational domain be partitioned into uniform cells, so that the jth cell 
is given by I j = [x j−1/2, x j+1/2]. Further, since the cells are uniformly spaced, each has the size )x = x j+1/2 − x j−1/2. FV 
schemes require cell averages of the solution u

ū j(t) := 1
)x

∫

I j

u(x, t)dx, (22)

where the integrals in (22) can be numerically approximated through quadrature of suitable accuracy. By integrating the 
(21) over the control volume I j , one obtains a collection of evolution equations defined in each of the control volumes, i.e.,

d
dt

ū j(t) = − 1
)x

(
f (u(x j+1/2)) − f (u(x j−1/2))

)
. (23)

Defining the numerical flux f̂ j±1/2 by

f̂ j±1/2 = h(u−
j±1/2, u+

j±1/2), (24)

the equation (23) is approximated as

d
dt

ū j(t) = − 1
)x

(
f̂ j+1/2 − f̂ j−1/2

)
. (25)

The monotone flux h satisfies several properties, namely, it is Lipschitz continuous in both arguments and should be con-
sistent with the physical flux f , i.e., h(u, u) = f (u). Moreover, the flux should be non-decreasing (non-increasing) with 
respect to the first (second) argument. In this paper, we employ the HLLC and Lax-Friedrichs fluxes for solving the hy-
perbolic problems and a Godunov flux for the weakly hyperbolic system. The definitions of these numerical fluxes can be 
found in section 6. Next, we focus on the WENO component of the proposed schemes, which seeks to develop high order 
reconstructions for the cell average data supplied to the numerical flux functions, i.e., u−

j±1/2 and u+
j±1/2.

4.2. Construction of new smoothness indicators for WENO-RBF schemes

It is well known that the smoothness indicator plays a pivotal role in the WENO reconstruction procedure. We are 
proposing a three-point WENO scheme and a four-point WENO scheme based on RBFs with optimal parameters, so it will 
be helpful to introduce some references to simplify names for the schemes. From now on, we shall refer to the three-point 
and four-point WENO schemes, which are based on RBFs, as WENO-RBF3 and WENO-RBF4, respectively. Furthermore, the 
WENO-RBF3 scheme is constructed using two two-point substencils (S0, S1 in Fig. 1), while the WENO-RBF4 scheme is using 
three two-point substencils (S0, S1, S2 in Fig. 1) so that only the first-order difference operator can be used to estimate the 
smoothness of numerical fluxes. In other words, the small size of the substencils, used by the RBF methods, introduces 
limitations which make capturing highly oscillatory structures and rapid gradients challenging, especially on coarse grids.

In an effort to amend this issue, we employ difference operators which have so-called exponentially vanishing moments. 
The basic idea is that difference operators are constructed so that their applications to smooth functions result in more 
rapid convergence to zero than classical undivided differences. Before proceeding, we first introduce some ideas from a 
recent work [17], in which smoothness indicators were constructed using exponential polynomials.

Consider a smooth function f . Exponential polynomials can be characterized as the kernel of an operator pm(D) of the 
form

pm(D)[ f ] :=
m∏

i=1

(D − γi I)[ f ], (26)

where D is a continuous differential operator, I is an identity operator and γi ∈ C, which is associated with the target 
exponential polynomials. Then, the operator pm(D) is constructed as a differential operator which annihilates exponential 
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polynomials. For our purposes, it suffices to consider the case m = 1 in equation (26). To illustrate, consider an exponential 
function g(x) = e−γ x for some constant γ and the first order operator p1(D) with the form

p1(D)[ f ] = (D + γ I)[ f ].
Then this operator annihilates the exponential function g , i.e.,

p1(D)[g](x) = D[g](x) + γ g(x) = −γ e−γ x + γ e−γ x = 0.

For the discretized version, we assume that the function values { f (xi−1), f (xi)} of a smooth function f on the stencil 
{xi−1, xi} are available with )x = xi − xi−1. Then, the discrete version operator p1(D) of continuous p1(D) at xi is defined 
as

p1(D)i[ f ] := (D + γ I)i[ f ] := eγ )x f (xi) − f (xi−1),

which also annihilates the exponential function, i.e.,

p1(D)i[g] = eγ )xe−γ xi − e−γ xi−1 = 0,

for g(x) = e−γ x . Here we say the operators p1(D) and p1(D)i have the exponential vanishing moments and such operators 
should be more effective at detecting smoothness, or lack thereof, in the data, even on a small collection of points than clas-
sical differential operator. Similar constructions can be achieved for m ≥ 2, leading to mth order operators, which annihilate 
m exponential polynomials. For additional information, we refer interested readers to [17].

We are now ready to propose new smoothness indicators based on the new undivided difference with exponentially 
vanishing moments. Specifically, we define βk , k = 0, 1, 2, by

β0 := |D1
i−1 f |2 + |p1(D)i−1 f |2 = | f i − f i−1|2 + |eγi)x f i − f i−1|2,

β1 := |D1
i f |2 + |p1(D)i f |2 = | f i+1 − f i|2 + |eγi+1)x f i+1 − f i|2,

β2 := 1
2

(
β1 + (|D1

i+1 f |2 + |p1(D)i+1 f |2)
)

= 1
2

(
| f i+1 − f i|2 + |eγi+1)x f i+1 − f i|2 + | f i+2 − f i+1|2 + |eγi+2)x f i+2 − f i+1|2

)
.

(27)

In smooth regions, βk should be small, so we select the parameter γi in a way that depends on the given stencil data:

γi+ν)x = − f i+ν − f i+ν−1

f i + δ
, sign(δ) := sign( f i), ν ∈ {0,1,2}, (28)

where δ = δ()x) is introduced to prevent the denominator from becoming zero. Observe that β2 is defined using three 
points (S+

2 in Fig. 1) instead of two points, which incorporates a bias in the indicators.
Next, using the local smoothness indicators, we map the linear weights dk to the nonlinear weights αk for k = 0, 1, 2 via

αk = dk

(

1 + τ

βk + ε
+

(
βk

τ + ε

)2
)

, ε := ε()x), (29)

where ϵ > 0 is used to prevent the denominator from becoming zero. Here τ measures the global smoothness and is defined 
by τ = |β2 −β0| in WENO-RBF3 and τ = |β1 −β0| in WENO-RBF4. The linear weights {dk : k = 0, 1, 2} are chosen so that the 
linear combination of fourth order local approximations, on each of the two-point stencils, is consistent with the sixth order 
approximation obtained on the four-point stencil by RBF approximation from section 3. Detailed explanation and explicit 
formula for dk are given in subsection 5.2. The nonlinear weights for WENO-RBF3 are then scaled to form a partition of 
unity

ωk = αk∑1
ℓ=0 αℓ

, k = 0,1 (30)

and the nonlinear weights for WENO-RBF4 are defined by

ωk = αk∑2
ℓ=0 αℓ

, k = 0,1,2. (31)

The value u−
j+1/2 is approximated by a convex combination of local approximations over each of the substencils Sk using 

the nonlinear weights ωk so that

u−
j+1/2 :=

1∑

k=0

ωku(k)
j+1/2,

9
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and

u−
j+1/2 :=

2∑

k=0

ωku(k)
j+1/2,

in the WENO-RBF3 scheme and WENO-RBF4 scheme, respectively. The analogous construction for u+
j+1/2 follows by sym-

metry. In the next section, we present our full FV WENO-RBF algorithm and some details concerning the implementation.

5. Implementing new WENO-RBF schemes

Now that we have introduced the key components of the proposed schemes (see sections 3 and 4), we can describe 
the implementation. First, we begin with some details regarding hybrid WENO schemes in section 5.1, before summarizing 
the key steps of the FV WENO-RBF algorithm in section 5.2. Then, in section 5.3, we briefly discuss the implementation 
of the proposed schemes to multi-dimensional problems, focusing, in particular on the two-dimensional scalar case. Stencil 
coefficients for the RBF (Gaussian) methods developed in this work can be found in Appendix B.

5.1. Comments on the hybrid implementation

The implementation of the WENO-RBF4 method used in this work employs a hybrid strategy, which aims to alleviate the 
computational cost associated with WENO methods due to the additional cost from smoothness indicators and mappings 
for the nonlinear weights. The basic idea of a hybrid approach is to use reconstructions on a fixed set of cell average data 
in regions where the data is smooth, while non-smooth regions are appropriately handled with a WENO scheme (see e.g., 
section 4). The adaptive selection of a reconstruction method relies on the use of certain smoothness criterion, which are, 
ideally, inexpensive to evaluate. This criterion can, for example, be evaluated with smoothness indicators, such as those in 
the classical WENO approach [26], as well as divided or undivided differences. A tolerance (or threshold) then selects the 
reconstruction method according to the smoothness of the given data. Our selection process consists of the following steps:

1. Using finite differences, first compute the relative smoothness r(xi), which we define as

r(xi) =
2
(∣∣∣δ[ū](xi)

∣∣∣ +
∣∣∣δ2[ū](xi)

∣∣∣
)

∣∣∣)−[ū](xi−1)
∣∣∣ +

∣∣∣δ2[ū](xi−1)
∣∣∣ +

∣∣∣)+[ū](xi+1)
∣∣∣ +

∣∣∣δ2[ū](xi+1)
∣∣∣
, i = 1, · · · , N, (32)

where δ and δ2 are central difference operators for first and second derivatives, and )− and )+ are the backward and 
forward difference operators for the first derivative. These difference approximations are all computed to second order 
accuracy. Note that along the boundaries, data from an extension is required and can be constructed using extrapolation 
of sufficient accuracy.

2. Once step 1 is complete, we find the minimum and maximum values of the relative smoothness rmin and rmax and then 
compute the tolerance

rtol = min
(

θ,κ
rmin + ϵ

rmax + ϵ

)
. (33)

In the numerical experiments which use the hybrid approach, we take θ = 1.5, κ = 5, and ϵ = 1 × 10−10.
3. Next, we map r(xi) /→ {0, 1} using the previously computed tolerance rtol . We identify cells, which are to use WENO 

reconstructions, as those for which r(xi) ≥ rtol , using fixed stencil reconstructions for those that remain. To account for 
shortcomings in the definition of the relative smoothness (32), we flag a buffer zone of 4 cells in each direction around 
any cell marked for WENO reconstruction.

The parameter choices used for θ and κ are based on numerical experimentation and are, by no means, exhaustive. While 
it is entirely possible that better choices for these parameters exist, it is beyond the scope of this work. Experimentation 
with different parameters mostly resulted in a more conservative hybrid algorithm, where the WENO reconstruction process 
was being applied in larger regions of the domain, even where the solution is smooth. While these selections were not 
particularly detrimental to the shock-capturing abilities of the method, the resulting imbalance does increase the time-to-
solution, as the WENO reconstruction is more expensive.

5.2. The FV WENO-RBF component

Once a method for each cell has been selected, the algorithm then applies the corresponding reconstruction technique. 
The basic steps in the algorithm for the WENO-RBF3 and WENO-RBF4 methods are exactly the same, so we will only present 
a summary for WENO-RBF4. As discussed in the previous section, cells deemed smooth use a four-point fixed stencil RBF 
interpolant; regions characterized as “non-smooth” apply the WENO-RBF algorithm, which proceeds as follows:

10
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1. Using (14), form the local approximations u(k)
j+1/2 on each of the two-point substencils Sk := {x j+k−1, x j+k}, with k =

0, 1, 2:

u(k)
j+1/2 :=

1∑

ℓ=0

ck
ℓū j+k−1+ℓ.

The coefficients ck
ℓ , where ℓ = 0, 1 and k = 0, 1, 2, are defined with the local shape parameter for the RBF φ(x) =

exp(−λ2
L x2) obtained from (15):

λ2
L ≈ −

u′′(x j+ 1
2
)

6u(x j+ 1
2
)
.

Here the function values are replaced with cell averages and the derivatives are obtained with finite differences.
2. Using (19), we can form the approximation uS4

j+1/2 on the big stencil S4 := {x j−1, · · · , x j+2} as

uS4
j+1/2 =

2∑

ℓ=−1

Cℓū j+ℓ,

where Cℓ , and ℓ = −1, · · · , 2 is a coefficient which is dependent on the global shape parameter λG . For the RBF φ(x) =
exp(−λ2

G x2), this is reflected in (20):

λ2
G ≈

− 1
3 u′′(x j+ 1

2
) ±

√
1
9 u′′(x j+ 1

2
)2 − 1

15 u(x j+ 1
2
)u(4)(x j+ 1

2
)

2u(x j+ 1
2
)

.

As in step 1, the function values are replaced with cell averages and the derivatives are obtained with finite differences, 
as described at the end of section 3.1.1.

3. Compute the linear WENO weights {dk : k = 0, 1, 2} which satisfy

2∑

k=0

dku(k)
j+1/2 = uS4

j+1/2 + O ()xp),

using an appropriate high order p from step 1 and step 2. This results in weights of the form

d0 = C−1

c0
0

, d2 = C2

c2
1
, d1 = 1 − d0 − d2.

This reflects the partition of unity for the linear weights.
4. Using the cell averages, compute the parameters (28) and the smoothness indicators (27).
5. Map the linear weights {dk : k = 0, 1, 2} from step 3 to nonlinear weights {ωk : k = 0, 1, 2} using equations (29) and (31).
6. Obtain the reconstructed value at the cell interface using the nonlinear weights:

u−
j+1/2 =

2∑

k=0

ωku(k)
j+1/2.

The procedure for determining u+
j+1/2 follows, analogously, by reflecting the cell average stencil data. Once the reconstruc-

tions for u±
j+1/2 are completed, we simply apply the numerical flux function (24), which yields f̂ j+1/2. In the case of 

hyperbolic systems, these reconstructions are performed component-wise on the characteristic variables.

5.3. Extensions for two-dimensional problems

We briefly present, here, an extension of the WENO-RBF3 scheme to two-dimensional scalar conservation laws of the 
form

{
ut + f (u)x + g(u)y = 0, (x, y) ∈R×R,

u(x, y,0) = u0(x, y).
(34)

Using the definition of the cell averages of the solution u

11
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ūi j := ūi j(t) := 1
)x)y

x
i+ 1

2∫

x
i− 1

2

y
j+ 1

2∫

y
j− 1

2

u(x, y)dy dx, (35)

we can recast equation (34) in its semi-discrete form, which is given by

d
dt

ūi j(t) = − 1
)x

(
f i+ 1

2 , j − f i− 1
2 , j

)
− 1

)y

(
gi, j+ 1

2
− gi, j− 1

2

)
, (36)

where we have defined the fluxes

f i± 1
2 , j = 1

)y

y
j+ 1

2∫

y
j− 1

2

f
(

u(xi± 1
2
, y)

)
dy,

gi, j± 1
2

= 1
)x

x
i+ 1

2∫

x
i− 1

2

g
(

u(x, y j± 1
2
)
)

dx.

(37)

We discuss the construction of the flux f i+ 1
2 , j in (37), as the components f i− 1

2 , j and gi, j± 1
2

can be obtained in an analogous 
manner. The integrals in the flux f i+ 1

2 , j can be discretized with numerical quadrature, such as Gaussian quadratures or 
analytical integration using polynomial interpolation of a specified degree. For this work, we adopt the former approach, 
and employ Gauss-Legendre quadrature to perform the integration. In either case, with a selection of N integration points 
{yα ∈ [y j− 1

2
, y j+ 1

2
] : α = 1, · · · , N} this leads to a discretization of the form

f i+ 1
2 , j ≈ 1

)y

N∑

α=1

wα f
(

u(xi+ 1
2
, yα)

)
, (38)

with the corresponding integration weights wα for α = 1, · · · , N . The flux f
(

u(xi+ 1
2
, yα)

)
appearing in (38) will be re-

placed by the numerical flux

f̂
(

u−
i+ 1

2 ,α
, u+

i+ 1
2 ,α

)
, (39)

where we have used u−
i+ 1

2 ,α
and u+

i+ 1
2 ,α

to denote the left and right states, respectively, which are taken about the interface 
x = xi+ 1

2
, along the integration points yα for α = 1, · · · , N .

Following Remark 3.2, the WENO-RBF3 scheme requires (for fourth order accuracy) a 4 × 4 patch of cell averages ūℓ,m , 
for ℓ = i − 1, · · · , i + 2 and m = j − 1, · · · , j + 2, to construct u−

i+ 1
2 ,α

. First, for each m = j − 1, · · · , j + 2, using a set of 4 
points {ūℓ,m : ℓ = i − 1, · · · , i + 2}, we construct the approximation Av−

m to the one-dimensional averages of the solution v−
m

with respect to y direction

vm = 1
)y

y
m+ 1

2∫

y
m− 1

2

u
(

xi± 1
2
, y

)
dy, (40)

by applying the WENO-RBF3 scheme discussed in section 5. Now that we have produced the 4 points {Av−
m : m = j −

1, · · · , j + 2}, the point-wise values along the quadrature points can be obtained through interpolation. When the data is 
smooth, we can apply fixed stencil reconstructions at each of the integration points, e.g.,

u−
i+ 1

2 ,α
=

j+2∑

m= j−1

L(yα)Av−
m, α = 1, · · · , N, (41)

where L(y) is a Lagrange polynomial obtained from the points {Av−
m}. In the event that the data is no longer guaranteed 

to be smooth, we can, instead, use a variant of the WENO-RBF3 scheme to perform the interpolation at quadrature points, 
rather than equation (41). An diagram of the patch used in the reconstructions for u−

i+ 1
2 ,α

and u−
α, j+ 1

2
is shown in Fig. 2. 

If WENO schemes are used to perform interpolations at quadrature points, the interpolation coefficients on the substencils 
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Fig. 2. The 4 × 4 reconstruction patch used in the fourth order accurate WENO-RBF3 scheme. The first set of WENO reconstructions provides the data 
indicated by circles and triangles. This data is then used to construct interpolating functions that are projected onto the corresponding quadrature points, 
which lie on faces of cell (i, j), i.e., u−

i+ 1
2 ,α

(left) and u−
α, j+ 1

2
(right), shown in magenta. We wish to emphasize that the data on remaining faces of cell 

(i, j) can be reconstructed using this same 4 × 4 patch of data, since the approximations used in the shape parameter do not have to be properly winded. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

now depend on the evaluation point, in addition to certain information about the cell in which the reconstructions are 
performed. Consequently, this also holds for the linear WENO weights {dk}, which may cause (some of) the linear weights 
to become negative [36]. For this reason, a more systematic treatment of multi-dimensional problems shall be deferred 
to future work, where we shall consider alternative formulations that avoid the issue of negative weights [6]. Instead, the 
developments provided in this work will employ fixed stencil reconstructions, such as (41), at the quadrature points.

6. Numerical results

In this section, we provide some experimental results that demonstrate the improvements offered by the non-polynomial 
basis. We begin by observing the numerical convergence order of proposed schemes for the scalar advection equation. Then 
we investigate the performance of the proposed methods on some one-dimensional benchmark problems for the Euler 
equations before testing the method on the more challenging pressureless Euler system, which is weakly hyperbolic. All 
test problems use a third order explicit strong-stability preserving Runge-Kutta method [14] for time integration. In our 
experiments, we compute the cell average values, from the initial conditions, using high-order Gauss-Legendre quadrature. 
We compare the proposed methods, which are labeled as WENO-RBF3 and WENO-RBF4, with third order and fifth order 
classical WENO schemes [26] and WENO-Z schemes [5]. These are labeled as WENO-JS3/WENO-Z3 and WENO-JS5/WENO-
Z5, respectively. We also compare WENO-RBF3 with third order WENO scheme proposing a new smoothness indicator [17], 
labeling as WENO-NZ3, for selected meaningful examples. Unless otherwise stated, the results for the WENO-RBF4 scheme 
used a second order approximation (i.e., p = 2) for the shape parameter (20). Lastly, note that the implementation of the 
WENO-RBF4 method uses the hybrid strategy discussed in section 5.1.

6.1. Scalar problems for convergence rates

We consider the linear equation

ut + ux = 0, x ∈ [−1,1],
with periodic boundary condition. To find the approximation order of the proposed methods for the numerical problems 
without and with critical points, the experiments are performed with two initial functions u(x, t = 0) = sin(πx) and u(x, t =
0) = sin4(πx). In Table 2, for the smooth initial condition sin(πx), the proposed RBF schemes achieve clear desired order 
of accuracy. For the initial function sin4(πx) which contains a critical point where the first derivative vanishes but second 
derivative does not, the WENO-RBF3 scheme is degenerated to the clear third order in the presence of a critical point with 
smaller errors than WENO-Z3. The reason is easily verifiable that the tension parameter used for the RBF3 scheme given 
in (16) has the first derivative information so that it cannot be applied to enhance the order of accuracy. However, it is 
noticeable that WENO-RBF4 achieves stable sixth order of convergence even near the critical points.

6.2. Hyperbolic system

We now present numerical results for the one-dimensional Euler equations of gas dynamics

Ut + F (U )x = 0, (42)

where V and F (V ) are given as
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Table 2
L∞ and L1 errors and convergence rates (*) at t = 2.

u(x,0) = sin(πx) sin4(πx)

L∞ Nx WENO-Z3 RBF3 (Proposed) WENO-Z3 RBF3 (Proposed)

20 7.01e-02 ( — ) 2.24e-03 ( — ) 4.57e-01 ( — ) 2.14e-01 ( — )
40 1.65e-02 ( 2.08 ) 1.85e-04 ( 3.59 ) 1.90e-01 ( 1.27 ) 5.79e-02 ( 1.88 )
80 3.64e-03 ( 2.18 ) 1.72e-05 ( 3.43 ) 3.66e-02 ( 2.38 ) 8.66e-03 ( 2.74 )
160 7.96e-04 ( 2.19 ) 2.59e-06 ( 2.73 ) 8.32e-03 ( 2.14 ) 1.11e-03 ( 2.96 )
320 1.68e-04 ( 2.25 ) 2.70e-07 ( 3.26 ) 1.79e-03 ( 2.21 ) 1.39e-04 ( 2.99 )

L1 Nx WENO-Z3 RBF3 (Proposed) WENO-Z3 RBF3 (Proposed)

20 4.61e-02 ( — ) 6.39e-04 ( — ) 2.13e-01 ( — ) 9.21e-02 ( — )
40 6.98e-03 ( 2.72 ) 5.30e-05 ( 3.59 ) 8.07e-02 ( 1.40 ) 3.02e-02 ( 1.61 )
80 9.69e-04 ( 2.85 ) 4.22e-06 ( 3.65 ) 1.74e-02 ( 2.21 ) 4.53e-03 ( 2.74 )
160 1.28e-04 ( 2.92 ) 3.08e-07 ( 3.77 ) 2.56e-03 ( 2.76 ) 5.86e-04 ( 2.95 )
320 1.65e-05 ( 2.96 ) 2.36e-08 ( 3.71 ) 3.40e-04 ( 2.91 ) 7.36e-05 ( 3.00 )

u(x,0) = sin(πx) sin4(πx)

L∞ Nx WENO-Z5 RBF4 (Proposed II) WENO-Z5 RBF4 (Proposed II)

20 3.42e-04 ( — ) 5.13e-04 ( — ) 1.07e-01 ( — ) 4.24e-02 ( — )
40 1.02e-05 ( 5.07 ) 8.26e-06 ( 5.96 ) 5.65e-03 ( 4.24 ) 1.42e-03 ( 4.90 )
80 3.14e-07 ( 5.02 ) 1.29e-07 ( 6.00 ) 3.71e-04 ( 3.93 ) 2.52e-05 ( 5.81 )
160 9.79e-09 ( 5.00 ) 2.02e-09 ( 6.00 ) 4.80e-05 ( 2.95 ) 4.08e-07 ( 5.95 )
320 3.06e-10 ( 5.00 ) 3.42e-11 ( 5.89 ) 4.36e-06 ( 3.46 ) 6.27e-09 ( 6.02 )

L1 Nx WENO-Z5 RBF4 (Proposed II) WENO-Z5 RBF4 (Proposed II)

20 2.06e-04 ( — ) 1.57e-04 ( — ) 5.80e-02 ( — ) 2.74e-02 ( — )
40 6.24e-06 ( 5.05 ) 2.55e-06 ( 5.94 ) 2.62e-03 ( 4.47 ) 6.31e-04 ( 5.44 )
80 1.97e-07 ( 4.99 ) 4.05e-08 ( 5.98 ) 1.65e-04 ( 3.99 ) 1.04e-05 ( 5.92 )
160 6.19e-09 ( 4.99 ) 6.36e-10 ( 5.99 ) 8.83e-06 ( 4.22 ) 1.59e-07 ( 6.03 )
320 1.94e-10 ( 5.00 ) 1.15e-11 ( 5.79 ) 4.09e-07 ( 4.43 ) 2.48e-09 ( 6.01 )

U = (ρ,ρu, E)T ,

F (U ) = (ρu,ρu2 + p, u(E + p))T .

Here ρ, p, u and E are the density, pressure, velocity, and total energy, respectively. Additionally, we use the equation of 
state

p = (γ − 1)(E − 1
2
ρu2), c =

√
γ p
ρ

,

with γ = 1.4. Here, c denotes the local speed of sound in the gas.
All test problems for the hyperbolic system use the HLLC Riemann solver [43] to compute the flux. Following [22], the 

HLLC flux is of the form

h(Ul, Ur)
T =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (Ul), if s− ≥ 0,

F ∗
l , if s∗ ≥ 0 ≥ s−,

F ∗
r , if s+ ≥ 0 ≥ s∗,

F (Ur), if s+ ≤ 0,

(43)

where the intermediate velocity is defined as

s∗ = pr − pl + ρlul(s− − ul) − ρrur(s+ − ur)

ρl(s− − ul) − ρr(s+ − ur)
.

Estimates for the minimum and maximum wave speeds given, respectively, by

s− = min (ul − cl, ul, ul + cl) , s+ = min (ur − cr, ur, ur + cr) .

Using the Roe pressure

plr = pr + pl + ρl(s− − ul)(s∗ − ul) + ρr(s∗ − ur)(s+ − ur)

2
,

we form the intermediate fluxes F ∗
l and F ∗

r

F ∗
l =

s∗
(

s−ul − F (Ul)
)

+ s−plr (0,1, s∗)T

s− − s∗ , F ∗
r =

s∗
(

s+ur − F (Ur)
)

+ s−plr (0,1, s∗)T

s+ − s∗ .
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Table 3
(Example 6.1) L∞ and L1 errors and convergence rates (*) at t = 1.

L∞ Nx WENO-JS3 WENO-Z3 RBF3 (Proposed)

20 3.04e-01 ( — ) 2.78e-01 ( — ) 1.66e-02 ( — )
40 1.57e-01 ( 0.96 ) 8.59e-02 ( 1.69 ) 6.01e-04 ( 4.79 )
80 4.81e-02 ( 1.71 ) 2.78e-02 ( 1.63 ) 2.06e-05 ( 4.87 )
160 1.58e-02 ( 1.61 ) 4.66e-03 ( 2.58 ) 8.06e-07 ( 4.68 )
320 2.80e-03 ( 2.50 ) 4.45e-04 ( 3.39 ) 7.75e-08 ( 3.38 )

L1 Nx WENO-JS3 WENO-Z3 RBF3 (Proposed)

20 4.73e-01 ( — ) 4.38e-01 ( — ) 2.67e-02 ( — )
40 2.79e-01 ( 0.76 ) 1.87e-01 ( 1.23 ) 1.08e-03 ( 4.63 )
80 1.11e-01 ( 1.33 ) 6.38e-02 ( 1.55 ) 3.60e-05 ( 4.90 )
160 4.19e-02 ( 1.41 ) 1.78e-02 ( 1.85 ) 1.28e-06 ( 4.82 )
320 1.22e-02 ( 1.78 ) 3.09e-03 ( 2.52 ) 1.25e-07 ( 3.35 )

L∞ Nx WENO-JS5 RBF4 (Proposed I) RBF4 (Proposed II)

20 1.17e-02 ( — ) 3.12e-03 ( — ) 3.03e-04 ( — )
40 6.95e-04 ( 4.07 ) 1.02e-04 ( 4.94 ) 5.70e-06 ( 5.73 )
80 2.61e-05 ( 4.74 ) 3.21e-06 ( 4.99 ) 8.71e-08 ( 6.03 )
160 8.70e-07 ( 4.91 ) 1.00e-07 ( 5.00 ) 1.39e-09 ( 5.97 )
320 2.68e-08 ( 5.02 ) 3.14e-09 ( 5.00 ) 2.16e-11 ( 6.01 )

L1 Nx WENO-JS5 RBF4 (Proposed I) RBF4 (Proposed II)

20 8.14e-03 ( — ) 1.60e-03 ( — ) 1.61e-04 ( — )
40 3.74e-04 ( 4.45 ) 5.29e-05 ( 4.92 ) 3.31e-06 ( 5.61 )
80 1.18e-05 ( 4.98 ) 1.68e-06 ( 4.98 ) 5.31e-08 ( 5.96 )
160 3.69e-07 ( 5.00 ) 5.27e-08 ( 5.00 ) 8.39e-10 ( 5.98 )
320 1.15e-08 ( 5.00 ) 1.65e-09 ( 5.00 ) 1.31e-11 ( 6.00 )

Example 6.1. First, we consider the smooth advection problem. Using the initial data

ρ(x) = 1 + 0.5 sin(4πx),

along with the selections u = 1, and p = 1, the system reduces to a single advection equation, subject to periodic boundary 
conditions. The exact solution on [0, 1] is given by

ρ(x, t) = 1 + 0.5 sin
(

4π (x − ut)
)
.

In Table 3, we present both the numerical errors and convergence orders of the proposed scheme. When setting the shape 
parameter λ2 for the RBF φ = e−λ2x2

, the approximations in (20) were computed to first and second order accuracy (i.e., 
p = 1 and 2 in (20)). These choices are reflected under the respective labels “Proposed I” and “Proposed II” shown in Table 3. 
The results demonstrate the expected improved convergence through the choice of the shape parameter. With regard to the 
three-point methods, the proposed RBF scheme achieves its intended accuracy along with a noticeable reduction in the 
errors compared to alternative reconstruction methods.

Example 6.2. We test our method using the Lax problem [27] with the initial condition

(ρ, u, p) =
{

(0.445,0.698,3.528) if x ∈ [−5,0),

(0.50,0,0.571) if x ∈ [0,5].
The numerical results for the density profiles are displayed in Fig. 3, at time t = 1.3, using )x = 10/200.

Among three-point WENO schemes, the proposed method demonstrates improvement in capturing the jumps in the pro-
file, when compared to other three-point WENO methods. In the case of the four-point RBF schemes, the method provides 
improvements over WENO-JS and is comparable to the solution generated with WENO-Z5. This similarity may be a conse-
quence of the size of the substencils employed by each of the methods. The substencils used in WENO-JS5 and WENO-Z5 
consist of three points, whereas the proposed four-point RBF methods use substencils with two points. This discrepancy in 
the behavior of the method is something we wish to address in a subsequent paper.

Example 6.3. As a next example, let us consider the Sod problem [40] with the initial condition

(ρ, u, p) =
{

(1.000,0.750,1.000) if x ∈ [0,0.5),

(0.125,0.000,0.100) if x ∈ [0.5,1].
The numerical results for density profiles are given in Fig. 4 at time t = 0.2 using )x = 1/100. Here, we observe results 
which are similar to the Lax problem (see Example 6.2). As noted above, we plan to investigate these shortcomings in our 
future work involving WENO-RBF methods.
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Fig. 3. (Example 6.2) Density profiles of Lax problem [27] at t = 1.3 with )x = 10/150.

Example 6.4. We now look at the Shu-Osher problem [38], which uses Riemann initial data for the shock entropy wave 
interaction. The approximate solutions are computed on the interval [−5, 5] with the initial state

(ρ, u, p) =
{

(3.857143,2.629369,10.33333) if x ∈ [−5,−4),

(1 + ε sin(kx),0,1) if x ∈ [−4,5], (44)

where k and ε denote the wave number and amplitude of the entropy wave respectively. We take k = 5 and ε = 0.2 in our 
experiments.

In Fig. 5, we provide plots which compare the proposed WENO-RBF methods against three-point and five-point WENO 
methods. We observe the largest improvement in the comparison of three-point WENO schemes, with the WENO-RBF3 
method producing results with less dissipation than WENO-JS3 and WENO-Z3. With regard to the four-point method, i.e., 
WENO-RBF4, improvements over WENO-JS5 are quite clear. These improvements are less apparent when compared against 
WENO-Z5, which seems to perform better in certain areas. As discussed in Example 6.2, part of this improvement may be 
attributed to the larger substencil size used by the WENO-Z5 method.

Example 6.5. In [42], Titarev and Toro suggested the following Riemann initial data for the shock entropy wave interaction:

(ρ, u, p) =
{

(1.515695,0.523346,1.80500) if x ∈ [−5,−4.5),

(1 + 0.1 sin(20πx),0,1) if x ∈ [−4.5,5],
on the interval [−5, 5]. Fig. 6 shows the results for this test case at time at t = 5. This problem allows us to test the 
method in environments that support highly oscillatory structures. Compared to the Shu-Osher problem (see Example 6.4), 
the prescribed initial density exhibits a much larger wave number, i.e., 20.

Among the three-point WENO schemes, we see from Fig. 6(a) that the WENO-RBF3 method offers a clear improvement 
over WENO-JS3 and WENO-Z3. We also find that WENO-RB4 yields an improvement over the results obtained for the 
Shu-Osher problem, with regard to capturing complex wave patterns. While there is a clear improvement in capturing the 
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Fig. 4. (Example 6.3) Density profiles of Sod problem [40] at t = 0.2 using )x = 1/100.

features of the small wavelength oscillations, we do note the slight undershoot and overshoot in the vicinity of x = −1.9, 
where the transition into the oscillatory region occurs. This behavior is far less apparent in the WENO-JS5 and WENO-Z5 
methods.

6.3. Weakly hyperbolic system

In this subsection, we consider the more challenging pressureless Euler system, which, in one space dimension, is given 
by

Ut + F (U )x = 0, (45)

with

U = (ρ,ρu)T , F (U ) = (ρu,ρu2)T .

The system (45) is important in modeling systems of dilute gases in a vacuum which undergo few collision events. When 
collisions do occur, they are said to be perfectly inelastic, which causes the gas particles to stick together. These collisions 
lead to the emergence of so-called δ-shocks, which are the primary feature of interest in these models. Note that because 
the system is weakly hyperbolic, the characteristic decomposition is not available for this problem. Consequently, the simple 
Lax-Friedrichs flux cannot be directly used in this problem. Instead, we consider the Godunov flux, outlined in [46], which 
was originally introduced by Bouchut, et al.[7]. Before defining the flux, we remark that the latter work contains a fairly 
diverse collection of literature on isothermal gas dynamics, so we refer the interested reader to references therein for 
further details. The former article considered more general problems involving δ-shocks, including the system (45), and 
applied DG methods to solve such problems. To define the flux, suppose we have left and right numerical approximations 
Ul = (ρl, ρlul)

T and Ur = (ρr, ρrur)
T . Then, the numerical flux is given by
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Fig. 5. (Example 6.4) Density profiles of the shock-entropy interaction problem at t = 1.8, with )x = 10/300.

h(Ul, Ur)
T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρlul,ρlu2

l

)T
, if ul > 0, ur > 0,

(0,0)T , if ul ≤ 0, ur > 0,
(
ρrur,ρru2

r
)T

, if ul ≤ 0, ur ≤ 0,
(
ρlul,ρlu2

l

)T
, if ul > 0, ur ≤ 0, v > 0,

(
ρrur,ρru2

r
)T

, if ul > 0, ur ≤ 0, v < 0,
(

ρlul + ρrur

2
,ρlu2

l = ρru2
r

)T

, if ul > 0, ur ≤ 0, v = 0,

where

v =
√

ρlul +
√

ρrur√
ρl +

√
ρr

.

Example 6.6. For our first test, we seek to determine the approximation order for the weak hyperbolic system. To this end, 
we solve pressureless Euler system (45) with the following initial data

ρ0(x) = sin(x) + 2, u0(x) = sin(x) + 2,

subject to periodic boundary conditions. The exact solution for this problem is

ρ(x, t) = ρ0(x0)

1 + tu′
0(x0)

, u(x, t) = u0(x0),

where x0 is given implicitly by

x0 + tu0(x0) = x.
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Fig. 6. (Example 6.5) Density profiles of the shock-turbulence problem [42] at t = 5 using )x = 1/200.

The L∞ and L1 errors and approximation orders for the density ρ at t = 0.1 are given in Table 4. For the three-point 
methods, we find that both WENO-JS3 and WENO-Z3 exhibit difficulties in achieving second order accuracy. While some 
reduction in the error is attained by switching from WENO-JS3 to WENO-Z3, we find that convergence properties are fairly 
similar between these two methods. In contrast, the WENO-RBF3 method achieves the intended convergence rate along 
with significant reduction in the error.
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Table 4
(Example 6.6) L∞ and L1 errors and convergence rates (*) at t = 0.1.

L∞ Nx WENO-JS3 WENO-Z3 RBF3 (Proposed)

20 6.27e-02 ( — ) 6.16e-02 ( — ) 7.87e-03 ( — )
40 6.20e-02 ( 0.02 ) 4.86e-02 ( 0.34 ) 3.96e-03 ( 0.99 )
80 1.26e-01 (-1.03 ) 5.82e-02 (-0.26 ) 3.19e-04 ( 3.64 )
160 3.15e-02 ( 2.00 ) 1.68e-02 ( 1.79 ) 2.06e-05 ( 3.95 )
320 1.66e-02 ( 0.93 ) 5.50e-03 ( 1.62 ) 1.22e-06 ( 4.08 )

L1 Nx WENO-JS3 WENO-Z3 RBF3 (Proposed)

20 8.88e-02 ( — ) 8.16e-02 ( — ) 1.64e-02 ( — )
40 3.97e-02 ( 1.16 ) 2.83e-02 ( 1.53 ) 6.91e-03 ( 1.25 )
80 4.46e-02 (-0.16 ) 1.42e-02 ( 0.99 ) 5.37e-04 ( 3.69 )
160 9.68e-03 ( 2.20 ) 5.41e-03 ( 1.39 ) 3.39e-05 ( 3.98 )
320 2.81e-03 ( 1.78 ) 8.37e-04 ( 2.69 ) 2.21e-06 ( 3.94 )

L∞ Nx WENO-JS5 RBF4 (Proposed I) RBF4 (Proposed II)

20 1.89e-03 ( — ) 8.38e-04 ( — ) 7.38e-04 ( — )
40 6.90e-05 ( 4.77 ) 1.98e-05 ( 5.41 ) 1.32e-05 ( 5.80 )
80 3.62e-06 ( 4.25 ) 5.68e-07 ( 5.12 ) 2.12e-07 ( 5.96 )
160 2.48e-07 ( 3.87 ) 1.67e-08 ( 5.08 ) 3.37e-09 ( 5.97 )
320 1.90e-08 ( 3.71 ) 5.05e-10 ( 5.05 ) 5.30e-11 ( 5.99 )

L1 Nx WENO-JS5 RBF4 (Proposed I) RBF4 (Proposed II)

20 3.23e-03 ( — ) 1.95e-03 ( — ) 1.45e-03 ( — )
40 1.13e-04 ( 4.84 ) 4.52e-05 ( 5.43 ) 2.41e-05 ( 5.91 )
80 3.68e-06 ( 4.94 ) 1.15e-06 ( 5.30 ) 3.81e-07 ( 5.98 )
160 1.25e-07 ( 4.88 ) 3.17e-08 ( 5.17 ) 6.04e-09 ( 5.98 )
320 4.68e-09 ( 4.74 ) 9.27e-10 ( 5.10 ) 9.47e-11 ( 5.99 )

Similarly, in the case of the four-point method (WENO-RBF4), we achieve the intended accuracy of the method. In 
accordance with Theorem 3.3, the shape parameters for the RBF φ = e−λ2x2

, were computed to first and second order 
accuracy (i.e., p = 1 and p = 2 in (20)) and have been assigned the corresponding labels “Proposed I” and “Proposed II”, 
as in the Example 6.1. Moreover, these schemes exhibit convergence rates, of fifth and sixth order accuracy, respectively, as 
shown in Table 4. In contrast, the WENO-JS5 scheme suffers a reduction in the convergence order by nearly a factor of two, 
a feature which was also observed in [46].

Example 6.7. We solve the problem known as two interactive blast wave problem [44] which has the initial data

(ρ0, u0) =
{

(1,1) if x < 0,

(0.25,0) if x > 0.

In Fig. 7, we plot the density profiles for each of the methods at time t = 0.3.
Our results indicate that the three-point WENO methods provide fairly similar estimates of the shock width, but produce 

remarkable differences in the overall height of the δ−shock, as shown in Fig. 7(a). Of these methods, the shock generated by 
WENO-RBF3 method exhibits the sharpest peak, compared to WENO-JS3 and WENO-Z3. Similar observations can be made 
regarding the four-point WENO-RBF4 method, which is presented in Fig. 7(b). The shock width predicted by the WENO-RBF4 
method is, again, sharper and slightly more narrow than the that predicted by WENO-JS5 and WENO-Z5. To the right of the 
shock, we also observe some undershoots in the densities predicted by each of these methods; however, the undershoot in 
the RBF method is marginally smaller than WENO-JS5 and noticeably smaller than WENO-Z5. As discussed earlier, reducing 
the overshoot and undershoot in these rapidly varying transition regions is something we plan to address in our future 
work.

6.4. Two-dimensional scalar hyperbolic problem

In this section, we present convergence results for a two-dimensional scalar problem using the extensions described in 
section 5.3. As discussed earlier, an extension to multi-dimensional problems can be achieved with line-by-line applications 
of the proposed one-dimensional WENO schemes, introduced earlier in this work (see e.g., section 4). We only provide 
results for a single two-dimension test problem, as a proof of concept, since this is not the central theme of this paper. In 
a subsequent article, we plan to focus our efforts on two and three-dimensional applications.

Example 6.8. In this example, we apply the three-point RBF scheme to a multi-dimensional problem, focusing, in particular, 
on the two-dimensional Burgers’ equation
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Fig. 7. (Example 6.7) Density profiles of δ-shock wave problem [44] at t = 0.3.

ut + 1
2

(
u2

)

x
+ 1

2

(
u2

)

y
= 0.

We use the initial condition

u(x,0) = 0.5 + sin(x + y),

along with periodic boundary conditions on the domain [−π , π ] × [−π , π ]. For this problem, we used the local Lax-
Friedrichs flux

h(u−, u+) = f (u−) + f (u+)

2
− α

u+ − u−

2
, (46)

where α is the maximum wave speed taken over the local states

α = max
(∣∣u−∣∣ ,

∣∣u+∣∣) .

Convergence of the smooth solutions was measured using the final time T = 0.2 and we chose the timestep size according 
to )t = min()x4/3, )y4/3). We report the L∞ and L1 errors and convergence rates in Table 5 for each of the three-point 
WENO schemes. In each of these methods, we used the same fifth order Lagrange interpolating polynomial (41) to perform 
the reconstructions at the quadrature points.

Our preliminary results indicate that the WENO-RBF3 method achieves, at least, third order accuracy and with the 
convergence rate tending to fourth order as the mesh resolution increases. Moreover, the errors in the proposed scheme, 
when compared to WENO-JS3 and WENO-Z3, are noticeably smaller. Given that each of these methods used the same 
quadrature reconstruction procedure, this improvement stems from the use of the new reconstruction method. We note 
that the convergence rates for the WENO-RBF3 method, in this example, are not ideal, which is something we are currently 
working to resolve.
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Table 5
(Example 6.8) L∞ and L1 errors and convergence rates (*) at t = 0.2.

L∞ Nx × N y WENO-JS3 WENO-Z3 RBF3

10 × 10 8.2958e-02 ( — ) 6.9456e-02 ( — ) 1.9902e-02 ( — )
20 × 20 4.5343e-02 ( 0.87 ) 3.7121e-02 ( 0.90 ) 1.1847e-02 ( 0.75 )
40 × 40 1.9416e-02 ( 1.22 ) 1.4812e-02 ( 1.33 ) 2.2575e-03 ( 2.39 )
80 × 80 7.7397e-03 ( 1.33 ) 4.9918e-03 ( 1.57 ) 2.6275e-04 ( 3.10 )
160 × 160 2.5147e-03 ( 1.62 ) 9.7351e-04 ( 2.36 ) 2.0994e-05 ( 3.65 )

L1 Nx × N y WENO-JS3 WENO-Z3 RBF3

10 × 10 1.2567e+00 ( — ) 1.0833e+00 ( — ) 3.0803e-01 ( — )
20 × 20 4.2019e-01 ( 1.58 ) 2.8167e-01 ( 1.94 ) 9.6608e-02 ( 1.67 )
40 × 40 1.2268e-01 ( 1.78 ) 7.9952e-02 ( 1.82 ) 1.0978e-02 ( 3.14 )
80 × 80 3.0699e-02 ( 2.00 ) 1.6416e-02 ( 2.28 ) 8.8519e-04 ( 3.63 )
160 × 160 6.3137e-03 ( 2.28 ) 1.9687e-03 ( 3.06 ) 6.9829e-05 ( 3.66 )

7. Conclusion

In this paper, we proposed several FV WENO-RBF methods which achieve enhanced order of convergence using a non-
polynomial basis consisting of RBFs. Order enhancing in the interpolation component of the reconstruction was achieved 
by exploiting the shape parameter in the definition of the RBF basis. By analyzing the error in the reconstructions, we 
derived expressions for optimal shape parameters which improved the convergence order of the interpolation. While the 
methods developed in this work considered Gaussian RBFs, the same techniques can be easily applied (or adapted) to de-
velop schemes using other non-polynomial FV methods. The proposed schemes, which make use of fairly compact stencils, 
incorporate new smoothness indicators that were previously shown to be highly effective at discerning rapid changes in a 
function, even on a small data stencils. To alleviate the heavy computational cost typically associated with WENO meth-
ods, we also implemented a hybrid solver that dynamically prescribes the reconstruction method according to the local 
smoothness of the function.

The proposed schemes were compared with several well-known methods using one-dimensional systems of conservation 
laws, along with a two-dimensional test problem to demonstrate extensions to multiple dimensions. While the proposed 
methods demonstrated improved shock-capturing capabilities, the use of the non-polynomial basis was shown to be par-
ticularly effective for problems exhibiting rapid transitions as well as complex wave structures and singularities. A notable 
contribution of this work was the development of a genuinely third order WENO scheme, which could be promoted to 
fourth order accuracy with minimal additional computational expense. Furthermore, in the case of the pressureless Euler 
equations, the proposed WENO-RBF methods were experimentally shown to achieve their theoretical convergence rates, 
avoiding the order reduction encountered by competitive reconstruction techniques. A highlight of this work is reflected 
in the blast wave problem (see Example 6.7 in section 6.3), where the proposed RBF methods lead to markedly different 
predictions of the shock. While these results suggest several avenues for future research, we plan to conduct additional ex-
periments to develop multi-dimensional algorithms and investigate strategies for further reducing oscillations surrounding 
transition regions and singularities.
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Appendix A. Approximating the shape parameter λ2

We briefly describe the procedure used to compute the optimal shape parameter λ2 in the radial basis function φ(x) =
exp(−λ2x2). In this example, we consider the (fixed stencil) RBF3 scheme with the shape parameter defined in (16), and 
we assume a set of cell average values {ūk} is available.

To obtain the interface values u−
j+1/2 and u+

j+1/2, the reconstruction stencils are given, respectively, as {ū j−1, ̄u j, ̄u j+1}
and {ū j, ̄u j+1, ̄u j+2}. The base method, ignoring the optimal selection of λ2, reconstructs u−

j+1/2 and u+
j+1/2 using a three-

point stencil of cell averages. Hence, in order to compute the numerical flux at the cell boundary x j+1/2, we require a 
total of four cell averages: {ū j−1, ̄u j, ̄u j+1, ̄u j+2}; however, we show, below, that this same set of points can be used to 
approximate the optimal value of λ2, which promotes the approximation from third to fourth order accuracy. While it may 
appear that the method requires an additional point, the effective stencil is identical to the one generated by the third 
order WENO-JS scheme. In other words, no additional points are required beyond what is already needed for the analogous 
classical scheme.

If we represent the cell average values using Taylor expansion, then it follows that we can obtain the linear combination 
of cell averages ūk which approximate u′′′(x j+ 1

2
) and u′(x j+ 1

2
), i.e., the derivatives of the function at the cell boundary x j+ 1

2
, 

as follows:

u′(x j+ 1
2
) = 1

)x

(
1

12
ū j−1 − 5

4
ū j + 5

4
ū j+1 − 1

12
ū j+2

)
+ O()x3),

u′′′(x j+ 1
2
) = 1

)x3

(
−ū j−1 + 3ū j − 3ū j+1 + ū j+2

)
+ O()x).

We remark that because the shape parameter is used to promote the accuracy of the reconstructions in smooth regions, 
these difference approximations for the derivative do not need to account for wind-direction. Using these approximations, 
can compute the shape parameter

λ2 = − −ū j−1 + 3ū j − 3ū j+1 + ū j+2

)x2
(
ū j−1 − 15ū j + 15ū j+1 − ū j+2

) ,

= −
u′′′(x j+ 1

2
)

12u′(x j+ 1
2
)

+ O()x),

which meets the convergence criteria, shown in equation (16), that is required to promote the reconstruction to fourth order 
accuracy. In order to prevent a division by zero, in regions where the function data is “flat”, we instead use

u′(x j+ 1
2
) ≈ 1

)x

(
1

12
ū j−1 − 5

4
ū j + 5

4
ū j+1 − 1

12
ū j+2

)
+ ε, ε := ε()x),

with ε having the same sign as the first group of terms involving differences of the cell average data.

Appendix B. Stencil coefficients for the WENO-RBF methods

This section provides the stencil coefficients used by the WENO-RBF schemes presented in this work, which assume 
the basis function is a Gaussian (see section 3). We treat the shape parameter(s), i.e., λ2, as input in the reconstruction 
procedure. For simplicity, we present the expressions using a single shape parameter, but, in general, each (sub)stencil may 
be associated with its own shape parameter. An example calculation, for the shape parameter, in the fixed-stencil RBF3 
scheme, is provided in Appendix A.

B.1. Three-point scheme

Using the global stencil of cell-averages S3 := {ū j−1, ̄u j, ̄u j+1} one obtains, following the procedure in section 3, the fixed 
stencil reconstruction of the form

uS3
j+1/2 = C−1ū j−1 + C0ū j + C1ū j+1.

To improve the efficiency of the method and simplify the implementation of the method, we chose to Taylor expand the 
expressions coefficients (up to the order of the global stencil), which results in the following:
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Similarly, using the two-point substencils S0 := {ū j−1, ̄u j} and S1 := {ū j, ̄u j+1}, one obtains the reconstructions

u(0)
j+1/2 = c0

0ū j−1 + c0
1ū j,

u(1)
j+1/2 = c1

0ū j + c1
1ū j+1,

with the corresponding (expanded) coefficients given by
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B.2. Four-point scheme

Using the global stencil of cell-averages S4 := {ū j−1, · · · , ̄u j+2} one obtains, following the procedure in section 3, the 
fixed stencil reconstruction of the form

uS4
j+1/2 = C−1ū j−1 + C0ū j + C1ū j+1 + C2ū j+2.

Performing Taylor expansions on the set coefficients, as in Appendix B.1, we obtain
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.

On each of the two-point substencils S0 := {ū j−1, ̄u j}, S1 := {ū j, ̄u j+1}, and S2 := {ū j+1, ̄u j+2}, one obtains the recon-
structions

u(0)
j+1/2 = c0

0ū j−1 + c0
1ū j,

u(1)
j+1/2 = c1

0ū j + c1
1ū j+1,

u(2)
j+1/2 = c2

0ū j+1 + c2
1ū j+2,

with the corresponding (expanded) coefficients given by
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