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Abstraci—Iris is an established modality in biometric recog-
nition applications including consumer electronics, e-commerce,
border security, forensics, and de-duplication of identity at a
national scale. In light of the expanding usage of biomelric recog-
nition, identity clash (when templates from two different people
match) is an imperative factor of consideration for a system’s
deployment., This study explores system capacity estimation by
empirically estimating the constrained capacity of an end-to-
end iris recognition system (NIR systems with Dangman-based
feature extraction) operating at an acceptable error rate, ie.,
the number of subjects a system can resolve before encounter-
ing an error. We study the impact of six system parameters
on an iris recognition system's constrained capacity- number
of enrolled identities, image quality. template dimension, ran-
dom feature elimination, filter resolution, and system operating
point. In our assessment, we analyzed 13.2 million comparisons
from 5158 unique identities for each of 24 different system
configurations. This work provides a framework to better under-
stand iris recognition system capacity as a function of biometric
system configurations bevond the operating point, for large-scale
applications,

Index Terms—Iris recognition, IrisCode, capacity, uniqueness,
system parameters, biometrics.

1. INTRODUCTION

IOMETRIC recognition lechnology is being used in

widespread applications for verification and identifica-
tion in both commercial and government platforms. With the
widening horizon of applications, the technology is growing
in its implementation from small cohorts (e.g., access control)
to large scale (e.g., criminal identification [1]) to the national
level (e.g., de-duplication of identity [2]). The capacity of a
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Fig. 1. Owerview of an end-to-end iris recognition system where a variety
of factors induce variability and impact capacity at different stages.

biometric system, i.e., the number of identities the biometric
system can accommodate before it encounters an identity
clash [3], is a quintessential factor especially in large-scale or
national level applications that deal with 1:N or N:N match-
ing. Ideally, biometric characteristics captured from different
identities should have separable features due Lo their inher-
ent property of uniqueness. Uniqueness is an indispensable
property of biometrics that allows biometrics to define iden-
tity. Biometric uniqueness is characterized as no two people
should have the same identifier [4]. In automated biometric
recognition systems, we encounter cases of false accept errors
where two biometric samples from different identities match.
Insufficiently, the distinctiveness between identities is some-
times explained in terms of error rates. This puts some doubt
on the uniqueness of biometrics. However, a case of false
accept does nol necessarily mean the biometric characteristics
of the two different individuals are the same or similar. The
decision is impacted by multiple factors in a biometric recog-
nition channel- noise induced by how a biometric is presented
to the system, variability in sensors in lerms of camera pixel
distortions, variability in the enrollment and the probe sample
captured at different time points, the method for feature extrac-
tion, the choice of fealures being used for matching, and the
matching algorithm used. An illustration of an iris recognition
pipeline and factors that might impact a decision is shown in
Figure 1.

The inherent random variation and complexity in the iris
pattern are considered the basis for uniqueness in the iris. In
an automaled operational iris recognition scenario where false
accept is a reality, we cannot logically argue based on only
the “inherent” unique characteristics. Biometric Doddington
zoo menagerie [5], [6], [7] was introduced to explain non-
uniformity in biometric recognition performance. Among
many classes, “wolves” have been denoted for individuals
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who are capable of easily impersonating other classes lead-
ing to false accepts, and “lambs” has been denoted for
individuals that are easy to imitate, also contributing to false
accepts. However, this explainable concept does not quantify
the uniqueness of an operaling sysiem. Attempls have been
made to explain uniqueness in different modalities including
iris. Daugman has discussed “identity collision™ in iris in terms
of entropy and established the high entropy per bit of feature
encoding in the lrisCode as the basis for high resistance to
clash in TrisCodes [8].

Given the challenge of establishing uniqueness, are there
other approaches which can be used to quantify the “unigue-
ness” of an iris recognition system? Tn this paper we investi-
gate the uniqueness of an iris recognition system for images
captured under NIR illumination following Daugman-based
IrisCode feature templates in terms of “constrained capac-
ity” i.e., estimating the maximum number of users a system
can identify at an acceptable error rate [3]. We evaluate iris
recognition system capacity in terms of parameters of

« Quality of biometric samples

« Filter resolution

s Template dimension

« Random feature reduction

« Number of identities in the system

» Syslem operating point

In this assessment of constrained capacity, we take a
data-driven approach. We assessed 24 different system con-
figurations, each with approximaltely 13.2 million comparisons
based on N:N matching, from approximately 5.1k unique iden-
tities. To analyze the impact of feature dimension, random
feature reduction, and filter resolution on capacity, we consider
traditional iris features, the IrisCode inspired by Daugman’s
approach [9], implemented in OSIRIS [10]. Tt is believed that
most commercial deployments of iris recognition systems uli-
lize an IrisCode-type algorithm [8]. The main contributions of
this paper on iris recognition capacity are that it has:

« Empirically established the constrained capacity of
NIR illuminated Daugman-based iris recognition system,
studying the impact of template dimension, filter resolu-
tion, random feature reduction, image quality, and system
operaling points

« Established the relationship between errors encountered
by a system in terms of identity clash, the number of
identities in a system, and the number of fealures in an
iris template

The rest of the paper is organized as follows- Section TT
summarizes the state-of-the-art research in the scope of iden-
tity clash in iris recognition; Section III details our approach
towards assessing the constrained capacity of iris recognition
system; Section IV reports on our analysis, findings and con-
clusion and Section VI provides an insightful discussion on
our conclusions.

Il. STATE OF THE ART

How many identities can a biometric system resolve? Tt is a
long persistent query that has been approached by researchers
with many different techniques, for different modalities like
face [3), [11], [12], fingerprint [13], iris [8], [14], [15], [16],

including designing models to estimate capacity [14], adapling
concepts from information theory [8], [12], [17], [18], score-
based uniqueness measure [11], and empirical computation of
capacity [16].

We found the earliest reference Lo the study of iris capacily
in 2004 under the study of concepts like “individuality” or
“uniqueness”. Bolle et al. [14], in their modelling approach
for iris individuality, refers to the concept as “given a biomel-
ric sample, determine the probability of finding an arbitrary
biometric sample from the target population sufficiently simi-
lar 10 it” i.e., the lower bound on the false accepts. The work
modelled iris individuality as the probability of False Accept
Rate (FAR) and False Reject Rate (FRR) in terms of bit flips
in the 256-byte IrisCode and compared the performance with
the empirical performance concluding that their designed FAR
mode! follows the empirical performance and is not atfected
by probability of bit flip. However, the modelled FRR does
not corroborate with the empirical performance; theoretically,
the performance degrades rapidly with an increased proba-
bility of bit flip, unlike their empirical observation. In 2003,
Yoon et al. [15] explored the individuality of iris biometrics
in an identification scenario, by transforming the many-class
problem to a binary problem of intra-subject and inter-subject
distinctiveness, as a factor of features, distance measures and
classifiers, by “showing the distinctiveness of the individ-
ual classes with a very small error rate in discrimination™.
The study concluded that considering a distance measure of
histogram distances (o compule intra-class and inler-class sep-
arability with multi-level 2D wavelets as features provides the
best methodology to determine the individuality of iris bio-
metrics out of the eleven methodologies tested in the study.
In 2006, Daugman published a report [16] on the analysis of
approximately 200 billion imposter comparisons of the 256
byles IrisCode from 632500 unique irides in an operational
dataset obtained by special access from the UAE Ministry. In
its assessment of the uniqueness of the IrisCode, the report
concludes that for non-mated pair of indes, 35% 10 65%
of bits in the 2048 bits IrisCode do not match; in other
words, at least 35% of the iris bits being compared, after
masking the 2048 bits IrisCode, from irides of two differ-
ent persons, match. One gap is that, the study does not report
on genuine comparisons. Considering multiple relative rota-
tions of the IrisCodes during matching to account for the
angle of rotation of the iris with respect 1o the camera during
capture, the agreeing bits further increase to approximately
45%. The report points to the impact of correlation from
two sources - internal correlation present in IrisCodes due to
the iris structure, and correlation introduced in the lrisCode
during Gabor filtering, on the effective independent bit com-
parisons. In 2009 and subsequently in 2012 National Institute
of Standards and Technology (NIST) conducted large scale
(1.2 billion impostor comparisons from 8400 individuals and
1.2 trillion imposter comparisons respectively) evaluation of
iris recognition systems from leading iris recognition indus-
trial providers in IREX-I [19] and [REX-III [20]. However,
the templates from these systems are proprietary black boxes
which are “non-standard, non-interoperable and not suitable
for cross-agency exchange.” The report provided an exten-
sive assessment of quality factors (dilation, occlusion, centre
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displacement, quality score), impact of image compression,
template size (range: 257 bytes to 45080 bytes), computation
time and accuracy trade-off, and their impact on recognition
accuracy. The most relevant observations that relate to our
study are:

s Approximate size of standard iris image record (not
templates; cropped, masked versions of the originally
captured image) is approximately thirty kilobytes for
large-scale identification (1:N) applications and is much
lower for verification (1:1) application [19]. Thus, iris
images with less distortion and high information content
provide better performance in large-scale applications.

« Removing poor quality images improves false non-match
rate [19]. Thus, consideration of data gquality in large-
scale applications is an important factor.

« False match rates are impacted by compression [19]

« False Positive Identification Rate (FPIR) has a linear
dependency on population size and threshold [20]; Thus,
the threshold should be adjusted in the operational
scenario based on population size

» False positive cases are attributed to defective images,
biological similarity and quality factors [20]

In 2013, Daugman [8] adapted information theory concepts
including the Hidden Markov Model (HMM) to emulate the
IrisCode, to compute the per-bit entropy of the IrisCode, and
to further explain the anatomical and filter-induced correla-
tions. An analytical methodology of the capacity of TrisCode
is discussed which provides a quantitative understanding of
the strong resistance of lrisCode against false matches. The
report concludes that the high entropy of the IrisCodes per
bit (0.469 bits of entropy per encoded bil), even in presence
of biological and induced correlations, is the backbone of the
high capacity of the IrisCode. This is supported by HMM
predictions and NIST evaluations [19], [20] - accepling 36%
disagreement in bits between two IrisCode (i.e., 64% agree-
ment of hits) as a match, leads to one case of the false match
out of 24,000 imposter comparisons. However, the assessments
of Daugman consider 256 bytes whereas NIST evaluations do
not have information on the template dimension.

Our work extends the state-of-the-art work by
Daugman [16] and NIST [19], [20] on empirical assessment
of system capacity. While Daugman’s assessment was specific
to the capacity of the feature template, the TrisCode, we
studied Daugman-style iris recognition systems from
an end-to-end perspective, considering six different
parameters in the iris recognition channel addressing-

« How does identity count in a system impact capacity?

» How does quality impact system capacity?

« How does filter resolution impact system capacity?

« Does a higher template dimension increase discriminable

information in terms of system capacity?

s Does template generation methodology impact system
capacity?

NIST in their reports [19], [20] on large-scale N:N assess-
ment with commercial “black box” systems, discuss the
importance of some of the parameters like quality and template
size. We report a systemalic study of different system param-
elers on constrained system capacity with publicly available

datasets (refer Table III) and open-source software (OSIRIS)
with the scope of scientific reproducibility and continuation to
address global challenges.

I11. METHODOLOGY

A. Constrained Capacify

Ideally, system capacity is the number of identities a system
can correctly identify without any error. However, practically
biometric systems are prone to errors and function at an oper-
aling poinl which is a trade-off between an acceplable false
accept rate and a false reject rate. Thus, the system capacity
is computed at an acceptable error rate, and defined here as
“constrained capacity™.

Hypothesis: There is an upper bound on the number of
identities, M a system can resolve and the number of features
required, n, to resolve the identities at an acceptable error rate.

We study the impact of n, ie., oplimum information con-
tent, on the capacity of the system. In our approach to
optimize information content to achieve highly constrained
system capacity, we study six different parameters: identity
count in the system, feature dimension, filter resolution, ran-
dom feature reduction, image quality and operating point, as
further detailed below:

« Quality: 1SO quality images (ISOQ) vs All quality images

(ALLQ)

« Filter Resolution. Multi-resolution template vs Single-
resolution template

« Template Dimension: Structured unwrapping at lower
dimension - 26k bits (D2) vs 48k bits (D1)

+ Random feature reduction: Template features: 100%,
15%, 50%,25%, 20%, 15%,10%

+ Operating Point: 0.1% FAR vs 0.01% FAR vs 0.001%
FAR

All biometric systems operate at a pre-defined threshold
that indicates the system’s expected FAR and FRR. Different
thresholds may be chosen based on the system configura-
tions, i.e., the quality of images from which the templates are
extracted, at what resolution the iris templates are extracted,
the number of bits forming the template and how the feature
points are selected, as detailed in Section 111-B. We chose 24
different thresholds for the 24 different system configurations
at fixed operating points (OP). We acknowledge the impact
of the system configurations on the FRR and the necessity
to choose system configurations at realistic OP. The selected
OPs and the corresponding FRR are tabulated in Table I.
Summarizing the key observations from Table I:

+ Systems employing ISOQ dataset consistently renders
low FRR across all comparing system configurations. The
impact of quality on system errors is substantial.

+ Systems employing single-resolution templates exhibit
lower FRR than systems employing multi-resolution
templates

+ Systems employing low dimensional template (D2) out-
performs high dimensional templates (D1) by 1% - 8%
FRR.

For each system structure, we compute the identity clash

(false accepts) of each unique identity, i.e., the number of times
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TABLE |
FALSE REJECT RATE (FRR) AT CHOSEN OPERATING POINTS FOR
24 SYSTEM CONFIGURATIONS (51 - 524) BASED ON A DIFFERENT
COMBINATION OF FEATURE DIMENSIONS (D1, D2), OPERATING
Point (FAR), FILTER RESOLUTION (SINGLE AND
MuLTI-RESOLUTION), AND QUALITY (ALLQ, 150Q)

Mulfi Resolution Single Resolution
Feature FAR ALLQ 150Q ALLQ [ 1500 |
Dimension | (%) Fﬂkihﬁiﬂmmumm
0.1 SI:166 | S2:305 [ 831119 [ S4:261
D1 001 | 85040 | Sh:44% | §T:1630 | SE: 333
D001 | S9: 530 | S10: 647 | SI1: 2201 | 512:4.25
0.1 | SI3- 1351 | S14:250 | S15:597 | SIf: 0.7l
D2 001 | S17-2038 | S18:530 | 81995 | S20: LI8
D001 | S21:27.99 | §22:9.56 | $23: 14.48 | §24: 1.6
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Fig. 2. D2, Multi-Resolution, All Quality, FAR=0.001%: Error rate as a
result of the increase in the number of identities in the system for different fea-
ture levels. The number of identities the system resolves before encountering
the first error is the constrained capacity.

an iris template matches with another iris template of a differ-
ent identity, at each OP. We compute the constrained capacity
of the system at the specific OP for each system structure
as we increase, M, the number of identities in the system,
by gradually adding one identity at a time in the ascending
order of identities with no false accepts with any other sub-
jects. Then the identities are sorted in terms of the number of
false accepls per identity. Constrained capacily is the number
of subjects the system could resolve before encountering the
first case of false accept. The computation of the constrained
capacity is illustrated in Figure 5.

An illustration of the relationship between the error rate as
the number of identities is increased in a system is shown in
Figure 2 for one of the 24 system configurations studied. The
figure illustrates the variation in constrained capacity (CC) and
the error rate of the system as random radial features (columns:
binary codes at a fixed angle) are eliminated from the feature
template for seven different feature levels. We note that as
identities are gradually increased in the system (x-axis) in the
ascending order of false accepts, the cumulative false accepts
{CFA) increases after resolving a certain number of identities.
Constrained capacity is the point in the x-axis where the CFA
is no longer zero.

Figure 6 shows error rale as a funclion of increased identi-
ties for different feature levels for all 24 system configurations.
The number of identities the system could resolve at a
predefined OP (acceptable number of identity clashes) is the
constrained capacity of that system.

g | sk G b L pend S s e

Fig. 3. Basic steps of IrisCode generation with multiple filler resolutions,
feature dimensions and random feature reduction.

B. Experimentation Setup

This section provides a detailed background of the concepts
leading to constrained capacily estimation analysis - iris code
generation impacting the template dimensions and resolutions,
random feature selection and image quality.

1) IrisCode Extraction: The annular iris area is extracted
from the captured iris image by segmentation and then
unwrapped into a rectangular representation. It is then fltered
using a Gabor filter bank and a patch-wise phase representa-
tion of the filtered samples in a complex plane is performed.
The quadrant, where the resulting phasor for that patch of
the iris is projected on the complex plane, is identified. Both
the real and imaginary parts of the phase representation are
considered in the generation of the IrisCode with a 2-bit rep-
resentation (00, 01, 11, 10). The same dimensional mask is
generated for each template which identifies areas of obstruc-
tion like eyelashes, eyelids, etc. The methodology follows
Daugman’s approach [9]: iris feature extraction methodology
is graphically illustrated in Figure 3.

2) Feature Dimension and Resolution: For this study, the
IrisCode is generated at different spatial resolutions and
dimensions 1o assess the impact of information content. We
extracted features of two different dimensions, ~26k bits and
~48k bits, based on the filtering at the unwrapping stage,
i.e., palch-wise translation of the raw iris image (0 the phasor
representation, varying the patch size. Each of these dimen-
sions is extracted at 3 different resolutions of the Gabor filter
(Filter Dimensions: 9%51, 9%27, 9%15). Feature lemplates are
developed for single-resolution and multi-resolution (i.e., the
combination of features extracted at all three resolutions).

The optimal filter design as developed by Daugman remains
unpublished and proprietary. The three fillers used in our
analysis were designed by the developers of OSIRIS for the
original template dimension of 64 * 512 (D1). D2 is a down-
sampled representation of D1 by the unwrapping mechanism.
For a direct comparison, ideally, the filters could be propor-
tionally downsampled. However, we have used the same filters
for the 64 % 512(D1) dimensional template and 70 % 256 (D2)
dimensional template. By not changing the filter design for
D2, we have essentially used different filters in our analysis
of the two dimensions. For single-resolution template assess-
ment, we use the first (dimension: 9 x 51) of the 3 filters in the
filter bank. Thus, the feature content extracted on filtering D2
with the single-resolution filter is different from D1 given that
the filtering is performed on a larger spacial area of lower spa-
tial resolution. For multi-resolution template assessment, each
consecutive filter is a downsampled representation of the prior
filter. Thus, by design, the multi-res templale partially extracts
similar frequency bands in both D1 and D2. Thus, D1 and D2
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TABLE 1
TRISCODE DIMENSION SUMMARY
Extracied Heduced | it Count by Resolufion ]
Dimensions | Dimensions | Singhe | Multi |
[DI | 64°512 | 47°512 | 48128 (~6kB) | 134386 (~ 18k5) |
D2 | 70=2ss | S1*258 | 26116 (~3kB) | 76348 (~ OkH) |

are templates generated with different spatial resolutions and
different frequency components for the same iris sample.

To reduce noise from the extracted feature templates,
approximately 27% of the area around the two edges of the
iris is removed; 9% of the area from the pupillary boundary
and 18% of the area from the limbus boundary is eliminated,
which has the highest potential noise in terms of obstruction
from eyelash, eyelids which may remain undetected in the
iris mask. A graphical representation of the different resolu-
tion templates, the reduced dimensions are shown in Figure 3.
Table 1T tabulates the extracted feature dimension (D1, D2) of
IrisCode at a single resolution (Col: Extracted Dimensions),
the reduced dimensions of the feature template after remov-
ing potential noisy bits (Col: Reduced Dimensions), and the
operational pixels/bits at single and multi-resolution (Col: Bit
Count by Resolution).

3) Random Feature Reduction: We explore random feature
reduction at the bit-level to assess the impact of feature con-
lent on system capacity. Feature conlent after bit-level random
feature reduction is shown in Figure 3.

Bit-level Random Feature Reduction: For each dimension,
the extracted feature templale represents the enlire raw iris
image. We randomly eliminate radial features (columns: binary
codes at a fixed angle) at the bit level for multiple random
feature reduction levels (0%, 25%, 50%, 75%. 80%. 85% and
Y0% of the extracted feature templates of different dimen-
sions). After elimination, the remaining percentage of features
in the template is referred to as ‘Feature level’ in this reporl.
The implementation induces randomization. Random radial
feature columns were selected. The same columns were elim-
inated from the mating pair of samples before matching. The
process was repealed for every mating pair. Different feature
columns were eliminated for different pairs.

The idea is to compare bit-level random feature reduction,
with the structured generation of reduced feature dimensions
at the image unwrapping level, as described in Section 111-B2.

4) Quality: Quality impacts performance. We choose the
best quality samples because we are (rying o understand
capacity when quality problems are minimized. International
standards have been set to benchmark iris image quality for
optimal performance [21]. We assess the impact of quality on
system capacity and its importance on large-scale operations.
We assess 2 scenarios-

« ISO Quality Data (ISOQ): All iris samples follow I1SO
standard- ISO-IEC- 29794-6 [21]. Nine quality factors
encompassing anatomical metrics and illumination are
considered in the selection of the samples - overall quality
score, ins radius, dilation, usable iris area, ins-sclera con-
trast, iris-pupil contrast, grayscale utilization, iris-pupil
concentricity, margin-adequacy.

« All Quality Data (ALLQ): The best quality sample from
an individual based on the overall quality irrespective of

Distriteution of 5 dilfercat quality Taeter neassrs

ShaTpIEs - . - =——3
Dilathens « o — -
% Dkain
B Unsble Iris Areai®el = R L am Cpuality Dska (ALLAY
‘i F It Gmakiny (nars 01404
=
Irin Selers Camlrasi - - — ———
Do crall Qualiits - — =3
! ] ] + .
L] bL] -0 ™ ni

ﬂnklt e

Fig. 4. Comparative boxplot of five quality score distribution of the entire
dataset vs ISO quality standard based cleaned dataset.

TABLE Tl
DATASET SUMMARY
[ Dratabase | Unigue Indes | Sensor |
ITR Clarkson 484 OKI IRISPASS
ND CrossSensor 2012 1353 G220
CASIA Lamps £20 OKI [RISPASS-h
CASIA Twins AN} OKI IRISPASS-h
CASIA Thousand 2000 TKEMEB=100
CASTA Tnterval 393 CASIA Tris Camera

whether it follows 1SO standards is selected. The distri-
bution of five quality measures for both TSOQ and ALLQ
is shown in Figure 4.

C. Dataset

Empirically assessing the capacity of an iris recognition
system requires access to a large dataset. No single pub-
licly available dataset has a large number of subjects for this
research. For our study, we created a composite dataset of
5158 unique irides putting together multiple independent, pub-
licly available datasets from different sources as summarized
in Table TIT to form the ALLQ dataset. A subset of 2982
unique irides is filtered based on ISO quality standards to
form the 1SOQ dataset. Right and left irides from the same
subjects are considered different identities in terms of unique-
ness. For our analysis, samples were chosen based on the
best overall quality score. The experiment was designed such
that exactly one sample with the best quality score would be
used for enrollment. For non-mated comparisons, each sample
of the M-enrolled samples was malched against M-1 sam-
ples from different identities; total imposter comparisons for
ALLQ systems: 5158 * (5158-1) / 2 = 13.2 million; total
imposter comparisons for ISOQ systems: 2982 * (2982-1)
/2 =~ 4.4 million. For mated comparisons, the two next-
best-quality samples from each unique iris were selected for
maltching against the enrolled sample; total genuine compar-
isons for ALLQ systems: 5158 * 3 = 15474; total genuine
comparisons for ISOQ systems: 2982 * 3 = §946,

D. Algorithms

For quality assessment we used a commercial software
VeriEye 11.0 SDK [22] following ISO/IEC 29794- 6 [21].
The software computes iris quality factors following ISO
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Fig. 5.  An illustrative representation of Constrained Capacity Computation Algorithm: The database contains ‘M" unique identities, Considering a single

sample per identity, each identity is malched with M-1 other identities computing M-1 maltch scores per identity. Based on the predefined threshold al x%
FAR (OF), each identity (i) encounters FA; false accepts. Identities are arranged in ascending order of the FA;, represented here as FAAD. The number of
identities in the system is increased based on FAAO. The number of identities the system could accommodate before encountering any identity clash is the

constrained capacity.

guidelines. For feature extraction, we adapted the open-
source software, OSIRIS [10]. OSIRIS was developed fol-
lowing Daugman’s approach of iris feature extraction [9],
IrisCode, and allows flexibility in feature extraction in terms
of dimension and resolution. This is an important element
in exploring beyond the conventional standard in iris recog-
nition. Conventionally 256 bytes (1028 bits) of IrisCode
are generated and used for matching. OSIRIS allows explo-
ration of the customized dimensions of feature extraction by
considering different dimensional patches at the unwrapping
stage. Additionally, the software has the capacity to gener-
ate TrisCode at three different resolutions of the Gabor filter.
Exploring feature content in the template goes to the core of
our study on the impact of structured templale generation at
different dimensions (D1, D2) versus random feature reduction
(0% to 90%) on the capacity of the iris recognition system.

The extracted iris templates of different dimensions with dif-
ferent frequency components (D1, D2), filter resolution (single
and multi-resolution), quality (ISOQ, ALLQ) and after ran-
dom feature reduction (0% to 90%), are used for template
comparison for mated and non-mated pairs of images. A cor-
responding mask is generated for each template. We developed
a method to perform the M : M — | maiching for non-mated
pairs (~ 13.2 million for ALLQ systems and ~ 4.4 million
for ISOQ systems) of images for each set of the 24 system
configurations, where M represents the number of unique iden-
tities. The matching methodology involves computation of the
Hamming distance between two templates for different system
configurations following equation (1).

€1 @ 1C2) N M1 N M2)|
N 1M1 N M2||

where 1C denotes IrisCode and M denotes Mask.

56 shifts (28 on each side) for D1 and 28 shifis (14 on
each side) for D2 of the iris template are performed dur-
ing Hamming distance (HD) computation to mitigate errors
induced by the angle of rotation of the mating irides. Each
shift corresponds to 0.7 degrees and 1.4 degrees for D1 and D2
respectively, leading to a cumulative flexibility of 19.6 degrees
on each side. The minimum HD (or best maich) is considered
the final score for each pair of comparing templates.

HD (h

Next, we compute the constrained capacity of the system,
i.e., the number of identities the biometric system can accom-
modate before encountering an identity clash, for each of the
24 system configurations.

E. M:M Matching and Computational Aspects

1.6 x 10'"iris code comparisons are needed to calculate the
non-maltch scores required for this study. Each of the 12 ALLQ
system configurations requires roughly 13.3 million iris com-
parisons and 12 ISOQ system configurations require roughly
4.4 million iris comparisons., Since our iris matching algo-
rithm includes an iris alignment step, we need to consider all
the possible non-match scores computed by different align-
ments of the gallery and probe irides. To compute the optimal
iris alignment, we calculate the distance matrix for each shift
of the probe iris template up to 19.6 degrees on each side and
then identify the minimum distance of all possible shifts as the
final score. This amounts to 57 and 29 probe iris code pixel
shifts (and corresponding distance matrices) for the D1 and
D2 templates respectively. We then repeat the computation for
each system configuration (filter resolution, feature dimension,
random feature reduction). A large number of comparisons
required us to develop a custom framework as we projected
that sequential computation of the distances would require 62
days 1o complete using a high-end computational server. Since
99.96% of comparisons in our analysis are in the non-maich
distribution, we focus our optimization effort on this set. Qur
final comparison engine is able o compute all computations
in 1.99 days using one server, with a proportional decrease in
time with each additional server tasked. Intel Xeon Cascade
Lake R computational server was leased using the Chameleon
testhed [23].

1V. REsuLTS

This section discusses constrained system capacity as a
function of multiple parameters—the number of identities in
the system, image quality (ALLQ, ISOQ), filter resolution (sin-
gle and multi-resolution), template dimension and filter design
(D1, D2), random feature reduction (0% to 90%) and operal-
ing points (0.1, 0.01, 0.001% FAR). Different combinations
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TABLE IV
ALLQ: DATASET: 5158 UNIQUE IDENTITIES; CONSTRAINED CAPACITY AT VARYING RESOLUTIONS (MULTI AND SINGLE RESOLUTION]), TEMPLATE
DIMENSION (D1, D2), FEATURE DIMENSION (100% TO 10%) AND OPERATING POINTS (0.1, 0.01 aND 0.001% VERIFICATION FAR)

Template D i ‘ o | % “ Multi Resolution | Single Resolution |

100 0101 45% 14071 0.106 3550 | 68 8%
75 15166 [IBRE) 335-1 ATR 13461 (A3 I525 | 6E3%
50 T454 0.056 4151 | 804% 10188 0.077 3669 | 711%
23 0.1 0.385 | 12390 0092 B4 | 7T || 0418 | 3330 0.10 295 | 5T.0%
— o | LD 127 56 | 7AA% || Ay 37 TI50 | 43 6% |
13 0712 XK 3780 | 733% EERZ]] 0.641 412 | 275%
i BELE ¥k 3151 | BLIFE || 74738 2066 pitd L
100 1458 0011 4748 | 920F% 1483 0.011 Iz | 9L0%
75 1737 [V} BENEEEN 1623 [0 3687 | O0&® |
50 756 0.006 4871 | 944% 947 0.007 4793 | 929%
131 3 0.0l 0368 | T¥E8 21} 3708 | O 0404 [ T706 0021 s | 3%
20 2056 0015 4690 | 90.9% 5982 0.045 405 | T9.0%
13 2675 0.02 4661 | 90.3% 11070 0,00 48T | 67.4%
T A5 U041 aTTT | BIU% || SIAES 0395 TT2F | 334% |
100 IEL 0.007] SO7TS ] 9R3E 133 0.001 3060 | ORI% |
T3 T6d (IE1)] 068 | URZ® || Ta0 (4] 065 | OB 1% |
50 | 76 0.001 5105 | 98.9% 79 0.001 099 | ORA% |
25 0001 || 0is1 T64 0001 SO60 | UR2® || 038R 236 0002 031 | 07 5% |
20 236 0002 5032 | 97.5% 544 0.004 4904 | 95.0%
13 0 000 | 5017 | 92.2% 1197 00080 By I L
10 70 0.006 4839 | 947% 7503 0.057 3756 | 72.38%
100 13502 0.102 393§ | 740% 14664 011 3782 | 73.3%
T3 B 117 | 79.8% U563 | 0072 | 4008 | T07% |
50| S 0052 43 | 8L0% BI63 0.062 Wi | TR
5 0.1 0331 [ 33556 (185} 712 | J10% || 0.382 [ SSTEDG 0410 000 | Sha% |
20 [REE 1,606 3238 | 613w 136204 1.024 2170 | AL0F%
13 30300 1.229 3338 | 6h6® || 106346 (%3 1545 | 200% |
10 14803 0111 3502 | 67.8% 194393 1.462 485 945
L 42T 01T 779 | O2E% 1487 0011 ITIE | O 3%
75 866 0.007 4863 | 942% 843 0.006 4860 | 941%
50 | [AE) 0005 | 498 | U55% L 0.003 4851 | G40
D2 75 0.0 0.31 EIRI] [ILRE] 312 | ®7.4% || 0.363 LRER] 063 75 | 0% |
20 15827 0119 4151 | 80.4% R 0.198 540 | GEER |
3 556 (IEES d437 | 550% || T TT6ED [(REE] 540 | GR 0% |
10 2148 0.016 4537 | #TEAR 42361 0318 1880 | 36.4%
OO 134 [E)] S04 | URA® 140 001 3077 | ORA% |
75 85 0.001 5098 | 98.8F BT 0.001 5100 | 98.8%
L =S 0 SI0T | OO0 L] O | 5108 | 007
25 0001 || 0.2%1 702 0005 4950 | 958% || 0343 916 0.007 4381 | 6%
20 2595 007 78 | 6% 7743 0.028 4510 | 87.4%
K] o s T | A% PRER 018 5 | 57 1% |
10 305 0002 4900 | 95.7% - 0.062 3587 | 69.4% |

CC =Constrained Capacity; PC = Percent Capacity; OP**= Operating Point of (1.1 is where the threshold is selected for 0.1% FAR with 100% features

of these parameters define the structure of a system. Overall
24 different system configurations (refer Table T) are studied
and reported. Table IV and Table ¥V provide a detailed report
on the impact of different system parameters on the imposter
distribution of ~ 13.2 million comparisons ((3158 + 5157)/2)
for ALLLQ dataset and ISOQ dataset. Figure 7 provides a
graphical representation of constrained capacity for the ALLQ
dataset at 30% feature level, the best performing feature level,
to depict the impact of three paramelers- operaling point, res-
olution and feature dimension. The 1SO dataset representation
is similar and thus not included in this report. The tables report
the number of cases of false accepts (FA), the corresponding
false accept rale (FAR), constrained capacity (CC) and percent
capacity (PC) at specific operating points (OP: 0.1% / 0.01%
/ 0.001% FAR). The operating threshold (Hamming distance
(HD)) for OP is different for each system configuration (filter
resolution, template dimension and data quality). For example,
a system operating with ISO quality data would operate at a
different HD than a system operating with ALLQ data for the
same FAR, as the imposter distribution of both systems would
be different. However, for different feature dimensions (100%
to 10% features), the HD has been fixed at 100% features for
that operating point.

We report on the impact of each of the system configurations
and discuss the trade-off between different parameters in a
system to achieve high system capacity in realistic operational
scenarios.

A. Capacity Assessment: Impact of ldentity Count on
Svstem Capacity

As the number of identilies increases in a system, the prob-
ability of identity conflict increases. We study the impact of
increased subject count on the system errors for the 24 differ-
ent system configurations and report on the constrained system
capacity. We study how the error in a system varies, for each
of the 24 system configurations, as we gradually increase
the number of identities, up to 5158 for the ALLQ dataset
and up to 2982 for the [SOQ dataset, for 7 different feature
levels- 100% to 10%. As the number of identities in the ALLQ
and 1SOQ datasets are different, these two segments are not
directly comparable. We introduced percent capacity to com-
pare the performance, which is discussed in more detail in
the following sections. The relationship between the unique
identity count in a system and the corresponding error rate for
the 24 different system configurations for 7 different feature
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TABLE V
I1SOQ: DATASET: 2982 UNIQUE IDENTITIES; CONSTRAINED CAPACITY AT VARYING RESOLUTIONS (MULTI AND SINGLE RESOLUTION}, TEMPLATE
DIMENSION (D1, D2), FEATURE DIMENSION (100% TO 10%) AND OPERATING POINTS (0.1, 0.01 aND 0.001% VERIFICATION FAR)

Template Di ; F::I;t (%) | Multi Resolution | Single Resalution |
100 4520 0102 77.9% 0114 1957
75 4867 0.11 2341 T8T% _:msv 0108 2020 680‘1
50 2704 0.063 2489 | 835% 4219 0.085 2115 | 709%
23 0.1 0307 [ 3TH 0084 2431 | SIE% || o427 | 93 0214 1679 | 56.3% |
— o | 67T 105 TR0 | TOEE || TE35T 0417 T2 | 31.0% |
13 LR 0122 2347 | 8% 36467 082 TH | 3%
0 11341 0.26 1008 | 67.00% || TI072 P % 0% |
100 479 0.011 2796 | 939% 516 0.012 2739 | 91.8%
75 530 o1z 7799 | 03E® | 431 GXI 7740 | D22% |
50 283 0.006 2858 | 958% 463 0.0l 749 | 927%
D1 23 001 0382 57 0008 54 | O57% || 0416 [ (130 | ] 2562 | 859%
20 4638 0011 2020 | 94.6% 2678 0.06 2310 | 774%
13 716 0015 708 | U3E% €250 0141 1834 | 615%
T 715 IR T0E | BTA% || RIS 636 TOT | 235% |
100 46 0.001 204 | URTR a6 0.001 2043 7 0ETR
T3 AR 01 2050 | URO® || 32 (X 2040 | U8 6% |
50 27 0.001 2960 | 99.3% 43 0.001 2950 | 9E9%
25 0001 || 0367 77 001 2962 A% || 0405 121 0003 2005 | 07 5% |
20 6 0.001 2958 | 99.2% i35 0.008 /07 | 1%
13 ! 0002 035 | UBTR k) 0021 IBIE | BT6%
10 210 0005 264 | 96.04% 5930 0.133 1824 | 61.1%
100 468D 0.105 2431 | 818% 4960 0.112 2242 | 152%
T 315K TR 51T | 8% EREY) 0TS 568 | T0A% |
50 315 0.071 T | 84T 701 0.08% 357 | TRA%
5 0.1 0343 [ O7I3 U210 T30 | JRA® || 0395 [ 1760 (X} TT6T | S0.2% |
20 0490 0461 2020 | VL% ELIE 0887 1340 | 449%
13 0374 n21a AW | T50% | — &4o03 T.00 FAI | B2% |
10 6502 0146 2180 | 730% 95873 2157 226 75%
100 500 0.7 T | ULEw 455 T TTT | OTE%
75 290 0.007 W70 | 96.2% 285 0.006 2856 | 95.8%
50 240 [ 89T | UTIPRE 297 0007 | 285 | 953%
D2 75 0.0 0322 [ TIE0 (2]} TI60 | UZ3% || 0378 [ 0% o6 525 | Bdo% |
20 3450 0078 07 | §Ta% TIs0 0.161 27 | A%
3 b1k (V2] TI1Z | 0w || — Tho% 0172 TROT | G36% |
10 [EE} 0.019 06 | 907w 2T 0.458 961 | 3313%
OO a3 o0 3040 | UR.0% iy L0017 7043 | OE 7% |
75 i 0001 2957 | 99.0% 8 0.001 2959 | 99.2%
L 1] 0 Wed | O0a% i [T} 1956 | OO
25 0001 || 0303 175 0004 2916 | 978% || 0362 67 0.008 2849 | 955%
| 576 0012 254 | U5 TR 1137 0026 2683 | D00 |
K] TIT T3 IT | 0T 56 028 T557 | 85 7% |
10 103 0002 | 2900 | 97T3% 4563 0,108 1930 | 650%

CC =Constrained Capacity; PC = Percent Capacity; OP**= Operating Point of (1.1 is where the threshold is selected for 0.1% FAR with 100% features

levels- 100% to 10% is shown in Figure 6. It is important
to note that the HD corresponding to 100% feature level for
each of the 24 configurations was considered for all 7 different
feature levels. The constrained capacity of the 24 sysiems are
tabulated in Table IV and Table V.

With ALLQ data, the best-constrained capacity of 5111
identities out of 5128 identities is obtained for the sysiem
configuration- ALLQ, Multi-resolution, D2, at OP 0.001%
FAR (refer Fig 6(i)) and is achieved with 50% random fea-
tures for this system configuration, rendering percent capacity
of 99.09%. Arranging identities in the ascending order of the
number of false accepts, the system encountered the first iden-
tity clash after resolving 5111 identities. Thus, 47 identities
(5158 - 5111) contributed to 64 error counts. The number of
identities contributing to the false accepts is referred to in the
following sections as NICF.

A detailed assessment of different variability factors on the
system capacity is reported later in this section. We report the
following observations from our assessment of the 24 system
configurations as we vary the number of identities in the
system and provide further details in the next sections-

« System configurations are strongly correlated with the

error count as the number of identities increases in the

system. We note substantial variability in the constrained
system capacity (the number of identities the system can
resolve before it starts encountering errors at a particular
OP) for different structures.

« For 19 of the 24 system configurations, considering 50%
of the total bits forming the iris template achieves the
highest system capacily. These observalions could be
indicative of the following phenomenon as a result of
the random elimination of radial features:

— Retainment of stable bits and subsequent elimina-
tion of “inconsistent bits™ [24], leading to optimized
feature template.

~ Elimination of radially correlated bits which do not
append to the discriminating “unique” information [8]

— A combination of both the above two phenomenon

The best performance is recorded for resisting identity
conflict for 99.43% of the dataset considering 50% of the
bits of a 26116 % 3 bits multi-resolution template (D2) at
0.001% FAR with ISO quality data; the best performance
could be because the D2 - muili resolution combination
contains the highest number of bits.

« Different system structures contribute to system error
count from as low as I8 errors (refer Table V: 1SOQ,
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Fig. 7. Constrained Capacity of ALLQ Dataset with 50% feature level al
different parametric compositions.

Multi-resolution, D2, 0.001% OP with 50% Features) to
as high as 2.7 million errors out of 13.2 million com-
parisons (refer Table IV: ALLQ, Single-resolution, D1,
0.1% OP with 10% Features)

B. Capacity Assessment: Impact of Quality

Image quality is an instrumental factor in iris recognition
performance. The impact of image quality score on false
accept rate (FAR) and false reject rate (FRR) has been ana-
lyzed in TREX-I [25]. We assessed two sets of data- ALLQ as
defined in Section 111-B4 and a subset of ALLQ, which meels
the minimum ISO image quality standards, 1SOQ, to under-
stand the impact of quality on constrained system capacity.
Table I reports the FRR al the corresponding FAR for 24 dif-
ferent system configurations. If we compare the 12 system
configurations which operate with ALLQ data with the other
12 system configurations that operate with ISOQ data, we note
substantial improvement in FRR by double digits with 1SOQ
data. We should be mindful of the impact of the chosen oper-
ating point of our system on the FRR which heavily impacts
the performance of the system.

Table 1V and Table V report the capacity of systems oper-
ating with ALLQ and ISOQ data respectively. The thresholds
for each OP are selected with templates having 100% fea-
tures. It is important to note that our definition of capacity is
in terms of subject count, i.e., the number of identities a system
can correctly resolve at an acceptable error rate. However, in
our study, the ISOQ dataset is a subset of the ALLQ dataset
that meets the quality standards. Thus, the subject count in the
two quality datasets is different and thus we cannot compare
the capacity for these two segments in terms of the number
of identities. For the sake of comparing the two segments, we
introduced percent capacity - constrained capacity represented
in terms of the percentage of the number of identities in the
system. We note an increase in percent capacity for systems
operating with ISOQ data by approximately 1% to 10% com-
pared to systems operaling with ALLQ data. For example,
with D2 single resolution template, the ALLQ dataset performs
with an FRR of 5.97% at 0.1% FAR and the 1SOQ) dataset per-
forms with 1.76% FRR at 0.001% FAR. Thus, with the ISOQ
dataset, a system can operate at a stricter OP (0.001%) without

compromising FRR and achieve a higher percent capacity of
98.7% as opposed to 73.3% with the ALLQ dataset operating
at 0.1% OP.

We conclude from our analysis thal using images which
meet the basic criteria set by ISO [21] positively impacts
system capacity. Additionally, ISOQ data impact FRR signifi-
cantly. Thus, ISOQ dataset will allow a system (o operale at a
stricter operating point {e.g., 0.001% FAR) to achieve a higher
system capacity without a significant trade-off in FRR.

C. Capacity Assessment: Impact of Filter Resolution

This section explores how increasing features in terms of
filter resolution impacts system capacity. Does fusing the
information content in different resolutions of the iris increase
the discriminability between identities? For this study, we con-
sidered templates generated at a single filter resolution versus
templates generated at 3 different filler resolutions. We ana-
Iyzed 12 different system configurations for each resolution
type. For each of the 12 comparisons between the false reject
rale of systems using multi-resolution template versus single-
resolution template, as reported in Table I, single resolution
outperforms multi-resolution (e.g., FRR: 824 - 1.76% vs 522
- 9.56%). However, our analysis of constrained capacity shows
where multi-resolution may have an importance which is not
reflected in considering only FRR and FAR, and is further
discussed below.

Table TV and Table V compare the impact of resolution on
system capacity. As we compare the FA and CC between
multi and single-resolution, we note variable impact. Systems
working with a lower OP (0.1%) perform considerably bel-
ter with multi-resolution templates. Said more simply, for
operating points with less strict FAR of 0.1% (and better
FRR), fewer subjects contribute (o errors for multi-resolution
templates compared to a single-resolution, ie., a multi-
resolution has a higher system capacity providing a more
robust defence to false accepts from different identities. For
example, a D1 multi-dimensional template generated from
ALLQ data, with 100% features functioning at an OP of
0.1%, 1290 identities (CC:3868) contribute to the 0.1% FAR.
whereas 1608 identities (CC:3550) contribute to the false
accepts with similar systems configuration with single reso-
lution templates. However, for systems working at a stricter
OP (0.001% ), the performance variation between single and
multi-resolution templates is not significant. For example, a
D1 multi-dimensional template generated from ALLQ data,
with 100% features functioning at an OP of 0.001%, 83 iden-
tities (CC:5075) contribute to the 0.001% FAR whereas 89
identities (CC: 5069) contribute to the false accepts with simi-
lar systems configuration with single resolution templates. The
variation gradually fades with stricter OP (0.01% and 0.001%).
This pattern holds true across all parameters- different qual-
ity datasets (ALLQ, 1SOQ), different template dimensions
(DI, D2) and different feature dimensions (100% to 10%).

D. Capacity Assessmeni: Impact of Spatial Resolution

This section explores the impact of spatial resolution or tem-
plate dimension on system capacity. Does increased spatial
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resolution lead to higher discriminable information content
and improve system capacity? We assess two dimensions-
~ 48k (D1) and ~ 26k bits (D2) at single resolution. For
multi-resolution templates, the pixel count is three times that
of the single-resolution templates. D1 and D2 templates also
vary in their frequency information content as detailed in
Section T1T-B2.

We observe in Table I that a higher dimension/resolution
(D1) leads to a comparatively higher FRR by a substantial
margin in the range of 1% to 8%. For example, 85 and §7,
both having similar system configurations render an FRR of
24.9% with multi-resolution data compared to 16.59% FRR with
single-resolution data. Similar results are observed across all
configurations. Looking at the performance in terms of percent
capacity (PC) in Table 1V and Table V, lower template dimen-
sion (D2) performs better consistently across different feature
dimensions (100% to 10%), more dominantly in ISOQ data.

The observations could be indicative of the impact of spatial
resolution orfand filter design. D1 templates are generated at
the default dimension of OSIRIS and with the recommended
filters. D2, which is a downsampled representation of DI, is
comparatively more resistant to false rejects with the same
filter design extracting different sets of feature components,

In Table V, with ISO Quality data at 0.1% OP. D2 renders a
PC of 81.8% (multi-resolution) and 75.2% (single-resolution)
compared to a PC of 77.9% (multi-resolution) and 65.6% (sin-
gle resolution) with D1. However, the varialion in performance
fades at a siricter operaling poinl. One exceplion is noled,
where higher dimensional templates (D1) when operating with
25% of the features outperform lower dimensional templates
(D2). This observation is true across all OP, quality and differ-
ent resolution templates. At 0.001% FAR, a multi-resolution
template with 100% features has a system capacity of 5075
with D1 and 5074 with D2, with NICF of 83 and 84 respec-
tively. In terms of constrained capacity (CC), we note a similar
pattern. High dimensional templates (D1) leads to lower capac-
ity in comparison (o the lower dimensional template (D2) for
similar system configuration. Even a stricter OP does not mit-
igate the variation in performance between DI and D2. It is
important to note, we assessed FAR with a precision of up to
three decimal places. Thus, even though the OP has been fixed
(0.1%, 0.01% and 0.001% FAR), the CC was determined at
the closest experimentally computed FAR to the selected OP.
The actual FAR at which the FA and CC are computed are
reported in Table IV and Table V under the column “FAR.”

We conclude from our assessment that a higher template
dimension does not necessarily add to higher discriminable
information. Rather, we observe performance degradation
with higher template dimensions. From our observation, we
hypothesize and attribute this result to the infusion of more
redundant features with higher dimensions or more maltching
bits between non-mated pairs of images. A deeper analysis
at the bit level needs to be performed to understand the root
cause of this observation. We also note that the optimum filter
design which defines the frequency information contained in
the template remains unknown to the community.

We can only conclude with the dimensions and filters we
have tested in our experimentation. The optimum template

dimension and optimum filter design for optimum sysiem
capacity remain open scopes of research. As biometric applica-
tions are moving towards a national stage or global stage with
applications like huge-scale identification or de-duplication of
identity at a national level or global level, system capacity may
need to consider optimum information content in a template.

E. Capacity Assessment: Impact of Random Feature
Reduction vs Structured Feature Dimension

Does different methods of selection of template dimen-
sion impact system capacity? Does reduced feature dimension
impact performance? If yes, then to what extent? Is there a
trade-off between constrained capacity and structured template
generation at lower dimension vs random feature reduction?

To address these research questions, we assessed two meth-
ods of feature template generation - lemplates generated
at different dimensions as described in Section III-B2 and
analyzed independently in Section TV-D versus bit level fea-
ture selection by random feature elimination as detailed in
Section [II-B3. We assessed two dimensions for structured
template generation - 48128 bits (D1) and 26116 bits (D2).
To assess random feature reduction, we assessed seven fea-
ture levels at 100%, 75%, 50%, 25%. 20%. 15% and 10% of
the original template dimensions (D1 and D2). 50% of the D1
template, i.e., 24064 bits selected by bit-level random elimi-
nation is comparable (o the D2 template (26116 bits) at 100%.
The two templates contain a similar number of bits; how-
ever, the fundamental difference between the two templates
is the information content. The templates with feature dimen-
sions D1 and D2 contain information from the entire usable
iris area, whereas the bit-level selection of template features
contains partial information based on a selective percentage
(100% to 109) of the entire usable iris. All assessmenis were
performed for different quality datasets at different OP.

Bit level random feature reduction: Analyzing the
performance in terms of percent capacity in Table IV and
Table V, we note an interesting pattern. Randomly eliminat-
ing radial features from the templates (D1 and D2) from 100%
to 50%, gradually improves percent capacity (PC) by a sub-
stantial percentage. This observation is true across starling
template dimension, filter resolution, quality and across OP.
The positive impact is more dominating with system config-
urations operating with ISO-grade multi-resolution templates
at lower OP (0.1% / 0.019%). For example, a system operating
with ISO samples with D1 multi-resolution template at OP
0.1% has a PC of 81.89% with 100% features and a PC of
84.74% with 50% features. We conclude thal an iris image
in its entirety is not an absolute requirement for the optimal
performance of an iris recognition system. The improvement
in performance after feature reduction by random elimina-
tion could be attributed to a reduction in redundant features.
However, we also note that though 50% features contribute
to the highest resistance against identity clash, the variation
in PC with 100%, 75% and 50% features is in the range of
0.2% to 5.5%. This observation could be indicative of two
conclusions: an improvement in performance with up to 50%
features or no substantial variation in performance with 100%%,
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TABLE VI
COMPARATIVE PERFORMANCE OF PERCENT CAPACITY AS A FUNCTION OF TEMPLATE STRUCTURE
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75% and 50% features. The improvement in performance after
feature reduction by random elimination could be attributed to
the reduction in redundant features. Alternatively, this could
be indicative of no loss in discriminaling features leading to
stable performance even with the reduced features up to 50%.
The apparent improvement could be nullified if the random
selection is iterated multiple times.

We also note that multi-resolution templates are more robust
in reducing feature dimensions compared to single-resolution
templates. For most system configurations, reducing the fea-
ture dimension to 10% of the original template dimension
leads to a failure of the system (as low as 3.9% PC) if
the templates are generaled with single resolution: whereas
with the multi-resolution template, though we note substan-
tial degradation in performance, the worst performing system
configuration obtained a system capacity of 61.09% and the
best performing configuration oblained 96.74% with ALLQ
data. Systems operating at stricter OP (0.001%) have minimal
impact on reducing features,

Structured Template Generation vs Random Feature
Elimination: we compared similar template dimensions gen-
erated from two different methods- (a) a structured generation
of a template by varying the paich size during patch-wise
translation of the raw iris image to its phasor representation;
(b) Random elimination of radial features. The comparative
performance of the two methods based on comparative number
of bils in the template is presented in Table VI. We compare
template D2 with 100% bits and 50% bits with comparable
number of bits in D1 at 50% bits and 25% bils respectively.
We note that with a higher bit count (~24k and 26k) gener-
ated from 50% of D1 and 100% D2, there is little performance
variation with variations fading with stricter OP. However, at
25% D1 and 50% D2, the performance variation is high, espe-
cially with single-resolution data. For example, a template with
13k bits generated from 50% D2 performs better by a large
percent capacity compared to 12k bits generaled from 25%
D1. We surmise that this large degradation in performance is
an impact of information loss as we eliminate larger usable
iris area in 25% of D1 compared to 50% of D2 in spite of
having comparable bil count in the template. This observa-
tion is true across OP, filter resolutions and quality; however,
it is less dominant at stricter OP. 50% D2 (13k bits) out-
performs 50% D1 (24k bits). However, multi-resolution tem-
plates hold comparable performance even with lower usable
iris area (23% DI1). Multi-resolution templates are robust
to performance degradation with less usable iris area; this
observation reflects the contribution of unique discriminable

information present in the different frequency bands of the
iris. Tt also reflects the upper limit to the discriminable
information content. With multi-resolution templates, percent
capacity is not proportionally increased with the more usable
area (30% D2) compared to templates with the less usable area
(25% DI).

V. DISCUSSION, LIMITATION AND FUTURE WORK

Constrained capacily is a quantifiable measure of the
“uniqueness” of an iris recognition system and is a func-
tion of multiple system parameters. This study reports on the
empirical assessmenl of constrained capacity for iris recog-
nition systems operating at an acceptable error rate, i.e., the
upper bound for the number of identities a system can resolve
before encountering an identity clash. In our assessment, we
studied iris templates captured under NIR illumination fol-
lowing Daugman-based IrisCode feature templates from 5158
identities comprising 13.2 million TrisCode comparisons for
each of 12 different system configuralions operating with all-
quality data and from 2982 identities comprising 4.4 million
IrisCode comparisons for each of 12 different system con-
figurations operaling with ISO-quality data. We studied 24
different system configurations varying six different IrisCode-
based system parameters- sample quality (ALLQ vs ISOQ),
filter resolution (multi-resolution template vs single resolution
template), template dimension (~ 26k bits (D2) vs ~ 48k
bits (D1)), random feature elimination, system operating points
(0.1%, 0.01% and 0.001% FAR), and the number of identities
in the system.

Identity clash is a concept related to the imposter matches
impacting false match rate (FMR). However, biometric
systems operale with an error (rade-off between false maich
rate (FMR) and false non-match rate (FNMR) defined by
a threshold. Though very very low FMR can be achieved
in an iris recognition system by considering a highly strin-
gent threshold, it would be impractical to select a threshold
with extremely low FMR that results in an extremely high
FNMR. NIST recommends iris biometric system operation at
lower FMR with the caution that elevated FNMR should be
an application-based decision [25]. In some applications high
FNMR is untenable, a very high FNMR can be beneficial
for a trade-off of near zero FMR [19]. We are of the view,
that FNMR is an equally important factor as FMR irrespec-
tive of applications, as biometric applications are sensitive to
security from a small scale o a matter of national security.
Thus, it is seminal to advance research in the direction to
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improve performance specific to large-scale applications where
the FMR-FNMR trade-off is minimal. In our study, we assess
false matches at reasonable operating points being mindful of
false rejections.

In our random feature selection from a single ileration,
we recognize a possible limitation in generalizability. We
observed that all 12 systems operating with single-resolution
templates show patlerns in the order of the first failure as
a function of the “feature level”. However, this pattern is
not reflected with multi-resolution templates. Additionally,
19 of the 24 systems studied render the best constrained
capacity with 50% feature level. Since the feature selection
is random, this may reflect the effect of the particular set
of selected features. However, though we have performed
a single iteration of random feature selection, our process
has induced randomness in 2 scenarios: (a) A single tem-
plate is compared with 5157 other templates. In each case,
a new random set of features are selected. This holds true for
each of the 13.2 million / 4.4 million comparisons with each
of the 24 systems studied. (b) Additionally, though we are
considering a single template for comparison, random selec-
tion/elimination of features replicates scenarios of 7 different
templates, with reduced features, essentially replicating sce-
narios of different templates with obstructions, for each of the
24 systems studied. However, this does not address scenar-
ios of templates with different dilation and angle of vision,
which is a limitation of our study. If resources in lerms of
time and processing power are nol a constraint, multiple iter-
ations of random selection would add more confidence to the
conclusions.

This study extends the state-of-the-art in the field of empir-
ical assessment of the constrained capacity of iris recognition
systems from two major contributors- Daugman [16] and
NIST [19], [20]. To the best of our knowledge, this is the most
extensive research on iris recognition system capacity in
terms of six parameters covering 24 configurations and
their correlation, using open-source algorithms with pub-
licly accessible datasets. Thus, the research reported here are
entirely reproducible and can be further extended, using
the publicly available datasets listed in Table TIT and the open-
source software- OSIRIS. NIST reported on N:N maltching
on large proprietary databases for commercial software which
are “black boxes.” Daugman's assessments are specific to the
capacily of IrisCode. Conventionally, 2048 bils IrisCode are
used for iris recognition. We have gone beyond the conven-
tions of iris recognition in the scope of IrisCode dimension
and feature reduction in our study. We explored capac-
ity at higher dimensions (~ 26k — bits and ~ 48k — bits)
with different levels of feature content (100% to 10%) in
the template with the motivation (o study the relationship
between templale dimension, discriminable feature content
and constrained capacity of the system. This study provides
a framework for users to make a knowledge-based selection
of parameters for their system configuration based on user
requirements,

Limitations in our work open up areas for advanced research.
Our study is limited by the publicly available dataset. The vision
of solving challenges at the global level requires access to

large-scale datasels representative of the variations in terms of
identity count, variations in real-life data collections, and demo-
graphic variability, for the research community. Assessment of
the impact of different system parameters on constrained capac-
ity with a larger dataset would put to test the upper bounds
of the system capacity. Alternatively, there is a requirement
to develop a methodology capable of predicting quantifiable
system capacity with a smaller representative dataset.

Additionally, our study is limited in its scope of iris system
assessment. The scope of empirical assessment of iris recogni-
tion systems has mulliple aspects - datasets, algorithm design,
features and matcher. Each of these factors defines multiple
system configurations. Each system design is unique in its
parametric makeup. Paramelric comparisons of all systems
may not be possible. However, with our proposed frame-
work, each system can be assessed independently. Our study
is designed around assessing NIR-illuminated Daugman-style
IrisCode-based system parameters. Arguably, IrisCode is the
most popular iris feature used across different commercial
systems. However, there are allernative NIR-illumination-
based non-Daugman iris recognition systems with open-source
implementations. Given the extensive preparation (acquiring
datasets, dataset cleaning, quality assessment, feature extrac-
tion, N:N matching), assessment time and analysis required for
each system capacity evaluation, additional system assessment
is not considered as part of this report. Alternative iris recog-
nition resilience (o syslem capacily remains an open research
area.

Our proposed framework for the assessment of iris recog-
nition system is paramelric and is therefore best suiled for
open-source algorithms which allow customization of param-
eters. However, the framework can be generally applied to
commercial software as well, depending on the limitations
of the software. In addition, our proposed framework has
been developed specifically for NIR-illuminated Daugman-
style IrisCode-based system. However, the framework can be
adapled to non-Daugman systems as well.

VeriEye [22] is a commercial software; hence a black box.
Neurotechnology, the company which developed VeriEve, uses
neural networks for biometric recognition. Thus, it can be
assumed that VeriEye is non-Daugman-based commercial iris
recognition software. We use VeriEye as an example to illus-
trate the usage of our proposed framework for commercial
software. The system capacity of VeriEye can be tested by
varying three parameters: (a) the quality of image samples;
(b) the number of identities in the system; (c) the operating
system point. VeriEye provides feedback on the quality mea-
sure of iris images and has publicly documented the calibrated
operating points of the system. Thus multiple configurations of
the VeriEye algorithm with the three customizable parameters
can be assessed.

Our framework can be adapted by open-source non-
Daugman systems. For example, the University of Salzburg
Iris Toolkit (USIT) [26] for iris recognilion is an open-
source software that supports the extraction of iris features
by using multiple solutions proposed in the literature. The
options include: (a) 1D-LogGabor feature, (b) complex Gabor
filter bank, (c) SIFT-based IrisCode, (d) SURF-based IrisCode,
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{e) local binary pattern (LBP) based features, () support for
the algorithms proposed by Ma et al. [27] and Ko et al. [28].
Each of these options has different parameters. For example,
LBP features have several parameters including the number of
neighbours, radius for selection of neighbours, indices-based
neighbour selection, selection of thresholds, and other rele-
vant parameters. The image quality, number of samples in
the system, and operating point of the sysiem remain com-
mon underlying parameters for all systems. Iris recognition
system capacity for different system configurations of the
LBP-based system can be assessed following our proposed
framework.

The developed iris recognition technology is dependent on
NIR-illumination of the iris. Though NIR-illuminated samples
for iris recognition are standard and widely used for biomet-
ric applications, the scope of visible-range-illumination-based
iris recognition is in-demand and has a large potential for
applications upon technological maturity. Even though visible-
range iris recognition is not used in the mainstream presently,
multiple systems are proposed through research. Having the
potential of being an applicable technology, assessment of
the capacity of visible-illumination-based systems would add
value to the existing and under-development technologies.
While the basic framework for empirical assessment of iris
recognition technology proposed in this work could be fol-
lowed, the assessment of visible-illumination-based systems is
an enlire scope of research with different parametric designs
of the systems - visible-illumination iris datasets, feature
extractors and maiching algorithms.

V. CONCLUSION

We conclude by summarizing our observations and answer-
ing the questions this work primarily focused on-

How does identity count in a system impact capacify?
Increased identity count in a system increases the probability
of identity clash. However, the choice of system parame-
ters highly influences the number of identities contribuling to
identity clashes. Systems working at stricter operating points
(OP) achieve extremely high percent capacity, across resolu-
tion, data quality, template dimension and feature content, as
the number of identities increases in the system. However,
our conclusions are limited by the number of identities stud-
ied ( 5158 ). A large-scale database might provide a deeper
perspective of the upper bound of the parameters.

How does quality impact system capacity? Tmage quality
is the most important crilerion in system configuration deter-
mination for high system capacity. Quality directly impacts
the choice of the OP for the system. 1SOQ-based dataset
performs with practically acceptable FRR at a stricter OP
(0.001% FAR) (refer Table I). A stricter OP leads to a substan-
tial decline in identity clash in the database (refer Table V),
across different parameters (resolution, dimension, random
feature reduction), which is desirable for all biometric security
applications.

How does filter design impact system capacity? Filter
design determines the information contained in the template.
Discriminable information extraction goes to the core of

system capacity and thus filter design plays an important
role. In our assessment, we fested one set of filters extracting
different feature content for different spatial resolution tem-
plates, essentially testing different filter designs. We conclude
that a lower dimensional template (D2) with information
content extracted using the recommended filter for a higher
dimensional template (D1) outperforms the OSIRIS recom-
mended dimension-filter combination template in terms of
false reject errors and system capacity. Thus, we conclude that
the optimum filter design determination is a core parameter for
oplimum system capacity.

How does filter resolution impact system capacity? The
choice of filter resolution is a trade-off between multiple
parameters of the system. A single-resolution template would
benefit processing time and power compared to a multi-
resolution template. However, system capacity depends on the
choice of OP, quality of the datasel, tlemplate dimension and
feature level. A system working al a stricter OP (0.001%
FAR), performs similarly across template resolution and tem-
plate dimension. However, a system working at less strict OP
(0.1%, 0.01%) achieves higher system capacity using multi-
resolution templates at better FRR (3.05%, 4.48% vs 10.64%
at 0.001% FAR).

Does higher template dimension increase discriminable
information in terms of system capacity? A higher
dimensional (D1) multi-resolution template has comparable
performance as that of a lower dimensional (D2) single-
resolution template. For the two dimensions we have studied,
angular precision (.7 degrees for D1 and 1.5 degrees for
D2) while unwrapping the iris did not translate into i=higher
system capacity. Across almost all 24 system configurations
studied, systems achieve best-constrained capacity with 50%
of the random radial features. A higher number of bits in a
template does nol necessarily translale (o higher information
content in terms of template discriminability. However, our
conclusions are restricted to the dimensions we have studied.

Does template generation methodology impact system
capacity? With single-resolution templates, bit-level selection
of a higher feature level from a template of lower feature
dimension (D2) achieves high capacity compared o a template
of similar bil-size but generaled from a template of higher fea-
ture dimension (D1) at a lower feature level (refer Table VI).
However, our analysis of multi-resolution templates remains
inconclusive with no patlern in performance.
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