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Abstract

In this paper, we present a semi-Lagrangian (SL) method based on a non-polynomial func-
tion space for solving the Vlasov equation. We find that a non-polynomial function based
scheme is suitable to the specifics of the target problems. To address issues that arise in
phase space models of plasma problems, we develop a weighted essentially non-oscilla-
tory (WENO) scheme using trigonometric polynomials. In particular, the non-polynomial
WENO method is able to achieve improved accuracy near sharp gradients or discontinui-
ties. Moreover, to obtain a high-order of accuracy in not only space but also time, it is
proposed to apply a high-order splitting scheme in time. We aim to introduce the entire
SL algorithm with high-order splitting in time and high-order WENO reconstruction in
space to solve the Vlasov-Poisson system. Some numerical experiments are presented to
demonstrate robustness of the proposed method in having a high-order of convergence and
in capturing non-smooth solutions. A key observation is that the method can capture phase
structure that require twice the resolution with a polynomial based method. In 6D, this
would represent a significant savings.
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1 Introduction

Kinetic equations represent a fundamental class of models that describe the evolution of a
distribution of particles. In particular, kinetic models describe a range of phenomenon we
encounter, from collisionless gases through collision dominated flow. In collision domi-
nated flow, the models reduce to dynamics described by fluid models. In the collisionless
limit, kinetic models describe a class of dynamics known as kinetic effects, which in the
class of plasma’s includes: Landau damping, two-stream instability, bump-on-tail instabil-
ity, etc. While kinetic models characterize a larger class of effects than fluid models, they
are computationally much more demanding. What makes them more demanding is that
they are naturally six dimensional (three space, three velocity) plus time, the fastest veloci-
ties greatly restrict the time step in explicit methods, and the models for inter-particle col-
lisions can be very computationally demanding. In this paper, we examine non-polynomial
semi-Lagrangian (SL) methods as a way of improving computability in the collisionless
limit. Hence, as a prototypical model, this paper addresses a numerical scheme to solve
the Vlasov-Poisson (VP) system of equations. In the tests presented in the results section,
the method shows improved accuracy over polynomial based methods, suggesting that for
the same accuracy, the non-polynomial method can work at effectively one half the reso-
lution in each dimension of the polynomial based approach, which would be a nontrivial
computational savings in 6D. In this paper we consider the 1D-1V VP model with mobile
electrons and a fixed ion background:
of

E+V.fo+E(x,t)-V‘f=0 )]

and

E(X: t) = _de)(xs t)’ (23)

_Axd)(x’ t) = p(X’ t)a (2b)

where x X v € 2, X 2, C R" x R™. Here, f(x,v,1)is a distribution function describing a
probability of finding an electron with velocity v at position x and time ¢,

p(x,z):/gf(x,v,t)dv—l 3)

is the charge density, E is the electric field, and ¢ is the electrostatic potential. The equation
(1) can also be written in the following conservative form:

Ji+ V() + Vy(Ex, )f) = 0.

The simulations for solving the VP equations are typically performed using one of two
classes of numerical methods. The one class is the Lagrangian approach, where phase
space is represented as a collection of moving points tracing out characteristic trajectories
[2, 6,9, 10, 15, 17, 18, 22, 28, 33, 42, 46, 47, 49]. These include Lagrangian approaches
that trace both forward or backward along un-split trajectories, often an adaptive repre-
sentation of phase space and a mapping or remapping used to mitigate complexity. The
most popular of these approaches, for both its conservative properties as well as its ease
of implementation, is the particle-in-cell (PIC) methods [2, 9, 10, 28, 42, 46, 47, 49],
which are based on tracing the motion of the plasma by macro-particles. More recently,
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the energy conserving fully implicit PIC methods have been developed [9, 10, 32]. These
methods are combined with symplectic integrators and lead to provably conservative meth-
ods. The other class of methods for solving the VP system is the Eulerian approach, which
discretize the equations on a fixed grid of the phase space. The SL method is one of the
most widely used algorithms among the Eulerian approaches. The SL method is a very
attractive method for simulating kinetic equations, because it does not contain the Courant-
Friedrichs-Lewy (CFL) condition unlike other Eulerian methods. Early works on using
SL schemes for Vlasov systems were based on the splitting scheme of Cheng and Knorr
[11]. Various schemes were invented but all of the schemes were found to be roughly
equally accurate [20, 21, 27, 35, 44]. Later, SL schemes focused on creating high-order
schemes and incorporating weighted essentially non-oscillatory (WENO) methods into the
SL framework [29]. A pointwise WENO scheme was designed for handling interpolation
for backward SL schemes [8]. The WENO was applied to the SL method by writing the
scheme in a flux difference form [37, 39]. Later, a Hermite WENO (HWENO) scheme
was tried with the flux difference form [7]. An alternative SL high-order approach came
from combining the discontinuous Galerkin (DG) method with the SL framework to get
SL DG methods for Vlasov models [40, 41]. In a forward SL framework, the convected
scheme (CS), first proposed in [27], was extended to obtain arbitrarily high-order by cor-
recting the fluxes [23]. The CS was further improved by incorporating WENO [43]. An
alternate Eulerian approach involved the development of a fully implicit conservative
DG approach on a fixed mesh [12, 13]. The approach used splitting to keep the cost of
the implicit solves down. Alternative Eulerian SL methods have looked at wavelet based
methods. The method proposed in [1] made use of an adaptive wavelet-based method for
the Vlasov Maxwell system. More recently, Eulerian SL. methods developed in [38, 51]
bluer the lines between Eulerian and Lagrangian updates using un-split characteristics to
advance between time levels of a fixed mesh.

In this work, we introduce a generalized WENO interpolation based on a non-polyno-
mial function space to apply to an SL method. While this approach could be incorporated
into un-split methods, such as thous in [38, 51], here we limit our attention to split SL
methods. It has been observed that approximation schemes constructed based on a non-
polynomial basis provide improved numerical solutions for a range of problems. We note
that this strategy has been previously employed with WENO schemes. Zhu and Qiu [53,
54] developed trigonometric WENO methods and used them as limiters for Runge-Kutta
DG methods. Ha et al. [24-26] suggested to use exponential functions based WENO and
Christlieb et al. [14, 16] utilized exponential functions and radial basis functions as basis
functions for WENO to have optimal convergence orders. Other examples include work in
areas such as extended finite element methods (XFEMs). The XFEM has been developed
by generalizing the solution spaces of finite element numerical schemes for treating discon-
tinuities [4, 31, 34, 45] in problems such as crack propagation in solid mechanics.

To demonstrate the utility of the approach in plasma problems, we combined our non-
polynomial WENO method with an SL based Vlasov solver using a fourth-order splitting
method. In the original high-order SL WENO method [37], the Strang splitting scheme
was used. The method is only second order of accuracy in time. However, this choice was
made as it is often the spatial error that dominates in VP over the time error [37]. As noted
in [23], when taking large time steps, high-order in time matters. In the papers [19, 23, 36,
48], the Vlasov equations are solved based on high-order symplectic integrators. Hence,
we have also made use of high-order splitting schemes for the time integrator. In [3, 52],
the authors presented high-order symplectic integrators, symmetric symplectic partitioned
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Runge-Kutta (PRK) methods and Runge-Kutta-Nystrom (RKN) methods. Here, we imple-
ment both the fourth- and sixth-order RKN methods.

The rest of the paper is organized as follows. In Sect. 2.1, we review SL schemes for
solving 1D Vlasov equations and in Sect. 2.2, we formulate the novel SL scheme based on
non-polynomial WENO schemes. The time splitting methods are reviewed in Sect. 3 and
we suggest the high-order splitting SL algorithms in Sect. 4. Then, the numerical results
are presented in Sect. 5.

2 Construction of SL WENO Based on Non-polynomial Space

In this paper, we use splitting methods by decomposing the equation (1). A simple first
order in time splitting is as follows:

of +vof =0,
{a‘f+E[f]auf=0.

High-order time splitting is reviewed in Sect. 3. What is important to note is that this kind
of splitting converts the system into one-dimensional uncoupled problems. That is, both
equations from (4) are in the advection form so that they can be solved using a simple
characteristic update, this is also true for high-order splitting. We solve these advection
equations using SL, “characteristic update”, method based a WENO reconstruction. Here,
WENO reconstruction is an essentially non-oscillatory interpolate. By using WENO recon-
struction, we are leveraging the WENO interpolate to construct the solution at the foot of
the characteristics in a non-oscillatory manner. We now review this method and show how
we develop a non-polynomial reconstruction.

In the rest of this section, we restrict our attention to a one-dimensional linear advection
equation

“

of +adf=0, xeQcR'andr>0. 5)

For the appropriately defined function f(x, 7), we introduce the domain €2 uniformly distrib-
uted with the cells IJ = [x]._l,x]. +1] and the cell size Ax = Xl =X for j € Z. The cell
o2 ! 2 ! 2 ! 2

centers are denoted by x; = (x;,_1 +x;, 1) /2 and we use the notation f; for the function

value at the node x;, i.e., f; 1= f (x ). We also notate the function values at time ¢ = " as f”
forn e NU {0} when it is necessary to indicate specific n-th time level where " = Y7 el Atk
with timestep size Af 1= ! — ¢* for each k € N U {0}. For simplicity, we apply a fixed
timestep size Atk = At, Vk.

2.1 AnSL Scheme

In the previous work [37], the authors proposed an SL method with high-order WENO
reconstruction in space. The conservative WENO reconstruction for their method is based
on classical WENO introduced by Jiang and Shu [29] and the scheme can be extended to
arbitrarily high-order. In this subsection, we review the SL scheme based on fixed stencil
interpolation from [37].

We first consider the case 0 < a < % for the speed a from the target equation (5) and
start with a fifth-order Lagrange reconstruction for the function fat x € [x;, 4 i
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j+2
Af() 1= Y L) (©6)

i=j-3

with a fifth-order Lagrange function as the basis

Jj+2 X —x
z0=T] = @
kej3kei Xi T Mk

Assuming we have {f/.” }, the SL update for fat x; fromz =" to 7 = #*1is given by
[ = A" @), (8)

where X = x; — aAt using the characteristics formula. If we define a transformation func-
tion by

X xj
&x) = ,
Xj—1 =%

then the update (8) is expressed in conservative form as

[ == E® <fj"+1 (E®) —f;"_ . (5(2))) , ©9)
where f‘]’i ' (&) is a flux function to be defined. We note that
o X—x; _ At
0= X=X P

so that 0 < (%) < % Rearranging terms in the SL update from (6) to (9),
j+2
[ =A@ = Y 1
=3

=/ =@ (fj’il(é(fc» - 1<(:<x>>),

so that it is in a conservative form which reveals the flux function to be

n _ | n 41T
G A R (R (10)
2
where
ro1 1 1
% 0 w0
B _1 1 1 _1
60 24 4 24 30
=% > _1 _1 1
C, = 60 8 3 8 20 | (D
2 _3 1 r_ 1
20 8 12 30
-+ r 1 _ 1 1
L 20 24 24 24 120 4

For the case —% < a £ 0, the SL update for f at X; from 7 = " to t = "+1is obtained by
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i =g ot (7, (o5 -7, (a5) ). )

where the flux function is defined by

fj’-:%(f) - [fjn_z’ f;ﬁz] o [1’ ..,,54]T (13)

with the coefficient matrix
Cr(i,j)) =C,(6—1i,j) forl<i,j<5.

Finally we remark that the SL update in a conservative form keeps its conservation prop-
erty with the following proposition developed in reference [37].

Proposition 1 The SL scheme in equations (9) and (12) with flux functions (10) and (13)
conserves the total mass if periodic boundary conditions are imposed.

2.2 Non-polynomial-Based SL WENO

We observed the SL scheme can be written in a conservative form (9) and we can apply
the WENO reconstruction for the flux functions which preserves the conservation property.
In this section, we introduce the non-polynomial based WENO reconstruction to compute
the flux functions in (10) and (13). In [24], the authors introduced a sixth-order WENO
scheme based on the exponential polynomial space. We modify this scheme to a fifth-order
numerical method based on the trigonometric polynomial space and apply this method to
approximate the flux function.

We Cons1der the reconstruction of f (x) defined in (10) from (9) especially when

0<a S . For the opposite wind dlrectlonal case, the numerical flux is obtained via the
mirror- symmetrlc procedure with respect to x;. The flux function f ! in (10) can be rewrit-

ten with respect to the variable £ with a matrix C; in (11):

fj (O = [fp = ofim] - CL [L, ...754]T
= [,3 3 ]+1] C(:, 1) 1
+ iz = foat] - CL(12) - €
+ ..
+ [];_3, ’J;'+l] - C.(:,5) - £

then we apply the WENO procedure for the zeroth order coefficients, that is, for the coef-
ficients of £° = 1. In this section, the following will be developed in turn.

(i) Choose the non-polynomial basis to be used in interpolation process.
(i) Compute the flux function based on the non-polynomial basis from Step (i) with fifth-
order accuracy which will be a global solution for comparison.
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(iii)) We then construct three third-order overset approximations that compute the same flux
as in Step 2. As in standard WENO, we compute the linear combination of the local
approximations with linear weights that is equivalent to the form of Step (ii).

(iv) Next, we find the nonlinear weights using linear weights from Step (iii) for WENO
procedure by defining smoothness indicators.

(v) Apply non-polynomial WENO to reconstruct the numerical fluxes.

First, we set the basis function to construct the numerical flux function other than
Lagrange polynomials (7). We define a non-algebraic polynomial based function space
I's by

Iy :=span{¢p; : i=1,.5) (14)

with functions ¢; and if the space I's constitutes an extended Tchebysheff system on R, i.e.,

det(;(s;) 1 i,j=1,-+,5)#0 (15)
for any five-point stencil {s; :j=1,---,5}, the non-singularity of the interpola-
tion matrix in (15) is guaranteed [30]. Given function values of f at a five-point stencil
Ss 1= {x;_3, -+, x;; }, the numerical flux based on I’ is derived by the linear combination
of ¢, -+, @5 as follows. Let {@,, ---, @5} be a set of non-algebraic polynomials satisfying
I's = span{ @], -, @, }. In this paper, we introduce the set

{@gs =+, @5} 1= {1,sin Ax, cos Ax,x*, x*,x°}, (16)

so that the basis function space will be
I=s : 2 3 4
5 = span{cos Ax, sin Ax,x", x",x"},

which satisfies (15). Here the shape parameter 4 is simply chosen to be 4 = 1/Ax for our
experiments in Sect. 5, but it can be set to help the numerical scheme have optimal approx-
imation order [16, 26].

To approximate the flux function f"j_ , we define a function & implicitly through

1
2

1 x+%
NFE/AWM (17)

X

which is obviously approximated by the numerical flux f such that

Pird TPt s I
~

=, Ax Ax

of
ox

It is obvious that the cell average of & at x,, say i_z(xf), is given from the definition (17) and
the supposition of the problem:

f_z(xf) = $</X " h(S)dS =f(xf). (18)

We define a primitive function H of the function % by
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i3-%
of which point values of functions at x,, 1 are explicitly given by (18) as
2
i i
H<xi+%> = Ax Z h(x,) = Ax Z Jr (20)
2 £=-3 £=j-3

fori=j—3,-,j+ 2. Then, we can find an approximant AH(x) to H(x) based on the set of
basis { ¢, } (16) of form

5
AH(x) 1= ) a,0,(x) Q1)
n=0
which satisfies
AH () =H(x,0 ), Vizj=3,.j+2 22)
so that
AH(x) = H(x) + O(Ax®) (23)

in smooth region. Then, the derivative of AH(x) approximates H’(x) as

5
AH) () = ) a,¢(x) = H'(x) + O(Ax")

n=1

= h(x) + O(AX) (24)

by the relation (23) and the definition (19), where the first equality of the equation (24) is

satisfied by the choice of the basis function (16) such that (pg(x) = (1) = 0. Solving the

linear system (22) with (20) and differentiating the solution (21) at X1 gives us the coeffi-
2

cients C = [c, -+ ,CS]T such that

J(AH)

5
0x = Z %,0,,(x;_1)

2
n=1

X=X, |
()

5
= Z Caljmtin = [7;'—3’ ’fj+l] -C.
n=1
Therefore, we can obtain a numerical flux fj_ 1 defined on Ss, say ﬁSSI as
2 j_i
2S
7 5I — [];_3’ ’fi+1] .C

J=3 X (25)
= hj_% + (’)(Ax ),

where the last equality is satisfied on the smooth region. The coefficients C is given in
Appendix A. We remark that if we choose the basis function space I's (14) as a fifth-order
algebraic polynomial function space, then C = C;(:, 1) from (11).
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Now, we subdivide Ss into three 3-point substencils S, = {x;_3,4 Xj—p4> Xj— 144} fOT
k =0,1,2 and then in each substencil, the local numerical flux ]jk_ 12 which has third-order
convergence can be computed similar to above:

2k k
fj_ = _/’—3+k’fj"—2+k’fj—1+k] ¢

=h1+ O(Ax?) (26)

1
2

with the vectors of constants ¢k = [c’l‘, c’é, c’3‘]T for k =0, 1,2, which are presented also in
Appendix A. Then, we can find the linear weights {d, : k =0, 1,2} from (25) and (26)

such that

2
s o fia] - €= X dilfiosaiofrozsiofimra] - [k . ] +0(ax).

k=0

We note that once the basis set I’ is chosen, d;, can be obtained by a direct calculation:

dy = C(1)/cY,
d; = (C(2) — dy) /<], 27
dy=1-d,—d,.

To introduce nonlinear weights for WENO construction, the smoothness indicator in each

substencil can be defined by
] 1.2 2
ﬂk = ’D s]\]j‘ | l

+|p2s] (28)

with a p-th order undivided differential operator D‘S’k on each stencil S, for k =0, 1,2, and
the global smoothness indicator = defined as

T=(f— ﬁ2)2-
Then, nonlinear weights w,, are defined as
2
T
W, =@,/ ) &, and c?)k=dk<1+—>, (29)
§ ' (€ +5)?

where € > 0 is a small number introduced to avoid the denominator becoming zero.
Finally, we construct the final numerical flux to be used in SL update based on nonlinear
weights (29) as
T

f/"_%(f) — [13”_3’ ’]3’_:_1] . CL . [1, ...’54] , (30)

where the coefficient matrix C; is defined by
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2
G D) =) o,
k=0

C,(:,2)=C.(:,2),

C,(:.5) = C,(:,5)
with a matrix C; in (11) and local coefficient vectors

¢o = [c¥,¢5.¢3,0,01",

¢, =[0,c},c}.¢3,0]",

¢, =1[0,0,c1,¢3.31",
computed from (26).

We wrap this section up with verifying that the nonlinear weights w, from (29) make the
proposed scheme to be convergent in fifth order of accuracy in smooth region.

Proposition 2 Assume that the function f is smooth and the linear weights {d, } and nonlin-
ear weights {w, } are defined as in (27) and (29), respectively. Then, the following conver-
gence property is obtained:

w, —d;, = O(Ax*)
fork=0,1,2.

The proof of this proposition is direct from the definitions which is provided in
Appendix B.

3 High-Order Operator Splitting Methods

In this section, we review some time splitting methods used in split SL solutions to the
equation (1). A much longer review can be found in [23]. Here, we review both the well-
known Strang splitting method as well as two high-order methods based on RKN methods.
All these methods are used for time march of the decomposed system, such as the approach
we are taking to the equation (1). These time marching methods are used with both the pol-
ynomial and non-polynomial SL formulations and when SL methods are being compared,
the exact same time stepping method is used.

3.1 Strang Splitting Scheme

Here, we give a brief review for the Strang spliting method for the VP system [11, 37]. The
solution for the Vlasov equation (1) is preserved along the solution of the split equations

4):
of +vof =0, (31a)
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of + E[f1d,f = 0. (31b)

The above first-order splitting with a simple staggering of the solves. Equation (31),
endowed with a Poisson structure, is solved with the following Strang splitting procedure.

Procedure 1: Strang splitting update from f”(x,v) to f"*!(x, v)

(i) Solve the equation (31a) from f"(x, v) with timestep size %:

ffx,v)=f" (x - %v, v).

(ii) Compute p(x) by summing f*(x, v) over v and then solve for the electric field E*(x) att = 1" + %‘
(iii) Solve the equation (31b) from f*(x, v) with timestep size At:

[, v) = f*(x, v — AtE*(x)).

(iv) Solve the equation (31a) from f**(x, v) with timestep size %z

FH(x,v) = (x - %’v, v).

3.2 High-Order Splitting Method

As we develop high-order space schemes, we want to implement high-order splitting methods.
In [3, 19], the authors presented fourth- and sixth order RKN methods.
The solution to equation (31) can be updated by

f(-x7 V) =f()(-x -, V)’ f(x7 V) =f0(x’ V= tE[f()])

for a given initial condition f;(x, v) = f(x, v, ) so that it is naturally generalized. For s > 0,
the splitting scheme with 2s + 1 stages is defined by the relations

81(x,v) = folx — byvAt,v), (322)
gzj(x, V) = g2j—l(x’ V- sz_lE[gzj_l](x)Al), (32b)
g2j+1(x, V) = g2j(x - ijVA[, V), (32¢)

for j=1,--,2s where fi(x,v) :=f(x,v,t+ Ar) will be updated by g,,,,(x,v). For exam-
ple, if we set b, = b, = 0.5 and b; = 1 with s = 1, the splitting procedure (32) with a Pois-
son equation gives us the Strang scheme introduced in Sect. 3.1. In Table 1, we review
some optimized coefficients for the cases s = 6, 11 developed in [3].

Table 1 RKN coefficients

s =6(0rder4) :

[by, by, -+, b1,] =[0.0830,0.396,-0.039 1,0.120, —0.039 1, 0.396, 0.083 0],

[by, by, -+, by;]1 =10.245,0.605, —0.350, —0.350, 0.605, 0.245].

es=11(Order 6) :

[bgs by, -+, byp] = [0.0415,0.198,-0.04,0.075 3,-0.011 5,0.237,0.237,-0.011 5,0.075 3, —0.04, 0.198,0.041 5],
[by,bs, -, by ] =10.123,0.291, -0.127, -0.246, 0.357,0.205, 0.357, —0.246, —0.127,0.291, 0.123].
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Here, the first three digits of the coefficients are given for simplicity but it is recom-
mended to use sufficient digits in high-order accurate numerical schemes, see [3].

4 New Schemes for Solving VP Equation

In what follows, we suggest the scheme for solving VP equation (1) with (2) using the
SL WENO scheme based on non-polynomial space from Sect. 2 with high-order splitting
methods introduced in Sect. 3. Here, the proposed SL scheme based on non-polynomial
WENO procedure is referred to as SL-WENO-NP methods.

4.1 Algorithm for VP

We summarize the algorithm to solve VP system using the SL-WENO-NP scheme in the
following algorithm flowchart.

Algorithm 1: SL-WENO method based on non-polynomial space with high-order splitting

Solve (1) until the final time # = T. Let {b; : i =0, ---,2s5 + 1} be given as in Table 1 for s. Denote the
physical solution at the n-th time step 7 = " by f* = f(x(t"), v(t")). Start with n = 0 and ° = 0.
Whilet < T, given f" and At" att = 1",
(i). Using the SL-WENO-NP scheme, perform a time step b,Az" shift along the x-axis (see (32a)):
Fo0x,v) = f1(x = (by ALY, v).
Fori=1,--,s,

(ii) Compute the electric field E(x, #) at time ¢ = 1" + b,,_, A" by substituting 2~2 from the above
step in the Poisson equation (2) with (3):

V2p(x, 1) = [ dvfZ=2(x,v, 1) — 1.
(iii) Perform a time step b,;_, At" along the v-axis using the SL-WENO-NP scheme (see (32b)):
FPHN ) = A2 (0, v = (by_ AME[FH 2] (x)).

(iv) Perform a time step b,; A" shift along the x-axis by applying SL-WENO-NP scheme (see
(32¢)):

T2 v) =27 (x = by A, v).
Finally f"*'(x,v) :=f>(x,v) is obtained. If t = " + A" < T,

(v) Set the timestep size

Az"+1=CFLmin(L, & ) or At = Ax
sup 1 sup El

depends on the test problems and here, if t = " + Af"*! > T, set A+l = T — ", With
t =1+ (= 1" + Ar"*1), go to Step (i) and execute the process.

Otherwise, we finish this algorithm.

4.2 Poisson Solvers

We have seen that the Poisson equation (2) is solved after each x-advection stage from
Algorithm 1. There are various ways for solving the Poison equation to calculate the
electric field. We used the standard central difference scheme, implemented through the
Thomas algorithm, to solve the Poisson equation. The electric field is then computed by
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taking the central difference of the potential. Other implementations such as using a fast
Fourier transform (FFT) exist for solving for the electric field [23].

We briefly review our implementation with the Thomas algorithm here. The central
difference scheme for the Poisson equation (2b)

—Ap=p
on the periodic spatial domain x € [a, b] C R! can be written as
—(i1 =20+ i) = A p;, (33)

when we discretize the domain a =x; <x; < - <xy =b with a uniform cell size
Ax =x; —x;_;and say p; := p(x;) and ¢; := ¢p(x;) fori =0,---, N.

We are solving the Poisson equation (33) with periodic boundary conditions which,
in matrix form, gives

-2 1 0 .. 1 b o
1 -2 1 vee 0 ¢1 P1
01 -2 .. 0 b, |=-Ax% p,
1 0 .. 1 =2]lén, Pyt

Since we are interested in the electric field, not the potential, we can add any constant to
the potential. We choose to subtract ¢,_, from each ¢, and produce the resulting system

-2 1 0 .01 ¢ Po
1 -2 1 ..0||l ¢, o
0 1 =2 ..0| ¢ |=-A3 pn, |. (34)
1 0 .. 1 0lley, Pnoi

It is shown that the strategy above is spectrally accurate by Boyd [5]. Solving the linear
system (34), the algorithm for solving the potential is given by

sz N-1
$o=-= 20+ Doy
j=0
, ! (35)
¢ = —Ax"py + 2¢,,
¢ =—AxXp_ +2¢,_, — ¢, forj=2,--,N.

Now that we have potentials from (35), we can compute the electric field £ from the equa-
tions (2a) by using appropriate differential operators. In the following numerical experi-
ments, the second-order finite difference is employed but we remark that it is simple to
make this fourth order or sixth order.

We simply provide here for the fourth-order central scheme for the Poisson equation:

1

T12A2 (=i + 16¢,, —30¢; + 16¢,_, — ¢;_») = p;,

which can be solved in matrix form
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-30 16 -1 0 0 .. 16 [ ¢, 2
16 =30 16 -1 0 .. —1]|| ¢, P
-1 16 =3016 1 .. O b, |=-1284%| p,
16 -1 0 .. —116 =30]l¢y, PNt

Similarly, we subtract ¢y,_; from each ¢, then the resulting system is invertible.

5 Numerical Results

In this section, we provide some experimental results to demonstrate the performance of
the proposed scheme described in Algorithm 1. In numerical experiments, we set the
timestep size At = Ax except for the refinement studies where the CFL number is set to
be 1.2 and 2 to verify the convergence order of the proposed scheme with larger CFL
numbers. In addition, the numerical results from the proposed method are compared with
the SL with the classical WENO-based scheme [37]. Both schemes are performed with
fourth-order time splitting methods using RKN coefficients [3].

5.1 Scalar Test Problems
First, we consider scalar test problems to verify the ability of the SL-WENO-NP schemes.

Example 1 (One-dimensional linear transport) Consider the one-dimensional linear
equation

u,+u, =0 (36)

with a smooth initial function
u(x,0) = sin (n'x 41 cos(zrx)) 37)
b4

on periodic domain [—1, 1]. We deliberately chose a more complex initial function and
computed the solution until the time 7 = 2. The numerical errors and convergence orders
in L, and L; norms are shown in Table 2 for the cases with two CFL numbers, 1.2 and 2. In
both cases, we can observe that the fifth-order convergence in L and L, norms.

Example 2 (Two-dimensional linear transport) Consider the two-dimensional linear
equation

u +u, +u, =0. (38)
We check the convergence order of the proposed scheme with a smooth initial function

u(x,y,0) = sin(z(x + y)) (39)
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Table2 (Example 1) L, and

L,-errors and orders of accuracy CFL N, L L
for (36) with 37) at T =2 Error Order  Error Order
1.2 20 1.206 1IE-02 - 4.672 8E-03 -
40 7.808 5SE-04  3.95 2.1430E-04  4.45
80 3.1722E-05  4.62 7.067 9E-06  4.92
160 1.037 8E—-06  4.93 2.2433E-07 498
320 3.3023E-08  4.97 7.035 0E-09  4.99
2 20 1.844 1E-01 - 6.422 8E—02 -
40 2.306 2E-02  3.00 1.363 7TE-03  5.56
80 1.078 6E-04  7.74 8.284 0E-06  7.36
160 1.4404E-06  6.23 2.084 9E-07  5.31

320 3.0852E-08  5.54 6.2380E-09  5.06

on a periodic domain [—1, 1] X [-1, 1]. The L, and L, errors and approximation orders for
the numerical solutions at time 7' = 2 are given in the Table 3. Clearly, fifth order of accu-
racy is observed for the cases with CFL= 1.2 and 2.

Example 5.3 (Rigid body rotation) Consider the two-dimensional equation
u, — yu, +xu, = 0. (40)
First with a smooth initial function
u(x,y,0) = exp (—x2 - yz) 41

on periodic domain [—-27,27z] X [-27,27x], we examine the refinement study. In Table 4,
we present both the L and L, numerical errors and convergence orders of the proposed

Table 3 (Example 2) L and

CFL N, XN, L L
L,-errors and orders of accuracy x XA b !
for (38) with (39) atT =2 Error Order Error Order
12 20 x 20 4331 9E-03 - 2.664 9E-03 -
40 x 40 1.608 1IE-04 4.75 8.462 1E-05 4.98

80 % 80 5.1958E-06 4.95 2.6450E-06 5.00
160 x 160 1.5972E-07 5.02  8.260 5E-08 5.00
320320 4.8984E-09 5.03 2.5798E-09 5.00
2 20x 20 4.663 6E-03 — 2.646 8E-03 —
40 x 40 1.631 7E-04 4.84 8.1719E-05 5.02
80 x 80 5.1882E-06 4.97 2.5105E-06 5.02
160 x 160 1.586 6E-07 5.03  7.8373E-08 5.00
320x 320 4.7651E-09 5.06 2.4474E-09 5.00
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Table 4 (Example 3) L and L,

FL N, , L L
-errors and orders of accuracy for ¢ XNy i !
(40) with (41) at T =2z Error Order Error Order
1.2 18x 18 2.128 7TE-01 - 6.578 1IE-03 —

36 x 36 3.1951E-02 2.74 7.160 SE-04 3.20
72%x72 22924E-03 3.80 4.4391E-05 4.01
144 x 144  8.6384E-05 4.73  1.848 IE-06 4.59
288 x288 2791 0E-06 495 6.3305E-08 4.87
2 18x 18 2.157 2E-01 - 6.639 2E-03 -
36 x 36 32175E-02 275 7.148 0E-04 3.22
7272 2.2893E-03 3.81 4.4557E-05 4.00
144 x 144  8.6306E-05 4.73  1.8475E-06 4.59
288 x288  2.7879E-06 495 6.323 7TE-08 4.87

scheme. The fifth order of accuracy is observed not only when using the CFL number 1.2
but also when the CFL is 2.
Second, we apply the following discontinuous initial function:

[ L i@y el-L1x[-441U[-4,4] X [~ 1, 1],
u(x,y,0) = { 0, otherwise. “

We solve the equation up to 7 = 2z. The numerical results with 90 X 90 grids and 60 X 60
grids are shown in Figs. 1 and 2, respectively. In both cases, the proposed scheme preforms
better particularly for the edge of the rigid body than the previous scheme.

5.2 The VP System

In this section, we consider the 1D-1V VP model (1) and (2) with initial functions
Jo(x,v) = f(x,v,t = 0). Periodic boundary conditions are imposed to x-domain [a, b] and
zero boundary conditions are imposed to v-domain [—V, V] for all test examples.

Example 4 (Weak/strong Landau damping) We simulate the well-known Landau damping
problem which is the collisionless damping of electrostatic waves in a plasma. This case
has been computed by many authors [11]. Here, we test our VP problem on the initial
conditions
e—v2/2
Jox,v) = (1 + acos (kx)) \/2_ ,
T

where a is the strength of the perturbation and k =0.5. The domain boundaries are
a=0,b=4randV = 5in x and v space, respectively.

We choose a small perturbation @ = 0.01 first which will give us weak Landau damping.
The L, norms of the electric fields with 64 x 128 and 128 X 256 grids are shown in Fig. 3
with the theoretical damping rate y = —0.153 3 (in the solid yellow line), and the L; norms,

@ Springer



132 Communications on Applied Mathematics and Computation (2023) 5:116-142

(a) Previous
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(b) Proposed
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i

Fig. 1 (Example 3) The numerical solutions of equation (40) with a function (42) at T = 2z using 90 X 90
grids

08
0.6
04 -

0.2

-5

-5

(a) Previous (b) Proposed

Fig.2 (Example 3) The numerical solutions of equation (40) with a function (42) at T = 2z using 60 X 60
grids
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Fig.3 (Example 4: weak Landau damping) L, norm of the electric field with 64 x 128 (left) and 128 X 256
grids (right). Yellow line indicates the damping rate

L, norms, energy and entropy of the solutions with 64 x 128 grids are given in Fig. 4. The
proposed scheme produced the same results in electric fields, L; and L, norms as the previ-
ous one, and slightly better results in energy and entropy than the previous method.
Second, we choose a perturbation @ = 0.5 for seeing the strong Landau damping. The
plots for the phase space at T = 40, 80 and 120 with the previous and proposed scheme
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Fig.4 (Example 4: weak Landau damping) (a) L, norms, (b) L, norms, (c) energy and (d) entropy evolution
with 64 X 128 grids
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using 128 X 256 grids are given in Fig. 5. To observe the shape of the phase space follow-
ing the time history with several resolutions, we present plots from the proposed scheme
using 64 X 128grid, 128 X 256 and 256 x 512 grids in Figs. 6, 7 and 8, respectively. Finally,
L, norms of the electric fields with 64 x 128 and 128 x 256 grids are shown in Fig. 9 and
also the L; norms, L, norms, energy and entropy of the solutions with 64 x 128 grids are

5 0.5 5 0.5
4 4
3 04 3 04
2 2
1F 0.3 1 0.3
>0 50
1 0.2 -1 0.2
2 2
3 0.1 3 0.1
4 4
-5 0 -5 0
e X
(a) Previous (b) Proposed
5 05 5 05
4 4
3 04 3 0.4
2 2
1 0.3 1 - 03
> 0 =0
4 0.2 A 102
2 2
3 0.1 3 0.1
-4 4
-5 0 -5 0
o 2 4 6 8 10 12 0o 2 4 6 8 10 12
X X
(c¢) Previous (d) Proposed
5 0.5 5 0.5
4 4
3 0.4 3 04
2 2
1 03 1 . .03
> 0 >0
-1 0.2 -1 102
2 2
3 0.1 3 0.1
4 4
-5 0 -5 0
o 2 4 6 8 10 12 o 2 4 & 8 10 12
X X
(e) Previous (f) Proposed

Fig.5 (Example 4: strong Landau damping) The phase space at T = 40 ((a), (b)), T = 80 ((c), (d)) and
T =120 ((e),(f)) with previous scheme ((a), (c), (¢)) and proposed scheme ((b), (d), (f)) using 128 X 256
grids
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Fig.6 (Example 4: strong Landau damping) The phase space of the time evolution until 7 = 80
(T =5,10,15,20,40 and 80) using 64 x 128 grids

05

S oh b b Ao 2w s
v
L S G - S S S

05

04

03

02

5 05 05 5 05
4 4
3 04 04 3 04
2 2
1 03 03 1 03
=0 = =0
E 02 - 02 -1 02
2 - 2
3 01 g 01 3 01
-4 - 4
5 4 - 0 5 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
x x x

Fig.7 (Example 4: strong Landau damping) The phase space of the time evolution until 7 = 120
(T =40, 80 and 120) using 128 X 256 grids
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Fig.8 (Example 4: strong Landau damping) The phase space of the time evolution until 7 = 120
(T = 40, 80 and 120) using 256 x 512 grids

given in Fig. 10. We can observe that the scheme does not preserve the discrete quantities
very well, which is a well-known problem with the mesh-based method, but the proposed
scheme preserves the energy and entropy better than the previous scheme.
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Fig.9 (Example 4: strong Landau damping) L, norm of the electric field with 64 x 128 (left) and 128 x 256

(right) grids
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Fig. 10 (Example 4: strong Landau damping) (a) L, norms, (b) L, norms, (c) energy and (d) entropy evolu-

tion with 64 x

128 grids
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Example 5 (Two-stream instability) Finally we simulate the symmetric warm two-stream
instability problem [20]:

folxav) = <1 +a < cos(2kn) + 083K | o (kx)> > 2 P45,
7421

1.2
05 05
0.4 0.4
. . 03 03
-— : —

. 02 . 02
0.1 0.1

0 0
0 2 4 6 8 10 12

X
0.5 0.5
0.4 0.4
. 0.3
E 0.1
0
0 2 4 6 8 10 12

(b) Proposed
x

(d) Proposed

0.5
0.4
— ~ 0.3
- -
- 02
0.1
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4 6 8 10 12
X x
(e) Previous (f) Proposed

Fig. 11 (Example 5: two-stream instability) Comparison of the phase spaces from previous and proposed
schemes with 64 x 128 ((a), (b)), 128 X 256 ((c), (d)) and 256 x 512 ((e), ()) grids
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where « is the strength of the perturbation. Here, we set @ = 0.01 and k = 0.5. The domain
boundaries are a = 0,b = 47 and V = 5 in x and v spaces, respectively.

The results from the previous and proposed schemes are given in Fig. 11. In Fig. 11 (b)
which is a result from the proposed scheme with 64 x 128 resolution, there is a structure
around velocity v = +1 that is not well supported in (a), which is a result from the previous
scheme, but is observed in (c), 128 X 256 resolution with the polynomial-based method.
Likewise, if we look at Fig. 11 (d), proposed results for 128 X 256, there are structures
around x = 3 and x = 11 between velocity v = —1 and v = 1 which are not supported by
the previous method (c) but show up in (e), 256 X 512 resolution in the polynomial-based
method. It is clear that the new method is supporting finer structure on meshes at half the
resolution of the polynomial-based method. In 6D, this would serve to be a substantial
savings.

6 Conclusion

In this paper, we proposed an SL method based on non-polynomial function space for solving
the Vlasov equation. More accurate approximation was achieved by exploiting the trigono-
metric polynomial basis at the stage of the construction of the WENO scheme. The proposed
schemes were applied to solve various scalar test problems containing 2D advection equa-
tion and rigid body rotation problem, and the VP system containing weak and strong Lan-
dau damping and two-stream instability problems. While the proposed methods demonstrated
improved accuracy over the previous SL method with classical WENO approaches, the use of
high-order splitting methods in time also helps for problems exhibiting discontinuous struc-
tures. A highlight of this work is reflected in the two-stream instability problem (see Example
3 in Sect. 5), where the proposed method with lower resolution presents the results similar to
those of the previous results with higher resolution. In 6D, this would imply that the new non-
polynomial method would have substantial cost savings over traditional SL methods based
on polynomial reconstruction. In future work, we plan to develop the proposed scheme to
incorporate the positivity preserving property, as suggested in [50] and also investigate an SL
scheme capable of choosing the optimal parameters using local properties of the underlying
data to further increase accuracy, as in [14, 16].

Appendix A Formulation of C and ¢,

The numerical flux fj._l in (25) based on the function space I's = span{cos x, sin x, x, x>, x*}
2
is constructed by using the coefficients

_[.550 157 1587 281 155 1"
~ 116403 724°2057°599" 3016]

The local numerical flux fk , In (26) can be obtained based on algebraic function space
72
IT, = span{1, x,x?} with the constants
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o 1 711]T

¢ 366
c1=[_1§1r
6°6" 31"

» (15 11t
B 5’8’_6]’

or based on the function space span{1, sin x, cos x} with the coefficients

& [109 478 1411]T

280" 4717 868

) 826 1973 10917
[‘M’M’M] ’

, T109 1973 826 17
[mm"m] '

Cc

C

Appendix B Proof of Proposition 2

Assuming f smooth enough around the stencil, we can represent the smoothness indica-
tors (28) using Taylor expansion as

3

2 2
Bo = ( | éAff.”’l + O(Ax“)) + <Ax2 Ang’” + O(Ax )>
3 24 J=3 2

2

2 2
B, = <Axf + ﬂAx Vi +O(Ax4)) <Ax2 " ;Ax3f”’ +O(Ax4)>

\..
I\)

2 2
iAxﬁj’_’g + O(Ax4)> + <Ax2 Ax3f”’ + O(Ax4)>
2

= A /
& ( V5

1
=3
Then for each k = 0, 1, 2, we can obtain

T s By — Bp)*
(e + B)? (e + B)?

2
<2Ax4’ S +O(Ax5)>

(e + B)?
=1+ CAx* + O(AX®)

=1+

with a constant C, by choosing € = Ax?, so that it is straightforward by the definition of
in (29).
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