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Abstract
In this paper, we present a semi-Lagrangian (SL) method based on a non-polynomial func-
tion space for solving the Vlasov equation. We find that a non-polynomial function based 
scheme is suitable to the specifics of the target problems. To address issues that arise in 
phase space models of plasma problems, we develop a weighted essentially non-oscilla-
tory (WENO) scheme using trigonometric polynomials. In particular, the non-polynomial 
WENO method is able to achieve improved accuracy near sharp gradients or discontinui-
ties. Moreover, to obtain a high-order of accuracy in not only space but also time, it is 
proposed to apply a high-order splitting scheme in time. We aim to introduce the entire 
SL algorithm with high-order splitting in time and high-order WENO reconstruction in 
space to solve the Vlasov-Poisson system. Some numerical experiments are presented to 
demonstrate robustness of the proposed method in having a high-order of convergence and 
in capturing non-smooth solutions. A key observation is that the method can capture phase 
structure that require twice the resolution with a polynomial based method. In 6D, this 
would represent a significant savings.

Keywords Semi-Lagrangian methods · WENO schemes · High-order splitting methods · 
Non-polynomial basis · Vlasov equation · Vlasov-Poisson system

Mathematics Subject Classification 35Q83 · 65D05 · 65D15 · 65M06 · 65M22

 * Hyoseon Yang 
 hyoseon@msu.edu
 Andrew Christlieb 
 christli@msu.edu
 Matthew Link 
 linkmat1@msu.edu
 Ruimeng Chang 
 ruimeng.chang17@student.xjtlu.edu.cn
1 Department of Computational Mathematics, Science and Engineering, Michigan State University, 

East Lansing, MI 48824, USA
2 Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, 

Jiangsu, China

Communications on Applied Mathematics and Computation (2023) 5:116–142

Published online: 24 August 2021 
/  

http://orcid.org/0000-0002-9847-3716
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-021-00150-5&domain=pdf


 

1 3

1 Introduction

Kinetic equations represent a fundamental class of models that describe the evolution of a 
distribution of particles. In particular, kinetic models describe a range of phenomenon we 
encounter, from collisionless gases through collision dominated flow. In collision domi-
nated flow, the models reduce to dynamics described by fluid models. In the collisionless 
limit, kinetic models describe a class of dynamics known as kinetic effects, which in the 
class of plasma’s includes: Landau damping, two-stream instability, bump-on-tail instabil-
ity, etc. While kinetic models characterize a larger class of effects than fluid models, they 
are computationally much more demanding. What makes them more demanding is that 
they are naturally six dimensional (three space, three velocity) plus time, the fastest veloci-
ties greatly restrict the time step in explicit methods, and the models for inter-particle col-
lisions can be very computationally demanding. In this paper, we examine non-polynomial 
semi-Lagrangian (SL) methods as a way of improving computability in the collisionless 
limit. Hence, as a prototypical model, this paper addresses a numerical scheme to solve 
the Vlasov-Poisson (VP) system of equations. In the tests presented in the results section, 
the method shows improved accuracy over polynomial based methods, suggesting that for 
the same accuracy, the non-polynomial method can work at effectively one half the reso-
lution in each dimension of the polynomial based approach, which would be a nontrivial 
computational savings in 6D. In this paper we consider the 1D-1V VP model with mobile 
electrons and a fixed ion background:

and 

where 𝐱 × 𝐯 ∈ 𝛺𝐱 ×𝛺𝐯 ⊂ ℝm ×ℝm . Here, f (𝐱, 𝐯, t) is a distribution function describing a 
probability of finding an electron with velocity 𝐯 at position 𝐱 and time t,

is the charge density, 𝐄 is the electric field, and 𝜙 is the electrostatic potential. The equation 
(1) can also be written in the following conservative form:

The simulations for solving the VP equations are typically performed using one of two 
classes of numerical methods. The one class is the Lagrangian approach, where phase 
space is represented as a collection of moving points tracing out characteristic trajectories 
[2, 6, 9, 10, 15, 17, 18, 22, 28, 33, 42, 46, 47, 49]. These include Lagrangian approaches 
that trace both forward or backward along un-split trajectories, often an adaptive repre-
sentation of phase space and a mapping or remapping used to mitigate complexity. The 
most popular of these approaches, for both its conservative properties as well as its ease 
of implementation, is the particle-in-cell (PIC) methods [2, 9, 10, 28, 42, 46, 47, 49], 
which are based on tracing the motion of the plasma by macro-particles. More recently, 

(1)𝜕f

𝜕t
+ 𝐯 ⋅ ∇𝐱f + 𝐄(𝐱, t) ⋅ ∇𝐯f = 0

(2a)𝐄(𝐱, t) = −∇𝐱𝜙(𝐱, t),

(2b)−Δ𝐱𝜙(𝐱, t) = 𝜌(𝐱, t),

(3)𝜌(𝐱, t) = ∫𝛺𝐯

f (𝐱, 𝐯, t)d𝐯 − 1

ft + ∇𝐱(𝐯f ) + ∇𝐯(𝐄(𝐱, t)f ) = 0.
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the energy conserving fully implicit PIC methods have been developed [9, 10, 32]. These 
methods are combined with symplectic integrators and lead to provably conservative meth-
ods. The other class of methods for solving the VP system is the Eulerian approach, which 
discretize the equations on a fixed grid of the phase space. The SL method is one of the 
most widely used algorithms among the Eulerian approaches. The SL method is a very 
attractive method for simulating kinetic equations, because it does not contain the Courant-
Friedrichs-Lewy (CFL) condition unlike other Eulerian methods. Early works on using 
SL schemes for Vlasov systems were based on the splitting scheme of Cheng and Knorr 
[11]. Various schemes were invented but all of the schemes were found to be roughly 
equally accurate [20, 21, 27, 35, 44]. Later, SL schemes focused on creating high-order 
schemes and incorporating weighted essentially non-oscillatory (WENO) methods into the 
SL framework [29]. A pointwise WENO scheme was designed for handling interpolation 
for backward SL schemes [8]. The WENO was applied to the SL method by writing the 
scheme in a flux difference form [37, 39]. Later, a Hermite WENO (HWENO) scheme 
was tried with the flux difference form [7]. An alternative SL high-order approach came 
from combining the discontinuous Galerkin (DG) method with the SL framework to get 
SL DG methods for Vlasov models [40, 41]. In a forward SL framework, the convected 
scheme (CS), first proposed in [27], was extended to obtain arbitrarily high-order by cor-
recting the fluxes [23]. The CS was further improved by incorporating WENO [43]. An 
alternate Eulerian approach involved the development of a fully implicit conservative 
DG approach on a fixed mesh [12, 13]. The approach used splitting to keep the cost of 
the implicit solves down. Alternative Eulerian SL methods have looked at wavelet based 
methods. The method proposed in [1] made use of an adaptive wavelet-based method for 
the Vlasov Maxwell system. More recently, Eulerian SL methods developed in [38, 51] 
bluer the lines between Eulerian and Lagrangian updates using un-split characteristics to 
advance between time levels of a fixed mesh.

In this work, we introduce a generalized WENO interpolation based on a non-polyno-
mial function space to apply to an SL method. While this approach could be incorporated 
into un-split methods, such as thous in [38, 51], here we limit our attention to split SL 
methods. It has been observed that approximation schemes constructed based on a non-
polynomial basis provide improved numerical solutions for a range of problems. We note 
that this strategy has been previously employed with WENO schemes. Zhu and Qiu [53, 
54] developed trigonometric WENO methods and used them as limiters for Runge-Kutta 
DG methods. Ha et al. [24–26] suggested to use exponential functions based WENO and 
Christlieb et al. [14, 16] utilized exponential functions and radial basis functions as basis 
functions for WENO to have optimal convergence orders. Other examples include work in 
areas such as extended finite element methods (XFEMs). The XFEM has been developed 
by generalizing the solution spaces of finite element numerical schemes for treating discon-
tinuities [4, 31, 34, 45] in problems such as crack propagation in solid mechanics.

To demonstrate the utility of the approach in plasma problems, we combined our non-
polynomial WENO method with an SL based Vlasov solver using a fourth-order splitting 
method. In the original high-order SL WENO method [37], the Strang splitting scheme 
was used. The method is only second order of accuracy in time. However, this choice was 
made as it is often the spatial error that dominates in VP over the time error [37]. As noted 
in [23], when taking large time steps, high-order in time matters. In the papers [19, 23, 36, 
48], the Vlasov equations are solved based on high-order symplectic integrators. Hence, 
we have also made use of high-order splitting schemes for the time integrator. In [3, 52], 
the authors presented high-order symplectic integrators, symmetric symplectic partitioned 
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Runge-Kutta (PRK) methods and Runge-Kutta-Nyström (RKN) methods. Here, we imple-
ment both the fourth- and sixth-order RKN methods.

The rest of the paper is organized as follows. In Sect. 2.1, we review SL schemes for 
solving 1D Vlasov equations and in Sect. 2.2, we formulate the novel SL scheme based on 
non-polynomial WENO schemes. The time splitting methods are reviewed in Sect. 3 and 
we suggest the high-order splitting SL algorithms in Sect. 4. Then, the numerical results 
are presented in Sect. 5.

2  Construction of SL WENO Based on Non-polynomial Space

In this paper, we use splitting methods by decomposing the equation (1). A simple first 
order in time splitting is as follows:

High-order time splitting is reviewed in Sect. 3. What is important to note is that this kind 
of splitting converts the system into one-dimensional uncoupled problems. That is, both 
equations from (4) are in the advection form so that they can be solved using a simple 
characteristic update, this is also true for high-order splitting. We solve these advection 
equations using SL, “characteristic update”, method based a WENO reconstruction. Here, 
WENO reconstruction is an essentially non-oscillatory interpolate. By using WENO recon-
struction, we are leveraging the WENO interpolate to construct the solution at the foot of 
the characteristics in a non-oscillatory manner. We now review this method and show how 
we develop a non-polynomial reconstruction.

In the rest of this section, we restrict our attention to a one-dimensional linear advection 
equation

For the appropriately defined function f(x, t), we introduce the domain 𝛺 uniformly distrib-
uted with the cells Ij = [xj− 1

2

, xj+ 1

2

] and the cell size Δx = xj+ 1

2

− xj− 1

2

 for j ∈ ℤ . The cell 
centers are denoted by xj = (xj− 1

2

+ xj+ 1

2

)∕2 and we use the notation fj for the function 
value at the node xj , i.e., fj ∶= f (xj) . We also notate the function values at time t = tn as f n

j
 

for n ∈ ℕ ∪ {0} when it is necessary to indicate specific n-th time level where tn = ∑n

k=1
Δtk 

with timestep size Δtk ∶= tk+1 − tk for each k ∈ ℕ ∪ {0} . For simplicity, we apply a fixed 
timestep size Δtk = Δt,∀k.

2.1  An SL Scheme

In the previous work [37], the authors proposed an SL method with high-order WENO 
reconstruction in space. The conservative WENO reconstruction for their method is based 
on classical WENO introduced by Jiang and Shu [29] and the scheme can be extended to 
arbitrarily high-order. In this subsection, we review the SL scheme based on fixed stencil 
interpolation from [37].

We first consider the case 0 ⩽ a ⩽
Δx

2Δt
 for the speed a from the target equation (5) and 

start with a fifth-order Lagrange reconstruction for the function f at x ∈ [xj, xj+ 1

2

]:

(4)
{

𝜕tf + v𝜕xf = 0,

𝜕tf + E[f ]𝜕vf = 0 .

(5)𝜕tf + a𝜕xf = 0, x ∈ 𝛺 ⊂ ℝ1 and t ⩾ 0.
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with a fifth-order Lagrange function as the basis

Assuming we have {f n
j
} , the SL update for f at xj from t = tn to t = tn+1 is given by

where x̄ = xj − aΔt using the characteristics formula. If we define a transformation func-
tion by

then the update (8) is expressed in conservative form as

where f̂ n
j± 1

2

(𝜉) is a flux function to be defined. We note that

so that 0 ⩽ 𝜉(x̄) ⩽ 1

2
 . Rearranging terms in the SL update from (6) to (9),

so that it is in a conservative form which reveals the flux function to be

where

For the case − Δx

2Δt
⩽ a ⩽ 0 , the SL update for f at xj from t = tn to t = tn+1 is obtained by

(6)Af (x) ∶=

j+2∑
i=j−3

fi𝓁i(x)

(7)𝓁i(x) =

j+2∏
k=j−3,k≠i

x − xk
xi − xk

.

(8)f n+1
j

(x) = Af n(x̄),

𝜉(x) =
x − xj

xj−1 − xj
,

(9)f n+1
j

= f n
j
− 𝜉(x̄)

(
f̂ n
j+ 1

2

(𝜉(x̄)) − f̂ n
j− 1

2

(𝜉(x̄))

)
,

𝜉(x̄) =
x̄ − xj

xj−1 − xj
= a

Δt

Δx

f n+1
j

= Af n(x̄) =

j+2∑
i=j−3

f n
i
𝓁i(x̄)

= f n
j
− 𝜉(x̄)

(
f̂ n
j+ 1

2

(𝜉(x̄)) − f̂ n
j− 1

2

(𝜉(x̄))

)
,

(10)f̂ n
j− 1

2

(𝜉) =
[
f n
j−3

, ⋯ , f n
j+1

]
⋅ CL ⋅

[
1, ⋯ , 𝜉4

]T
,

(11)CL =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1

30
0 − 1

24
0

1

120

− 13

60
− 1

24

1

4

1

24
− 1

30

47

60

5

8
− 1

3
− 1

8

1

20

9

20
− 5

8

1

12

1

8
− 1

30

− 1

20

1

24

1

24
− 1

24

1

120

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.
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where the flux function is defined by

with the coefficient matrix

Finally we remark that the SL update in a conservative form keeps its conservation prop-
erty with the following proposition developed in reference [37].

Proposition 1 The SL scheme in equations (9) and (12) with flux functions (10) and (13) 
conserves the total mass if periodic boundary conditions are imposed.

2.2  Non-polynomial-Based SL WENO

We observed the SL scheme can be written in a conservative form (9) and we can apply 
the WENO reconstruction for the flux functions which preserves the conservation property. 
In this section, we introduce the non-polynomial based WENO reconstruction to compute 
the flux functions in (10) and (13). In [24], the authors introduced a sixth-order WENO 
scheme based on the exponential polynomial space. We modify this scheme to a fifth-order 
numerical method based on the trigonometric polynomial space and apply this method to 
approximate the flux function.

We consider the reconstruction of f̂j− 1

2

(x) defined in (10) from (9) especially when 
0 ⩽ a ⩽

Δx

2Δt
 . For the opposite wind directional case, the numerical flux is obtained via the 

mirror-symmetric procedure with respect to xj . The flux function f̂j− 1

2

 in (10) can be rewrit-
ten with respect to the variable 𝜉 with a matrix CL in (11):

then we apply the WENO procedure for the zeroth order coefficients, that is, for the coef-
ficients of 𝜉0 = 1 . In this section, the following will be developed in turn. 

(i) Choose the non-polynomial basis to be used in interpolation process.
(ii) Compute the flux function based on the non-polynomial basis from Step (i) with fifth-

order accuracy which will be a global solution for comparison.

(12)f n+1
j

= f n
j
− a

Δt

Δx

(
f̂ n
j+ 1

2

(
a
Δt

Δx

)
− f̂ n

j− 1

2

(
a
Δt

Δx

))
,

(13)f̂ n
j+ 1

2

(𝜉) =
[
f n
j−2

, ⋯ , f n
j+2

]
⋅ CR ⋅

[
1, ⋯ , 𝜉4

]T

CR(i, j) = CL(6 − i, j) for 1 ⩽ i, j ⩽ 5.

f̂j− 1

2

(𝜉) =
[
fj−3, ⋯ , fj+1

]
⋅ CL ⋅

[
1, ⋯ , 𝜉4

]T

=
[
fj−3, ⋯ , fj+1

]
⋅ CL(∶, 1) ⋅ 1

+
[
fj−3, ⋯ , fj+1

]
⋅ CL(∶, 2) ⋅ 𝜉

+⋯

+
[
fj−3, ⋯ , fj+1

]
⋅ CL(∶, 5) ⋅ 𝜉

4,
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(iii) We then construct three third-order overset approximations that compute the same flux 
as in Step 2. As in standard WENO, we compute the linear combination of the local 
approximations with linear weights that is equivalent to the form of Step (ii).

(iv) Next, we find the nonlinear weights using linear weights from Step (iii) for WENO 
procedure by defining smoothness indicators.

(v) Apply non-polynomial WENO to reconstruct the numerical fluxes.

First, we set the basis function to construct the numerical flux function other than 
Lagrange polynomials (7). We define a non-algebraic polynomial based function space 
𝛤5 by

with functions 𝜙i and if the space 𝛤5 constitutes an extended Tchebysheff system on ℝ , i.e.,

for any five-point stencil {sj ∶ j = 1,⋯ , 5} , the non-singularity of the interpola-
tion matrix in (15) is guaranteed [30]. Given function values of f at a five-point stencil 
𝐒5 ∶= {xj−3,⋯ , xj+1} , the numerical flux based on 𝛤5 is derived by the linear combination 
of 𝜙1,⋯ ,𝜙5 as follows. Let {𝜑0,⋯ ,𝜑5} be a set of non-algebraic polynomials satisfying 
𝛤5 = span{𝜑′

0
,⋯ ,𝜑′

5
} . In this paper, we introduce the set

so that the basis function space will be

which satisfies (15). Here the shape parameter 𝜆 is simply chosen to be 𝜆 = 1∕Δx for our 
experiments in Sect. 5, but it can be set to help the numerical scheme have optimal approx-
imation order [16, 26].

To approximate the flux function f̂j− 1

2

 , we define a function h implicitly through

which is obviously approximated by the numerical flux f̂  such that

It is obvious that the cell average of h at x𝓁 , say h̄(x𝓁) , is given from the definition (17) and 
the supposition of the problem:

We define a primitive function H of the function h by

(14)𝛤5 ∶= span{𝜙i ∶ i = 1,⋯ , 5}

(15)det(𝜙i(sj) ∶ i, j = 1,⋯ , 5) ≠ 0

(16){𝜑0,⋯ ,𝜑5} ∶= {1, sin 𝜆x, cos 𝜆x, x3, x4, x5},

𝛤5 = span{cos 𝜆x, sin 𝜆x, x2, x3, x4},

(17)f (x) =
1

Δx ∫
x+ Δx

2

x− Δx

2

h(s)ds

𝜕f

𝜕x

||||x=xj
=

hj+ 1

2

− hj− 1

2

Δx
≈

f̂j+ 1

2

− f̂j− 1

2

Δx
.

(18)h̄(x𝓁) =
1

Δx ∫
x
𝓁+ 1

2

x
𝓁− 1

2

h(s)ds = f (x𝓁).
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of which point values of functions at xi+ 1

2

 are explicitly given by (18) as

for i = j − 3,⋯ , j + 2 . Then, we can find an approximant AH(x) to H(x) based on the set of 
basis {𝜑n} (16) of form

which satisfies

so that

in smooth region. Then, the derivative of AH(x) approximates H′(x) as

by the relation (23) and the definition (19), where the first equality of the equation (24) is 
satisfied by the choice of the basis function (16) such that 𝜑′

0
(x) = (1)′ = 0 . Solving the 

linear system (22) with (20) and differentiating the solution (21) at xj− 1

2

 gives us the coeffi-
cients 𝐂 = [c1,⋯ , c5]

T such that

Therefore, we can obtain a numerical flux f̂j− 1

2

 defined on 𝐒5 , say f̂ 𝐒5
j− 1

2

 as

where the last equality is satisfied on the smooth region. The coefficients 𝐂 is given in 
Appendix A. We remark that if we choose the basis function space 𝛤5 (14) as a fifth-order 
algebraic polynomial function space, then 𝐂 = CL(∶, 1) from (11).

(19)H(x) = ∫
x

x
j−3− 1

2

h(s)ds

(20)H
(
xi+ 1

2

)
= Δx

i∑
𝓁=j−3

h̄(x𝓁) = Δx

i∑
𝓁=j−3

f𝓁

(21)AH(x) ∶=

5∑
n=0

𝛼n𝜑n(x)

(22)AH
(
xi+ 1

2

)
= H

(
xi+ 1

2

)
, ∀i = j − 3,⋯ , j + 2,

(23)AH(x) = H(x) +O
(
Δx6

)

(24)

(AH)′(x) =

5∑
n=1

𝛼n𝜑
′
n
(x) = H′(x) +O

(
Δx5

)

= h(x) +O(Δx5)

𝜕(AH)

𝜕x

||||x=x
j− 1

2

=

5∑
n=1

𝛼n𝜑
′
n
(xj− 1

2

)

=

5∑
n=1

cnfj−4+n =
[
fj−3, ⋯ , fj+1

]
⋅ 𝐂.

(25)
f̂
𝐒5

j− 1

2

=
[
fj−3, ⋯ , fj+1

]
⋅ 𝐂

= hj− 1

2

+O
(
Δx5

)
,
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Now, we subdivide 𝐒5 into three 3-point substencils Sk = {xj−3+k, xj−2+k, xj−1+k} for 
k = 0, 1, 2 and then in each substencil, the local numerical flux f̂ k

j−1∕2
 which has third-order 

convergence can be computed similar to above:

with the vectors of constants 𝐜k = [ck
1
, ck

2
, ck

3
]T for k = 0, 1, 2 , which are presented also in 

Appendix  A. Then, we can find the linear weights {dk ∶ k = 0, 1, 2} from (25) and (26) 
such that

We note that once the basis set 𝛤5 is chosen, dk can be obtained by a direct calculation:

To introduce nonlinear weights for WENO construction, the smoothness indicator in each 
substencil can be defined by

with a p-th order undivided differential operator Dp

Sk
 on each stencil Sk for k = 0, 1, 2 , and 

the global smoothness indicator 𝜏 defined as

Then, nonlinear weights 𝜔k are defined as

where 𝜖 > 0 is a small number introduced to avoid the denominator becoming zero.
Finally, we construct the final numerical flux to be used in SL update based on nonlinear 

weights (29) as

where the coefficient matrix C̃L is defined by

(26)

f̂ k
j− 1

2

=
[
fj−3+k, fj−2+k, fj−1+k

]
⋅ 𝐜k

= hj− 1

2

+O
(
Δx3

)

[
fj−3, ⋯ , fj+1

]
⋅ 𝐂 =

2∑
k=0

dk
[
fj−3+k, fj−2+k, fj−1+k

]
⋅
[
ck
1
, ck

2
, ck

3

]T
+O

(
Δx5

)
.

(27)
⎧
⎪
⎨
⎪⎩

d0 = 𝐂(1)∕c0
1
,

d1 = (𝐂(2) − d0c
0
1
)∕c1

1
,

d2 = 1 − d0 − d1.

(28)𝛽k ∶=
|||D

1
Sk
fj
|||
2
+
|||D

2
Sk
fj
|||
2
,

𝜏 = (𝛽0 − 𝛽2)
2.

(29)𝜔k = 𝜔̃k∕

2∑
s=0

𝜔̃s and 𝜔̃k = dk

(
1 +

𝜏

(𝜖 + 𝛽k)
2

)
,

(30)f̂ n
j− 1

2

(𝜉) =
[
f n
j−3

, ⋯ , f n
j+1

]
⋅ C̃L ⋅

[
1, ⋯ , 𝜉4

]T
,
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with a matrix CL in (11) and local coefficient vectors

computed from (26).
We wrap this section up with verifying that the nonlinear weights 𝜔k from (29) make the 

proposed scheme to be convergent in fifth order of accuracy in smooth region.

Proposition 2 Assume that the function f is smooth and the linear weights {dk} and nonlin-
ear weights {𝜔k} are defined as in (27) and (29), respectively. Then, the following conver-
gence property is obtained:

for k = 0, 1, 2.

The proof of this proposition is direct from the definitions which is provided in 
Appendix B.

3  High-Order Operator Splitting Methods

In this section, we review some time splitting methods used in split SL solutions to the 
equation (1). A much longer review can be found in [23]. Here, we review both the well-
known Strang splitting method as well as two high-order methods based on RKN methods. 
All these methods are used for time march of the decomposed system, such as the approach 
we are taking to the equation (1). These time marching methods are used with both the pol-
ynomial and non-polynomial SL formulations and when SL methods are being compared, 
the exact same time stepping method is used.

3.1  Strang Splitting Scheme

Here, we give a brief review for the Strang spliting method for the VP system [11, 37]. The 
solution for the Vlasov equation (1) is preserved along the solution of the split equations 
(4): 

C̃L(∶, 1) =

2∑
k=0

𝜔k𝐜k,

C̃L(∶, 2) = CL(∶, 2),

⋮

C̃L(∶, 5) = CL(∶, 5)

𝐜0 = [c0
1
, c0

2
, c0

3
, 0, 0]T,

𝐜1 = [0, c1
1
, c1

2
, c1

3
, 0]T,

𝐜2 = [0, 0, c2
1
, c2

2
, c2

3
]T,

𝜔k − dk = O(Δx4)

(31a)𝜕tf + v𝜕xf = 0,
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 The above first-order splitting with a simple staggering of the solves. Equation (31), 
endowed with a Poisson structure, is solved with the following Strang splitting procedure.

Procedure 1: Strang splitting update from f n(x, v) to f n+1(x, v)

(i) Solve the equation (31a) from f n(x, v) with timestep size Δt
2

:
f ∗(x, v) = f n

(
x − Δt

2
v, v

)
.

(ii) Compute 𝜌(x) by summing f ∗(x, v) over v and then solve for the electric field E∗(x) at t = tn + Δt

2
.

(iii) Solve the equation (31b) from f ∗(x, v) with timestep size Δt:
f ∗∗(x, v) = f ∗(x, v − ΔtE∗(x)).

(iv) Solve the equation (31a) from f ∗∗(x, v) with timestep size Δt
2

:
f n+1(x, v) = f ∗∗

(
x − Δt

2
v, v

)
.

3.2  High-Order Splitting Method

As we develop high-order space schemes, we want to implement high-order splitting methods. 
In [3, 19], the authors presented fourth- and sixth order RKN methods.

The solution to equation (31) can be updated by

for a given initial condition f0(x, v) = f (x, v, t) so that it is naturally generalized. For s > 0 , 
the splitting scheme with 2s + 1 stages is defined by the relations 

for j = 1,⋯ , 2s where f1(x, v) ∶= f (x, v, t + Δt) will be updated by g2s+1(x, v) . For exam-
ple, if we set b0 = b2 = 0.5 and b1 = 1 with s = 1 , the splitting procedure (32) with a Pois-
son equation gives us the Strang scheme introduced in Sect. 3.1. In Table 1, we review 
some optimized coefficients for the cases s = 6, 11 developed in [3].

(31b)𝜕tf + E[f ]𝜕vf = 0.

f (x, v) = f0(x − tv, v), f (x, v) = f0(x, v − tE[f0])

(32a)g1(x, v) = f0(x − b0vΔt, v),

(32b)g2j(x, v) = g2j−1(x, v − b2j−1E[g2j−1](x)Δt),

(32c)g2j+1(x, v) = g2j(x − b2jvΔt, v),

Table 1  RKN coefficients

∙ s = 6 (Order 4) :
[b0, b2,⋯ , b12] = [0.083 0, 0.396,−0.039 1, 0.120,−0.039 1, 0.396, 0.083 0],

[b1, b3,⋯ , b11] = [0.245, 0.605,−0.350,−0.350, 0.605, 0.245].

∙ s = 11 (Order 6) :
[b0, b2,⋯ , b22] = [0.041 5, 0.198,−0.04, 0.075 3,−0.011 5, 0.237, 0.237,−0.011 5, 0.075 3,−0.04, 0.198, 0.041 5],

[b1, b3,⋯ , b21] = [0.123, 0.291,−0.127,−0.246, 0.357, 0.205, 0.357,−0.246,−0.127, 0.291, 0.123].
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Here, the first three digits of the coefficients are given for simplicity but it is recom-
mended to use sufficient digits in high-order accurate numerical schemes, see [3].

4  New Schemes for Solving VP Equation

In what follows, we suggest the scheme for solving VP equation (1) with (2) using the 
SL WENO scheme based on non-polynomial space from Sect. 2 with high-order splitting 
methods introduced in Sect. 3. Here, the proposed SL scheme based on non-polynomial 
WENO procedure is referred to as SL-WENO-NP methods.

4.1  Algorithm for VP

We summarize the algorithm to solve VP system using the SL-WENO-NP scheme in the 
following algorithm flowchart.

Algorithm 1: SL-WENO method based on non-polynomial space with high-order splitting

Solve (1) until the final time t = T  . Let {bi ∶ i = 0,⋯ , 2s + 1} be given as in Table 1 for s. Denote the 
physical solution at the n-th time step t = tn by f n = f (x(tn), v(tn)) . Start with n = 0 and t0 = 0.

While t < T  , given f n and Δtn at t = tn,
      (i). Using the SL-WENO-NP scheme, perform a time step b0Δtn shift along the x-axis (see (32a)):

f̃ 0(x, v) = f n(x − (b0Δt
n)v, v).

For i = 1,⋯ , s,
      (ii) Compute the electric field E(x, t) at time t = tn + b2i−2Δt

n by substituting f̃ 2i−2 from the above 
step in the Poisson equation (2) with (3):

∇2𝜙(x, t) = ∫ dvf̃ 2i−2(x, v, t) − 1.

      (iii) Perform a time step b2i−1Δtn along the v-axis using the SL-WENO-NP scheme (see (32b)):
f̃ 2i−1(x, v) = f̃ 2i−2(x, v − (b2i−1Δt

n)E[f̃ 2i−2](x)).

      (iv) Perform a time step b2iΔtn shift along the x-axis by applying SL-WENO-NP scheme (see 
(32c)):

f̃ 2i(x, v) = f̃ 2i−1(x − (b2iΔt
n)v, v).

Finally f n+1(x, v) ∶= f̃ 2s(x, v) is obtained. If t = tn + Δtn < T ,
      (v) Set the timestep size

Δtn+1 = CFLmin
(

dx

sup |v| ,
dv

sup |E|

)
or Δtn+1 = Δx

      depends on the test problems and here, if t = tn + Δtn+1 > T  , set Δtn+1 = T − tn . With 
t = tn+1(= tn + Δtn+1) , go to Step (i) and execute the process.

Otherwise, we finish this algorithm.

4.2  Poisson Solvers

We have seen that the Poisson equation (2) is solved after each x-advection stage from   
Algorithm  1. There are various ways for solving the Poison equation to calculate the 
electric field. We used the standard central difference scheme, implemented through the 
Thomas algorithm, to solve the Poisson equation. The electric field is then computed by 
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taking the central difference of the potential. Other implementations such as using a fast 
Fourier transform (FFT) exist for solving for the electric field [23].

We briefly review our implementation with the Thomas algorithm here. The central 
difference scheme for the Poisson equation (2b)

on the periodic spatial domain x ∈ [a, b] ⊂ ℝ1 can be written as

when we discretize the domain a = x0 < x1 < ⋯ < xN = b with a uniform cell size 
Δx = xi − xi−1 and say 𝜌i ∶= 𝜌(xi) and 𝜙i ∶= 𝜙(xi) for i = 0,⋯ ,N.

We are solving the Poisson equation (33) with periodic boundary conditions which, 
in matrix form, gives

Since we are interested in the electric field, not the potential, we can add any constant to 
the potential. We choose to subtract 𝜙N−1 from each 𝜙i and produce the resulting system

It is shown that the strategy above is spectrally accurate by Boyd [5]. Solving the linear 
system (34), the algorithm for solving the potential is given by

Now that we have potentials from (35), we can compute the electric field E from the equa-
tions (2a) by using appropriate differential operators. In the following numerical experi-
ments, the second-order finite difference is employed but we remark that it is simple to 
make this fourth order or sixth order.

We simply provide here for the fourth-order central scheme for the Poisson equation:

which can be solved in matrix form

−Δ𝜙 = 𝜌

(33)−(𝜙i+1 − 2𝜙i + 𝜙i−1) = Δx2𝜌i,

⎡
⎢
⎢
⎢
⎢⎣

−2 1 0 ... 1
1 − 2 1 ... 0
0 1 − 2 ... 0

⋱ ⋱

1 0 ... 1 − 2

⎤
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢⎣

𝜙0

𝜙1

𝜙2

⋮

𝜙N−1

⎤
⎥
⎥
⎥
⎥⎦

= −Δx2

⎡
⎢
⎢
⎢
⎢⎣

𝜌0
𝜌1
𝜌2
⋮

𝜌N−1

⎤
⎥
⎥
⎥
⎥⎦

.

(34)

⎡
⎢
⎢
⎢
⎢⎣

−2 1 0 ... 0
1 − 2 1 ... 0
0 1 − 2 ... 0

⋱ ⋱

1 0 ... 1 0

⎤
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢⎣

𝜙0

𝜙1

𝜙2

⋮

𝜙N−1

⎤
⎥
⎥
⎥
⎥⎦

= −Δx2

⎡
⎢
⎢
⎢
⎢⎣

𝜌0
𝜌1
𝜌2
⋮

𝜌N−1

⎤
⎥
⎥
⎥
⎥⎦

.

(35)

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝜙0 = −
Δx2

N

N−1∑
j=0

(j + 1)𝜌j,

𝜙1 = −Δx2𝜌0 + 2𝜙0,

𝜙j = −Δx2𝜌j−1 + 2𝜙j−1 − 𝜙j−2 for j = 2,⋯ ,N.

−
1

12Δx2
(−𝜙i+2 + 16𝜙i+1 − 30𝜙i + 16𝜙i−1 − 𝜙i−2) = 𝜌i,
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Similarly, we subtract 𝜙N−1 from each 𝜙i then the resulting system is invertible.

5  Numerical Results

In this section, we provide some experimental results to demonstrate the performance of 
the proposed scheme described in  Algorithm  1. In numerical experiments, we set the 
timestep size Δt = Δx except for the refinement studies where the CFL number is set to 
be 1.2 and 2 to verify the convergence order of the proposed scheme with larger CFL 
numbers. In addition, the numerical results from the proposed method are compared with 
the SL with the  classical WENO-based scheme [37]. Both schemes are performed with 
fourth-order time splitting methods using RKN coefficients [3].

5.1  Scalar Test Problems

First, we consider scalar test problems to verify the ability of the SL-WENO-NP schemes.

Example 1 (One-dimensional linear transport) Consider the one-dimensional linear 
equation

with a smooth initial function

on periodic domain [−1, 1] . We deliberately chose a more complex initial function and 
computed the solution until the time T = 2 . The numerical errors and convergence orders 
in L∞ and L1 norms are shown in Table 2 for the cases with two CFL numbers, 1.2 and 2. In 
both cases, we can observe that the fifth-order convergence in L∞ and L1 norms.

Example 2 (Two-dimensional linear transport) Consider the two-dimensional linear 
equation

We check the convergence order of the proposed scheme with a smooth initial function

⎡
⎢
⎢
⎢
⎢⎣

−30 16 − 1 0 0 ... 16
16 − 30 16 − 1 0 ... − 1
−1 16 − 30 16 1 ... 0

⋱ ⋱ ⋱

16 − 1 0 ... − 1 16 − 30

⎤
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢⎣

𝜙0

𝜙1

𝜙2

⋮

𝜙N−1

⎤
⎥
⎥
⎥
⎥⎦

= −12Δx2

⎡
⎢
⎢
⎢
⎢⎣

𝜌0
𝜌1
𝜌2
⋮

𝜌N−1

⎤
⎥
⎥
⎥
⎥⎦

.

(36)ut + ux = 0

(37)u(x, 0) = sin
(
𝜋x +

1

𝜋
cos(𝜋x)

)

(38)ut + ux + uy = 0.

(39)u(x, y, 0) = sin(𝜋(x + y))
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on a periodic domain [−1, 1] × [−1, 1] . The L∞ and L1 errors and approximation orders for 
the numerical solutions at time T = 2 are given in the Table 3. Clearly, fifth order of accu-
racy is observed for the cases with CFL= 1.2 and 2.

Example 5.3 (Rigid body rotation) Consider the two-dimensional equation

First with a smooth initial function

on periodic domain [−2𝜋, 2𝜋] × [−2𝜋, 2𝜋] , we examine the refinement study. In Table 4, 
we present both the L∞ and L1 numerical errors and convergence orders of the proposed 

(40)ut − yux + xuy = 0.

(41)u(x, y, 0) = exp
(
−x2 − y2

)

Table 2  (Example 1) L∞ and  
L1-errors and orders of accuracy 
for (36) with (37) at T = 2

CFL Nx L∞ L1

Error Order Error Order

1.2 20 1.206 1E−02 – 4.672 8E−03 –
40 7.808 5E−04 3.95 2.143 0E−04 4.45
80 3.172 2E−05 4.62 7.067 9E−06 4.92
160 1.037 8E−06 4.93 2.243 3E−07 4.98
320 3.302 3E−08 4.97 7.035 0E−09 4.99

2 20 1.844 1E−01 – 6.422 8E−02 –
40 2.306 2E−02 3.00 1.363 7E−03 5.56
80 1.078 6E−04 7.74 8.284 0E−06 7.36
160 1.440 4E−06 6.23 2.084 9E−07 5.31
320 3.085 2E−08 5.54 6.238 0E−09 5.06

Table 3  (Example 2) L∞ and  
L1-errors and orders of accuracy 
for (38) with (39) at T = 2

CFL Nx × Ny L∞ L1

Error Order Error Order

1.2 20 × 20 4.331 9E−03 – 2.664 9E−03 –
40 × 40 1.608 1E−04 4.75 8.462 1E−05 4.98
80 × 80 5.195 8E−06 4.95 2.645 0E−06 5.00
160 × 160 1.597 2E−07 5.02 8.260 5E−08 5.00
320 × 320 4.898 4E−09 5.03 2.579 8E−09 5.00

 2 20 × 20 4.663 6E−03 – 2.646 8E−03 –
40 × 40 1.631 7E−04 4.84 8.171 9E−05 5.02
80 × 80 5.188 2E−06 4.97 2.510 5E−06 5.02
160 × 160 1.586 6E−07 5.03 7.837 3E−08 5.00
320 × 320 4.765 1E−09 5.06 2.447 4E−09 5.00
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scheme. The fifth order of accuracy is observed not only when using the CFL number 1.2 
but also when the CFL is 2.

Second, we apply the following discontinuous initial function:

We solve the equation up to T = 2𝜋 . The numerical results with 90 × 90 grids and 60 × 60 
grids are shown in Figs. 1 and 2, respectively. In both cases, the proposed scheme preforms 
better particularly for the edge of the rigid body than the previous scheme.

5.2  The VP System

In this section, we consider the 1D-1V VP model (1) and (2) with initial functions 
f0(x, v) = f (x, v, t = 0) . Periodic boundary conditions are imposed to x-domain [a, b] and 
zero boundary conditions are imposed to v-domain [−V ,V] for all test examples.

Example 4 (Weak/strong Landau damping) We simulate the well-known Landau damping 
problem which is the collisionless damping of electrostatic waves in a plasma. This case 
has been computed by many authors [11]. Here, we test our VP problem on the initial 
conditions

where 𝛼 is the strength of the perturbation and k = 0.5 . The domain boundaries are 
a = 0, b = 4𝜋 and V = 5 in x and v space, respectively.

We choose a small perturbation 𝛼 = 0.01 first which will give us weak Landau damping. 
The L2 norms of the electric fields with 64 × 128 and 128 × 256 grids are shown in Fig. 3 
with the theoretical damping rate 𝛾 = −0.153 3 (in the solid yellow line), and the L1 norms, 

(42)u(x, y, 0) =

{
1, if (x, y) ∈ [−1, 1] × [−4, 4] ∪ [−4, 4] × [−1, 1],
0, otherwise.

f0(x, v) = (1 + 𝛼 cos (kx))
e−v

2∕2

√
2π

,

Table 4  (Example 3) L∞ and L1
-errors and orders of accuracy for 
(40) with (41) at T = 2𝜋

CFL Nx × Ny L∞ L1

Error Order Error Order

1.2 18 × 18 2.128 7E−01 – 6.578 1E−03 –
36 × 36 3.195 1E−02 2.74 7.160 5E−04 3.20
72 × 72 2.292 4E−03 3.80 4.439 1E−05 4.01
144 × 144 8.638 4E−05 4.73 1.848 1E−06 4.59
288 × 288 2.791 0E−06 4.95 6.330 5E−08 4.87

2 18 × 18 2.157 2E−01 – 6.639 2E−03 –
36 × 36 3.217 5E−02 2.75 7.148 0E−04 3.22
72 × 72 2.289 3E−03 3.81 4.455 7E−05 4.00
144 × 144 8.630 6E−05 4.73 1.847 5E−06 4.59
288 × 288 2.787 9E−06 4.95 6.323 7E−08 4.87
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Fig. 1  (Example 3) The numerical solutions of equation (40) with a function (42) at T = 2𝜋 using 90 × 90 
grids

(a) Previous (b) Proposed

Fig. 2  (Example 3) The numerical solutions of equation (40) with a function (42) at T = 2𝜋 using 60 × 60 
grids
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L2 norms, energy and entropy of the solutions with 64 × 128 grids are given in Fig. 4. The 
proposed scheme produced the same results in electric fields, L1 and L2 norms as the previ-
ous one, and slightly better results in energy and entropy than the previous method.

Second, we choose a perturbation 𝛼 = 0.5 for seeing the strong Landau damping. The 
plots for the phase space at T = 40, 80 and 120 with the previous and proposed scheme 
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Fig. 3  (Example 4: weak Landau damping) L2 norm of the electric field with 64 × 128 (left) and 128 × 256 
grids (right). Yellow line indicates the damping rate
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Fig. 4  (Example 4: weak Landau damping) (a) L1 norms, (b) L2 norms, (c) energy and (d) entropy evolution 
with 64 × 128 grids
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using 128 × 256 grids are given in Fig. 5. To observe the shape of the phase space follow-
ing the time history with several resolutions, we present plots from the proposed scheme 
using 64 × 128grid, 128 × 256 and 256 × 512 grids in Figs. 6, 7 and 8, respectively. Finally, 
L2 norms of the electric fields with 64 × 128 and 128 × 256 grids are shown in Fig. 9 and 
also the L1 norms, L2 norms, energy and entropy of the solutions with 64 × 128 grids are 
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Fig. 5  (Example  4: strong Landau damping) The phase space at T = 40 ((a), (b)), T = 80 ((c), (d)) and 
T = 120 ((e),(f)) with previous scheme ((a), (c), (e)) and proposed scheme ((b), (d), (f)) using 128 × 256 
grids

Communications on Applied Mathematics and Computation (2023) 5:116–142134



 

1 3

given in Fig. 10. We can observe that the scheme does not preserve the discrete quantities 
very well, which is a well-known problem with the mesh-based method, but the proposed 
scheme preserves the energy and entropy better than the previous scheme.
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Fig. 6  (Example  4: strong Landau damping) The phase space of the time evolution until T = 80 
( T = 5, 10, 15, 20, 40 and 80) using 64 × 128 grids
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Fig. 7  (Example   4: strong Landau damping) The phase space of the time evolution until T = 120 
( T = 40, 80 and 120) using 128 × 256 grids
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Fig. 8  (Example   4: strong Landau damping) The phase space of the time evolution until T = 120 
( T = 40, 80 and 120) using 256 × 512 grids
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Fig. 9  (Example 4: strong Landau damping) L2 norm of the electric field with 64 × 128 (left) and 128 × 256 
(right) grids
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Fig. 10  (Example 4: strong Landau damping) (a) L1 norms, (b) L2 norms, (c) energy and (d) entropy evolu-
tion with 64 × 128 grids
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Example 5 (Two-stream instability) Finally we simulate the symmetric warm two-stream 
instability problem [20]:

f0(x, v) =

(
1 + 𝛼

(
cos(2kx) + cos(3kx)

1.2
+ cos (kx)

))
2

7
√
2π

e−v
2∕2(1 + 5v2),
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Fig. 11  (Example 5: two-stream instability) Comparison of the phase spaces from previous and proposed 
schemes with 64 × 128 ((a), (b)), 128 × 256 ((c), (d)) and 256 × 512 ((e), (f)) grids
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where 𝛼 is the strength of the perturbation. Here, we set 𝛼 = 0.01 and k = 0.5 . The domain 
boundaries are a = 0, b = 4𝜋 and V = 5 in x and v spaces, respectively.

The results from the previous and proposed schemes are given in Fig. 11. In Fig. 11 (b) 
which is a result from the proposed scheme with 64 × 128 resolution, there is a structure 
around velocity v = ±1 that is not well supported in (a), which is a result from the previous 
scheme, but is observed in (c), 128 × 256 resolution with the polynomial-based method. 
Likewise, if we look at Fig.  11 (d), proposed results for 128 × 256 , there are structures 
around x = 3 and x = 11 between velocity v = −1 and v = 1 which are not supported by 
the previous method (c) but show up in (e), 256 × 512 resolution in the polynomial-based 
method. It is clear that the new method is supporting finer structure on meshes at half the 
resolution of the polynomial-based method. In 6D, this would serve to be a substantial 
savings.

6  Conclusion

In this paper, we proposed an SL method based on non-polynomial function space for solving 
the Vlasov equation. More accurate approximation was achieved by exploiting the trigono-
metric polynomial basis at the stage of the construction of the WENO scheme. The proposed 
schemes were applied to solve various scalar test problems containing 2D advection equa-
tion and rigid body rotation problem, and the VP system containing weak and strong Lan-
dau damping and two-stream instability problems. While the proposed methods demonstrated 
improved accuracy over the previous SL method with classical WENO approaches, the use of 
high-order splitting methods in time also helps for problems exhibiting discontinuous struc-
tures. A highlight of this work is reflected in the two-stream instability problem (see Example 
3 in Sect. 5), where the proposed method with lower resolution presents the results similar to 
those of the previous results with higher resolution. In 6D, this would imply that the new non-
polynomial method would have substantial cost savings over traditional SL methods based 
on polynomial reconstruction. In future work, we plan to develop the proposed scheme to 
incorporate the positivity preserving property, as suggested in [50] and also investigate an SL 
scheme capable of choosing the optimal parameters using local properties of the underlying 
data to further increase accuracy, as in [14, 16].

Appendix A Formulation of 𝐂 and 𝐜k

The numerical flux f̂j− 1

2

 in (25) based on the function space 𝛤5 = span{cos x, sin x, x2, x3, x4} 
is constructed by using the coefficients

The local numerical flux f̂ k
j− 1

2

 in (26) can be obtained based on algebraic function space 
𝛱3 = span{1, x, x2} with the constants

𝐂 =
[

550

16 403
,−

157

724
,
1 587

2 057
,
281

599
,−

155

3 016

]T
.
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or based on the function space span{1, sin x, cos x} with the coefficients

Appendix B Proof of Proposition 2

Assuming f smooth enough around the stencil, we can represent the smoothness indica-
tors (28) using Taylor expansion as

Then for each k = 0, 1, 2 , we can obtain

with a constant C, by choosing 𝜖 = Δx2 , so that it is straightforward by the definition of 𝜔k 
in (29).
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𝐜
0 =

[
1

3
,−

7

6
,
11

6

]T
,

𝐜
1 =

[
−
1

6
,
5

6
,
1

3

]T
,

𝐜
2 =

[
1

3
,
5

6
,−

1

6

]T
,

𝐜
0 =

[
109

280
,−

478

471
,
1 411

868

]T
,

𝐜
1 =

[
−

826

4 031
,
1 973

2 419
,
109

280

]T
,

𝐜
2 =

[
109

280
,
1 973

2 419
,−

826

4 031

]T
.

𝛽0 =

(
Δxf ′

j− 1

2

−
23

24
Δx3f ′′′

j− 1

2

+O(Δx4)

)2

+

(
Δx2f ′′

j− 1

2

−
3

2
Δx3f ′′′

j− 1

2

+O(Δx4)

)2

,

𝛽1 =

(
Δxf ′

j− 1

2

+
1

24
Δx3f ′′′

j− 1

2

+O(Δx4)

)2

+

(
Δx2f ′′

j− 1

2

−
1

2
Δx3f ′′′

j− 1

2

+O(Δx4)

)2

,

𝛽2 =

(
Δxf ′

j− 1

2

+
1

24
Δx3f ′′′

j− 1

2

+O(Δx4)

)2

+

(
Δx2f ′′

j− 1

2

+
1

2
Δx3f ′′′

j− 1

2

+O(Δx4)

)2

.

1 +
𝜏

(𝜖 + 𝛽k)
2
= 1 +

(𝛽2 − 𝛽0)
2

(𝜖 + 𝛽k)
2

= 1 +

(
2Δx4f ′

j− 1

2

f ′′′
j− 1

2

+O(Δx5)

)2

(𝜖 + 𝛽k)
2

= 1 + CΔx4 +O(Δx5)
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