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We propose a new globally convergent numerical method to compute solution Hamilton-Jacobi equations defined
in R, d > 1, on a truncated bounded domain. This method is named the Carleman convexification method. By
Carleman convexification, we mean that we use a Carleman weight function to convexify the conventional
least squares mismatch functional. We will prove a new version of the convexification theorem guaranteeing
that the mismatch functional involving the Carleman weight function is strictly convex and, therefore, has a

unique minimizer. Moreover, a consequence of our convexification theorem guarantees that the minimizer of
the Carleman weighted mismatch functional is an approximation of the viscosity solution we want to compute.
Some numerical results in 1D and 2D will be presented.

1. Introduction

Let d > 1 be the spatial dimension. Let H : R? x R? - R be a func-
tion satisfying the following growth condition

|H(x,p)| <C|pl¥ forall pe R 1.1

for some number k > 0. In this paper, we solve the following problem.

Problem 1.1. Fix A > 0. Assume that equation

Au+ H(x,Vu)=0 forall xeR? (1.2)

has a unique viscosity solution u. Compute u.

In general, the condition in the problem statement above requiring
that (1.2) has a unique viscosity solution might not always hold true.
We provide an example of a set of conditions on H such that (1.2) has a
unique solution. If H is such that |H(x,p)— H(y,p)| < C(1+|pD|x—y]|
and |H(x,p) — H(x,q)| < C|p — q| for some positive constant C for
all x, y, p, q in R?, then the comparison principle in [59, Theo-
rem 1.18] is valid. The uniqueness follows directly. The existence of
a solution to (1.2) is studied in [59, Chapter 1-2]. We refer the reader
to [4,5,13,14,44,59] for more important and interesting theory about
Hamilton-Jabobi equations. We also draw the reader’s attention to
[60-63] for interesting and significant works on high-order Hamilton-
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Jacobi equations. For convenience, we recall, from the pioneer works
[13,14] as well as the recently published book [59], the concept of
viscosity solutions to Hamilton-Jacobi equations. Viscosity sub(super)-
solutions to (1.2) are defined as follows.

Definition 1.1 (Viscosity solutions). Let F : RY xR x RY > R be an
Hamiltonian. Let u € C(R?).

+ We say that u is a viscosity subsolution to F(x,u, Vu) =0 if for any
test function @ € C!(R?) such that u — ¢ has a strict maximum at
X) € R4, then

F(xg.u(X)), V(%) <0 if x) € R,

We say that u is a viscosity supersolution to F(x,u, Vu) =0 if for
any test function ¢ € C'(R9) such that u — ¢ has a strict minimum
at x, € R?, then

F(Xg,u(Xo), Vo(x0)) 20 if x, € RY.

We say that u is a viscosity solution to F(x,u, Vu) =0 if it is both
viscosity subsolution and viscosity supersolution to this equation.

Studying Hamilton-Jacobi equations is interesting because Hamil-
ton-Jacobi equations arise from many scientific fields like geometrical
optics, mechanics, game theory, etc. [16,18,19,24,42,59]. A number of
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efficient and fast numerical approaches and techniques (many of which
are of high orders) have been developed for Hamilton-Jacobi equations
of the form F(X,u, Vu) = 0 where F is called the Hamiltonian. For finite
difference monotone and consistent schemes of first-order equations
and applications, see [6,15,49,54,57] for details and recent develop-
ments. If F = F(x,s,p) is convex in p and satisfies some appropriate
conditions, it is possible to construct some semi-Lagrangian approxi-
mations by the discretization of the Dynamical Programming Principle
associated to the problem, see [20,21] and the references therein. See
[1,2,8,10-12,22,25,43,48,50,51,53,55,64,65] for an incomplete list of
results in this direction. Another approach to solve Hamilton-Jacobi
equations is based on optimization [17,23,41,58]. However, due to the
nonlinearity of the Hamiltonian, the least squares cost functional is non-
convex and might have multiple local minima and ravines. Hence, the
methods based on optimization can provide reliable numerical solu-
tions if good initial guesses of the true solutions are given. The key
point of the convexification method in this paper is to include in such
least squares mismatch functionals some Carleman weight functions to
make these functionals convex. Therefore, the requirement about the
good initial guess is completely relaxed. On the other hand, we espe-
cially draw the reader’s attention to [1,49,51] for the Lax—Friedrichs
schemes and [25,43] for the Lax-Friedrichs sweeping algorithm to solve
Hamilton-Jacobi equations. Although strong, these methods might not
be applicable to solve (1.2). The main reason is that in computation,
rather than finding a solution to (1.2) on the whole space R4, one can
compute the restriction of the solution to (1.2) on a bounded domain.
In this case, the boundary conditions on the boundary of this bounded
domain are unclear while the sweeping methods are initiated by the
boundary conditions of solutions.

Recently, we, in [27,36], developed the convexification method to
solve (1) the inverse scattering problems and (2) a general class of
Hamilton-Jacobi equations in a bounded domain. The efficiency of the
convexification method was rigorously proved. However, the version of
the convexification method above requires both Neumann and Dirich-
let boundary conditions of the solution, which are not always available.
Therefore, in order to apply the convexification method in [27,36] with-
out requesting the knowledge of the boundary conditions, we have to
develop a new version. The key to success involves a new piece-wise
Carleman estimate and a new mismatch functional with a suitable Car-
leman weight function. Our method to solve (1.2) consists of two stages.
In stage 1, we apply a truncation technique to reduce the problem of
solving (1.2) on the whole R? to the problem of computing the viscos-
ity of another Hamilton-Jacobi equation on a bounded domain. Rather
than computing the solution on R?, we only find the restriction of the
solution on this domain. The boundary conditions of the new Hamilton-
Jacobi equation are unknown but we can estimate them in terms of the
cut-off function. Then, in Stage 2, we minimize a mismatch functional
with a special Carleman weight function involved, called the Carleman
weighted mismatch functional. The presence of the Carleman weight
function is extremely important in the sense that it guarantees the strict
convexity of the Carleman weighted mismatch functional. As a result,
our Carleman weighted mismatch functional has a unique minimizer in
any bounded set of the functional space under consideration. We will
apply a Carleman estimate to prove this theoretical result, called a con-
vexification theorem. Besides guaranteeing the strict convexity of the
cost functional, the convexification theorem can be used to prove that
the minimizer is an approximation of the desired viscosity solution.

It is worth mentioning that several versions of the convexification
method have been developed since it was first introduced in [32]
for a coefficient inverse problem for a hyperbolic equation. We cite
here [3,26-31,33,35,37,56] and references therein for some important
works in this area and their real-world applications in bio-medical
imaging, non-destructed testing, travel time tomography, identifying
anti-personnel explosive devices buried under the ground, etc. The cru-
cial mathematical ingredient that guarantees the strict convexity of this
functional is the presence of some Carleman estimates. The original
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idea of applying Carleman estimates to prove the uniqueness for a large
class of important nonlinear mathematical problems was first published
in [9]. It was discovered later in [32,34] that the idea of [9] can be suc-
cessfully modified to develop globally convergent numerical methods
for coefficient inverse problems using the convexification method.

The structure of the paper is as follows. In Section 2, we reduce the
problem of computing solution to (1.2) to the problem of computing
viscosity solution to another Hamilton-Jacobi equation on a bounded
domain of R?. In Section 3, we prove a Carleman estimate, which plays
a key role in the proof of the convexification theorem. In Section 4, we
prove the convexification theorem. In Section 5, we show some numer-
ical examples. Section 6 is for the concluding remarks.

2. A change of variable

Rather than computing the solution u to (1.2) on the whole space
R?, we compute the restriction of u on an arbitrary bounded domain
G of R?. Without lost of generality, we assume that G is compactly
contained inside the cube Q = (—R, R)? for some R > 0. Let 6 € (0, 1)
be a small number. Let y; be a cut off function in the class C®(R?)
satisfying

>c>0 xeig

Ys(X)=1 €(,¢c) x€Q\G, 2.1)
=6 xeR¥\ Q
for some constant ¢ > 0. Define
. v(x)
v(x) = ys(X)u(x) or equivalently u(x)= (2.2)
X5(X)

for all x € R¥. Since

Au(x) + H(x, Vu(x)) = /1@ +H

<x, \Y%
Xs

v(x) +H (x, Xs(X)Vox) —vX)V ys(x)
it follows from (1.2) that

X5(X) 23X
H <X’ 25(OVU(X) — v(x)V ;(5(x)> _

13 (%)
for all x € R?. Multiplying xgk(x) to both sides of (2.3), we derive an

equation for v, read as
>] =0 (24

+H<x,

Remark 2.1. The presence of ;(gk(x) in the right-hand side of (2.4)
XX Vux)—vx)V y5(X)
10

v(x)

Z&(X)>

=1

)

o(x) 2.3)

X5(X)

A 0

F(x,v(x), Vu(x))

Xs(X)Vu(x) — v(X)V y5(x)
Z5(x)

v(x)
X5(X)

=13k (x) [,1

for all x € R9.

helps us remove the blow-up behavior of the term

)

k

as 6 — 0T. In fact, by (1.1),

Xs(X)Vo(x) — v(X)V y5(x)
23 (%)
Xs(XOVu(x) — v(X)V ys5(x)
15 (%)

= C|xs(x)Vo(x) — v(x)V z;x)|*,

which is uniformly bounded provided that v € C'(R?). This step is cru-
cial in numerical computation.

1 OH <x,

<Crfm

We have the proposition.
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Proposition 2.1. The function u is a viscosity solution to (1.2) if and only
if the function v is a viscosity solution to (2.4).

Proof. We prove that if u is a viscosity subsolution to (1.2) then v is
a viscosity solution to (2.4). In fact, fix an arbitrary point x, € R and
let @ be a test function such that v — ¢ has a strict maximum at x;,. We
have

v(x) — @(x) — [v(Xg) — @(X()] < 0,for all x € R4 \ {x0}. (2.5)
Define
P(x) = P() + (%) ~ ¢(Xo)) for all x € RY. (2.6)
X5(X)
Then, ¢ € C'(RY). A simple algebra yields that for all x € R¢,
27400 Aux) + H(x, Vpix)|
ok v(x) P(x) + (L(Xp) — P(x())
=4 ) [A X5(X) - H<X’ v X5(X) )]
_ 2k u(x)
H(x 2V (0(x) + (0(x) — 9(%0))) — ((x) + (v(x) — p(%)))) V 5(X) )
' 12
_ 2% u(x)
=4 ® [A X5(X)
2B V(pX)) — (@) + (0(Xg) — (X)) V x5(Xp)
H (x, 3 )]
x25(X)
In particular, when x = x,,, we have
134050 | Autxg) + H (0. Vb(xo)) |
ok v(Xg)
= 7o) paEn
N H(x 25X V(9(x)) — (0(Xp) + (0(Xg) — (o)) V x5(X)) )]
” 22
o v(xp) Xs(X) V(X)) — v(x)V x5(X)
=x; (xp) [l 7o) + H(xo, )((?(X) )]

Hence, by (2.4),

F(xg, 0(%), Vo (xy) = 12 (x) [/lu(xo) + H(x,. v¢(x0))] . @7

Due to (2.2) and (2.6), for all x € R4 \ {x0},

v(x) — (@(x) + (1(Xg) — P(X))))
Za(x)
_0(x) = (%) = (0(X)) — P(Xo))
a X5(X)

It is obvious that u(xy) — ¢(xy) = 0. Hence, u — ¢ attains a strict maxi-
mum at X,. Since u is a viscosity subsolution to (1.2),

u(x) — p(x)

<0.

)(gk(xo)[iu(xo) + H(xg, Voh(xo))| <0. 2.8)

Combining (2.7) and (2.8), we obtain

F(xg, v(x), V() < 0.

Hence v is a viscosity subsolution to (2.4). We can repeat the proof
above to show that if u is a viscosity supersolution to (1.2) then v is a
viscosity supersolution to (2.4). The reverse direction of Theorem 2.1
can be proved in the same manner. []

Remark 2.2. A direct consequence of Proposition 2.1 is that we can
compute the viscosity solution u* to (1.2) by finding the viscosity so-
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lution v* to (2.4) and then setting u* = v*/ y;. Although the formula
u* = v*/ x5 holds true for all x € R?, this formula is reliable only in the
domain G where y; > ¢ > 0. Outside G, the function y; is close to zero.
In this case, the “artificial” error in computation, due to discretization
with positive step size, the presence of the viscosity term and regular-
ization term, is magnified.

It is well known from the vanishing viscosity process that v* can be
approximated by the solution to

—€oAvg + F(X,v,, Vv, )=0 forallx e R (2.9

In computation, it is inconvenient to compute the function v, on the
whole space R?. We only find U, in the bounded domain & on which
s > 6. In order to solve PDEs of the form (2.9) on a bounded domain,
we have to approximate the boundary conditions. By (2.1) and (2.2),
for all x € 0Q,

[v(x)| = 6lu(x)| < Cs (2.10)
and
[0, 0(X)| = | x5(X)0,u(x) + u(x)d, x5(X)| = | x5(x)9,u(x)| < Cé. (2.11)

Here, we have used the fact that 9, y;5(x)|;q = 0. Since the functions
ulyo and 0 u|yo are unknown, neither are v|,o and 9,v|;q. We are
unable to compute the exact Cauchy information of v on 0Q. However,
since § is a small number, due to (2.10) and (2.11), both |v| and |Vuv|
on dQ are small. The bounds (2.10)-(2.11) also hold for Ve, provided
that || DUEO |l < C. Therefore, we can impose the conditions that both
Vg lag and Vo |aq satisfy

|U€O| <Cé6 and |VU€0| <Cé

for all x € 0Q.

Since the exact boundary condition for v, cannot be retrieved, nu-
merical methods to compute it is not yet developed. Conventional meth-
ods compute a function Ve, that satisfies (2.9) and (2.12) are based on
least squares optimization. That means we minimize a cost functional
and then set the minimizer, named U:;in, as the computed solution.
A typical example of such a functional is

(2.12)

UHJ(U)=/|—€0AU+ F(X,U,VU)|2dX+/|U|2dX

Q 0Q

+ / |Vu|2d¢7(x) + a regularization term. (2.13)

0Q

This approach is effective in many cases. It is widely used in the scien-
tific community. However, it has several drawbacks. The most impor-
tant drawback is that finding the global minimizer Ui?in is extremely
challenging unless a good initial guess is given. This is because the
functional J might not be convex and might have multiple local min-
ima. The second drawback is that, in general, the distance between the
true solution U, t0 (2.4) and the computed solution v;‘l’m is not known.
In this paper, we generalize the convexification method in [27,36] to
compute the “best fit” solution to (2.9) and (2.12). By convexification,
we mean that we let a Carleman weight function be involved in the
functional J, defined in (2.13). The presence of the Carleman weight
function removes both significant drawbacks of the least squares opti-
mization approach above. As mentioned in Section 1, the idea of using
Carleman weight function to convexify the functional J was originally
introduced in [32] and then was investigated intensively by our re-
search group, see e.g., [3,27,36,39].

3. A piece-wise Carleman estimate

The key tool for us to rigorously prove the convexifying phe-
nomenon is the Carleman estimate established in this section. Let Q
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be a bounded domain in RY with smooth boundary. Let 4 : Q — R4
be a d X d matrix valued function in the class C2. Assume that

1. A is symmetric; i.e., AT = A or equivalently a, ijj=a; forall 1 <
i,j <d, where a;; is the entry on row i and column j of A;
2. A is positive deﬁnlte i.e., there exists a positive number A such

that

AP < AE-E<AJE)? forallxeQ,EeRY. (3.1)
Let x,, be a point in R4 \ Q. For each x € R?, define
rx)=|x—-xy| forallxe Q. 3.2)

We have the theorem.

Theorem 3.1.Let A >0 and u € Cz(ﬁ). Then, there exists a positive
constant f, depending only on || A|| o) and A such that if § > f, and

A2 4 =2RP, where R=max__g{|x —%o|}, then

2207 | div(AV) |2

> C|div(U) + 234X 1202142 4 25247 |Vu?|. (3.3)
Here, U is a vector-valued function satisfying
U < Ce ™ (G332 |uf® + 4| Vul) 3.4

and C is a constant depending only on X, €, ||Al| -, @ Aandd.

Proof of Theorem 3.1.
positive constants depending only on ||A||
split the proof into several steps.

Step 1. For x € Q, recall r = |x — X;|. Set

In the proof, we denote by C;, i € {1,2,... },

i@ Xo Q, A and d. We

_Ar P

-p
A u=e .

v=e u equivalently (3.5)

By the product rule in differentiation and the symmetry of A, we have

div(AVu) = div(AV(e " " v))

=2A4V0- V(e ") + e div(AVY) + vdiv(AVe ")

= ZAﬂr_ﬁ_ze_’“_ﬂAVU S(X—Xg)+ e’ div(AVo)
+vdiv(AVe "),

Using the inequality (a + b+ ¢)? > 2a(b + ¢), we have for all x € Q

P22 | div(AV) |2

>2(x—xp) - AVudiv(AVo)

248

2 [(x = x,) - AVUludiv(AVe ™). (3.6)
Denote by
I =2(x —Xg) - AVudiv(AVo) (3.7)
I =2 (x = x) - AV(|0|P)div(AVer ™). (3.8)
Due to (3.7) and (3.8), we rewrite (3.6) as

B+2 247 Giv AV )12

rf e [div(AVu)| > 1+ 1 3.9)

208

for all x € Q. We next estimate /; and I,.

Step 2. In this step, we estimate I;. By the product rule in differenti-
ation fdivF =div(fF)— Vf - F for all scalar valued function f and
vector valued function F, we have

I =2(x —Xg) - AVudiv(AV)
=2div([(x —xg) - AVU]AV0) = 2V((x — X)) - AV0) - (AV0)

for all x € Q. Thus,
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I, =divV; — 2V((x — X,) - AVD) - (AVD) (3.10)
where V] is the vector defined by
Vi =2[(x—Xq) - AVU]AVo. (3.11)
Using the symmetry of A =(a;; );Ll, we have
i((x—x )- AVv)
ox; 0

_a_x,-( (x—xg)- Vo) = kz (x; = (x0); )akjd

=1
0*v ov kj Ov
_ kz [(x = (50) gy G By S+ 05y = (), )—a]
J=1
(3.12)
li=j .

Here, §,;; = { 0id) is called the Kronecker delta and x; and (x); are

the j entries of x and x, respectively. By writing

d
92
Jdv
2 _
2 (x (x[))) kja ax a1 =7 ol
ij.k,=1
d
0% Jv
(xo).)a —a; =
2;4:1 JTk o 0x; ol
d
% Jdv
" 3 oG

and by interchanging the roles of the indices i and / in the second sum,
we obtain

d
9%v Jdv
2 Y Oy Go)ay go—ang
i,j, k=1 1
i (x (x ) )a L) v
—X0)j )i =% 57
i1 ox,;0x; ' dl
d %v dv
+ - ) o Z g, = 3.13
f.j%/::l(xj (o)) 0x.0x; i 313
for all x € Q. Since g;; = a;;, it follows from (3.13) that
d 9%v Jdv
2 ,Z_ = () 55 % g
i,j, k=1 1
& o*v v 0*v v
= 2 (xj = (xp)pagay | =—=——= + —]
Lkd=1 0x;0x; dl ~ 0x,0x; di
z oJv 0
v Jv
= (x; = (xp)j)ag;a; =— (——)
l/; ' J SR 9x \ 0x; 0x,
L9 w9
v Jv
—U & X<( (xo) )ak] i3y, 0x,>
d
Jv 6U
— (xp))ag;a ,) (3.14)
" 2o (e ) 05

The first sum of in the right-hand side of (3.14) can be rewritten as

d
0 61) 61)
- ( (Xo) Jay;
Lo o 9
1) 1%
-y _( — (o)) Z ay, 22 ) div(Vy) (3.15)
&, ox, & ox; o,
where
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V, =AX—Xxy)(AVv - Vo). (3.16)
By (3.14), (3.15) and (3.16), we have proved that
2 i (x; —(xg))a -ﬂw v
e 0375k ox,0x; ol
. L9 v v
=div(Vy) — [ngl a((xj - (xo)j)akjai,)a—)qa—)q. (3.17)

We are now at the position to estimate I;. Using (3.10), (3.11), (3.12),
(3.16) and (3.17), we obtain

I, > div(V; + V,) — C,|Vol? (3.18)

where

C; =2max
XEQ

{|0()7k <(x/- - (xo)j)“kfai’)‘}

is a constant depending only on A, x,, ©, and d.
Step 3. We now estimate I,. A simple computation yields

div(AVe ")
= Apdiv(r 2= A(x — xp)
— B [V(r—ﬂ—ze—“"’ ) A = xg) + P27 div(Ax — x0))
for all x € Q. Thus,
div(AVe ")
= Ape=r" [( — B+ P 4 apr ) (x — xg)
- AX = xg) + r P2 div(Ax — xO))] (3.19)

for all x € Q. Since A is symmetric, recalling (3.8) and using (3.19), we
can write

L=e"" A(x —xg) - V(|v2)div(AVer ).

Hence,
I = ApAX —x0) - V(0] [( — B+ 4 AP (x — xo)

- A = xg) + r P2 div(Ax — xo))] .

Thus,
1, = div(V3) — AB|v|2div(P) (3.20)
where
V3 = Ap|v)>P (3.21)
and
p= [( — B+ 2P 4 a2 (x = xp)

- AX = Xg) + r P2 div(Ax - xo))] A(X — X). (3.22)

We estimate the second term in the right-hand side of (3.20). We write

—AB|v|2div(P) = —AB|v|*div(P1 + P, + P;) (3.23)

where

Pr=—(+2r P (x —xp) - AX — Xp)A(X — Xp),
P, = Apr P4 (x — xp) - A(X — Xg)A(X — X)),

Py =rP2div(A(x — xg)A(X — Xg).

Simple computations yield
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—div(P))
= P+ D[V [} = %) - A= Xp)AX = Xp)]
+ P4 div((x — x) - AKX — X0) A(X — X))
= P+ = P+ = x0) - [(x = Xg) - AKX = X0 Ax = X))]

+ P4 div((x — xg) - AX — Xg)A(X — X)) . (3.24)
Recalling (3.1), we have
(X—Xg) - AX—%Xp) > A7 x = xo2 = A1 (3.25)
It follows from (3.24) and (3.25) that
—div(P) > —(B+ 2B+ DA P2 O P > —C AP (3.26)

where

C, = max {r_zldiv((x —Xg) - AX — X)) AX — Xp))| }

xeQ

and C; depends only on €, X, and A. We next estimate —div(P,). We
have

—div(P) = —Ap [V(r_zﬂ_4) (% = xg) - A(X — Xg)AX — X0)]

+r 2P iv[(x — ) - A(X — X0) A(X — xo)]]

=32 = 4yl x = %) AGx = xp)P
+ P divI(x - ) - A — Xg)AX — xo)]] .

Using (3.25), we have

—div(P,) > C,Ap?r~2P2 (3.27)
where C; depends only on €, X, and A. On the other hand,
—div(Py) = = | V(P72) - [div(A(x — X)) AX — Xo)]

+r P2 div(div(A(x — x0))A(x — xo))]

=(f+2)r PH(x = xg) - [div(A(X — X)) A(X — Xg)]

— rP2div(div(A(X — X)) A(X — Xp)).
Hence,
—div(Py) > —CsprF72, (3.28)

where Cs depends only on Q, x,, and A. Combining (3.23), (3.26),
(3.27) and (3.28), we have

—AB|v|2div(P) > Ca A2 B3 r 202 v, (3.29)

where Cg4 depends only on €, X, and A. Here, we have used the fact
that AR™# > 2. Due to (3.20) and (3.29), we obtain
I, > div(V3) = Cg A2 r2P=2|0)2. (3.30)

Step 3 is complete.
Step 4. Combining the estimates (3.9), (3.18) and (3.30), we get

P22 | div(AV)|?
248

> div(Vy + Vo + V3)+ Ce A2 532 v = ¢y | Vo)
(3.31)

for all x € Q. Recall from (3.5) that v = e "u. By standard rules in
differentiation, we have

Vo= e (=2purP2(x — xo) + Vu).
Hence,

Vo2 > —Cye? ™ (232202 |u)? + |Vu?), (3.32)
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where Cg depends only on Q and x,. Combining (3.5), (3.31) and
(3.32), we obtain

P22 7 | div(AV) |2

245 >div(Vy +V,+V3) + C8/12ﬁ332”_ﬂ 22|y 2

— Cye? " |Vu? (3.33)

for all x € Q, where Cg and Cy depend only on &, x,, and A.
Step 5. We have

2 ydiv(AVY) = dive " uAVu) — V(e u] - (AVa)

B

=div(U,) — ¥ |V - 247 P~ 2u(x xo)] AVu

(3.34)

where

U, = uAvu. (3.35)

Since
24Br P 2uAVu - (x — x) < % |Vu|? +8C g A2 2 Ar~ 282 |u)?,

using (3.1) with & = Vu, (3.34) and the inequality 2ab < a® + b?, we
have

A udiv(AVa) < div(U,) + Cyy 22 1202y 2 — %em_ﬂ |Val?.

(3.36)
Here, C;( and C;; depend only on Q, x,, and A.

On the other hand, since
ludiv(AVa)| < A2Blul2r~2"2 & /14_/3 |div(AVu) 242,
we have
482207 | div( AV )2

AB
> 2 udiv(AV)| — A2pr2P-224 7 |y2
> —div(U,) = Cpp A2 24 ™ 12022 & %eﬂfﬁ Vul>,  (3.37)

where C}, depend only on €, x,, and A. Multiply both sides of (3.37)
by 4C| A and then add the resulting equation into (3.33). We obtain

P22 | div(AV)|?
AB

> C[div(Uy) + 23324 =221y 2 4 247 |Vu|2]

(3.38)
where

Uy==-U+V+V,+V;.

Due to (3.11), (3.16), (3.21), (3.22) and (3.35), it is obvious that

U, | < C 7 (22202102 + | Vul?).

Letting U = ApU,, we obtain (3.3). The proof is complete. []

Corollary 3.1. Fix f > f,. There exists a number A, depending only on A,

1A]l @y Xo Q, R, f and d such that for all 1 > A,

! div(AVW)P > C [divw) + e uf? + 2¢2 7 |Vul| - (3.39)

where C is a constant depending only on A, || A|| 2@y Xo Q, R, pandd.
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Corollary 3.2. Integrating (3.39) on Q and using (3.4), we obtain

/e2h"’|divAVu|2dxzc/e””" [431ul® + A|Vul?]dx

Q Q

-C / 2! [21ul* + AlVul*|do(x).  (3.40)
oQ
In particular, if u is a function that satisfies u|,o =0 and Vu|,q = 0. Then,

/e2"'ﬂ|divAVu|2dxzc/e”"ﬂ [431ul® + 2| Vul?|dx.
Q

(3.41)
Q
Here, C is a constant depending only on A, ||A||C2 @y Xor Q R, pand d.

Remark 3.1. The Carleman estimate in (3.41) is similar to [46,
Lemma 5]. The main difference is that the result in [46, Lemma 5] is
for annulus domains while estimate (3.41) is applicable for more gen-
eral domains. It is interesting to mention that the Carleman estimate
in [46, Lemma 5] for annulus domains was used to prove a cloaking
phenomenon, see [46]. The reader can find many other versions of Car-
leman estimates in [7,34,33,47,52]. These estimates are used to solve
inverse problems; see e.g., [27,38,45].

4. The Carleman convexification theorem

Let p> [d/2] + 2. We have H?(Q) is continuously embedded into
CY(Q). Fix f = fo- For all 1> A, and for n € (0, 1), define the Carleman
weighted mismatch functional J, , : H”(Q) — R as follows

I, = / 2| — ey Av+ F(x,0, Vo) dx
Q

—B
+/14/e”' (0 + Voo ) +nlloll,q)-
0Q

4.1

The Carleman weighted mismatch functional J A in (4.1) is different
from the ones used in our research group’s previous papers [27,36,39].
The main difference is that in (4.1), we include the integral on 0Q. We
add this boundary integral to the mismatch functional because we do
not know the exact boundary information of the function v, on 0Q.
The presence of this boundary integral somewhat guarantees that the
values of uf}fml a0 and VU:;?inlag are small where v;?in is the minimizer
of J, ,- Also, since we will minimize J, , without boundary constraints,
the earlier versions of the Carleman convexification method [3,27,36,
39], which require some boundary conditions on the minimizer, are not
applicable. We modify the use of the Carleman estimate in this theorem
to obtain the convexification theorem below.

Theorem 4.1 (The convexification theorem). Assume that the function F
is of class C*(RY x R x RY). We have:

1. For all A> 1 and n > 0, the functional J, , is Frétchet differentiable.
The derivative of J, , is given by

DJ, ,(v)h

= 2/ A [—eyAv+ F(x,0, V)]
Q
X [—egAh+ 0, F(x,v,Vu)h + VpF(x,0,V0)- Vhldx

+244 / " [vh + Vo - Vhldo(x) + 21(v, h) Q@ (4.2)

Q
for all v,h € HP(Q). Here, 0,F is the partial differential derivative
of the function F(X,s,p), (X,s,p) € QX R X R?, with respect to the
second variable and V , F is the gradient vector of F with respect to the
third variable p.
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2. Let M be an arbitrarily large number. For each f > 1, A > Ay =
Aoleg, M, b,d,r,F,p)>1, n>0, u,v € B(M), we have

JM(u) — JM(U) - DJM(U)(M —-)

> c/e“”’” [lu = vl + |V (u - v)|*]dx
Q
+ c/ 42 (lu— o? + |V - v)|P)do(x)
0Q

Here, the constant C depends only on A, f, R, r, d, M, F and €.
3. The functional J, 4, has a unique minimizer in B(M).

Remark 4.1. An intuition for the convexity of J, , is that one can ap-
ply the convexification theorem in [36] to obtain the convexity of the
functional

v I,m(v):/enr_ﬂl —egAv + F(x, U,Vu)|2dx+n||v||%1p(g).

Q

By adding the convex term A / e2ir7ﬂ[|v|2d6(x) + |Vv|*1do(x) to this

0Q
functional, we obtain the desired convexity of J 1.+ However, the con-

vexity of I, , is valid only on a set of functions that satisfy some Cauchy
boundary data. Hence, the informal argument above is not rigorous. We
present the proof of Theorem 4.1 here.

Proof of Theorem 4.1. The first part of Theorem 4.1 can be proved by
a straightforward computation similarly in the first part of [36, Theo-
rem 4.1]. We now discuss part 2 of Theorem 4.1. Let u and v be two
functions in H?(2). Let h =u — v. We have

Ty @) = 7, (0) = DI, (0)(u = v)

= / 2’ [| — epAu+ F(x,u,Vu)|> — | — egAv + F(x, 0, VU)|2]dX
Q
+ /14/e2/“7ﬁ [u2 — 0?4+ |Vu)® - IVvlz]da(x)
oQ

+ [l = 101 @)]

-2 / 2 [—eyAv + F(x,0,V0)]
Q
X [—egAh + 0, F(x,v,Vv)h + VpF(x, v, Vv) - Vhldx

—2a4 / ok + Vo - Vhldo(x) — 24(v, h) HP(©Q)- 4.4)
Q

Using the identity a* — b? = (a — b)(a + b), we deduce from (4.4) that
Jin@) = J 3, (©) = DJ (= 0)

- / A7 = egAh + F(x,u, Vi) — F(x,0,V0)
Q
—2eyAv+2F(x, 0, VU)] [ —€egAh+ F(x,u,Vu) — F(x,v, VU)] dx

+ 44 / [+ v)h + V(u+v) - VRIdo(X) + n{u+ v, ) tr )
aQ

- 2/ 7 [—eyAv + F(x,0,V0)]
Q

X [~egAh + 0, F(x,v,Vo)h + V, F(x,0,Vv) - VAldx
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—2a* / ok + Vo - Vhldo(x) — 25(v, h) HP(©Q)- (4.5)
0Q
Expending the right-hand side of (4.5), we have
Ty @) = J;,() = DJ ., (u—v)
=L+L+1+A / (R + VAo + il g, (4-6)

0Q

where

24P 2
I=[e | — egAh+ F(x,u,Vu) — F(x, v, Vu)| dx,
Q

I,=2 / e [ - epAv+ F(x,v,V0)]
Q

X [ = €gAh+ F(x,u, Vu) — F(x,v, Vv)|dx,

I3

-2 / A —eyAv + F(x,0,V0)]
Q

X [~€gAh + 9, F(x,v, Vo)h + V, F(x, v, Vv) - VA]dXx.

Using the inequality (a — b)? > %az — b? and recalling that u and v are

in the bounded set B(M), we can find a constant C such that

I, >

\S] | o

/ 2 | AR2dx — / | F(x,u, Vu) — F(x, v, Vo)|2dx

Q Q

> 4.7)

\S] |omw

/e“"” |AK2dx — c/ | + VR dx.
Q
On the other hand,

Q

12+13:-2/e”"”[—eOAHF(x,u,VU)]
Q

X [F(x,u, Vu) = F(X,0, V) + 0, F(X,v, Vo)h + V, F(x,0,Vv) - Vh]|dx
(4.8)

Since both u and v are in the set B(M), we have

)F(x,u, Vu) — F(x,v,Vv) + 0, F(x,v, Vo)h + VPF(X, v, Vo) - Vh‘
<ClAP + VA,

Thus,

L+1;> —c/ 7 1n? + VR dx. (4.9)

Q
Combining (4.6), (4.7), (4.8) and (4.9), we have
Sy —J;,0) - DJM(u - )

€

Nlom

> /e“""|Ah|2dx—c/e“””[|h|2+|Vh|2]dx

Q Q

+ /14/e2’1’_ﬂ(|h|2 +|VaP)do(x) + 1|2 (4.10)

HP(Q)
Q
In order to prove the convexity of J,,, we need to show that the
right-hand side (4.10) is nonnegative. This is the main reason why the
Carleman estimate in (3.40) plays a key role in this proof. Applying
(3.40) for the function s with A =1Id, we have
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(S}

2
€ Ce,
—O/eu’ |AR2dx > —2
2 2

Q Q

AR + A VA dx

Ceé 24P 331112 2
—T/M’ [|h1> + AIVR|*]do(x). (4.11)
0Q

Letting A be sufficiently large, allowing C to depend on ¢, and A, com-
bining (4.10) and (4.11), and recalling that A = u — v, we get (4.3).
We next show that J,, has a unique minimizer by using the ar-

guments in [3]. Assume J A has two minimizers v, and v, in B(M).
Applying (4.3) for u =v, and v = v,, we have
T 1) =T, (02) = DI, (03)(v) — v7)

> C/e“ﬂi [lv) = vy 1> + V(v — vy)|*]dx
Q

—p
C//14e2” (g = 0y |* + |V (v; = vy)|>)do(x)

0Q
+’7”U1 _U2||%.Ip(g) (412)
By [3, Lemma 2], since v, is a minimizer of J/Ln in B(M),
DJ, ()0 —vy) 20, or = DJ,, (0)(v; —vp) <0 (4.13)
Combining (4.12) and (4.13), we have
Jig@1) = I, )
-5
> C/eu’ [lu, — 0> +|V(v, - v2)|2]dx
Q
C/A4ez’l’_ﬂ(|vl — 02 + V(v = vy)[)do(x)
0Q
+77”Ul _U2||%{p(g)' (414)
Similarly, interchanging the roles of v; and v,, we have
Jyg2) = I, (01)
-5
zc/e“f [lo; = v )* + V(v — vy)*]dx
Q
+ c/ 2 (o) = 0,2 + |V, = 0y)[P)do(x)
0Q
+nlloy = 033 ) (4.15)

Adding (4.14) and (4.15), we obtain v; =v,. []

The unique minimizer of J,, can be obtained by the conventional
gradient descent method. We refer the reader to [39, Theorem 2] and
[36, Theorem 4.2] for this fact. Let U::in be the minimizer of J 1> ODE
can repeat the proof in [39]. We next estimate the distance of minimizer

€]
v and v, . We have the theorem.
min 0

be a function satisfying (2.9) and (2.12). Assume
o € B(M) for some large number M. Let B, A be such that (4.3)
holds true. Let U;?in be the unique minimizer of J. 1y I B(M). We have

24P 5(] 2 50
/é‘ [|U€0 mmI +|V(U mm)l]

Q

Theorem 4.2. Let v,
that v

4 24P o0 12 50
+//1 e (lveo mln| +|V(u mln)| )do(x)
0Q
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+ "”Ufo n(:m”HP(Q) <C [/1452 / eZAr do(x) + "”er ”HP(Q)
Q
(4.16)
. - _ €0
Proof. Applying (4.3) for u= Ve, and v = U, WeE have
JLU(UEO) =-J; W(Uf;)m) bJ, VI(U;(l)m)(U goin)
—p
> c/ e log, — ol P+ 1V, — o )1F|dx
Q
4 247F o502 o0
+C//l e (|UE0 mln| +|V(U mlrl)| )do(X)
Q
+’1||U50 mln”Hp(Q) (417)
Since U:?in is the minimizer of J A in B(M), by [3, Lemma 2],
DJi ’I(Umm)(veo n(l)m) 2 0 or DJA ”(Umln)(uf() n?m) = 0
we have
—J3, W2 )= DJ, ”(U;(:m)(v - v ) <0. (4.18)

On the other hand, recalling that Ve, satisfies (2.9) and (2.12), we have

—p
J/l,,,(er)SﬂL‘Cﬁz/emr dG(X)+rI”U€0”2FIP(Q) (4.19)

oQ

Combining (4.17), (4.18) and (4.19) yields (4.16). The proof is com-
plete. []
Remark 4.2. Fix 4 > /. Since the Carleman weight function 27 s
bounded from below and above by positive constants, it follows from
(4.16) that
lloe

0 |12 (4.20)

2 2
i@ < C O +llog )

mm

Estimate (4.20) implies that the minimizer Uf‘sin
the solution to (2.9) and (2.12).

is an approximation to

5. Numerical study

The analysis in Section 2, Theorem 4.1, Theorem 4.2 and estimate
(4.20) suggest Algorithm 1 to compute the solution to (1.2). In this
section, we present the implementation and some numerical exam-
ples. Note that in Step 5 of Algorithm 1, we have accepted that the
well-known vanishing viscosity process for Hamilton-Jacobi equations
guarantees Vg, approximates the true viscosity solution to (2.4).

Due to (4.20) and (5.1), the error in computing the viscosity solution
to (1.2) in G (with the viscosity parameter ¢;) is bounded by C(é +
\/ﬁ||vg0 l z1r(q)) Where C depends only on €, 4, 8, R, d, M, F, and the
restriction of the cut-off function y; in G.

Algorithm 1 The procedure to compute the numerical solution to (1.2)
on a domain G.
1: Choose Q= (—R, R)? 3 G. Choose a cut-off function y; as in (2.1) for some
s5€(0,1).
2: Choose x, € RY \ Q, > 0, A> 0. Define a Carleman weight function ¢
where r(x) = |x — x,| for all x € Q.
3: Choose a viscosity parameter ¢, and a regularization parameter #, both of
which are positive and small. Choose M > 0 sufficiently large.
4: Deﬁne and minimize the functional J; , in B(M). The minimizer is denoted
by Umln
5: Set the computed solution to (1.2) in G by the function

::ln( )
u, (X) = ——
X5(x

, forallx eG. (5.1)
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25
2
1.5
1
05
% 05 0 05 1
(a) The true and computed solution
to (5.3)

Fig. 1. Test 1. True (solid) and computed (dot) solutions to Hamilton-Jacobi equation (5.3) in the interval (—0.8,0.8) and the relative error

value of this error function is 0.0294.

Remark 5.1. One could view equation (1.2) as a static equation for the
purpose of constructing a simpler solver. Under appropriate conditions
on H, the function u(x) serves as the large time-asymptotic limit of
u(x,?), where u(x, t) solves the following problem

{

for some initial function uy. Thus, one has the option to approximate
the function u using u(x, ) when the time 7 becomes significantly large.
It is important to note that this approach is applicable when u(x,0) is
compactly supported and the support of u(x,?) remains within a fixed
domain G for large ¢. In such cases, one can employ either an explicit
method or a hybrid of implicit and explicit techniques to solve for u.
A numerical solution u(x) can be approximately set as u(x,T) for some
large value of T'.

u(x,)+ Aux, ) + Hx,Vux) =0 (x,1)€ R? x (0, o),
u(x,0) = uy(x) x e R?

5.1. Numerical implementation

We implement Algorithm 1 to compute the restriction of solution
to (1.2) on G = (—0.8,0.8)¢ using the finite difference method. We set
Q = (—R, R)? where R =2. In this section, for simplicity, we consider
two cases d = 1 and d = 2. We choose the Gaussian-like function y;(x) =
e~050x) for all x € R?. The function %5(x) is less than § = 0.1353 for all
x e R? \ Q. The number c in (2.1) is 0.7362. The choices above include
details for Step 1 of Algorithm 1.

The Carleman weight function and other parameters in Step 2 and
Step 3 of Algorithm 1 are chosen by a trial and error process. We manu-
ally try many sets of parameters until we obtain an acceptable solution
for a reference test (test 1) below. We choose x;, = (9,0), f =20, 1 =3,
€0 =107 and 7 = 1073. These parameters are used for all other tests.

In Step 4, we rewrite the function J,, in the finite difference
scheme. Consider the case when d =2. Let N be a positive integer.
Let h=2R/(N — 1) represent the step size in space. On €, we arrange
a set of N X N uniform grid points €, as

Q,={x;=(x;=—R+(i—Dh,y;=—R+(—Dh),1 <i,j SN —1}.
In all of numerical examples below, N =70. In 2D, the functional J i
is approximated in finite difference as

N-1

h _ 2 24rP(x;;)

1,0 =n ¥ &
ij=2

2
— eApu(x;)) + F(x,-j,v(x,-j),VhU(x,-j))|

N
~b(x;
+h/14292/1r (xll)(|u(x,-1)|2+|VhU(Xi1)|2)

i=1

N
=B (x;
+ Rt Y AN (o) 1P + [V )1

i=1

N
_ﬂ .
+hat Y R o I + Vo0 1)
j=1
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(b) The relative error

[

.
| .
. The maximal
[u* || Lo )

N

et Zez,ir’ﬂ(XN/)(|U(xNj)|2 + |VhU(XNj)|2)
j=1
N-1

+nh? Z (02(%ij) + 1V ,00x;) + 1800, 1))
ij=2

(5.2)

In (5.2), we have reduced the norm in the regularization term to p =2
to simplify the implementation and to improve the speed of computa-
tion. We do not experience any difficulty with this small change. In our
implementation, instead of writing the computational code for the gra-
dient descent method, we use the optimization toolbox of Matlab, in
which the gradient descent method is coded. More precisely, we use
the command “fminunc” to minimize the functional J, ,. The command
“fminunc” requires an initial solution v,. We choose v, =0 in all tests.
Step 5 of Algorithm 1 is implemented directly.

The implementation for the case d = 1 is similar. We do not repeat
all the details here.

5.2. Numerical examples

We show two numerical results in 1D and two numerical results in
2D.

5.2.1. Examples in 1D

Test 1. We test if the convexification method can be applied to com-
pute a periodic solution to a Hamilton-Jacobi equation. We compute
the solution to

6u(x) + VI ()2 + 1 = 66507 4 /72 cos2(zx)e2sin@0) + 1 x €R.

(5.3)

The true solution to (5.3) is the function u*(x) = ¥ x € R. The true
and computed solutions are given in Fig. 1.

The convexification method provides a good solution to (5.3). The
true solution in this test is periodic. Computing periodic solutions to
Hamilton-Jacobi equations is very interesting and is a great concern in
the scientific community; especially, in the study of periodic structure.
The numerical result is satisfactory. The error in computation is small.

Test 2 We next test the case when solution to (1.2) is quasi periodic.
We solve the equation

Su(x)+ VW (x)|2+ 1

4 4 2
=5$iﬂ<%>+\/47r2x6 <cos<%>> +1 xeR.

4
The true solution to (5.4) is u*(x) = sin (%) for all x € R. The graphs
of the true solution u* and the computed solution bu using Algorithm 1
are displayed in Fig. 2.

As in Test 1, it is evident that the convexification method delivers a
satisfactory solution to (5.4). This test is interesting because the solution

(5.9
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0.1
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-0.1

-1 -0.5 0 0.5 1

(a) The true and computed solution

to (5.4)

Fig. 2. Test 2. True (solid) and computed (dot) solutions to Hamilton-Jacobi equation (5.4) in the interval (—0.8,0.8) and the relative error

value of this error function is 0.0457.

0.5
A
15
2
25
- 05 0 05 1
(a) The true and computed solution
to (5.3)

Fig. 3. Test 3. True (solid) and computed (dot) solutions to Hamilton-Jacobi equation (5.3) in the interval (—0.8,0.8) and the relative error |

value of this error function is 0.0203.

is quasi-periodic. Computing this kind of solution that is not periodic is
more interesting than the case of periodic solutions.

Test 3. In Test 1 and Test 2, we study the case when the solution
and the nonlinearity H are smooth. We now test the nonsmooth case.
We solve the equation

0u+V]2+1=g(x) xeR

where
(0= 10( = [2x] +sin(x)) + V(=2 +sin(x))2 + 1 x>0,
g= 10( —2x] + sin(x)) +1/(2 +sin(x))? + 1 x<0.

The true viscosity solution to (5.5) is given by u*(x) = —|2x| + sin(x) for
all x € R. In fact, we only need to verify the conditions in Definition 1.1
at the corner of the graph of u*, say at the place where x, = 0. Let ¢ be
a function in the class C!(R) with u* — ¢ having a strict maximum at
xo = 0. Without lost of the generality, we can consider the case u(0) =
@(0) = 0. It is clear that ¢'(0) € [-2,2]. So, 10¢(0) + V/|¢'(0)|2 +1 <
\/_ = g(0). Hence, u* is a viscosity subsolution to (5.5). It is also a
viscosity supersolution to (5.5) because there is no smooth function ¢
touches the function u* from below at x; = 0.

Although this test is challenging, it is evident from Fig. 3 that the
convexification method provides acceptable numerical result. The error
occurs mostly at the discontinuity of the function g and at the top corner
of the graph of the solution.

(5.5)

5.2.2. Examples in 2D
Test 4. We consider the case d = 2. We test the convexification
method by solving the following 2D Hamilton-Jacobi equation

Tux) +V|Vul2 + 1

=7 sin(%n <x2—(y—0.2)2)>

N % (szz (C"S(%” (>c2_(y—0.2)2)))2
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+ 72 (=2 +0.4)2 (cos (% x(¥=(y- 0.2)2)))2 +4)1/2 (5.6)
for all x = (x, y) € R2. The true solution to (5.6) is u*(x) = sin (%(x2 +
y— 0.2)2)). The numerical result of this test is displayed in Fig. 4.

It is evident that the numerical result of this test is out of expec-
tation. It is interesting to mention that the convexification method
successfully computes the quasi-periodic solution to Hamilton-Jacobi
equations.

Test 5. In this example, we test Algorithm 1 for unbounded and
quasi-periodic solution. More interestingly, in the test, the Hamiltonian
is not convex with respect to Vu. We solve the following 2D Hamilton-
Jacobi equation

10u(x) + |u, (X)] = |1, ()] = =10x + 10 cos (x* + y)
+ )1 + 2 xsin (x2 +y)| - |sin (x2 +y)| (5.7)

for all x = (x, y) € RZ. The true solution to (5.7) is u*(x) = —x 4 cos(x? +
¥). The numerical result of this test is displayed in Fig. 5.

Although the solution to this test has an unbounded component and
a quasi-periodic component, we can compute the solution of this test
with a very small error.

Test 6. Like in Test 3, we consider a special Hamilton-Jacobi equa-
tion, in which the Hamiltonian is not convex. The true solution is not
in the class C!. We solve the equation

10u + |uy| = |uy| = g(x) (5.8)
where
10( = |2x| + cos(x? +n:y))
x) = +2|1 + 2xsin(x? + wy)| — z| sin(x® + 7y)] x>0,yeR
s = 10( = [2x] + cos(x? + zy))
+2|1 = 2xsin(x? + wy)| — z| sin(x? + 7y)| x<0,yE€R.
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(a) The true solution to (5.6)

Fig. 4. Test 4. True and computed solutions to Hamilton-Jacobi equation (5.6) in the interval (—0.8,0.8)2. The relative error in (c) is given by |"

value of this error function is 0.0168.

-0.5 0 0.5 -0.5

(a) The true solution to (5.7) (b)

Fig. 5. Test 5. True and computed solutions to Hamilton-Jacobi equation (5.7) in the interval (—0.8,0.8)?. The relative error in (c) is given by

.

value of this error function is 0.0016.

»

-0.5 0

0.5 -0.5

(a) The true solution to (5.8)

Fig. 6. Test 6. True and computed solutions to Hamilton-Jacobi equation (5.8) in the interval (—0.8,0.8)2. The relative error in (c) is given by |"

value of this error function is 0.0099.

The true solution is given by u*(x) = —|2x| + cos(x? + zy) for all x =
(x,y) € R2. In order to verify that u* is the viscosity solution to (5.8),
we argue similarly to the argument in Test 3. The numerical result of
this test is displayed in Fig. 6.

It is remarkable that although the true solution is not in the class
C!, it can be computed. The error occurs in a neighborhood the line
{(x=0,y)} where u is not differentiable.

Remark 5.2. While the convexification method is effective for solving
nonlinear Hamilton-Jacobi equations, it comes with a notable shortcom-
ing: its slowness, particularly in the minimization phase. When utilizing
a Precision Workstation T7810 with 24 cores, the calculation of the
discussed solutions takes approximately 6-10 hours (depending on the
complexity of the Hamiltonian). To improve the computational cost, we
suggest a different methodology, also based on the Carleman estimate.
Initially, we choose an arbitrary function that serve as a first guess for
the solution to (2.9) and (2.12). It should be noted that this initial guess
does not need to be close to the true solution. We then apply the Car-
leman weighted quasi-reversibility method to linearize the nonlinear

(b) The computed solution to (5.6)

0

The computed solution to (5.7)

0

(b) The computed solution to (5.8)
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equation and refine our initial estimate. By iterating, we produce a se-
quence that ultimately converges to the target solution. The verification
of these outcomes can be conducted by using the arguments detailed in
[40]. We strongly believe that the speed of computation will be signifi-
cantly improved since the rate of convergence of the method in [40] is
0", 6 € (0,1), where n is the number of iterations. This method will
be studied in our near future research project.

6. Concluding remarks

In this paper, we have developed a new version of the Carleman
based convexification method to compute the viscosity solutions to
Hamilton-Jacobi equations on the whole space. Our procedure consists
of two main stages. In Stage 1, we derive from the given Hamilton-
Jacobi equation on R¢ another Hamilton-Jacobi equation on a bounded
domain by applying a truncation technique and a simple change of
variable. It is important to mention that the boundary conditions for
the Hamilton-Jacobi equation obtained in Stage 1 cannot be exactly
computed. Only approximations are derived. This feature makes the
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original convexification method is not applicable. In Stage 2, we de-
velop the new version of the Carleman-based convexification method
to solve the new Hamilton-Jacobi equation with approximated bound-
ary conditions. The main theorems in this paper guarantee that the
Carleman-based convexification method in Stage 2 delivers reliable
numerical solutions to nonlinear Hamilton-Jacobi equations without re-
quiring a good initial guess.
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Data will be made available on request.
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