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We propose a new globally convergent numerical method to compute solution Hamilton-Jacobi equations defined 
in ℝ𝑑 , 𝑑 ≥ 1, on a truncated bounded domain. This method is named the Carleman convexification method. By 
Carleman convexification, we mean that we use a Carleman weight function to convexify the conventional 
least squares mismatch functional. We will prove a new version of the convexification theorem guaranteeing 
that the mismatch functional involving the Carleman weight function is strictly convex and, therefore, has a 
unique minimizer. Moreover, a consequence of our convexification theorem guarantees that the minimizer of 
the Carleman weighted mismatch functional is an approximation of the viscosity solution we want to compute. 
Some numerical results in 1D and 2D will be presented.

1. Introduction

Let 𝑑 ≥ 1 be the spatial dimension. Let 𝐻 ∶ℝ𝑑 ×ℝ𝑑 →ℝ be a func-
tion satisfying the following growth condition

|𝐻(𝐱,𝐩)| ≤ 𝐶|𝐩|𝑘 for all 𝐩 ∈ℝ𝑑 (1.1)
for some number 𝑘 > 0. In this paper, we solve the following problem.

Problem 1.1. Fix 𝜆 > 0. Assume that equation

𝜆𝑢+𝐻(𝐱,∇𝑢) = 0 for all 𝐱 ∈ℝ𝑑 (1.2)
has a unique viscosity solution 𝑢. Compute 𝑢.

In general, the condition in the problem statement above requiring 
that (1.2) has a unique viscosity solution might not always hold true. 
We provide an example of a set of conditions on 𝐻 such that (1.2) has a 
unique solution. If 𝐻 is such that |𝐻(𝐱, 𝐩) −𝐻(𝐲, 𝐩)| ≤ 𝐶(1 + |𝐩|)|𝐱−𝐲|
and |𝐻(𝐱, 𝐩) − 𝐻(𝐱, 𝐪)| ≤ 𝐶|𝐩 − 𝐪| for some positive constant 𝐶 for 
all 𝐱, 𝐲, 𝐩, 𝐪 in ℝ𝑑 , then the comparison principle in [59, Theo-
rem 1.18] is valid. The uniqueness follows directly. The existence of 
a solution to (1.2) is studied in [59, Chapter 1-2]. We refer the reader 
to [4,5,13,14,44,59] for more important and interesting theory about 
Hamilton-Jabobi equations. We also draw the reader’s attention to 
[60–63] for interesting and significant works on high-order Hamilton-
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Jacobi equations. For convenience, we recall, from the pioneer works 
[13,14] as well as the recently published book [59], the concept of 
viscosity solutions to Hamilton-Jacobi equations. Viscosity sub(super)-
solutions to (1.2) are defined as follows.

Definition 1.1 (Viscosity solutions). Let 𝐹 ∶ ℝ𝑑 × ℝ × ℝ𝑑 → ℝ be an 
Hamiltonian. Let 𝑢 ∈ 𝐶(ℝ𝑑 ).

• We say that 𝑢 is a viscosity subsolution to 𝐹 (𝐱, 𝑢, ∇𝑢) = 0 if for any 
test function 𝜑 ∈ 𝐶1(ℝ𝑑 ) such that 𝑢 − 𝜑 has a strict maximum at 
𝐱0 ∈ℝ𝑑 , then

𝐹 (𝐱0,𝑢(𝐱0),∇𝜑(𝐱0)) ≤ 0 if 𝐱0 ∈ℝ𝑑 .

• We say that 𝑢 is a viscosity supersolution to 𝐹 (𝐱, 𝑢, ∇𝑢) = 0 if for 
any test function 𝜑 ∈ 𝐶1(ℝ𝑑 ) such that 𝑢 −𝜑 has a strict minimum 
at 𝐱0 ∈ℝ𝑑 , then

𝐹 (𝐱0,𝑢(𝐱0),∇𝜑(𝐱0)) ≥ 0 if 𝐱0 ∈ℝ𝑑 .

• We say that 𝑢 is a viscosity solution to 𝐹 (𝐱, 𝑢, ∇𝑢) = 0 if it is both 
viscosity subsolution and viscosity supersolution to this equation.

Studying Hamilton-Jacobi equations is interesting because Hamil-
ton-Jacobi equations arise from many scientific fields like geometrical 
optics, mechanics, game theory, etc. [16,18,19,24,42,59]. A number of 
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efficient and fast numerical approaches and techniques (many of which 
are of high orders) have been developed for Hamilton-Jacobi equations 
of the form 𝐹 (𝐱, 𝑢, ∇𝑢) = 0 where 𝐹 is called the Hamiltonian. For finite 
difference monotone and consistent schemes of first-order equations 
and applications, see [6,15,49,54,57] for details and recent develop-
ments. If 𝐹 = 𝐹 (𝐱, 𝑠, 𝐩) is convex in 𝐩 and satisfies some appropriate 
conditions, it is possible to construct some semi-Lagrangian approxi-
mations by the discretization of the Dynamical Programming Principle 
associated to the problem, see [20,21] and the references therein. See 
[1,2,8,10–12,22,25,43,48,50,51,53,55,64,65] for an incomplete list of 
results in this direction. Another approach to solve Hamilton-Jacobi 
equations is based on optimization [17,23,41,58]. However, due to the 
nonlinearity of the Hamiltonian, the least squares cost functional is non-
convex and might have multiple local minima and ravines. Hence, the 
methods based on optimization can provide reliable numerical solu-
tions if good initial guesses of the true solutions are given. The key 
point of the convexification method in this paper is to include in such 
least squares mismatch functionals some Carleman weight functions to 
make these functionals convex. Therefore, the requirement about the 
good initial guess is completely relaxed. On the other hand, we espe-
cially draw the reader’s attention to [1,49,51] for the Lax–Friedrichs 
schemes and [25,43] for the Lax–Friedrichs sweeping algorithm to solve 
Hamilton-Jacobi equations. Although strong, these methods might not 
be applicable to solve (1.2). The main reason is that in computation, 
rather than finding a solution to (1.2) on the whole space ℝ𝑑 , one can 
compute the restriction of the solution to (1.2) on a bounded domain. 
In this case, the boundary conditions on the boundary of this bounded 
domain are unclear while the sweeping methods are initiated by the 
boundary conditions of solutions.

Recently, we, in [27,36], developed the convexification method to 
solve (1) the inverse scattering problems and (2) a general class of 
Hamilton-Jacobi equations in a bounded domain. The efficiency of the 
convexification method was rigorously proved. However, the version of 
the convexification method above requires both Neumann and Dirich-
let boundary conditions of the solution, which are not always available. 
Therefore, in order to apply the convexification method in [27,36] with-
out requesting the knowledge of the boundary conditions, we have to 
develop a new version. The key to success involves a new piece-wise 
Carleman estimate and a new mismatch functional with a suitable Car-
leman weight function. Our method to solve (1.2) consists of two stages. 
In stage 1, we apply a truncation technique to reduce the problem of 
solving (1.2) on the whole ℝ𝑑 to the problem of computing the viscos-
ity of another Hamilton-Jacobi equation on a bounded domain. Rather 
than computing the solution on ℝ𝑑 , we only find the restriction of the 
solution on this domain. The boundary conditions of the new Hamilton-
Jacobi equation are unknown but we can estimate them in terms of the 
cut-off function. Then, in Stage 2, we minimize a mismatch functional 
with a special Carleman weight function involved, called the Carleman 
weighted mismatch functional. The presence of the Carleman weight 
function is extremely important in the sense that it guarantees the strict 
convexity of the Carleman weighted mismatch functional. As a result, 
our Carleman weighted mismatch functional has a unique minimizer in 
any bounded set of the functional space under consideration. We will 
apply a Carleman estimate to prove this theoretical result, called a con-
vexification theorem. Besides guaranteeing the strict convexity of the 
cost functional, the convexification theorem can be used to prove that 
the minimizer is an approximation of the desired viscosity solution.

It is worth mentioning that several versions of the convexification 
method have been developed since it was first introduced in [32]
for a coefficient inverse problem for a hyperbolic equation. We cite 
here [3,26–31,33,35,37,56] and references therein for some important 
works in this area and their real-world applications in bio-medical 
imaging, non-destructed testing, travel time tomography, identifying 
anti-personnel explosive devices buried under the ground, etc. The cru-
cial mathematical ingredient that guarantees the strict convexity of this 
functional is the presence of some Carleman estimates. The original 

idea of applying Carleman estimates to prove the uniqueness for a large 
class of important nonlinear mathematical problems was first published 
in [9]. It was discovered later in [32,34] that the idea of [9] can be suc-
cessfully modified to develop globally convergent numerical methods 
for coefficient inverse problems using the convexification method.

The structure of the paper is as follows. In Section 2, we reduce the 
problem of computing solution to (1.2) to the problem of computing 
viscosity solution to another Hamilton-Jacobi equation on a bounded 
domain of ℝ𝑑 . In Section 3, we prove a Carleman estimate, which plays 
a key role in the proof of the convexification theorem. In Section 4, we 
prove the convexification theorem. In Section 5, we show some numer-
ical examples. Section 6 is for the concluding remarks.

2. A change of variable

Rather than computing the solution 𝑢 to (1.2) on the whole space 
ℝ𝑑 , we compute the restriction of 𝑢 on an arbitrary bounded domain 
𝐺 of ℝ𝑑 . Without lost of generality, we assume that 𝐺 is compactly 
contained inside the cube Ω = (−𝑅, 𝑅)𝑑 for some 𝑅 > 0. Let 𝛿 ∈ (0, 1)
be a small number. Let 𝜒𝛿 be a cut off function in the class 𝐶∞(ℝ𝑑 )
satisfying

𝜒𝛿(𝐱) =
⎧
⎪
⎨
⎪⎩

> 𝑐 > 0 𝐱 ∈𝐺
∈ (𝛿, 𝑐) 𝐱 ∈Ω ⧵𝐺,
= 𝛿 𝐱 ∈ℝ𝑑 ⧵Ω

(2.1)

for some constant 𝑐 > 0. Define

𝑣(𝐱) = 𝜒𝛿(𝐱)𝑢(𝐱) or equivalently 𝑢(𝐱) = 𝑣(𝐱)
𝜒𝛿(𝐱)

(2.2)

for all 𝐱 ∈ℝ𝑑 . Since

𝜆𝑢(𝐱) +𝐻(𝐱,∇𝑢(𝐱)) = 𝜆𝑣(𝐱)
𝜒𝛿

+𝐻
(
𝐱,∇ 𝑣(𝐱)

𝜒𝛿(𝐱)

)

= 𝜆 𝑣(𝐱)
𝜒𝛿(𝐱)

+𝐻

(
𝐱,

𝜒𝛿(𝐱)∇𝑣(𝐱)− 𝑣(𝐱)∇𝜒𝛿(𝐱)
𝜒2
𝛿 (𝐱)

)
,

it follows from (1.2) that

𝜆 𝑣(𝐱)
𝜒𝛿(𝐱)

+𝐻

(
𝐱,

𝜒𝛿(𝐱)∇𝑣(𝐱)− 𝑣(𝐱)∇𝜒𝛿(𝐱)
𝜒2
𝛿 (𝐱)

)
= 0 (2.3)

for all 𝐱 ∈ ℝ𝑑 . Multiplying 𝜒2𝑘
𝛿 (𝐱) to both sides of (2.3), we derive an 

equation for 𝑣, read as

𝐹 (𝐱,𝑣(𝐱),∇𝑣(𝐱))

∶= 𝜒2𝑘
𝛿 (𝐱)

[
𝜆 𝑣(𝐱)
𝜒𝛿(𝐱)

+𝐻

(
𝐱,

𝜒𝛿(𝐱)∇𝑣(𝐱)− 𝑣(𝐱)∇𝜒𝛿(𝐱)
𝜒2
𝛿 (𝐱)

)]
= 0 (2.4)

for all 𝐱 ∈ℝ𝑑 .

Remark 2.1. The presence of 𝜒2𝑘
𝛿 (𝐱) in the right-hand side of (2.4)

helps us remove the blow-up behavior of the term 𝜒𝛿 (𝐱)∇𝑣(𝐱)−𝑣(𝐱)∇𝜒𝛿 (𝐱)
𝜒2
𝛿 (𝐱)

as 𝛿→ 0+. In fact, by (1.1),
||||||
𝜒2𝑘
𝛿 (𝐱)𝐻

(
𝐱,

𝜒𝛿(𝐱)∇𝑣(𝐱)− 𝑣(𝐱)∇𝜒𝛿(𝐱)
𝜒2
𝛿 (𝐱)

)||||||

≤ 𝐶𝜒2𝑘
𝛿 (𝐱)

|||||
𝜒𝛿(𝐱)∇𝑣(𝐱)− 𝑣(𝐱)∇𝜒𝛿(𝐱)

𝜒2
𝛿 (𝐱)

|||||

𝑘

= 𝐶|𝜒𝛿(𝐱)∇𝑣(𝐱)− 𝑣(𝐱)∇𝜒𝛿(𝐱)|𝑘,
which is uniformly bounded provided that 𝑣 ∈ 𝐶1(ℝ𝑑 ). This step is cru-
cial in numerical computation.

We have the proposition.
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Proposition 2.1. The function 𝑢 is a viscosity solution to (1.2) if and only 
if the function 𝑣 is a viscosity solution to (2.4).

Proof. We prove that if 𝑢 is a viscosity subsolution to (1.2) then 𝑣 is 
a viscosity solution to (2.4). In fact, fix an arbitrary point 𝐱0 ∈ℝ𝑑 and 
let 𝜑 be a test function such that 𝑣 −𝜑 has a strict maximum at 𝐱0. We 
have

𝑣(𝐱)−𝜑(𝐱)− [𝑣(𝐱0)−𝜑(𝐱0)] < 0, for all 𝐱 ∈ℝ𝑑 ⧵ {𝐱0}. (2.5)
Define

𝜙(𝐱) =
𝜑(𝐱) + (𝑣(𝐱0)−𝜑(𝐱0))

𝜒𝛿(𝐱)
for all 𝐱 ∈ℝ𝑑 . (2.6)

Then, 𝜙 ∈ 𝐶1(ℝ𝑑 ). A simple algebra yields that for all 𝐱 ∈ℝ𝑑 ,

𝜒2𝑘
𝛿 (𝐱)

[
𝜆𝑢(𝐱) +𝐻(𝐱,∇𝜙(𝐱))

]

= 𝜒2𝑘
𝛿 (𝐱)

[
𝜆 𝑣(𝐱)
𝜒𝛿(𝐱)

+𝐻
(
𝐱,∇

𝜑(𝐱) + (𝑣(𝐱0)−𝜑(𝐱0))
𝜒𝛿(𝐱)

)]

= 𝜒2𝑘
𝛿 (𝐱)

[
𝜆 𝑣(𝐱)
𝜒𝛿(𝐱)

+𝐻
(
𝐱,

𝜒𝛿(𝐱)∇
(
𝜑(𝐱) + (𝑣(𝐱0)−𝜑(𝐱0))

)
−
(
𝜑(𝐱) + (𝑣(𝐱0)−𝜑(𝐱0))

)
∇𝜒𝛿(𝐱)

𝜒2
𝛿 (𝐱)

)

= 𝜒2𝑘
𝛿 (𝐱)

[
𝜆 𝑣(𝐱)
𝜒𝛿(𝐱)

+𝐻
(
𝐱,

𝜒𝛿(𝐱)∇(𝜑(𝐱))−
(
𝜑(𝐱) + (𝑣(𝐱0)−𝜑(𝐱0))

)
∇𝜒𝛿(𝐱0)

𝜒2
𝛿 (𝐱)

)]
.

In particular, when 𝐱 = 𝐱0, we have

𝜒2𝑘
𝛿 (𝐱0)

[
𝜆𝑢(𝐱0) +𝐻(𝐱0,∇𝜙(𝐱0))

]

= 𝜒2𝑘
𝛿 (𝐱0)

[
𝜆
𝑣(𝐱0)
𝜒𝛿(𝐱0)

+𝐻
(
𝐱0,

𝜒𝛿(𝐱0)∇(𝜑(𝐱0))−
(
𝜑(𝐱0) + (𝑣(𝐱0)−𝜑(𝐱0))

)
∇𝜒𝛿(𝐱0)

𝜒2
𝛿 (𝐱)

)]

= 𝜒2𝑘
𝛿 (𝐱0)

[
𝜆
𝑣(𝐱0)
𝜒𝛿(𝐱0)

+𝐻
(
𝐱0,

𝜒𝛿(𝐱0)∇(𝜑(𝐱0))− 𝑣(𝐱0)∇𝜒𝛿(𝐱0)
𝜒2
𝛿 (𝐱)

)]
.

Hence, by (2.4),

𝐹 (𝐱0,𝑣(𝐱0),∇𝜑(𝐱0)) = 𝜒2𝑘
𝛿 (𝐱0)

[
𝜆𝑢(𝐱0) +𝐻(𝐱0,∇𝜙(𝐱0))

]
. (2.7)

Due to (2.2) and (2.6), for all 𝐱 ∈ℝ𝑑 ⧵ {𝐱0},

𝑢(𝐱)− 𝜙(𝐱) =
𝑣(𝐱)−

(
𝜑(𝐱) + (𝑣(𝐱0)−𝜑(𝐱0))

)

𝜒𝛿(𝐱)

=
𝑣(𝐱)−𝜑(𝐱)− (𝑣(𝐱0)−𝜑(𝐱0))

𝜒𝛿(𝐱)
< 0.

It is obvious that 𝑢(𝐱0) − 𝜙(𝐱0) = 0. Hence, 𝑢 − 𝜙 attains a strict maxi-
mum at 𝐱0. Since 𝑢 is a viscosity subsolution to (1.2),

𝜒2𝑘
𝛿 (𝐱0)

[
𝜆𝑢(𝐱0) +𝐻(𝐱0,∇𝜙(𝐱0))

] ≤ 0. (2.8)
Combining (2.7) and (2.8), we obtain

𝐹 (𝐱0,𝑣(𝐱0),∇𝜑(𝐱0)) ≤ 0.

Hence 𝑣 is a viscosity subsolution to (2.4). We can repeat the proof 
above to show that if 𝑢 is a viscosity supersolution to (1.2) then 𝑣 is a 
viscosity supersolution to (2.4). The reverse direction of Theorem 2.1
can be proved in the same manner. □

Remark 2.2. A direct consequence of Proposition 2.1 is that we can 
compute the viscosity solution 𝑢∗ to (1.2) by finding the viscosity so-

lution 𝑣∗ to (2.4) and then setting 𝑢∗ = 𝑣∗∕𝜒𝛿 . Although the formula 
𝑢∗ = 𝑣∗∕𝜒𝛿 holds true for all 𝐱 ∈ℝ𝑑 , this formula is reliable only in the 
domain 𝐺 where 𝜒𝛿 > 𝑐 > 0. Outside 𝐺, the function 𝜒𝛿 is close to zero. 
In this case, the “artificial” error in computation, due to discretization 
with positive step size, the presence of the viscosity term and regular-
ization term, is magnified.

It is well known from the vanishing viscosity process that 𝑣∗ can be 
approximated by the solution to

−𝜖0Δ𝑣𝜖0 + 𝐹 (𝐱,𝑣𝜖0 ,∇𝑣𝜖0 ) = 0 for all 𝐱 ∈ℝ𝑑 . (2.9)
In computation, it is inconvenient to compute the function 𝑣𝜖0 on the 
whole space ℝ𝑑 . We only find 𝑣𝜖0 in the bounded domain Ω on which 
𝜒𝛿 > 𝛿. In order to solve PDEs of the form (2.9) on a bounded domain, 
we have to approximate the boundary conditions. By (2.1) and (2.2), 
for all 𝐱 ∈ 𝜕Ω,

|𝑣(𝐱)| = 𝛿|𝑢(𝐱)| < 𝐶𝛿 (2.10)
and

|𝜕𝜈𝑣(𝐱)| = |𝜒𝛿(𝐱)𝜕𝜈𝑢(𝐱) + 𝑢(𝐱)𝜕𝜈𝜒𝛿(𝐱)| = |𝜒𝛿(𝐱)𝜕𝜈𝑢(𝐱)| < 𝐶𝛿. (2.11)
Here, we have used the fact that 𝜕𝜈𝜒𝛿(𝐱)|𝜕Ω = 0. Since the functions 
𝑢|𝜕Ω and 𝜕𝜈𝑢|𝜕Ω are unknown, neither are 𝑣|𝜕Ω and 𝜕𝜈𝑣|𝜕Ω. We are 
unable to compute the exact Cauchy information of 𝑣 on 𝜕Ω. However, 
since 𝛿 is a small number, due to (2.10) and (2.11), both |𝑣| and |∇𝑣|
on 𝜕Ω are small. The bounds (2.10)–(2.11) also hold for 𝑣𝜖0 provided 
that ‖𝐷𝑣𝜖0‖𝐿∞ ≤ 𝐶 . Therefore, we can impose the conditions that both 
𝑣𝜖0 |𝜕Ω and ∇𝑣𝜖0 |𝜕Ω satisfy

|𝑣𝜖0 | < 𝐶𝛿 and |∇𝑣𝜖0 | < 𝐶𝛿 (2.12)
for all 𝐱 ∈ 𝜕Ω.

Since the exact boundary condition for 𝑣𝜖0 cannot be retrieved, nu-merical methods to compute it is not yet developed. Conventional meth-
ods compute a function 𝑣𝜖0 that satisfies (2.9) and (2.12) are based on least squares optimization. That means we minimize a cost functional 
and then set the minimizer, named 𝑣𝜖0min, as the computed solution. A typical example of such a functional is

𝑣↦ 𝐽 (𝑣) = ∫
Ω

|− 𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)|2𝑑𝐱 + ∫
𝜕Ω

|𝑣|2𝑑𝐱

+ ∫
𝜕Ω

|∇𝑣|2𝑑𝜎(𝐱) + a regularization term. (2.13)

This approach is effective in many cases. It is widely used in the scien-
tific community. However, it has several drawbacks. The most impor-
tant drawback is that finding the global minimizer 𝑣𝜖0min is extremely 
challenging unless a good initial guess is given. This is because the 
functional 𝐽 might not be convex and might have multiple local min-
ima. The second drawback is that, in general, the distance between the 
true solution 𝑣𝜖0 to (2.4) and the computed solution 𝑣

𝜖0
min is not known. In this paper, we generalize the convexification method in [27,36] to 

compute the “best fit” solution to (2.9) and (2.12). By convexification, 
we mean that we let a Carleman weight function be involved in the 
functional 𝐽 , defined in (2.13). The presence of the Carleman weight 
function removes both significant drawbacks of the least squares opti-
mization approach above. As mentioned in Section 1, the idea of using 
Carleman weight function to convexify the functional 𝐽 was originally 
introduced in [32] and then was investigated intensively by our re-
search group, see e.g., [3,27,36,39].

3. A piece-wise Carleman estimate

The key tool for us to rigorously prove the convexifying phe-
nomenon is the Carleman estimate established in this section. Let Ω
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be a bounded domain in ℝ𝑑 with smooth boundary. Let 𝐴 ∶ Ω→ℝ𝑑×𝑑

be a 𝑑 × 𝑑 matrix valued function in the class 𝐶2. Assume that

1. 𝐴 is symmetric; i.e., 𝐴T = 𝐴 or equivalently 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all 1 ≤
𝑖, 𝑗 ≤ 𝑑, where 𝑎𝑖𝑗 is the entry on row 𝑖 and column 𝑗 of 𝐴;

2. 𝐴 is positive definite; i.e., there exists a positive number Λ such 
that

Λ−1|𝜉|2 ≤𝐴(𝐱)𝜉 ⋅ 𝜉 ≤Λ|𝜉|2 for all 𝐱 ∈Ω, 𝜉 ∈ℝ𝑑 . (3.1)

Let 𝐱0 be a point in ℝ𝑑 ⧵Ω. For each 𝐱 ∈ℝ𝑑 , define

𝑟(𝐱) = |𝐱 − 𝐱0| for all 𝐱 ∈Ω. (3.2)
We have the theorem.

Theorem 3.1. Let 𝜆 > 0 and 𝑢 ∈ 𝐶2(Ω). Then, there exists a positive 
constant 𝛽0 depending only on ‖𝐴‖𝐶1(Ω)

and Λ such that if 𝛽 ≥ 𝛽0 and 
𝜆 ≥ 𝜆0 = 2𝑅𝛽 , where 𝑅 =max𝐱∈Ω{|𝐱 − 𝐱0|}, then

𝑟𝛽+2𝑒2𝜆𝑟−𝛽 |div(𝐴∇𝑢)|2

≥ 𝐶
[
div(𝑈 ) + 𝜆3𝛽4𝑒2𝜆𝑟−𝛽 𝑟−2𝛽−2|𝑢|2 + 𝜆𝛽𝑒2𝜆𝑟−𝛽 |∇𝑢|2

]
. (3.3)

Here, 𝑈 is a vector-valued function satisfying

|𝑈 | ≤ 𝐶𝑒2𝜆𝑟−𝛽 (𝜆3𝛽3𝑟−2𝛽−2|𝑢|2 + 𝜆𝛽|∇𝑢|2) (3.4)
and 𝐶 is a constant depending only on 𝐱0, Ω, ‖𝐴‖𝐶1(Ω), Λ and 𝑑.

Proof of Theorem 3.1. In the proof, we denote by 𝐶𝑖, 𝑖 ∈ {1, 2, … }, 
positive constants depending only on ‖𝐴‖𝐶1(Ω), 𝐱0, Ω, Λ and 𝑑. We 
split the proof into several steps.
Step 1. For 𝐱 ∈Ω, recall 𝑟 = |𝐱 − 𝐱0|. Set

𝑣 = 𝑒𝜆𝑟−𝛽 𝑢 equivalently 𝑢 = 𝑒−𝜆𝑟−𝛽 𝑣. (3.5)
By the product rule in differentiation and the symmetry of 𝐴, we have

div(𝐴∇𝑢) = div(𝐴∇(𝑒−𝜆𝑟−𝛽 𝑣))

= 2𝐴∇𝑣 ⋅∇(𝑒−𝜆𝑟−𝛽 ) + 𝑒−𝜆𝑟−𝛽 div(𝐴∇𝑣) + 𝑣div(𝐴∇𝑒−𝜆𝑟−𝛽 )

= 2𝜆𝛽𝑟−𝛽−2𝑒−𝜆𝑟−𝛽 𝐴∇𝑣 ⋅ (𝐱 − 𝐱0) + 𝑒−𝜆𝑟−𝛽 div(𝐴∇𝑣)

+ 𝑣div(𝐴∇𝑒−𝜆𝑟−𝛽 ).

Using the inequality (𝑎 + 𝑏 + 𝑐)2 ≥ 2𝑎(𝑏 + 𝑐), we have for all 𝐱 ∈Ω

𝑟𝛽+2𝑒2𝜆𝑟−𝛽 |div(𝐴∇𝑢)|2
2𝜆𝛽 ≥ 2(𝐱 − 𝐱0) ⋅𝐴∇𝑣div(𝐴∇𝑣)

+ 2𝑒𝜆𝑟−𝛽 [(𝐱 − 𝐱0) ⋅𝐴∇𝑣]𝑣div(𝐴∇𝑒𝜆𝑟
−𝛽 ). (3.6)

Denote by

𝐼1 = 2(𝐱 − 𝐱0) ⋅𝐴∇𝑣div(𝐴∇𝑣) (3.7)
𝐼2 = 2𝑒𝜆𝑟−𝛽 (𝐱 − 𝐱0) ⋅𝐴∇(|𝑣|2)div(𝐴∇𝑒𝜆𝑟

−𝛽 ). (3.8)
Due to (3.7) and (3.8), we rewrite (3.6) as
𝑟𝛽+2𝑒2𝜆𝑟−𝛽 |div(𝐴∇𝑢)|2

2𝜆𝛽 ≥ 𝐼1 + 𝐼2 (3.9)

for all 𝐱 ∈Ω. We next estimate 𝐼1 and 𝐼2.
Step 2. In this step, we estimate 𝐼1. By the product rule in differenti-
ation 𝑓div𝐹 = div(𝑓𝐹 ) − ∇𝑓 ⋅ 𝐹 for all scalar valued function 𝑓 and 
vector valued function 𝐹 , we have

𝐼1 = 2(𝐱 − 𝐱0) ⋅𝐴∇𝑣div(𝐴∇𝑣)

= 2div
(
[(𝐱 − 𝐱0) ⋅𝐴∇𝑣]𝐴∇𝑣

)
− 2∇((𝐱 − 𝐱0) ⋅𝐴∇𝑣) ⋅ (𝐴∇𝑣)

for all 𝐱 ∈Ω. Thus,

𝐼1 = div𝑉1 − 2∇((𝐱 − 𝐱0) ⋅𝐴∇𝑣) ⋅ (𝐴∇𝑣) (3.10)
where 𝑉1 is the vector defined by

𝑉1 = 2[(𝐱 − 𝐱0) ⋅𝐴∇𝑣]𝐴∇𝑣. (3.11)
Using the symmetry of 𝐴 = (𝑎𝑖𝑗 )𝑑𝑗=1, we have
𝜕
𝜕𝑥𝑖

((𝐱 − 𝐱0) ⋅𝐴∇𝑣)

= 𝜕
𝜕𝑥𝑖

(𝐴(𝐱 − 𝐱0) ⋅∇𝑣) =
𝜕
𝜕𝑥𝑖

( 𝑑∑
𝑘,𝑗=1

(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗
𝜕𝑣
𝜕𝑥𝑘

)

=
𝑑∑

𝑘,𝑗=1

[
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

+ 𝑎𝑘𝑗𝛿𝑖𝑗
𝜕𝑣
𝜕𝑥𝑘

+ (𝑥𝑗 − (𝑥0)𝑗 )
𝜕𝑎𝑘𝑗
𝜕𝑥𝑖

𝜕𝑣
𝜕𝑥𝑘

]
.

(3.12)

Here, 𝛿𝑖𝑗 =
{

1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗 is called the Kronecker delta and 𝑥𝑗 and (𝑥0)𝑗 are 

the 𝑗 entries of 𝐱 and 𝐱0 respectively. By writing

2
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

𝑎𝑖𝑙
𝜕𝑣
𝜕𝑙

=
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

𝑎𝑖𝑙
𝜕𝑣
𝜕𝑙

+
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

𝑎𝑖𝑙
𝜕𝑣
𝜕𝑙

,

and by interchanging the roles of the indices 𝑖 and 𝑙 in the second sum, 
we obtain

2
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

𝑎𝑖𝑙
𝜕𝑣
𝜕𝑙

=
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

𝑎𝑖𝑙
𝜕𝑣
𝜕𝑙

+
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑙

𝑎𝑙𝑖
𝜕𝑣
𝜕𝑖

(3.13)

for all 𝐱 ∈Ω. Since 𝑎𝑖𝑙 = 𝑎𝑙𝑖, it follows from (3.13) that

2
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

𝑎𝑖𝑙
𝜕𝑣
𝜕𝑙

=
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗𝑎𝑖𝑙

[ 𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

𝜕𝑣
𝜕𝑙

+ 𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑙

𝜕𝑣
𝜕𝑖

]

=
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗𝑎𝑖𝑙

𝜕
𝜕𝑥𝑘

( 𝜕𝑣
𝜕𝑥𝑖

𝜕𝑣
𝜕𝑥𝑙

)

=
𝑑∑

𝑖,𝑗,𝑘,𝑙=1

𝜕
𝜕𝑥𝑘

(
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗𝑎𝑖𝑙

𝜕𝑣
𝜕𝑥𝑖

𝜕𝑣
𝜕𝑥𝑙

)

−
𝑑∑

𝑖,𝑗,𝑘,𝑙=1

𝜕
𝜕𝑥𝑘

(
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗𝑎𝑖𝑙

) 𝜕𝑣
𝜕𝑥𝑖

𝜕𝑣
𝜕𝑥𝑙

. (3.14)

The first sum of in the right-hand side of (3.14) can be rewritten as
𝑑∑

𝑖,𝑗,𝑘,𝑙=1

𝜕
𝜕𝑥𝑘

(
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗𝑎𝑖𝑙

𝜕𝑣
𝜕𝑥𝑖

𝜕𝑣
𝜕𝑥𝑙

)

=
𝑑∑

𝑘,𝑗=1

𝜕
𝜕𝑥𝑘

(
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝑑∑
𝑖,𝑙=1

𝑎𝑖𝑙
𝜕𝑣
𝜕𝑥𝑖

𝜕𝑣
𝜕𝑥𝑙

)
= div(𝑉2) (3.15)

where
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𝑉2 =𝐴(𝐱 − 𝐱0)(𝐴∇𝑣 ⋅∇𝑣). (3.16)
By (3.14), (3.15) and (3.16), we have proved that

2
𝑑∑

𝑖,𝑗,𝑘,𝑙=1
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗

𝜕2𝑣
𝜕𝑥𝑘𝜕𝑥𝑖

𝑎𝑖𝑙
𝜕𝑣
𝜕𝑙

= div(𝑉2)−
𝑑∑

𝑖,𝑗,𝑘,𝑙=1

𝜕
𝜕𝑥𝑘

(
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗𝑎𝑖𝑙

) 𝜕𝑣
𝜕𝑥𝑖

𝜕𝑣
𝜕𝑥𝑙

. (3.17)

We are now at the position to estimate 𝐼1. Using (3.10), (3.11), (3.12), 
(3.16) and (3.17), we obtain

𝐼1 ≥ div(𝑉1 + 𝑉2)−𝐶1|∇𝑣|2 (3.18)
where

𝐶1 = 2max
𝐱∈Ω

{|||
𝜕

𝜕𝑥𝑘

(
(𝑥𝑗 − (𝑥0)𝑗 )𝑎𝑘𝑗𝑎𝑖𝑙

)|||
}

is a constant depending only on 𝐴, 𝐱0, Ω, and 𝑑.
Step 3. We now estimate 𝐼2. A simple computation yields

div(𝐴∇𝑒−𝜆𝑟−𝛽 )

= 𝜆𝛽div(𝑟−𝛽−2𝑒−𝜆𝑟−𝛽 𝐴(𝐱 − 𝐱0))

= 𝜆𝛽
[
∇(𝑟−𝛽−2𝑒−𝜆𝑟−𝛽 ) ⋅𝐴(𝐱 − 𝐱0) + 𝑟−𝛽−2𝑒−𝜆𝑟−𝛽 div(𝐴(𝐱 − 𝐱0))

]

for all 𝐱 ∈Ω. Thus,

div(𝐴∇𝑒−𝜆𝑟−𝛽 )

= 𝜆𝛽𝑒−𝜆𝑟−𝛽
[(

− (𝛽 + 2)𝑟−𝛽−4 + 𝜆𝛽𝑟−2𝛽−4
)
(𝐱 − 𝐱0)

⋅𝐴(𝐱 − 𝐱0) + 𝑟−𝛽−2div(𝐴(𝐱 − 𝐱0))
]

(3.19)
for all 𝐱 ∈Ω. Since 𝐴 is symmetric, recalling (3.8) and using (3.19), we 
can write

𝐼2 = 𝑒𝜆𝑟−𝛽 𝐴(𝐱 − 𝐱0) ⋅∇(|𝑣|2)div(𝐴∇𝑒𝜆𝑟
−𝛽 ).

Hence,

𝐼2 = 𝜆𝛽𝐴(𝐱 − 𝐱0) ⋅∇(|𝑣|2)
[(

− (𝛽 + 2)𝑟−𝛽−4 + 𝜆𝛽𝑟−2𝛽−4
)
(𝐱 − 𝐱0)

⋅𝐴(𝐱 − 𝐱0) + 𝑟−𝛽−2div(𝐴(𝐱 − 𝐱0))
]
.

Thus,

𝐼2 = div(𝑉3)− 𝜆𝛽|𝑣|2div(𝑃 ) (3.20)
where

𝑉3 = 𝜆𝛽|𝑣|2𝑃 (3.21)
and

𝑃 =
[(

− (𝛽 + 2)𝑟−𝛽−4 + 𝜆𝛽𝑟−2𝛽−4
)
(𝐱 − 𝐱0)

⋅𝐴(𝐱 − 𝐱0) + 𝑟−𝛽−2div(𝐴(𝐱 − 𝐱0))
]
𝐴(𝐱 − 𝐱0). (3.22)

We estimate the second term in the right-hand side of (3.20). We write

−𝜆𝛽|𝑣|2div(𝑃 ) = −𝜆𝛽|𝑣|2div(𝑃1 + 𝑃2 + 𝑃3) (3.23)
where

𝑃1 = −(𝛽 + 2)𝑟−𝛽−4(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0),

𝑃2 = 𝜆𝛽𝑟−2𝛽−4(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0),

𝑃3 = 𝑟−𝛽−2div(𝐴(𝐱 − 𝑥0))𝐴(𝐱 − 𝐱0).

Simple computations yield

− div(𝑃1)

= (𝛽 + 2)
[
∇(𝑟−𝛽−4) ⋅ [(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0)]

+ 𝑟−𝛽−4div((𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0))

= (𝛽 + 2)
[
− (𝛽 + 4)𝑟−𝛽−6(𝐱 − 𝐱0) ⋅ [(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0)]

+ 𝑟−𝛽−4div((𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0))
]
. (3.24)

Recalling (3.1), we have

(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0) ≥Λ−1|𝐱 − 𝐱0|2 =Λ−1𝑟2. (3.25)
It follows from (3.24) and (3.25) that

−div(𝑃1) ≥ −(𝛽 + 2)(𝛽 + 4)Λ−1𝑟−𝛽−2 −𝐶2𝑟−𝛽−2 ≥ −𝐶3𝛽2𝑟−𝛽−2 (3.26)
where

𝐶2 = max
𝐱∈Ω

{
𝑟−2|div((𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0))|

}

and 𝐶3 depends only on Ω, 𝐱0, and Λ. We next estimate −div(𝑃2). We 
have

−div(𝑃2) = −𝜆𝛽
[
∇(𝑟−2𝛽−4) ⋅ [(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0)]

+ 𝑟−2𝛽−4div[(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0)]
]

= −𝜆𝛽
[
(−2𝛽 − 4)𝑟−2𝛽−6[(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)]2

+ 𝑟−2𝛽−4div[(𝐱 − 𝐱0) ⋅𝐴(𝐱 − 𝐱0)𝐴(𝐱 − 𝐱0)]
]
.

Using (3.25), we have

−div(𝑃2) ≥ 𝐶4𝜆𝛽2𝑟−2𝛽−2 (3.27)
where 𝐶4 depends only on Ω, 𝐱0, and Λ. On the other hand,

−div(𝑃3) = −
[
∇(𝑟−𝛽−2) ⋅ [div(𝐴(𝐱 − 𝐱0))𝐴(𝐱 − 𝐱0)]

+ 𝑟−𝛽−2div(div(𝐴(𝐱 − 𝐱0))𝐴(𝐱 − 𝐱0))
]

= (𝛽 + 2)𝑟−𝛽−4(𝐱 − 𝐱0) ⋅ [div(𝐴(𝐱 − 𝐱0))𝐴(𝐱 − 𝐱0)]

− 𝑟−𝛽−2div(div(𝐴(𝐱 − 𝐱0))𝐴(𝐱 − 𝐱0)).

Hence,

−div(𝑃3) ≥ −𝐶5𝛽𝑟−𝛽−2, (3.28)
where 𝐶5 depends only on Ω, 𝐱0, and Λ. Combining (3.23), (3.26), 
(3.27) and (3.28), we have

−𝜆𝛽|𝑣|2div(𝑃 ) ≥ 𝐶6𝜆2𝛽3𝑟−2𝛽−2|𝑣|2, (3.29)
where 𝐶6 depends only on Ω, 𝐱0, and Λ. Here, we have used the fact 
that 𝜆𝑅−𝛽 ≥ 2. Due to (3.20) and (3.29), we obtain

𝐼2 ≥ div(𝑉3)−𝐶6𝜆2𝛽3𝑟−2𝛽−2|𝑣|2. (3.30)
Step 3 is complete.
Step 4. Combining the estimates (3.9), (3.18) and (3.30), we get

𝑟𝛽+2𝑒2𝜆𝑟−𝛽 |div(𝐴∇𝑢)|2
2𝜆𝛽 ≥ div(𝑉1+𝑉2+𝑉3)+𝐶6𝜆2𝛽3𝑟−2𝛽−2|𝑣|2−𝐶1|∇𝑣|2

(3.31)
for all 𝐱 ∈ Ω. Recall from (3.5) that 𝑣 = 𝑒𝜆𝑟𝛽 𝑢. By standard rules in 
differentiation, we have

∇𝑣 = 𝑒𝜆𝑟−𝛽 (−𝜆𝛽𝑢𝑟−𝛽−2(𝐱 − 𝐱0) +∇𝑢).

Hence,

|∇𝑣|2 ≥ −𝐶7𝑒2𝜆𝑟
−𝛽 (𝜆2𝛽2𝑟−2𝛽−2|𝑢|2 + |∇𝑢|2), (3.32)
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where 𝐶6 depends only on Ω and 𝐱0. Combining (3.5), (3.31) and 
(3.32), we obtain

𝑟𝛽+2𝑒2𝜆𝑟−𝛽 |div(𝐴∇𝑢)|2
2𝜆𝛽 ≥ div(𝑉1 + 𝑉2 + 𝑉3) +𝐶8𝜆2𝛽3𝑒2𝜆𝑟

−𝛽 𝑟−2𝛽−2|𝑢|2

−𝐶9𝑒2𝜆𝑟
−𝛽 |∇𝑢|2 (3.33)

for all 𝐱 ∈Ω, where 𝐶8 and 𝐶9 depend only on Ω, 𝐱0, and Λ.
Step 5. We have

𝑒2𝜆𝑟−𝛽 𝑢div(𝐴∇𝑢) = div(𝑒2𝜆𝑟−𝛽 𝑢𝐴∇𝑢)−∇[𝑒2𝜆𝑟−𝛽 𝑢] ⋅ (𝐴∇𝑢)

= div(𝑈1)− 𝑒2𝜆𝑟−𝛽
[
∇𝑢− 2𝜆𝛽𝑟−𝛽−2𝑢(𝐱 − 𝐱0)

]
𝐴∇𝑢

(3.34)
where

𝑈1 = 𝑒2𝜆𝑟−𝛽 𝑢𝐴∇𝑢. (3.35)
Since

2𝜆𝛽𝑟−𝛽−2𝑢𝐴∇𝑢 ⋅ (𝐱 − 𝐱0) ≤ 1
2Λ |∇𝑢|2 + 8𝐶10𝜆2𝛽2Λ𝑟−2𝛽−2|𝑢|2,

using (3.1) with 𝜉 = ∇𝑢, (3.34) and the inequality 2𝑎𝑏 ≤ 𝑎2 + 𝑏2, we 
have

𝑒2𝜆𝑟−𝛽 𝑢div(𝐴∇𝑢) ≤ div(𝑈1) +𝐶11𝜆2𝛽2𝑒2𝜆𝑟
−𝛽 𝑟−2𝛽−2|𝑢|2 − 1

2Λ 𝑒2𝜆𝑟−𝛽 |∇𝑢|2.

(3.36)
Here, 𝐶10 and 𝐶11 depend only on Ω, 𝐱0, and Λ.

On the other hand, since

|𝑢div(𝐴∇𝑢)| ≤ 𝜆2𝛽|𝑢|2𝑟−2𝛽−2 + 4
𝜆𝛽

|div(𝐴∇𝑢)|2𝑟𝛽+2,

we have

4𝑟𝛽+2𝑒2𝜆𝑟−𝛽 |div(𝐴∇𝑢)|2
𝜆𝛽

≥ 𝑒2𝜆𝑟−𝛽 |𝑢div(𝐴∇𝑢)|− 𝜆2𝛽𝑟−2𝛽−2𝑒2𝜆𝑟−𝛽 |𝑢|2

≥ −div(𝑈1)−𝐶12𝜆2𝛽2𝑒2𝜆𝑟
−𝛽 𝑟−2𝛽−2|𝑢|2 + 1

2Λ 𝑒2𝜆𝑟−𝛽 |∇𝑢|2, (3.37)
where 𝐶12 depend only on Ω, 𝐱0, and Λ. Multiply both sides of (3.37)
by 4𝐶1Λ and then add the resulting equation into (3.33). We obtain

𝑟𝛽+2𝑒2𝜆𝑟−𝛽 |div(𝐴∇𝑢)|2
𝜆𝛽

≥ 𝐶
[
div(𝑈2) + 𝜆2𝛽3𝑒2𝜆𝑟−𝛽 𝑟−2𝛽−2|𝑢|2 + 𝑒2𝜆𝑟−𝛽 |∇𝑢|2

]
(3.38)

where

𝑈2 = −𝑈1 + 𝑉1 + 𝑉2 + 𝑉3.

Due to (3.11), (3.16), (3.21), (3.22) and (3.35), it is obvious that

|𝑈2| ≤ 𝐶𝑒2𝜆𝑟−𝛽 (𝜆2𝛽2𝑟−2𝛽−2|𝑢|2 + |∇𝑢|2).
Letting 𝑈 = 𝜆𝛽𝑈2, we obtain (3.3). The proof is complete. □

Corollary 3.1. Fix 𝛽 ≥ 𝛽0. There exists a number 𝜆0 depending only on Λ, 
‖𝐴‖𝐶2(Ω), 𝐱0, Ω, 𝑅, 𝛽 and 𝑑 such that for all 𝜆 ≥ 𝜆0,

𝑒2𝜆𝑟−𝛽 |div(𝐴∇𝑢)|2 ≥ 𝐶
[
div(𝑈 ) + 𝜆3𝑒2𝜆𝑟−𝛽 |𝑢|2 + 𝜆𝑒2𝜆𝑟−𝛽 |∇𝑢|2

]
(3.39)

where 𝐶 is a constant depending only on Λ, ‖𝐴‖𝐶2(Ω), 𝐱0, Ω, 𝑅, 𝛽 and 𝑑.

Corollary 3.2. Integrating (3.39) on Ω and using (3.4), we obtain

∫
Ω

𝑒2𝜆𝑟−𝛽 |div𝐴∇𝑢|2𝑑𝐱 ≥ 𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽
[
𝜆3|𝑢|2 + 𝜆|∇𝑢|2]𝑑𝐱

−𝐶 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽
[
𝜆3|𝑢|2 + 𝜆|∇𝑢|2]𝑑𝜎(𝐱). (3.40)

In particular, if 𝑢 is a function that satisfies 𝑢|𝜕Ω = 0 and ∇𝑢|𝜕Ω = 0. Then,

∫
Ω

𝑒2𝜆𝑟−𝛽 |div𝐴∇𝑢|2𝑑𝐱 ≥ 𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽
[
𝜆3|𝑢|2 + 𝜆|∇𝑢|2]𝑑𝐱. (3.41)

Here, 𝐶 is a constant depending only on Λ, ‖𝐴‖𝐶2(Ω), 𝐱0, Ω, 𝑅, 𝛽 and 𝑑.

Remark 3.1. The Carleman estimate in (3.41) is similar to [46, 
Lemma 5]. The main difference is that the result in [46, Lemma 5] is 
for annulus domains while estimate (3.41) is applicable for more gen-
eral domains. It is interesting to mention that the Carleman estimate 
in [46, Lemma 5] for annulus domains was used to prove a cloaking 
phenomenon, see [46]. The reader can find many other versions of Car-
leman estimates in [7,34,33,47,52]. These estimates are used to solve 
inverse problems; see e.g., [27,38,45].

4. The Carleman convexification theorem

Let 𝑝 > ⌈𝑑∕2⌉ + 2. We have 𝐻𝑝(Ω) is continuously embedded into 
𝐶2(Ω). Fix 𝛽 = 𝛽0. For all 𝜆 > 𝜆0 and for 𝜂 ∈ (0, 1), define the Carleman 
weighted mismatch functional 𝐽𝜆,𝜂 ∶𝐻𝑝(Ω) →ℝ as follows

𝐽𝜆,𝜂(𝑣) = ∫
Ω

𝑒2𝜆𝑟−𝛽 |− 𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)|2𝑑𝐱

+ 𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 (|𝑣|2 + |∇𝑣|2)𝑑𝜎(𝐱) + 𝜂‖𝑣‖2𝐻𝑝(Ω). (4.1)

The Carleman weighted mismatch functional 𝐽𝜆,𝜂 in (4.1) is different 
from the ones used in our research group’s previous papers [27,36,39]. 
The main difference is that in (4.1), we include the integral on 𝜕Ω. We 
add this boundary integral to the mismatch functional because we do 
not know the exact boundary information of the function 𝑣𝜖0 on 𝜕Ω. 
The presence of this boundary integral somewhat guarantees that the 
values of 𝑣𝜖0min|𝜕Ω and ∇𝑣𝜖0min|𝜕Ω are small where 𝑣𝜖0min is the minimizer of 𝐽𝜆,𝜂 . Also, since we will minimize 𝐽𝜆,𝜂 without boundary constraints, 
the earlier versions of the Carleman convexification method [3,27,36,
39], which require some boundary conditions on the minimizer, are not 
applicable. We modify the use of the Carleman estimate in this theorem
to obtain the convexification theorem below.

Theorem 4.1 (The convexification theorem). Assume that the function 𝐹
is of class 𝐶2(ℝ𝑑 ×ℝ ×ℝ𝑑 ). We have:

1. For all 𝜆 > 1 and 𝜂 > 0, the functional 𝐽𝜆,𝜈 is Frétchet differentiable. 
The derivative of 𝐽𝜆,𝜂 is given by

𝐷𝐽𝜆,𝜂(𝑣)ℎ

= 2∫
Ω

𝑒2𝜆𝑟−𝛽 [−𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)]

× [−𝜖0Δℎ+ 𝜕𝑠𝐹 (𝐱,𝑣,∇𝑣)ℎ+∇𝐩𝐹 (𝐱,𝑣,∇𝑣) ⋅∇ℎ]𝑑𝐱

+ 2𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 [𝑣ℎ+∇𝑣 ⋅∇ℎ]𝑑𝜎(𝐱) + 2𝜂⟨𝑣,ℎ⟩𝐻𝑝(Ω) (4.2)

for all 𝑣, ℎ ∈ 𝐻𝑝(Ω). Here, 𝜕𝑠𝐹 is the partial differential derivative 
of the function 𝐹 (𝐱, 𝑠, 𝐩), (𝐱, 𝑠, 𝐩) ∈ Ω × ℝ × ℝ𝑑 , with respect to the 
second variable and ∇𝐩𝐹 is the gradient vector of 𝐹 with respect to the 
third variable 𝐩.
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2. Let 𝑀 be an arbitrarily large number. For each 𝛽 > 1, 𝜆 > 𝜆0 =
𝜆0(𝜖0, 𝑀 , 𝑏, 𝑑, 𝑟, 𝐹 , 𝛽) > 1, 𝜂 > 0, 𝑢, 𝑣 ∈𝐵(𝑀), we have

𝐽𝜆,𝜂(𝑢)− 𝐽𝜆,𝜂(𝑣)−𝐷𝐽𝜆,𝜂(𝑣)(𝑢− 𝑣)

≥ 𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽
[|𝑢− 𝑣|2 + |∇(𝑢− 𝑣)|2]𝑑𝐱

+𝐶 ∫
𝜕Ω

𝜆4𝑒2𝜆𝑟−𝛽 (|𝑢− 𝑣|2 + |∇(𝑢− 𝑣)|2)𝑑𝜎(𝐱)

+ 𝜂‖𝑢− 𝑣‖2𝐻𝑝(Ω) (4.3)
Here, the constant 𝐶 depends only on 𝜆, 𝛽, 𝑅, 𝑟, 𝑑, 𝑀 , 𝐹 and 𝜖0.

3. The functional 𝐽𝜆,𝛽,𝜂 has a unique minimizer in 𝐵(𝑀).

Remark 4.1. An intuition for the convexity of 𝐽𝜆,𝜂 is that one can ap-
ply the convexification theorem in [36] to obtain the convexity of the 
functional

𝑣↦ 𝐼𝜆,𝜂(𝑣) = ∫
Ω

𝑒2𝜆𝑟−𝛽 |− 𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)|2𝑑𝐱 + 𝜂‖𝑣‖2𝐻𝑝(Ω).

By adding the convex term 𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 [|𝑣|2𝑑𝜎(𝐱) + |∇𝑣|2]𝑑𝜎(𝐱) to this 

functional, we obtain the desired convexity of 𝐽𝜆,𝜂 . However, the con-
vexity of 𝐼𝜆,𝜂 is valid only on a set of functions that satisfy some Cauchy 
boundary data. Hence, the informal argument above is not rigorous. We 
present the proof of Theorem 4.1 here.

Proof of Theorem 4.1. The first part of Theorem 4.1 can be proved by 
a straightforward computation similarly in the first part of [36, Theo-
rem 4.1]. We now discuss part 2 of Theorem 4.1. Let 𝑢 and 𝑣 be two 
functions in 𝐻𝑝(Ω). Let ℎ = 𝑢 − 𝑣. We have

𝐽𝜆,𝜂(𝑢)− 𝐽𝜆,𝜂(𝑣)−𝐷𝐽𝜆,𝜂(𝑣)(𝑢− 𝑣)

= ∫
Ω

𝑒2𝜆𝑟−𝛽
[|− 𝜖0Δ𝑢+ 𝐹 (𝐱,𝑢,∇𝑢)|2 − |− 𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)|2]𝑑𝐱

+ 𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽
[
𝑢2 − 𝑣2 + |∇𝑢|2 − |∇𝑣|2]𝑑𝜎(𝐱)

+ 𝜂
[‖𝑢‖2𝐻𝑝(Ω) − ‖𝑣‖2𝐻𝑝(Ω)

]

− 2∫
Ω

𝑒2𝜆𝑟−𝛽 [−𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)]

× [−𝜖0Δℎ+ 𝜕𝑠𝐹 (𝐱,𝑣,∇𝑣)ℎ+∇𝐩𝐹 (𝐱,𝑣,∇𝑣) ⋅∇ℎ]𝑑𝐱

− 2𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 [𝑣ℎ+∇𝑣 ⋅∇ℎ]𝑑𝜎(𝐱)− 2𝜂⟨𝑣,ℎ⟩𝐻𝑝(Ω). (4.4)

Using the identity 𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏), we deduce from (4.4) that

𝐽𝜆,𝜂(𝑢)− 𝐽𝜆,𝜂(𝑣)−𝐷𝐽𝜆,𝜂(𝑢− 𝑣)

= ∫
Ω

𝑒2𝜆𝑟−𝛽
[
− 𝜖0Δℎ+ 𝐹 (𝐱,𝑢,∇𝑢)− 𝐹 (𝐱,𝑣,∇𝑣)

− 2𝜖0Δ𝑣+ 2𝐹 (𝐱,𝑣,∇𝑣)
][
− 𝜖0Δℎ+ 𝐹 (𝐱,𝑢,∇𝑢)− 𝐹 (𝐱,𝑣,∇𝑣)

]
𝑑𝐱

+ 𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 [(𝑢+ 𝑣)ℎ+∇(𝑢+ 𝑣) ⋅∇ℎ]𝑑𝜎(𝐱) + 𝜂⟨𝑢+ 𝑣,ℎ⟩𝐻𝑝(Ω)

− 2∫
Ω

𝑒2𝜆𝑟−𝛽 [−𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)]

× [−𝜖0Δℎ+ 𝜕𝑠𝐹 (𝐱,𝑣,∇𝑣)ℎ+∇𝐩𝐹 (𝐱,𝑣,∇𝑣) ⋅∇ℎ]𝑑𝐱

− 2𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 [𝑣ℎ+∇𝑣 ⋅∇ℎ]𝑑𝜎(𝐱)− 2𝜂⟨𝑣,ℎ⟩𝐻𝑝(Ω). (4.5)

Expending the right-hand side of (4.5), we have

𝐽𝜆,𝜂(𝑢)− 𝐽𝜆,𝜂(𝑣)−𝐷𝐽𝜆,𝜂(𝑢− 𝑣)

= 𝐼1 + 𝐼2 + 𝐼3 + 𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 (|ℎ|2 + |∇ℎ|2)𝑑𝜎(𝐱) + 𝜂‖ℎ‖2𝐻𝑝(Ω) (4.6)

where

𝐼1 = ∫
Ω

𝑒2𝜆𝑟−𝛽 |||− 𝜖0Δℎ+ 𝐹 (𝐱,𝑢,∇𝑢)− 𝐹 (𝐱,𝑣,∇𝑣)|||
2
𝑑𝐱,

𝐼2 = 2∫
Ω

𝑒2𝜆𝑟−𝛽
[
− 𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)

]

×
[
− 𝜖0Δℎ+ 𝐹 (𝐱,𝑢,∇𝑢)− 𝐹 (𝐱,𝑣,∇𝑣)

]
𝑑𝐱,

𝐼3 = −2∫
Ω

𝑒2𝜆𝑟−𝛽 [−𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)]

× [−𝜖0Δℎ+ 𝜕𝑠𝐹 (𝐱,𝑣,∇𝑣)ℎ+∇𝐩𝐹 (𝐱,𝑣,∇𝑣) ⋅∇ℎ]𝑑𝐱.

Using the inequality (𝑎 − 𝑏)2 ≥ 1
2𝑎

2 − 𝑏2 and recalling that 𝑢 and 𝑣 are 
in the bounded set 𝐵(𝑀), we can find a constant 𝐶 such that

𝐼1 ≥ 𝜖20
2 ∫

Ω

𝑒2𝜆𝑟−𝛽 |Δℎ|2𝑑𝐱 − ∫
Ω

𝑒2𝜆𝑟−𝛽 |𝐹 (𝐱,𝑢,∇𝑢)− 𝐹 (𝐱,𝑣,∇𝑣)|2𝑑𝐱

≥ 𝜖20
2 ∫

Ω

𝑒2𝜆𝑟−𝛽 |Δℎ|2𝑑𝐱 −𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽 [|ℎ|2 + |∇ℎ|2]𝑑𝐱. (4.7)

On the other hand,

𝐼2 + 𝐼3 = −2∫
Ω

𝑒2𝜆𝑟−𝛽
[
− 𝜖0Δ𝑣+ 𝐹 (𝐱,𝑣,∇𝑣)

]

×
[
𝐹 (𝐱,𝑢,∇𝑢)− 𝐹 (𝐱,𝑣,∇𝑣) + 𝜕𝑠𝐹 (𝐱,𝑣,∇𝑣)ℎ+∇𝐩𝐹 (𝐱,𝑣,∇𝑣) ⋅∇ℎ

]
𝑑𝐱

(4.8)
Since both 𝑢 and 𝑣 are in the set 𝐵(𝑀), we have
|||𝐹 (𝐱,𝑢,∇𝑢)− 𝐹 (𝐱,𝑣,∇𝑣) + 𝜕𝑠𝐹 (𝐱,𝑣,∇𝑣)ℎ+∇𝐩𝐹 (𝐱,𝑣,∇𝑣) ⋅∇ℎ|||

≤ 𝐶[|ℎ|2 + |∇ℎ|2].
Thus,

𝐼2 + 𝐼3 ≥ −𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽 [|ℎ|2 + |∇ℎ|2]𝑑𝐱. (4.9)

Combining (4.6), (4.7), (4.8) and (4.9), we have

𝐽𝜆,𝜂(𝑢)− 𝐽𝜆,𝜂(𝑣)−𝐷𝐽𝜆,𝜂(𝑢− 𝑣)

≥ 𝜖20
2 ∫

Ω

𝑒2𝜆𝑟−𝛽 |Δℎ|2𝑑𝐱 −𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽 [|ℎ|2 + |∇ℎ|2]𝑑𝐱

+ 𝜆4 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 (|ℎ|2 + |∇ℎ|2)𝑑𝜎(𝐱) + 𝜂‖ℎ‖2𝐻𝑝(Ω). (4.10)

In order to prove the convexity of 𝐽𝜆,𝜂 , we need to show that the 
right-hand side (4.10) is nonnegative. This is the main reason why the 
Carleman estimate in (3.40) plays a key role in this proof. Applying 
(3.40) for the function ℎ with 𝐴 = Id, we have
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𝜖20
2 ∫

Ω

𝑒2𝜆𝑟−𝛽 |Δℎ|2𝑑𝐱 ≥ 𝐶𝜖20
2 ∫

Ω

𝑒2𝜆𝑟−𝛽
[
𝜆3|ℎ|2 + 𝜆|∇ℎ|2]𝑑𝐱

−
𝐶𝜖20
2 ∫

𝜕Ω

𝑒2𝜆𝑟−𝛽
[
𝜆3|ℎ|2 + 𝜆|∇ℎ|2]𝑑𝜎(𝐱). (4.11)

Letting 𝜆 be sufficiently large, allowing 𝐶 to depend on 𝜖0 and 𝜆, com-
bining (4.10) and (4.11), and recalling that ℎ = 𝑢 − 𝑣, we get (4.3).

We next show that 𝐽𝜆,𝜂 has a unique minimizer by using the ar-
guments in [3]. Assume 𝐽𝜆,𝜂 has two minimizers 𝑣1 and 𝑣2 in 𝐵(𝑀). 
Applying (4.3) for 𝑢 = 𝑣1 and 𝑣 = 𝑣2, we have

𝐽𝜆,𝜂(𝑣1)− 𝐽𝜆,𝜂(𝑣2)−𝐷𝐽𝜆,𝜂(𝑣2)(𝑣1 − 𝑣2)

≥ 𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽
[|𝑣1 − 𝑣2|2 + |∇(𝑣1 − 𝑣2)|2

]
𝑑𝐱

+𝐶 ∫
𝜕Ω

𝜆4𝑒2𝜆𝑟−𝛽 (|𝑣1 − 𝑣2|2 + |∇(𝑣1 − 𝑣2)|2)𝑑𝜎(𝐱)

+ 𝜂‖𝑣1 − 𝑣2‖2𝐻𝑝(Ω) (4.12)

By [3, Lemma 2], since 𝑣2 is a minimizer of 𝐽𝜆,𝜂 in 𝐵(𝑀),

𝐷𝐽𝜆,𝜂(𝑣2)(𝑣1 − 𝑣2) ≥ 0, or −𝐷𝐽𝜆,𝜂(𝑣2)(𝑣1 − 𝑣2) ≤ 0 (4.13)
Combining (4.12) and (4.13), we have

𝐽𝜆,𝜂(𝑣1)− 𝐽𝜆,𝜂(𝑣2)

≥ 𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽
[|𝑣1 − 𝑣2|2 + |∇(𝑣1 − 𝑣2)|2

]
𝑑𝐱

+𝐶 ∫
𝜕Ω

𝜆4𝑒2𝜆𝑟−𝛽 (|𝑣1 − 𝑣2|2 + |∇(𝑣1 − 𝑣2)|2)𝑑𝜎(𝐱)

+ 𝜂‖𝑣1 − 𝑣2‖2𝐻𝑝(Ω). (4.14)
Similarly, interchanging the roles of 𝑣1 and 𝑣2, we have

𝐽𝜆,𝜂(𝑣2)− 𝐽𝜆,𝜂(𝑣1)

≥ 𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽
[|𝑣1 − 𝑣2|2 + |∇(𝑣1 − 𝑣2)|2

]
𝑑𝐱

+𝐶 ∫
𝜕Ω

𝜆4𝑒2𝜆𝑟−𝛽 (|𝑣1 − 𝑣2|2 + |∇(𝑣1 − 𝑣2)|2)𝑑𝜎(𝐱)

+ 𝜂‖𝑣1 − 𝑣2‖2𝐻𝑝(Ω). (4.15)
Adding (4.14) and (4.15), we obtain 𝑣1 = 𝑣2. □

The unique minimizer of 𝐽𝜆,𝜂 can be obtained by the conventional 
gradient descent method. We refer the reader to [39, Theorem 2] and 
[36, Theorem 4.2] for this fact. Let 𝑣𝜖0min be the minimizer of 𝐽𝜆,𝜂 , one can repeat the proof in [39]. We next estimate the distance of minimizer 
𝑣𝜖0min and 𝑣𝜖0 . We have the theorem.

Theorem 4.2. Let 𝑣𝜖0 be a function satisfying (2.9) and (2.12). Assume 
that 𝑣𝜖0 ∈ 𝐵(𝑀) for some large number 𝑀 . Let 𝛽, 𝜆 be such that (4.3)
holds true. Let 𝑣𝜖0min be the unique minimizer of 𝐽𝜆,𝜂 in 𝐵(𝑀). We have

∫
Ω

𝑒2𝜆𝑟−𝛽
[|𝑣𝜖0 − 𝑣𝜖0min|2 + |∇(𝑣𝜖0 − 𝑣𝜖0min)|2

]
𝑑𝐱

+ ∫
𝜕Ω

𝜆4𝑒2𝜆𝑟−𝛽 (|𝑣𝜖0 − 𝑣𝜖0min|2 + |∇(𝑣𝜖0 − 𝑣𝜖0min)|2)𝑑𝜎(𝐱)

+ 𝜂‖𝑣𝜖0 − 𝑣𝜖0min‖2𝐻𝑝(Ω) ≤ 𝐶
[
𝜆4𝛿2 ∫

𝜕Ω

𝑒2𝜆𝑟−𝛽 𝑑𝜎(𝐱) + 𝜂‖𝑣𝜖0‖2𝐻𝑝(Ω)

]
.

(4.16)

Proof. Applying (4.3) for 𝑢 = 𝑣𝜖0 and 𝑣 = 𝑣𝜖0min, we have

𝐽𝜆,𝜂(𝑣𝜖0 )− 𝐽𝜆,𝜂(𝑣
𝜖0
min)−𝐷𝐽𝜆,𝜂(𝑣

𝜖0
min)(𝑣𝜖0 − 𝑣𝜖0min)

≥ 𝐶 ∫
Ω

𝑒2𝜆𝑟−𝛽
[|𝑣𝜖0 − 𝑣𝜖0min|2 + |∇(𝑣𝜖0 − 𝑣𝜖0min)|2

]
𝑑𝐱

+𝐶 ∫
𝜕Ω

𝜆4𝑒2𝜆𝑟−𝛽 (|𝑣𝜖0 − 𝑣𝜖0min|2 + |∇(𝑣𝜖0 − 𝑣𝜖0min)|2)𝑑𝜎(𝐱)

+ 𝜂‖𝑣𝜖0 − 𝑣𝜖0min‖2𝐻𝑝(Ω) (4.17)

Since 𝑣𝜖0min is the minimizer of 𝐽𝜆,𝜂 in 𝐵(𝑀), by [3, Lemma 2],

𝐷𝐽𝜆,𝜂(𝑣
𝜖0
min)(𝑣𝜖0 − 𝑣𝜖0min) ≥ 0, or −𝐷𝐽𝜆,𝜂(𝑣

𝜖0
min)(𝑣𝜖0 − 𝑣𝜖0min) ≤ 0,

we have

−𝐽𝜆,𝜂(𝑣
𝜖0
min)−𝐷𝐽𝜆,𝜂(𝑣

𝜖0
min)(𝑣𝜖0 − 𝑣𝜖0min) ≤ 0. (4.18)

On the other hand, recalling that 𝑣𝜖0 satisfies (2.9) and (2.12), we have

𝐽𝜆,𝜂(𝑣𝜖0 ) ≤ 𝜆4𝐶𝛿2 ∫
𝜕Ω

𝑒2𝜆𝑟−𝛽 𝑑𝜎(𝐱) + 𝜂‖𝑣𝜖0‖2𝐻𝑝(Ω). (4.19)

Combining (4.17), (4.18) and (4.19) yields (4.16). The proof is com-
plete. □

Remark 4.2. Fix 𝜆 > 𝜆0. Since the Carleman weight function 𝑒2𝜆𝑟−𝛽 is 
bounded from below and above by positive constants, it follows from 
(4.16) that

‖𝑣𝜖0 − 𝑣𝜖0min‖2𝐻1(Ω) ≤ 𝐶
(
𝛿2 + 𝜂‖𝑣𝜖0‖2𝐻𝑝(Ω)

)
. (4.20)

Estimate (4.20) implies that the minimizer 𝑣𝜖0min is an approximation to the solution to (2.9) and (2.12).

5. Numerical study

The analysis in Section 2, Theorem 4.1, Theorem 4.2 and estimate 
(4.20) suggest Algorithm 1 to compute the solution to (1.2). In this 
section, we present the implementation and some numerical exam-
ples. Note that in Step 5 of Algorithm 1, we have accepted that the 
well-known vanishing viscosity process for Hamilton-Jacobi equations 
guarantees 𝑣𝜖0 approximates the true viscosity solution to (2.4).Due to (4.20) and (5.1), the error in computing the viscosity solution 
to (1.2) in 𝐺 (with the viscosity parameter 𝜖0) is bounded by 𝐶(𝛿 +√
𝜂‖𝑣𝜖0‖𝐻𝑝(Ω)) where 𝐶 depends only on 𝜖0, 𝜆, 𝛽, 𝑅, 𝑑, 𝑀 , 𝐹 , and the 

restriction of the cut-off function 𝜒𝛿 in 𝐺.

Algorithm 1 The procedure to compute the numerical solution to (1.2)
on a domain 𝐺.
1: Choose Ω = (−𝑅, 𝑅)𝑑 ⋑𝐺. Choose a cut-off function 𝜒𝛿 as in (2.1) for some 

𝛿 ∈ (0, 1).
2: Choose 𝐱0 ∈ℝ𝑑 ⧵Ω, 𝛽 > 0, 𝜆 > 0. Define a Carleman weight function 𝑒2𝜆𝑟−𝛽

where 𝑟(𝐱) = |𝐱 − 𝐱0| for all 𝐱 ∈Ω.
3: Choose a viscosity parameter 𝜖0 and a regularization parameter 𝜂, both of 

which are positive and small. Choose 𝑀 > 0 sufficiently large.
4: Define and minimize the functional 𝐽𝜆,𝜂 in 𝐵(𝑀). The minimizer is denoted 

by 𝑣𝜖0min.
5: Set the computed solution to (1.2) in 𝐺 by the function

𝑢𝜖0 (𝐱) =
𝑣𝜖0min(𝐱)
𝜒𝛿(𝐱)

, for all 𝐱 ∈𝐺. (5.1)
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Fig. 1. Test 1. True (solid) and computed (dot) solutions to Hamilton-Jacobi equation (5.3) in the interval (−0.8, 0.8) and the relative error |𝑢comp−𝑢∗|
‖𝑢∗‖𝐿∞ (𝐺)

. The maximal 
value of this error function is 0.0294.

Remark 5.1. One could view equation (1.2) as a static equation for the 
purpose of constructing a simpler solver. Under appropriate conditions 
on 𝐻 , the function 𝑢(𝐱) serves as the large time-asymptotic limit of 
𝐮(𝐱, 𝑡), where 𝐮(𝐱, 𝑡) solves the following problem
{

𝐮𝑡(𝐱, 𝑡) + 𝜆𝐮(𝐱, 𝑡) +𝐻(𝐱,∇𝐮(𝐱)) = 0 (𝐱, 𝑡) ∈ℝ𝑑 × (0,∞),
𝐮(𝐱,0) = 𝐮0(𝐱) 𝐱 ∈ℝ𝑑

for some initial function 𝐮0. Thus, one has the option to approximate 
the function 𝑢 using 𝐮(𝐱, 𝑡) when the time 𝑡 becomes significantly large. 
It is important to note that this approach is applicable when 𝐮(𝐱, 0) is 
compactly supported and the support of 𝐮(𝐱, 𝑡) remains within a fixed 
domain 𝐺 for large 𝑡. In such cases, one can employ either an explicit 
method or a hybrid of implicit and explicit techniques to solve for 𝐮. 
A numerical solution 𝑢(𝐱) can be approximately set as 𝐮(𝐱, 𝑇 ) for some 
large value of 𝑇 .

5.1. Numerical implementation

We implement Algorithm 1 to compute the restriction of solution 
to (1.2) on 𝐺 = (−0.8, 0.8)𝑑 using the finite difference method. We set 
Ω = (−𝑅, 𝑅)𝑑 where 𝑅 = 2. In this section, for simplicity, we consider 
two cases 𝑑 = 1 and 𝑑 = 2. We choose the Gaussian-like function 𝜒𝛿(𝐱) =
𝑒−0.5(|𝐱|2) for all 𝐱 ∈ℝ𝑑 . The function 𝜒𝛿(𝐱) is less than 𝛿 = 0.1353 for all 
𝐱 ∈ℝ𝑑 ⧵Ω. The number 𝑐 in (2.1) is 0.7362. The choices above include 
details for Step 1 of Algorithm 1.

The Carleman weight function and other parameters in Step 2 and 
Step 3 of Algorithm 1 are chosen by a trial and error process. We manu-
ally try many sets of parameters until we obtain an acceptable solution 
for a reference test (test 1) below. We choose 𝐱0 = (9, 0), 𝛽 = 20, 𝜆 = 3, 
𝜖0 = 10−3 and 𝜂 = 10−3. These parameters are used for all other tests.

In Step 4, we rewrite the function 𝐽𝜆,𝜂 in the finite difference 
scheme. Consider the case when 𝑑 = 2. Let 𝑁 be a positive integer. 
Let ℎ = 2𝑅∕(𝑁 − 1) represent the step size in space. On Ω, we arrange 
a set of 𝑁 ×𝑁 uniform grid points Ωℎ as

Ωℎ =
{
𝐱𝑖𝑗 = (𝑥𝑖 = −𝑅+ (𝑖− 1)ℎ,𝑦𝑗 = −𝑅+ (𝑗 − 1)ℎ),1 ≤ 𝑖, 𝑗 ≤𝑁 − 1

}
.

In all of numerical examples below, 𝑁 = 70. In 2D, the functional 𝐽𝜆,𝜂
is approximated in finite difference as

𝐽ℎ
𝜆,𝜂(𝑣) = ℎ2

𝑁−1∑
𝑖,𝑗=2

𝑒2𝜆𝑟−𝛽 (𝐱𝑖𝑗 )|||− 𝜖0Δℎ𝑣(𝐱𝑖𝑗 ) + 𝐹 (𝐱𝑖𝑗 ,𝑣(𝐱𝑖𝑗 ),∇ℎ𝑣(𝐱𝑖𝑗 ))
|||
2

+ ℎ𝜆4
𝑁∑
𝑖=1

𝑒2𝜆𝑟−𝛽 (𝐱𝑖1)(|𝑣(𝐱𝑖1)|2 + |∇ℎ𝑣(𝐱𝑖1)|2)

+ ℎ𝜆4
𝑁∑
𝑖=1

𝑒2𝜆𝑟−𝛽 (𝐱𝑖𝑁 )(|𝑣(𝐱𝑖𝑁 )|2 + |∇ℎ𝑣(𝐱𝑖𝑁 )|2)

+ ℎ𝜆4
𝑁∑
𝑗=1

𝑒2𝜆𝑟−𝛽 (𝐱1𝑗 )(|𝑣(𝐱1𝑗 )|2 + |∇ℎ𝑣(𝐱1𝑗 )|2)

+ ℎ𝜆4
𝑁∑
𝑗=1

𝑒2𝜆𝑟−𝛽 (𝐱𝑁𝑗 )(|𝑣(𝐱𝑁𝑗 )|2 + |∇ℎ𝑣(𝐱𝑁𝑗 )|2)

+ 𝜂ℎ2
𝑁−1∑
𝑖,𝑗=2

(
𝑣2(𝐱𝑖𝑗 ) + |∇ℎ𝑣(𝐱𝑖𝑗 ) + |Δℎ𝑣(𝐱𝑖𝑗 )|2|

)
. (5.2)

In (5.2), we have reduced the norm in the regularization term to 𝑝 = 2
to simplify the implementation and to improve the speed of computa-
tion. We do not experience any difficulty with this small change. In our 
implementation, instead of writing the computational code for the gra-
dient descent method, we use the optimization toolbox of Matlab, in 
which the gradient descent method is coded. More precisely, we use 
the command “fminunc” to minimize the functional 𝐽𝜆,𝜂 . The command 
“fminunc” requires an initial solution 𝑣0. We choose 𝑣0 ≡ 0 in all tests. 
Step 5 of Algorithm 1 is implemented directly.

The implementation for the case 𝑑 = 1 is similar. We do not repeat 
all the details here.

5.2. Numerical examples

We show two numerical results in 1D and two numerical results in 
2D.

5.2.1. Examples in 1D
Test 1.We test if the convexification method can be applied to com-

pute a periodic solution to a Hamilton-Jacobi equation. We compute 
the solution to

6𝑢(𝑥) +
√
|𝑢′(𝑥)|2 + 1 = 6𝑒sin(𝜋𝑥) +

√
𝜋2 cos2(𝜋𝑥)𝑒2 sin(𝜋𝑥)) + 1 𝑥 ∈ℝ.

(5.3)
The true solution to (5.3) is the function 𝑢∗(𝑥) = 𝑒sin(𝜋𝑥), 𝑥 ∈ℝ. The true 
and computed solutions are given in Fig. 1.

The convexification method provides a good solution to (5.3). The 
true solution in this test is periodic. Computing periodic solutions to 
Hamilton-Jacobi equations is very interesting and is a great concern in 
the scientific community; especially, in the study of periodic structure. 
The numerical result is satisfactory. The error in computation is small.

Test 2We next test the case when solution to (1.2) is quasi periodic. 
We solve the equation

5𝑢(𝑥) +
√
|𝑢′(𝑥)|2 + 1

= 5sin
(
𝜋𝑥4
2

)
+

√
4𝜋2𝑥6

(
cos

(
𝜋𝑥4
2

))2
+ 1 𝑥 ∈ℝ. (5.4)

The true solution to (5.4) is 𝑢∗(𝑥) = sin
(
𝜋𝑥4
2

)
for all 𝐱 ∈ℝ. The graphs 

of the true solution 𝑢∗ and the computed solution bu using Algorithm 1
are displayed in Fig. 2.

As in Test 1, it is evident that the convexification method delivers a 
satisfactory solution to (5.4). This test is interesting because the solution 
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Fig. 2. Test 2. True (solid) and computed (dot) solutions to Hamilton-Jacobi equation (5.4) in the interval (−0.8, 0.8) and the relative error |𝑢comp−𝑢∗|
‖𝑢∗‖𝐿∞ (𝐺)

. The maximal 
value of this error function is 0.0457.

Fig. 3. Test 3. True (solid) and computed (dot) solutions to Hamilton-Jacobi equation (5.3) in the interval (−0.8, 0.8) and the relative error |𝑢comp−𝑢∗|
‖𝑢∗‖𝐿∞ (𝐺)

. The maximal 
value of this error function is 0.0203.

is quasi-periodic. Computing this kind of solution that is not periodic is 
more interesting than the case of periodic solutions.

Test 3. In Test 1 and Test 2, we study the case when the solution 
and the nonlinearity 𝐻 are smooth. We now test the nonsmooth case. 
We solve the equation

10𝑢+
√
|𝑢′|2 + 1 = 𝑔(𝑥) 𝑥 ∈ℝ (5.5)

where

𝑔(𝑥) =
{

10
(
− |2𝑥|+ sin(𝑥)

)
+
√
(−2 + sin(𝑥))2 + 1 𝑥 ≥ 0,

10
(
− |2𝑥|+ sin(𝑥)

)
+
√
(2 + sin(𝑥))2 + 1 𝑥 < 0.

The true viscosity solution to (5.5) is given by 𝑢∗(𝑥) = −|2𝑥| +sin(𝑥) for 
all 𝑥 ∈ℝ. In fact, we only need to verify the conditions in Definition 1.1
at the corner of the graph of 𝑢∗, say at the place where 𝑥0 = 0. Let 𝜑 be 
a function in the class 𝐶1(ℝ) with 𝑢∗ − 𝜑 having a strict maximum at 
𝑥0 = 0. Without lost of the generality, we can consider the case 𝑢(0) =
𝜑(0) = 0. It is clear that 𝜑′(0) ∈ [−2, 2]. So, 10𝜑(0) +

√
|𝜑′(0)|2 + 1 ≤√

5 = 𝑔(0). Hence, 𝑢∗ is a viscosity subsolution to (5.5). It is also a 
viscosity supersolution to (5.5) because there is no smooth function 𝜙
touches the function 𝑢∗ from below at 𝑥0 = 0.

Although this test is challenging, it is evident from Fig. 3 that the 
convexification method provides acceptable numerical result. The error 
occurs mostly at the discontinuity of the function 𝑔 and at the top corner 
of the graph of the solution.

5.2.2. Examples in 2D
Test 4. We consider the case 𝑑 = 2. We test the convexification 

method by solving the following 2D Hamilton-Jacobi equation

7𝑢(𝐱) +
√
|∇𝑢|2 + 1

= 7 sin
(1
2 𝜋

(
𝑥2 − (𝑦− 0.2)2

))

+ 1
2

(
4𝜋2𝑥2

(
cos

(1
2 𝜋

(
𝑥2 − (𝑦− 0.2)2

)))2

+ 𝜋2 (−2𝑦+ 0.4)2
(
cos

(1
2 𝜋

(
𝑥2 − (𝑦− 0.2)2

)))2
+ 4

)1∕2
(5.6)

for all 𝐱 = (𝑥, 𝑦) ∈ ℝ2. The true solution to (5.6) is 𝑢∗(𝐱) = sin
( 𝜋
2 (𝑥

2 +
(𝑦 − 0.2)2)

). The numerical result of this test is displayed in Fig. 4.
It is evident that the numerical result of this test is out of expec-

tation. It is interesting to mention that the convexification method 
successfully computes the quasi-periodic solution to Hamilton-Jacobi 
equations.

Test 5. In this example, we test Algorithm 1 for unbounded and 
quasi-periodic solution. More interestingly, in the test, the Hamiltonian 
is not convex with respect to ∇𝑢. We solve the following 2D Hamilton-
Jacobi equation

10𝑢(𝐱) + |𝑢𝑥(𝐱)|− |𝑢𝑦(𝐱)| = −10𝑥+ 10 cos
(
𝑥2 + 𝑦

)

+ |||1 + 2𝑥 sin
(
𝑥2 + 𝑦

)|||−
|||sin

(
𝑥2 + 𝑦

)||| (5.7)

for all 𝐱 = (𝑥, 𝑦) ∈ℝ2. The true solution to (5.7) is 𝑢∗(𝐱) = −𝑥 +cos(𝑥2 +
𝑦). The numerical result of this test is displayed in Fig. 5.

Although the solution to this test has an unbounded component and 
a quasi-periodic component, we can compute the solution of this test 
with a very small error.

Test 6. Like in Test 3, we consider a special Hamilton-Jacobi equa-
tion, in which the Hamiltonian is not convex. The true solution is not 
in the class 𝐶1. We solve the equation

10𝑢+ |𝑢𝑥|− |𝑢𝑦| = 𝑔(𝐱) (5.8)
where

𝑔(𝐱) =
⎧
⎪
⎨
⎪⎩

10
(
− |2𝑥|+ cos(𝑥2 + 𝜋𝑦)

)
+2|1 + 2𝑥 sin(𝑥2 + 𝜋𝑦)|− 𝜋| sin(𝑥2 + 𝜋𝑦)| 𝑥 ≥ 0,𝑦 ∈ℝ

10
(
− |2𝑥|+ cos(𝑥2 + 𝜋𝑦)

)
+2|1− 2𝑥 sin(𝑥2 + 𝜋𝑦)|− 𝜋| sin(𝑥2 + 𝜋𝑦)| 𝑥 < 0,𝑦 ∈ℝ.
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Fig. 4. Test 4. True and computed solutions to Hamilton-Jacobi equation (5.6) in the interval (−0.8, 0.8)2. The relative error in (c) is given by |𝑢comp−𝑢∗|
‖𝑢∗‖𝐿∞ (𝐺)

. The maximal 
value of this error function is 0.0168.

Fig. 5. Test 5. True and computed solutions to Hamilton-Jacobi equation (5.7) in the interval (−0.8, 0.8)2. The relative error in (c) is given by |𝑢comp−𝑢∗|
‖𝑢∗‖𝐿∞ (𝐺)

. The maximal 
value of this error function is 0.0016.

Fig. 6. Test 6. True and computed solutions to Hamilton-Jacobi equation (5.8) in the interval (−0.8, 0.8)2. The relative error in (c) is given by |𝑢comp−𝑢∗|
‖𝑢∗‖𝐿∞ (𝐺)

. The maximal 
value of this error function is 0.0099.

The true solution is given by 𝑢∗(𝐱) = −|2𝑥| + cos(𝑥2 + 𝜋𝑦) for all 𝐱 =
(𝑥, 𝑦) ∈ ℝ2. In order to verify that 𝑢∗ is the viscosity solution to (5.8), 
we argue similarly to the argument in Test 3. The numerical result of 
this test is displayed in Fig. 6.

It is remarkable that although the true solution is not in the class 
𝐶1, it can be computed. The error occurs in a neighborhood the line 
{(𝑥 = 0, 𝑦)} where 𝑢 is not differentiable.

Remark 5.2. While the convexification method is effective for solving 
nonlinear Hamilton-Jacobi equations, it comes with a notable shortcom-
ing: its slowness, particularly in the minimization phase. When utilizing 
a Precision Workstation T7810 with 24 cores, the calculation of the 
discussed solutions takes approximately 6–10 hours (depending on the 
complexity of the Hamiltonian). To improve the computational cost, we 
suggest a different methodology, also based on the Carleman estimate. 
Initially, we choose an arbitrary function that serve as a first guess for 
the solution to (2.9) and (2.12). It should be noted that this initial guess 
does not need to be close to the true solution. We then apply the Car-
leman weighted quasi-reversibility method to linearize the nonlinear 

equation and refine our initial estimate. By iterating, we produce a se-
quence that ultimately converges to the target solution. The verification 
of these outcomes can be conducted by using the arguments detailed in 
[40]. We strongly believe that the speed of computation will be signifi-
cantly improved since the rate of convergence of the method in [40] is 
𝑂(𝜃𝑛), 𝜃 ∈ (0, 1), where 𝑛 is the number of iterations. This method will 
be studied in our near future research project.

6. Concluding remarks

In this paper, we have developed a new version of the Carleman 
based convexification method to compute the viscosity solutions to 
Hamilton-Jacobi equations on the whole space. Our procedure consists 
of two main stages. In Stage 1, we derive from the given Hamilton-
Jacobi equation on ℝ𝑑 another Hamilton-Jacobi equation on a bounded 
domain by applying a truncation technique and a simple change of 
variable. It is important to mention that the boundary conditions for 
the Hamilton-Jacobi equation obtained in Stage 1 cannot be exactly 
computed. Only approximations are derived. This feature makes the 
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original convexification method is not applicable. In Stage 2, we de-
velop the new version of the Carleman-based convexification method 
to solve the new Hamilton-Jacobi equation with approximated bound-
ary conditions. The main theorems in this paper guarantee that the 
Carleman-based convexification method in Stage 2 delivers reliable 
numerical solutions to nonlinear Hamilton-Jacobi equations without re-
quiring a good initial guess.

Data availability

Data will be made available on request.
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[61] S. Treanţă, Higher-order Hamilton dynamics and Hamilton–Jacobi divergence PDE, 
Comput. Math. Appl. 75 (2) (2018) 547–560.
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