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Abstract

Scene graphs provide a rich, structured representation
of a scene by encoding the entities (objects) and their spa-
tial relationships in a graphical format. This representation
has proven useful in several tasks, such as question answer-
ing, captioning, and even object detection, to name a few.
Current approaches take a generation-by-classification ap-
proach where the scene graph is generated through labeling
of all possible edges between objects in a scene, which adds
computational overhead to the approach. This work in-
troduces a generative transformer-based approach to gen-
erating scene graphs beyond link prediction. Using two
transformer-based components, we first sample a possible
scene graph structure from detected objects and their visual
features. We then perform predicate classification on the
sampled edges to generate the final scene graph. This ap-
proach allows us to efficiently generate scene graphs from
images with minimal inference overhead. Extensive exper-
iments on the Visual Genome dataset demonstrate the effi-
ciency of the proposed approach. Without bells and whis-
tles, we obtain, on average, 20.7% mean recall (mR@100)
across different settings for scene graph generation (SGG),
outperforming state-of-the-art SGG approaches while offer-
ing competitive performance to unbiased SGG approaches.

1. Introduction

Graph-based visual representations are becoming in-
creasingly popular due to their ability to encode visual, se-
mantic, and even temporal relationships in a compact rep-
resentation that has several downstream tasks such as ob-
ject tracking [4], scene understanding [17] and event com-
plex visual commonsense reasoning [2, 3,22]. Graphs can
help navigate clutter and express complex semantic struc-
tures from visual inputs to mitigate the impact of noise,
clutter, and (appearance/scene) variability, which is essen-
tial in scene understanding. Scene graphs, defined as di-
rected graphs that model the visual-semantic relationships
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among entities (objects) in a given scene, have proven to be
very useful in downstream tasks such as visual question-
answering [14, 34], captioning [!7], and even embodied
tasks such as navigation [27], to name a few.

There has been a growing body of work [7, 10,29, 33,

,38,41] that has focused on the problem of scene graph
generation (SGG), that aims to generate scene graph from
a given input observation. However, such approaches have
tackled the problem by beginning with a fully connected
graph, where all entities interact with each other before
pruning it down to a more compact graph by predicting edge
relationships, or the lack of one, between each pair of local-
ized entities. This approach, while effective, has several
limitations. First, by modeling the interactions between en-
tities with a dense topology, the underlying semantic struc-
ture is ignored during relational reasoning, which can lead
to poor predicate (relationship) classification. Second, by
constructing pairwise relationships between all entities in a
scene, there is tremendous overhead on the predicate classi-
fication modules since the number of pairwise comparisons
can grow non-linearly with the increase in the number of
detected concepts. Combined, these two issues aggravate
the existing long-tail distribution problem in scene graph
generation. Recent progress in unbiasing [21,31-33] has
attempted to address this issue by tackling the long-tail dis-
tribution problem. However, they depend on the quality of
the underlying graph generation approaches, which suffer
from the above limitations.

In this work, we aim to overcome these limitations
using a two-stage, generative approach called IS-GGT,
a transformer-based iterative scene graph generation ap-
proach. An overview of the approach is illustrated in Fig-
ure 1. Contrary to current approaches to SGG, we leverage
advances in generative graph models [5, 23] to first sam-
ple the underlying interaction graph between the detected
entities before reasoning over this sampled semantic struc-
ture for scene graph generation. By decoupling the ideas
of graph generation and relationship modeling, we can con-
strain the relationship classification process to consider only
those edges (pairs of entities) that have a higher probability
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Figure 1. Our goal is to move towards a generative model for scene graph generation using a two-stage approach where we first sample the
underlying semantic structure between entities before predicate classification. This is different from the conventional approach of modeling
pairwise relationships among all detected entities and helps constrain the reasoning to the underlying semantic structure.

of interaction (both semantic and visual) and hence reduce
the computational overhead during inference. Additionally,
the first step of generative graph sampling (Section 3.2) al-
lows us to navigate clutter by rejecting detected entities that
do not add to the semantic structure of the scene by iter-
atively constructing the underlying entity interaction graph
conditioned on the input image. A relation prediction model
(Section 3.3) reasons over this constrained edge list to clas-
sify the relationships among interacting entities. Hence,
the relational reasoning mechanism only considers the (pre-
dicted) global semantic structure of the scene and makes
more coherent relationship predictions that help tackle the
long-tail distribution problem without additional unbiasing
steps and computational overhead.

Contributions. The contributions of this paper are
three-fold: (i) we are among the first to tackle the prob-
lem of scene graph generation using a graph generative
approach without constructing expensive, pairwise compar-
isons between all detected entities, (ii) we propose the idea
of iterative interaction graph generation and global, contex-
tualized relational reasoning using a two-stage transformer-
based architecture for effective reasoning over cluttered,
complex semantic structures, and (iii) through extensive
evaluation on Visual Genome [19] we show that the
proposed approach achieves state-of-the-art performance
(without unbiasing) across all three scene graph generation
tasks while considering only 20% of all possible pairwise
edges using an effective graph sampling approach.

2. Related Work

Scene graph generation, introduced by Johnson et
al. [17], aims to construct graph-based representations that
capture the rich semantic structure of scenes by model-
ing objects, their interaction and the relationships between
them. Most approaches to scene graph generation have fol-
lowed a typical pipeline: object detection followed by pair-
wise interaction modeling to generate plausible (Subject,
Predicate, Object) tuples, which represent the labeled edge
list of the scene graph. Entity localization (i.e., concept

grounding) has primarily been tackled through localization
and labeling of images through advances in object detec-
tion [6,28]. The relationship or predicate classification for
obtaining the edge list tuples has focused mainly on captur-
ing the global and local contexts using mechanisms such as
recurrent neural networks and graph neural networks to re-
sult in seminal approaches to scene graph generation such as
IMP [36], MOTIFS [41], and R-CAGCN [39]. Single-stage
methods such as FC-SSG [25] and Relationformer [29], as
well relational modeling approaches such as RelTR [9] have
integrated context through transformer-based [35] architec-
tures [8, 18]. However, these approaches fail to explicitly
tackle the long-tail distributions prevalent in visual scene
graphs as proposed by Tang et al. [33] and Chen et al. [7].

Unbiased scene graph generation models explicitly
tackle this problem by building upon SGG models such as
VCTree and MOTIFs to provide better predicate classifica-
tion. Several approaches have been successfully applied to
tackle unbiased generation, such as using external knowl-
edge (VCTree [33] and KERN [7]), counterfactual reason-
ing (TDE [32]), energy-based loss functions (EBML [31]),
modeling predicate probability distributions (PPDL [21]
and PCPL [37]), graphical contrastive losses [42], cogni-
tive trees (CogTree [40]), bi-level sampling [20], and regu-
larized unrolling (RU-Net [24]), to name a few. However,
these approaches still perform expensive pairwise compar-
isons to obtain the final scene graph as a collection of tu-
ples rather than directly modeling the underlying semantic
structure. Instead of considering graph generation as tu-
ple detection, we build upon an exciting avenue of research
in graph generative models [5, 13, 15,23] to directly sam-
ple graph structures conditioned on images. By modeling
the graph generation process as sequential decoding of ad-
jacency lists, we can effectively model the interaction be-
tween detected entities using a simple, directed graph. A
transformer-based relation classification model then con-
verts the simple graph into a labeled, weighted, directed
graph to generate scene graphs in an iterative, two-stage ap-
proach to move beyond edge classification-based detection.
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Figure 2. The overall architecture of the proposed IS-GGT is illustrated. We first ground the concepts in the image data (Section 3.1) and
use a generative transformer decoder network to sample an entity interaction graph (Section 3.2) before relation or predicate classification

(Section 3.3) using a transformer-based contextualization mechanism for efficient scene graph generation.

3. Proposed Approach

Overview. We take a two-stage, generative approach to
the problem of scene graph generation. The overall ap-
proach, called IS-GGT I is shown in Figure 2. There
are three major components to the approach: (i) concept
grounding, (ii) structural reasoning, and (iii) relational rea-
soning. Based on the idea of generative graph models, we
use scene-level localization and entity concept hypothesis
(Section 3.1) to first sample the underlying semantic struc-
ture of the scene using a generative transformer decoder net-
work (Section 3.2). Once the semantic structure is sampled,
the semantic relations (predicates), i.e., the edges, are la-
beled to characterize the scene graph (Section 3.3).

Problem Statement. Scene graph generation (SGG)
aims to generate a graph structure G = {V, £} from a given
input image I, where V = {vy,va,...v,} is the graph’s
nodes representing localized entities (objects) in the image
and £ = {ej,eq,...ex} represent the edges that describe
the relationship connecting two nodes n; and n;. Each node
v; € V has two attributes, a label [; € Cxr and a bounding
box bb;, where Cr is the space of all possible concepts in an
environment. Each edge e; € £ is characterized by a label
r; € Ry and an optional assertion score p(r;), where R
is the set of all possible relationships that can be present be-
tween the entities Cr. Current approaches have focused on
extracting plausible triplets from an exhaustive search space
consisting of all possible edges. Each node is connected
to every other node. A relational prediction model is then
trained to distinguish between the plausible relationship be-
tween the nodes, including null relationship. In contrast, we
first sample the underlying semantic structure based on the
node (entity) hypothesis to model the global context before
relationship classification. This helps reduce the computa-
tional overload for relationship prediction while restricting
the relational reasoning to interactions that are considered
to be plausible. We present the proposed framework below.

lh:tps://saakur.qithub.io/Projects/ISiGGT/

3.1. Concept Grounding: Entity Hypotheses

The scene graph generation process begins with en-
tity hypotheses generation, which involves the localization
and recognition of concepts in a given image /. Follow-
ing prior work [33, 36, 41], we use a standard ResNet-
based [12], FasterRCNN [28] model as the localization
module. The object detector returns a set of n detected
entities vy, vo, . . . vy, characterized by their location using
bounding boxes (bby,bba, ...bb, € B) and corresponding
labels (I1,l2...1, | I; € Cy). These entities (V) serve
as our node hypothesis space, over which the scene graph
generation is conditioned. Each entity is described by a
feature representation (f%;) from the underlying ResNet en-
coder, through ROIAlign [1 1] using the predicted bounding
boxes (ROIs) and the labels are generated through the clas-
sification layer from the object detector. Compared to prior
work [33,41], we do not have separate visual encoders for
capturing the relationships among concepts at this stage.
We allow the entities to be detected and represented inde-
pendently, which enables us to decouple the ideas of graph
prediction and predicate classification.

3.2. Iterative Interaction Graph Generation

At the core of our approach is the idea of graph sam-
pling, where we first model the interactions between the de-
tected entities in a graph structure. This sampled graph is
a simple, directed graph, where the edges are present only
between nodes (i.e., the detected entities) that share a se-
mantically meaningful relationship. Each edge e; is unla-
beled and merely signifies the plausible existence of a se-
mantic relationship between the connecting nodes v; and
v;. Inspired by the success of prior work [5], we model
this graph generation process as the autoregressive decod-
ing of the adjacency list A%, for each node v;, using a trans-
former network [35]. A simplified pseudocode of the whole
process is shown in Algorithm 1. Given an empty graph
G = (0, the underlying structural graph is generated through
a sequence of edge and node additions. Each step of the de-
coding process emits an output adjacency list conditioned
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Algorithm 1 Scene semantic graph structure sampling us-
ing a generative transformer decoder.

Input: V= V1,V2,...Up ‘ V; = {lz,f}\“bbz}
Output: G = {V,&} = Ay = {A}}

G0 > Initialize empty graph
c AN 0 > Initialize empty adjacency matrix
S E+ 0 > Initialize empty edge list

: for each node v; inV do

et <+ [fa' AKX L] Context vector for decoding.

¢t + ¢ + Positional Encoding(c)

hY < MLP(c;) > Linear projection

iALlK < TransformerDecoder(hY)

hi «— M LP(;LZK ) > Learned feature space

10: ./43\, < Sample(a(MLP(h:))
list

11 I; < Softmax(MLP(R!)) > uv;’s auxiliary label

12: An — Ax U{/@v} > Populate adjacency matrix

13: E+ &l EdgeList(.%@V)

14: end for

15: G+ {V,&}

R T o T

> v;’s adjacency

> Collect edge list

> Construct final interaction graph

upon the visual features ﬁv of each detected node v;, its
hypothesized label ; and the previously decoded adjacency
matrices up to the current step ¢ given by A,. This itera-
tive graph generation process results in an adjacency matrix
A = {A§, A% ... A%, Yu; € V). The final adjacency
matrix is an N x N matrix that can be sampled by some
threshold ~y to obtain a binary adjacency matrix. The val-
ues where /l}v(z, j) = 1’s indicate that an edge is present
between nodes v; and v;, which can then be added to the
edge list £. The edge list is then sorted by its energy, given
by E(e;j) = o(pi + pj;), where p; and p; refer to the con-
fidence scores from the detector that provides a measure of
confidence about the existence of the concepts v; and v; in
the image, respectively. The collection of nodes V and edge
list £ provide the underlying semantic structure.

Formally, we define this process as maximizing the prob-
ability of observing a scene graph G conditioned on the in-
put image I, and is given by

N

P(G| 1) = P(An|T) = Hp(Aﬁv | ALy, f 1)
i=1
(1

where we decompose the probability of observing the graph
G as the joint probability over the separate adjacency lists
for each node v; given its visual features f% and label ;,
along with the other nodes that have previously been sam-
pled. Note that the ordering of the nodes can vary greatly;
thus, search space to learn the sequence of adjacency lists
can grow exponentially with the number of nodes. To this
end, we present a fixed ordering of the nodes to be added to

the graph based on the confidence score from the object de-
tector to provide a tractable solution. We use a transformer-
based decoder model trained in an auto-regressive manner
to learn the probability measure.

The decoder is trained using two loss functions - an ad-
jacency loss £ 4 and a semantic loss Ls. The former is a
binary cross-entropy loss between the predicted and actual
binary adjacency matrix, while the latter is a cross-entropy
loss for node label prediction. Specifically, we define £ 4 =
N7 Litt 2y —(aislog(ai;) +(1—ai;)log(1—aj;)) and
Ls = _ch 1;log(p(l;)), where [; is the entity’s label
as predicted by the concept grounding module from Sec-
tion 3.1 and [ ; 1s the softmax probability from the node pre-
diction of the transformer decoder as defined in line 11 of
Algorithm 1. Note that we use the semantic loss Ls as a
mechanism to inject the semantics of the grounded concepts
into the decoding process and do not use these predictions
(termed node sampling) as node labels for the final graph.
We observe that node sampling (see Section 4.3) reduces the
performance slightly. We attribute it to the fact the object
detector has access to the global and image-level context.
We train with the combined loss is given by

L= Mg+ (1—-)NLs 2)

where A\ is a trade-off between semantic and adjacency
losses. In our experiments, we set A = (.75 to place more
emphasis on the adjacency loss. During training, we use
teacher forcing in the transformer decoder and convert the
adjacency matrix to binary for tractable optimization.

3.3. Edge Labeling: Relation Prediction

The final step in the proposed approach is predicate (or
entity relation) prediction, which involves the labeling of
the edges £ in the interaction graph G generated from Sec-
tion 3.2. To further refine the interaction graph, we assign
an “‘edge prior” to each sampled edge e;; € &£ between
two nodes n; and n;. This prior is a function of the con-
fidence scores (c; and c;, respectively) obtained from the
concept grounding module (Section 3.1) and is given by
E(eij) = o(c; x ¢j). Finally, we sort the edges based on
their edge prior and take the top K edges as the final edge
list to represent the scene graph G;. In our experiments, we
set K=250 to provide a tradeoff between inference time and
expressiveness, although we find that lower values of K do
not reduce the performance (see Section 4.2). Given the fi-
nal edge list £, we then predict the relationship by maximiz-
ing the probability P(ry, | fi, fa, S4 S, bbi, bbj, FE),
where F¢ is the global image context captured by a con-
textualization mechanism, and 7, is the relationship of the
kth edge between nodes n; and n; described by their vi-
sual features f}\, and f{;,, and semantic features va and ng,
respectively. We obtain the contextualized global features
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Approach PredCls SGCls SGDet Average | Average

PP mR@50 | mR@100 | mR@50 [ mR@100 | mR@50 [ mR@100 | mR@100 | mR@50
FC-SSG [25] 6.3 7.1 37 4.1 3.6 42 45 5.1
o IMP [36] 9.8 10.5 5.8 6.0 3.8 4.8 7.1 6.5
g MOTIFS [41] 14.0 15.3 7.7 8.2 5.7 6.6 10.0 9.1
2 VCTree [33] 17.9 19.4 10.1 10.8 6.9 8.0 12.7 11.6
= KERN [7] - 19.2 - 10 - 7.3 12.2 -
o R-CAGCN [38] - 19.9 - 11.1 - 8.8 133 -
2 Transformer [10] - 17.5 - 10.2 - 8.8 12.2 -
§ Relationformer [29] - - - - 9.3 10.7 - -
RelTR [9] 21.2 - 11.4 - 8.5 - - 13.7

| | IS-GGT(Owrs) | 264 | 319 | 158 | 189 | 91 | 113 | 207 | 171 |

| RU-Net [24] \ | 242 | - | 146 | | 108 | 165 | \
IMP+EBML [31] 11.8 12.8 6.8 7.2 4.2 5.4 8.46 7.6
VCTree+EBML [31] 18.2 19.7 12,5 13.5 7.7 9.1 14.1 12.8
MOTIFS+EBML [31] 18.0 19.5 10.2 11 7.7 9.1 13.2 12.0
£ | MOTIFS+TDE [32] 25.5 29.1 13.1 14.9 8.2 9.8 17.9 15.6
& VCTree+TDE [32] 254 28.7 12.2 14 9.3 11.1 17.9 15.6

=

5 | MOTIFS+CogTree [40] |  26.4 29 14.9 16.1 104 11.8 19.0 172
S VCTree+CogTree [40] 27.6 29.7 18.8 19.9 10.4 12.1 20.6 189
= IMP+PPDL [21] 24.8 25.3 14.2 15.9 9.8 10.4 17.2 16.2
MOTIFS+PPDL [21] 32.2 333 17.5 18.2 114 135 21.7 204
VCTree+PPDL [21] 333 33.8 21.8 224 113 144 23.5 22.1

| BGNN [20] | 304 | 329 | 143 | 165 | 107 | 126 | 207 | 185 |

L PCPL [37] | 352 | 378 | 186 | 196 | 95 | 117 [ 230 | 211 |

Table 1. Comparison with the state-of-the-art scene graph generation approaches, with and without unbiasing. We consistently outper-
form all models that do not use unbiasing and some early unbiasing models across all three tasks while offering competitive performance

to current state-of-the-art unbiasing models. Approaches outperforming the proposed IS-GGT are underlined.

FC using DETR [6]. The semantic features are obtained
through an embedding layer initialized by pre-trained word
embeddings of the concept labels C such as GloVe [26] or
ConceptNet Numberbatch [30]. We use an encoder-decoder
transformer [35] to model this probability. Specifically, we
use a linear projection to map the entity features (visual fea-
tures F' zlv and localization features bb;) of each node in the
edge e, = e;; € £ into a shared visual embedding space
by hf = RELU(W.[fk;bbi; fi;bb;]). A visual-semantic
entity embedding is obtained by a linear projection and is
given by h¥, = RELU(W,,[h*; Sk, S%]). An encoder-
decoder transformer then takes these visual-semantic fea-
tures to predict the relationship through a series of attention-
based operations given by

hS, = Attg, (Q =K =V = h,) 3)
W = Att] (Q = bk, K =V = FY) )
where  AttE (...) is a  transformer  en-
coder consisting of FE  multi-headed attention
layer (MHA(Q7K7 V):Wa[hlyh%hK]),
as proposed in Vaswani et al [35], where

hi=Attn(Q=WoX, K=WgX,V=WyX). The
multi-headed attention mechanism applies a

scaled dot product attention operation given by

Attn(Q, K, V):Softmax(%‘/). The

vector h¥, is then passed through a D-layer transformer
decoder that obtains a contextualized representation h*
for each edge e;, with respect to the global context F&.
The relationship (or predicate) for each edge is obtained
by applying a linear layer on hy, followed by softmax to
obtain the probability of a relationship p(7y). We train this
network using a weighted cross-entropy loss given by

resulting

Cnr
Lr=—w, Zrklog(fk) (5)
=1

where 7, is the target relationship class, 7, is the probabil-
ity of the predicted relationship class and w,. is the weight
given to correct relationship class. In our experiments, we
set the weights as the inverse of the normalized frequency
of occurrence of each relationship ri € Cpr. The weighted
cross-entropy allows us to address the long-tail distribution
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Approach PredCls SGCls SGDet Mean
PP ZR@{20/50} | zZR@{20/50} | zR@{20/50} | zR@{20/50}

VCTree [33] 1.4/4.0 04/1.2 0.2/0.5 0.7/1.9

MOTIFS [41] 1.3/3.6 0.4/0.8 0.0/04 0.6/1.7
FC-SGG [25] -/1.9 -11.7 -/0.9 -13.5

VCTree + EBML [31] 23/54 09/19 0.2/05 1.1/26

MOTIFS + EBML [31] 2.1/49 05/1.3 0.1/0.2 09/2.1

IS-GGT (Ours) 5.0/83 1.4/2.6 1.0/13 2.5/4.1

Table 2. Zero-shot evaluation on Visual Genome. We report the
recall@20 and recall @50 for fair comparison.

of the predicate relationships in the scene graph classifica-
tion task in a simple yet efficient manner.

Implementation Details. In our experiments, we use
a Faster RCNN model with ResNet-101 [12] as its back-
bone, trained on Visual Genome, and freeze the detector
layers [1]. The features extracted from the object detector
were 2048 dimensions and were filtered to obtain bounding
boxes specific to the target vocabulary. The iterative graph
decoder from Section 3.2 has a hidden size of dimension
256 and 6 layers with a sinusoidal positional encoding and
is trained for 50 epochs with a learning rate of 0.001. The
predicate classifier (Section 3.3) is set to have 256 in its
hidden state for both networks, and GloVe embeddings [26]
with 300-d vectors are used to derive the semantic features
S%,. The predicate classifier is trained for 20 epochs with a
learning rate of 1 x 10~*. The training took around 3 hours
for both networks on a GPU server with a 64-core AMD
Threadripper processer and 2 NVIDIA Titan RTX GPUs.

4. Experimental Evaluation

Data. We evaluate our approach on Visual Genome [19].
Following prior works [7, 33,36,41], we use the standard
scene graph evaluation subset containing 108k images with
150 object (entity) classes sharing 50 types of relationships
(predicates). We use the 70% of the data for training, whose
subset of 5,000 images is used for validation, and the re-
maining 30% is used for evaluation. We evaluate our ap-
proach on three standard scene graph generation tasks -
predicate classification (PredCls), scene graph classifica-
tion (SGCls), and scene graph generation (SGDet). The
goal of PredCls is to generate the scene graph, given ground
truth entities and localization, while in SGCls, the goal is to
generate the scene graph, given only entity localization. In
SGDet, only the input image is provided, and the goal is to
generate the scene graph along with the entity localization.

Metrics and Baselines. Following prior work [7, 9, 33,

], we report the mean recall (mR@XK) metric, since the
recall has shown to be biased towards predicate classes with
larger amounts of training data [7,33]. We report across dif-
ferent values of K € {50, 100} We also present the average
mR@K across all tasks to summarize the performance of
the scene graph generation models across the three tasks
with varying difficulty. We also report the zero-shot recall
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Figure 3. Impact of graph sampling. We greatly reduce the num-
ber of pairwise comparisons made for scene graph generation. Us-
ing only 200 edges (~ 20% of all edges), we outperform most
state-of-the-art approaches on the mean mR @100 across all tasks.

(zsR@K, K € {20,50}) to evaluate the generalization ca-
pabilities of the SGG models. Finally, we compare against
two broad categories of scene graph generation models -
those with unbiasing and those without unbiasing. Unbias-
ing refers to the use of additional training mechanisms, such
as leveraging prior knowledge to tackle the long-tail distri-
bution in predicate classification. All numbers are reported
under the with graph constraint setting.

4.1. Comparison with State-Of-The-Art

We evaluate our approach on the test split of Visual
Genome with the mean recall under graph constraints met-
ric (MR @50 and mR @ 100) and compare with several state-
of-the-art scene graph generation approaches, both with
and without unbiasing. The results are summarized in Ta-
ble 1. Without bells and whistles, we significantly out-
perform approaches that do not use unbiasing across all
three tasks. Interestingly, we outperform the closely related,
transformer-based ReITR [9] model by 2.7 points in the av-
erage mR@50 metric. In comparison with models with un-
biasing, we see that we perform competitively to current
state-of-the-art models such as PPDL [21], CogTree [40],
and BGNN [20], while outperforming some of the earlier
approaches to unbiasing such as EBML [31] and TDE [32]
across all tasks. Of particular interest is the comparison
with RU-Net [24], a scene graph generation model that
jointly models unbiasing and generation in a unified frame-
work, as opposed to other approaches, which primarily fo-
cus on improving the predicate classification performance
of underlying SGG models. We consistently outperform
RU-Net across all three tasks, with an average mR@ 100
improvement of 3.6 absolute points. It is also remark-
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Max Edges | PredCls SGCls SGDet Graph Acc.
Considered | mR@100 | mR@100 | mR@100 | unconst. (const.)
10 4.6 33 3.5 11.6 (9.1)

100 24.3 14.0 10.8 35.1(25.3)
250 30.1 17.5 11.8 44.2 (30.7)
500 30.8 17.6 11.9 49.5(33.3)
750 31.0 17.6 11.9 51.4 (34.4)
All 314 17.6 12.0 52.7 (34.8)

Table 3. The quality of the sampled edges is quantified using its
impact on the three scene graph generation tasks.

able to note the performance difference (in mR@ 100) be-
tween the state-of-the-art unbiasing model (PPDL) and our
IS-GGT on PredCls is less than 3%, considering that they
are optimized specifically for this task, indicating that the
graph sampling approach consistently places the edges in
the ground truth scene graph in the top 100 edges.

Zero-Shot Evaluation. We also evaluated the general-
ization capabilities of our approach by considering the zero-
shot evaluation setting. Here, the recall (with graph con-
straint) was computed only on edges (i.e., subject-predicate-
object pairs) that were not part of the training set and sum-
marize the results in Table 2. It can be seen that we out-
perform approaches with and without unbiasing. Specif-
ically, we obtain and average zero-shot recall of 2.2 (at
K=20) and 4.0 (at K=50), which is more than 2x the per-
formance of comparable models without unbiasing such as
VCTree and MOTIFS while also outperforming the compa-
rable FC-SGG [25] across all three tasks. It is interesting
to note that we also outperform EBML [31], which pro-
poses to mitigate the long-tail distribution using an energy-
based loss function. Interestingly, our approach, IS-GGT
obtains 21.4 zZR@ 100, without graph constraint, which out-
performs FC-SGG [25] (19.6), VCTree+TDE [32] (17.6),
and MOTIFS+TDE [32] (18.2) which are state-of-the-art
unbiasing models in the zero-shot regimen.

4.2. Importance of Graph Sampling.

At the core of our approach is the notion of graph sam-
pling, as outlined in Section 3.2. Hence, we examine its im-
pact on the performance of the proposed IS-GGT in more
detail. First, we assess the effect of considering the top K
edges based on the edge prior (Section 3.3), which directly
impacts the number of edges considered in the final graph
for predicate classification. We vary the maximum num-
ber of edges considered per predicted scene graph from 10
to 1000 and consider all pairwise comparisons for each de-
tected entity. We assess its impact on the average mean re-
call (mR@100) across all three tasks (PredCls, SGCls, and
SGDet) and summarize the result in Figure 3. As can be
seen, we outperform all SGG models that do not use unbi-
asing while considering only the top 100 edges, which rep-
resents ~ 10% of all possible pairwise combinations while

|G.C.| VE.| SE | GS. | PredCls | SGCls | SGDet |
v o« v 283 | 165 | 103
v | v |CNB. v 285 | 168 | 116
v | v | Glove v 301 | 174 | 119
v | X | Glove v 292 | 152 | 100
X | v | CNB v 285 | 169 | 110
X | v | Glove v 293 | 169 | 105
X | v | Glove x 279 | 161 | 110
v | v | Glove x 285 | 168 | 112
vV | v | Glove | WoEP. | NA | 172 | 93
v | v | Glove | WithN.s. | 285 | 172 | 89

Table 4. Ablation studies are presented to quantify each compo-
nent’s impact on mR@100. G.C.: global context, V.F.: visual fea-
tures, S.F: semantic features, G.S.: graph sampling, C.N.B: Con-
ceptNet Numberbatch, E.P. edge prior, and N.S: node sampling.

at K=200 edges outperform most models with unbiasing.
Only PCPL [37] and PPDL [21] outperform IS-GGT, al-
though they consider all (> 1000) combinations.

In addition to the impact on the average mR @100, we
also assess the quality of the underlying graph sampled with
the generative graph transformer decoder. We propose two
new metrics, unconstrained and constrained graph accuracy,
which measure the quality of the sampled edges. In the for-
mer, we measure the accuracy of the underlying structure
by when both the nodes and edges are unlabeled and binary.
In the latter, we only consider the edges to be unlabeled.
Note that, in both metrics, for a node to be “correct”, its
bounding box must have at least 50% overlap with a corre-
sponding ground truth node. We summarize the results in
Table 3. It can be seen that the graph accuracy increases
with the number of considered edges while plateauing out
at around 500 edges. Interestingly, the constrained accu-
racy, IS-GGT’s theoretical upper bound, is 30.7% with only
250 sampled edges. This is a remarkable metric consider-
ing that, on average, the number of total possible edges per
image can be more than 1000, and more than 30% of the
ground truth edges are part of the top 250 edges. These re-
sults indicate that the graph sampling does an effective job.

4.3. Ablation Studies

To assess the impact of each component in the proposed
IS-GGT framework, we systematically evaluate the frame-
work’s performance by exploring alternatives, including the
exclusion of each element. Specifically, we assess the im-
pact of three broad categories - (i) use of semantics, (ii)
choice of visual features, and (iii) use of graph sampling.
We see that the lack of semantic features has a more sig-
nificant impact, resulting in a reduction of an average of
1.47% in absolute mR@100 across tasks. In contrast, the
choice of semantic features (ConceptNet Numberbatch [30]
vs. GloVe [26]) has limited impact. We attribute the success
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Figure 4. We present qualitative visualizations of the scene graphs generated by IS-GGT under (a) scene graph detection setting, (b)
predicate classification on images with zero-shot predicates (indicated in blue), and (c,d) predicate classification with complex structures.

of GloVe to its pre-training objective, which ensures that the
dot product between GloVe embeddings is proportional to
their co-occurrence frequency. This property helps model
the potential semantic relationships between nodes using
the attention mechanism in relationship prediction model
(Section 3.3). Interestingly, we see that adding global con-
text as part of the predicate prediction features (Section 3.3)
significantly improves the performance (~ 1.1% average
mR @ 100), whereas removing visual context altogether also
results in a reduction of ~ 1.7% average mR@100. Re-
moving the GGT and removing the edge prior also hurt the
performance. However, the recall does not accurately cap-
ture the reduction in false alarms due to the lack of edge
sampling with a generative model. Finally, we see that us-
ing node sampling (; from Section 3.2) affects SGCls and
SGDet. We attribute it to the importance of concept ground-
ing in modeling visual-semantic relationships.

Qualitative Evaluation. We present some qualitative il-
lustrations of some of the scene graphs generated by the
proposed approach in Figure 4. In the top row, we present
the generated scene graphs under the “detection” setting,
where the goal is to both detect entities and characterize the
relationships between them. It can be seen that, although
there are a large number of detected entities (~ 28 per im-
age), the graph sampling approach allows us to reject clutter
to arrive at a compact representation that captures the un-
derlying semantic structure. Figure 4 (c) shows the general-
ization capabilities of the proposed approach for predicate

classification when previously unseen (““zero-shot”) triplets
are observed. Finally, we show in Figure 4 (d) that the graph
sampling also works under cluttered scenarios, where there
is a need to reject nodes that do not add to the scene’s se-
mantic structure. We can sample sparse graph structures to
express complex semantics without losing expressiveness.

5. Conclusion

In this work, we presented IS-GGT, one of the first
works to address the problem of generative graph sam-
pling for scene graph generation. Using a two-stage ap-
proach, we first sample the underlying semantic structure
of the scene before predicate (relationship) characterization.
This decoupled prediction allows us to reason over the con-
strained (optimal) global semantic structure while reducing
the number of pairwise comparisons for predicate classifi-
cation. Extensive experiments on visual genome indicate
that the proposed approach outperforms scene graph gen-
eration models without unbiasing while offering competi-
tive performance to those with unbiasing while considering
only ~ 20% of the total possible edges. We aim to extend
this approach for general graph generation problems such as
semantic graphs [2] and temporal graph prediction [4, 16],
where capturing the underlying entity interactions can help
constrain the search space for complex reasoning.
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