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Diffusiophoresis-enhanced Turing patterns
Benjamin M. Alessio and Ankur Gupta*

Turing patterns are fundamental in biophysics, emerging from short-range activation and long-range inhibition
processes. However, their paradigm is based on diffusive transport processes that yield patterns with shallower
gradients than those observed in nature. A complete physical description of this discrepancy remains unknown.
We propose a solution to this phenomenon by investigating the role of diffusiophoresis, which is the propulsion
of colloids by a chemical gradient, in Turing patterns. Diffusiophoresis enables robust patterning of colloidal
particles with substantially finer length scales than the accompanying chemical Turing patterns. A scaling anal-
ysis and a comparison to recent experiments indicate that chromatophores, ubiquitous in biological pattern
formation, are likely diffusiophoretic and the colloidal Péclet number controls the pattern enhancement. This
discovery suggests that important features of biological pattern formation can be explained with a universal
mechanism that is quantified straightforwardly from the fundamental physics of colloids.
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INTRODUCTION
In his seminal paper, Alan Turing proposed that reaction-diffusion
instabilities could give rise to pattern formation in biological
systems, a phenomenon now known as Turing patterns (1). Subse-
quent research has provided experimental evidence for the existence
of Turing patterns in a variety of biological contexts, including ze-
brafish embryogenesis (2), hair follicle spacing (3), emulsion-based
chemical cells (4), patterns found on zebrafish through cell-cell in-
teractions (5), and the development of fingers from early limb buds
(6). Theoretical advances have led to the development of modifica-
tions to Turing’s original model (7), including the widely used
Gierer-Meinhardt (8), Brusselator (9, 10), and cell-cell interaction
(5) models. These models and their derivatives have been used to
reproduce a wide range of patterns found in nature (11), from the
wave-like patterns on marine angelfish (12) to the stripe-like pat-
terns on zebrafish (5, 13) and even patterns on sea shells (14).
However, these models typically rely on diffusive transport mecha-
nisms to generate concentration gradients, suffer from poor robust-
ness owing to many complicated factors (15), and have thus far
neglected the role of convective transport. We propose that, in the
context of Turing patterns, cells convect and steepen using diffusio-
phoresis, which is the propulsion of colloids by a chemical gradient.
This mechanism promotes the color sharpening that is observed in
nature and improves the robustness of the models by introducing an
independent control parameter for this sharpness.

Previous attempts to replicate the sharp gradients observed in
natural Turing patterns have prescribed ad hoc mechanisms includ-
ing inflated drift terms (16), switching systems (7), and reaction
pathway coupling (17). However, a complete physical justification
for such processes remains elusive. A more natural mechanism to
obtain sharp gradients in concentration comes from operating in
the regime of high Péclet numbers, i.e., conditions where the con-
vective transport dominates the diffusive transport. This regime
might appear to be difficult to obtain in the absence of fluid flow.
However, such a regime is commonly observed in microfluidic ex-
periments with colloidal particles via the process of

diffusiophoresis, i.e., transport of colloidal particles in response to
solute concentration gradients (18–30). The key feature observed in
diffusiophoretic systems is the banding of colloidal particles that
creates a region of sharp colloidal concentration gradients (18, 21,
25, 26, 29–31). The diffusiophoretic transport of colloids, which has
been seen to occur with a Péclet number Pe = O(10) − O(103) (the
ratio of particle convective flux to diffusive flux) (18, 25, 30, 29),
creates these banded structures that can be further enhanced in
the presence of acid-base reactions (20). We note that chemotaxis
can be qualitatively similar to diffusiophoresis and has been pro-
posed in the past (32) as an explanation for subtle features arising
from time-dependent processes in the development of angelfish.
Such an effect has, however, been neglected in more recent state-
of-the-art explanations of chromatophore pattern formation (5,
33). As we will argue, chromatophores are likely diffusiophoretic.
As discovered experimentally by Ramm et al. (34), diffusiophoresis
plays an important role for biological pattern formation even in the
absence of chemotaxis, as it is a more fundamental and robust phys-
ical phenomenon that does not rely on cellular sensing. Thus, any
model of biological pattern formation should include diffusiopho-
resis, if not also chemotaxis, and by doing so, one can promote ro-
bustness and recover essential features not well captured by the
state-of-the-art models.

Over the past decade, several studies have concluded that diffu-
siophoresis is a key process that was previously overlooked. For in-
stance, Florea et al. (35) elucidated, both theoretically and
experimentally, that diffusiophoresis is responsible for creating an
exclusion zone near charged surfaces and stated that diffusiophore-
sis is “likely to play an important, yet unexplored role” in biological
processes. Similarly, Shin et al. (36) underscored the role of diffu-
siophoresis in removing contaminants from porous, fibrous mate-
rials in the presence of surfactant concentration gradients.
Therefore, we surmise that diffusiophoresis of chromatophores
could play an important role in the process of biological pattern
formation.

Some of the most readily observable Turing patterns are animal
skin patterns. Our central argument is that during biological pattern
formation, chromatophores, which are specialized pigment cells
known to control the coloration pattern on fish (37), respond dif-
fusiophoretically to physiological reactions. There are different
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types of chromatophores, including melanophores, xanthophores,
erythrophores, iridophores, and leucophores (38), which are orga-
nized in multiple layers and can interact with each other to create
complex, even regenerative or adaptive patterns (39, 40). We postu-
late that chromatophores are diffusiophoretic because of three
primary reasons. First, the size of a typical chromatophore can
range from 1 to 30 μm, which is typically the range where colloidal
particles are diffusiophoretic (41, 42). Second, recent experimental
results suggest that chromatophores are charged and interact with
the surrounding medium (43). Last, the biological reactions in the
surrounding medium can create concentration gradients of small
molecules that will interact with the chromatophore; multicompo-
nent physiological reactions have been known to control chromato-
phore aggregation and dispersion (44). We also emphasize that
diffusiophoresis of chromatophore-coated particles has been exper-
imentally reported in literature (43). In a biological setting, we
expect that particle motion is made complex by effects such as
cell-cell adhesion and resistance of the porous membrane. Regard-
less, such effects do not affect the essential physics leading to
steepening.

RESULTS
We consider a dilute mixture of two different types of species: small-
molecule solutes and microscale colloids. The concentration of
small molecules is denoted by ci, where i ∈ [1, SC] such that SC is
the total number of solute molecule species. The concentration of
colloids are given by nj, where j ∈ [1, SN] such that SN is the total
number of microparticle species. The transport equation of solutes
and colloids, assuming dilute suspensions absent of steric effects,
are given by

∂ci
∂t

¼ Dci
~r
2ci þ Rci ð1AÞ

∂nj
∂t

þ ~r � ðvDPjnjÞ ¼ Dnj
~r
2nj ð1BÞ

where t is time and Dci and Dnj are the diffusivities of the ith solute
and the jth colloid, respectively. Rci is the production rate of the ith
solute. The term vDPj ¼

P
imij ~rci represents the induced diffusio-

phoretic velocity of the jth colloid due to the concentration gradi-
ents of solutes, proportional to the diffusiophoretic mobility
coefficient mij. For simplicity, we use the nonelectrolyte form of
vDP (31), but more complicated forms are well described in the lit-
erature (45, 30). There is no background fluid flow, although realis-
tic experimental settings are expected to have a strong influence of
background flow originating from the solute-geometry interactions
(30, 29). We note that the sign of the divergence in Eq. 1B affects the
shape of the steepening pattern (see the “Analytical model” section).
Before proceeding further, we introduce nondimensional quantities
where Ci = ci/c*, Ni = ni/n*, T = tDc1/‘

2, DC = Dci=Dc1 , DNi =
Dni=DC1 , RCi = Rci=Dci=c*‘

2, VDPj = vDPj‘=Dc1 , and r ¼ ‘ ~r,
where c* and n* are reference concentrations for solute and colloids,
respectively, ‘ is a reference length scale, and Dc1 is the diffusivity of

the first solute. These substitutions yield the equations

∂Ci

∂T
¼ DCir

2Ci þ RCi ð2AÞ

∂Nj

∂T
þ r � ðVDPjNjÞ ¼ DNjr

2Nj ð2BÞ

To induce Turing patterns, we define a four-component model
with two solute species and two chromatophore species. We use the
Brusselator model for solute species to describe the reaction and
production rates that are given by (9, 10)

RC1 ¼ DaC½A � ðB þ 1ÞC1 þ C2
1C2� ð3AÞ

RC2 ¼ DaCðBC1 � C2
1C2Þ ð3BÞ

A and B are scaled concentrations of excess components [see
(46) for details], DaC = k‘2/Dc1 is Damköhler number for the
solutes, and k is the first-order reaction constant. We define diffu-
siophoretic velocities for the two colloids as follows

VDP1 ¼ M11rC1 þ M21rC2 ð4AÞ

VDP2 ¼ M12rC1 þ M22rC2 ð4BÞ

whereM11, M21,M12, and M22 are diffusiophoretic mobility coeffi-
cients. We note that for electrolytic diffusiophoresis, the depen-
dence of diffusiophoretic velocity is with the gradient of the log
of the concentrations (28, 41). However, because the exact nature
of interactions between solute and biological colloids remain
unknown (47), for simplicity, we use the relationship for nonelec-
trolytic interactions (31). We note that the values of mobility coef-
ficients are related to Péclet number Pe (which is mathematically
defined in Eq. 5) and are typically at most O(1). A detailed mathe-
matical treatment of the Péclet number is included later in the
results section of this manuscript. We solve Eqs. 2A and 2B with
initial conditions of unit concentrations and no-flux boundary con-
ditions. The details of numerical simulations are provided in the
“Numerical simulations” section.

Theminimummathematical model that qualitatively reproduces
the features of biological patterns consists of two reactive-diffusive
species that interact with each other through a nonlinear reaction
mechanism (1, 8–10, 12, 13). The most natural interpretation, as
assumed in state-of-the-art models (13) is to assume that these
two species are chromatophores. We demonstrate here how this as-
sumption limits the patterns to be less sharp than those observed in
nature. Comparing the natural patterns observed in ornate boxfish
(Aracana ornata) with the Brusselator model (Eq. 3A, where C1 and
C2 are replaced by N1 and N2, DCi is replaced by DNi, ℛC1 and ℛC2

are changed to ℛN1 and ℛN2, and DaC is modified to DaN), assum-
ing a blue and a yellow chromatophore to be our reactive species, as
observed in Fig. 1, the Brusselator model is able to reproduce the
patterns of hexagon and stripes seen in the boxfish but is unable
to capture the sharpness of color gradients observed in the fish.
Besides the size of the fish, in the natural fish patterns, there are
two distinct length scales (see the “Scaling arguments” section).
For instance, for the hexagon pattern, there is a clear length scale
separation between the edge thickness, ‘t, and the length of the
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hexagon pattern, ‘p. Similarly, for the stripe pattern, there is a dis-
tinction between the the thickness of the stripes ‘t and the separa-
tion between the stripes ‘p. The reaction-diffusion models have an
inherent limitation that ‘t = ‘p, leading to a diffuse pattern forma-
tion. Accordingly, they are unable to recover double spot patterns
such as those seen on the jewel moray eel (Muraena lentiginosa)
unless multiple nonlinear reaction mechanisms are invoked, i.e.,
two or more Brusselators are coupled (17), which still yield a
diffuse pattern unlike the ones observed in nature. We must look
for mechanisms beyond the nonlinear reaction-diffusion
interactions.

While experiments (5, 33) have soundly implicated chromato-
phores in pattern formation in zebrafish skin, recent evidence (5)
suggests that a third species, which is more diffusive and is thus a
small molecule, is required for a more complete picture of the
process. This invites the possibility of robust control of separate

length scales, where ‘p is associated with the molecular substance
(s) and ‘t is associated with the chromatophores. Furthermore,
prior studies on two-component models used species diffusion co-
efficients O(10−10) − O(10−9) m2/s to obtain patterns that resemble
the ones observed in nature (12). These diffusivity values resemble
small molecules instead ofmicroparticles, which have diffusivitiesO
(10−13) m2/s. Accordingly, we assert that there are two broad cate-
gories of species present in the system: molecular-scale solute
species (i.e., morphogens or long-range mediators) and microscop-
ic-scale colloidal species (i.e., chromatophores). This is supported
by prior experiments (44) and has strong implications for the stabil-
ity of Turing patterns in biological contexts. Recently, Pelz and
Ward (48) discovered that for a theoretical framework with chem-
icals reacting on the surface of cells (or in compartments) and dif-
fusing and degrading throughout an intercell medium, the
diffusivity ratio required for stationary Turing patterns can be as
low as unity given instead a reaction rate difference between the
chemical species. Our proposed model extends their approach by
considering the ever-present mechanical forces that act on cells
under chemical gradients. To simplify the problem and isolate the
physical effects of diffusiophoresis, we do not consider the cells to
have any effect on the stability of the chemical patterns, which is a
central feature to thework of Pelz andWard andmust be considered
for a quantitatively accurate model.

The transport equations for two-component chromatophore
models are primarily dependent on the Damköhler number of the
colloids DaN, which is the ratio of the diffusion time scale to the
reaction time scale, where an increase in DaN corresponds to a de-
crease in ‘p. However, in our proposed model that builds on the
recent experimental findings (5), the reactions are driven by
solutes, and the chromatophores respond to the concentration gra-
dients of the solutes diffusiophoretically (Eqs. 2A and 4A). In this
proposed setup, the two dimensionless groups that control the be-
havior of the patterns are the Damköhler number of the solute, DaC,
and the Péclet number of the colloids, Pe. Typically, Pe =O(10) − O
(103) (18, 26, 28). Physically, we propose that transport of the solute
molecules sets only the pattern type and size ‘p, whereas the diffu-
siophoretic transport of colloids dictates only the thickness ‘t. The
length scales that we are dealing with will change considerably in
many natural systems, for example, as a fish grows from a baby to
an adult, in ways that considerably alter pattern formation because
of confinement (15, 32). This growth can be represented by a veloc-
ity term, which we do not include here, as it would not affect the
essential features of our model.

Our proposed model is able to recover, to a considerable degree,
the natural patterns of hexagons and stripes observed in the ornate
boxfish and the double-spot pattern in the jewel moray eel using the
Brusselator model with diffusiophoresis (see Fig. 1 and movies S1
and S2). While the reaction-diffusion model without diffusiophore-
sis produces qualitative features of the chromatophore patterns, by
including diffusiophoresis, we capture the steepening effect. This
feature is universal and not exclusive to the Brusselator model. In
Fig. 2 and movies S3 and S4, we perform the same comparison
between reaction-diffusion models with and without diffusiophore-
sis for both the Gierer-Meinhardt model (8) and cell-cell interaction
model (see the “Numerical simulations” section for details) (5). In
these models, just as with the Brusselator in Fig. 1, the sharpening
effect of diffusiophoresis is apparent both in the finer length scales
and the greater magnitude of depletion away from the hotspots (i.e.,

Fig. 1. Comparison of natural patterns in fish simulations. (A) A male ornate
boxfish (A. ornata) has intricate hexagon and stripe patterns on its skin. Reac-
tion-diffusion models can capture the nature of the pattern but are unable to re-
produce the sharpness of the color gradients. Instead, diffusiophoresis-enhanced
reaction-diffusion shows a notable resemblance to the natural patterns when com-
pared to simulations from our model. Photo courtesy of the Birch Aquarium at the
Scripps Institution of Oceanography. White line segments and dashed lines indi-
cate the edge thickness, i.e., ‘t and pattern sizes ‘p, respectively. (B) A jewel moray
eel (M. lentiginosa). The double spot pattern cannot be reproduced from a two-
component reaction-diffusion dynamics alone but is easily simulated as a diffusio-
phoretic process. Image by craigjhowe, used under CC BY-NC 4.0 license. Source:
iNaturalist observation 37252428.
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the color of the two phases is more distinct with the inclusion of
diffusiophoresis). Because of its relative abundance and depth of an-
alytical theory in the literature, here, we center our analysis on the
Brusselator model, but the fundamental physics at play is agnostic
to the model.

To further emphasize the distinction between the proposed and
the reaction-diffusion mechanisms, in fig. S1, we compare the
hexagon pattern for different values of DaN in the reaction-diffusion
model and different values of Pe in the proposed model. As is clear
from the results, increasing DaN simply decreases ‘p without chang-
ing the relative thickness of concentration gradients, i.e., ‘t/‘p is
constant. In contrast, an increase in Pe does not modify ‘p but

reduces ‘t and better resembles the patterns observed in nature.
In our simulations, we found strongest qualitative agreement with
natural patterns when setting Pe in the range of 10 to 50. This is
consistent with the effective Pe number observed in recent theoret-
ical and experimental findings (29, 30). We acknowledge that we
neglect interparticle interactions and invoke the assumption of a
dilute suspension, which, in some limits, may cause our simulations
to underpredict values of ‘t.

Next, we focus on quantifying the pattern formation of chro-
matophores via diffusiophoresis. For simplicity, we focus on the
Brusselator model for solute reactions (fig. S2A), although our anal-
ysis is readily extended to other reaction-diffusion frameworks (13).
In the Brusselator model (9, 10), two abundant reactants with con-
centrations A and B produce solutes with concentrations C1 and C2,
where concentrations are scaled by c*. An initially homogeneous
state of C1 and C2 can spontaneously come into formation when
perturbations of permitted wavelengths grow into patterns such
as hexagons or stripes; the resulting gradients ∇C1 and ∇C2 gener-
ate the diffusiophoretic velocity VDPj = Mj1 ∇ C1 + Mj2 ∇ C2 of the
colloid (i.e., chromatophore) for diffusiophoretic mobility Mi cor-
responding to Ci, where Mji is the dimensionless diffusiophoretic
mobility that induces the velocity in the jth colloid because of the
ith solute. The results in fig. S2 highlight that two different diffusio-
phoretic colloids with different mobilities, denoted with white and
red dots, mirror the pattern of the solute to form hexagons and
stripes but produce sharper and more well-defined features than
the solute alone. Only concentration hotspots of C1 are shown (in
green) because the concentration distribution of C2 has the same
spatial structure as C1. Here, we further reduce the parameter
space by focusing on a system with one colloid only, and therefore,
we drop the jth subscript in Mji and refer to it as Mi.

By using the framework of amplitude equations, we analytically
predict solute and relative colloid concentrations for different pat-
terns produced with the Brusselator model, including an analytical
expression for the steepening ratio λN/λC. Theoretical investigations
of the Brusselator model (46) have revealed a complex parameter

Fig. 2. Diffusiophoretic enhancement for various reaction-diffusion mecha-
nisms. (A) Cell-cell interaction model (5). (B) Gierer-Meinhardt model (8). For
both rows, the left panel shows a stable pattern arising from purely reactive-
diffusive mechanisms, and the right panel shows the steepening effect of
diffusiophoresis.

Fig. 3. Controlling the edge thickness of Brusselator patterns. (A) Comparison of analytically derived and numerically computed forms of (left) solutes and (right)
colloidal concentration profiles, averaged radially over all hexagons in the frame. The solute concentrations are simulated with parameters μ = 0.05, A = 1.5, and DC2

= 4.
The colloidal concentrations correspond to two different simulations DN = 10−2 and DN = 10−3, migrating withM1 =M2 = 0.1 for both cases. Solute and colloidal length
scales are indicated with line segments. The shading in all curves represents 1 SD of the numerical data points. (B) Comparison of analytically derived and numerically
computed forms of (left) solutes and (right) colloidal concentration profiles with vertical distance, averaged across the stripes in the gray boxes. The solute concentrations
are simulated with parameters μ = 0.04, A = 2, and DC2

= 3. The colloidal concentrations correspond to two different simulations DN = 10−2 and DN = 10−3, migrating with
M1 = M2 = 0.1 for both cases. Solute and colloidal length scales are indicated with line segments.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Alessio and Gupta, Sci. Adv. 9, eadj2457 (2023) 8 November 2023 4 of 9

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

olorado B
oulder on N

ovem
ber 16, 2023



space where different Turing patterns form. The perturbations are
sinusoidal in nature and have amplitudes that obey complex partial
differential equations that encode the stability and form of these
structures. Note that these amplitude equations do not predict
two-dimensional (2D) or 3D patterns exactly but merely describe
the size, shape, and stability of all possible structures; to simulate
complete patterns, one must directly solve the system of reaction-
diffusion equations, which are themselves sensitively dependent
on initial conditions (11).

One of the dominant patterns in the Brusselator model is hexag-
onal arrays. Simulating stable hexagon patterns, in Fig. 3A, we plot
the dependence of solute (left) and colloidal (right) concentrations
with distance away from the center of the hexagon (averaged over all
hexagons in the simulation box). The other dominant pattern in the
Brusselator model is stripes, which we investigate in Fig. 3B. The
solute (left) and colloidal (right) concentrations here are plotted
along the periodic direction.

There are two length scales in each of the patterns described in
Fig. 3. In hexagons, it is the size of the hexagons and the edge thick-
ness of the hexagons. For stripes, it is the spacing between the stripes
and the thickness of the stripes. The size of the hexagons and the
spacing between the stripes is set by λC, i.e., the wavelength of the
solute patterns, and the thickness of hexagons and stripes is set by
λN. Crucially, the ratio of λN/λC is set by the Péclet number of the
colloid for both the patterns. To explore this effect inmore detail, we
mathematically derive (see the “Analytical model” section) the
Péclet number as

Pe ¼

�
�
�
�
�

α M1 � M2
ηð1þAηÞ

A

h i

DN

�
�
�
�
�

ð5Þ

where α is the amplitude of the perturbations to C1 and η ¼ D
� 1=2
C2

.
We note that Eq. 5 is valid for both hexagon and stripe patterns. In

the Brusselator model, the nondimensional solute concentration
local to hexagon or stripe structures as a function of distance R
from the local maximum is given by

CiðRÞ ¼ σiα cos 2π
R
λC

� �

þ const ð6Þ

where we note that the 1D form of Eq. 6 is exact in the direction of
maximal gradient for stripes and approximate for radially averaged
hexagons. From the gradient of Eq. 6, we calculate the diffusiopho-
retic velocity

VDP ¼ �
2π
λC

α M1 �
ηð1 þ AηÞ

A
M2

� �

sin 2π
R
λC

� �

ð7Þ

and the form of the steady-state colloid concentration

NðRÞ / exp Pe cos 2π
R
λC

� �� �

ð8Þ

We define the colloid length-scale λN as the exponential decay
distance, giving the analytical expression

cos 2π
λN
λC

� �

¼ 1 �
1
Pe

ð9Þ

See the “Analytical model” section for derivations. In Fig. 3, we
show that our analytical model is in good quantitative agreement
with simulation data extracted from a large number of both hexa-
gons and stripes for solute and colloidal concentrations. We note
that the analytical model has no discontinuities, and the colloid hot-
spots are predicted on a continuous and periodic curve.

It is clear from Eq. 9 that λN/λC can vary substantially through
changes in Pe, revealing a control mechanism for the sharpness of
Turing patterns involving colloidal particles. We further elucidate
this control mechanism in Fig. 4 by comparing numerical predic-
tions of λN/λC versus Pe to the analytical theory for the Brusselator
model (Eq. 9). We obtain an approximately linear relationship
between the two variables, consistent with our theoretical predic-
tions, and show a collapse for two orders of magnitude of Pe. In
the limit of low Pe, the steepening effect is diminished, and the
colloid length scale approaches the solute length scale. If Pe is
exactly zero, however, then there would be no mechanism for col-
loidal formation, and thus, λN/λC would be undefined.

In addition to the Brusselator model, we include, in Fig. 4, sim-
ulation data points for the Gierer-Meinhardt and the cell-cell inter-
action models. In the absence of an analytical prediction for the
form of the solute field perturbations in these models, we estimate
Pe =M/DN, noting that we observe perturbation amplitudes of O(1)
in our simulations. A more accurate representation of Péclet
number would be the general form of Eq. 5, Pe =

P
i αiMi/DN,

where the sum is across each solute species and the coefficients αi
are dependent on the specific solute reaction-diffusion model.
However, the analytical theory necessary to obtain such coefficients
does not exist, to the best of our knowledge, for the Gierer-Mein-
hardt (8) and cell-cell (5) interaction models. Nonetheless, the data
points from our simulations of these models are well-represented by
a best-fit line, suggesting the collapse to a master curve of λN/λC
versus Pe for models other than the Brusselator.

Fig. 4. Master curve of diffusiophoretic-enhanced Turing patterns. Compari-
son of simulation results with analytical predictions for the colloid hotspot length
scale λN across a wide range of Péclet numbers. For the Brusselator model, hotspot
length scales over both hexagon and stripe patterns are compared to an analytical
curve with no fitting parameters. The same model parameters used in Fig. 3 are
applied. For the Gierer-Meinhardt and cell-cell interaction models, data points
are compared to a best-fit power law (see the “Numerical simulations” section
for details). Error bars represent 1 SD in computations.
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DISCUSSION
Our theory of diffusiophoretic sharpening of Turing patterns is
strongly supported by recent experimental evidence (34). Ramm
et al. discovered for pattern-forming MinDE protein systems in Es-
cherichia coli that a purely diffusiophoretic mechanism induces
replica patterns in colloidal species and, furthermore, that the pat-
terns become sharper when the colloid size increases. This implies
that as the Péclet number increases, the contrast between the two
phases increases. The specific measurement of sharpness with
which Ramm et al. quantify this effect is the Michelson intensity
contrast: (Imax − Imin)/(Imax + Imin). By using maximum and
minimum colloidal concentration as a proxy for Imax and Imin, re-
spectively, we demonstrate, using simulations of the Gierer-Mein-
hardt model, a similar trend to that observed experimentally by
Ramm et al. of contrast versus colloid size (equivalently “cargo
number”; see Fig. 5). We would like to emphasize that the Péclet
numbers used in our simulations are only approximate, and thus,
this comparison is qualitative. Nonetheless, this qualitative compar-
ison is strong evidence that diffusiophoresis that sharpens Turing
patterns is controlled by the Péclet number.

The findings reported in this article open up numerous possibil-
ities for future research and applications. For instance, further ex-
ploration of biological systems could reveal more instances where
diffusiophoresis contributes to pattern formation such as embryo
morphogenesis (1) and early life (34), which could subsequently
lead to a better understanding of how these patterns emerge,
evolve, and adapt in different species. In recent years, an embryonic
framework has gained attention for understanding cancer ecosys-
tems as chaotic expressions of the complex interactions between cel-
lular and chemical components (49), and Turing patterns are
theorized to play an important role in tumorigenesis (50). Unveiling
diffusiophoresis as a mechanism in cellular organization processes
can be crucial to future cancer research. Going forward, research
might consider nonideal diffusion of the reacting species (51),
complex colloidal interactions (52), dense packing effects (53), an-
isotropy (54), particle self-propulsion (55), liquid crystal order (56),
and reaction-diffusion setups where cellular compartmentalization
contributes to the chemical stability (48), which could reveal impor-
tant control mechanisms of pattern formation in various biological
systems. Experimental studies can observe the dynamics of the for-
mation of Turing patterns with colloidal particles in controlled con-
ditions. Beyond biophysics, understanding the role of
diffusiophoresis in pattern formation has potential applications in
engineering and materials science. By harnessing these mecha-
nisms, researchers could develop methods for fabricating materials
with precise microscale patterns (16). These materials could find
applications in areas such as photonics, lab-on-a-chip devices,
and biotechnology. In conclusion, our findings on the role of diffu-
siophoresis in pattern formation provide a foundation for future re-
search and have the potential to affect a wide range of fields.

METHODS
Scaling arguments
Our numerical model relies on the following dimensionless groups:
DaC and Pe. To estimate DaC, we recall that DaC = k‘2=Dc1 . For small
molecules, Dc1 = O(10−10) − O(10−9) m2/s. On the basis of the
typical experiments previously reported on fishes (12, 5), it
appears that k = O(10−7) − O(10−6) s−1. We anticipate that this
number can change for different kinds of fishes, and thus, this
choice is the best estimate based on prior literature values. To deter-
mine an appropriate value of ‘, we note that typical biological pat-
terns have three main length scales. The simplest choice is to pick
the size of an organism, which, for fishes, is typically ‘b =O(10−2) −
O(10−1) m. The second choice is the length scale of a repeating
pattern (such as size of hexagon or the spacing between the
stripes), which tends to be one order of magnitude smaller than
the body size, or ‘p = O(10−3) − O(10−2) m. Last, the third choice
is the thickness of these patterns (see the thickness of the blue and
yellow patterns on the fish in Fig. 1), which, at least for fishes,
appears to be one order of magnitude smaller than ‘p, or ‘t = O
(10−4) − O(10−3) m. Out of these three choices, we postulate that
‘p is the most appropriate choice because DaC = O(1). This empha-
sizes the fact that the presence of small molecules is a crucial
element for pattern formation. However, they only set the pattern
size ‘p and not the pattern thickness ‘t, which we discuss next.

To estimate Pe, it is straightforward to see from Eq. 5 that Pe = O
(M/DN). As per prior literature values,M ≤ O(1) (28), and thus, Pe

Fig. 5. Comparison between simulations and experiments. (A) We simulate col-
loidal patterns using the Gierer-Meinhardt model with varying colloidal Péclet
number. The contrast in the simulation is defined as the ratio of the difference
in maximum and minimum colloid concentration to the sum of maximum and
minimum colloid concentration. The intensity contrast increases monotonically
with the Péclet number, causing an s-like curve on the semi-log plot. (B) We
compare to the experimental results obtained from Ramm et al. (34) (box plots
were produced and experimental images were adapted by the authors using pub-
licly available data via CC BY 4.0: https://creativecommons.org/licenses/by/4.0/
legalcode). The contrast in experiments is defined as the ratio of the difference
in maximum and minimum image intensity to the sum of maximum and
minimum image intensity. An increase in cargo number is equivalent to an in-
crease in Péclet number. Thus an increase in contrast with cargo number demon-
strates that the simulations and experiments are in qualitative agreement with
each other. The agreement is also notable in the intensity images (bottom),
where the contrast strongly changes with Péclet number and cargo number.
Red circles indicate specific data points whose corresponding images are shown.
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≤ O(1/DN). For a typical colloid, Pe =O(10) − O(103). We note that
recent findings have suggested that DN is higher than the native dif-
fusivity of the colloid due to dispersion, indicating a lower Pe than
expected (29).

Analytical model
We restrict our analysis to chemical patterns exhibiting only critical
wavelengths λC ¼ 2π=

ffiffiffiffiffiffi
Aη

p
(where η ¼ 1=

ffiffiffiffiffiffiffiffi
DC2

p
), noting that this

allows for a rich phase space while keeping our model simple (46).
We consider solute concentrations that are 1D in distance R. These
are exact in the direction of maximal gradient of stripe patterns and
approximate for radially averaged hexagons. Setting R = 0 to be the
location of the extremum, σ1 = 1, σ2 = −η(1 + Aη)/A, and noting
that the coefficient α depends on the pattern, we have Eq. 6. We
define the supercriticality parameter μ ≡ (B − 1 − Aη2)/(1 + Aη2)
and adapt the coefficients from the work of Peña and Pérez-García
(46)

αstripes ¼ signðf Þ
ffiffiffiffiffiffiffiffi
μ=g

p
ð10AÞ

αhexagons ¼ 3
f þ signðf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ 4μðg þ 2hÞ

p

2ðg þ 2hÞ
ð10BÞ

f ¼ 2
1 � Aη

Að1 þ AηÞ
þ

2
A
μ ð10CÞ

g ¼
� 8 þ 38Aη þ 5A2η2 � 8A3η3

9A3ηð1 þ AηÞ
ð10DÞ

h ¼
� 3 þ 5Aη þ 7A2η2 � 3A3η3

A3ηð1 þ AηÞ
ð10EÞ

To determine the structure of the steady-state colloid concentra-
tion, we balance convection and diffusion

∂
∂R

DN
∂N
∂R

� VDPN
� �

¼ 0 ð11Þ

where the diffusiophoretic velocity is given by Eq. 7. Requiring a
bounded solution and defining the Péclet number as in Eq. 5, we
get Eq. 8, which we compare to simulations in Fig. 3. We note
that, depending on f, α can be positive or negative. In conjunction
with the signs and magnitudes ofM1 andM2, this property can flip
the direction ofVDP. In the case of stripes, the sign change is trivially
a phase shift. However, in the case of hexagons, our analytical model
cannot accurately predict the length scale of the colloids, which are
repulsed from the center, owing to complicated interactions with
neighboring hexagons. In this case, one must rely on direct compu-
tation. For the same reason, our analysis cannot accurately predict
any λN > λC. Last, our model can only tell us λN and not the
maximum value of N; this value is sensitively dependent on early-
time dynamics.

Numerical simulations
Our numerical calculations were implemented with the open-
source partial differential equations solver Basilisk (57). We

modified their multigrid solver of reaction-diffusion equations for
the Brusselator model, which solves for C1 and C2, by including a
diffusive tracer that is coupled in its advective term to ∇C1 and ∇C2.
Basilisk’s adaptive grid feature was used to retain accuracy at low
colloid length scales; we required the solver to refine the grid to
maintain an absolute accuracy of 0.1 in N (typically ≫1 at the
local maxima). The minimum and maximum refinement levels
were set to 5 and 12, respectively. The time steps were elected by
the solver. In each of our simulations, we analyzed only the
steady-state results; this was determined by inspection of simulation
videos and time series of the domain maximum of N.

For all Brusselator simulations, we set ‘0 ¼ 32
ffiffiffiffiffiffiffiffiffiffiffi
k=Dc1

p
and

DaN = 1 (except in fig. S1, we vary DaN). For the hexagons (Figs. 1,
3A, and 4), we set μ = 0.05, A = 1.5, and D = 4. For the stripes
(Figs. 1, 3B, and 4), we set μ = 0.04, A = 2, and D = 3. By keeping μ
small, we observed chemical wavelengths approximately
equal to their critical value, simplifying our analysis. The initial con-
ditions are spatially homogeneous with C1 = A and
C2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Aη

p
ð1 þ μÞ=A þ ½noise�, where the noise is uniformly

sampled in between −0.01 and 0.01. This choice of initial condition
for C2 represents deviations of μ above the critical concentration of
B, with the noise perturbing the initial homogeneity. The boundary
conditions are no-flux. For the colloid, the initial condition is spa-
tially homogeneous with N = 1, and no-flux boundary conditions
are used. DN, M1, and M2 are varied systematically.

For the simulations corresponding to both A. ornata andM. len-
tiginosa, we set the particle rates of diffusivity on the order of 10−4

relative to the solute, typical for micrometer-scale particles (30). To
achieve control over the pattern thickness, we vary the diffusiopho-
retic mobilities relative to the solute rate of diffusivity between 2.5 ×
10−2 and 10−1. Although this is smaller than typical experimental
values, to our knowledge, no experiments have been attempted to
measure particle diffusiophoretic mobility in a biological mem-
brane. Intuitively, we expect that this setting would permit diffusio-
phoretic mobilities much lower than those observed in microfluidic
experiments. We also expect that the shape anisotropy of chromato-
phores reduces their diffusiophoretic mobility. Furthermore, we
realize that colloidal dense packing effects might play an important
role in these systems owing to the steady-state chemical gradient;
such effects would reduce the diffusiophoretic convection.

We refer the reader to (5) for the details of the cell-cell interac-
tion model. We implemented this model using the reaction-diffu-
sion module of Basilisk, used the exact same parameters as (5), and
imposed a diffusiophoretic advection (using the advective tracer
module of Basilisk) of low-diffusivity substances (chromatophores
u and v) in response to the gradient of the high-diffusivity substance
(w) with varying Péclet number. The two diffusiophoretic chro-
matophores are assigned equal and opposite mobilities. In Fig. 2,
we use 2D sinusoidal initial conditions with the observed wave-
length and an overriding white noise field in the center, mimicking
the pattern-forcing technique from (5). The same time step, box
size, and adaptive grid technique as the Brusselator model imple-
mentation was applied. In Fig. 4, we impose purely 2D sinusoidal
initial conditions of a stable wavelength to simplify our length
scale analysis.

We refer the reader to (58) for a thorough implementation of the
Gierer-Meinhardt model (8). Using the reaction-diffusion module
of Basilisk, we implemented this model with the same parameters
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and initial conditions as (58), electing S = 0.55, and used Basilisk’s
advective tracer module to calculate the diffusiophoretic response of
a third, nonreactive substance of varying Péclet number. The same
time step, box size, and adaptive grid technique as the Brusselator
model implementation were applied.

Postprocessing was performed in Python 3.9, using NumPy,
SciPy, and Matplotlib. The irregularly spaced output data were in-
terpolated onto a 0.04 × 0.04 square grid using griddata from the
scipy.interpolate package. Custom color maps were constructed
using LinearSegmentedColormap from the matplotlib.colors
package. Calculations of λN were performed by identifying the loca-
tions (in two dimensions for hexagons and in the 1D average for
striped regions) of the maxima in colloid concentration using the
peak local max function from the skimage.feature package, histo-
gramming the data points to obtain relative colloid concentration as
a function of radial distance from themaximum, and identifying the
exponential decay distance for the average curve. Error was calcu-
lated by identifying the decay distances after adding and subtracting
1 SD to the average curve.

Supplementary Materials
This PDF file includes:
Figs. S1 and S2
Legends for movies S1 to S4

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S4
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