

[Start](#) | [Grid View](#) | [Author Index](#) | [View Uploaded Presentations](#) | [Meeting Information](#)

GSA 2020 Connects Online

Paper No. 94-2

Presentation Time: 5:50 PM

A COMPARISON OF POST-GLACIAL SEDIMENT VOLUMES FROM SOURCE TO SINK IN MORAN AND SNOWSHOE CANYONS, TETON RANGE, WYOMING

JOHNSON, Sarah E.¹, SWALLOM, Meredith L.², THIGPEN, J. Ryan², MCGLUE, Michael M.² and WOOLERY, Edward W.³, (1)Earth and Environmental Sciences, University of Kentucky, Sloan Research Building, Lexington, KY 40508, (2)Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, (3)Earth & Environmental Sciences, University of Kentucky, Lexington, KY 40506

Where valley-bottom gradients are flattened by glaciers, fluvial processes have difficulty removing post-glacial colluvial debris. Here we demonstrate this by quantifying sediment volumes from source to sink for Moran and Snowshoe Canyons, major glacial drainages in the Teton Range, Wyoming. The volume of sediment in Moran canyon was estimated by differencing a lidar-derived surface digital elevation model (DEM) and a modeled bedrock DEM. The bedrock DEM was generated by projecting an estimated bedrock surface beneath the sediment along 28 cross sections using exposures of bedrock along the valley walls and a smoothing-spline function in the MATLAB curve-fitting toolbox. A total sediment volume for all of Moran and Snowshoe Canyons was then estimated using the denudation rate calculated for Moran Canyon. Post-glacial alluvial sediments from both canyons are deposited in Moran Bay, which is isolated from the rest of Jackson Lake by a submerged Pinedale age (14.4 ka) moraine. Four CHIRP seismic reflection profiles were acquired in the bay; an isopach map and sediment volume estimate were produced using Seisware and Trinity T3 software. The resulting volume estimates show that fluvial processes have moved only roughly 1% of post-glacial sediment into the bay. We conclude that where valley-bottoms have been flattened by glaciers, rivers are unable to move most post-glacial colluvial sediment, and debris will accumulate until the next glacial advance, or tectonic uplift steepens the river channels.

Session No. 94

[D19. Quaternary Geology I](#)

Tuesday, 27 October 2020: 5:30 PM-8:00 PM

Geological Society of America *Abstracts with Programs*, Vol 52, No. 6
doi: 10.1130/abs/2020AM-356159

© Copyright 2020 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

[Back to: D19. Quaternary Geology I](#)

[<< Previous Abstract](#) | [Next Abstract >>](#)