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ABSTRACT On the roots of wetland plants such as rice, Fe(ll) oxidation forms Fe(lll)
oxyhydroxide-rich plaques that modulate plant nutrient and metal uptake. The microbial
roles in catalyzing this oxidation have been debated and it is unclear if these iron-oxi-
dizers mediate other important biogeochemical and plant interactions. To investigate
this, we studied the microbial communities, metagenomes, and geochemistry of iron
plague on field-grown rice, plus the surrounding rhizosphere and bulk soil. Plaque
iron content (per mass root) increased over the growing season, showing continuous
deposition. Analysis of 165 rRNA genes showed abundant Fe(ll)-oxidizing and Fe(lll)-
reducing bacteria (FeOB and FeRB) in plaque, rhizosphere, and bulk soil. FeOB were
enriched in relative abundance in plaque, suggesting FeOB affinity for the root surface.
Gallionellaceae FeOB Sideroxydans were enriched during vegetative and early reproduc-
tive rice growth stages, while a Gallionella was enriched during reproduction through
grain maturity, suggesting distinct FeOB niches over the rice life cycle. FeRB Anaero-
myxobacter and Geobacter increased in plaque later, during reproduction and grain
ripening, corresponding to increased plaque iron. Metagenome-assembled genomes
revealed that Gallionellaceae may grow mixotrophically using both Fe(ll) and organ-
ics. The Sideroxydans are facultative, able to use non-Fe substrates, which may allow
colonization of rice roots early in the season. FeOB genomes suggest adaptations for
interacting with plants, including colonization, plant immunity defense, utilization of
plant organics, and nitrogen fixation. Taken together, our results strongly suggest that
rhizoplane and rhizosphere FeOB can specifically associate with rice roots, catalyzing iron
plaque formation, with the potential to contribute to plant growth.

IMPORTANCE In waterlogged soils, iron plaque forms a reactive barrier between the
root and soil, collecting phosphate and metals such as arsenic and cadmium. It is
well established that iron-reducing bacteria solubilize iron, releasing these associated
elements. In contrast, microbial roles in plagque formation have not been clear. Here,
we show that there is a substantial population of iron oxidizers in plaque, and further-
more, that these organisms (Sideroxydans and Gallionella) are distinguished by genes
for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and
iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that
represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source.
In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N
cycling, as well as microbe-microbe and microbe-plant ecological interactions that need
to be considered in soil biogeochemistry, ecosystem dynamics, and crop management.

KEYWORDS iron-oxidizing bacteria, iron-reducing bacteria, rice rhizosphere, iron
oxyhydroxides

ron cycling is a key biogeochemical process in rice paddies that plays important roles
in the growth and quality of rice crops. Fe(ll) oxidation leads to the production of Fe(lll)
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oxyhydroxides (ferrihydrite, goethite, and lepidocrocite), which are strong sorbents of
organic carbon, phosphate, and metal(oid)s such as As and Cd (1-5); Fe(lll) reduction
dissolves the oxyhydroxides and releases sorbed nutrients and toxins (6). Of particular
interest are iron oxyhydroxide coatings (plaques) that develop on the surface of rice
roots (rhizoplane), as well as in the rhizosphere (satellite plaque). Fe(ll)-oxidizing and
Fe(ll)-reducing bacteria (FeOB and FeRB) have been documented in association with
a variety of wetland plants (7, 8). Because plaque is closely associated with rice roots,
its formation and dissolution may limit or drive plant uptake of oxyhydroxide-sorbed
chemicals (9-12), motivating us to study the mechanisms of rice root plaque formation.
FeOB can catalyze the formation of Fe(lll) oxyhydroxides via their metabolism. FeOB have
been detected in paddy soil (11, 13, 14), making them a potential mechanism for iron
plaque formation in conditions in which they can outcompete abiotic Fe(ll) oxidation.

The rice rhizoplane is in fact an ideal niche for microaerophilic FeOB, which gain
energy by coupling Fe(ll) oxidation to oxygen reduction, and thus grow best where
Fe(ll) and O, fluxes are high. Although Fe(ll) oxidation coupled to nitrate reduction is
possible in theory, it is unlikely to be a significant process because N is a limiting nutrient
throughout most of the rice growing season (15-18). Rice paddy soil is rich in Fe(ll)
formed by microbial Fe(lll) reduction; thus, plaque formation is partially dependent on
the activities of FeRB. Rice root aerenchyma is a conduit of O,, which diffuses from roots
into saturated soil rich in Fe(ll), providing both electron donor and acceptor for FeOB.
Aerobic FeOB must compete with abiotic oxidation, and kinetics studies showed they
become the dominant mechanism of iron oxidation as oxygen concentrations decrease
(19, 20). Different neutrophilic FeOB can thrive at O, concentrations < 1-100 uM (21-24),
concentrations that coincide with ranges typically found at the surface of rice roots (few
micromolar to tens of micromolar Oj) (25, 26). Thus, it is plausible that a significant
proportion of plaque iron oxidation is microbial.

Indeed, studies have increasingly documented FeOB in rice paddy soil, thus
increasing recognition that microbes can contribute to iron oxidation in this environ-
ment. FeOB can be documented by culturing, 16S rRNA gene analyses, and metage-
nomic studies, which give different evidence of potential contributions. Numerous
studies have shown that FeOB can be cultured from rice paddy soil, with a range of
taxa represented (13, 24, 27-31). While culturing demonstrates microbial iron oxidation
activity, it only proves that soil-derived organisms are capable of iron oxidation, but
cannot show that these FeOB represent the major active organisms in situ. Studies
using 16S rRNA genes give a broader view of soil microbial communities, but it is often
unclear which organisms are FeOB, or identification is equivocal due to the metabolic
flexibility of putative FeOB. The exceptions are taxa specifically known for iron oxida-
tion, like Gallionellaceae iron-oxidizing genera, including Gallionella, Ferrigenium, and
Sideroxydans (28, 32, 33). As their primary metabolism is iron oxidation, detection of
Gallionellaceae FeOB in field samples is a strong indication of microbial iron oxidation in
the environment.

Gallionellaceae FeOB have been cultured from paddy soil, including the isolates
Gallionella/Ferrigenium kumadai An22 (28, 34) and Sideroxydans sp. (24). While the isolate
An22 was named Ferrigenium based on 16S rRNA gene dissimilarity from Gallionella,
subsequent full-genome analyses showed that it is a Gallionella (35). Gallionellaceae have
also been identified using 16S rRNA gene analyses including universal and taxa-specific
primers in paddy soil and the rice rhizosphere (31, 36-39). Their abundance has been
shown to correspond to iron oxidation in paddy soil and soil incubations (30, 40).
Gallionella have been detected in rhizoplane samples by qRT-PCR (41). However, it has
not been shown whether Gallionellaceae are specifically enriched in abundance at the
rhizoplane (vs soil) and associated with plaque oxyhydroxides. Schmidt and Eickhorst
(36) used CARD-FISH to show Betaproteobacteria (which includes Gallionellaceae) on
root surfaces, and suggested that these may represent Gallionellaceae detected via 16S
rRNA sequences (42). In all, there is strong evidence for the existence of these FeOB in
paddy soil, but it is still unclear if Gallionellaceae are specifically associated with plaque
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and therefore contribute to iron oxyhydroxide formation. If FeOB are in fact associated
with plaque, this close association with the root could cause them to compete with
the plant for nutrients like N, or alternatively, FEOB may provide fixed N and other
nutrients to help promote plant growth. To understand the biogeochemical cycling in
the rice root rhizosphere, we need to determine the dynamics and functions of plaque
microorganisms, and their interactions with the rice plant.

In this study, we investigated the spatial and temporal dynamics of rice-associated
FeOB and FeRB in rice paddies over a growing season, using 16S rRNA gene analyses of
bulk soil, rhizosphere, and plaque samples. This was coupled to plaque Fe analyses as
well as examination of metagenomic-assembled genomes of FeOB to more specifically
identify metabolic capabilities and niches. Taken together, this allowed us to identify the
major FeOB enriched in iron plaque and give insight into how microbes contribute to
plaque formation over the life cycle of field-grown rice.

RESULTS AND DISCUSSION
Rice paddy experiment

Rice was grown in the University of Delaware (UD) Rice Information, Communication, and
Education (RICE) Facility on the UD Farm in Newark, Delaware. For this study, rice was
grown in 12 soil-filled paddy plots (2 x 2 m?), or mesocosms, each containing 49 plants,
in either unamended native soil, or soil that had received Si amendments a year before
this experiment (Fig. S1). Details on soil chemistry and treatments, including fertilization,
and water management can be found in the Materials and Methods section. Previous
studies of the microbial community showed that Si amendments had less of an impact
than redox status (43, 44). Given the variability in chemistry and community composition
across the 12 paddies, here we show chemistry (plaque iron content and mineralogy)
for each paddy individually (45), and then aggregate samples from all treatments to
evaluate the most abundant FeOB and FeRB across all conditions.

Plaque Fe content and mineralogy

We measured plaque Fe content on roots at five time points over the growing season
(see Materials and Methods and Fig. S1 for details of rice paddy experimental setup).
Plaque Fe was quantified as dithionite-citrate-bicarbonate (DCB)-extractable Fe per dry
root mass, obtained by removing one whole plant per paddy at each time point. The
amount of plaque Fe per dry root mass increased over time, with the highest rate of
plaque increase between heading to grain maturity [71-88 days past transplant (DPT)
and 88-98 days DPT, Fig. 1A]. The increase in plaque Fe is not a function of increasing
Fe in porewater, as dissolved Fe(ll) did not increase over time (measured in bulk soil; Fig.
1B). The continuous increase of plaque Fe over time shows active formation of plaque
throughout the growing season.

On initial precipitation, Fe(lll) oxyhydroxide minerals tend to be poorly crystalline
phases like ferrihydrite, often increasing in crystallinity as they age. Thus, to evaluate
the potential for active plaque formation, we assessed the mineral composition of
iron plaque at harvest [98 DPT; data set from reference (45)]. The iron plaque mineral
composition at harvest was primarily ferrihydrite, with the plaque ranging from 38.6%
to 65.7% ferrihydrite (average 55.9%), followed by goethite (21.8-37.7%, average 29.4%)
(Fig. 1C). These results are consistent with previous observations that ferrihydrite is the
most abundant iron plaque mineral in rice plants at harvest (9, 10, 46-49), and other
wetland plants (50, 51) with goethite and lepidocrocite as a substantial proportion (10,
46,47,49-52).

While the presence of ferrihydrite in the plaque at harvest is consistent with active
plaque formation until harvest, ferrihydrite minerals are sometimes stabilized by organics
(e.g., root exudates) or inorganic ions (e.g., silicate), which are present in the soil solution
throughout the growing season (9, 53, 54). Here, 9 out of 12 paddies were amended
with additional silicon in various forms, while three control paddies (nos. 1, 9, and 10)
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FIG 1 Plaque iron content compared to porewater Fe(ll), and mineral composition. (A) Plaque iron
content per dry root mass over the growing season plotted for 12 paddies sampled. (B) Porewater Fe(ll)
over the growing season plotted by and colored by paddy [see legend in (A)]. (C) Plaque Fe mineral
composition at harvest, by paddy, in order of decreasing ferrihydrite.
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had no silicon added. Silicon addition is known to retard the crystallization of ferrihydrite
to higher-ordered phases (53, 55). Although plaque from the control paddies generally
had lower ferrihydrite than the others at harvest, ferrihydrite still comprised at least 38%
of the Fe mineral composition in plaque at harvest, even in non-amended controls. When
considered together, increasing plaque Fe and ferrihydrite in the plaque at harvest,
regardless of treatment, imply active precipitation of Fe oxyhydroxides over the course of
the growing season.

Assessing the Fe-cycling microbial community by 16S rRNA gene analyses
FeOB and FeRB in iron plaque

We assessed the community composition using the 16S rRNA gene V4-V5 region. We
sampled bulk soil, rhizosphere soil, and Fe plaque from 12 rice paddy plots over the
course of one growing season (five time points). In total, we analyzed 130 samples,
from which we retrieved a total of 37,072,594 quality-filtered sequences, with rarefaction
analysis showing sufficient sequencing depth (Fig. S2). The sequences clustered into
11,678 operational taxonomic units (OTUs; 97% similarity), of which 3,914 were assigned
taxonomy to the genus level (Table S1), from which we could predict FeOB and FeRB.

Here, we focus on organisms associated with the iron plaque. To determine the most
abundant plaque community members, we ranked the OTUs by their median relative
abundance in the plaque (Fig. 2A) and looked for iron-cycling organisms (Table S2).
Twelve OTUs had median abundances greater than 0.5%, including two FeOB OTUs.
The most abundant plaque OTU (OTU7) was initially identified as Gallionellaceae, and
a BLAST search showed 100% identity to Gallionella/Ferrigenium kumadai, an FeOB that
was isolated from rice paddy soil (28); hereafter, OTU7 is referred to as Gallionella. The
third most abundant plague OTU (OTU2) has 100% identity to a number of sequences,
including Sideroxydans clones from riparian wetlands [acc. nos. JQ060114, JQ060109,
and JQ060108 (56)] and sequences from rice paddy soil [AB657736 (57)]. Sideroxydans
is a well-characterized FeOB within the Gallionellaceae and has previously been cultured
from rice paddies (58) and wetland plant roots (8).

The top OTUs also include several FeRB, including two Anaeromyxobacter OTUs, a
Geobacter, and a Geothrix OTU, all of which have been previously identified in paddy
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FIG 2 (A) Log 10 median rank relative abundance curve of top 50 plaque organisms. (B) Box and whisker plot showing square-root transformed relative

abundance of OTUs with median relative abundance above 0.5% in plaque. Boxes are colored according to known metabolism with orange/yellow representing

FeOB, pink/purple FeRB, blue methylotrophs, and green cellulose degraders. See Tables S1 and S2 for abundance data, ranking calculations, and taxonomic

classification of OTUs.
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soils (59-62). The second most abundant OTU was Anaeromyxobacter OTUO, which had
100% identity as an organism in a rice paddy soil enrichment [acc. no. MF547866 (63)].
The Geobacter and Geothrix OTUs were also related to sequences from rice paddy soils
(OTU6 100% to MF968163, OTU5 100% to KY287536). In addition, there is an OTU related
to Rhodoferax (OTU93) that was only classified on the family level, but is 97% similar to
Rhodoferax ferrireducens T118 and 97% similar to a Rhodoferax full-length 16S sequence
from the 9BH metagenome described below.

In addition to iron-cycling organisms, the highly abundant plaque community
members included one methylotroph (Methylotenera OTU37) and known cellulose
degraders [Spirochaetaceae OTU3 and Fibrobacterales OTU14 (64-66)]. Beyond the
top 12 OTUs, there were many other iron cycling OTUs, with a notable diversity of
FeRB, including 32 Anaeromyxobacter and 32 Geobacter OTUs detected in plaque. This
contrasted with three Gallionellaceae OTUs, suggesting a greater range of iron-reducing
niches, despite the comparable abundance of FeOB and FeRB in plaque.

Enrichment (increased relative abundance) of iron-cycling microbes in the
plaque

If FeOB or FeRB are involved in plaque formation, we would expect to see them
specifically enriched in plaque compared to bulk soil, and possibly also enriched in the
rhizosphere. The FeOB and FeRB OTUs were generally present in all sampled biospheres:
bulk, rhizosphere, and plaque. Thus, we were able to calculate an enrichment factor as
the ratio of relative abundance in plaque versus bulk soil or rhizosphere versus bulk soil
(Fig. 3). Because cell concentrations are higher in the rhizosphere and plaque relative to
bulk soil (42, 67), these represent lower limits on absolute enrichment factors.

While there was always a FeOB enriched in the plaque, different FeOB OTUs domina-
ted over the growth cycle. The FeOB Sideroxydans OTU2 was enriched at earlier time
points (Fig. 3). Sideroxydans OTU2 was most enriched at the first time point (20 DPT),
at 10x relative abundance in plaque, relative to bulk soil. Sideroxydans OTU2 was still
enriched in plaque at early reproduction (42 DPT), but continued to decrease in plaque
while increasing in bulk soil (Fig. 4A). In contrast, Gallionella OTU7 is most abundant
and enriched in plaque at grain maturity (98 DPT) at 8x bulk soil abundance, though
it was also enriched at early reproduction in the rhizosphere (42 DPT) (Fig. 3 and 4B).
These contrasting enrichment and abundance patterns suggest that Sideroxydans and
Gallionella have different niches, and that Gallionella may be more responsive as the
plants mature. In all, FeOB are abundant at all time points, and there is always one FeOB
enriched in plaque at all times, consistent with iron oxidizer roles in plaque formation.

In contrast to FeOB, the FeRB OTUs are initially low and increase in plaque over time,
in both relative abundance (Fig. 4) and enrichment factor (Fig. 3). Both of the top two
FeRB OTUs, Anaeromyxobacter OTUO and Geobacter OTU6 are more abundant in the bulk
soil at earlier time points (Fig. 4C and E). Geobacter OTU6 later becomes enriched in the
plaque (12x bulk) at heading (71 DPT), while Anaeromyxobacter OTUQ is most abundant
at grain maturity (98 DPT, 4x bulk). Anaeromyxobacter OTU13 and Geothrix OTU5 are
similar to Geobacter OTUG6 in that they peak in plaque at heading (71 DPT) (Fig. 3, 4D and
F). While all the major FeRB tend to increase and become enriched in plaque over time,
the different patterns suggest that there are distinct FeRB niches.

Both FeOB and FeRB are also enriched in the rhizosphere (Fig. 3 and 4). Although
the timing and magnitude of enrichment differ somewhat from plaque, the enrichment
suggests that these organisms, particularly the FeOB, could also be associated with iron
oxyhydroxide formation in the rhizosphere (satellite plaque).

Correlations between FeOB, FeRB, and plaque iron

Both FeOB and FeRB were consistently enriched and abundant in the plaque. To
better understand their relationships with iron geochemistry, we looked for correlations
between predominant plaque organisms and plaque Fe (Fig. 5; Fig. S3). Plaque Fe
content was positively correlated with the relative abundance of the top FeOB Gallionella
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A. Plaque
Rank Taxa 20 DPT 42 DPT 71 DPT 88 DPT 98 DPT
FeOB 1 Gallionella OTU7| 0.85
3 Sideroxydans OTU2
FeRB 2 Anaeromyxobacter OTUOQ
7 Geobacter OTU6| 0.13
8 Anaeromyxobacter OTU13| 0.38
10 Geothrix OTU5| 0.18
B. Rhizosphere
Rank Taxa 20 DPT 42 DPT 71 DPT 88 DPT 98 DPT

FeOB 1 Gallionella OTU7 2.5 2.0

3 Sideroxydans OTU2 225) 2.8 0.67 1.6
FeRB 2 Anaeromyxobacter OTUO| 0.22 0.46 0.77 - 2.5
7 Geobacter OTUG| 0.39 0.42 1.1 0.62 1.2
8 Anaeromyxobacter OTU13| 0.59 1.6 1.3 1.5 1.3
10 Geothrix OTU5| 1.3 1.3 1.2 0.67 0.75

FIG 3 Enrichment factors in plaque (A) and rhizosphere (B) of most abundant FeOB and FeRB OTUs over
growing season (DPT = days past transplant). Enrichment factor was calculated as relative abundance in
plaque or rhizosphere divided by relative abundance in bulk soil, and the median is given for each time
point. Boxes are shaded according to enrichment factor, with those below 1 (not enriched) in white with
gray text. (No plaque sample available for 88 DPT.) OTUs are ranked by median relative abundance in

plaque.

OTU7 (p = 0.47, P = 0.09, Fig. 5C) and top FeRB Anaeromyxobacter OTUO (p = 0.53, P
= 0.05, Fig. 5A). Because the data are from 12 paddies that vary in geochemistry, we
also plotted trends within individual paddies in Fig. 5B and D. In cases where data were
available for multiple time points in specific paddies, the relative abundance of both
Gallionella OTU7 and Anaeromyxobacter OTUO corresponded to higher plaque Fe in each
paddy.

FeOB genomes reconstructed from rhizosphere and bulk soil metagenomes

To investigate the metabolic capabilities of FeOB, we sequenced two metagenomes from
bulk soil (9BB) and rhizosphere (9BH), which were sampled from the same paddy in the
same year at early reproduction (42 DPT). Based on our 16S rRNA gene analyses, these
two samples include all major FeOB and FeRB OTUs. Indeed, both metagenomes yielded
high-quality genomes of FeOB and FeRB (>90% completeness, <5% contamination) that
reflected taxa identified by 16S analysis (Table 1). Here, we briefly describe the FeRB
and then focus on analyses of FeOB to assess their potential metabolic influences on
biogeochemical cycling as well as plant interactions.

FeRB genomes

The metagenomes yielded nine high-quality FeRB genomes, which were identified as
Anaeromyxobacter, Geobacter/Geobacterales, and Rhodoferax. While most (six out of
nine) were reconstructed from the bulk soil, one genome for each FeRB taxonomic group
was recovered from the rhizosphere (Table 1). All of these FeRB genomes contained
genes for oxygen respiration: Anaeromyxobacter and Rhodoferax genomes all encoded
genes for both aas- and cbbs-type cytochrome c oxidases, while the Geobacter encoded
either aaz or cbbs types. This suggests that all of the FeRB are facultative anaerobes.
Rhodoferax is known as a FeRB, but there is one recent report of Fe oxidation
by Rhodoferax MIZ03 [(68); 81.7% ANI with Rhodoferax 9BH_DTO005]. The Rhodoferax
genome from the rhizosphere includes genes that may catalyze either iron oxidation or
reduction. These are homologs of the outer membrane-associated decaheme cyto-
chrome MtoA/MtrA and porin MtoB/MtrB. In the FeRB Shewanella oneidensis, MtrA has
also been shown to both reduce iron and take up electrons from an electrode (69). In
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FIG 4 Relative read abundance of top FeOB and FeRB in plaque (with median relative abundance above 0.5%) over time for each biosphere. Abundance in bulk

soil plotted with black solid line, rhizosphere plotted in tan short-dashed line, and plaque plotted in orange long-dashed line. Error bars show standard error.

Asterisks indicate differential abundance in the plaque and bulk soil where adj. P < 0.1 based on DESeq?2 analysis. Bulk 20 DPT n = 12, rhizosphere 20 DPTn =12,
plaque 20 DPT n = 3, bulk 42 DPT n = 11, rhizosphere 42 DPT n = 10, plaque 42 DPT n = 6, bulk 71 DPT n = 11, rhizosphere 71 DPT n = 11, plaque 71 DPT n =4,
bulk 88 DPT n = 12, rhizosphere 88 DPT n = 12, bulk 98 DPT n = 11, rhizosphere 98 DPT n = 11, and plaque 98 DPTn = 4.

the FeOB Sideroxydans ES-1, MtoA is an iron oxidase (70, 71). Phylogenetic analysis of the
Rhodoferax 9BH_DT005 MtoA/MtrA homolog shows that it clusters with MtoA sequences
from Gallionellaceae FeOB (Fig. S4). Altogether, this suggests that there is a possibility

that the rice rhizosphere Rhodoferax may be a facultative FeRB or FeOB.

FeOB genomes

The metagenomes yielded four high-quality FeOB genomes—three Sideroxydans and
one Gallionella, classified based on a synthesis of GTDB results, average amino acid

December 2023 Volume 89

Issue 12

10.1128/aem.00570-23 8

Downloaded from https://journals.asm.org/journal/aem on 01 January 2024 by 68.82.193.254.


https://doi.org/10.1128/aem.00570-23

Full-Length Text

DCB Fe (mg/kg)

g A
8 12.5 12.5
o

@©

2 10.0 10.01
)

Q

3]

%) 7.5
=

©

© 5.0 1
o

=

o 2.5
g

o 0.0 1
®© T T T T T

o 25000 50000 75000 100000 125000

9 C.

o 125 12.5
[&]

C

©

2 10.01 10.0 1
>

G

o 751 7.5
=

©

© 5.0 5.0 1
= [ ]

5

5 2.5+ 2.5
2 . ¢

g 001 T T T T T 0.01
o 25000 50000 75000 100000 125000

Applied and Environmental Microbiology

B.
[ 42 DPT
& 71 DPT
/\ 98 DPT
- 1 7
A -2 ®38
/ 3 9
/ 4 @10
- 5 @11
-
. ™ — 6 12
25000 50000 75000 100000 125000
D.
n
R /
.‘é/‘
T T T T T
25000 50000 75000 100000 125000

DCB Fe (mg/kg)

FIG 5 Comparison of selected FeRB and FeOB abundance with plaque iron content. Scatter plots show plaque relative abundance of Anaeromyxobacter OTUO

versus plaque Fe (A and B), and of Gallionella/Ferrigenium OTU7 and plaque Fe (C and D). Points are colored by paddy and shapes represent sampling time (DPT).

In (A and Q), all plaque data are shown and the blue line shows linear regression and the gray shaded region shows 95% Cl. In (B and D), temporal trends ar

shown for paddies with data from multiple time points.

TABLE 1 Metagenome-assembled genome bins

FeOBor FeRB  Bin name Taxa Completeness  Contamination = Number of bases  No. of contigs  %GC  16S
Fe-oxidizer 9BB_43 Sideroxydans 99.44 0 2,720,879 10 59.7 n
Fe-oxidizer 9BH_100 Sideroxydans 99.44 0 2,735,574 7 59.7 n
Fe-oxidizer 9BH_112 Gallionella 98.89 0.95 2,920,635 6 60.5 n
Fe-oxidizer 9BH_MBO008 Sideroxydans 94.26 2.51 2,925,456 126 55.6 n
Fe-reducer 9BB_DT027 Anaeromyxobacter ~ 98.06 0.65 4,302,736 312 75.3 y
Fe-reducer 9BB_IMG54 Anaeromyxobacter ~ 93.55 3.51 4,148,843 177 72.5 n
Fe-reducer 9BH_IMG36 Anaeromyxobacter 96.82 0.35 4,208,782 273 72.8 y
Fe-reducer 9BH_DT025 Anaeromyxobacter 95.65 1.5 4,056,445 238 72.5 n
Fe-reducer 9BB_IMG16 Geobacter 100 0 3,353,205 6 51.0 n
Fe-reducer 9BB_IMG32 Geobacter 99.98 1.94 5,511,892 147 61.3 y
Fe-reducer 9BB_IMG87 Geobacter daltonii 98.67 2.58 3,912,958 78 55.9 y
Fe-reducer 9BH_IMG26 Geobacterales 99.32 1.29 3,710,533 39 52.2 n
Fe-reducer 9BH_DT005 Rhodoferax 96.21 4.09 5,701,076 665 57.8 n

identity (AAl)/average nucleotide identity (ANI) (Supp. Table S3), and a phylogenetic tree
of concatenated ribosomal protein sequences (Fig. 6). The Sideroxydans bins from the
bulk soil (9BB_43) and rhizosphere (9BH_100) are 100% identical by ANI and cluster
with Sideroxydans lithotrophicus ES-1 (81% ANI/82% AAI). The rhizosphere genome bin
9BH_112 is closely related to the rice paddy soil isolate Ferrigenium kumadai An22 (90.1%
ANI/91.5% AAIl); however, GTDB classifies AN22 and bin 9BH_112 as Gallionella, which
is also confirmed by our phylogenetic analysis based on 13 concatenated ribosomal
protein sequences [Fig. 6; details in methods and (35)]. Thus, going forward, we refer
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to bin 9BH_112 as Gallionella 9BH_112 with the understanding that it is closely related
to F. kumadai An22. The unclassified Gallionellaceae 9BH_MBO008 is more distant from
isolates: 79.5% ANI to Sideroxydans ES-1, 79.4% ANI to Ferrigenium An22, and 79.0% ANI
to Ferriphaselus R-1. GTDB classifies 9BH_MBO008 as genus “Palsa-1006,” which has no
cultured representatives, and to our knowledge, this clade has not yet been described
from a rice paddy environment. Our whole genome phylogenetic analysis determined
that 9BH_MB008 and the GTDB “Palsa-1006" fall within Sideroxydans, so we refer to this
bin as Sideroxydans 9BH_MBO008.

While none of the reconstructed Gallionellaceae genomes from 9BB or 9BH samples
include 16S rRNA genes, we can use metagenomes from samples from the following year
(2017) to help connect the genomes to 16S rRNA sequences. The Sideroxydans genomes
9BB_43 and 9BH_100 are practically identical (99.9% ANI and 100% AAI) with another
genome reconstructed from the same sampling site a year later (9GH_6), which does
have a 16S rRNA gene fragment. The 9GH_6 16S rRNA gene fragment shares 98.4%
identity with a representative Sideroxydans OTU2 16S rRNA gene fragment. In all, the
phylogenetic analyses suggest that genome reconstruction yielded genomes that are
representative of the major FeOB detected by 16S analyses, Sideroxydans OTU2 and
Gallionella OTU7, plus one additional Sideroxydans genome.

FeOB energy metabolisms—electron donors and acceptors

We analyzed Gallionellaceae bins to explore the FeOB for biogeochemical contributions,
including Fe, C, N, P, and S cycling. Genes and metabolisms are summarized in Fig. 7A.

Iron oxidation

All four 9BB/9BH Gallionellaceae genomes have genes for microaerophilic iron oxida-
tion. The genomes contain the iron oxidase gene cyc2, which is characteristic of most
Gallionellaceae (35). They lack mtoAB, an outer membrane multiheme cytochrome-porin
complex associated with iron oxidation in S. lithotrophicus ES-1 (70-72). Each genome

Tree scale: 0.05 F— Gallionella capsiferriformans ES-2

W Rice paddy genomes

Gallionella 9BH_112 \

Gallionella
Ferrigenium kumadai An22 — 100
Sulfuricella
.100
434 100 )
148 — Ferriphaselus
Sideroxydans 9BB_43 86,

Sideroxydans 9BH_100 I
N

Sideroxydans sp. CL21 / /

Sideroxydans lithotrophicus ES-1

100 Ca. Nitrotoga

Sideroxyarcus emersonii MIZ01  Sideroxydans 9BH_MB008
Sideroxydans

FIG 6 Maximum likelihood tree of Gallionellaceae FeOB genomes based on 13 concatenated ribosomal
protein sequences. Genomes from this study are shown with a star, and isolate genomes are shown by
arrows only. While Gallionella 9BH_112 is closely related to the rice paddy isolate F. kumadai AN22, the
other genomes in this study are more distant from isolates (in Sideroxydans). Support values based on
1,000 bootstraps. Further information on classification and tree construction, including all genomes in
the tree, are available in Hoover et al. (35).
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has the potential for oxygen respiration, with at least one set of terminal oxidase genes,
ccoNOP, coxAB, and/or cydAB.

Denitrification

Only Sideroxydans 9BH_MBO008 has the potential for dissimilatory nitrate reduction,
with napAB in its genome. The Sideroxydans 9BB_43 and 9BH_100 genomes encode
nitrite reductase nirS, while Gallionella 9BH_112 has the nirK nitrite reductase. These
denitrification genes are not sufficient for growth using nitrate-dependent iron oxidation
metabolism, though Sideroxydans 9BH_MB008 may be able to use denitrification for
redox balance when O, is limiting, as posited for Zetaproteobacteria (73).

Sulfur oxidation

All bins had genes for sulfur oxidation. In particular, Sideroxydans 9BB_43 and 9BH_100
have genes for multiple sulfur oxidation pathways, including thiosulfate oxidation
(soxABXYZ) and sulfide oxidation (dsrAB/aprAB/sat, fccAB, sqr). S. lithotrophicus ES-1
similarly has sox and dsr genes and is able to grow by thiosulfate oxidation. Based on
previous phylogenetic analysis, the DsrAB from ES-1 and the four 9BB/9BH Gallionella-
ceae genomes cluster with reverse DSR (rDSR) (35).

Hydrogen

All four Gallionellaceae bins have the potential for hydrogen oxidation using a variety
of hydrogenase genes. All have hoxFUYH and hyaAB, while the Sideroxydans genomes

. 9BB_ 9BH_ 9BH_ 9BH_ . . 9BB_ 9BH_ 9BH_ 9BH_
A) Energy Function gene(s) 43 100 112 MBO008 B) Nutrient Function gene(s) 43 100 12 MB008
cyc2 C fixation rbel
Fe oxidation
mtoAB C storage (glycogen) glgABCP, apu, amyA
ccoNOP polysacch. hydrolysis various ----
O, reduction coxAB acetate permease actP
cydAB dicarboxylate uptake det
napAB N2 fixation nifHDK
denitrification nirk N storage cphA --
nirS P storage (polyP) ppk, ppa, ppx
SOXABXYZ P uptake pstABCS
dsrAB/aprAB/sat
S oxidation
sar --- C) Plant Interaction enelfeature 9BB_ 9BH_ 9BH_ 9BH_
fecAB Function 9 43 100 112 MB008
hoxFUYH tad/fip
hupUv MSHA pilin
H, oxidation
hyaAB -- adhesion haemagglut.-like prot.
hybOABC T4p
fermentation or N fix nifJ (PFOR) cellulose synthase bcsA
porABDG (PFOR) protease inhibitor alpha macroglobulin
ackA antibiotic beta-lactamase
fermentation
pfiB polyphenol oxidase polyphenol oxidase
acsA toxin/antitoxin various --
ACIlI
bet key No. genes
Electron transport and B
ATP synthesis nuo Sideroxydans 9BB_43 0
sdh Sideroxydans 9BH_100 1 1
ATPase Gallionella 9BH_112 2
e- for N fix/other mf Sideroxydans 9BH_MB008 3+

FIG 7 Summary of selected functional genes in Gallionellaceae FeOB genomes. Boxes are colored by number of genes (no. of genes) or gene sets (if >1 gene
mentioned) present in each genome. See Table S4 for polysaccharide hydrolysis genes. “N fix” = nitrogen fixation.
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9BB_43 and 9BH_100 also have hupUV and hybOABC. Hydrogenase genes are common
amongst FeOB [e.g., references (35, 74, 75)] and other bacteria, and may play a role in
providing reducing equivalents for carbon and nitrogen fixation since the Fe(ll)/Fe(lll)
redox potential is relatively high and requires reverse electron transport to produce
NADH and ferredoxin. The variety of hydrogenases implies a range of roles, which may
also include growth on hydrogen as well as fermentation, with hydrogen formation
serving as an electron sink (see below).

Electron transport chain

Genes for components of the rest of the electron transport chain are present including
Complex Ill (bcT) NADH dehydrogenase, and ATPase(s). Genes for alternative complex Il
(ACIIl) were not found in the Sideroxydans 9BB_43 and 9BH_100 or Gallionella genomes
but were present in Sideroxydans 9BH_MBO008.

Fermentation/“anaerobic” metabolism

The Gallionellaceae genomes have a number of genes associated with anaero-
bic metabolisms, possibly for fermentation. Gallionella 9BH_112 and Sideroxydans
9BH_MBO008 both have pyruvate formate lyase, which converts pyruvate to formate and
acetyl CoA. In addition, all four Gallionellaceae encode genes for pyruvate ferredoxin/fla-
vodoxin oxidoreductase (PFOR), which would generate acetyl coA and reduce ferredoxin
or flavodoxin. The four genomes also encode acetyl CoA synthetase which can generate
ATP during the conversion of acetyl CoA to acetate. In some cases, the PFOR genes are
adjacent to hox hydrogenase genes, which may be used to evolve H; for redox balance
[e.g., reference (76)]. As these Gallionellaceae have genes for glycogen formation and
usage, this altogether suggests the ability to ferment glucose into acetate, which would
allow energy generation for survival of anoxic conditions. It has also been shown that
PFOR can be used in place of pyruvate dehydrogenase under oxic, but highly reducing
conditions as cells shift toward using ferredoxin-dependent enzymes, rather than NADH,
with the lower redox potential ferredoxin capturing more energy and reducing power
(77).

Summary

Analysis of energy metabolism genes shows that the Gallionellaceae genomes include
genes for aerobic iron oxidation as well as sulfur oxidation, hydrogen oxidation,
fermentation, and in some cases, denitrification. Thus, overall, the FeOB show metabolic
flexibility that could serve to help them survive across chemical gradients or fluctuating
redox conditions. The ability to use multiple substrates can provide additional energy
and reduce power for biosynthetic reactions such as C and N fixation.

Nutrient (C, N, and P) acquisition, fixation, storage, and usage

As the FeOB are closely associated with roots, they may help promote plant growth
by providing nutrients. To evaluate this, we looked for genes involved in the fixation,
storage, and release of nutrients (Fig. 7B). In addition, we took note of genes that
suggest the utilization of plant exudates and polysaccharides. As Gallionellaceae are
typically considered autotrophic, such genes could further link these FeOB to the plant
rhizosphere environment.

Carbon fixation and storage

All Gallionellaceae isolates can grow autotrophically (28, 32, 33, 78-80), and like these
isolates, all four Gallionellaceae genomes in this study include the Rubisco gene rbcL and
other genes for the complete Calvin Benson Bassham pathway for carbon fixation. The
genomes also include genes for glycogen formation and degradation, which allow cells
to store carbon and energy.
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Organic carbon utilization

While Gallionellaceae isolates are not known for heterotrophy, the 9BB and 9BH
Gallionellaceae genomes contain a number of genes for organic carbon utilization,
including polysaccharide degradation, proteinases, and organic uptake. We identi-
fied carbohydrate-degrading and production genes using the DRAM software-based
classification of genes according to the Carbohydrate-Active enZYmes (CAZY) Database
[Table S4; (81)]. The four genomes contain numerous genes encoding enzymes for
degradation of polysaccharides, including carbohydrate esterases and many glycoside
hydrolases. We also noted numerous peptidases according to the MEROPS database, also
using DRAM (https://www.ebi.ac.uk/merops/). Further work will be needed to confirm
the target substrates for the genes identified above. Sideroxydans 9BH_MBO008 encodes
a dicarboxylate transporter, and all four genomes encode acetate permease. The use
of organics is unusual in Gallionellaceae, as most isolates are autotrophic, except S.
lithotrophicus CL21, an isolate from a peatland that can utilize lactate alongside Fe(ll) (82).
Altogether, these results suggest that these Gallionellaceae are able to take advantage of
active C cycling in the soil/rhizosphere and utilize plant- and microbial-derived organic
carbon, and therefore grow as mixotrophic FeOB [as in reference (82, 83)].

Nitrogen fixation and storage

All four Gallionellaceae genomes have nitrogen fixation genes, including key genes
nifHDK, as well as genes to produce the nitrogen storage compound cyanophycin and
the Rnf complex, which provides electrons to nitrogenase by reducing ferredoxin via
NADH (84, 85). These genes are not present in all Gallionellaceae genomes, likely because
nitrogen fixation is an energy-intensive process that would be difficult to support using
the limited energy available from chemolithoautotrophic iron oxidation. However, N,
fixation and storage would give FeOB a competitive advantage at the root surface,
as the cells could help supply fixed nitrogen to the plant, which is N-limited due to
increasing N demand with plant growth. Past work has shown that N fixation occurs in
flooded paddies mainly at the heading stage in rice (86, 87), which coincides with when
Gallionella/Ferrigenium OTU7 begins to increase in abundance in the plaque.

Phosphorous uptake and storage

Like all Gallionellaceae, the four 9BB and 9BH FeOB genomes have genes to take up
inorganic phosphate. They also have genes for polyphosphate formation and utilization,
allowing them to store phosphate. This storage would be useful as dissolved phosphate
levels near the root may fluctuate as phosphate is adsorbed onto iron plaque. The
four FeOB genomes also include a number of genes with annotations associated with
organic phosphorous utilization, but a full pathway was not observed. Thus, there may
be the potential for the FeOB to use organic phosphorous sources, but this is yet to be
confirmed.

What other genes suggest adaptations to rice paddy soil and the root environ-
ment?

Because plaque is formed at the root surface, any plaque-forming microbes must occupy
the rhizoplane and interact directly with plant roots. The Gallionellaceae genomes
include various genes that could be involved in colonization and attachment to roots
(Fig. 7C). The Gallionella 9BH_112 genome includes a number of adhesion genes that
could mediate direct interactions with the plant root. Gallionella 9BH_112 has genes for
the “widespread colonization island” that encodes for Tad/Flp pilin, which is responsi-
ble for tight attachment to surfaces. This includes flp-1, which encodes the structural
component of the pilin as well as genes to secrete the pilin and assemble the pilus.
These pili mediate surface adherence and biofilm formation, and have been shown to be
important for colonization (88).
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Another adhesive pilin, the mannose-sensitive hemagglutination (MSHA) pilin cluster,
is encoded by Sideroxydans 9BB_43 and 9BH_100 and Gallionella 9BH_112. MSHA is
involved in virulence in vibrio (89) and has also been shown to mediate non-virulent
attachment of Pseudoalteromonas tunicata to the green alga Ulva australis (90). The
Gallionella 9BH_112 genome also encodes a large (3,638 aa) haemagglutinin-like protein
adjacent to a gene encoding a hemolysin activation/secretion protein. The homologs in
Bordetella pertussis encode FhaC, an outer membrane transporter, which secretes FhaB, a
filamentous haemagglutinin that mediates adhesion to host tissues (91).

The various adhesion mechanisms would enable attachment to roots. After this initial
attachment, the FeOB cells would form biofilms. The genomes include a variety of genes
to help build biofilms, including polysaccharide synthesis. Notably, Gallionella 9BH_112
encodes cellulose synthase, and cellulose fibrils are known to aid in Rhizobium and
Agrobacterium cell attachment to roots (92). Gallionella 9BH_112 and two Sideroxydans
genomes 9BB_43 and 9BH_100 also encode a number of genes associated with capsular
polysaccharide synthesis.

Colonization also requires the microbes to overcome plant immunity defenses. The
Sideroxydans genomes 9BH_43 and 9BH_100 both include a gene encoding alpha 2
macroglobulin, a protease inhibitor that is a factor in virulence and colonization (93).
The alpha 2 macroglobulin gene is adjacent to a penicillin-binding protein 1c, similar to
Salmonella enterica ser. typhimurium and other bacteria. These two are thought to work
together, with alpha 2 macroglobulin inhibiting proteases when cell walls are ruptured
while the penicillin-binding protein repairs cell wall peptidoglycan (93). Plants produce
polyphenols, which are toxic to bacteria (94); all four genomes encode polyphenol
oxidases which help defend against these antimicrobial compounds.

Other genes that may be involved in interactions with plants and other rhizosphere
microbes include genes for antibiotics, and toxin/antitoxins. In all, the Gallionellaceae
FeOB appear to be well-equipped to colonize plant roots, deploy immunity or antibiotic
defenses as needed, contribute nutrients to plants, and utilize plant exudates in their
own nutrition.

Conclusions and implications

Our overall goal was to determine whether iron-oxidizing bacteria are associated with
iron plaque and gain insight into their metabolism, dynamics, and potential plant
interactions, toward understanding FeOB roles in plaque formation. In contrast to iron
reduction, microbial iron oxidation is often an invisible process in the environment
because abiotic processes can also oxidize Fe(ll) and it can be difficult to distinguish
biotic and abiotic effects. However, it is important to do so because microbial iron
oxidation also drives C, N, and P cycling and potentially plant processes. Here, we reveal
the dynamics of FeOB and FeRB in rice root plaque and rhizosphere across an entire
growing season. We show that Gallionellaceae, which are well-known chemolithotrophic
FeOB, are specifically enriched in both plaque and rhizosphere microbial communities
and have the genetic potential to aerobically oxidize Fe(ll), cycle nutrients, colonize roots,
and contribute to plant nutrition.

We detected at least two different Gallionellaceae; 16S rRNA gene analyses revealed
that Sideroxydans dominated early in the season while a Gallionella related to Ferrigenium
increased over time, as plaque increased. Genomics revealed an additional, phylogeneti-
cally distinct Sideroxydans (9BH_MBO008) that was not distinguished during 16S analyses.
Both the temporal dynamics and the coexistence of the different Gallionellaceae suggest
distinct niches. Sideroxydans are facultative iron oxidizers, shown to grow on other
substrates such as thiosulfate (71, 95) and H, (82). At the same time, there are signs that
Sideroxydans are primarily FeOB, as S. lithotrophicus ES-1 highly expresses iron oxida-
tion genes during thiosulfate oxidation (71). The Sideroxydans may use their alternate
(non-Fe) energy metabolisms to thrive and create biomass in low Fe conditions, putting
them in position to quickly colonize rice roots early in the season.
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Gallionellaceae are known as chemolithoautotrophs, but they are commonly found
in soils and sediments, and have been found to thrive in organic-rich environments
like wetlands/fens (33, 96-98). Accordingly, Gallionellaceae, including the rice paddy
genomes in this study, have genes for organic uptake and utilization, i.e., heterotrophy.
This suggests that Gallionellaceae in fact can grow mixotrophically using both Fe(ll)
and organics, taking advantage of plant exudates as a carbon source. The rice paddy
Gallionellaceae have genes that further suggest a specific niche at the root surface,
as they have genes for plant interactions, including colonization, immunity, uptake/
utilization of plant organics, and nutrient fixation. Gallionella 9BH_112 is especially
rich in these genes, which may explain why it increases in relative abundance as the
plant matures and root mass increases. Plants are more likely to tolerate root-associated
microbes that help promote plant growth, and indeed, the FeOB could provide nutrition
to the rice plants. All of the Gallionellaceae genomes encode nitrogen fixation, which
is otherwise a relatively unusual trait in the Gallionellaceae [<20% of other Gallionella-
ceae genomes (35)]. As N fixation is an energy-intensive process, this further supports
the specificity to the paddy soil environment, as Gallionellaceae have the capacity to
contribute to plant nutrition and growth. Our work shows that the rhizoplane/rhizo-
sphere hosts these microaerophilic FeOB, whose activity can produce iron oxyhydrox-
ides. The increasing relative abundance corresponds to increasing oxyhydroxides, and
thus in total, the evidence suggests these Gallionellaceae FeOB are specifically suited to
the rhizosphere/rhizoplane niche and very likely contribute to plaque formation.

Alongside the FeOB, we also find FeRB enriched in the plaque, and both FeOB and
FeRB increase in relative abundance over time. While it may be surprising that FeRB
would occupy the oxic zone and increase over time as oxygen levels increase, the
FeRB appear to be aerotolerant, and it makes sense that FeRB would increase with
increasing iron oxyhydroxide. This suggests an active iron cycle within the plaque, as
well as the rhizosphere and bulk soil, where both FeOB and FeRB are also found. This
coexistence of FeOB and FeRB has also been observed in other iron-rich rhizospheres
of other wetland plants (7, 99). The production of iron plaque is likely due to the
concerted action of both oxidizers and reducers, as follows. In the more reducing bulk
soil, iron reduction coupled to oxidation of organics fuels the formation of dissolved
Fe?*. Mass flow toward the roots pulls the Fe*" into the more oxic rhizosphere and root
surface, where FeOB catalyze Fe?* oxidation to Fe(lll) oxyhydroxides. The coexistence of
FeOB and FeRB suggests further redox cycling, and continued oxidation and reduction
that results in dynamic remodeling of rhizosphere and rhizoplane oxyhydroxides (i.e.,
plaque). Thus, the formation of plaque requires both reducing and oxidizing conditions,
and both FeOB and FeRB. This dynamic redox conceptual model has implications for
oxyhydroxide-associated elements, and therefore plant interactions with elements like
P and As. While oxyhydroxides may collect and temporarily sequester phosphate and
arsenate, iron reduction in the plaque will release these elements, with consequent
impacts on plant health and food safety. Further temporal studies will be needed to
determine if iron-cycling dynamics within rice root plaque ultimately cause greater
uptake of phosphorous and metals into plants and grain. However, this work suggests
the rapid iron redox cycling between FeOB and FeRB could contribute to the plaque
behaving as a dynamic source of nutrients and contaminants.

MATERIALS AND METHODS
Rice paddy experiment

Samples for microbial and geochemical analyses were collected in 2016, described by
references (42) and (45), and in 2017 from the University of Delaware Rice Information,
Communication, and Education (RICE) Facility. The RICE facility is an outdoor facility on
the UD Farm in Newark that consists of 30 rice paddy plots (2 x 2 m? in which each
soil-filled paddy accommodates 49 plants (7 rows of 7) and is outfitted with a bilge pump
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connected to a float switch and an irrigation line to control water level (Fig. S1). In brief,
rice (Oryza sativa L. “Jefferson”) for this experiment was grown each year in 12 of the
paddy mesocosms that contained non-amended native soil or native soil amended with
Si at identical Si loading rates of 5 Mg Si/ha with either rice husk, charred rice husk,
or calcium silicate/silicic acid as the Si source (three replicate paddy mesocosms per
treatment). Paddies were amended prior to planting in 2015 and did not receive further
Si amendments in 2016 (46) or in 2017. Treatments had less of an impact than redox
status and microhabitats on the microbial community (43, 44); therefore, the present
study focused on the diversity and abundance of microbes associated with Fe cycling
over the rice life cycle and data are averaged across all four treatments. Prior to planting
in 2016 and in 2017, only roots from the previous year were tilled into the soil and
paddies were fertilized with 112 kg N/ha as urea and 135 kg K;O/ha as KCl based on
soil testing and fertility recommendations. The silty clay loam soil contained 1.9 (+0.5)
g/kg acid ammonium oxalate extractable Fe and 12.0 (+1.8) g/kg dithionite-citrate-bicar-
bonate extractable Fe as measures of amorphous and crystalline Fe (average + standard
deviation, n = 12) (100). The soil pH was 6.1 (£0.5) and the soil organic matter was 2.4
(£0.6) % as measured by loss on ignition. During growth, paddies were kept flooded at
transplanting until grain maturity when paddies were drained before harvest. In 2016,
paddies were drained at 96 DPT and in 2017, paddies were drained at 100 DPT.

Porewater chemical analyses

Weekly porewater data for 2016 are described in detail in a separate manuscript (45).
In brief, porewater samples were collected weekly from 8 June 2016 to 6 September
2016 with Rhizon samplers (polyethersulfone, 0.15 pm pores, Soilmoisture Equipment
Corp., Goleta, CA, USA). Porewater samples were aliquoted for colorimetric measurement
of dissolved Fe(ll) by the ferrozine method (101), and separate porewater samples were
acidified with 2% HNOj3 prior to analysis for total Fe by ICP-OES (Thermo Iris Intrepid
Il XSP Duo View ICP). Because porewater sampling did not occur on the same days as
microbial sampling, porewater values used for comparison are an average of the closest
porewater values preceding (by no more than 7 days) and following (by no more than
7 days) the microbial sampling event, except in the case of the harvest time point (98
DPT) in which only the preceding porewater time point (96 DPT) was used. Porewater
and microbial sampling dates are summarized in Table S5.

Root and soil sampling

During transplanting in May 2016 and 2017, five seedlings for each paddy mesocosm
(60 plants total per year) were individually placed into 100 pm pore-size nylon mesh
bags filled with paddy soil, according to reference (102) to define the rice rhizosphere.
Different bag sizes were used to accommodate plant growth and were (diameter x
depth) 10.2 cm x 20.3 cm for samples harvested at vegetative growth (20 DPT), 12.7
cm X 20.3 cm for early reproduction (42 DPT), and 15.2 cm x 31.8 cm for heading (71
DPT), grain ripening (88 DPT), and harvest (98 DPT). The five plants in mesh bags were
randomly placed among 42 other transplanted seedlings.

To collect samples, bags were pulled from each paddy mesocosm at designated
growth stages, and bulk soil was collected from the area surrounding the bag. Samples
were immediately brought to the laboratory and separated into biospheres (plaque
and rhizosphere) on ethanol-sterilized benchtops. Using sterilized instruments, rice roots
were gently separated from the shoots. Roots were submerged in 25 mL 18 MQ-cm
sterile water (2016) or RNA later (2017) and vortexed twice to collect the rhizosphere.
Bulk soil and rhizosphere samples were frozen at —20°C until DNA extraction. Cleaned,
rhizosphere-free roots were then divided into subsets, with half frozen prior to collecting
the plaque, and half dried prior to DCB extraction of plaque Fe (described below).
To collect the plaque for DNA extraction, thawed roots were transferred into 10 mL
phosphate buffer solution and sonicated for 30 s two times [modified from reference
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(64)]. Samples were centrifuged at 670 x g for 5 min to collect plaque, supernatant was
decanted, and DNA was immediately extracted.

Plaque iron and mineralogical analysis

Fe plaque was characterized to examine changes in the quantity of plaque Fe over the
rice life cycle and Fe mineral composition at harvest according to established protocols
(9, 103). For this, roots in collected bags (described above) were subject to dithionite-cit-
rate-bicarbonate extraction (103), and total Fe was measured via ICP-OES. At harvest,
an additional subset of soil-free roots (three root masses sampled diagonally across
each paddy and pooled) were sonicated in water and filtered onto 0.2 um nitrocellulose
membranes for bulk analysis of plaque Fe mineral composition via Fe X-ray absorption
fine structure (EXAFS) spectroscopy according to (9). Samples were analyzed at the
Stanford Synchrotron Radiation Lightsource (SSRL) on beamline 11-2. There, incident
energy was calibrated by assigning the first Fe inflection point from a standard Fe foil of
7,112 eV, and two Fe K-edge EXAFS spectra were recorded for each sample in fluores-
cence with a Lytle detector. Spectra were averaged, normalized, background subtracted
and fit by linear combination in Athena using reference spectra of known minerals found
in Fe plaque including ferrihydrite, goethite, lepidocrocite, and siderite. Further details
regarding geochemical analysis are available in reference (45).

DNA extraction

For all bulk, rhizosphere, and plaque samples, DNA was extracted with the follow-
ing modifications to the manufacturer’s instructions for the DNeasy PowerSoil DNA
extraction kit (Qiagen). Powerbead solution (200 pL) was removed from bead-beating
tubes and replaced with 200 pL phenol:chloroform:isoamyl alcohol 25:24:1 (vol/vol/vol).
The protocol was followed to the manufacturer’s specifications for the PowerSoil kit
until conditions were adjusted for column binding. At this step, equal parts lysate,
solution C4, and 100% ethanol were homogenized and loaded onto the DNA binding
column. After DNA binding, the column was washed with 650 puL 100% ethanol, followed
by 500 pL solution C5. The column was centrifuged and dried, and DNA was eluted
with molecular biology grade water (protocol based on personal communication with a
Qiagen representative).

16S rRNA gene sequencing and analysis

Samples were submitted to the Joint Genome Institute (JGI) for paired-end (2 x 300)
lllumina MiSeq iTag sequencing of the 16S rRNA gene V4-V5 region, using primers
515F-Y and 926R (104). Raw sequences were de-multiplexed, quality filtered, and
clustered to 97% similarity with usearch, checking for chimeras, as part of the JGI
pipeline. Feature tables and sequences were imported into QIIME 2 (105), and addition-
ally filtered to exclude any features with a frequency of less than 10 sequences observed
in the data set that did not appear in at least two samples. Taxonomy was assigned to
features using the giime2 sklearn naive bayes feature classifier, originally trained with
SILVA database version 132 (https://www.arb-silva.de/documentation/release-132/). An
initial report of the 16S rRNA data were given in reference (44). Data were imported into
R [v3.6.2 (106)] and prepared for analysis using phyloseq [v1.28.0 (107)] with giime2R
[v9.99.13 (108)]. Differential abundance analysis was assessed between plaque and bulk
samples at individual time points using DESeq?2 (109). Figures were built using phyloseq,
the phyloseq wrapper for vegan [v2.5-6 (110)] and ggplot2 [v3.3.2 (111)].

Metagenome sample selection, sequencing, and analysis

For metagenome sequencing, we selected samples that had sufficient DNA and good
representation of major iron cycling OTUs. The majority of the data presented here
are from a paired rhizosphere and bulk soil sample set from 2016, 9BH and 9BB,
sampled at 42 DPT from Paddy 9, a “control” paddy that received no silica amendments.
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Metagenome sequencing was also performed on two rhizosphere samples from 2017,
9GH and 9IH, from Paddy 9 at 45 and 79 DPT. Here, the two 2017 samples are only used
for linking 16S rRNA gene to the Sideroxydans genomes, but are available for further
analyses on IMG. For the 2017 samples, all field and DNA extraction methods were as
above, except that the rhizosphere sample was collected by vortexing roots in 25 mL of
RNA later.

Metagenome sequencing was performed at the JGI using an Illumina NovaSeq
S4 (270 bp fragment, paired-end 2 x 151). Initial data processing was done by JGI,
including read correction by bbcms v38.86 (112), assembly by metaSPAdes v.3.14.1 (113),
and annotation by IMG Annotation Pipeline v.5.0.20. Initial binning was performed by
MetaBAT v2.15, evaluated using CheckM v1.1.3 (114). Medium and high-quality genomes
[>50/90% completeness, <10/5% contamination; defined by the Genome Standards
Consortium (115)] were uploaded to IMG.

We performed additional binning on the KBase platform using MaxBin v2.2.4
(kb_maxbin v1.1.1) (116), CONCOCT v.1.1 (kb_concoct v1.3.4) (117), MetaBAT2 v1.7 (kb
metabat v2.3.0) (118, 119), and then compared and optimized these bins using DASTool
v1.1.2 (kb_das_tool v1.0.7) (120). Resulting genome bins were evaluated using CheckM
v.1.0.18 (kb_Msuite v1.4.0) (114) and classified by GTDBtk v.1.6.0 release 202 (kb_gtdbtk
v1.0.0) (121, 122). We selected the highest quality genome of each known FeOB and
FeRB taxa (>90% completeness, <5% contamination) from each sample (9BB and 9BH)
for further analysis (Table 1). Genome similarity was analyzed by computing ANI by
FastANI (123) in Kbase and AAIl by CompareM (124). We also assessed the phylogeny of
Gallionellaceae FeOB by creating a concatenated gene tree. Thirteen ribosomal proteins
(L19, L20, L28, L17, L9_C, S16, L21p, L27, L35p, S11, S20p, S6, and S9) were aligned,
trimmed, masked to remove regions with >70% gaps, and concatenated in Geneious
v.10.2.6 (125). A maximum likelihood tree was constructed in RAXML-NG v1.0.3 (126) with
the LG + G model and 500 bootstraps. Visualization and annotation of the final tree
were done in iTOL (127). Final Gallionellaceae classifications, as described above, used
the concatenated gene tree-based phylogeny and the scheme determined by Hoover et
al (35).

FeOB and FeRB bins selected for further analysis were annotated by RAST, DRAM
(kb_DRAM v.0.1.2) (128), and FeGenie (129). For certain genes of interest, we fur-
ther investigated close homologs by BLAST (130) against Uniprot database (131), by
Blastp against functionally characterized sequences, and by evaluation of alignments
for conserved functional residues. The FeOB Cyc2, MtoA, and MtoB sequences were
compared against Sideroxydans lithotrophicus ES-1 sequences Slit_0263, Slit_2497, and
Slit_2496. For improved confidence in functional assignments, genomic context and
synteny were evaluated in annotations, e.g., in RAST output.

To evaluate the potential function of the Rhodoferax Mto/Mtr homolog, we added the
sequence to a tree of Mto and Mtr sequences from Hoover et al. (35). The tree includes
reference sequences of functionally verified MtoA, MtrA, and PioA along with additional
Mto/Mtr sequences outlined by Hoover et al. and Baker et al. (35, 132). Sequences
were aligned, trimmed, and masked to remove gaps >70% in Geneious v.10.2.6 (125).
A maximum likelihood tree was constructed using RAXML-NG v1.0.3 (126) with 500
bootstraps. The final tree was visualized and annotated using Iroki (133).
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