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Gallionellaceae pangenomic analysis reveals insight into
phylogeny, metabolic flexibility, and iron oxidation mechanisms
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ABSTRACT The iron-oxidizing Gallionellaceae drive a wide variety of biogeochemical
cycles through their metabolisms and biominerals. To better understand the envi-
ronmental impacts of Gallionellaceae, we need to improve our knowledge of their
diversity and metabolisms, especially any novel iron oxidation mechanisms. Here, we
used a pangenomic analysis of 103 genomes to resolve Gallionellaceae phylogeny
and explore their genomic potential. Using a concatenated ribosomal protein tree
and key gene patterns, we determined Gallionellaceae has four genera, divided into
two groups: iron-oxidizing bacteria (FeOB) Gallionella, Sideroxydans, and Ferriphaselus
with iron oxidation genes (cyc2, mtoA) and nitrite-oxidizing bacteria (NOB) Candidatus
Nitrotoga with the nitrite oxidase gene nxr. The FeOB and NOB have similar electron
transport chains, including genes for reverse electron transport and carbon fixation.
Auxiliary energy metabolisms, including S oxidation, denitrification, and organotrophy,
were scattered throughout the FeOB. Within FeOB, we found genes that may repre-
sent adaptations for iron oxidation, including a variety of extracellular electron uptake
mechanisms. FeOB genomes encoded more predicted c-type cytochromes than NOB
genomes, notably more multiheme c-type cytochromes (MHCs) with >10 CXXCH motifs.
These include homologs of several predicted outer membrane porin-MHC complexes,
including MtoAB and Uet. MHCs efficiently conduct electrons across longer distances
and function across a wide range of redox potentials that overlap with mineral redox
potentials, which can expand the range of usable iron substrates. Overall, the results of
pangenome analyses suggest that the Gallionellaceae genera Gallionella, Sideroxydans,
and Ferriphaselus have acquired a range of adaptations to succeed in various environ-
ments but are primarily iron oxidizers.

IMPORTANCE Neutrophilic iron-oxidizing bacteria (FeOB) produce copious iron
(oxyhydr)oxides that can profoundly influence biogeochemical cycles, notably the fate
of carbon and many metals. To fully understand environmental microbial iron oxidation,
we need a thorough accounting of iron oxidation mechanisms. In this study, we show
the Gallionellaceae FeOB genomes encode both characterized iron oxidases as well
as uncharacterized multiheme cytochromes (MHCs). MHCs are predicted to transfer
electrons from extracellular substrates and likely confer metabolic capabilities that help
Gallionellaceae occupy a range of different iron- and mineral-rich niches. Gallionellaceae
appear to specialize in iron oxidation, so it would be advantageous for them to have
multiple mechanisms to oxidize various forms of iron, given the many iron minerals on
Earth, as well as the physiological and kinetic challenges faced by FeOB. The multiple
iron/mineral oxidation mechanisms may help drive the widespread ecological success of
Gallionellaceae.

KEYWORDS iron oxidation, iron-oxidizing bacteria, pangenome, extracellular electron
transfer, multiheme cytochrome
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allionella are one of the oldest known and most well-studied iron-oxidizing bacteria
G(FeOB), yet we are still learning how they oxidize iron and adapt to iron-rich
niches. Gallionella is the type genus of the family Gallionellaceae, which also includes
Sideroxydans, Ferriphaselus, and Ferrigenium. These Gallionellaceae FeOB are found in a
wide range of environments, including freshwater creeks, sediment, root rhizospheres,
peat, permafrost, deep subsurface aquifers, and municipal waterworks (1-18). FeOB
potentially drive the fate of many metals and nutrients via both metabolic reactions
and forming iron oxyhydroxides that adsorb and react with many solutes (19). To better
understand the biogeochemical effects of Gallionellaceae, we need to improve our
knowledge of their phylogeny and metabolic mechanisms, especially for iron oxida-
tion. Recently, the rapid increase in metagenomes from iron-rich environments has
significantly expanded the number of available Gallionellaceae genomes, which makes
it possible to investigate diversity and mechanisms using genomic analyses of both
cultured and uncultured Gallionellaceae.

The Gallionellaceae are named after Gallionella ferruginea, first described by
Ehrenberg in 1838 (20), and recognizable by its distinctive, twisted iron oxyhydroxide
stalk (21). While the type strain, G. ferruginea Johan (22), no longer exists, there are seven
iron-oxidizing Gallionellaceae isolates and several stable enrichment cultures (7, 11, 23—
26). Some isolates, such as Ferriphaselus spp., appear to be obligate iron oxidizers, while
others also grow on non-iron substrates. In addition to iron, Sideroxydans lithotrophi-
cus ES-1 grows by thiosulfate oxidation (24, 27), while Sideroxydans sp. CL21 shows
mixotrophic growth with either lactate or hydrogen (28). Some Ferrigenium are members
of the stable autotrophic, nitrate-reducing, iron-oxidizing enrichment cultures Straub,
Bremen Pond, and Altingen (29-32). It is unknown how common it is for Gallionellaceae
to use electron donors/acceptors besides Fe(ll)/O,, though these alternate metabolisms
may help their success across different environments and fluctuating conditions typical
of many oxic-anoxic interfaces. Even so, since these seven Gallionellaceae isolates are all
neutrophilic aerobic chemolithoautotrophic iron oxidizers, this could be the dominant
metabolic niche of Gallionellaceae.

In Gallionellaceae and other neutrophilic chemolithotrophic FeOB, there are two
potential iron oxidases: Cyc2, a fused monoheme cytochrome-porin and MtoAB, a
porin-decaheme cytochrome complex (33-35). Porin-cytochrome complexes conduct
electrons across the outer membrane, allowing cells to oxidize Fe(ll) outside the cell
to avoid internal Fe(lll) mineralization (36, 37). The mtoA (metal oxidation) gene was
first identified and characterized in FeOB S. lithotrophicus ES-1 (33). It is a homolog of
the well-studied pioA (phototrophic iron oxidation) iron oxidase gene for which the
function was verified through genetic knockout in the photoferrotroph Rhodopseudomo-
nas palustris TIE-1 (38). The mtoA gene is also a homolog of mtrA (metal reduction),
which encodes the MtrA iron reductase in iron-reducing bacteria (FeRB) Shewanella (39).
Though known for electron export, MtrA can also conduct electrons into the cell (40).
The cyc2 gene is more common than mtoAB and is found in nearly all well-characterized
neutrophilic FeOB like the Gallionellaceae (41-43) and Zetaproteobacteria (43), making
it a suitable genetic marker for many FeOB. Cyc2 has been demonstrated to oxidize
aqueous Fe** (34). In S. lithotrophicus ES-1 cultures grown on aqueous Fe*', cyc2/Cyc2
is highly expressed, whereas mtoA expression is low, and the Mto proteins are not
detected, suggesting Cyc2 plays a larger role in aqueous iron oxidation compared to
MtoA (27, 44). In contrast, Mto gene/protein expression is upregulated in ES-1 cultures
grown on Fe(ll) smectite clay, suggesting MtoAB plays a role in the oxidation of solid iron
minerals (44). However, Cyc2 and MtoA may not be the only mechanisms for neutro-
philic iron oxidation. There are a number of additional uncharacterized cytochromes
and electron transport genes (27, 42) within Gallionellaceae genomes such as isolate S.
lithotrophicus ES-1 (27, 42), suggesting the existence of novel iron oxidation genes and
mechanisms within the family.

The Gallionellaceae also includes a recently identified genus, Candidatus Nitrotoga,
which are chemolithotrophic nitrite-oxidizing bacteria (NOB). Like the iron-oxidizing
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Gallionellaceae, they are widespread in freshwater and engineered environments,
including permafrost (45), coastal sediments (46), freshwater (47), freshwater sediments
(48), and the activated sludge of wastewater treatment facilities (49, 50). There are only
two isolates, Ca. Nitrotoga fabula (49) and Ca. Nitrotoga sp. AM1P (51), along with four
genomes from enrichment cultures (48). Ca. Nitrotoga are adapted to niches with low
nitrite and oxidize it using a distinct high-affinity Nxr nitrite oxidoreductase (45, 48,
52). Extensive iron uptake mechanisms have been detected in Ca. Nitrotoga genomes,
indicating the importance of iron for growth, likely due to the FeS cluster of Nxr (48).
However, neither the isolates nor enrichments are known to oxidize Fe(ll). If Ca. Nitrotoga
lack the capacity to oxidize iron, then we can investigate the iron-oxidizing mechanisms
and adaptations of Gallionellaceae through a comparative genomic analysis of iron- vs
nitrite-oxidizing members.

Toward this goal, we took advantage of the growing number of environmental
metagenomes and collected 103 Gallionellaceae genomes and metagenome assembled
genomes (MAGs) with >80% completeness and <7% contamination. We used those
sequences to resolve the Gallionellaceae phylogeny and delineate groups of iron and
nitrite oxidizers. We searched for known and novel iron oxidation genes, other energy
and nutrient metabolisms, and genes found exclusively in FeOB that may represent
adaptations for an iron-oxidizing lifestyle. This work increases our understanding of
Gallionellaceae family phylogeny and the metabolic traits of its genera. It also highlights
some of the key multiheme cytochromes (MHCs) in Gallionellaceae FeOB, which may
facilitate extracellular electron uptake and the oxidation of different iron substrates.

RESULTS
Phylogeny

We collected 103 Gallionellaceae isolate genomes and MAGs with >80% completeness
and <7% contamination from various databases and collections (Table S1). Many of these
MAGs were only classified at the family level, so genus-level designations were initially
unclear. To resolve the phylogeny, verify existing classifications, and classify the unknown
Gallionellaceae, we examined 16S rRNA gene identity and constructed a concatenated
protein tree (Fig. 1) from 13 ribosomal protein sequences. We also present genome
average nucleotide identity (ANI) and amino acid identity (AAl) to further evaluate
relatedness.

For genomes that have 16S rRNA sequences, we found the 16S percent identity
between organisms ranges from 91.5% to 99.9% (Table S2a). Comparing the 16S percent
identities of Gallionellaceae isolates (in bold in Table S2a) at a 94.5% or 95% identity
threshold (53, 54), this suggests the existence of three genera (Ferriphaselus, Gallionella-
Ferrigenium, and Ca. Nitrotoga-Sideroxydans). For whole genome comparisons, ANI and
AAl range from 69.4% to 100% and 65.8% to 99.9%, respectively (Tables S2b and S2¢),
suggesting the whole family is closely related. These ANI and AAl values do not neatly
cluster the genomes into distinct groups, though the values more clearly separate Ca.
Nitrotoga and Sideroxydans than 16S (Table S2). However, there are no well-supported
ANI or AAl thresholds or discontinuities that can delineate genera (55, 56).

In contrast, a concatenated protein tree (Fig. 1) using 13 ribosomal protein sequences
shows distinct, well-supported clades that correspond to the four genera Gallionella,
Sideroxydans, Ferriphaselus, and Ca. Nitrotoga (Fig. 1). Most of the MAGs previously
classified as Gallionellaceae and Gallionellales were found to be either Gallionella or
Sideroxydans, with the exception of one that clustered with the Ca. Nitrotoga (Ca.
Nitrotoga SL_21). Although some genomes formed subclades, many were organized
along a continuum. Near the base of the Gallionella are Ferrigenium kumadai An22 (25)
and the nitrate-reducing FeOB (NRFeOB) of the Straub (KS) (30, 57) and Bremen Pond (BP)
(32) enrichments (Fig. 1). There is not a clear boundary between the Gallionella and the
relatively new Ferrigenium genus. In addition, the 16S percent identity between F.
kumadai An22 and Gallionella species ranges from 94.7% to 95.5%, and the ANI and AAI
values also indicate close relationships (Table S2). Therefore, we included the Ferrigenium
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FIG 1 Concatenated ribosomal protein maximum likelihood tree of the Gallionellaceae family showing
the four distinct genera: Gallionella, Sideroxydans, Ferriphaselus, and Ca. Nitrotoga. Isolates are labeled
and annotated with stars. Numbers in parentheses indicate the number of genomes in each genus or
group. Support values from 1,000 bootstraps are shown for major branching nodes (black dots). Detailed
tree is shown in Fig. 2.

and NRFeOB with the Gallionella grouping for our analyses. We also constructed a 16S
rRNA gene tree containing 22 sequences in our data set along with 941 high-quality, full-
length Gallionellaceae sequences from the SILVA database (Fig. S1), but bootstrap
support was weaker, and clades were less clearly resolved. Therefore, concatenated
ribosomal proteins are a more reliable determinant of Gallionellaceae phylogeny than
16S rRNA genes.

We assessed whether there was a relationship between phylogeny and environment.
Each genome and MAG was classified with the Genomes OnLine Database (GOLD)
classification schema (58) based on pre-existing GOLD classifications, available metadata,
and publications (Fig. 2; Table S3). The majority of aquatic genomes were from freshwa-
ter and groundwater environments, while terrestrial genomes were mostly found in
soil, peat, and rhizosphere environments. However, some genomes were sequenced
from more extreme environments such as thermal hot springs (ENV0O:00002181) and
acid mine drainage (ENVO:00001997; Table S3). Gallionellaceae are widespread and
can inhabit many different environments, but there was no clear pattern between
GOLD Ecosystem Type and broad phylogenetic groupings (Fig. 2). Different Gallionel-
laceae appear to co-exist in some environments, suggesting niches not captured in
the ecosystem classification are controlling Gallionellaceae diversity and environmental
distribution.

Metabolic potential and diversity

The Gallionellaceae family has few isolates, so to uncover the shared metabolic traits of
its FEOB members, we compared and contrasted Gallionella, Sideroxydans, and Ferripha-
selus genomes to those of the nitrite-oxidizing Ca. Nitrotoga. We identified key genes
within the pangenome for iron oxidation (including predicted c-type cytochromes),
carbon fixation, and respiration using a combination of Distilled and Refined Annotation
of Metabolism (DRAM) (59), FeGenie (60), MagicLamp (61), a heme motif counter script
(62), and BLAST (63, 64). To further uncover genes and pathways specifically enriched in
the iron oxidizers, we used Anvi'o (65-67) to analyze a filtered data set of only Gallionella,
Sideroxydans, and Ca. Nitrotoga genomes that were >97% complete. This approach
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FIG 2 (Continued)

The bar graph to the right shows the number of genes encoding multiheme cytochromes, categorized by number of CXXCH, CX3CH, and CX4CH heme-binding
motifs. Phylogeny does not correlate to environments, and key genes, including those for multiheme cytochromes, show distinct distributions between iron and
nitrite oxidizer clades. Isolates are shown in bold. % completeness = genome completeness calculated with CheckM. Outgroup omitted for space.

enabled us to create a comprehensive picture of Gallionellaceae metabolic diversity and
pinpoint promising gene clusters that may be adaptations for an iron-oxidizing lifestyle.

Primary energy metabolisms—iron and nitrite oxidation

Known metabolisms for the few Gallionellaceae isolates suggest Ca. Nitrotoga are
nitrite oxidizers, while Sideroxydans, Ferriphaselus, and Gallionella are iron oxidizers. We
examined the pangenome for the presence of cyc2 and mtoA iron oxidation genes
and nxrAB nitrite oxidase genes to determine if that pattern also holds throughout the
uncultured Gallionellaceae. As with the isolates, there is a clear delineation between
organisms with marker genes for iron vs nitrite oxidation, which corresponds to the
phylogenetic groups (Fig. 2 and 3).

The cyc2 gene is widespread among clades of iron oxidizers, with at least one copy
detected in 83% of the FeOB genomes (Fig. 3; Table S4). The mtoA gene is found in 41%
of the FeOB genomes, and 37% of genomes have both mtoA and cyc2. In total, 89%
have at least one iron oxidation gene, either cyc2 or mtoA (Table S4). Since the data
set includes multiple MAGs with a mean completeness score of 95%, it appears that
almost all Gallionellaceae FeOB contain one of these two mechanisms for iron oxidation.
Overall, cyc2 homologs are more common than mtoA (Fig. 2 and 3), and some genomes
encode multiple copies of cyc2 (Table S4). All of the FeOB Gallionellaceae with cyc2
encode at least one copy of a Cluster 1 Cyc2 [classified as in reference (35)]. Cluster 1 Cyc2
function has been verified through multiple lines of evidence [e.g., biochemistry (34),
transcriptomics (27, 35), and proteomics (44)]. The Cyc2 sequences of the Gallionellaceae
FeOB are closely related to each other and to a biochemically verified Cluster 1 Cyc2
iron oxidase (34). Therefore, we are confident in inferring that the Cluster 1 Cyc2 of
Gallionellaceae is an iron oxidase.

The Ca. Nitrotoga SL_21 MAG contains only a predicted Cluster 2 Cyc2 homolog.
Confidently assigning iron oxidation function to Cluster 2 Cyc2s depends on supporting
context, which is lacking in this case. Ca. Nitrotoga SL_21 is not from a typical iron-oxi-
dizing environment (permanently stratified, non-marine, saline lake), and although it
is within Cluster 2, it is distant from the functionally verified Cyc2 representative from
Acidithiobacillus. Currently, there is no clear evidence that this sole Ca. Nitrotoga Cyc2 is
an iron oxidase.

In contrast, nxrAB genes are exclusive to the Ca. Nitrotoga. Copies of nxrAB are the
most common genes for energy conservation among the Ca. Nitrotoga, present in 85%
of the genomes (Fig. 2 and 3). Given that many of the genomes are MAGs with a
mean completeness of 94%, the distribution of nxrAB appears to indicate that nitrite
oxidation is the main energy metabolism of Ca. Nitrotoga. Thus, our pangenome analysis
confirms Gallionellaceae can be divided into two main groups based on primary energy
metabolism—FeOB and NOB.

c-type cytochromes

Both Cyc2 and MtoA are c-type cytochromes that transport electrons across the outer
membrane. FeOB uses additional c-type cytochromes to transport electrons through
the periplasm to the rest of the electron transport chain. We reasoned that novel
iron oxidation mechanisms may also utilize c-type cytochromes, so we searched
the Gallionellaceae genomes for proteins containing the CXXCH, CX3CH, and CX4CH
heme-binding motifs (abbreviated hereafter as CXXCH). There is a stark difference
between FeOB and NOB in the distribution of predicted c-type cytochromes. FeOB
genomes have an average of 1.5x more CXXCH-containing proteins than NOB, and
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FIG 3 Plot showing the percent of genomes in each genus/group with genes for key metabolic
pathways. The plot indicates the Gallionellaceae are aerobic lithoautotrophs with two main energy
metabolisms, iron or nitrite oxidation. Some members also have metabolic potential for S oxidation
and/or denitrification. Numbers in parentheses indicate the total number of genomes in each group.
Color is used to distinguish groups, while dot size and opacity indicate % presence in the genome groups.

Ox. = oxidation, red. = reduction, fix. = fixation, and resp. = respiration.

only the FeOB genomes encode proteins with 10 or more CXXCH motifs (Fig. 2). The
abundance of genes for potential c-type cytochromes, in particular MHCs, suggests the
presence of additional iron oxidation mechanisms in the Gallionellaceae FeOB.

To find c-type cytochromes of interest, all CXXCH-containing proteins were clustered
using MMSeqs2 with bidirectional coverage and an 80% alignment cutoff. Clusters of
sequences were then classified with representative sequences from isolates using BLAST
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to query the Uniprot database. If the cluster did not contain a sequence from an isolate,
a consensus classification was used. A cluster of monoheme proteins (Cluster 313) was
classified as Cyc2, and three clusters of decaheme proteins were classified as MtoA
(Clusters 335 and 451) and MtrC (Cluster 50; Fig. 2 and 4; Table 1). These Cyc2, MtoA,
and MtrC clusters largely agree with FeGenie’s HMM-based predicted distributions. Since
MMSeqs2 generated two clusters of MtoA sequences, we sought to further verify the
classifications. We constructed a tree of all Gallionellaceae MtoA sequences along with
reference sequences of MtrA from FeRB (Fig. 5) (68). Although there is some separation
of Cluster 335 and Cluster 451 MtoA sequences, many clades are not well defined or
supported. In fact, backbone support throughout the tree is poor, and the tree does
not indicate a clear separation of the MtoA and MtrA sequences (Fig. 5). There is some
evidence that the direction of electron flow through Mto/Mtr can be reversible (33, 69,
70). So, it may be that the functions of MtoA and MtrA are interchangeable, and in
fact, they may be indistinguishable proteins that can conduct electrons across the outer
membrane in either direction.
The decaheme cytochrome MtrC is the extracellular partner of the iron-reducing
MtrAB complex of Shewanella (71). The MtrAB complex is a homolog of the MtoAB
complex of FeOB and can function in reverse to take up electrons (40). MtrC was thought
to be exclusive to the Mtr complex of iron-reducers since MtrC homologs were not
detected in FeOB isolates with MtoAB. However, we found seven MAGs within both
Gallionella and Sideroxydans that encode MtrC (Table S4), leading us to question whether
TABLE 1 Clusters of predicted c-type cytochromes and other heme-containing proteins of interest from MMSeqs2°
Cluster  Functional prediction # CXXCH, CX3CH, or CX4CH motifs per protein  # FeOB (of 87)
Iron oxidation/reduction proteins
313 Iron oxidase Cyc2* 1 70
451 Decaheme c-type cytochrome, DmsE family, MtoA* 10 19
335 Decaheme c-type cytochrome, DmsE family, MtoA* 10 17
50 Decaheme c-type cytochrome, OmcA/MtrC family" 10 7
Potential extracellular electron transport pathway proteins
20 Cytochrome C family protein; potential periplasmic PCC3 subunit* 21,24,and 27 42
241 Cytochrome C family protein; potential extracellular PCC3 subunit 10,11,12,13,14,15,16,and 18 34
242 Cytochrome C family protein; potential extracellular PCC3 subunit 26, 28,29, 33,and 35 7
331 Cytochrome C family protein; potential extracellular PCC3 subunit® 15and 17 5
65 Doubled CXXCH motif-containing protein; Cytochrome c3 family 11and 12 6
protein’, potential UetJ subunit
479 Tetraheme cytochrome—potential UetA subunit 6
330 Cytochrome C7 domain-containing protein; Triheme cytochrome— 3 5
potential UetDEG subunit
94 Cytochrome C7 domain-containing protein; Triheme cytochrome— 3 5
potential UetDEG subunit
446 Diheme cytochrome c*—potential Slit_1324 2 51
Sensory proteins
152 Methyl-accepting chemotaxis sensory transducer; YoaH * 1 54
40 Methyl-accepting chemotaxis sensory transducer with Pas/Pac sensor; 1 43
Aerotaxis receptor *
400 Diguanylate cyclase with PAS/PAC sensor; Cyclic di-GMP phosphodiester- 1 36
ase Gmr*
Other
433 2Fe-2S ferredoxin® 1and 2 72
360 4Fe-4S ferredoxin iron-sulfur binding domain protein 1 41
403 Forkhead-associated protein* 10 27
146 Cytochrome ¢; Octaheme tetrathionate reductase’ 8 25
253 Sulfite reductase, dissimilatory-type, subunit DsrJt 3 17

9Functional predictions are based on % isolate annotations and NCBI BLAST or t BLAST of sequences from metagenomes in Uniprot.

November/December 2023 Volume 8 Issue 6

10.1128/msystems.00038-23 8

Downloaded from https://journals.asm.org/journal/msystems on 01 January 2024 by 68.82.193.254.


https://doi.org/10.1128/msystems.00038-23

Research Article

GOLD Ecosystem Type
[l Deep subsurface

M Marine

[ Non-marine Saline
and Alkaline

[ Freshwater
[] Wastewater
[] Hydrocarbon

[ Geologic
(oil contaminated)

M soil
M Roots (rhizosphere)
B Thermal springs

to outgroup <=

Bootstrap support
O 50-74%
® 75-100%

PCC3 distribution:
M 1 protein in cluster
M 2 proteins in cluster

Tree scale: 0.1 +——

November/December 2023 Volume 8

Issue 6

Gallionella_RIF_18
Gallionella_RIF_142
Gallionella_9BH_112
Ferrigenium kumadai An22
Ferrigenium_BP06 (NRFeOB)
Ferrigenium_KS_2 (NRFeOB)
Ferrigenium_KS_1 (NRFeOB)
Gallionella_DP16D
Gallionella_RIF_110
Gallionella_RIF_22
Gallionella_KV_32
Gallionella_RIF_47
Gallionella_AHS_6045
Gallionella_AHS_4737
Gallionella_ShG14_8
Gallionella_AK_9
Gallionella_palsa_1007
Gallionella_palsa_995
Gallionella_BEO_14
Gallionella_BEO_15
Gallionella_CF_36
Gallionella_IN19
Gallionella_DWTP_16
Gallionella_IN14
Gallionella_KB_78
Gallionella_KB_74
Gallionella_DBNF_26
Gallionella_DBNF_25
Gallionella_CG_997
Gallionella_CG_61
Gallionella_CG_15
Gallionella_CG_18
Gallionella_AHS_4121
Gallionella_AHP_13
Gallionella_AHP_15
Gallionella_RIF_124
Gallionella capsiferriformans ES2
Gallionella_MDM_17
Gallionella_IN5
Gallionella_MDM_16
Gallionella_TB_8-2
Gallionella_TB_7
Gallionella_TB_8
Gallionella_CB_6b
Gallionella_CB_2
Gallionella_CB_4b
Gallionella_CB_6
Gallionella_CB_9
Ferriphaselus sp. R1
Ferriphaselus amnicola OYT1
Ferriphaselus_CF_38
Ukn_Gallionellaceae_RINZ (RI-121)
Ukn_Gallionellaceae_X1_29
Ca_Houarnoksidobacter_IN7
Nitrotoga fabula KNB
Nitrotoga sp. AM1P
Nitrotoga_SPKER
Nitrotoga_CP45
Nitrotoga_LAW
Nitrotoga_MKT
Nitrotoga_SL_21
Nitrotoga_GL_H1
Nitrotoga_GL_O1
Nitrotoga_GL_M1
Nitrotoga_UBA7399
Nitrotoga_GL_E1
Nitrotoga_GL_H2
Sideroxydans_GW715
Sideroxydans_IN3
Sideroxydans_9BH_189
Sideroxydans_X3_21
Sideroxydans_1006 (PALSA-1006)
Sideroxydans_KW_5
Sideroxydans_KW_1
Sideroxydans_KW_2
Sideroxydans_KW_3
Sideroxydans_KW_4
Sideroxydans_LS_28
Sideroxydans_9IH_78
Sideroxydans_CF_37
Sideroxydans lithotrophicus ES1
Sideroxydans_MJ
Sideroxydans sp. CL21
Sideroxydans_CC_14
Sideroxydans_RIF_24
Sideroxydans_9BB_43
Sideroxydans_9GH_6
Sideroxydans_9BH_100
Sideroxydans_9IH_207
Sideroxydans_DWTP_18
Sideroxydans_DWTP_08
Sideroxydans_SO_47
Sideroxydans_CDW
Sideroxydans_CG_210
Sideroxydans_MH_6222
Sideroxydans_BSS_16
Sideroxydans_WG
Sideroxydans_Ol_5222
Sideroxydans_CP_19

[a]
L
5]

35

o
I
(@)
@,
W

o
o
o

>

o
&
[a)
W
£

Sideroxydans_CP_30
Sideroxydans_CP_18

82 % completeness

(N T O T T 7T T T T TR T T T T T TR T T T R T TTTT T Ecosystem type

M

9
100

N
H

E
:

T T

]

T

u

T

T

T

T

EEEEEEEEEEEEEEEEE

|

[EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE  EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEE EEE EE BN EEEEEE NG —0@0

]‘qu

N

|llllllllllIIIIIIIIIIIIIIIIIII-IIIII_]_]EIHMG—S/,}

Gallionella

©
(=]
()
-
o
S
5=
=
S
()

Sideroxydans

FIG 4 Maximum likelihood tree of concatenated ribosomal proteins from the Gallionellaceae that shows the distribution
of MMSeqs2 clusters that represent predicted cytochromes Cyc2, MtoA, MtoC, PCC3, Uet, and Slit_1324. Asterisk (*) for
(Continued on next page)

mSystems

10.1128/msystems.00038-23 9

Downloaded from https://journals.asm.org/journal/msystems on 01 January 2024 by 68.82.193.254.


https://doi.org/10.1128/msystems.00038-23

Research Article mSystems

FIG 4 (Continued)

Gallionella_BEO_15 indicates a partial MtoA sequence was detected using HMMs and verified with BLAST but was too short
to bin into the MMseqs2 MtoA clusters. Isolates are shown in bold. % completeness = genome completeness calculated with
CheckM. Outgroup omitted for space.

its function is restricted to iron reduction. Another possibility is that MtrC can also work
in reverse and be part of an iron oxidation pathway. Differentiating these possibilities
would require physiological testing of an FeOB isolate with MtrC, which does not
currently exist.

The Gallionellaceae FeOB have other porin-MHC complexes that could potentially
catalyze iron oxidation, such as the PCC3 complex, identified through bioinformatic
analyses of genomes of several FeOB including S. lithotrophicus ES-1. This predicted
complex includes a periplasmic MHC, an extracellular MHC, an outer membrane porin,
and a conserved inner membrane protein (72). We identified 26 Gallionellaceae FeOB
genomes with a complete predicted PCC3 complex, an additional 11 genomes with a
partial complex, and four instances where the PCC3 complex encodes two predicted
periplasmic cytochromes instead of one (Fig. 4; Table S4). The predicted periplasmic
MHCs grouped in MMSeqgs2 Cluster 20, while predicted extracellular MHCs grouped in
Clusters 241, 242, and 331. The extracellular MHCs exhibited variability in the number
of CXXCH heme motifs (10-35; Table 1), which suggests a range of functions for the
extracellular PCC3 MHCs. Based on in silico protein structure models, PCC3 MHCs appear
long and mostly linear (Fig. 6; Fig. S2), suggesting an extended conduction range both
intra- and extracellularly.

Another recently described porin-MHC complex is the undecaheme electron transfer
(Uet) complex, found in the cathode-oxidizing Tenderiales (73) (Fig. 6). We used a
combination of MMSeqs2 and BLAST to identify Uet genes in the Gallionellaceae. While
PCC3 is more common to Sideroxydans (59%) than Gallionella (12%), the Uet pathway
appears exclusive to Gallionella and two unclassified outliers (Fig. 4). Six Gallionella have
predicted undecaheme cytochrome (UetJ), extracellular tetraheme cytochrome (UetA),
three predicted periplasmic triheme cytochromes (UetDEG), peptidylprolyl isomerase
(UetB), and NHL repeat units (UetHI; Fig. 4; Table S4). We checked for genes encoding the
B-barrel porin UetC and found BLAST hits in four of the six genomes (Table S4).

S. lithotrophicus ES-1 has a set of periplasmic cytochrome genes without a pre-
dicted porin that was highly upregulated during growth on iron and, therefore,
thought to be involved in iron oxidation (27). The genes encode a cytochrome b
(Slit_1321), a hypothetical extracellular protein (Slit_1322), a monoheme cytochrome
class | (Slit_1323), a periplasmic diheme cytochrome (Slit_1324; Cluster 446 in Table
1), and a molecular chaperone Hsp33 (Slit_1325). We found homologs of the Slit_1321-
1324 genes are common, co-located, and well-conserved among Gallionellaceae FeOB,
present in 50 genomes (Fig. 4; Table S4). These genes may represent a mechanism of
periplasmic electron transport, perhaps as part of an iron oxidation/extracellular electron
uptake pathway.

Electron transport chains

We compared electron transport chain component genes of the iron and nitrite oxidizer
groups and found them to be largely similar (Fig. 7). High-affinity cbbs-type oxidases
are common (Fig. 3), with most genomes containing either the proximal or distal form
of ccoN (Fig. 2) (76). Even the four NRFeOB genomes contain ccoNO genes, indicating
a potential for both oxygen and nitrate respiration. In contrast, few Gallionellaceae
genomes contain narGH or napAB (6 and 10 genomes, respectively, with no overlap).
Those that contain narGH include the known NRFeOB of the two separately maintained
Straub cultures (Ferrigenium straubiae KS 1 and KS 2) (29, 57), three Gallionella MAGs,
and one outlier (Table S4). This indicates the genetic potential for nitrate respiration is
relatively rare overall (Fig. 3; Table S4).
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FIG 5 Maximum likelihood tree of the predicted MtoA sequences identified in MMSeqs2 Cluster 335 and Cluster 451 along
with MtoA reference sequences from National Center for Biotechnology Information and MtrA reference sequences from
Baker et al. 2022. Numbers (1a, 1b, 2, 3, 4, 5, 6, and 7) appended after Mtr denote reference sequences from the seven MtrA
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the result of 500 bootstrap replicates.
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In addition to the cbbs-type oxidase genes, 34.5% of iron oxidizers and 15.4% of
nitrite oxidizers possess genes for cytochrome bd-type oxidases (cydAB) (Fig. 7). The
presence of bd-type oxidase genes often overlaps with cbbs-type oxidase genes (Table
S4). Like cbbs-type oxidases, cytochrome bd-type oxidases have a high affinity for
oxygen, and recent studies show they can be more highly expressed than cbbs-type
oxidases under low-oxygen, organic-rich conditions (77). Both FeOB and NOB have

November/December 2023 Volume 8 Issue 6

mSystems

10.1128/msystems.00038-23 11

Downloaded from https://journals.asm.org/journal/msystems on 01 January 2024 by 68.82.193.254.


https://doi.org/10.1128/msystems.00038-23

Research Article

. cytochrome domain
| porin structure

# hemes

Cyc2 MtoAB UetACDEGJ

extracellular
space Ferr  Fe™
Fe Fe

periplasm @ . '

(cyt-c?)

PCC3

e-

10

also

35

approx.
length of
variants

24 or 27

mSystems

FIG6 Models of potential Gallionellaceae extracellular electron transfer mechanisms. All sizes are approximated. Dimensions of Cyc2 with its fused cytochrome-

porin and the porin-cytochrome complexes MtoAB, MtoAB+MtrC, MtoD, and Uet drawn from models and measurements in previous literature (34, 72-75). The

illustration of PCC3 is based on AlphaFold2 predictions (Fig. S2). The number of hemes and size of PCC3 can vary. The 21/18 heme complex of S. lithotrophicus
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genes for cytochrome bcy and Alternative complex Il (ACIIl) quinol oxidase complexes,
which route electrons to the quinone pool where they may be used to form NADH for
biosynthetic reactions. Genes for bc; are more common in FeOB (85.1%) compared to
NOB (7.7%), while AClIl is more common in NOB (100%) than FeOB (55.2%; Fig. 7; Table
S4). Like the bd- and cbbs-type oxidases, the presence of bcy and ACIIl often overlaps
in a single organism, especially in FeOB (Table S4). Possessing both bd- and cbbs-type
oxidases and/or having both bc; and ACIIl contributes to flexibility within the electron
transport chains of Gallionellaceae. The presence of various terminal oxidases implies
adaptation to niches where oxygen and organic carbon availability differ or fluctuate.

Carbon fixation

Gallionellaceae isolates grow autotrophically. To determine if the capacity for autotrophic
growth is widespread, we analyzed the pangenome for RuBisCo genes (cbbLS, cbbMQ).
Most genomes in the data set (>91%; 94 of 103 genomes) contain genes for either
Form | or Form Il RuBisCo (Fig. 3; Table S4). FeOB more commonly have Form I, while
NOB only have Form I. Form Il enzymes are adapted for medium to high CO, and low
0O, concentrations (78), and their predominance in FeOB may correspond to different
oxygen niches of FeOB and NOB. The prevalence of RuBisCo genes indicates both iron-
and nitrite-oxidizing Gallionellaceae have the capacity to grow autotrophically.

November/December 2023 Volume 8 Issue 6

10.1128/msystems.00038-23 12

Downloaded from https://journals.asm.org/journal/msystems on 01 January 2024 by 68.82.193.254.


https://doi.org/10.1128/msystems.00038-23

Research Article

mSystems

A) Fe(ll) Fe(ll) | @ cytochrome ¢

@ quinone pool < e- movement % percent presence

N T
Cyc2
{)
82.8% o b
o s:..,<c> =N _ A
A A \
cbb; bc: > AClll \'>(q Q)>/( bd
Q 93.1% 85.1% 55.2% 34.5%
Fe(ll) Q
MtoA ImoA 0. H,O " N (0] H,O
41.4% |MtoD (CymA) 2 2 H H 2 2
Fe(lll) NAD+y|  NADH
" dehydro.
CO, fixation
TCA cycle (CI;B cycle) S NADH™| (complex I)
(energy) RuBisCo 92.0% / / Pentose
phosphate
extracellular pathway
space
B) NO, NO,
H* H+
NXR e o o
B|_84.6% v v v
Y cbb; ba \>(qQ ACII > Q)>/ bd
v? ¢ 100% 7.7% 100% 15.4% )
( 0, H,0 H H 0, H,0
NAD+y[  NADH
q dehydro.
CO, fixation
o ADP TCA cycle (CBB cycle) NADH| (complex )
synthase (energy) RuBisCo 84.6% Pentose
ATP phosphate
extracellular ; pathway
<pace periplasm §| cytoplasm

FIG 7 Diagram showing the similarities and differences between the electron transport chains of (A) iron- vs (B) nitrite-oxidizing Gallionellaceae. Pink numbers

indicate the percent of FeOB (A) or NOB (B) genomes that encoded each part of the electron transport chain or RuBisCo. Less common components such as FeOB
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Denitrification

Denitrification has been demonstrated in mixed cultures dominated by Gallionellaceae
whose genomes encode various parts of the denitrification pathway (30-32). To better
understand the denitrification potential across the Gallionellaceae and its role in FeOB
metabolism, we analyzed patterns of denitrification genes (Fig. 2 and 3; Table S4). If
autotrophic FeOB are to conserve energy from denitrification, they would in principle
require the Nar nitrate reductase, as it is the only denitrification complex proven to
generate proton motive force (79). Across our data set, genomes encoding NarGH are
uncommon, found only in a cluster of five Gallionella (including the two Ferrigenium KS
culture MAGs) plus the outlier Ca. Houarnoksidobacter (Table S4). These six genomes
with narGH have at least one dissimilatory nitrite reductase (nirK or nirS), and four of
the genomes encoded the eNOR nitric oxide reductase, giving the genetic capability
to reduce nitrate to either NO or N>O, respectively. The eNOR nitric oxide reductase
has a proposed proton channel, which may also contribute to energy conservation
(80). Altogether, the results show a few genomes encode the ability to couple nitrate
reduction to iron oxidation for energy, but this is rare amongst Gallionellaceae.
Gallionellaceae may denitrify for reasons other than energy generation, including
N assimilation, redox balance, and removal of intermediates nitrite and nitric oxide,
which are toxic and may abiotically oxidize Fe(ll) (chemodenitrification). We found the
denitrification genes napAB, nasA, nirBD, and norBC throughout the Gallionellaceae (Fig.
3; Table S4). The assimilatory nitrate reductase gene, nasA, was found exclusively in
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FeOB (Fig. 3; Table S3) co-located with nitrite reductase genes nirBD. A similar conserved
gene cluster of nasA and nirBD has been observed in iron-oxidizing Zetaproteobacteria
(81), allowing for the reduction of nitrate to ammonia for assimilation. Genomes with
dissimilatory nitrate reductase genes napAB clustered in two small clades of Gallionella
and Sideroxydans (Fig. 2; Table S4). NapAB may be used in aerobic denitrification when
oxygen is limiting (82). The nitrite reductase genes nirK/nirS were more common than
napAB and spread throughout the Gallionellaceae with little overlap (Fig. 2; Table S4).
Both nitrite and NO present major challenges to FeOB metabolism because of their
reactivity with iron: they bind to hemes, inhibiting the activity of cytochromes, and also
directly oxidize Fe(ll), thus competing with enzymatic iron oxidation (83). Therefore, it
makes sense that many genomes have both nir genes and nitric oxide reductase (nor)
genes (most commonly cNOR). Nitrous oxide reductase (nosZ) was not detected in any
genomes, indicating Gallionellaceae are not able to fully denitrify to N5 gas; since N>O is
non-toxic and relatively inert, nosZ is unnecessary.

Denitrification is a complex pathway that requires many enzymes and, therefore,
a substantial investment of cellular resources. Given the high potential of Fe(ll)/Fe(lll)
couples and the low-energy yield of iron oxidation, it may be difficult for autotrophic
FeOB to compete with organoheterotrophic denitrifiers, which may explain the rarity
of nar amongst strictly autotrophic FeOB. The ability to assimilate nitrate and detoxify
intermediates is more common, suggesting the importance of these functions to FeOB.

Hydrogenases

Gallionellaceae genomes encode a variety of [NiFe]-hydrogenases (Fig. 3; Table S4). The
most common type is the reversible, oxygen-tolerant hydrogenase, HoxFUHY, with genes
present in 71% of FeOB and 30% of NOB. Other [NiFel-hydrogenase genes were detected
exclusively in FeOB, including genes for the oxygen-tolerant uptake hydrogenase, HyaAB,
and the hydrogen-sensing hydrogenase, HupUV. [NiFe]-hydrogenases are capable of
different physiological roles (84-87); thus, they may benefit in iron-oxidizing Gallionella-
ceae in multiple ways. Hydrogenases can enable the use of Hy as an electron donor, as
in Sideroxydans sp. CL21 (28). Alternatively, the Hox hydrogenase can directly couple H;
oxidation to the reduction of NAD to NADH (84, 88) and generate reducing power for N,
fixation, CO; fixation, and/or biosynthetic reactions. Hox can also function in reverse to
transfer electrons from NADH to produce H, as a mechanism of redox balance (89, 90),
which can help FeOB cope with dynamic fluxes of Fe(ll) and oxygen in redox transition
zones.

Auxiliary energy metabolisms

Previous studies showed some Gallionellaceae FeOB possess alternate energy metabo-
lisms such as thiosulfate and lactate oxidation (27, 28). We searched the pangenome for
key genes of sulfur, manganese, and organic substrate oxidation pathways to determine
how common alternate metabolisms are among Gallionellaceae FeOB. Sulfide:quinone
reductase (sqr) is common to both FeOB and NOB (Fig. 3; Table S4). Sqr can oxidize
sulfide, transporting electrons to the quinone pool, although it may be a means of
detoxification rather than energy conservation (91, 92). In contrast, both soxABXYZ and
dsrAB are detected exclusively in the iron-oxidizing Gallionellaceae genomes (Fig. 3; Table
S4). To predict the oxidative vs reductive function of dsrAB, we constructed a tree using
reference sequences from Loy et al. (93, 94). Gallionellaceae sequences form a discrete
clade within the sulfur-oxidizing group (Fig. S3), indicating the DsrAB of Gallionellaceae
is likely a reverse dissimilatory sulfite reductase. In contrast, the Ca. Nitrotoga genomes
do not contain dsr or sox genes. Instead, Ca. Nitrotoga have sorAB, which may enable
oxidation of sulfite to sulfate (Fig. 3). Gallionellaceae are not typically abundant in
sulfur-rich environments. These results indicate sulfur oxidation is an auxiliary metabo-
lism in Gallionellaceae with only certain FeOB capable of oxidizing S(0) or thiosulfate.

We analyzed the pangenome for signs of organic carbon utilization. Although not
widely distributed, the most common genes were for lactate utilization (/utABCP) and
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sugar transport (msmX, gtsABC). Only eight Gallionella and five Sideroxydans genomes,
including Sideroxydans sp. CL21, have [utABC along with the [utP lactate permease
gene (Fig. 2 and 3; Table S4). Likewise, only six genomes contain gtsABC genes for
glucose/mannose uptake. None of the NOB contain the /ut or gts genes for organic
carbon utilization.

We used BLAST to evaluate the Gallionellaceae genomes for manganese oxidase
genes mcoA, moxA, mofA, and mnxG. There are a few hits for mcoA, moxA, and mofA
genes but none for mnxG (Table S4). Since manganese oxidation activity has not
been shown in any of the Gallionellaceae isolates, additional verification is needed to
determine whether the genes identified by BLAST are truly Mn oxidases.

Other genes distinct to FeOB, potentially related to iron oxidation

We searched the pangenome for the candidate genes for stalk formation (sfz/sfb)
identified in the stalk-forming Ferriphaselus and Zetaproteobacteria isolates (95, 96). The
four sfz/sfb genes were found in 12 genomes, restricted to one crown-group cluster
of nine Gallionella and all three Ferriphaselus (Fig. 2; Table S4). Thus far, all cultured
Gallionellaceae stalk formers belong to these two genera, suggesting stalk formation
may be limited and not a trait of Sideroxydans.

Using the Anvi'o subset of only genomes >97% complete, we identified several
gene clusters that were present and abundant only in Gallionella and Sideroxydans
but lacked a prior connection to an iron-oxidizing lifestyle. These included distinct
gene clusters with Clusters of Orthologous Gene (COG) functional annotations for:
Cell Wall/Membrane/Envelope Biogenesis, Cytoskeleton formation, Signal Transduction
Mechanisms, and Energy Production and Conversion (see selected clusters in Table
2, and additional ones at https://doi.org/10.6084/m9.figshare.22781342). Clusters for
Cell Wall/Membrane/Envelope Biogenesis may indicate FeOB have specific adaptations
for housing extracellular electron transport mechanisms in the outer membrane or
avoiding encrustation by iron oxides. Clusters for Energy Production and Conversion
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TABLE 2 Gene clusters of interest from the Anvi'o pangenome subset that were present in iron-oxidizing Gallionella and Sideroxydans but absent in nitrite-oxi-

dizing Ca. Nitrotoga (Ferriphaselus not considered)

COG category COG function

Gene cluster ID

Cell wall/membrane/envelope biogenesis Lipid carrier protein ElyC involved in cell wall biogenesis, DUF218 family (ElyC)
ABC-type lipoprotein export system, ATPase component (LolD)
ADP-heptose synthase, bifunctional sugar kinase/adenylyltransferase (RfaE)

ADP-heptose:LPS heptosyltransferase (RfaF)

Glycosyltransferase involved in cell wall biosynthesis (RfaB)

Outer membrane protein TolC

Glutamate racemase (Murl)
Murein L,D-transpeptidase YafK

GC_00001120
GC_00000969
GC_00001059,
GC_00001084
GC_00001100
GC_00001179
GC_00000022,
GC_00000920
GC_00001047
GC_00001108

Cytoskeleton Cytoskeletal protein CcmA, bactofilin family

GC_00000987

Energy production and conversion Na* translocating ferredoxin: NAD* oxidoreductase RNF, RnfA
Na* translocating ferredoxin: NAD* oxidoreductase RNF, RnfB
Na* translocating ferredoxin: NAD* oxidoreductase RNF, RnfC
Na* translocating ferredoxin: NAD* oxidoreductase RNF, RnfD
Na* translocating ferredoxin: NAD* oxidoreductase RNF, RnfE
Na* translocating ferredoxin: NAD* oxidoreductase RNF, RnfG

Ferredoxin (Fdx)
Cytochrome c-type biogenesis protein CcmH/NrfF
Cytochrome c-type biogenesis protein CcmH/NrfG

GC_00000042
GC_00001082
GC_00001069
GC_00001055
GC_00001071
GC_00001096
GC_00001052
GC_00001058
GC_00001078

Signal transduction mechanisms PAS domain | GAF domain | HAMP domain | Cyclic di-GMP metabolism protein
cAMP-binding domain of CRP or a regulatory subunit of cAMP-dependent protein
kinases | Small-conductance mechanosensitive channel MscK

GC_00000006
GC_00001152
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included ferredoxin (Fdx) and subunits of the RnfABCDEG complex. The Rnf complex was
originally discovered for its role in N fixation, in which it oxidizes NADH and generates
reduced ferredoxin that donates electrons to nitrogenase (97). More recent studies have
shown Rnf complexes can conserve energy under anaerobic conditions (98-100), and
as a low potential electron donor, ferredoxin can transfer electrons to many metabolic
pathways including some that produce secondary metabolites (101). Not all Gallionella-
ceae with Rnf complex genes have nifDHK nitrogenase genes, implying Gallionellaceae
Rnf and ferredoxin have functions beyond N fixation. Although their specific function in
Gallionellaceae FeOB are unknown, their ubiquity implies utility for FeOB and an area for
additional research.

DISCUSSION

The Gallionellaceae family is historically known for its iron-oxidizing members, but
recently, a new candidate genus of nitrite oxidizers, Ca. Nitrotoga, was identified (45).
Comparing their genomes to those of FeOB genera has helped identify genes and
pathways related to iron oxidation since Ca. Nitrotoga isolates have no documented
capacity for that metabolism (45, 46, 48, 49, 51). We resolved the phylogeny of the
Gallionellaceae and verified Ca. Nitrotoga lacked iron oxidation marker genes. Given
separate groups of FeOB and NOB, we used a pangenomic approach to identify shared
features of the Gallionellaceae, as well as FeOB-specific genes that may represent novel
iron oxidation pathways.

Phylogeny

Organizing and naming taxa is an essential step toward determining how microbial
diversity is connected to function and niches, but it is a challenge to classify microbial
taxa. The National Center for Biotechnology Information (NCBI) Taxonomy database and
Genome Taxonomy Database (GTDB) place the Gallionellaceae into different higher-level
taxa (Betaproteobacteria class and Nitrosomonadales order in NCBI, Gammaproteobac-
teria class and Burkholderiales order in GTDB). Each database also divides the family
differently, with GTDB creating more genus-level classifications based on representative
genomes for clades without cultured members. Here, we take a parsimonious approach
to minimize the number of genera while maintaining nomenclature that has a long
history of use in the literature. In this way, we can discuss groups with potentially distinct
features and take advantage of previous findings without undue confusion. Because
additional organisms are continuously discovered, we expect that this taxonomy will
continue to evolve.

The Gallionellaceae can be described by four genera, Gallionella, Sideroxydans,
Ferriphaselus, and Ca. Nitrotoga, based on the current concatenated ribosomal pro-
tein tree. Compared to this tree, 16S rRNA phylogeny did a poorer job of resolving
these genera, so 16S-based identification should be considered tentative, pending
the availability of genomes. ANl and AAI scores were not definitive, as there are
no agreed-upon cut-offs to guide genus delineation (55, 56). Therefore, to facilitate
consistent classification using the concatenated ribosomal protein phylogeny, the
protein sequences and alignments used here (Fig. 1) are available at https://doi.org/
10.6084/m9.figshare.21898938, https://doi.org/10.6084/m9.figshare.21898929.

The resolved phylogeny provides a framework for understanding the diversity and
major metabolisms of the Gallionellaceae. They are members of Nitrosomonadales
(or Burkholderiales), which contain many chemolithotrophic S and N oxidizers. Like
their closest relatives, the Sulfuricellaceae (102), many Gallionellaceae retain the ability
to oxidize sulfur (Fig. 3; Fig. S3). The Gallionellaceae tree (Fig. 1) shows a deeply
branching split between genera, with each of the two major genera, Gallionella and
Sideroxydans, containing a continuum of diversity. Within the Gallionella, the isolates
G. capsiferriformans ES-2 and Ferrigenium kumadai An22 bracket the Gallionella, with
An22 deeply branching and ES-2 at the crown. F. kumadai An22 was originally classi-
fied as Ferrigenium based on 16S rRNA distance (25). However, our analyses do not
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show any clear phylogenetic clustering or functional distinction, with which we could
draw a line between Gallionella and Ferrigenium. Moreover, the tree topology suggests
continued diversification within both Gallionella and Sideroxydans largely without the
formation of subclades that represent distinct niches. There is one subclade of Side-
roxydans that corresponds to the GTDB genus level designation PALSA-1006 (Fig. 1).
However, 16S/ANI/AAI results (Table S2) indicate there is not enough diversity within the
Gallionellaceae to justify further splitting the four major genera any further. Additionally,
we did not detect any obvious functional difference in PALSA-1006. Given our phyloge-
netic analysis, 165/ANI/AAI, and similar functional profiles, we recommend keeping them
within Sideroxydans. Based on the above classification scheme, most of the genomes (84
of 103) fall into either Gallionella or Sideroxydans.

Phylogenetic diversity corresponds to functional diversity that can drive Gallionella-
ceae success in a variety of environments. Many Gallionella and Sideroxydans do not
appear to be obligate iron oxidizers, and some may not be obligate aerobes. Auxiliary
metabolisms for S, N, and C are present to varying degrees throughout the iron-oxidizing
genera and are not associated with specific subgroups. Some FeOB from organic-rich
environments, such as Sideroxydans sp. CL21, have genes for organoheterotrophy. Other
FeOB show metabolic flexibility in additional lithotrophic metabolisms, such as oxidation
of S or potentially Mn, elements that often co-occur with Fe in the environment.
Some Gallionellaceae may also thrive in oxygen-poor environments by reducing nitrate,
although this capability appears rare. Such traits contribute to diversity in the Gallionella-
ceae FeOB genera, which appear to acquire and/or retain additional energy and nutrient
metabolisms to adapt to a range of environments.

Ca. Nitrotoga stands out as an exception within the Gallionellaceae. The pangenome
analysis shows that Ca. Nitrotoga has distinctive genomic content (Fig. S4). They do not
appear to have the capacity for iron oxidation based on available physiological evidence
and the genomic analyses presented here. The similarities in Gallionellaceae FeOB and
Ca. Nitrotoga electron transport chains enable them to meet the shared challenge of
conserving energy from high-potential electron donors. However, Ca. Nitrotoga are a
distinct clade that appears to have evolved from the FeOB to occupy a nitrite oxidation
niche.

Iron oxidation and extracellular electron uptake (EEU) mechanisms

The Gallionellaceae FeOB genomes encode a wide variety of predicted c-type cyto-
chromes. Of these cytochromes, many appear to be associated with the outer mem-
brane, implying a role in extracellular electron transport. Cyc2 is present in the majority
of Gallionellaceae FeOB genomes, while MHCs Mto/Mtr, Uet, and PCC3 are less common,
each with different distribution patterns (Fig. 4), suggesting the different cytochromes
play distinct roles.

Cyc2 has been shown to oxidize dissolved Fe(ll) (27, 34, 44, 103). The monoheme Cyc2
is a small fused cytochrome-porin, and since aqueous Fe** is common to many redox
transition zones, it makes sense that most FeOB would retain and use the simplest tool.
But in Earth’s various environments, iron is largely available as minerals (clays, oxides,
and sulfides) and also bound to organics (e.g., humic substances). The decaheme MtoA
has been shown to play roles in the oxidation of mineral-bound Fe(ll), specifically Fe(ll)
smectite clay (44). As an MHC, MtoA may have multiple benefits that help in oxidizing
minerals. MtoA has a large redox potential window [-350 to +30 mV (33, 37)], which
could help with the oxidation of solids, like smectite (44), that also have a range of redox
potentials [e.g., —600 to +0 mV for SWa-1 vs —400 to +400 mV for SWy-2 (104)], which
change as mineral-bound iron is oxidized or reduced. Assuming the MtoA structure is
similar to MtrA, the 10 hemes span the membrane, making a wire that conducts from
extracellular substrates to periplasmic proteins (74, 105). The multiple hemes allow for
the transfer of multiple electrons at a time (36). Some MAGs with mtoAB also encode the
extracellular decaheme cytochrome MtrC. In Shewanella, the MtrCAB complex requires
MtrC to reduce solid minerals (ferrihydrite), while MtrAB alone can only reduce dissolved
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Fe(lll) and electrodes (71, 106, 107). Likewise, Gallionellaceae MtrC may help increase
interactions with different minerals. Some Gallionellaceae FeOB may retain genes for
both Cyc2 and MtoAB (with or without MtrC) to oxidize different Fe(ll) substrates in their
environments.

Like MtrCAB, the predicted PCC3 complex includes both periplasmic and extracellular
MHCs and a porin. A key difference is that the PCC3 cytochromes often have more hemes
than MtoA/MtrA and MtrC. The greater number of hemes may serve to store electrons,
as in a capacitor. They may also conduct across a greater distance; the PCC3 periplasmic
MHC, with 21-27 hemes, is potentially long enough to span the entire periplasm [as
noted by Edwards et al. (108)]. Intraprotein electron transfer between hemes is rapid
(109-111); therefore, the periplasm-spanning MHC of PCC3 may allow for faster electron
transfer compared to complexes containing smaller periplasmic cytochromes like the
monoheme MtoD. The extracellular PCC3 MHC contains between 10 and 35 hemes,
which could extend further from the outer membrane compared to MtrC. Not only
would this extend the range of electron transfer but may also be faster than a “wire” of
smaller cytochromes [e.g., Geobacter hexaheme OmcS (112)]. Increasing oxidation rates
via larger MHCs would allow FeOB to oxidize substrates faster. Given that Fe(ll) is subject
to abiotic oxidation under certain conditions and other organisms may compete for EEU,
such kinetic advantages would give FeOB a competitive edge.

Conclusions

Gallionellaceae, specifically Gallionella, are best known for lithoautotrophically oxidizing
iron to make mineral stalks that come together to form microbial mats at groundwater
seeps (18, 113, 114). Although this may contribute to an impression that the niche is
relatively restricted, 16S rRNA sequencing of cultures and environmental samples has
revealed both the diversity of Gallionellaceae as well as its prevalence across practi-
cally any freshwater and some brackish environments where Fe(ll) and O, meet. The
pangenome shows that Gallionellaceae possess metabolic flexibility to use non-iron
substrates, notably sulfur, and the MHCs likely also confer further metabolic capabilities
that may help them occupy a range of different iron- and mineral-rich niches. Gallio-
nellaceae thrive in aquifers, soil, and wetlands, all of which have substantial mineral
content. Thus, the widespread ecological success of Gallionellaceae may well correspond
to genomes that encode a range of iron oxidation mechanisms as well as adaptations for
varied environments.

It is becoming clear that there are multiple ways to oxidize iron, though we have
varying levels of evidence for gene/protein function (37, 115, 116). Validating iron
oxidation genes/proteins is painstaking work due to challenging cultures, low yield, few
genetic systems, and the fact that iron interferes with many molecular extractions and
assays. And yet, there are likely even more iron oxidation mechanisms, so we need to
be strategic about choosing genes/proteins for deeper characterization. Our pangenome
analysis gives a wider view of the distribution and frequency of potentially novel iron
oxidation genes, which will help us to prioritize investigations. Furthermore, the varied
outer membrane-associated cytochromes inspire us to investigate relationships between
structure and function. Why are there so many different multiheme cytochromes? Is
there substrate specificity, kinetic advantages, battery-like functions, or some utility we
have yet to consider? Addressing these questions will help us understand how these
proteins and pathways shape microbial transformations of varied Earth materials.

MATERIALS AND METHODS
Data collection and curation

Gallionellaceae genomes were collected from the NCBI Entrez database (117), the Joint
Genome Institute Integrated Microbial Genomes (IMG) database (118), and the European
Nucleotide Archive at EMBL-EBI database [Sideroxydans sp. CL21, Ca. Nitrotoga fabula
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KNB, and the “IN”" MAGs (17, 49, 119)] (Table S5). We also received non-public genomes
from the Ménez Lab at the Université de Paris [three genomes reconstructed by Aurélien
Lecoeuvre from the Carbfix study in Hengill, Iceland (2); metagenomes available at
Sequence Read Archive SRR3731039, SRR3731040, SRR4188484, and SRR4188643], and
the Banfield Lab at the University of California, Berkeley [three genomes reconstructed
by Alex Probst from Crystal Geyser in Utah, USA (120); (Table S5)]. This initial 230-genome
data set included isolate genomes, MAGs, and single-cell amplified genomes that were
taxonomically classified as members of the Gallionellales order; Gallionellaceae family;
or the Gallionella, Sideroxydans, Ferriphaselus, Ferrigenium, or Ca. Nitrotoga genera in
their respective databases. Duplicate genomes were identified and removed if they had
identical accession numbers, or their ANI were 100%. CheckM v1.1.2 (121) was used
to assess genome quality. Genomes with lower than 80% completeness and greater
than 7% contamination were removed from the data set. The final filtered data set,
referred to as “the Gallionellaceae” or “the data set,” contained 103 genomes (Table S1;
2,7,11,17, 23-26, 32, 42, 47-49, 51, 57, 95, 119, 120, 122-145), including six of the
Gallionellaceae FeOB isolates. The seventh isolate, Sideroxyarcus emersonii (26), was not
published at the time of our main analysis, but a supplemental of its key metabolic genes
and MHCs (https://doi.org/10.6084/m9.figshare.22781912) shows it has similar patterns
to Sideroxydans.

Naming conventions

To assign simple, unique names to the metagenomes, codes were appended to genus-
level names based on sample location and bin IDs (Tables S1, S5 and S7). Isolates retained
their own unique names. Organisms that were taxonomically classified in their original
databases at the family Gallionellaceae or order Gallionellales were, if possible, classified
at lower taxonomic levels using a combination of AAI, 16S rRNA (if available), classifica-
tion through the GTDB Toolkit (146), and placement in the concatenated ribosomal
protein tree (Fig. 1 and 2).

Ecosystem classifications

To assess whether metabolic diversity correlated to ecosystem type, each genome was
assigned to an ecosystem based on the GOLD (147) schema which leverages Environ-
mental Ontology classifications (148). A genome’s pre-existing classification from IMG
was used if available. Genomes without prior classification were categorized based
on published descriptions of their sample sites and “habitat” information listed in
their database of origin. Based on the GOLD classifications (Table S3), genomes were
examined for patterns of correspondence between ecosystems and phylogenetic and/or
metabolic diversity.

16S rRNA analyses

Twenty-two of the 103 Gallionellaceae genomes contained 16S rRNA gene sequences.
All sequences >1,450 bp (35 total) were aligned in Geneious v.10.2.6 (149) using MUSCLE
(150). The percent identity of the 16S rRNA sequences is shown in Table S2a.

Calculation of average amino acid and nucleotide identities

AAl and ANI were computed to assess the similarity of genomes in the curated
data set (Table S2). AAl was calculated using CompareM (151). ANI was calculated
using ANlcalculator v.1.0 (152). Prior to using ANlcalculator, tRNA and rRNA sequen-
ces were removed to prevent overinflation of ANI estimates (55, 152). AAl and ANI
results were spot checked using the Kostas Lab AAI/ANI Matrix Tool (http://enve-
omics.ce.gatech.edu/g-matrix/index) (153) to assure patterns were consistent. Final AAI
and ANI tables were formatted using Microsoft Excel.
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Tree construction
Concatenated ribosomal protein tree

A concatenated tree of ribosomal proteins (Fig. 1) was constructed to determine the
phylogenetic relationships of genomes in the Gallionellaceae data set. Two Sulfuricella
genomes, Sulfuricella sp. T08 and Sulfuricella 3300027815, were included as an outgroup
to root the tree. The use of a Sulfuricella outgroup was based on previous literature (154,
155), which identified Sulfuricella and other members of the Sulfuricellaceae family as
near neighbors of Gallionellaceae. The concatenated sequences were composed of 13
small and large ribosomal proteins (L19, L20, L28, L17, L9_C, S16, L21p, L27, L35p, S11,
S20p, S6, and S9) present in 94 or more of the 105 genomes including the outgroup.
Protein sequences were aligned in Geneious v.10.2.6 (149) using MUSCLE (150). Ends of
the alignments were manually trimmed, and regions with over 70% gaps were masked,
after which sequences were concatenated. The tree was constructed using RAXML-NG
v1.0.3 (156) with the maximum likelihood method, LG + G model, and 1,000 bootstraps.
The final tree was visualized and annotated with iTOL (157). The ribosomal protein
sequences used to construct the tree are available on FigShare (https://doi.org/10.6084/
m9.figshare.21898938, https://doi.org/10.6084/m9.figshare.21898929).

16S rRNA gene tree

We constructed a 16S rRNA gene tree (Fig. S1) composed of sequences from our data
set combined with a selection of sequences from the SILVA database to determine
how well 16S rRNA resolves Gallionellaceae phylogeny compared to the concatenated
ribosomal protein tree. Full-length (~1,500 bp) 16S rRNA genes were retrieved from 22 of
the Gallionellaceae genomes using Anvio’s “anvi-get-sequences-for-hmme-hits” command
for “Ribosomal_RNA_16S." These genes were aligned in SINA (158) along with Gallionella-
ceae sequences from the Silva database (159) that had >1,475 bp and >85-90 sequence
quality score. The outgroup is composed of Thiobacillus, Ferritrophicum, Sulfuricella,
Sulfuriferula, and Nitrosomonas sequences acquired from the Silva database. The final
alignment contained 965 non-redundant sequences, and the alignment length was 1,500
positions after trimming and masking all sequence gaps greater than 70%. A maximum
likelihood tree was constructed using RAXML-NG v1.0.3 (156) with the GTR+G model
and 300 bootstraps. Family- and genus-level classifications from the SILVA database were
used to annotate the tree in Iroki (160).

Individual protein trees

Trees for DsrAB (Fig. S3) and Mto/Mtr (Fig. 5) were constructed from Gallionellaceae
protein sequences along with reference sequences from NCBI, Loy et al. and Baker et
al. (68, 93). Sequences were aligned with MUSCLE (150), ends were manually trimmed,
and regions with over 70% sequence gaps were masked in Geneious v.10.2.6 (149). For
the Dsr tree, DsrA and DsrB sequences were concatenated. Trees were constructed using
RAXML-NG v1.0.3 (156) with the LG+G model. Branch support for Mto/Mtr tree is based
on 500 bootstraps, and support for the DsrAB tree is based on 300 bootstraps. The final
trees were visualized and annotated with Iroki (160).

Pangenome analysis
Metabolic gene analysis

We used DRAM v0.0.2 (59) within KBase (161), LithoGenie within MagicLamp (61), and
FeGenie (60) to identify key metabolic genes indicative of various oxidation, respiration,
and carbon utilization pathways. NCBI BLAST+ (64) was used to identify additional genes
for eNOR, cNOR, SorAB, Mn oxidases, LutABCP, and stalk formation. We then analyzed the
presence/absence of the metabolic genes and looked for patterns across the concaten-
ated protein tree, between genera, and between FeOB and NOB.
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MHC analysis

To identify potential c-type cytochromes, we used a modified heme counter script
(62) to search for CXXCH, CXXXCH, and CXXXXCH motifs within the protein sequences
of each genome. The search identified 5,929 protein sequences with one or more
CX5.4CH-motifs. To determine which protein sequences were shared between genomes,
sequences were clustered using MMSeqs2 (162) with coverage mode 0 for bidirectional
coverage of at least 80% of the query and target sequences. Several clusters of interest
were identified based on either the number of CX,_4CH-motifs in each sequence or the
relative abundance of FeOB sequences in the cluster. Querying with BLASTp (63) against
the Uniprot (163) database was used to classify sequences from clusters of interest,
thereby identifying clusters of predicted c-type cytochromes. Isolate sequences were
used as representative sequences for cluster classification. If a cluster did not contain
an isolate sequence, a consensus classification was used. The subcellular localization of
proteins was predicted using a combination of PSORTb v3.0.3 (164) and LocTree3 (165).

Some MHCs were predicted to be part of Mto, PCC3, or Uet porin-cytochrome
complexes. Therefore, we wanted to determine if the genes for these MHCs were
colocalized in their respective genomes with genes for B-barrel porins, periplasmic
proteins, and inner membrane proteins previously identified in the literature (72, 73).
We searched for the associated genes using BLASTp and amino acid reference sequences
from S. lithotrophicus ES-1 (MtoB, MtoD, and CymA), Gallionella AHS-4737 (MtoC), and
Ca. Tenderia electrophaga (UetBCDEFGHI). The locus tags of BLASTp hits were then
compared to the locus tags of the MHCs to evaluate synteny and colocalization. The
same method was used to determine if diheme c-type cytochromes from MMseqs2
cluster 446 which includes Slit_1324 were colocalized with a cytochrome b (Slit_1321),
hypothetical extracellular protein (Slit_1322), monoheme cytochrome class | (Slit_1323),
and molecular chaperone Hsp33 (Slit_1325).

PCC3 modeling

To model predicted PCC3 proteins, we used ColabFold: AlphaFold2 using MMseqs2
(166). Setting included using MSA mode “MMseqs2 (UniRef+environmental),” pair mode
“unpaired+paired,” protein structure prediction with “AlphaFold2-ptm,” and complex
prediction with “AlphaFold-multimer-v2” (167, 168). The best scoring model was
rendered in PyMol v2.5.4 (169).

Anvi'o subset analysis

We used the Anvi'o v7 (65, 67) to build a pangenome database of all Gallionella (16) ,
Sideroxydans (15), and Ca. Nitrotoga (6) genomes that were over 97% complete (Fig. S4)
to analyze for additional genes important to FeOB lifestyles. Ferriphaselus had too few
representatives to define a meaningful core genome and was therefore omitted. Genes
were clustered within the Anvi'c pangenome using a min-bit parameter of 0.5 and an
mcl inflation parameter of 2. The Anvi‘'c pangenome was used to compare gene clusters
across the data set and to bin: (i) near-core (found in >85% of genomes), (ii) accessory
(found in >1 but <85% of genomes), and (iii) strain specific (found in a single genome)
sets of gene clusters. Gene annotations were assigned in Anvi'o using Prodigal (170), and
functional annotations for Anvi'o gene clusters were assigned using the NCBI's Database
of COGs (171, 172). Data tables of the binned Anvi'o gene clusters were analyzed to
identify gene clusters found in the near-core genomes of Gallionella and Sideroxydans
but absent in Ca. Nitrotoga.
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