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Abstract. This paper develops a finite approximation approach to find the solution F (x) of4
integral equations in the form F (x) = ξ(x) +

∫
R κ(x, u)dF (u), ∀x ∈ R, where F (x) may not be5

continuous, and therefore not have a density function. The integral equations in this form, to the6
best of our knowledge, have never been studied before. However, such equations arise frequently7
when modeling stochastic systems. We construct a Banach space of (right-continuous) distribution8
functions and reformulate the problem into an operator equation. We provide general necessary and9
sufficient conditions that allow us to show convergence of the approximation approach developed10
in this paper. We then provide two specific choices of approximation sequences and show that the11
properties of these sequences are sufficient to generate approximate equation solutions that converge12
to the true solution assuming solution uniqueness and some additional mild regularity conditions. Our13
analysis is performed under the supremum norm, allowing wider applicability of our results. Worst-14
case error bounds are also available from solving a linear program. We demonstrate the viability15
and computational performance of our approach by constructing two examples. The solution of16
the first example could be constructed manually, but demonstrates the correctness and convergence17
properties of our approach. The second example solves a problem involving the Weierstrass function18
for which no closed-form solution is available.19
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1. Introduction.23

1.1. Overview of the problem. This paper aims to solve a general class of24

integral equations of the form25

F (x) = ξ(x) +
∫
R κ(x, u)dF (u), ∀x ∈ R(IE)2627

to a desired accuracy. Here ξ : R 7→ R is a given distribution, κ : R2 7→ R+ is a given28

kernel, dF is the measure associated with F and F : R 7→ R is to be determined.29

We analyze (IE) by letting R as the support. A similar analysis can be developed30

for support Ω ⊆ R. Our study of (IE) is motivated by the problem of finding the31

stationary distribution and associated steady-state performance evaluation measures32

of stochastic models that can be represented by continuous or mixed state Markov33

chains. The current paper develops the mathematical foundations and a finite ap-34

proximation approach for solving such equations. Its application in the context of35

Markov chains is discussed in [27].36

We may regard (IE) as a generalization of Fredholm equations of the second type:37

f(x) = g(x) +

∫
Ω

t(x, u)f(u)du, x ∈ R.(FIE)38
39

The functions in (FIE) are usually assumed to be continuous and thereby integratable40

w.r.t. x [17]. Suppose Ω is a closed interval. Then taking integration w.r.t. x on both41
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2 S. LI, AND S. MEHROTRA

sides of (FIE) yields (IE). However, the opposite direction may not hold as functions42

in (IE) are not necessarily continuously differentiable; see examples in section 6.43

A finite approximation approach. Since exact solutions of (IE) are typically44

unavailable and known integral equation solution methods are not applicable (see45

subsection 1.2 for a review), we develop a method which approximates (IE) with a46

sequence of “discretized” equations of the form47

(A-IE) F (x) = ξ(r)(x) +
J(r)∑
i=1

ω
(r)
i (x)[F (c

(r)
i )− F (c

(r)
i−1)], ∀x ∈ R, r ∈ N,48

where (r) indexes the approximation sequence and for all r ∈ N, −∞ = c
(r)
0 <49

c
(r)
1 < ... < c

(r)

J(r) < c
(r)

J(r)+1
= +∞, F (c

(r)
0 ) ≡ 0 and ξ(r), ω

(r)
1 , ω

(r)
2 , ..., ω

(r)

J(r) : R 7→ R50

are to be specified depending on an approximation strategy. For any fixed r ∈ N51

and known ξ(r), ω
(r)
1 , ω

(r)
2 , ..., ω

(r)

J(r) , we obtain the solution of (A-IE) by letting x =52

c
(r)
1 , c

(r)
2 , ..., c

(r)

J(r) into (A-IE) and solving the system of J (r) × J (r) linear equations to53

obtain F (c
(r)
1 ), F (c

(r)
2 ), ..., F (c

(r)

J(r)):54

J(r)∑
i=1

[δij − ω
(r)
i (c

(r)
j ) + ω

(r)
i+1(c

(r)
j )]F (c

(r)
i ) = ξ(c

(r)
j ), j = 1, 2, ..., J (r),55

56

where ω
(r)

J(r)+1
≡ 0 and δij = 1{i = j}. Then the value of F (x) at any arbitrary point57

x can be obtained by using (A-IE). An illustration of finite approximation can be58

found in Figure 1 of section 4.59

1.2. Related literature. Solution methods for Fredholm integral equations of60

the second type (FIE) are discussed in [17]. Table 1 provides the known methods61

with a summary description. To the best of our knowledge, solution methods for62

problems in the form of (IE) are not known. However, the methods for (IE) presented63

here are motivated from the approximation methods for (FIE). Depending on the64

specification of {ω(r)
i }J(r)

i=1 , Type II approach in section 4 uses the concept behind65

quadrature methods [32, 16, 1], and Type I uses iterated approximation concept [11,66

19, 14]. A major challenge in using these concepts is that Fredholm/Volterra integral67

equations are discussed in a space of continuous functions while (IE) is in a space68

of right-continuous distribution functions with possible jumps. Our construction of69

(A-IE) and selection of appropriate knots takes possible jumps into consideration.70

As mentioned earlier, transformation from the Fredholm integral equation (FIE)71

to (IE) is possible if functions in (FIE) are integratable w.r.t. x. Conversely, if72

functions in (IE) are differentiable w.r.t. x, taking derivatives in x on both sides of73

(IE) yields the form of (FIE). In the later case, the distribution problem is transformed74

into a density problem. Stochastic modelling literature has used integral equations as75

a density problem [9, 10, 26, 35]. However, in many cases it is unrealistic to assume the76

existence of density, e.g., when a probability mass exists. Other stochastic modelling77

literature using integral equation approaches include [21, 12, 4].78

1.3. Contributions. We provide a general approximation scheme for (IE). The79

approximate solutions are obtained by solving a linear equation system. We prove80

the convergence of approximate solutions (Theorem 3.6) as well as their worst-case81

error bounds (Theorem 3.7). In the process of developing our convergence analysis,82
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DISTRIBUTION INTEGRAL EQUATIONS 3

Table 1
A summary of solution methods for classical Fredholm/Volterra integral equations in literature.

Methods and source Description

Kernel
method

Degenerate
Kernel
[23, 24, 30]

1. Approximate kernel t(x, u) with a sequence of tn(x, u).
2. Assume tn is degenerate: tn(x, u) =

∑n
j=1 aj(x)bj(u).

Interpolation
[29, 28, 6]

1. Approximate kernel t(x, u) with a sequence of tn(x, u).
2. Interpolation of t(x, u) in x yields following approximation:
tn(x, u) =

∑n
j=1 aj(x)t(xj , u).

Tensor
approximation
[15, 33]

1. Approximate kernel t(x, u) with a sequence of tn(x, u).
2. Assume the tensor structure:

tn(x, u) =
∑n

i

∑n
j=1 cijai(x)bj(u).

Projection
method

Collocation
method
[11, 2, 18, 31]

1. An interpolation may be formulated into an projection Π.
2. Solve the approximate equation:

Πf(x) = Πg(x) +
∫ b
a
Πt(x, u)df(u).

Galerkin
method
[22, 7, 8, 13]

1. Assume the function space X is a Hilbert space. Let Xn be
a sub-space. Let Πn be the orthogonal projection onto Xn.

2. Solve the approximate equation:

Πnf(x) = Πng(x) +
∫ b
a
Πnt(x, u)df(u).

Regularisation method [17]

1. Assume the integral operator K has a smoothing effect.
2. Define f = g + ϕ, ψ = Kg. Then the equation is trans-

formed into: ϕ = ψ +Kϕ.
3. The problem is reformulated into a new problem with a

regular (sufficiently smooth) solution.

Iterated approximation
[11, 19, 14]

1. Obtain an approximate solution f̃ from some other method.
2. Plug it into the right hand side (RHS) of original equation

and obtain a new approximate solution:

f̃ ′ := g(x) +
∫ b
a
t(x, u)df̃(u).

Quadrature method
(or Nystrom method,
discretization) [32, 16, 1]

Solve an approximate equation:
f(x) = g(x) +

∑n
i=1Wi(x)f(si),

where the weight functions {Wi} and knots {si} are to be
specified depending on approximation strategies.

Neumann method [20, 25, 3]
1. Assume the original equation can be reformulated into an operator

equation f = g + Lf . Assume L has a norm less than 1.
2. The approximate solution is

∑n
i=0 Lig.

we provide necessary and sufficient conditions (Condition 1-Condition 4) for applying83

operator equation convergence theory. Our analysis is performed under the supremum84

norm, which requires weaker assumptions than the total variation norm (remark in85

supplemental material section SM6). Different from many other integral equation86

analyses which require the transition operator’s norm less than one to ensure solu-87

tion uniqueness, we allow the norm greater than one (Theorem SM6.1). Our finite88

approximation solution is near-optimal among all discrete approximate solutions un-89

der appropriate assumptions (remark in section 5). Moreover, we outline specific90

strategies on how to construct approximation equations (Condition 5) and provide91

worst-case error bounds (subsection 5.2). We verify the accuracy and efficiency of our92

approach via numerical examples.93

1.4. Organization. In section 2, we show that (IE) can be written as an oper-94

ator equation F = ξ+KF by defining an appropriate Banach space. Here we provide95

the main definitions and assumptions used in this paper. We also state known re-96

sults from operator equation convergence theory. In section 3, we use the collective97

compactness theory to develop a convergence theory and error bounds on the ap-98

proximate solutions available from (A-IE). In section 4, we provide specific strategies99

for constructing (A-IE). In section 5, we provide sufficient conditions for solution100

uniqueness and invertibility assumptions used in our results. We also discuss the101

computation of errors and argue why our approximation is near-optimal among all102

discrete approximate solutions. In section 6, we present numerical results for solv-103

ing two test examples, one with multiple discontinuities and the other with every-104

This manuscript is for review purposes only.



4 S. LI, AND S. MEHROTRA

where non-differentiable functions. The multiple discontinuities example shows the105

accuracy of our method in solving non-continuous problems. The example with non-106

differentiability shows the applicability of our approach in an extreme case (FIE).107

2. Definitions, Known Results, and Assumptions.108

2.1. Known operator theory results. We now state key definitions and re-109

sults from Anselone and Davis’ collective compactness theory [5, 17]. This theory110

proves convergence and error bounds of approximate solutions to operator equations111

under collective compactness, consistency and solution uniqueness preconditions.112

Definition 2.1 (Collective Compactness, Consistency, and Stability [17]). Con-113

sider Banach space (Y, || · ||) and a linear operator L on Y. A sequence of linear114

operators {L(r)}r∈N are115

• collectively compact if the set {L(r)F | r ∈ N, F ∈ Y} is relatively compact,116

• consistent if limr→∞ ||L(r)F − LF || = 0, ∀F ∈ Y, and117

• stable if there exists r0 ∈ N and C > 0 such that for all r > r0, (I − L(r))−1118

exists and ||(I−L(r))−1||OY
⩽ C, where I is the identity operator and || · ||OY

119

is the operator norm of Y.120

An error bound and convergence of solution is given in the following results.121

Lemma 2.2 (Theorem 4.7.11 in [17]). Consider a Banach space (Y, || · ||), linear122

operators L and L′ on Y, inhomogeneous terms ξ and ξ′ in Y, and equation solutions123

F and F ′ in Y:124

F = ξ + LF, F ′ = ξ′ + L′F ′.125126

If (I − L′)−1 exists, then ||F ′ − F || ⩽ ||(I − L′)−1||OY
· (||L′F − LF ||+ ||ξ′ − ξ||).127

Lemma 2.3 (Theorem 4.7.11 in [17]). Consider a Banach space (Y, || · ||), linear128

operators L and {L(r)}r∈N on Y, inhomogeneous terms ξ and {ξ(r)}r∈N in Y such129

that limr→∞ ξ(r) = ξ, and equation solutions F and {F (r)}r∈N in Y:130

F = ξ + LF, F (r) = ξ(r) + L(r)F (r), r ∈ N.131132

If {L(r)}r∈N are collectively compact and consistent to L, and equation F = ξ+LF has133

a unique solution F in Y, then (i) {L(r)}r∈N are stable. (ii) There exists r0 ∈ N such134

that for all r > r0, F
(r) uniquely exists and satisfies ||F (r)−F || ⩽ ||(I −L(r))−1||OY

·135

(||L(r)F − LF ||+ ||ξ(r) − ξ||). (iii) limr→∞ F (r) = F .136

Lemma 2.4 (Theorem 1.3.28, 4.7.7 and 4.7.11 in [17]). Consider a Banach space137

(Y, || · ||), linear operators L and {L(r)}r∈N on Y. Suppose {L(r)}r∈N are collectively138

compact and consistent to L. The following statements are equivalent:139

(i) Ker(I−L) = {0}, i.e., ∀ξ ∈ Y, F = ξ+LF has at most one solution F ∈ Y;140

(ii) Im(I − L) = Y, i.e., ∀ξ ∈ Y, F = ξ + LF has at least one solution F ∈ Y;141

(iii) (I − L)−1 exists, i.e., ∀ξ ∈ Y, F = ξ + LF has a unique solution F ∈ Y;142

(iv) There exists r ∈ N such that (1 − L(r))−1 exists and ||(L − L(r))L||OY
⩽143

1
||(1−L(r))−1||OY

.144

(v) There exists r0 ∈ N such that ∀r > r0, (1 − L(r))−1 exists and ||(L −145

L(r))L||OY
⩽ 1

||(1−L(r))−1||OY

.146

Particularly, statements (i)− (v) hold if ||L||OY
< 1.147

The convergence in Lemma 2.3 is proven by showing that in the error of Lemma 2.2,148

the first term ||(I −L′)−1||OY
is bounded (i.e., stability, indicated by collective com-149

pactness) and the second term (||L′F −LF ||+ ||ξ′− ξ||) converges to 0 (consistency).150
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DISTRIBUTION INTEGRAL EQUATIONS 5

We will prove that for (IE) in a specific space of distributions, these abstract151

preconditions are ensured by the following conditions that are verifiable:152

(i) uniformly bounded variation (Condition 1),153

(ii) càdlàg and countable jump discontinuities (Condition 2),154

(iii) proper construction of (A-IE) (Condition 3 or Condition 5), and155

(iv) operator norm inequality or feasibility on a subset (see section 5).156

2.2. A Banach space. Let D be the collection of probability distribution func-157

tions defined on R and B be the Borel algebra for R. Let158

X := span(D) =

{
n∑
k=1

akFk |n ∈ N++, ak ∈ R, Fk ∈ D

}
159

160

be a linear space of distribution functions of all finite signed measures on (R,B). Let161

|| · ||∞ be the supremum norm on X: ||F ||∞ := supx∈R |F (x)|, ∀F ∈ X. Let V (f ; Ω)162

be the total variation of a function f : R 7→ R on Ω ⊆ R. For convenience, let163

V (f) := V (f ;R). Moreover, for a multivariate function f(x, u) : Rn ×R 7→ R, we use164

Vu(f(x, u)) ∈ R+ to denote the total variation of f(x, u) as a single variable function165

of u with any fixed x ∈ Rn.166

We construct a Banach space of right-continuous distribution functions as follows.167

Theorem 2.5 (A Banach Space and Properties). Let X̄ be the closure of X ⊆168

{f : R 7→ R} under the norm || · ||∞. Then (X̄, || · ||∞) is a Banach space. Moreover,169

(i) (Bound and variation) ||F ||∞ < ∞, ∀F ∈ X̄. V (F ) < ∞, ∀F ∈ X.170

(ii) (Càdlàg) For any F ∈ X̄, F (−∞) = 0 and F (+∞) exists. The left limit171

F (x−) and the right limit F (x+) exist for all x ∈ R. F is right-continuous.172

(iii) (Countable jump discontinuities) For any F ∈ X̄, the set173

JF (ϵ) := {x ∈ R | |F (x+)− F (x−)| > ϵ}, ϵ ∈ R+174175

is finite for any ϵ > 0, and therefore, its jump discontinuities are countable.176

Let || · ||O be the operator norm of any linear operator K on X̄:177

||K||O := sup
F∈X̄,||F ||∞=1

||KF ||∞.178

179

We write “Fk converges to F on X̄” as “Fk ⇒ F” to emphasize uniform convergence.180

2.3. Assumption and reformulation as operator equations. Let us define181

the collection of finite transition kernels on (R,B) in the distribution sense.182

Definition 2.6 (Finite Transition Kernel). Let T (R,B) be the collection of183

functions p(x, u) : R2 7→ R+ such that184

(i) for any fixed x ∈ R, p(x, u) is B-measurable w.r.t. u, and185

(ii) for any fixed u ∈ R, p(x, u) ≡ 0 or there exists α > 0 such that αp(x, u) ∈ D.186

We assume the following on (IE) and its finite approximations.187

Assumption 1. For (IE) and a sequence of (A-IE) indexed by r ∈ N, we have:188

(i) κ ∈ T (R,B); F, ξ ∈ X̄;189

(ii) ξ(r) ∈ X̄, ∀r ∈ N; ξ(r) ⇒ ξ; {ω(r)
i }J(r)

i=1 ⊆ X̄, ∀r ∈ N; and −∞ = c
(r)
0 < c

(r)
1 <190

... < c
(r)

J(r) < c
(r)

J(r)+1
= +∞, ∀r ∈ N.191
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6 S. LI, AND S. MEHROTRA

Assumption 1 is met in the context of stochastic models, which are studied in [27].192

The space for ξ and F in (i) of Assumption 1 is relaxed to the closure X̄ because X193

is not closed under || · ||∞ and cannot be used as a Banach space in our analysis. We194

will show later in specific examples the construction of ξ(r), {ω(r)
i }J(r)

j=1 and {c(r)j }J(r)

j=1195

(r ∈ N) satisfying (ii) of Assumption 1.196

We next reformulate (IE) and (A-IE) into operator equations on X̄. First, we197

formulate κ ∈ T (R,B) as a continuous linear operator on X̄.198

Definition 2.7 (Transition Operator). For (IE), its transition operator K on X̄199

is defined as follows: if F ∈ X, then200

KF (x) :=

∫
R
κ(x, u)dF (u), ∀x ∈ R.(2.1)201

202

Otherwise,203

KF (x) := lim
k→∞

KFk(x), ∀x ∈ R,(2.2)204
205

where {Fk}∞k=1 ⊆ X is any sequence that converges to F on X̄.206

The definition in (2.2) is because F ∈ X̄\X as a measure is ill defined and thereby,207

(2.1) does not apply. Instead, we define via convergence, which is natural because any208

continuous linear operator on X̄ must have (2.2) as a property. In subsection 3.1, we209

show that K is well defined under mild assumptions. With slight abuse of notation,210

we also write KF (x) as
∫
R κ(x, u)dF (u) for all F ∈ X̄. Now with Definition 2.7, we211

can write (IE) into an operator equation F = ξ +KF .212

Next we consider the sequence of (A-IE), specified by the inhomogeneous terms213

{ξ(r)}(r ∈ N), weight functions {ω(r)
i }J(r)

i=1 (r ∈ N) and knots {c(r)i }J(r)

i=1 (r ∈ N). Similar214

toK, we construct a sequence of approximation operators {K(r)}r∈N, defined by weight215

functions {ω(r)
i }J(r)

i=1 and knots {c(r)i }J(r)

i=1 in (A-IE).216

Definition 2.8 (Approximation Operators). For a sequence of (A-IE) indexed217

by r ∈ N, the approximation operators {K(r)}r∈N on X̄ are defined as:218

K(r)F (x) :=

J(r)∑
i=1

ω
(r)
i (x)[F (c

(r)
i )− F (c

(r)
i−1)], x ∈ R, r ∈ N,(2.3)219

220

where −∞ = c
(r)
0 < c

(r)
1 < ... < c

(r)

J(r) < c
(r)

J(r)+1
= +∞, and {ω(r)

i }J(r)

i=1 ⊆ X̄, ∀r ∈ N.221

Now we can write a sequence of (A-IE) into operator forms F = ξ(r) +K(r)F, r ∈ N.222

2.4. Verifiable conditions for using operator theory results. We now pres-223

ent a list of conditions, which are necessary and sufficient for applying the collective224

compactness and operator theory results in subsection 2.1 to solve (IE); see detailed225

statements as well as their corresponding proof in subsection 3.1. Let us define the226

following functions:227

ζ(x1, x2) := lim
u→+∞

|κ(x2, u)− κ(x1, u)|, ∀x1, x2 ∈ R,228

vΛ(x1, x2) := Vu(κ(x2, u)− κ(x1, u)), ∀x1, x2 ∈ R.229230

Condition 1 (Uniformly Bounded Variation). For all fixed x ∈ R, κ(x, u) ∈231

T (R,B) as a single-variable function of u has a uniformly bounded total variation:232

vκ := sup
x∈R

Vu(κ(x, u)) < ∞.233
234
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Condition 2 (Càdlàg and Countable Jump Discontinuities). For κ ∈ T (R,B),235

(i) κ(x,+∞) is right-continuous, and236

(ii) ∀ϵ > 0, there exists a finite split of R denoted by knots −∞ < s1 < s2 < ... <237

sNϵ < ∞ and intervals E0 = (−∞, s1), E1 = [s1, s2), ...ENϵ = [sNϵ ,+∞),238

such that ∀x1, x2 ∈ Ei, x1 < x2, i = 0, 1, ..., Nϵ, we have vΛ(x1, x2) ⩽ ϵ.239

Condition 3. For κ ∈ T (R,B) satisfying Condition 1 (uniformly bounded vari-240

ation), operator K in Definition 2.7, and approximation operators {K(r)}r∈N in Def-241

inition 2.8, the quantities satisfy:242

(i) (Point-wise convergence) ∀F ∈ X̄, ∀x ∈ R, limk→∞ K(r)F (x) = KF (x).243

(ii) (Uniform Càdlàg and countable jump discontinuities) for all ϵ > 0, there244

exists a finite split of R denoted by knots −∞ < s1 < s2 < . . . < sNϵ
< ∞245

and intervals E0 = (−∞, s1), E1 = [s1, s2), . . . , ENϵ = [sNϵ ,+∞), such that246

∀r ∈ N, x1, x2 ∈ Ei, x1 < x2, i = 0, 1, . . . , Nϵ, we have247

J(r)∑
i=1

|∆ω
(r)
i (x2)−∆ω

(r)
i (x1)| ⩽ ϵ,(2.4)248

249

where ω
(r)

J(r)+1
(x) ≡ 0, ∀r ∈ N, and250

∆ω
(r)
i (x) := ω

(r)
i+1(x)− ω

(r)
i (x), x ∈ R, i = 1, 2, . . . , J (r), r ∈ N.251252

Condition 4 (Solution Uniqueness). (IE) has a unique solution in X̄.253

Condition 2 is referred to as “càdlàg and countable jump discontinuities” because254

it describes the property of limit existence, right continuity and countable jumps: κ255

can be regarded as a map from x ∈ R to κ(x, ·) ∈ SV := {f : R 7→ R |V (f) < ∞}.256

When set SV is equipped with the distance |f(+∞)| (resp. distance V (f)), (i) (resp.257

(ii)) of Condition 2 is equivalent to that κ has left limits on R, has limits on ±∞, is258

right continuous on R, and has countable jump discontinuities. We can easily verify259

Condition 1 and Condition 2 via partial derivatives in many cases with bounded260

supports; see a few examples in [27]. In Condition 3, (ii) describes a uniform “càdlàg261

and countable jump discontinuities” property across all r ∈ N. Sufficient conditions262

which are easier to verify will be given in section 4. Condition 4 is required by263

Lemma 2.3, and a sufficient condition that ensures Condition 4 is given in section 5.264

The results proved in this paper and their required conditions/assumptions are265

summarized in Table 2 with a brief description.266

3. Convergence results. This section presents our convergence results in solv-267

ing (IE) via finite approximation defined in (A-IE). We show that bounds on errors268

are computable and approximate solutions are converging to the true solution under269

Condition 1-Condition 4.270

3.1. Operator properties. Theorem 3.1 shows that K in Definition 2.7 is a271

well-defined continuous linear operator on X̄ under Condition 1. Moreover, this con-272

dition is necessary and sufficient. Proofs for Theorem 3.1, and Lemma 3.2, Lemma 3.3273

are given in supplementary material section SM2 and section SM3, respectively.274

Theorem 3.1 (Continuous Linearity). For κ ∈ T (R,B), operator K in Defini-275

tion 2.7 is a well defined continuous linear operator on X̄ if Condition 1 (uniformly276

bounded variation) holds. Conversely, if a continuous linear operator K on X̄ has the277

form (2.1), then Condition 1 must hold.278
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Table 2
A summary of theorems and their required assumptions in all sections.

Theorems Main preconditions Summary of results

Section 3. Convergence results.
Theorem 3.1 - Condition 1 ⇔ Continuous linearity
Theorem 3.4 Condition 1 Condition 2 ⇔ Compactness
Theorem 3.5 Condition 1 Condition 3 ⇔ Collective compactness & consistency
Theorem 3.6 Assumption 1 Condition 1-Condition 4 ⇒ Solution convergence
Theorem 3.7 Assumption 1 Condition 1, Invertibility ⇒ Error bound

Section 4. Choices of Finite Approximation.

Theorem 4.2 Condition 1
a. Condition 3 ⇒ Condition 2
b. Condition 5 ⇒ Condition 3

Section 5. Conditions for Solution Uniqueness, Invertibility and Error Computation.

Theorem 5.1 Condition 1,Condition 3
a. Inequality (5.1) ⇒ Condition 4
b. Assumption 2 ⇒ Condition 4

Theorem 5.2 - Full rank ⇔ Invertibility

Theorem 5.3 -
a. Computation of inverse norm
b. Assumption 2 ⇒ Invertibility

Supplemental material.
Theorem SM6.1 Condition 1, Condition 2 Subset feasibility ⇔ Condition 4

Interpretations: Condition 1 - κ(x, u) in (IE) has uniformly bounded variation.
Condition 2 - Càdlàg and countable jump discontinuities for κ(x, u) in (IE).
Condition 3 - Point-wise convergence, uniform càdlàg and countable jump discontinuities for (A-IE).
Condition 4 - (IE) has a unique solution. Condition 5 - Proper construction of (A-IE).
Assumption 1 - A mild equation restriction for (IE). Assumption 2 - Operator norm less than 1.

Lemma 3.2. In space X̄, a set 𭟋 ⊆ X̄ is relatively compact iff279

(i). 𭟋 is uniformly bounded.280

(ii). ∀ϵ > 0, ∃ a finite split of R denoted by knots −∞ < s1 < s2 < . . . < sNϵ
< ∞281

and intervals E0 = (−∞, s1), E1 = [s1, s2), . . . , ENϵ = [sNϵ ,+∞), such that282

∀F ∈ 𭟋, ∀x1, x2 ∈ Ei, x1 < x2, i = 0, 1, . . . , Nϵ, we have |F (x2)− F (x1)| ⩽ ϵ.283

Lemma 3.3. Consider κ ∈ T (R,B) satisfying Condition 1 (uniformly bounded284

variation), operator K defined in Definition 2.7, and the unit ball U := {F ∈ X̄|285

||F ||∞ ⩽ 1}. For any x1, x2 ∈ R, we have286

(i) ∀F ∈ U, |KF (x2)−KF (x1)| ⩽ ζ(x1, x2) + 2vΛ(x1, x2).287

(ii) ∀ϵ > 0, ∃F ∈ U ∩X, |KF (x2)−KF (x1)| ⩾ ζ(x1, x2) + vΛ(x1, x2)− ϵ.288

The following theorem shows that Condition 2 is necessary and sufficient for the289

compactness of K.290

Theorem 3.4 (Compactness). For κ ∈ T (R,B) satisfying Condition 1 (uni-291

formly bounded variation), operator K in Definition 2.7 is compact on X̄ iff Con-292

dition 2 (càdlàg and countable jump discontinuities) holds.293

Proof of Theorem 3.4. We first note that (i) in Condition 2 can be equivalently294

written as: ∀ϵ > 0, there exists a finite split of R denoted by knots −∞ < s1 < s2 <295

. . . < sNϵ
< ∞ and intervals E0 = (−∞, s1), E1 = [s1, s2), . . . , ENϵ

= [sNϵ
,+∞),296

such that ∀x1, x2 ∈ Ei, x1 < x2, i = 0, 1, . . . , Nϵ, we have ζ(x1, x2) ⩽ ϵ. This can be297

easily proven by noting the following facts: (a) κ(·,+∞) is bounded by Mκ, where298

Mκ is a bound of κ(x, u) for x, u ∈ R. (b) κ(·,+∞) is non-decreasing since κ(·, u) is299

non-decreasing for all u ∈ R.300

(⇐) Under (i) and (ii) of Condition 2, ∀ϵ > 0, there exists a finite split of R301

denoted by knots −∞ < s1 < s2 < . . . < sNϵ
< ∞ and intervals E0 = (−∞, s1), E1 =302

[s1, s2), . . . , ENϵ
= [sNϵ

,+∞), such that ∀x1, x2 ∈ Ei, x1 < x2, i = 0, 1, . . . , Nϵ, we303

have ζ(x1, x2) ⩽ ϵ
2 and vΛ(x1, x2) ⩽ ϵ

4 . By Lemma 3.3, ∀F ∈ U, ∀x1, x2 ∈ Ei, x1 <304

x2, i = 0, 1, . . . , Nϵ, we have |KF (x2) − KF (x1)| ⩽ ζ(x1, x2) + 2vΛ(x1, x2) ⩽ ϵ. By305

Lemma 3.2, the bounded set {KF |F ∈ U} is relatively compact. Thus, K is compact.306

(⇒) If (i) or (ii) of Condition 2 is not satisfied, then ∃ϵ > 0, for all splits of R307

denoted by knots −∞ < s1 < s2 < ... < sN < ∞ and intervals E0 = (−∞, s1), E1 =308

[s1, s2), . . . , EN = [sN ,+∞), there exist x1, x2 ∈ Ei, x1 < x2, i = 0, 1, . . . , N such309

that ζ(x1, x2) ⩾ ϵ or vΛ(x1, x2) ⩾ ϵ. By Lemma 3.3, ∃F ∈ U such that |KF (x2) −310
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KF (x1)| ⩾ ζ(x1, x2) + vΛ(x1, x2) − ϵ
2 ⩾ ϵ

2 . By Lemma 3.2, {KF |F ∈ U} is not311

relatively compact, i.e., K is not compact. (i) and (ii) of Condition 2 are necessary.312

Condition 3 ensures that approximation operators {K(r)}r∈N in Definition 2.8 are313

collective compact and consistent to K. It is also necessary and sufficient.314

Theorem 3.5 (Consistency & Collective Compactness). For κ ∈ T (R,B) satis-315

fying Condition 1 (uniformly bounded variation), operator K in Definition 2.7, and316

approximation operators {K(r)}r∈N in Definition 2.8, {K(r)}r∈N are collectively com-317

pact and consistent (i.e., K(r)F ⇒ KF, ∀F ∈ X̄) on X̄ iff Condition 3 (point-wise318

convergence, uniform càdlàg and countable jump discontinuities) holds.319

Proof. (⇐) Let Condition 3 hold. We first show K(r) is a continuous linear op-320

erator on X̄ for all r ∈ N. Definition 2.8 suggests that K(r)F ∈ X̄ for all F ∈ X̄321

and K(r) is linear. For any F ∈ X̄ such that ||F ||∞ = 1, we have ||K(r)F ||∞ ⩽322 ∑J(r)

i=1 |F (c
(r)
i ) − F (c

(r)
i−1)| ·

∣∣∣∣ω(r)
i

∣∣∣∣
∞ ⩽ 2

∑J(r)

i=1

∣∣∣∣ω(r)
i

∣∣∣∣
∞ < ∞. Thus, K(r) is a linear,323

bounded (i.e., continuous) operator on X̄ for all r ∈ N.324

Next we prove that the set325

S := ∪r∈N {K(r)F |F ∈ U} =


J(r)∑
i=1

ω
(r)
i (x)[F (c

(r)
i )− F (c

(r)
i−1)]

∣∣∣∣ r ∈ N, F ∈ U

326

=


J(r)∑
i=1

(ai − ai−1)ω
(r)
i (x)

∣∣∣∣ r ∈ N, a0 = 0, ai ∈ [−1, 1], i ∈ N++

327

328

satisfies (ii) of Lemma 3.2. Note that (ii) of Condition 3 suggests that ∀ϵ > 0,329

there exists a finite split of R denoted by knots −∞ < s1 < s2 < ... < sNϵ
< ∞330

and intervals E0 = (−∞, s1), E1 = [s1, s2), ...ENϵ
= [sNϵ

,+∞), such that for all331

r ∈ N, x1, x2 ∈ Ei, x1 < x2, i = 0, 1, ..., Nϵ, we have
∑J(r)

i=1 |∆ω
(r)
i (x2) −∆ω

(r)
i (x1)| =332

|ω(r)

J(r)(x2)− ω
(r)

J(r)(x1)|+
∑J(r)−1
i=1 |∆ω

(r)
i (x2)−∆ω

(r)
i (x1)| ⩽ ϵ. Therefore,333 ∣∣∣∣∣∣

J(r)∑
i=1

(ai − ai−1)ω
(r)
i (x2)−

J(r)∑
i=1

(ai − ai−1)ω
(r)
i (x1)

∣∣∣∣∣∣334

=

∣∣∣∣∣∣aJ(r) [ω
(r)

J(r)(x2)− ω
(r)

J(r)(x1)]−
J(r)−1∑
i=1

ai[∆ω
(r)
i (x2)−∆ω

(r)
i (x1)]

∣∣∣∣∣∣335

⩽
∣∣∣ω(r)

J(r)(x2)− ω
(r)

J(r)(x1)
∣∣∣+ J(r)−1∑

i=1

∣∣∣∆ω
(r)
i (x2)−∆ω

(r)
i (x1)

∣∣∣ ⩽ ϵ,336

337

for all a0 = 0, ai ∈ [−1, 1], i ∈ N++. Thus, (ii) of Lemma 3.2 is satisfied for S.338

We next prove the uniform convergence (i.e., consistency) using the point-wise339

convergence in (i) of Condition 3. For any fixed F ∗ ∈ X̄, either {K(r)F ∗}r∈N340

or {K(r) F∗

||F∗||∞ }r∈N belongs to S and thus satisfies (ii) of Lemma 3.2. Therefore,341

{K(r)F ∗}r∈N satisfies (ii) of Lemma 3.2. Then for any ϵ > 0, we have intervals342

E0 = (−∞, s1), E1 = [s1, s2), ...EN = [sN ,+∞) such that for all r ∈ N, x1, x2 ∈343

Ei, x1 < x2, i = 0, 1, ..., N , we have |K(r)F ∗(x2) − K(r)F ∗(x1)| ⩽ ϵ
3 . Now we344

arbitrarily select xi from Ei, i = 0, ..., N , and M ∈ N such that ∀r1, r2 > M ,345

|K(r1)F ∗(xi) − K(r2)F ∗(xi)| ⩽ ϵ
3 for all i = 0, 1, ..., N . Therefore, ∀r1, r2 > M ,346
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∀x ∈ Ei, i = 0, 1, ..., N , |K(r1)F ∗(x) − K(r2)F ∗(x)| ⩽ |K(r1)F ∗(x) − K(r1)F ∗(xi)| +347

|K(r1)F ∗(xi) − K(r2)F ∗(xi)| + |K(r2)F ∗(xi) − K(r2)F ∗(x)| ⩽ ϵ
3 + ϵ

3 + ϵ
3 ⩽ ϵ, i.e.,348

||K(r1)F ∗ −K(r2)F ∗||∞ ⩽ ϵ for all r1, r2 ⩾ M . Thus, K(r)F ∗ ⇒ KF ∗ for all F ∗ ∈ X̄.349

Lastly, we prove {K(r)}r∈N is collectively compact. Since (ii) of Lemma 3.2 is sat-350

isfied for S, we only need to prove that (i) of Lemma 3.2 also holds. i.e., S is uniformly351

bounded. For any F ∈ X̄, we have K(r)F ⇒ KF , ||KF ||∞ < ∞ and ||K(r)F ||∞ <352

∞, r ∈ N. Thus, supr∈N ||K(r)F ||∞ < ∞. By the uniform boundedness principle,353

we have supr∈N ||K(r)||O < ∞. Thereby, supF∈S ||F ||∞ = supF∈U,r∈N ||K(r)F ||∞ ⩽354

supr∈N ||K(r)||O < ∞. Thus, (i) of Lemma 3.2 also holds.355

(⇒) Let {K(r)}r∈N be collectively compact and consistent. Because the uniform356

convergence (i.e., consistency) implies point-wise convergence, (i) of Condition 3 holds.357

The collective compactness of {K(r)}r∈N implies S is relatively compact. By358

Lemma 3.2, for all ϵ > 0, there exists a finite split of R denoted by knots −∞ < s1 <359

s2 < ... < sNϵ
< ∞ and intervals E0 = (−∞, s1), E1 = [s1, s2), ...ENϵ

= [sNϵ
,+∞),360

such that for all r ∈ N, x1, x2 ∈ Ei, x1 < x2, i = 0, 1, ..., Nϵ, we have361 ∣∣∣∣∣∣
J(r)∑
i=1

(ai − ai−1)ω
(r)
i (x2)−

J(r)∑
i=1

(ai − ai−1)ω
(r)
i (x1)

∣∣∣∣∣∣ ⩽ ϵ,362

363

for all a0 = 0, ai ∈ [−1, 1], i ∈ N++, r ∈ N. For any fixed r ∈ N, let ai =364

−sign
(
∆ω

(r)
i (x2)−∆ω

(r)
i (x1)

)
, i = 1, 2, ..., J (r). Then we have365

J(r)∑
i=1

∣∣∣∆ω
(r)
i (x2)−∆ω

(r)
i (x1)

∣∣∣ = J(r)∑
i=1

(ai − ai−1)ω
(r)
i (x2)−

J(r)∑
i=1

(ai − ai−1)ω
(r)
i (x1) ⩽ ϵ.366

367

Thus, (ii) of Condition 3 holds.368

3.2. Convergence of approximate solutions. Recall that we are able to write369

(IE) into operator equation F = ξ + KF in space X̄ and a sequence of (A-IE) into370

F = ξ(r)+K(r)F (r ∈ N). Then we have the approximate solution convergence results.371

Theorem 3.6 (Convergence of Finite Approximation). Consider (IE), a se-372

quence of (A-IE) indexed by r ∈ N, and their respective solutions F̄ ,
{
F̄ (r)

}
r∈N in373

X̄. If Assumption 1 and Condition 1-Condition 4 hold, then there exists r0 ∈ N such374

that for all r > r0,375

• (I − K(r))−1 exists,376

• (stability) {||(I − K(r))−1||O | r > r0} is bounded,377

• (uniform convergence) F̄ (r) uniquely exists, F̄ (r) ⇒ F̄ , and378

||F̄ (r) − F̄ ||∞ ⩽ ||(I − K(r))−1||O ·
(
||K(r)F̄ −KF̄ ||∞ + ||ξ(r) − ξ||∞

)
.(3.1)379

380

where I is the identity operator, and operators K and {K(r)}r∈N are as defined in381

Definition 2.7 and Definition 2.8.382

Proof. Using Lemma 2.3, collective compactness and consistency of {K}r∈N (im-383

plied by Condition 1-Condition 3, Theorem 3.5) and solution uniqueness of (IE) (i.e.,384

Condition 4), we directly have Theorem 3.6.385

Remark: “equation stability”. The assumptions in Theorem 3.6 have an386

“equation stability” interpretation from the perspective of linear algebra: if (IE) is387

feasible and has a unique solution, then it remains feasible and has a unique solution388
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for all ξ̂ and K̂ in some neighborhood of ∥ξ̂−ξ∥∞ ⩽ ϵ and ∥K̂−K∥O ⩽ ϵ; on the other389

hand if (IE) is infeasible, then it remains infeasible for all ξ̂ in some neighborhood of390

∥ξ̂ − ξ∥∞ ⩽ ϵ. See detailed proof in section SM4 in supplemental materials.391

3.3. Approximation error bound.392

Theorem 3.7 (Error of Finite Approximation). Consider (IE), an instance of393

(A-IE), and their respective solutions F̄ , F̄ (r) in X̄. If Assumption 1 and Condition 1394

hold and (I − K(r))−1 exists, then inequality (3.1) holds, where I is the identity395

operator, and operators K and K(r) are as defined in Definition 2.7 and Definition 2.8.396

Proof. Recall the reformulation of (IE) into operator equation F = ξ+KF and (A-397

IE) into F = ξ(r)+K(r)F . Lemma 2.2 directly implies error bounds in Theorem 3.7.398

Necessary and sufficient conditions for the existence of (I − K(r))−1 used in Theo-399

rem 3.7 are outlined in subsection 5.2. The difference between the error bound in400

Theorem 3.6 and that in Theorem 3.7 is that the later does not require Condition 2-401

Condition 4 or a sufficiently large r, i.e., r > r0 as in Theorem 3.6. Therefore, the402

later is more suitable for error computation.403

4. Choices of Finite Approximation. Despite the necessity and sufficiency404

of Condition 3 for consistency and collective compactness, it may be difficult to de-405

termine if Condition 3 is satisfied in practice. In this section, we provide tractable406

sufficient conditions for Condition 3, and discuss how to satisfy Condition 3 by prop-407

erly choosing the weight functions {ω(r)
i }J(r)

i=1 and knots {c(r)i }J(r)

i=1 in (A-IE).408

For convenience, we define the approximate transition kernel for K(r), which is409

an analog of kernel κ for K:410

κ(r)(x, u) :=
J(r)∑
i=1

ω
(r)
i (x) · 1{u ∈ (c

(r)
i−1, c

(r)
i ]}, ∀x, u ∈ R, r ∈ N.(4.1)411

412

We now provide two types of approximation methods for solving our problem, which413

can be interpreted as follows (see illustrations in Figure 1). In Type II sequence,414

the approximate kernel κ(r) on a finite-support is obtained by truncating the origi-415

nal kernel κ, and the approximate solution is the stationary distribution under the416

approximate kernel. For Type I sequence, we use Type II sequence in the first step.417

After obtaining the approximate distribution, we “plug it back” into the original418

model, subsequently perform an additional iteration of original transition and use419

the final distribution as a solution. Therefore, Type I essentially uses the iterated420

approximation idea briefly described in Table 1.421

Definition 4.1. For κ ∈ T (R,B), define two types of approximation sequences422

{ω(r)
i }J(r)

i=1 , {c
(r)
i }J(r)

i=1 (r ∈ N) as follows:423

• (Type I) {ω(r)
i }J(r)

i=1 , {c
(r)
i }J(r)

i=1 (r ∈ N) are exact finite approximation of κ in424

the sense that c
(r)
i ∈ R, i = 1, 2, ..., J (r), r ∈ N and ω

(r)
i (x) = κ(x, c

(r)
i ), x ∈425

R, i = 1, 2, ..., J (r), r ∈ N.426

• (Type II) {ω(r)
i }J(r)

i=1 , {c
(r)
i }J(r)

i=1 (r ∈ N) are step-wise finite approximation of427

κ in the sense: (1) (proper truncations) for all r ∈ N,428

ω
(r)
i (x) =

J(r)∑
j=1

κ(c
(r)
j , c

(r)
i )1{x ∈ [c

(r)
j , c

(r)
j+1)}, x ∈ R, i = 1, 2, ..., J (r).429

430
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Fig. 1. Plots of an example kernel function z = κ(x, u) on [0, 1]2 and its finite approximations
with 9 knots, where the smooth surface of original kernel is approximated by 8 “ribbons” in Type I
approximation and by 8× 8 “squares” in Type II approximation.

(2) (Increasing partitions) for all r1 < r2, r1, r2 ∈ N, we have {c(r1)i }J(r1)i=1 ⊆431

{c(r2)i }J(r2)i=1 . (3) There exist {ϵ(r)}r∈N ⊆ R+ and limr→∞ ϵ(r) = 0 such that432

∀r ∈ N, ∀x1, x2 ∈ [c
(r)
i−1, c

(r)
i ) ∩ R, x1 < x2, i = 1, 2, ..., J (r) + 1, we have433

vΛ(x1, x2) + ζ(x1, x2) ⩽ ϵ(r). In other words, {c(r)i }J(r)

i=1 are defined by a434

sequence of finite splits for càdlàg and countable jump discontinuities of κ.435

The following theorem provides sufficient conditions for Condition 3.436

Theorem 4.2 (Properties of Condition 3). Consider κ ∈ T (R,B) satisfying Con-437

dition 1 (uniformly bounded variation), operator K in Definition 2.7, and approxima-438

tion operators {K(r)}r∈N in Definition 2.8. Then439

(i) Condition 3 (point-wise convergence, uniform càdlàg and countable jump dis-440

continuities) implies Condition 2 (càdlàg and countable jump discontinuities).441

(ii) Item (i) (point-wise convergence) of Condition 3 holds if ∃Mω, vω < ∞,442

|κ(r)(x, u)| ⩽ Mω, ∀x, u ∈ R, r ∈ N,(4.2)443

Vu(κ
(r)(x, u)) ⩽ vω, ∀x ∈ R, r ∈ N,(4.3)444

lim
r→∞

κ(r)(x, u) = κ(x, u), ∀u, x ∈ R,(4.4)445
446

i.e., approximate transition kernels {κ(r)}r∈N defined in (4.1) are uniformly447

bounded, uniformly variation-bounded and convergent to κ.448

(iii) Item (ii) (uniform càdlàg and countable jump discontinuities) of Condition 3449

holds if Condition 2 holds, and {ω(r)
i }J(r)

i=1 , {c
(r)
i }J(r)

i=1 (r ∈ N) belong to Type450

I or Type II approximation sequences given in Definition 4.1.451

Proof. (i) is because consistency and collective compactness imply compactness452

according to [17] (Remark 4.7.9). At the same time, the former is equivalent to453

Condition 3 (Theorem 3.5), while the later is equivalent to Condition 2 (Theorem 3.4).454

(ii) will be proven by dominated convergence. Note that {κ(r)}r∈N are bounded,455

and for any F ∈ X, K(r)F can be written as K(r)F (x) =
∫
R κ(r)(x, u)dF (u), ∀x ∈456
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R, r ∈ N. Thereby, for any F ∈ D ⊆ X and x ∈ R,the dominated convergence ensures457

lim
r→∞

K(r)F (x) =

∫
R

lim
r→∞

κ(r)(x, u)dF (u) =

∫
R
κ(x, u)dF (u) = KF (x).458

459

Because X is a linear span of D, for any F ∈ X, limr→∞ K(r)F (x) = KF (x), ∀x ∈ R.460

We next expand this convergence result to F ∈ X̄. Consider F = F ′ + e, F ∈461

X̄, F ′ ∈ X, ||e||∞ < ϵ. Here F ′ can be regarded as an approximation to F with a462

bounded error e in the subspace X. For any x ∈ R, we have already proven that463

limr→∞ K(r)F ′(x) = KF ′(x). We only need to prove limϵ→0 lim supr→∞ |K(r)e(x) −464

Ke(x)| = 0. Indeed, according to eq(SM2.8) in the proof of Theorem 3.1, we have465

||Ke||∞ ⩽ (2vκ + Mκ)ϵ, and ||K(r)e||∞ ⩽ (2vω + Mω)ϵ, ∀r ∈ N. Therefore, limϵ→0466

lim supr→∞ |K(r)e(x)−Ke(x)| = 0, limr→∞ K(r)F (x) = KF (x).467

(iii) We will show for Type I and II sequences, {ω(r)
i }J(r)

i=1 are embedded in κ and468

inherit the property of càdlàg and countable jump discontinuities. Rewrite (2.4) as469

J(r)∑
i=1

∣∣∆ω
(r)
i (x2)−∆ω

(r)
i (x1)

∣∣ ⩽ ϵ470

⇔
J(r)∑
i=1

∣∣∣∣[ω(r)
i+1(x2)− ω

(r)
i+1(x1)

]
−
[
ω
(r)
i (x2)− ω

(r)
i (x1)

]∣∣∣∣ ⩽ ϵ471

⇔Vu(κ
(r)(x2, u)− κ(r)(x1, u)) + |κ(r)(x2,+∞)− κ(r)(x1,+∞)| ⩽ ϵ.472473

Recall that if Condition 2 holds, ∀ϵ > 0, there exists a finite split of R denoted474

by knots −∞ < s1 < s2 < ... < sNϵ
< ∞ and intervals E0 = (−∞, s1), E1 =475

[s1, s2), ..., ENϵ
= [sNϵ

,+∞), such that ∀x1, x2 ∈ Ei, i = 0, 1, ..., Nϵ, x1 < x2, we have476

vΛ(x2, x1)+ζ(x2, x1) ⩽ ϵ. For Type I, by definitions of κ(r) in (4.1) and {ω(r)
i }J(r)

i=1 (r ∈477

N) in Definition 4.1, we have478

Vu(κ
(r)(x2, u)− κ(r)(x1, u)) + |κ(r)(x2,+∞)− κ(r)(x1,+∞)|479

⩽Vu(κ(x2, u)− κ(x1, u)) + |κ(x2,+∞)− κ(x1,+∞)|480

⩽vΛ(x2, x1) + ζ(x2, x1) ⩽ ϵ.481482

In other words, the finite splits generated by Condition 2 also apply to that required483

by (ii) of Condition 3. Thus, (ii) of Condition 3 holds. The proof for Type II follows484

similar analysis and is given in the supplemental material section SM5.485

Theorem 4.2 shows that we can choose {ω(r)
i }J(r)

i=1 and knots {c(r)i }J(r)

i=1 following Defini-486

tion 4.1. It also naturally introduces the following sufficient condition for Condition 3.487

Condition 5 (Sufficient Condition for Condition 3). Consider κ ∈ T (R,B) sat-488

isfying Condition 1 (uniformly bounded variation), and the approximation sequence489

{ω(r)
i }J(r)

i=1 , {c
(r)
i }J(r)

i=1 (r ∈ N). The quantities satisfy490

(i) Condition 2 (càdlàg and countable jump discontinuities).491

(ii) ∃Mω, vω < ∞ such that (4.2)-(4.4) hold, i.e., {κ(r)}r∈N defined in (4.1) are492

uniformly bounded, uniformly variation bounded and convergent to κ.493

(iii) {ω(r)
i }J(r)

i=1 , {c
(r)
i }J(r)

i=1 (r ∈ N) belong to any type in Definition 4.1.494

5. Conditions for Solution Uniqueness, Invertibility and Error Com-495

putation. In this section, we provide two sufficient conditions for Condition 4 (i.e.,496

the solution uniqueness of (IE)) based on Lemma 2.4. The first condition is based497
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14 S. LI, AND S. MEHROTRA

on norm inequality, and the second is based on feasibility. We demonstrate the first498

condition in the main text. The second is given in supplemental material section SM6,499

where we also show that a stronger norm than || · ||∞ imposes stronger assumptions to500

reach the same results. Finally, we show how to determine the invertibility of I−K(r)501

in Theorem 3.7 and a computing approach for errors in Theorem 3.6 and Theorem 3.7.502

5.1. Approach I for solution uniqueness: norm inequality. Lemma 2.4503

suggests that under Condition 1 and Condition 3 (implying collective compactness and504

consistency), the following conditions are equivalent: (i) the solution uniqueness of505

(IE) for all ξ ∈ X̄, (ii) the solution existence of (IE) for all ξ ∈ X̄, (iii) the invertibility506

of I − K, and (iv) the stability of {K(r)}r∈N. In practice, we may prove solution507

uniqueness by showing (5.1) or (5.2) below. Inequality (5.1) is “almost necessary”: it508

holds as long as the solution is unique and r is sufficiently large.509

Theorem 5.1 (Solution Uniqueness I). For κ ∈ T (R,B) satisfying Condition 1,510

operator K in Definition 2.7, and approximation operators {K(r)}r∈N defined in Def-511

inition 2.8 and satisfying Condition 3, the following statements are equivalent512

(i) F = ξ +KF has a unique solution F in X̄ for all ξ ∈ X̄, (i.e., Condition 4).513

(ii) There exists r ∈ N, (I − K(r))−1 exists and514

||(K −K(r))K||O ⩽
1

||(I − K(r))−1||O
.(5.1)515

516

(iii) There exists r0 ∈ N such that ∀r > r0, (I − K(r))−1 exists and (5.1) holds.517

Finally, statements (i)-(iii) hold if ||K||O < 1 or518

sup
x∈R

{
κ(x,+∞) + 2Vu(κ(x, u))

}
< 1.(5.2)519

520

Proof. This theorem is mainly direct results of Lemma 2.4: (i), (ii) and (iii) of521

Theorem 5.1 respectively correspond to (iii), (iv) and (v) of Lemma 2.4. Thus, (i),522

(ii) and (iii) of Theorem 5.1 are equivalent statements.523

Additionally, according to Lemma 2.4, (i)-(iii) of Theorem 5.1 hold if ||K||O < 1.524

According to eq(SM2.8), ||K||O is bounded by supx∈R
{
κ(x,+∞) +2Vu(κ(x, u))

}
.525

Thus, (i)-(iii) of Theorem 5.1 hold if supx∈R
{
κ(x,+∞) +2Vu(κ(x, u))

}
< 1.526

Theorem 5.1 naturally introduces the following assumption, which is easy to verify.527

Assumption 2. Kernel κ ∈ T (R,B) satisfies inequality (5.2).528

Assumption 2 is sufficient for (i)-(iii) in Theorem 5.1 as well as Condition 4. In sec-529

tion 6, we will use numerical examples satisfying Assumption 2 to demonstrate the530

accuracy and efficiency of our solution methods. However, in practice, Assumption 2531

can be too strong, particularly for stochastic models. A more practical sufficient con-532

dition for Condition 4 is outlined, due to space limitations, in supplemental material533

section SM6. Demonstrations with stochastic model examples can be found in [27].534

5.2. Determining invertibility and computing approximation errors. In535

this subsection, we simplify our notations. Since we focus on only one instance of (A-536

IE), we omit the index (r). For example, knot c
(r)
i will be denoted by ci. The only537

exceptions are that operator K(r) and kernel κ(r) will be denoted by K′ and κ′ instead538

to distinguish from the operator K in Definition 2.7 and κ in (IE).539

The invertibility of I −K′ in Theorem 3.7 is easy to determine via determinants:540
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Theorem 5.2 (Invertibility). For an instance of operator K′ in Definition 2.8,541

(I − K′)−1 exists iff matrix H is non-singular, i.e., det(H) ̸= 0, where H is defined542

by Hij := δij − ωi(cj) + ωi+1(cj), i, j = 1, 2, ..., J .543

Proof. (⇒) Due to the invertibility of I − K′, for any ξ ∈ X̄, there exists F ∈ X̄544

such that F (x) = ξ(x) +
∑J
i=1 ωi(x)[F (ci) − F (ci−1)], ∀x ∈ R, which yields a J × J545

linear equation system546

J∑
i=1

[δij − ωi(cj) + ωi+1(cj)]F (ci) = ξ(cj), j = 1, 2, ..., J.(5.3)547

548

The coefficient matrix is exactly the transposed H. Since (ξ(c1), ξ(c2), ..., ξ(cJ)) can549

take any values in RJ , H must be non-singular.550

(⇐) By the non-singularity of H, for any ξ ∈ X̄, there exists a vector (F ∗(c1),551

F ∗(c2), ..., F
∗(cJ)) ∈ RJ that uniquely solves (5.3). This yields F ∗(cj) = ξ(cj) +552 ∑J

i=1 ωi(cj)[F
∗(ci)− F ∗(ci−1)], j = 1, 2, ..., J. Let us define553

F (x) := ξ(x) +

J∑
i=1

ωi(x)[F
∗(ci)− F ∗(ci−1)], ∀x ∈ R.554

555

Then (F ∗(c1), F
∗(c2), ..., F

∗(cJ)) = (F (c1), F (c2), ..., F (cJ)) and ∀x ∈ R, F (x) =556

ξ(x) +
∑J
i=1 ωi(x)[F (ci)− F (ci−1)]. Thus, (I − K′)F = ξ and I − K′ is surjective.557

Suppose F ′ ∈ X̄ and (I − K′)F ′ = ξ. Then (F ′(c1), F
′(c2), ..., F

′(cJ)) ∈ RJ also558

solves (5.3). Since the solution is unique, we must have (F ′(c1), F
′(c2), ..., F

′(cJ)) =559

(F ∗(c1), F
∗(c2), ..., F

∗(cJ)) = (F (c1), F (c2), ..., F (cJ)). Thus,560

F ′(x) = ξ(x) +

J∑
i=1

ωi(x)[F
′(ci)− F ′(ci−1)]561

= ξ(x) +

J∑
i=1

ωi(x)[F (ci)− F (ci−1)] = F (x), ∀x ∈ R.562

563

Therefore, (I − K′)F = ξ has a unique solution and I − K′ is injective.564

Finally, because I − K′ is both injective and surjective, I − K′ is invertible.565

We also need to compute errors outlined in (3.1) of Theorem 3.7. For the first566

factor ||(I − K′)−1||O, we can use the following theorem.567

Theorem 5.3 (Norm of Inverse). For an operator K′ defined in Definition 2.8,568

(i) ||K′||O ⩽ supx∈R
{
κ(x,+∞) + Vu(κ(x, u))

}
if K′ belongs to any type in Defi-569

nition 4.1. Moreover, if ||K′||O < 1 or Assumption 2 holds, then (I − K′)−1570

exists and ||(I − K′)−1||O ⩽ 1
1−||K′||O .571

(ii) If (I − K′)−1 exists and {ωi}Ji=1 are step functions with knots {ci}Ji=1, i.e.,572

ωi(x) =
∑J
j=1 pij1{x ⩾ cj}, pij ∈ R, i, j = 1, 2, ..., J , then ||(I − K′)−1||−1

O573

can be exactly obtained from a series of linear programs:574

||(I − K′)−1||−1
O = min

k=0,1,...,J
{y∗k},(5.4)575

576

where y∗k is obtained from the following linear program (where a0 ≡ 0):577

min
yk∈R,{aj}J

j=1∈[−1,1]J
yk : −yk ⩽ aj + τδjk(1− aj)−

J∑
i=1

ωi(cj)[ai − ai−1] ⩽ yk,578

579
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j = 0, 1, ..., J, τ ∈ {0, 1}.580

Here (5.4) is developed based on the observation that, by definition, ||(I−K′)−1||−1
O =581

inf ||F ||∞⩽1 ||(I − K′)F ||. The decision variables {aj}Jj=1 and yk are used to represent582

the infimum. A proof is in supplement material section SM7.583

For term ||K′F̄ − KF̄ ||∞, we discuss its computation when F̄ defines a finite584

measure. By definitions of K, K′ and κ, we have that585

∣∣K′F̄ (x)−KF̄ (x)
∣∣ = ∣∣∣∣∫

R
κ′(x, u)dF̄ (u)−

∫
R
κ(x, u)dF̄ (u)

∣∣∣∣(5.5)586

=

∣∣∣∣∫
R

(
κ′(x, u)− κ(x, u)

)
dF̄ (u)

∣∣∣∣ ⩽ F̄ (+∞) · sup
x,u∈R

|κ′(x, u)− κ(x, u)|,587

588

where the approximate kernel κ′ is defined based on {ωi}Ji=1, {ci}Ji=1 and equation589

(4.1). Thus, we have ||K′F̄ −KF̄ ||∞ ⩽ F̄ (+∞) · supx,u∈R |κ′(x, u)− κ(x, u)|.590

Remark: near-optimal approximation. Suppose the support is bounded,591

{κ(r)}r∈N are defined using Type II in Definition 4.1, and {ξ(r)}r∈N are step functions592

approximating ξ. If both ξ and κ in (IE) are Lipschitz continuous, then both ||ξ−ξ′||∞593

and ||K′F̄ − KF̄ ||∞ (bounded by F̄ (+∞) · supx,u∈R |κ′(x, u) − κ(x, u)|) can be as594

small as O( 1
J(r) ), where J (r) is the number of knots used for approximate solution595

F̄ (r). Because {F̄ (r)}r∈N are discrete distributions, J (r) is also the number of jumps.596

Therefore, we can also conclude that the approximation error can be as small as597

O( 1
J ), where J is the number of jumps in the discrete approximate solution provided598

by finite approximation. Here, J can be regarded as a measure of complexity for599

discrete approximate solutions to (IE). We will verify this error in section 6.600

Such an error is near-optimal among all methods that use discrete distributions601

as approximate solutions, as long as the true solution F̄ is continuous and strictly602

increasing on some small interval. For a brief proof, we consider this special small603

interval. Suppose the true solution increases by δ on this interval. Because the true604

solution is continuous while the approximate solution is discrete, the error on this605

small interval is at least δ
2(J+1) . Then the overall error is also at least δ

2(J+1) , which606

is at least as large as the finite approximation error by a constant multiplier.607

6. Numerical Experiments. In this section, we verify the accuracy of our608

approach by considering two example equations. The first equation has multiple dis-609

continuities and an available solution. The second has “everywhere non-differentiable”610

elements, and its solution is not available. For each experiment, we evaluate approx-611

imation errors and use plots to show the generated solutions. All computations are612

performed on a 32G memory 3.6GHz 8-Core Intel platform.613
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6.1. Example I with multiple discontinuities. Let Ω = [0, 1) and consider614

F (x) = ξ(x) +

∫
Ω

κ(x, u)dF (u), x ∈ Ω,(6.1)615

ξ(x) = − 2.56

3× 103
+

1.7257x

60
+

2∑
k=0

1

{
x ⩾

k

3

}
· 8

k(2− x)9

1.2× 103
+616

3∑
k=0

1

{
x ⩾

k

4

}
· 3

k(2− x)9

6× 103
+

4∑
k=0

1

{
x ⩾

k

5

}
· 3

k(2− x)9

3× 103
+617

5∑
k=0

1

{
x ⩾

k

6

}
· 1.7257

3.6× 102
, x ∈ Ω,618

κ(x, u) =
6x+

∑5
k=0 1

{
x ⩾ k

6

}
40(2− u)8

, x, u ∈ Ω.619
620

The solution to (6.1) is F̄ (x) = − 256
3×103 +

∑2
k=0 1

{
x ⩾ k

3

}
· 8

k(2−x)9
1.2×103 +

∑3
k=0 1

{
x ⩾ k

4

}
·621

3k(2−x)9
6×103 +

∑4
k=0 1

{
x ⩾ k

5

}
· 3k(2−x)9

3×103 , ∀x ∈ Ω.622

Equation (6.1) is considered in the space X̄Ω, defined by the collection of distribu-623

tions in X̄ with support Ω. Condition 1 is satisfied because supx∈Ω Vu (κ(x, u); Ω) ⩽624

supx∈Ω

6x+
∑5

k=0 1{x⩾ k
6}

40 < 1
3 < ∞. Condition 2 is also satisfied because κ(·, 1) is625

right-continuous and vΛ(x1, x2) <
3
20 |x2 − x1|, ∀(x1, x2) ∈

[
k
6 ,

k+1
6

)2
, k = 0, 1, ..., 5.626

Type I approximation. For all r ∈ N++, define a Type I sequence as J (r) =627

7.5 · 2r; ξ(r)(x) = ξ(x), x ∈ Ω; c
(r)
i = i−1

7.5·2r , i = 1, 2, ..., J (r);ω
(r)
i (x) = κ(x, c

(r)
i ), x ∈628

Ω, i = 1, 2, ..., J (r). It is easy to show that {κ(r)}r∈N++
satisfy uniform boundedness,629

uniform variation-boundedness and convergence to κ. Thus, Condition 5 is satisfied.630

Also, (6.1) has a unique solution F̄ ∈ X̄Ω (i.e., Condition 4) due to Theorem 5.1 and631

sup
x∈Ω

{
κ(x, 1) + 2Vu(κ(x, u); Ω)

}
⩽ sup
x∈Ω

6x+
∑5
k=0 1

{
x ⩾ k

6

}
40

· 3 ⩽
9

10
< 1.632

633

With all preconditions satisfied, we have the convergence.634

For error computation, we have ||ξ(r) − ξ||∞ = 0, r ∈ N++. By (5.5), ||K′F̄ −635

KF̄ ||∞ < 12.2
5∗2r , r ∈ N++ (note F̄ is a linear combination of probability distributions).636

Additionally, by (i) of Theorem 5.3, ||(I − K(r))−1||O ⩽ 1
1− 3

5

⩽ 2.5, r ∈ N++. Then637

(3.1) can be written as ||F̄ (r) − F̄ ||∞ < 6.1
2r .638

Type II approximation. Alternatively, we define approximation equations by:639

ω
(r)
i (x) =

∑J(r)

j=1 κ(c
(r)
j , c

(r)
i )1{x ∈ [c

(r)
j , c

(r)
j+1)}, x ∈ Ω, i = 1, 2, ..., J (r), r ∈ N++;640

ξ(r)(x) =
∑J(r)

j=1 ξ(c
(r)
j )1{x ∈ [c

(r)
j , c

(r)
j+1)}, x ∈ Ω, r ∈ N++.641

As in Type I case, {κ(r)}r∈N++
satisfy uniform boundedness, uniform variation642

boundedness and convergence to κ. Thus, Condition 5 is satisfied. Also, ξ(r) ⇒ ξ.643

With all preconditions satisfied, we have the convergence of finite approximation644

solutions. For error computation, because |ξ′(x)| ⩽ 7 if 60x /∈ Z, we have ||ξ(r) −645

ξ||∞ ⩽ 7
7.5∗2r , r ∈ N++. By (5.5), ||K(r)F̄ − KF̄ ||∞ < 12.8

5∗2r , r ∈ N++. Additionally,646

according to (i) of Theorem 5.3, ||(I −K(r))−1||O ⩽ 1
1− 3

5

⩽ 2.5, r ∈ N++. Then (3.1)647

can be written as ||F̄ (r) − F̄ ||∞ < 6.4
2r .648
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Results. Results for a series of finite approximation solutions (r = 2, 4, ..., 12649

for Type I and II approximation sequences) are given in Table 3. In Table 3, the650

“number of knots” refers to the knots used in finite approximation. The “theoretical651

L∞ error bounds” refer to the bound obtained from (3.1). The “empirical L∞ errors”652

refer to the supremum-normed error between the true and the approximate solutions,653

computed via discretizing support [0, 1) and enumerating {x ∈ [0, 1)|106x ∈ N}.654

Similarly, the “empirical L1 errors” refer to the mean absolute error. The true solution655

and some of the finite approximation solutions are plotted in Figure 2.656

Fig. 2. Plots of the true solution to distribution integral equation (6.1) and finite approximation
solutions from (A-IE) (r = 1 for Type I and r = 1, 2, 3, 4 for Type II), each type with a convergence
trend (discontinuities connected for visualization) in Experiment I.
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b. Type I approximate solution (r = 1)
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c. Type II approximate solution (r = 1)
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d. Type II approximate solution (r = 2)
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e. Type II approximate solution (r = 3)
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f. Type II approximate solution (r = 4)

Table 3
Comparison of empirical L1 errors, empirical L∞ errors, theoretical L∞ error bounds and

computation time (seconds) across a series of finite approximation solutions (r = 2, 4, ..., 12 for both
Type I and II) in Experiment I.

a. Type I approximate solutions

r Number of knots
Empirical errors Theoretical error bounds

L∞ Time
L1 L∞

2 3.00E+01 5.62E-04 1.04E-03 1.53E+00 2.72E-03
4 1.20E+02 2.26E-04 4.17E-04 3.81E-01 6.62E-03
6 4.80E+02 6.94E-05 1.28E-04 9.53E-02 5.15E-02
8 1.92E+03 2.91E-05 5.38E-05 2.38E-02 8.24E-01
10 7.68E+03 1.90E-05 3.50E-05 5.96E-03 1.94E+01
12 3.07E+04 9.96E-07 1.84E-06 1.49E-03 5.50E+02

b. Type II approximate solutions

r Number of knots
Empirical errors Theoretical error bounds

L∞ Time
L1 L∞

2 3.00E+01 4.73E-02 2.06E-01 1.60E+00 6.45E-02
4 1.20E+02 1.17E-02 5.55E-02 4.00E-01 1.08E-02
6 4.80E+02 2.91E-03 1.41E-02 1.00E-01 6.30E-02
8 1.92E+03 7.27E-04 3.55E-03 2.50E-02 8.27E-01
10 7.68E+03 1.82E-04 8.87E-04 6.25E-03 1.90E+01
12 3.07E+04 4.54E-05 2.21E-04 1.56E-03 5.22E+02

While the solutions generated by both Type I and Type II sequences converge,657

Type I generated solutions converge faster. With only 15 knots (r = 1), Type I658

generated solution is barely distinguishable from the true solution in Figure 2. In659

Table 3, the empirical L1 errors, empirical L∞ errors, and theoretical L∞ errors660
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of Type I are all smaller than that for Type II. We observe that the empirical and661

theoretical errors are in the order of O( 1
N ) (see remark in subsection 5.2). A reason for662

improved performance of Type I is that it can be regarded as an “iterated” version663

of Type II (see section 4). The extra iteration increases the “smoothness” of the664

approximate solutions. This advantage is gained with no significant addition to the665

computational time, as both approaches solve a system of N linear equations, where666

N is the number of knots.667

With the Banach space and the operator equations constructed in this paper, we668

also tested a naive adaptation of Neumann method. Recall that the calculation of669

Neumann series requires computation of Kiξ. In our adaptation, we performed this670

calculation by discretizing the support [0, 1) and created {x ∈ [0, 1)|10ix ∈ N}(i =671

1, 2, ..., 5) equally spaced points to numerically evaluate all integrals. We found that672

the empirical L∞ errors of the approach were greater than 0.72 even when using 105673

discretization points and a similar computational effort to that of Type I or Type II674

approach. This is because such an approach does not consider possible jumps of the675

true solution and the error is reflected at these jump points in the final solution.676

6.2. Example 2 with everywhere non-differentible functions. We con-677

struct the equation by taking the inhomogenenous term ξ(x) :=
∑∞
k=0 a

k cos(bkπx) to678

be the Weierstrass function [34]. We use a = 1
2 , b = 15 for the numerical testing. The679

function is continuous but non-differentiable everywhere on Ω = [0, 1). With κ(x, u) =680
xu
4 , an analytic solution of the integral equation F (x) = ξ(x)+

∫
Ω
κ(x, u)dF (u), x ∈ Ω681

is not available. Note that Condition 1 is satisfied because supx∈Ω Vu (κ(x, u); Ω) =682

supx∈Ω
x
4 = 1

4 < ∞. Condition 2 is also satisfied because κ(·, 1) is right-continuous and683

vΛ(x1, x2) =
1
4 |x2−x1|, ∀(x1, x2) ∈ Ω. Let us define a Type II sequence: for all r ∈ N,684

J (r) = 2r; ξ(r)(x) =
∑r
k=0 a

k cos(bkπx), x ∈ Ω; c
(r)
i = i−1

2r , i = 1, 2, ..., J (r);ω
(r)
i (x) =685 ∑J(r)

j=1 κ(c
(r)
j , c

(r)
i )1{x ∈ [c

(r)
j , c

(r)
j+1)}, x ∈ Ω, i = 1, 2, ..., J (r). It is easy to show that686

{κ(r)}r∈N satisfy uniform boundedness, uniform variation-boundedness and conver-687

gence to κ. Thus, Condition 5 is satisfied. Additionally, ξ(r) ⇒ ξ. The integral688

equation also has a unique solution F̄ ∈ X̄ (i.e., Condition 4 is satisfied) because689

supx∈Ω

{
κ(x, 1) + 2Vu(κ(x, u); Ω)

}
= supx∈Ω

x·3
4 = 3

4 < 1 (see Theorem 5.1). Given690

all preconditions, we have the solution convergence.691

Figure 3 plots the generated approximate solutions. Since the true solution is not692

available, we use concepts of “equation residue” and “error from available solutions”693

to discuss solution errors. The “L∞ equation residue” is obtained by evaluating the694

maximal (across x) absolute difference of right and left side of the equation with each695

approximate solution, while “L1 equation residue” is the mean of absolute difference.696

Since the integration is not computable in closed form, we estimate its value by697

discretizing support [0, 1) and enumerating {x ∈ [0, 1)|104x ∈ N}. The “L∞ error698

from available solutions” is the maximal (across x) absolute difference (scaled by 2) of699

the r-th approximate solution with subsequent solutions (till r = 15), while “L1 error700

from available solutions” is the mean absolute difference. All maximal/mean errors701

are obtained by discretizing support [0, 1) and enumerating {x ∈ [0, 1)|106x ∈ N}.702

Statistics of a series of approximate solutions are given in Table 4.703

Figure 3 and Table 4 indicate that the approximate solutions are converging704

despite ξ being an everywhere non-differentiable Weierstrass function. Because of the705

nature of ξ, the true solution has a huge variation. In Figure 3, the first approximate706

solution (r = 1) is able to roughly describe the “locally-averaged growth trend”.707

Subsequent approximate solutions add local variations and gradually converge.708
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Fig. 3. Plot of the approximate solutions obtained from (A-IE) (r = 1, 3, 7, 9, 11, 13) with a
convergence trend in Experiment II.

Table 4
Comparison of equation residues, errors from available solutions and computation time (sec-

onds) across a sequence of approximation equations (r = 1, 4, 7, 10, 13) in Experiment II.

r Number of knots
Equation residue Error from available solutions

Time
L1 L∞ L1 L∞

1 2.00E+00 7.04E-02 1.70E-01 3.09E-02 1.12E-01 2.43E-03
4 1.60E+01 1.30E-01 2.60E-01 5.57E-02 1.58E-01 1.68E-03
7 1.28E+02 1.58E-02 3.17E-02 1.17E-02 6.49E-02 2.79E-03
10 1.02E+03 2.31E-02 4.62E-02 1.16E-02 3.61E-02 8.65E-02
13 8.19E+03 1.82E-03 3.71E-03 2.34E-03 7.61E-03 1.10E+01

7. Conclusion. The numerical examples used to demonstrate the effectiveness709

of our approach satisfy ||K||O ⩽ 1. The developed approach is also valid for ||K||O ⩾ 1.710

Our method’s performance in solving problems with ||K||O ⩾ 1 is discussed in [27],711

where it is further developed for use to find stationary distributions of continuous-712

state Markov chains. Since the approximate solutions are obtained via solving a linear713

equation system, its computational performance can be further improved by taking714

advantage of the properties of matrices defining the linear system.715
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