FINDING DISTRIBUTION FUNCTION DEFINED BY INTEGRAL EQUATIONS USING FINITE APPROXIMATION *

SHUKAI LI[†] AND SANJAY MEHROTRA [‡]

Abstract. This paper develops a finite approximation approach to find the solution F(x) of integral equations in the form $F(x) = \xi(x) + \int_{\mathbb{R}} \kappa(x,u) dF(u), \forall x \in \mathbb{R}$, where F(x) may not be 5 6 continuous, and therefore not have a density function. The integral equations in this form, to the best of our knowledge, have never been studied before. However, such equations arise frequently when modeling stochastic systems. We construct a Banach space of (right-continuous) distribution functions and reformulate the problem into an operator equation. We provide general necessary and 9 sufficient conditions that allow us to show convergence of the approximation approach developed in this paper. We then provide two specific choices of approximation sequences and show that the properties of these sequences are sufficient to generate approximate equation solutions that converge to the true solution assuming solution uniqueness and some additional mild regularity conditions. Our 13 14 analysis is performed under the supremum norm, allowing wider applicability of our results. Worstcase error bounds are also available from solving a linear program. We demonstrate the viability 15 and computational performance of our approach by constructing two examples. The solution of 17 the first example could be constructed manually, but demonstrates the correctness and convergence 18 properties of our approach. The second example solves a problem involving the Weierstrass function 19 for which no closed-form solution is available.

Key words. Integral Equation, Finite Approximation, Fredholm Equations, Operator Theory, Collective Compactness, Markov Chain, Stationary Distribution.

AMS subject classifications. 45B05, 60H25, 65C30, 65R20

1. Introduction.

2

3

20

21

22

23

24

1.1. Overview of the problem. This paper aims to solve a general class of integral equations of the form

26 (IE)
$$F(x) = \xi(x) + \int_{\mathbb{R}} \kappa(x, u) dF(u), \quad \forall x \in \mathbb{R}$$

to a desired accuracy. Here $\xi : \mathbb{R} \to \mathbb{R}$ is a given distribution, $\kappa : \mathbb{R}^2 \to \mathbb{R}_+$ is a given kernel, dF is the measure associated with F and $F : \mathbb{R} \to \mathbb{R}$ is to be determined. We analyze (IE) by letting \mathbb{R} as the support. A similar analysis can be developed for support $\Omega \subseteq \mathbb{R}$. Our study of (IE) is motivated by the problem of finding the stationary distribution and associated steady-state performance evaluation measures of stochastic models that can be represented by continuous or mixed state Markov chains. The current paper develops the mathematical foundations and a finite approximation approach for solving such equations. Its application in the context of Markov chains is discussed in [27].

We may regard (IE) as a generalization of Fredholm equations of the second type:

(FIE)
$$f(x) = g(x) + \int_{\Omega} t(x, u) f(u) du, \qquad x \in \mathbb{R}.$$

The functions in (FIE) are usually assumed to be continuous and thereby integratable $w.r.t. \ x$ [17]. Suppose Ω is a closed interval. Then taking integration $w.r.t. \ x$ on both

Funding: This work was funded by Grant #: NSF-CMMI-1763035.

^{*}Submitted to the editors Jan 7th 2022.

[†]Department of Industrial Engineering and Management Science, Northwestern University, Chicago, IL (shukaili2024@u.northwestern.edu).

[‡]Department of Industrial Engineering and Management Science, Northwestern University, Chicago, IL (mehrotra@iems.northwestern.edu).

sides of (FIE) yields (IE). However, the opposite direction may not hold as functions in (IE) are not necessarily continuously differentiable; see examples in section 6.

A finite approximation approach. Since exact solutions of (IE) are typically unavailable and known integral equation solution methods are not applicable (see subsection 1.2 for a review), we develop a method which approximates (IE) with a sequence of "discretized" equations of the form

48 (A-IE)
$$F(x) = \xi^{(r)}(x) + \sum_{i=1}^{J^{(r)}} \omega_i^{(r)}(x) [F(c_i^{(r)}) - F(c_{i-1}^{(r)})], \quad \forall x \in \mathbb{R}, r \in \mathbb{N},$$

where (r) indexes the approximation sequence and for all $r \in \mathbb{N}$, $-\infty = c_0^{(r)} < c_1^{(r)} < ... < c_{J^{(r)}}^{(r)} < c_{J^{(r)}+1}^{(r)} = +\infty$, $F(c_0^{(r)}) \equiv 0$ and $\xi^{(r)}, \omega_1^{(r)}, \omega_2^{(r)}, ..., \omega_{J^{(r)}}^{(r)} : \mathbb{R} \to \mathbb{R}$ are to be specified depending on an approximation strategy. For any fixed $r \in \mathbb{N}$ and known $\xi^{(r)}, \omega_1^{(r)}, \omega_2^{(r)}, ..., \omega_{J^{(r)}}^{(r)}$, we obtain the solution of (A-IE) by letting $x = c_1^{(r)}, c_2^{(r)}, ..., c_{J^{(r)}}^{(r)}$ into (A-IE) and solving the system of $J^{(r)} \times J^{(r)}$ linear equations to obtain $F(c_1^{(r)}), F(c_2^{(r)}), ..., F(c_{J^{(r)}}^{(r)})$:

$$\sum_{i=1}^{J^{(r)}} [\delta_{ij} - \omega_i^{(r)}(c_j^{(r)}) + \omega_{i+1}^{(r)}(c_j^{(r)})] F(c_i^{(r)}) = \xi(c_j^{(r)}), \quad j = 1, 2, ..., J^{(r)},$$

where $\omega_{J(r)+1}^{(r)} \equiv 0$ and $\delta_{ij} = \mathbf{1}\{i=j\}$. Then the value of F(x) at any arbitrary point x can be obtained by using (A-IE). An illustration of finite approximation can be found in Figure 1 of section 4.

1.2. Related literature. Solution methods for Fredholm integral equations of the second type (FIE) are discussed in [17]. Table 1 provides the known methods with a summary description. To the best of our knowledge, solution methods for problems in the form of (IE) are not known. However, the methods for (IE) presented here are motivated from the approximation methods for (FIE). Depending on the specification of $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$, Type II approach in section 4 uses the concept behind quadrature methods [32, 16, 1], and Type I uses iterated approximation concept [11, 19, 14]. A major challenge in using these concepts is that Fredholm/Volterra integral equations are discussed in a space of continuous functions while (IE) is in a space of right-continuous distribution functions with possible jumps. Our construction of (A-IE) and selection of appropriate knots takes possible jumps into consideration.

As mentioned earlier, transformation from the Fredholm integral equation (FIE) to (IE) is possible if functions in (FIE) are integratable w.r.t. x. Conversely, if functions in (IE) are differentiable w.r.t. x, taking derivatives in x on both sides of (IE) yields the form of (FIE). In the later case, the distribution problem is transformed into a density problem. Stochastic modelling literature has used integral equations as a density problem [9, 10, 26, 35]. However, in many cases it is unrealistic to assume the existence of density, e.g., when a probability mass exists. Other stochastic modelling literature using integral equation approaches include [21, 12, 4].

1.3. Contributions. We provide a general approximation scheme for (IE). The approximate solutions are obtained by solving a linear equation system. We prove the convergence of approximate solutions (Theorem 3.6) as well as their worst-case error bounds (Theorem 3.7). In the process of developing our convergence analysis,

Table 1
A summary of solution methods for classical Fredholm/Volterra integral equations in literature.

Methods and source		Description	
Kernel method	Degenerate Kernel [23, 24, 30]	1. Approximate kernel $t(x, u)$ with a sequence of $t_n(x, u)$. 2. Assume t_n is degenerate: $t_n(x, u) = \sum_{j=1}^n a_j(x)b_j(u)$.	
method	Interpolation [29, 28, 6]	 Approximate kernel t(x, u) with a sequence of t_n(x, u). Interpolation of t(x, u) in x yields following approximation: t_n(x, u) = ∑_{j=1}ⁿ a_j(x)t(x_j, u). 	
	Tensor approximation [15, 33]	 Approximate kernel t(x, u) with a sequence of t_n(x, u). Assume the tensor structure: t_n(x, u) = ∑_iⁿ ∑_{j=1}ⁿ c_{ij}a_i(x)b_j(u). 	
Projection method	Collocation method [11, 2, 18, 31]	 An interpolation may be formulated into an projection Π. Solve the approximate equation: Πf(x) = Πg(x) + ∫_a^b Πt(x, u)df(u). 	
	Galerkin method [22, 7, 8, 13]	 Assume the function space X is a Hilbert space. Let X_n be a sub-space. Let Π_n be the orthogonal projection onto X_n. Solve the approximate equation: Π_nf(x) = Π_ng(x) + ∫_a^b Π_nt(x, u)df(u). 	
Regularisation method [17]		 Assume the integral operator K has a smoothing effect. Define f = g + φ, ψ = Kg. Then the equation is transformed into: φ = ψ + Kφ. The problem is reformulated into a new problem with a regular (sufficiently smooth) solution. 	
Iterated approximation [11, 19, 14]		 Obtain an approximate solution \$\tilde{f}\$ from some other method. Plug it into the right hand side (RHS) of original equation and obtain a new approximate solution: \$\tilde{f}' := g(x) + \int_a^b t(x, u) d\tilde{f}(u)\$. 	
Quadrature method (or Nystrom method, discretization) [32, 16, 1]		Solve an approximate equation: $f(x) = g(x) + \sum_{i=1}^{n} W_i(x) f(s_i)$, where the weight functions $\{W_i\}$ and knots $\{s_i\}$ are to be specified depending on approximation strategies.	
Neumann method [20, 25, 3]		 Assume the original equation can be reformulated into an operator equation f = g + Lf. Assume L has a norm less than 1. The approximate solution is ∑_{i=0}ⁿ Lⁱg. 	

we provide necessary and sufficient conditions (Condition 1-Condition 4) for applying operator equation convergence theory. Our analysis is performed under the supremum norm, which requires weaker assumptions than the total variation norm (remark in supplemental material section SM6). Different from many other integral equation analyses which require the transition operator's norm less than one to ensure solution uniqueness, we allow the norm greater than one (Theorem SM6.1). Our finite approximation solution is near-optimal among all discrete approximate solutions under appropriate assumptions (remark in section 5). Moreover, we outline specific strategies on how to construct approximation equations (Condition 5) and provide worst-case error bounds (subsection 5.2). We verify the accuracy and efficiency of our approach via numerical examples.

1.4. Organization. In section 2, we show that (IE) can be written as an operator equation $F = \xi + \mathcal{K}F$ by defining an appropriate Banach space. Here we provide the main definitions and assumptions used in this paper. We also state known results from operator equation convergence theory. In section 3, we use the collective compactness theory to develop a convergence theory and error bounds on the approximate solutions available from (A-IE). In section 4, we provide specific strategies for constructing (A-IE). In section 5, we provide sufficient conditions for solution uniqueness and invertibility assumptions used in our results. We also discuss the computation of errors and argue why our approximation is near-optimal among all discrete approximate solutions. In section 6, we present numerical results for solving two test examples, one with multiple discontinuities and the other with every-

107

108

109

110

111

112 113

114

115

116

117

118

119

120

122

123

124

125

128

129 130

131

137

138

139

140

141

142 143

144

145 146 where non-differentiable functions. The multiple discontinuities example shows the accuracy of our method in solving non-continuous problems. The example with nondifferentiability shows the applicability of our approach in an extreme case (FIE).

2. Definitions, Known Results, and Assumptions.

2.1. Known operator theory results. We now state key definitions and results from Anselone and Davis' collective compactness theory [5, 17]. This theory proves convergence and error bounds of approximate solutions to operator equations under collective compactness, consistency and solution uniqueness preconditions.

Definition 2.1 (Collective Compactness, Consistency, and Stability [17]). Consider Banach space $(\mathbf{Y}, ||\cdot||)$ and a linear operator \mathcal{L} on \mathbf{Y} . A sequence of linear operators $\{\mathcal{L}^{(r)}\}_{r\in\mathbb{N}}$ are

- collectively compact if the set $\{\mathcal{L}^{(r)}F \mid r \in \mathbb{N}, F \in \mathbf{Y}\}$ is relatively compact,
- consistent if $\lim_{r\to\infty} ||\mathcal{L}^{(r)}F \mathcal{L}F|| = 0, \forall F \in \mathbf{Y}$, and
- stable if there exists $r_0 \in \mathbb{N}$ and C > 0 such that for all $r > r_0$, $(\mathcal{I} \mathcal{L}^{(r)})^{-1}$ exists and $||(\mathcal{I} - \mathcal{L}^{(r)})^{-1}||_{O_{\mathbf{Y}}} \leq C$, where \mathcal{I} is the identity operator and $||\cdot||_{O_{\mathbf{Y}}}$ is the operator norm of Y.

An error bound and convergence of solution is given in the following results. 121

LEMMA 2.2 (Theorem 4.7.11 in [17]). Consider a Banach space $(\mathbf{Y}, ||\cdot||)$, linear operators \mathcal{L} and \mathcal{L}' on \mathbf{Y} , inhomogeneous terms $\boldsymbol{\xi}$ and $\boldsymbol{\xi}'$ in \mathbf{Y} , and equation solutions F and F' in \mathbf{Y} :

$$F = \xi + \mathcal{L}F, \qquad F' = \xi' + \mathcal{L}'F'.$$

If $(\mathcal{I} - \mathcal{L}')^{-1}$ exists, then $||F' - F|| \leq ||(\mathcal{I} - \mathcal{L}')^{-1}||_{\mathcal{O}_{\mathbf{v}}} \cdot (||\mathcal{L}'F - \mathcal{L}F|| + ||\xi' - \xi||)$. 127

Lemma 2.3 (Theorem 4.7.11 in [17]). Consider a Banach space $(\mathbf{Y}, ||\cdot||)$, linear operators \mathcal{L} and $\{\mathcal{L}^{(r)}\}_{r\in\mathbb{N}}$ on \mathbf{Y} , inhomogeneous terms ξ and $\{\xi^{(r)}\}_{r\in\mathbb{N}}$ in \mathbf{Y} such that $\lim_{r\to\infty} \xi^{(r)} = \xi$, and equation solutions F and $\{F^{(r)}\}_{r\in\mathbb{N}}$ in \mathbf{Y} :

$$F = \xi + \mathcal{L}F, \qquad F^{(r)} = \xi^{(r)} + \mathcal{L}^{(r)}F^{(r)}, \ r \in \mathbb{N}.$$

If $\{\mathcal{L}^{(r)}\}_{r\in\mathbb{N}}$ are collectively compact and consistent to \mathcal{L} , and equation $F=\xi+\mathcal{L}F$ has 133 a unique solution F in \mathbf{Y} , then (i) $\{\mathcal{L}^{(r)}\}_{r\in\mathbb{N}}$ are stable. (ii) There exists $r_0\in\mathbb{N}$ such 134 that for all $r > r_0$, $F^{(r)}$ uniquely exists and satisfies $||F^{(r)} - F|| \le ||(\mathcal{I} - \mathcal{L}^{(r)})^{-1}||_{O_{\mathbf{Y}}}$. 135 $(||\mathcal{L}^{(r)}F - \mathcal{L}F|| + ||\xi^{(r)} - \xi||).$ (iii) $\lim_{r \to \infty} F^{(r)} = F.$ 136

LEMMA 2.4 (Theorem 1.3.28, 4.7.7 and 4.7.11 in [17]). Consider a Banach space $(\mathbf{Y}, ||\cdot||)$, linear operators \mathcal{L} and $\{\mathcal{L}^{(r)}\}_{r\in\mathbb{N}}$ on \mathbf{Y} . Suppose $\{\mathcal{L}^{(r)}\}_{r\in\mathbb{N}}$ are collectively compact and consistent to \mathcal{L} . The following statements are equivalent:

- (i) $\operatorname{Ker}(\mathcal{I} \mathcal{L}) = \{0\}$, i.e., $\forall \xi \in \mathbf{Y}$, $F = \xi + \mathcal{L}F$ has at most one solution $F \in \mathbf{Y}$;
- (ii) $\operatorname{Im}(\mathcal{I} \mathcal{L}) = \mathbf{Y}$, i.e., $\forall \xi \in \mathbf{Y}$, $F = \xi + \mathcal{L}F$ has at least one solution $F \in \mathbf{Y}$;
- (iii) $(\mathcal{I} \mathcal{L})^{-1}$ exists, i.e., $\forall \xi \in \mathbf{Y}$, $F = \xi + \mathcal{L}F$ has a unique solution $F \in \mathbf{Y}$; (iv) There exists $r \in \mathbb{N}$ such that $(1 \mathcal{L}^{(r)})^{-1}$ exists and $||(\mathcal{L} \mathcal{L}^{(r)})\mathcal{L}||_{O_{\mathbf{Y}}} \leq$ $\frac{1}{||(1-\mathcal{L}^{(r)})^{-1}||_{O_{\mathbf{v}}}}.$
- (v) There exists $r_0 \in \mathbb{N}$ such that $\forall r > r_0$, $(1 \mathcal{L}^{(r)})^{-1}$ exists and $||(\mathcal{L} \mathcal{L}^{(r)})\mathcal{L}||_{O_{\mathbf{Y}}} \leq \frac{1}{||(1 \mathcal{L}^{(r)})^{-1}||_{O_{\mathbf{Y}}}}$. Particularly, statements (i) (v) hold if $||\mathcal{L}||_{O_{\mathbf{Y}}} < 1$.
- 147
- The convergence in Lemma 2.3 is proven by showing that in the error of Lemma 2.2, 148 the first term $||(\mathcal{I} - \mathcal{L}')^{-1}||_{O_{\mathbf{Y}}}$ is bounded (i.e., stability, indicated by collective com-149
- pactness) and the second term $(||\mathcal{L}'F \mathcal{L}F|| + ||\xi' \xi||)$ converges to 0 (consistency). 150

We will prove that for (IE) in a specific space of distributions, these abstract 151 152 preconditions are ensured by the following conditions that are verifiable:

(i) uniformly bounded variation (Condition 1),

153

154

155

156

157

158

159 160

167

168

169

170 171

172

173

176

185

186

- (ii) càdlàg and countable jump discontinuities (Condition 2),
- (iii) proper construction of (A-IE) (Condition 3 or Condition 5), and
 - (iv) operator norm inequality or feasibility on a subset (see section 5).
- 2.2. A Banach space. Let **D** be the collection of probability distribution functions defined on \mathbb{R} and \mathcal{B} be the Borel algebra for \mathbb{R} . Let

$$\mathbf{X} := \operatorname{span}(\mathbf{D}) = \left\{ \sum_{k=1}^{n} a_k F_k \mid n \in \mathbb{N}_{++}, a_k \in \mathbb{R}, F_k \in \mathbf{D} \right\}$$

be a linear space of distribution functions of all finite signed measures on (\mathbb{R},\mathcal{B}) . Let 161 $||\cdot||_{\infty}$ be the supremum norm on \mathbf{X} : $||F||_{\infty} := \sup_{x \in \mathbb{R}} |F(x)|, \forall F \in \mathbf{X}$. Let $V(f;\Omega)$ be the total variation of a function $f: \mathbb{R} \to \mathbb{R}$ on $\Omega \subseteq \mathbb{R}$. For convenience, let $V(f) := V(f; \mathbb{R})$. Moreover, for a multivariate function $f(x, u) : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$, we use $V_u(f(x,u)) \in \mathbb{R}_+$ to denote the total variation of f(x,u) as a single variable function 165 166 of u with any fixed $x \in \mathbb{R}^n$.

We construct a Banach space of right-continuous distribution functions as follows.

THEOREM 2.5 (A Banach Space and Properties). Let \mathbf{X} be the closure of $\mathbf{X} \subseteq$ $\{f: \mathbb{R} \mapsto \mathbb{R}\}\ under\ the\ norm\ ||\cdot||_{\infty}.\ Then\ (\bar{\mathbf{X}}, ||\cdot||_{\infty})\ is\ a\ Banach\ space.\ Moreover,$

- (i) (Bound and variation) $||F||_{\infty} < \infty, \forall F \in \overline{\mathbf{X}}. \ V(F) < \infty, \forall F \in \mathbf{X}.$
- (ii) (Càdlàg) For any $F \in \mathbf{X}$, $F(-\infty) = 0$ and $F(+\infty)$ exists. The left limit F(x-) and the right limit F(x+) exist for all $x \in \mathbb{R}$. F is right-continuous.
- (iii) (Countable jump discontinuities) For any $F \in \bar{\mathbf{X}}$, the set

$$J_F(\epsilon) := \{ x \in \mathbb{R} \mid |F(x+) - F(x-)| > \epsilon \}, \quad \epsilon \in \mathbb{R}_+$$

is finite for any $\epsilon > 0$, and therefore, its jump discontinuities are countable.

Let $||\cdot||_O$ be the operator norm of any linear operator \mathcal{K} on $\bar{\mathbf{X}}$: 177

178
$$||\mathcal{K}||_O := \sup_{F \in \bar{\mathbf{X}}, ||F||_{\infty} = 1} ||\mathcal{K}F||_{\infty}.$$

- We write " F_k converges to F on $\bar{\mathbf{X}}$ " as " $F_k \rightrightarrows F$ " to emphasize uniform convergence. 180
- 2.3. Assumption and reformulation as operator equations. Let us define 181 the collection of finite transition kernels on $(\mathbb{R}, \mathcal{B})$ in the distribution sense. 182

Definition 2.6 (Finite Transition Kernel). Let $T(\mathbb{R}, \mathcal{B})$ be the collection of 183 functions $p(x, u) : \mathbb{R}^2 \to \mathbb{R}_+$ such that 184

- (i) for any fixed $x \in \mathbb{R}$, p(x, u) is \mathcal{B} -measurable w.r.t. u, and
- (ii) for any fixed $u \in \mathbb{R}$, $p(x,u) \equiv 0$ or there exists $\alpha > 0$ such that $\alpha p(x,u) \in \mathbf{D}$.

We assume the following on (IE) and its finite approximations. 187

Assumption 1. For (IE) and a sequence of (A-IE) indexed by $r \in \mathbb{N}$, we have: 188

- 189 (i) $\kappa \in T(\mathbb{R}, \mathcal{B}); F, \xi \in \mathbf{X};$
- 190 191

Assumption 1 is met in the context of stochastic models, which are studied in [27]. 192

The space for ξ and F in (i) of Assumption 1 is relaxed to the closure $\bar{\mathbf{X}}$ because \mathbf{X} 193

is not closed under $||\cdot||_{\infty}$ and cannot be used as a Banach space in our analysis. We 194

will show later in specific examples the construction of $\xi^{(r)}$, $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$ and $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}$ 195

196 $(r \in \mathbb{N})$ satisfying (ii) of Assumption 1.

We next reformulate (IE) and (A-IE) into operator equations on **X**. First, we 197 formulate $\kappa \in T(\mathbb{R}, \mathcal{B})$ as a continuous linear operator on $\bar{\mathbf{X}}$. 198

DEFINITION 2.7 (Transition Operator). For (IE), its transition operator K on $\bar{\mathbf{X}}$ 199 is defined as follows: if $F \in \mathbf{X}$, then 200

$$\mathcal{K}F(x) := \int_{\mathbb{R}} \kappa(x, u) dF(u), \quad \forall x \in \mathbb{R}.$$

Otherwise203

228

$$\mathcal{K}F(x) := \lim_{k \to \infty} \mathcal{K}F_k(x), \quad \forall x \in \mathbb{R},$$

- where $\{F_k\}_{k=1}^{\infty} \subseteq \mathbf{X}$ is any sequence that converges to F on $\bar{\mathbf{X}}$. 206
- The definition in (2.2) is because $F \in \bar{\mathbf{X}} \setminus \mathbf{X}$ as a measure is ill defined and thereby, 207
- (2.1) does not apply. Instead, we define via convergence, which is natural because any 208
- continuous linear operator on **X** must have (2.2) as a property. In subsection 3.1, we 209
- show that K is well defined under mild assumptions. With slight abuse of notation, 210
- we also write $\mathcal{K}F(x)$ as $\int_{\mathbb{R}} \kappa(x,u) dF(u)$ for all $F \in \bar{\mathbf{X}}$. Now with Definition 2.7, we 211
- can write (IE) into an operator equation $F = \xi + \mathcal{K}F$. 212
- Next we consider the sequence of (A-IE), specified by the inhomogeneous terms 213
- $\{\xi^{(r)}\}(r\in\mathbb{N})$, weight functions $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}(r\in\mathbb{N})$ and knots $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}(r\in\mathbb{N})$. Similar to \mathcal{K} , we construct a sequence of approximation operators $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$, defined by weight functions $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$ and knots $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}$ in (A-IE). 214 215
- 216
- Definition 2.8 (Approximation Operators). For a sequence of (A-IE) indexed 217 by $r \in \mathbb{N}$, the approximation operators $\{\mathcal{K}^{(r)}\}_{r \in \mathbb{N}}$ on $\bar{\mathbf{X}}$ are defined as: 218

219 (2.3)
$$\mathcal{K}^{(r)}F(x) := \sum_{i=1}^{J^{(r)}} \omega_i^{(r)}(x) [F(c_i^{(r)}) - F(c_{i-1}^{(r)})], \quad x \in \mathbb{R}, r \in \mathbb{N},$$

$$221 \quad where \ -\infty = c_0^{(r)} < c_1^{(r)} < \ldots < c_{J^{(r)}}^{(r)} < c_{J^{(r)}+1}^{(r)} = +\infty, \ and \ \{\omega_i^{(r)}\}_{i=1}^{J^{(r)}} \subseteq \bar{\mathbf{X}}, \forall r \in \mathbb{N}.$$

- Now we can write a sequence of (A-IE) into operator forms $F = \xi^{(r)} + \mathcal{K}^{(r)}F$, $r \in \mathbb{N}$. 222
- 2.4. Verifiable conditions for using operator theory results. We now pres-223 ent a list of conditions, which are necessary and sufficient for applying the collective 224 compactness and operator theory results in subsection 2.1 to solve (IE); see detailed 225 statements as well as their corresponding proof in subsection 3.1. Let us define the 226 following functions: 227

$$\zeta(x_1, x_2) := \lim_{u \to +\infty} |\kappa(x_2, u) - \kappa(x_1, u)|, \quad \forall x_1, x_2 \in \mathbb{R},$$

$$v_{\Lambda}(x_1, x_2) := V_u(\kappa(x_2, u) - \kappa(x_1, u)), \quad \forall x_1, x_2 \in \mathbb{R}.$$

CONDITION 1 (Uniformly Bounded Variation). For all fixed $x \in \mathbb{R}$, $\kappa(x, u) \in$ 231 $T(\mathbb{R},\mathcal{B})$ as a single-variable function of u has a uniformly bounded total variation: 232

$$v_{\kappa} := \sup_{x \in \mathbb{R}} V_u(\kappa(x, u)) < \infty.$$

CONDITION 2 (Càdlàg and Countable Jump Discontinuities). For $\kappa \in T(\mathbb{R}, \mathcal{B})$,

(i) $\kappa(x,+\infty)$ is right-continuous, and

241

 $\frac{251}{252}$

(ii) $\forall \epsilon > 0$, there exists a finite split of $\mathbb R$ denoted by knots $-\infty < s_1 < s_2 < \ldots < s_{N_\epsilon} < \infty$ and intervals $E_0 = (-\infty, s_1), E_1 = [s_1, s_2), \ldots E_{N_\epsilon} = [s_{N_\epsilon}, +\infty),$ such that $\forall x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, \ldots, N_\epsilon$, we have $v_\Lambda(x_1, x_2) \leqslant \epsilon$.

CONDITION 3. For $\kappa \in T(\mathbb{R}, \mathcal{B})$ satisfying Condition 1 (uniformly bounded variation), operator κ in Definition 2.7, and approximation operators $\{\kappa^{(r)}\}_{r\in\mathbb{N}}$ in Definition 2.8, the quantities satisfy:

- (i) (Point-wise convergence) $\forall F \in \bar{\mathbf{X}}, \ \forall x \in \mathbb{R}, \ \lim_{k \to \infty} \mathcal{K}^{(r)} F(x) = \mathcal{K} F(x).$
- (ii) (Uniform Càdlàg and countable jump discontinuities) for all $\epsilon > 0$, there exists a finite split of \mathbb{R} denoted by knots $-\infty < s_1 < s_2 < \ldots < s_{N_{\epsilon}} < \infty$ and intervals $E_0 = (-\infty, s_1), E_1 = [s_1, s_2), \ldots, E_{N_{\epsilon}} = [s_{N_{\epsilon}}, +\infty),$ such that $\forall r \in \mathbb{N}, x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, \ldots, N_{\epsilon},$ we have

(2.4)
$$\sum_{i=1}^{J^{(r)}} |\Delta \omega_i^{(r)}(x_2) - \Delta \omega_i^{(r)}(x_1)| \le \epsilon,$$

where $\omega_{J(r)+1}^{(r)}(x) \equiv 0, \forall r \in \mathbb{N}, and$

$$\Delta\omega_i^{(r)}(x) := \omega_{i+1}^{(r)}(x) - \omega_i^{(r)}(x), \quad x \in \mathbb{R}, i = 1, 2, \dots, J^{(r)}, r \in \mathbb{N}.$$

Condition 4 (Solution Uniqueness). (IE) has a unique solution in $\bar{\mathbf{X}}$.

Condition 2 is referred to as "càdlàg and countable jump discontinuities" because it describes the property of limit existence, right continuity and countable jumps: κ can be regarded as a map from $x \in \mathbb{R}$ to $\kappa(x,\cdot) \in S_V := \{f : \mathbb{R} \mapsto \mathbb{R} \mid V(f) < \infty\}$. When set S_V is equipped with the distance $|f(+\infty)|$ (resp. distance V(f)), (i) (resp. (ii)) of Condition 2 is equivalent to that κ has left limits on \mathbb{R} , has limits on $\pm \infty$, is right continuous on \mathbb{R} , and has countable jump discontinuities. We can easily verify Condition 1 and Condition 2 via partial derivatives in many cases with bounded supports; see a few examples in [27]. In Condition 3, (ii) describes a uniform "càdlàg and countable jump discontinuities" property across all $r \in \mathbb{N}$. Sufficient conditions which are easier to verify will be given in section 4. Condition 4 is required by Lemma 2.3, and a sufficient condition that ensures Condition 4 is given in section 5.

The results proved in this paper and their required conditions/assumptions are summarized in Table 2 with a brief description.

- **3.** Convergence results. This section presents our convergence results in solving (IE) via finite approximation defined in (A-IE). We show that bounds on errors are computable and approximate solutions are converging to the true solution under Condition 1-Condition 4.
- **3.1. Operator properties.** Theorem 3.1 shows that K in Definition 2.7 is a well-defined continuous linear operator on $\bar{\mathbf{X}}$ under Condition 1. Moreover, this condition is necessary and sufficient. Proofs for Theorem 3.1, and Lemma 3.2, Lemma 3.3 are given in supplementary material section SM2 and section SM3, respectively.

THEOREM 3.1 (Continuous Linearity). For $\kappa \in T(\mathbb{R}, \mathcal{B})$, operator \mathcal{K} in Definition 2.7 is a well defined continuous linear operator on $\bar{\mathbf{X}}$ if Condition 1 (uniformly bounded variation) holds. Conversely, if a continuous linear operator \mathcal{K} on $\bar{\mathbf{X}}$ has the form (2.1), then Condition 1 must hold.

280

284

285

286

287

288

289

290

291

292

293 294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

310

Table 2 A summary of theorems and their required assumptions in all sections.

Theorems	Main preconditions	Summary of results				
Section 3. Convergence results.						
Theorem 3.1	-	Condition 1 ⇔ Continuous linearity				
Theorem 3.4	Condition 1	Condition 2 ⇔ Compactness				
Theorem 3.5	Condition 1	Condition 3 ⇔ Collective compactness & consistency				
Theorem 3.6	Assumption 1	Condition 1-Condition 4 ⇒ Solution convergence				
Theorem 3.7	Assumption 1	Condition 1, Invertibility ⇒ Error bound				
Section 4. Choices of Finite Approximation.						
Theorem 4.2	Condition 1	a. Condition 3 ⇒ Condition 2				
Theorem 4.2	Condition 1	b. Condition 5 ⇒ Condition 3				
Section 5. Conditions for Solution Uniqueness, Invertibility and Error Computation.						
Theorem 5.1	Condition 1, Condition 3	a. Inequality $(5.1) \Rightarrow \text{Condition } 4$				
Theorem 5.1	Condition 1, Condition 3	b. Assumption 2 ⇒ Condition 4				
Theorem 5.2	-	Full rank ⇔ Invertibility				
Theorem 5.3		a. Computation of inverse norm				
1 neorem 5.3	-	b. Assumption 2 ⇒ Invertibility				
Supplemental material.						
Theorem SM6.1	Condition 1, Condition 2	Subset feasibility ⇔ Condition 4				

Interpretations: Condition $1 - \kappa(x, u)$ in (IE) has uniformly bounded variation. Condition 2 - Càdlàg and countable jump discontinuities for $\kappa(x, u)$ in (IE). Condition 3 - Point-wise convergence, uniform càdlàg and countable jump discontinuities for (A-IE). Condition 4 - (IE) has a unique solution. Condition 5 - Proper construction of (A-IE). Assumption 1 - A mild equation restriction for (IE). Assumption 2 - Operator norm less than 1.

```
LEMMA 3.2. In space \bar{\mathbf{X}}, a set F \subseteq \bar{\mathbf{X}} is relatively compact iff
```

- (i). F is uniformly bounded.
- (ii). $\forall \epsilon > 0, \exists a \text{ finite split of } \mathbb{R} \text{ denoted by knots } -\infty < s_1 < s_2 < \ldots < s_{N_{\epsilon}} < \infty$ 281 and intervals $E_0 = (-\infty, s_1), E_1 = [s_1, s_2), \dots, E_{N_{\epsilon}} = [s_{N_{\epsilon}}, +\infty), \text{ such that } \forall F \in F, \forall x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, \dots, N_{\epsilon}, \text{ we have } |F(x_2) - F(x_1)| \leq \epsilon.$ 282 283

LEMMA 3.3. Consider $\kappa \in T(\mathbb{R}, \mathcal{B})$ satisfying Condition 1 (uniformly bounded variation), operator K defined in Definition 2.7, and the unit ball $\mathbf{U} := \{F \in \mathbf{X} |$ $||F||_{\infty} \leq 1$. For any $x_1, x_2 \in \mathbb{R}$, we have

- (i) $\forall F \in \mathbf{U}, |\mathcal{K}F(x_2) \mathcal{K}F(x_1)| \leq \zeta(x_1, x_2) + 2v_{\Lambda}(x_1, x_2).$
- (ii) $\forall \epsilon > 0, \exists F \in \mathbf{U} \cap \mathbf{X}, |\mathcal{K}F(x_2) \mathcal{K}F(x_1)| \geqslant \zeta(x_1, x_2) + v_{\Lambda}(x_1, x_2) \epsilon.$

The following theorem shows that Condition 2 is necessary and sufficient for the compactness of \mathcal{K} .

Theorem 3.4 (Compactness). For $\kappa \in T(\mathbb{R}, \mathcal{B})$ satisfying Condition 1 (uniformly bounded variation), operator K in Definition 2.7 is compact on X iff Condition 2 (càdlàg and countable jump discontinuities) holds.

Proof of Theorem 3.4. We first note that (i) in Condition 2 can be equivalently written as: $\forall \epsilon > 0$, there exists a finite split of \mathbb{R} denoted by knots $-\infty < s_1 < s_2 <$ $\ldots < s_{N_{\epsilon}} < \infty$ and intervals $E_0 = (-\infty, s_1), E_1 = [s_1, s_2), \ldots, E_{N_{\epsilon}} = [s_{N_{\epsilon}}, +\infty),$ such that $\forall x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, \dots, N_{\epsilon}$, we have $\zeta(x_1, x_2) \leqslant \epsilon$. This can be easily proven by noting the following facts: (a) $\kappa(\cdot, +\infty)$ is bounded by M_{κ} , where M_{κ} is a bound of $\kappa(x,u)$ for $x,u\in\mathbb{R}$. (b) $\kappa(\cdot,+\infty)$ is non-decreasing since $\kappa(\cdot,u)$ is non-decreasing for all $u \in \mathbb{R}$.

- (\Leftarrow) Under (i) and (ii) of Condition 2, $\forall \epsilon > 0$, there exists a finite split of \mathbb{R} denoted by knots $-\infty < s_1 < s_2 < \ldots < s_{N_{\epsilon}} < \infty$ and intervals $E_0 = (-\infty, s_1), E_1 =$ $[s_1, s_2), \ldots, E_{N_{\epsilon}} = [s_{N_{\epsilon}}, +\infty), \text{ such that } \forall x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, \ldots, N_{\epsilon}, \text{ we}$ have $\zeta(x_1, x_2) \leqslant \frac{\epsilon}{2}$ and $v_{\Lambda}(x_1, x_2) \leqslant \frac{\epsilon}{4}$. By Lemma 3.3, $\forall F \in \mathbf{U}, \forall x_1, x_2 \in E_i, x_1 < \infty$ $x_2, i = 0, 1, \dots, N_{\epsilon}$, we have $|\mathcal{K}F(x_2) - \mathcal{K}F(x_1)| \leq \zeta(x_1, x_2) + 2v_{\Lambda}(x_1, x_2) \leq \epsilon$. By Lemma 3.2, the bounded set $\{KF \mid F \in \mathbf{U}\}\$ is relatively compact. Thus, K is compact.
- (\Rightarrow) If (i) or (ii) of Condition 2 is not satisfied, then $\exists \epsilon > 0$, for all splits of \mathbb{R} denoted by knots $-\infty < s_1 < s_2 < ... < s_N < \infty$ and intervals $E_0 = (-\infty, s_1), E_1 =$ $[s_1, s_2), \ldots, E_N = [s_N, +\infty), \text{ there exist } x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, \ldots, N \text{ such }$ that $\zeta(x_1, x_2) \ge \epsilon$ or $v_{\Lambda}(x_1, x_2) \ge \epsilon$. By Lemma 3.3, $\exists F \in \mathbf{U}$ such that $|\mathcal{K}F(x_2)|$

 $|\mathcal{K}F(x_1)| \geqslant \zeta(x_1, x_2) + v_{\Lambda}(x_1, x_2) - \frac{\epsilon}{2} \geqslant \frac{\epsilon}{2}$. By Lemma 3.2, $\{\mathcal{K}F | F \in \mathbf{U}\}$ is not relatively compact, i.e., \mathcal{K} is not compact. (i) and (ii) of Condition 2 are necessary.

Condition 3 ensures that approximation operators $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$ in Definition 2.8 are collective compact and consistent to \mathcal{K} . It is also necessary and sufficient.

THEOREM 3.5 (Consistency & Collective Compactness). For $\kappa \in T(\mathbb{R}, \mathcal{B})$ satisfying Condition 1 (uniformly bounded variation), operator \mathcal{K} in Definition 2.7, and approximation operators $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$ in Definition 2.8, $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$ are collectively compact and consistent (i.e., $\mathcal{K}^{(r)}F \rightrightarrows \mathcal{K}F, \forall F \in \bar{\mathbf{X}}$) on $\bar{\mathbf{X}}$ iff Condition 3 (point-wise convergence, uniform càdlàg and countable jump discontinuities) holds.

Proof. (\Leftarrow) Let Condition 3 hold. We first show $\mathcal{K}^{(r)}$ is a continuous linear operator on $\bar{\mathbf{X}}$ for all $r \in \mathbb{N}$. Definition 2.8 suggests that $\mathcal{K}^{(r)}F \in \bar{\mathbf{X}}$ for all $F \in \bar{\mathbf{X}}$ and $\mathcal{K}^{(r)}$ is linear. For any $F \in \bar{\mathbf{X}}$ such that $||F||_{\infty} = 1$, we have $||\mathcal{K}^{(r)}F||_{\infty} \leq \sum_{i=1}^{J^{(r)}} |F(c_i^{(r)}) - F(c_{i-1}^{(r)})| \cdot ||\omega_i^{(r)}||_{\infty} \leq 2\sum_{i=1}^{J^{(r)}} ||\omega_i^{(r)}||_{\infty} < \infty$. Thus, $\mathcal{K}^{(r)}$ is a linear, bounded (i.e., continuous) operator on $\bar{\mathbf{X}}$ for all $r \in \mathbb{N}$.

Next we prove that the set

315

316

317

318

319

320

321

322 323

324

339

341

342

344

326
$$S := \bigcup_{r \in \mathbb{N}} \left\{ \mathcal{K}^{(r)} F \mid F \in \mathbf{U} \right\} = \left\{ \sum_{i=1}^{J^{(r)}} \omega_i^{(r)}(x) \left[F(c_i^{(r)}) - F(c_{i-1}^{(r)}) \right] \mid r \in \mathbb{N}, F \in \mathbf{U} \right\}$$
327
$$= \left\{ \sum_{i=1}^{J^{(r)}} (a_i - a_{i-1}) \omega_i^{(r)}(x) \mid r \in \mathbb{N}, a_0 = 0, a_i \in [-1, 1], i \in \mathbb{N}_{++} \right\}$$

satisfies (ii) of Lemma 3.2. Note that (ii) of Condition 3 suggests that $\forall \epsilon > 0$, there exists a finite split of \mathbb{R} denoted by knots $-\infty < s_1 < s_2 < ... < s_{N_{\epsilon}} < \infty$ and intervals $E_0 = (-\infty, s_1), E_1 = [s_1, s_2), ... E_{N_{\epsilon}} = [s_{N_{\epsilon}}, +\infty)$, such that for all $r \in \mathbb{N}, x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, ..., N_{\epsilon}$, we have $\sum_{i=1}^{J^{(r)}} |\Delta \omega_i^{(r)}(x_2) - \Delta \omega_i^{(r)}(x_1)| = |\omega_{J^{(r)}}^{(r)}(x_2) - \omega_{J^{(r)}}^{(r)}(x_1)| + \sum_{i=1}^{J^{(r)}-1} |\Delta \omega_i^{(r)}(x_2) - \Delta \omega_i^{(r)}(x_1)| \leqslant \epsilon$. Therefore,

334
$$\left| \sum_{i=1}^{J^{(r)}} (a_i - a_{i-1}) \omega_i^{(r)}(x_2) - \sum_{i=1}^{J^{(r)}} (a_i - a_{i-1}) \omega_i^{(r)}(x_1) \right|$$

$$= \left| a_{J^{(r)}} [\omega_{J^{(r)}}^{(r)}(x_2) - \omega_{J^{(r)}}^{(r)}(x_1)] - \sum_{i=1}^{J^{(r)}-1} a_i [\Delta \omega_i^{(r)}(x_2) - \Delta \omega_i^{(r)}(x_1)] \right|$$

$$\leq \left| \omega_{J^{(r)}}^{(r)}(x_2) - \omega_{J^{(r)}}^{(r)}(x_1) \right| + \sum_{i=1}^{J^{(r)}-1} \left| \Delta \omega_i^{(r)}(x_2) - \Delta \omega_i^{(r)}(x_1) \right| \leq \epsilon,$$
337

for all $a_0 = 0, a_i \in [-1, 1], i \in \mathbb{N}_{++}$. Thus, (ii) of Lemma 3.2 is satisfied for S.

We next prove the uniform convergence (i.e., consistency) using the point-wise convergence in (i) of Condition 3. For any fixed $F^* \in \overline{\mathbf{X}}$, either $\{\mathcal{K}^{(r)}F^*\}_{r\in\mathbb{N}}$ or $\{\mathcal{K}^{(r)}\frac{F^*}{\|F^*\|_{\infty}}\}_{r\in\mathbb{N}}$ belongs to S and thus satisfies (ii) of Lemma 3.2. Therefore, $\{\mathcal{K}^{(r)}F^*\}_{r\in\mathbb{N}}$ satisfies (ii) of Lemma 3.2. Then for any $\epsilon > 0$, we have intervals $E_0 = (-\infty, s_1), E_1 = [s_1, s_2), ... E_N = [s_N, +\infty)$ such that for all $r \in \mathbb{N}, x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, ..., N$, we have $|\mathcal{K}^{(r)}F^*(x_2) - \mathcal{K}^{(r)}F^*(x_1)| \leq \frac{\epsilon}{3}$. Now we arbitrarily select x_i from E_i , i = 0, ..., N, and $M \in \mathbb{N}$ such that $\forall r_1, r_2 > M$, $|\mathcal{K}^{(r_1)}F^*(x_i) - \mathcal{K}^{(r_2)}F^*(x_i)| \leq \frac{\epsilon}{3}$ for all i = 0, 1, ..., N. Therefore, $\forall r_1, r_2 > M$,

351

352

353

354

355

356

357

358

360

361

362 363

369

371

373

374

375

376 377 378

386

387

388

 $\forall x \in E_i, i = 0, 1, ..., N, |\mathcal{K}^{(r_1)}F^*(x) - \mathcal{K}^{(r_2)}F^*(x)| \leq |\mathcal{K}^{(r_1)}F^*(x) - \mathcal{K}^{(r_1)}F^*(x_i)| + |\mathcal{K}^{(r_1)}F^*(x_i) - \mathcal{K}^{(r_2)}F^*(x_i)| + |\mathcal{K}^{(r_2)}F^*(x_i) - \mathcal{K}^{(r_2)}F^*(x_i)| \leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \leq \epsilon, \text{ i.e.,}$ 347 $||\mathcal{K}^{(r_1)}F^* - \mathcal{K}^{(r_2)}F^*||_{\infty} \leq \epsilon \text{ for all } r_1, r_2 \geqslant M. \text{ Thus, } \mathcal{K}^{(r)}F^* \rightrightarrows \mathcal{K}F^* \text{ for all } F^* \in \bar{\mathbf{X}}.$ 349

Lastly, we prove $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$ is collectively compact. Since (ii) of Lemma 3.2 is satis field for S, we only need to prove that (i) of Lemma 3.2 also holds. i.e., S is uniformly bounded. For any $F \in \bar{\mathbf{X}}$, we have $\mathcal{K}^{(r)}F \rightrightarrows \mathcal{K}F$, $||\mathcal{K}F||_{\infty} < \infty$ and $||\mathcal{K}^{(r)}F||_{\infty} < \infty$ $\infty, r \in \mathbb{N}$. Thus, $\sup_{r \in \mathbb{N}} ||\mathcal{K}^{(r)}F||_{\infty} < \infty$. By the uniform boundedness principle, we have $\sup_{r\in\mathbb{N}} ||\mathcal{K}^{(r)}||_O < \infty$. Thereby, $\sup_{F\in\mathcal{S}} ||F||_\infty = \sup_{F\in\mathbf{U},r\in\mathbb{N}} ||\mathcal{K}^{(r)}F||_\infty \le$ $\sup_{r\in\mathbb{N}}||\mathcal{K}^{(r)}||_{O}<\infty$. Thus, (i) of Lemma 3.2 also holds.

 (\Rightarrow) Let $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$ be collectively compact and consistent. Because the uniform convergence (i.e., consistency) implies point-wise convergence, (i) of Condition 3 holds.

The collective compactness of $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$ implies S is relatively compact. By Lemma 3.2, for all $\epsilon > 0$, there exists a finite split of \mathbb{R} denoted by knots $-\infty < s_1 < \infty$ $s_2 < ... < s_{N_{\epsilon}} < \infty$ and intervals $E_0 = (-\infty, s_1), E_1 = [s_1, s_2), ... E_{N_{\epsilon}} = [s_{N_{\epsilon}}, +\infty),$ such that for all $r \in \mathbb{N}, x_1, x_2 \in E_i, x_1 < x_2, i = 0, 1, ..., N_{\epsilon}$, we have

$$\left| \sum_{i=1}^{J^{(r)}} (a_i - a_{i-1}) \omega_i^{(r)}(x_2) - \sum_{i=1}^{J^{(r)}} (a_i - a_{i-1}) \omega_i^{(r)}(x_1) \right| \leqslant \epsilon,$$

for all $a_0 = 0, a_i \in [-1, 1], i \in \mathbb{N}_{++}, r \in \mathbb{N}$. For any fixed $r \in \mathbb{N}$, let $a_i =$ 364 $-\text{sign}(\Delta\omega_i^{(r)}(x_2) - \Delta\omega_i^{(r)}(x_1)), i = 1, 2, ..., J^{(r)}$. Then we have 365

$$\sum_{i=1}^{J^{(r)}} \left| \Delta \omega_i^{(r)}(x_2) - \Delta \omega_i^{(r)}(x_1) \right| = \sum_{i=1}^{J^{(r)}} (a_i - a_{i-1}) \omega_i^{(r)}(x_2) - \sum_{i=1}^{J^{(r)}} (a_i - a_{i-1}) \omega_i^{(r)}(x_1) \leqslant \epsilon.$$

Thus, (ii) of Condition 3 holds. 368

3.2. Convergence of approximate solutions. Recall that we are able to write (IE) into operator equation $F = \xi + \mathcal{K}F$ in space $\bar{\mathbf{X}}$ and a sequence of (A-IE) into $F = \xi^{(r)} + \mathcal{K}^{(r)} F$ $(r \in \mathbb{N})$. Then we have the approximate solution convergence results.

Theorem 3.6 (Convergence of Finite Approximation). Consider (IE), a sequence of (A-IE) indexed by $r \in \mathbb{N}$, and their respective solutions \bar{F} , $\{\bar{F}^{(r)}\}_{r \in \mathbb{N}}$ in $\bar{\mathbf{X}}$. If Assumption 1 and Condition 1-Condition 4 hold, then there exists $r_0 \in \mathbb{N}$ such that for all $r > r_0$,

- $(\mathcal{I} \mathcal{K}^{(r)})^{-1}$ exists, $(stability) \{ || (\mathcal{I} \mathcal{K}^{(r)})^{-1} ||_O | r > r_0 \}$ is bounded, $(uniform\ convergence)\ \bar{F}^{(r)}\ uniquely\ exists,\ \bar{F}^{(r)} \rightrightarrows \bar{F},\ and$

$$||\bar{F}^{(r)} - \bar{F}||_{\infty} \leq ||(\mathcal{I} - \mathcal{K}^{(r)})^{-1}||_{O} \cdot \left(||\mathcal{K}^{(r)}\bar{F} - \mathcal{K}\bar{F}||_{\infty} + ||\xi^{(r)} - \xi||_{\infty}\right).$$

where \mathcal{I} is the identity operator, and operators \mathcal{K} and $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$ are as defined in Definition 2.7 and Definition 2.8. 382

Proof. Using Lemma 2.3, collective compactness and consistency of $\{\mathcal{K}\}_{r\in\mathbb{N}}$ (im-383 384 plied by Condition 1-Condition 3, Theorem 3.5) and solution uniqueness of (IE) (i.e., Condition 4), we directly have Theorem 3.6. 385

Remark: "equation stability". The assumptions in Theorem 3.6 have an "equation stability" interpretation from the perspective of linear algebra: if (IE) is feasible and has a unique solution, then it remains feasible and has a unique solution

for all $\hat{\xi}$ and $\hat{\mathcal{K}}$ in some neighborhood of $\|\hat{\xi} - \xi\|_{\infty} \leq \epsilon$ and $\|\hat{\mathcal{K}} - \mathcal{K}\|_{O} \leq \epsilon$; on the other hand if (IE) is infeasible, then it remains infeasible for all $\hat{\xi}$ in some neighborhood of 390 $\|\hat{\xi} - \xi\|_{\infty} \leq \epsilon$. See detailed proof in section SM4 in supplemental materials. 391

3.3. Approximation error bound.

392

393

394

395

396

397

398

399

404

405

406

407

409

413

414

416

417

419

420

421

422

428

Theorem 3.7 (Error of Finite Approximation). Consider (IE), an instance of (A-IE), and their respective solutions \bar{F} , $\bar{F}^{(r)}$ in $\bar{\mathbf{X}}$. If Assumption 1 and Condition 1 hold and $(\mathcal{I} - \mathcal{K}^{(r)})^{-1}$ exists, then inequality (3.1) holds, where \mathcal{I} is the identity operator, and operators K and $K^{(r)}$ are as defined in Definition 2.7 and Definition 2.8.

Proof. Recall the reformulation of (IE) into operator equation $F = \xi + \mathcal{K}F$ and (A-IE) into $F = \xi^{(r)} + \mathcal{K}^{(r)}F$. Lemma 2.2 directly implies error bounds in Theorem 3.7. Necessary and sufficient conditions for the existence of $(\mathcal{I} - \mathcal{K}^{(r)})^{-1}$ used in Theo-

rem 3.7 are outlined in subsection 5.2. The difference between the error bound in Theorem 3.6 and that in Theorem 3.7 is that the later does not require Condition 2-401 Condition 4 or a sufficiently large r, i.e., $r > r_0$ as in Theorem 3.6. Therefore, the 402 later is more suitable for error computation. 403

4. Choices of Finite Approximation. Despite the necessity and sufficiency of Condition 3 for consistency and collective compactness, it may be difficult to determine if Condition 3 is satisfied in practice. In this section, we provide tractable sufficient conditions for Condition 3, and discuss how to satisfy Condition 3 by properly choosing the weight functions $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$ and knots $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}$ in (A-IE). For convenience, we define the approximate transition kernel for $\mathcal{K}^{(r)}$, which is

an analog of kernel κ for \mathcal{K} :

411 (4.1)
$$\kappa^{(r)}(x,u) := \sum_{i=1}^{J^{(r)}} \omega_i^{(r)}(x) \cdot \mathbf{1}\{u \in (c_{i-1}^{(r)}, c_i^{(r)}]\}, \quad \forall x, u \in \mathbb{R}, r \in \mathbb{N}.$$

We now provide two types of approximation methods for solving our problem, which can be interpreted as follows (see illustrations in Figure 1). In Type II sequence, the approximate kernel $\kappa^{(r)}$ on a finite-support is obtained by truncating the original kernel κ , and the approximate solution is the stationary distribution under the approximate kernel. For Type I sequence, we use Type II sequence in the first step. After obtaining the approximate distribution, we "plug it back" into the original model, subsequently perform an additional iteration of original transition and use the final distribution as a solution. Therefore, Type I essentially uses the iterated approximation idea briefly described in Table 1.

Definition 4.1. For $\kappa \in T(\mathbb{R}, \mathcal{B})$, define two types of approximation sequences

- DEFINITION 4.1. FOR $\kappa \in I$ (\mathbb{R}^n , \mathbb{R}^n), degines the soft of \mathbb{R}^n (\mathbb{R}^n) \mathbb{R}^n (\mathbb{R}^n) as follows:

 (Type I) $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$, $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}$, $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}$ ($r \in \mathbb{N}$) are exact finite approximation of κ in the sense that $c_i^{(r)} \in \mathbb{R}$, $i=1,2,...,J^{(r)},r \in \mathbb{N}$ and $\omega_i^{(r)}(x) = \kappa(x,c_i^{(r)}),x \in \mathbb{R}$, $i=1,2,...,J^{(r)},r \in \mathbb{N}$.

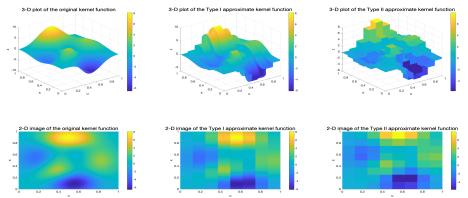
 (Type II) $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$, $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}$ ($r \in \mathbb{N}$) are step-wise finite approximation of
 - κ in the sense: (1) (proper truncations) for all $r \in \mathbb{N}$,

429
$$\omega_i^{(r)}(x) = \sum_{j=1}^{J^{(r)}} \kappa(c_j^{(r)}, c_i^{(r)}) \mathbf{1} \{ x \in [c_j^{(r)}, c_{j+1}^{(r)}) \}, \quad x \in \mathbb{R}, i = 1, 2, ..., J^{(r)}.$$

453

456

FIG. 1. Plots of an example kernel function $z = \kappa(x, u)$ on $[0, 1]^2$ and its finite approximations with 9 knots, where the smooth surface of original kernel is approximated by 8 "ribbons" in Type I approximation and by 8×8 "squares" in Type II approximation.



(2) (Increasing partitions) for all $r_1 < r_2, r_1, r_2 \in \mathbb{N}$, we have $\{c_i^{(r_1)}\}_{i=1}^{J(r_1)} \subseteq \{c_i^{(r_2)}\}_{i=1}^{J(r_2)}$. (3) There exist $\{\epsilon^{(r)}\}_{r \in \mathbb{N}} \subseteq \mathbb{R}_+$ and $\lim_{r \to \infty} \epsilon^{(r)} = 0$ such that $\forall r \in \mathbb{N}$, $\forall x_1, x_2 \in [c_{i-1}^{(r)}, c_i^{(r)}) \cap \mathbb{R}$, $x_1 < x_2, i = 1, 2, ..., J^{(r)} + 1$, we have $v_{\Lambda}(x_1, x_2) + \zeta(x_1, x_2) \leqslant \epsilon^{(r)}$. In other words, $\{c_i^{(r)}\}_{j=1}^{J(r)}$ are defined by a sequence of finite splits for càdlàg and countable jump discontinuities of κ .

The following theorem provides sufficient conditions for Condition 3.

THEOREM 4.2 (Properties of Condition 3). Consider $\kappa \in T(\mathbb{R}, \mathcal{B})$ satisfying Condition 1 (uniformly bounded variation), operator κ in Definition 2.7, and approximation operators $\{\kappa^{(r)}\}_{r\in\mathbb{N}}$ in Definition 2.8. Then

- (i) Condition 3 (point-wise convergence, uniform càdlàg and countable jump discontinuities) implies Condition 2 (càdlàg and countable jump discontinuities).
- (ii) Item (i) (point-wise convergence) of Condition 3 holds if $\exists M_{\omega}, v_{\omega} < \infty$,

$$(4.2) |\kappa^{(r)}(x,u)| \leqslant M_{\omega}, \quad \forall x, u \in \mathbb{R}, r \in \mathbb{N},$$

$$(4.3) V_u(\kappa^{(r)}(x,u)) \leqslant v_{\omega}, \quad \forall x \in \mathbb{R}, r \in \mathbb{N},$$

$$\lim_{r \to \infty} \kappa^{(r)}(x, u) = \kappa(x, u), \quad \forall u, x \in \mathbb{R},$$

i.e., approximate transition kernels $\{\kappa^{(r)}\}_{r\in\mathbb{N}}$ defined in (4.1) are uniformly bounded, uniformly variation-bounded and convergent to κ .

(iii) Item (ii) (uniform càdlàg and countable jump discontinuities) of Condition 3 holds if Condition 2 holds, and $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}, \{c_i^{(r)}\}_{i=1}^{J^{(r)}} (r \in \mathbb{N})$ belong to Type I or Type II approximation sequences given in Definition 4.1.

Proof. (i) is because consistency and collective compactness imply compactness according to [17] (Remark 4.7.9). At the same time, the former is equivalent to Condition 3 (Theorem 3.5), while the later is equivalent to Condition 2 (Theorem 3.4).

(ii) will be proven by dominated convergence. Note that $\{\kappa^{(r)}\}_{r\in\mathbb{N}}$ are bounded, and for any $F\in\mathbf{X}$, $\mathcal{K}^{(r)}F$ can be written as $\mathcal{K}^{(r)}F(x)=\int_{\mathbb{R}}\kappa^{(r)}(x,u)dF(u), \forall x\in\mathbb{R}$

 $\mathbb{R}, r \in \mathbb{N}$. Thereby, for any $F \in \mathbf{D} \subseteq \mathbf{X}$ and $x \in \mathbb{R}$, the dominated convergence ensures 457

$$\lim_{r \to \infty} \mathcal{K}^{(r)} F(x) = \int_{\mathbb{R}} \lim_{r \to \infty} \kappa^{(r)}(x, u) dF(u) = \int_{\mathbb{R}} \kappa(x, u) dF(u) = \mathcal{K} F(x).$$

Because **X** is a linear span of **D**, for any $F \in \mathbf{X}$, $\lim_{r \to \infty} \mathcal{K}^{(r)} F(x) = \mathcal{K} F(x), \forall x \in \mathbb{R}$. 460 We next expand this convergence result to $F \in \bar{\mathbf{X}}$. Consider F = F' + e, $F \in$ 461 $\bar{\mathbf{X}}, F' \in \mathbf{X}, ||e||_{\infty} < \epsilon$. Here F' can be regarded as an approximation to F with a 462bounded error e in the subspace X. For any $x \in \mathbb{R}$, we have already proven that $\lim_{r\to\infty} \mathcal{K}^{(r)} F'(x) = \mathcal{K} F'(x)$. We only need to prove $\lim_{\epsilon\to 0} \limsup_{r\to\infty} |\mathcal{K}^{(r)} e(x)|$ Ke(x) = 0. Indeed, according to eq(SM2.8) in the proof of Theorem 3.1, we have 465 $||\mathcal{K}e||_{\infty} \leq (2v_{\kappa} + M_{\kappa})\epsilon$, and $||\mathcal{K}^{(r)}e||_{\infty} \leq (2v_{\omega} + M_{\omega})\epsilon$, $\forall r \in \mathbb{N}$. Therefore, $\lim_{\epsilon \to 0} \limsup_{r \to \infty} |\mathcal{K}^{(r)}e(x) - \mathcal{K}e(x)| = 0$, $\lim_{r \to \infty} \mathcal{K}^{(r)}F(x) = \mathcal{K}F(x)$. 466 467

(iii) We will show for Type I and II sequences, $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$ are embedded in κ and inherit the property of càdlàg and countable jump discontinuities. Rewrite (2.4) as

470
$$\sum_{i=1}^{J^{(r)}} \left| \Delta \omega_i^{(r)}(x_2) - \Delta \omega_i^{(r)}(x_1) \right| \leq \epsilon$$
471
$$\Leftrightarrow \sum_{i=1}^{J^{(r)}} \left| \left[\omega_{i+1}^{(r)}(x_2) - \omega_{i+1}^{(r)}(x_1) \right] - \left[\omega_i^{(r)}(x_2) - \omega_i^{(r)}(x_1) \right] \right| \leq \epsilon$$
472
$$\Leftrightarrow V_u(\kappa^{(r)}(x_2, u) - \kappa^{(r)}(x_1, u)) + |\kappa^{(r)}(x_2, +\infty) - \kappa^{(r)}(x_1, +\infty)| \leq \epsilon.$$

468 469

488

489

491

492 493 494

Recall that if Condition 2 holds, $\forall \epsilon > 0$, there exists a finite split of \mathbb{R} denoted by knots $-\infty < s_1 < s_2 < ... < s_{N_{\epsilon}} < \infty$ and intervals $E_0 = (-\infty, s_1), E_1 = [s_1, s_2), ..., E_{N_{\epsilon}} = [s_{N_{\epsilon}}, +\infty)$, such that $\forall x_1, x_2 \in E_i, i = 0, 1, ..., N_{\epsilon}, x_1 < x_2$, we have 475 476 $v_{\Lambda}(x_2, x_1) + \zeta(x_2, x_1) \leqslant \epsilon$. For Type I, by definitions of $\kappa^{(r)}$ in (4.1) and $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}} (r \in \mathbb{R}^n)$ \mathbb{N}) in Definition 4.1, we have

479
$$V_{u}(\kappa^{(r)}(x_{2}, u) - \kappa^{(r)}(x_{1}, u)) + |\kappa^{(r)}(x_{2}, +\infty) - \kappa^{(r)}(x_{1}, +\infty)|$$
480
$$\leq V_{u}(\kappa(x_{2}, u) - \kappa(x_{1}, u)) + |\kappa(x_{2}, +\infty) - \kappa(x_{1}, +\infty)|$$

$$\leq V_{\Lambda}(x_{2}, x_{1}) + \zeta(x_{2}, x_{1}) \leq \epsilon.$$

In other words, the finite splits generated by Condition 2 also apply to that required 483 by (ii) of Condition 3. Thus, (ii) of Condition 3 holds. The proof for Type II follows 484 similar analysis and is given in the supplemental material section SM5. 485

Theorem 4.2 shows that we can choose $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$ and knots $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}$ following Definition 4.1. It also naturally introduces the following sufficient condition for Condition 3. 486 487

CONDITION 5 (Sufficient Condition for Condition 3). Consider $\kappa \in T(\mathbb{R}, \mathcal{B})$ satisfying Condition 1 (uniformly bounded variation), and the approximation sequence $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}},\ \{c_i^{(r)}\}_{i=1}^{J^{(r)}}\ (r\in\mathbb{N}).$ The quantities satisfy

- (i) Condition 2 (càdlàg and countable jump discontinuities).
- (ii) $\exists M_{\omega}, v_{\omega} < \infty$ such that (4.2)-(4.4) hold, i.e., $\{\kappa^{(r)}\}_{r \in \mathbb{N}}$ defined in (4.1) are uniformly bounded, uniformly variation bounded and convergent to κ . (iii) $\{\omega_i^{(r)}\}_{i=1}^{J^{(r)}}$, $\{c_i^{(r)}\}_{i=1}^{J^{(r)}}$ $(r \in \mathbb{N})$ belong to any type in Definition 4.1.
- 5. Conditions for Solution Uniqueness, Invertibility and Error Com-495 putation. In this section, we provide two sufficient conditions for Condition 4 (i.e., 496the solution uniqueness of (IE)) based on Lemma 2.4. The first condition is based

on norm inequality, and the second is based on feasibility. We demonstrate the first condition in the main text. The second is given in supplemental material section SM6, where we also show that a stronger norm than $||\cdot||_{\infty}$ imposes stronger assumptions to reach the same results. Finally, we show how to determine the invertibility of $\mathcal{I} - \mathcal{K}^{(r)}$ in Theorem 3.7 and a computing approach for errors in Theorem 3.6 and Theorem 3.7.

5.1. Approach I for solution uniqueness: norm inequality. Lemma 2.4 suggests that under Condition 1 and Condition 3 (implying collective compactness and consistency), the following conditions are equivalent: (i) the solution uniqueness of (IE) for all $\xi \in \bar{\mathbf{X}}$, (ii) the solution existence of (IE) for all $\xi \in \bar{\mathbf{X}}$, (iii) the invertibility of $\mathcal{I} - \mathcal{K}$, and (iv) the stability of $\{\mathcal{K}^{(r)}\}_{r \in \mathbb{N}}$. In practice, we may prove solution uniqueness by showing (5.1) or (5.2) below. Inequality (5.1) is "almost necessary": it holds as long as the solution is unique and r is sufficiently large.

THEOREM 5.1 (Solution Uniqueness I). For $\kappa \in T(\mathbb{R}, \mathcal{B})$ satisfying Condition 1, operator \mathcal{K} in Definition 2.7, and approximation operators $\{\mathcal{K}^{(r)}\}_{r\in\mathbb{N}}$ defined in Definition 2.8 and satisfying Condition 3, the following statements are equivalent

- (i) $F = \xi + \mathcal{K}F$ has a unique solution F in $\bar{\mathbf{X}}$ for all $\xi \in \bar{\mathbf{X}}$, (i.e., Condition 4).
- (ii) There exists $r \in \mathbb{N}$, $(\mathcal{I} \mathcal{K}^{(r)})^{-1}$ exists and

$$||(\mathcal{K} - \mathcal{K}^{(r)})\mathcal{K}||_{O} \leq \frac{1}{||(\mathcal{I} - \mathcal{K}^{(r)})^{-1}||_{O}}.$$

517 (iii) There exists $r_0 \in \mathbb{N}$ such that $\forall r > r_0$, $(\mathcal{I} - \mathcal{K}^{(r)})^{-1}$ exists and (5.1) holds. 518 Finally, statements (i)-(iii) hold if $||\mathcal{K}||_O < 1$ or

$$\sup_{520} (5.2) \qquad \sup_{x \in \mathbb{R}} \left\{ \kappa(x, +\infty) + 2V_u(\kappa(x, u)) \right\} < 1.$$

Proof. This theorem is mainly direct results of Lemma 2.4: (i), (ii) and (iii) of Theorem 5.1 respectively correspond to (iii), (iv) and (v) of Lemma 2.4. Thus, (i), (ii) and (iii) of Theorem 5.1 are equivalent statements.

Additionally, according to Lemma 2.4, (i)-(iii) of Theorem 5.1 hold if $||\mathcal{K}||_O < 1$. According to eq(SM2.8), $||\mathcal{K}||_O$ is bounded by $\sup_{x \in \mathbb{R}} \left\{ \kappa(x, +\infty) + 2V_u(\kappa(x, u)) \right\}$. Thus, (i)-(iii) of Theorem 5.1 hold if $\sup_{x \in \mathbb{R}} \left\{ \kappa(x, +\infty) + 2V_u(\kappa(x, u)) \right\} < 1$.

Theorem 5.1 naturally introduces the following assumption, which is easy to verify.

Assumption 2. Kernel $\kappa \in T(\mathbb{R}, \mathcal{B})$ satisfies inequality (5.2).

Assumption 2 is sufficient for (i)-(iii) in Theorem 5.1 as well as Condition 4. In section 6, we will use numerical examples satisfying Assumption 2 to demonstrate the accuracy and efficiency of our solution methods. However, in practice, Assumption 2 can be too strong, particularly for stochastic models. A more practical sufficient condition for Condition 4 is outlined, due to space limitations, in supplemental material section SM6. Demonstrations with stochastic model examples can be found in [27].

5.2. Determining invertibility and computing approximation errors. In this subsection, we simplify our notations. Since we focus on only one instance of (A-IE), we omit the index (r). For example, knot $c_i^{(r)}$ will be denoted by c_i . The only exceptions are that operator $\mathcal{K}^{(r)}$ and kernel $\kappa^{(r)}$ will be denoted by \mathcal{K}' and κ' instead to distinguish from the operator \mathcal{K} in Definition 2.7 and κ in (IE).

The invertibility of $\mathcal{I} - \mathcal{K}'$ in Theorem 3.7 is easy to determine via determinants:

THEOREM 5.2 (Invertibility). For an instance of operator \mathcal{K}' in Definition 2.8, $(\mathcal{I} - \mathcal{K}')^{-1}$ exists iff matrix H is non-singular, i.e., $\det(H) \neq 0$, where H is defined by $H_{ij} := \delta_{ij} - \omega_i(c_j) + \omega_{i+1}(c_j)$, i, j = 1, 2, ..., J.

Proof. (\Rightarrow) Due to the invertibility of $\mathcal{I} - \mathcal{K}'$, for any $\xi \in \bar{\mathbf{X}}$, there exists $F \in \bar{\mathbf{X}}$ such that $F(x) = \xi(x) + \sum_{i=1}^{J} \omega_i(x) [F(c_i) - F(c_{i-1})], \forall x \in \mathbb{R}$, which yields a $J \times J$ linear equation system

$$\sum_{i=1}^{J} [\delta_{ij} - \omega_i(c_j) + \omega_{i+1}(c_j)] F(c_i) = \xi(c_j), \quad j = 1, 2, ..., J.$$

554555

561

562 563

565

568

569

570571572

574

The coefficient matrix is exactly the transposed H. Since $(\xi(c_1), \xi(c_2), ..., \xi(c_J))$ can take any values in \mathbb{R}^J , H must be non-singular.

(\Leftarrow) By the non-singularity of H, for any $\xi \in \bar{\mathbf{X}}$, there exists a vector $(F^*(c_1), F^*(c_2), ..., F^*(c_J)) \in \mathbb{R}^J$ that uniquely solves (5.3). This yields $F^*(c_j) = \xi(c_j) + \sum_{i=1}^J \omega_i(c_j)[F^*(c_i) - F^*(c_{i-1})], j = 1, 2, ..., J$. Let us define

$$F(x) := \xi(x) + \sum_{i=1}^{J} \omega_i(x) [F^*(c_i) - F^*(c_{i-1})], \quad \forall x \in \mathbb{R}.$$

556 Then $(F^*(c_1), F^*(c_2), ..., F^*(c_J)) = (F(c_1), F(c_2), ..., F(c_J))$ and $\forall x \in \mathbb{R}, F(x) = 557$ $\xi(x) + \sum_{i=1}^{J} \omega_i(x) [F(c_i) - F(c_{i-1})]$. Thus, $(\mathcal{I} - \mathcal{K}')F = \xi$ and $\mathcal{I} - \mathcal{K}'$ is surjective. Suppose $F' \in \bar{\mathbf{X}}$ and $(\mathcal{I} - \mathcal{K}')F' = \xi$. Then $(F'(c_1), F'(c_2), ..., F'(c_J)) \in \mathbb{R}^J$ also

558 Suppose $F' \in \tilde{\mathbf{X}}$ and $(\mathcal{I} - \mathcal{K}')F' = \xi$. Then $(F'(c_1), F'(c_2), ..., F'(c_J)) \in \mathbb{R}^J$ also solves (5.3). Since the solution is unique, we must have $(F'(c_1), F'(c_2), ..., F'(c_J)) = (F^*(c_1), F^*(c_2), ..., F^*(c_J)) = (F(c_1), F(c_2), ..., F(c_J))$. Thus,

$$F'(x) = \xi(x) + \sum_{i=1}^{J} \omega_i(x) [F'(c_i) - F'(c_{i-1})]$$
$$= \xi(x) + \sum_{i=1}^{J} \omega_i(x) [F(c_i) - F(c_{i-1})] = F(x), \quad \forall x \in \mathbb{R}.$$

Therefore, $(\mathcal{I} - \mathcal{K}')F = \xi$ has a unique solution and $\mathcal{I} - \mathcal{K}'$ is injective.

Finally, because $\mathcal{I} - \mathcal{K}'$ is both injective and surjective, $\mathcal{I} - \mathcal{K}'$ is invertible.

We also need to compute errors outlined in (3.1) of Theorem 3.7. For the first factor $||(\mathcal{I} - \mathcal{K}')^{-1}||_O$, we can use the following theorem.

Theorem 5.3 (Norm of Inverse). For an operator K' defined in Definition 2.8,

- (i) ||K'||_O ≤ sup_{x∈ℝ} {κ(x, +∞) + V_u(κ(x, u))} if K' belongs to any type in Definition 4.1. Moreover, if ||K'||_O < 1 or Assumption 2 holds, then (I K')⁻¹ exists and ||(I K')⁻¹||_O ≤ 1/(1-||K'||_O</sub>.
 (ii) If (I K')⁻¹ exists and {ω_i}^I_{i=1} are step functions with knots {c_i}^I_{i=1}, i.e.,
- (ii) If $(\mathcal{I} \mathcal{K}')^{-1}$ exists and $\{\omega_i\}_{i=1}^J$ are step functions with knots $\{c_i\}_{i=1}^J$, i.e., $\omega_i(x) = \sum_{j=1}^J p_{ij} \mathbf{1}\{x \ge c_j\}$, $p_{ij} \in \mathbb{R}, i, j = 1, 2, ..., J$, then $||(\mathcal{I} \mathcal{K}')^{-1}||_O^{-1}$ can be exactly obtained from a series of linear programs:

575
$$||(\mathcal{I} - \mathcal{K}')^{-1}||_{O}^{-1} = \min_{k=0,1,\dots,I} \{y_{k}^{*}\},$$

where y_k^* is obtained from the following linear program (where $a_0 \equiv 0$):

$$\min_{\substack{y_k \in \mathbb{R}, \{a_j\}_{j=1}^J \in [-1,1]^J \\ 579}} y_k : -y_k \leqslant a_j + \tau \delta_{jk} (1 - a_j) - \sum_{i=1}^J \omega_i(c_j) [a_i - a_{i-1}] \leqslant y_k,$$

$$j = 0, 1, ..., J, \tau \in \{0, 1\}.$$

Here (5.4) is developed based on the observation that, by definition, $||(\mathcal{I} - \mathcal{K}')^{-1}||_O^{-1} = \inf_{||F||_{\infty} \leq 1} ||(\mathcal{I} - \mathcal{K}')F||$. The decision variables $\{a_j\}_{j=1}^J$ and y_k are used to represent the infimum. A proof is in supplement material section SM7.

For term $||\mathcal{K}'\bar{F} - \mathcal{K}\bar{F}||_{\infty}$, we discuss its computation when \bar{F} defines a finite measure. By definitions of \mathcal{K} , \mathcal{K}' and κ , we have that

586 (5.5)
$$\left| \mathcal{K}' \bar{F}(x) - \mathcal{K} \bar{F}(x) \right| = \left| \int_{\mathbb{R}} \kappa'(x, u) d\bar{F}(u) - \int_{\mathbb{R}} \kappa(x, u) d\bar{F}(u) \right|$$

$$= \left| \int_{\mathbb{R}} \left(\kappa'(x, u) - \kappa(x, u) \right) d\bar{F}(u) \right| \leqslant \bar{F}(+\infty) \cdot \sup_{x, u \in \mathbb{R}} |\kappa'(x, u) - \kappa(x, u)|,$$

where the approximate kernel κ' is defined based on $\{\omega_i\}_{i=1}^J$, $\{c_i\}_{i=1}^J$ and equation (4.1). Thus, we have $||\mathcal{K}'\bar{F} - \mathcal{K}\bar{F}||_{\infty} \leq \bar{F}(+\infty) \cdot \sup_{x,u \in \mathbb{R}} |\kappa'(x,u) - \kappa(x,u)|$.

Remark: near-optimal approximation. Suppose the support is bounded, $\{\kappa^{(r)}\}_{r\in\mathbb{N}}$ are defined using Type II in Definition 4.1, and $\{\xi^{(r)}\}_{r\in\mathbb{N}}$ are step functions approximating ξ . If both ξ and κ in (IE) are Lipschitz continuous, then both $||\xi - \xi'||_{\infty}$ and $||\mathcal{K}'\bar{F} - \mathcal{K}\bar{F}||_{\infty}$ (bounded by $\bar{F}(+\infty) \cdot \sup_{x,u\in\mathbb{R}} |\kappa'(x,u) - \kappa(x,u)|$) can be as small as $O(\frac{1}{J^{(r)}})$, where $J^{(r)}$ is the number of knots used for approximate solution $\bar{F}^{(r)}$. Because $\{\bar{F}^{(r)}\}_{r\in\mathbb{N}}$ are discrete distributions, $J^{(r)}$ is also the number of jumps. Therefore, we can also conclude that the approximation error can be as small as $O(\frac{1}{J})$, where J is the number of jumps in the discrete approximate solution provided by finite approximation. Here, J can be regarded as a measure of complexity for discrete approximate solutions to (IE). We will verify this error in section 6.

Such an error is near-optimal among all methods that use discrete distributions as approximate solutions, as long as the true solution \bar{F} is continuous and strictly increasing on some small interval. For a brief proof, we consider this special small interval. Suppose the true solution increases by δ on this interval. Because the true solution is continuous while the approximate solution is discrete, the error on this small interval is at least $\frac{\delta}{2(J+1)}$. Then the overall error is also at least $\frac{\delta}{2(J+1)}$, which is at least as large as the finite approximation error by a constant multiplier.

6. Numerical Experiments. In this section, we verify the accuracy of our approach by considering two example equations. The first equation has multiple discontinuities and an available solution. The second has "everywhere non-differentiable" elements, and its solution is not available. For each experiment, we evaluate approximation errors and use plots to show the generated solutions. All computations are performed on a 32G memory 3.6GHz 8-Core Intel platform.

6.1. Example I with multiple discontinuities. Let $\Omega = [0,1)$ and consider

615 (6.1)
$$F(x) = \xi(x) + \int_{\Omega} \kappa(x, u) dF(u), \quad x \in \Omega,$$
616
$$\xi(x) = -\frac{2.56}{3 \times 10^3} + \frac{1.7257x}{60} + \sum_{k=0}^{2} \mathbf{1} \left\{ x \geqslant \frac{k}{3} \right\} \cdot \frac{8^k (2 - x)^9}{1.2 \times 10^3} +$$
617
$$\sum_{k=0}^{3} \mathbf{1} \left\{ x \geqslant \frac{k}{4} \right\} \cdot \frac{3^k (2 - x)^9}{6 \times 10^3} + \sum_{k=0}^{4} \mathbf{1} \left\{ x \geqslant \frac{k}{5} \right\} \cdot \frac{3^k (2 - x)^9}{3 \times 10^3} +$$
618
$$\sum_{k=0}^{5} \mathbf{1} \left\{ x \geqslant \frac{k}{6} \right\} \cdot \frac{1.7257}{3.6 \times 10^2}, \quad x \in \Omega,$$
619
$$\kappa(x, u) = \frac{6x + \sum_{k=0}^{5} \mathbf{1} \left\{ x \geqslant \frac{k}{6} \right\}}{40(2 - u)^8}, \quad x, u \in \Omega.$$

614

620

623 624

627

631

642

643

645 646

621 The solution to (6.1) is
$$\bar{F}(x) = -\frac{256}{3 \times 10^3} + \sum_{k=0}^2 \mathbf{1} \left\{ x \geqslant \frac{k}{3} \right\} \cdot \frac{8^k (2-x)^9}{1.2 \times 10^3} + \sum_{k=0}^3 \mathbf{1} \left\{ x \geqslant \frac{k}{4} \right\} \cdot \frac{8^k (2-x)^9}{6 \times 10^3} + \sum_{k=0}^4 \mathbf{1} \left\{ x \geqslant \frac{k}{5} \right\} \cdot \frac{3^k (2-x)^9}{3 \times 10^3}, \quad \forall x \in \Omega.$$

Equation (6.1) is considered in the space $\bar{\mathbf{X}}_{\Omega}$, defined by the collection of distributions in $\bar{\mathbf{X}}$ with support Ω . Condition 1 is satisfied because $\sup_{x \in \Omega} V_u(\kappa(x, u); \Omega) \leq$ $\sup_{x\in\Omega}\frac{6x+\sum_{k=0}^5\mathbf{1}\left\{x\geqslant\frac{k}{6}\right\}}{40}<\frac{1}{3}<\infty.$ Condition 2 is also satisfied because $\kappa(\cdot,1)$ is right-continuous and $v_{\Lambda}(x_1, x_2) < \frac{3}{20}|x_2 - x_1|, \forall (x_1, x_2) \in \left[\frac{k}{6}, \frac{k+1}{6}\right]^2, k = 0, 1, ..., 5.$

Type I approximation. For all $r \in \mathbb{N}_{++}$, define a Type I sequence as $J^{(r)} =$ $7.5 \cdot 2^r; \xi^{(r)}(x) = \xi(x), \ x \in \Omega; \ c_i^{(r)} = \frac{i-1}{7.5 \cdot 2^r}, \ i = 1, 2, ..., J^{(r)}; \omega_i^{(r)}(x) = \kappa(x, c_i^{(r)}), \ x \in \Omega$ $\Omega, i = 1, 2, ..., J^{(r)}$. It is easy to show that $\{\kappa^{(r)}\}_{r \in \mathbb{N}_{++}}$ satisfy uniform boundedness, uniform variation-boundedness and convergence to κ . Thus, Condition 5 is satisfied. Also, (6.1) has a unique solution $\bar{F} \in \mathbf{X}_{\Omega}$ (i.e., Condition 4) due to Theorem 5.1 and

$$\sup_{x \in \Omega} \left\{ \kappa(x,1) + 2V_u(\kappa(x,u);\Omega) \right\} \leqslant \sup_{x \in \Omega} \frac{6x + \sum_{k=0}^5 \mathbf{1} \left\{ x \geqslant \frac{k}{6} \right\}}{40} \cdot 3 \leqslant \frac{9}{10} < 1.$$

With all preconditions satisfied, we have the convergence. 634

For error computation, we have $||\xi^{(r)} - \xi||_{\infty} = 0, r \in \mathbb{N}_{++}$. By (5.5), $||\mathcal{K}'\bar{F} - \mathcal{K}\bar{F}||_{\infty} < \frac{12.2}{5*2^r}, r \in \mathbb{N}_{++}$ (note \bar{F} is a linear combination of probability distributions). Additionally, by (i) of Theorem 5.3, $||(\mathcal{I} - \mathcal{K}^{(r)})^{-1}||_{O} \leqslant \frac{1}{1-\frac{3}{5}} \leqslant 2.5, r \in \mathbb{N}_{++}$. Then 635 636 637 (3.1) can be written as $||\bar{F}^{(r)} - \bar{F}||_{\infty} < \frac{6.1}{2^r}$. 638

Type II approximation. Alternatively, we define approximation equations by: $\omega_i^{(r)}(x) = \sum_{j=1}^{J^{(r)}} \kappa(c_j^{(r)}, c_i^{(r)}) \mathbf{1}\{x \in [c_j^{(r)}, c_{j+1}^{(r)})\}, x \in \Omega, i = 1, 2, ..., J^{(r)}, r \in \mathbb{N}_{++};$ 639 640 $\xi^{(r)}(x) = \sum_{j=1}^{J^{(r)}} \xi(c_j^{(r)}) \mathbf{1} \{ x \in [c_j^{(r)}, c_{j+1}^{(r)}) \}, x \in \Omega, r \in \mathbb{N}_{++}.$ 641

As in Type I case, $\{\kappa^{(r)}\}_{r\in\mathbb{N}_{++}}$ satisfy uniform boundedness, uniform variation boundedness and convergence to κ . Thus, Condition 5 is satisfied. Also, $\xi^{(r)} \rightrightarrows \xi$. With all preconditions satisfied, we have the convergence of finite approximation solutions. For error computation, because $|\xi'(x)| \leqslant 7$ if $60x \notin \mathbb{Z}$, we have $||\xi^{(r)} - \xi||_{\infty} \leqslant \frac{7}{7.5*2^r}, r \in \mathbb{N}_{++}$. By (5.5), $||\mathcal{K}^{(r)}\bar{F} - \mathcal{K}\bar{F}||_{\infty} < \frac{12.8}{5*2^r}, r \in \mathbb{N}_{++}$. Additionally, according to (i) of Theorem 5.3, $||(\mathcal{I} - \mathcal{K}^{(r)})^{-1}||_{O} \leqslant \frac{1}{1-\frac{3}{5}} \leqslant 2.5, r \in \mathbb{N}_{++}$. Then (3.1) can be written as $||\bar{F}^{(r)} - \bar{F}||_{\infty} < \frac{6.4}{2^r}$.

Results. Results for a series of finite approximation solutions (r = 2, 4, ..., 12) for Type I and II approximation sequences) are given in Table 3. In Table 3, the "number of knots" refers to the knots used in finite approximation. The "theoretical L^{∞} error bounds" refer to the bound obtained from (3.1). The "empirical L^{∞} errors" refer to the supremum-normed error between the true and the approximate solutions, computed via discretizing support [0,1) and enumerating $\{x \in [0,1)|10^6x \in \mathbb{N}\}$. Similarly, the "empirical L^1 errors" refer to the mean absolute error. The true solution and some of the finite approximation solutions are plotted in Figure 2.

FIG. 2. Plots of the true solution to distribution integral equation (6.1) and finite approximation solutions from (A-IE) (r=1 for Type I and r=1,2,3,4 for Type II), each type with a convergence trend (discontinuities connected for visualization) in Experiment I.

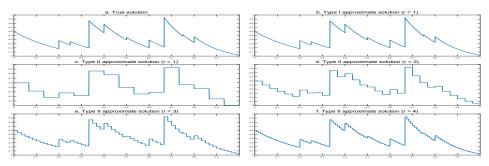


Table 3 Comparison of empirical L^1 errors, empirical L^∞ errors, theoretical L^∞ error bounds and computation time (seconds) across a series of finite approximation solutions (r=2,4,...,12 for both Type I and II) in Experiment I.

	a. Type I approximate solutions							
r N	Number of knots	Empirical errors		Theoretical error bounds	Time			
	Number of knots	L^1	L^{∞}	L^{∞}	rime			
2	3.00E+01	5.62E-04	1.04E-03	1.53E+00	2.72E-03			
4	1.20E + 02	2.26E-04	4.17E-04	3.81E-01	6.62E-03			
6	4.80E + 02	6.94E-05	1.28E-04	9.53E-02	5.15E-02			
8	1.92E + 03	2.91E-05	5.38E-05	2.38E-02	8.24E-01			
10	7.68E + 03	1.90E-05	3.50E-05	5.96E-03	1.94E+01			
12	3.07E + 04	9.96E-07	1.84E-06	1.49E-03	5.50E + 02			
b. Type II approximate solutions								
r	Number of knots	Empirical errors		Theoretical error bounds	Time			
1	Number of knots	L^1	L^{∞}	L^{∞}	rime			
2	3.00E+01	4.73E-02	2.06E-01	1.60E+00	6.45E-02			
4	1.20E + 02	1.17E-02	5.55E-02	4.00E-01	1.08E-02			
6	4.80E + 02	2.91E-03	1.41E-02	1.00E-01	6.30E-02			
8	1.92E + 03	7.27E-04	3.55E-03	2.50E-02	8.27E-01			
10	7.68E + 03	1.82E-04	8.87E-04	6.25E-03	1.90E+01			
12	3.07E + 04	4.54E-05	2.21E-04	1.56E-03	5.22E + 02			

While the solutions generated by both Type I and Type II sequences converge, Type I generated solutions converge faster. With only 15 knots (r = 1), Type I generated solution is barely distinguishable from the true solution in Figure 2. In Table 3, the empirical L^1 errors, empirical L^{∞} errors, and theoretical L^{∞} errors

 of Type I are all smaller than that for Type II. We observe that the empirical and theoretical errors are in the order of $O(\frac{1}{N})$ (see remark in subsection 5.2). A reason for improved performance of Type I is that it can be regarded as an "iterated" version of Type II (see section 4). The extra iteration increases the "smoothness" of the approximate solutions. This advantage is gained with no significant addition to the computational time, as both approaches solve a system of N linear equations, where N is the number of knots.

With the Banach space and the operator equations constructed in this paper, we also tested a naive adaptation of Neumann method. Recall that the calculation of Neumann series requires computation of $\mathcal{K}^i\xi$. In our adaptation, we performed this calculation by discretizing the support [0,1) and created $\{x \in [0,1)|10^ix \in \mathbb{N}\}(i=1,2,...,5)$ equally spaced points to numerically evaluate all integrals. We found that the empirical L^{∞} errors of the approach were greater than 0.72 even when using 10^5 discretization points and a similar computational effort to that of Type I or Type II approach. This is because such an approach does not consider possible jumps of the true solution and the error is reflected at these jump points in the final solution.

6.2. Example 2 with everywhere non-differentible functions. We construct the equation by taking the inhomogeneous term $\xi(x):=\sum_{k=0}^\infty a^k\cos(b^k\pi x)$ to be the Weierstrass function [34]. We use $a=\frac{1}{2},\,b=15$ for the numerical testing. The function is continuous but non-differentiable everywhere on $\Omega=[0,1)$. With $\kappa(x,u)=\frac{xu}{4}$, an analytic solution of the integral equation $F(x)=\xi(x)+\int_\Omega\kappa(x,u)dF(u),\,x\in\Omega$ is not available. Note that Condition 1 is satisfied because $\sup_{x\in\Omega}V_u\left(\kappa(x,u);\Omega\right)=\sup_{x\in\Omega}\frac{x}{4}=\frac{1}{4}<\infty$. Condition 2 is also satisfied because $\kappa(\cdot,1)$ is right-continuous and $v_\Lambda(x_1,x_2)=\frac{1}{4}|x_2-x_1|,\,\forall(x_1,x_2)\in\Omega$. Let us define a Type II sequence: for all $r\in\mathbb{N}$, $J^{(r)}=2^r;\xi^{(r)}(x)=\sum_{k=0}^r a^k\cos(b^k\pi x),\,x\in\Omega;c_i^{(r)}=\frac{i-1}{2^r},\,i=1,2,...,J^{(r)};\omega_i^{(r)}(x)=\sum_{j=1}^{J^{(r)}}\kappa(c_j^{(r)},c_i^{(r)})\mathbf{1}\{x\in[c_j^{(r)},c_{j+1}^{(r)})\},\,x\in\Omega,i=1,2,...,J^{(r)}$. It is easy to show that $\{\kappa^{(r)}\}_{r\in\mathbb{N}}$ satisfy uniform boundedness, uniform variation-boundedness and convergence to κ . Thus, Condition 5 is satisfied. Additionally, $\xi^{(r)} \rightrightarrows \xi$. The integral equation also has a unique solution $\bar{F}\in\bar{\mathbf{X}}$ (i.e., Condition 4 is satisfied) because $\sup_{x\in\Omega} \{\kappa(x,1)+2V_u(\kappa(x,u);\Omega)\}=\sup_{x\in\Omega} \frac{x\cdot3}{4}=\frac{3}{4}<1$ (see Theorem 5.1). Given all preconditions, we have the solution convergence.

Figure 3 plots the generated approximate solutions. Since the true solution is not available, we use concepts of "equation residue" and "error from available solutions" to discuss solution errors. The " L^{∞} equation residue" is obtained by evaluating the maximal (across x) absolute difference of right and left side of the equation with each approximate solution, while " L^1 equation residue" is the mean of absolute difference. Since the integration is not computable in closed form, we estimate its value by discretizing support [0,1) and enumerating $\{x \in [0,1)|10^4x \in \mathbb{N}\}$. The " L^{∞} error from available solutions" is the maximal (across x) absolute difference (scaled by 2) of the r-th approximate solution with subsequent solutions (till r = 15), while " L^1 error from available solutions" is the mean absolute difference. All maximal/mean errors are obtained by discretizing support [0,1) and enumerating $\{x \in [0,1)|10^6x \in \mathbb{N}\}$. Statistics of a series of approximate solutions are given in Table 4.

Figure 3 and Table 4 indicate that the approximate solutions are converging despite ξ being an everywhere non-differentiable Weierstrass function. Because of the nature of ξ , the true solution has a huge variation. In Figure 3, the first approximate solution (r=1) is able to roughly describe the "locally-averaged growth trend". Subsequent approximate solutions add local variations and gradually converge.

710

712 713

714

721

722

723

724 725

726

727

728

729

 $730\\731$

 $732 \\ 733$

734

735

Fig. 3. Plot of the approximate solutions obtained from (A-IE) (r = 1, 3, 7, 9, 11, 13) with a convergence trend in Experiment II.

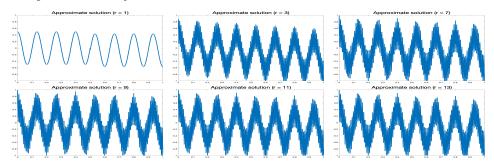


Table 4 Comparison of equation residues, errors from available solutions and computation time (seconds) across a sequence of approximation equations (r = 1, 4, 7, 10, 13) in Experiment II.

r	Number of knots	Equation residue		Error from a	Error from available solutions	
		L^1	L^{∞}	L^1	L^{∞}	Time
1	2.00E+00	7.04E-02	1.70E-01	3.09E-02	1.12E-01	2.43E-03
4	1.60E + 01	1.30E-01	2.60E-01	5.57E-02	1.58E-01	1.68E-03
7	1.28E + 02	1.58E-02	3.17E-02	1.17E-02	6.49E-02	2.79E-03
10	1.02E + 03	2.31E-02	4.62E-02	1.16E-02	3.61E-02	8.65E-02
13	8.19E + 03	1.82E-03	3.71E-03	2.34E-03	7.61E-03	1.10E + 01

7. Conclusion. The numerical examples used to demonstrate the effectiveness of our approach satisfy $||\mathcal{K}||_O \leq 1$. The developed approach is also valid for $||\mathcal{K}||_O \geq 1$. Our method's performance in solving problems with $||\mathcal{K}||_O \geq 1$ is discussed in [27], where it is further developed for use to find stationary distributions of continuous-state Markov chains. Since the approximate solutions are obtained via solving a linear equation system, its computational performance can be further improved by taking advantage of the properties of matrices defining the linear system.

716 REFERENCES

- [1] S. Abbasbandy, E. Babolian, and M. Alavi, Numerical method for solving linear fredholm fuzzy integral equations of the second kind, Chaos, Solitons & Fractals, 31 (2007), pp. 138–146.
 [2] S. Amini and I. H. Sloan, Collocation methods for second kind integral equations with non-
 - [2] S. Amini and I. H. Sloan, Collocation methods for second kind integral equations with noncompact operators, The Journal of Integral Equations and Applications, (1989), pp. 1–30.
 - [3] M. AMIRFAKHRIAN AND S. M. MIRZAEI, Modified neumann series for solving fredholm integral equation, Applied Mathematical Sciences, 3 (2009), pp. 623–628.
 - [4] J. Anděl, I. Netuka, and P. Ranocha, Methods for calculating stationary distribution in linear models of time series, Statistics, 41 (2007), pp. 279–287.
 - [5] P. M. Anselone and J. Davis, Collectively compact operator approximation theory and applications to integral equations, Prentice Hall, 1971.
 - [6] M. F. Araghi and N. Parandin, Numerical solution of fuzzy fredholm integral equations by the lagrange interpolation based on the extension principle, Soft Computing, 15 (2011), pp. 2449–2456.
 - [7] D. N. Arnold, A spline-trigonometric galerkin method and an exponentially convergent boundary integral method, mathematics of computation, 41 (1983), pp. 383–397.
 - [8] K. ATKINSON AND A. BOGOMOLNY, The discrete galerkin method for integral equations, Mathematics of computation, 48 (1987), pp. 595-616.
 - [9] P. Brill and M. J. Posner, Level crossings in point processes applied to queues: single-server

This manuscript is for review purposes only.

736 case, Operations Research, 25 (1977), pp. 662–674.

739

740

 $741\\742$

743

744

745

746

747

748

749

750

751

752

753

754

755

 $756 \\ 757$

758

759

 $760 \\ 761$

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777 778

779

780

781

782

783

784

785

789

790

791

797

- 737 [10] S. Browne, E. Coffman, Jr., E. Gilbert, and P. E. Wright, The gated infinite-server queue: 738 Uniform service times, SIAM Journal on Applied Mathematics, 52 (1992), pp. 1751–1762.
 - [11] H. BRUNNER, Iterated collocation methods and their discretizations for volterra integral equations, SIAM journal on numerical analysis, 21 (1984), pp. 1132–1145.
 - [12] G. CORRADI, J. JANSSEN, AND R. MANCA, Numerical treatment of homogeneous semi-markov processes in transient case-a straightforward approach, Methodology and Computing in Applied Probability, 6 (2004), pp. 233–246.
 - [13] L. Grammont, A galerkin's perturbation type method to approximate a fixed point of a compact operator, International Journal of Pure and Applied Mathematics, 69 (2011), pp. 1–14.
 - [14] L. GRAMMONT, P. B. VASCONCELOS, AND M. AHUES, A modified iterated projection method adapted to a nonlinear integral equation, Applied Mathematics and Computation, 276 (2016), pp. 432–441.
 - [15] M. GRIEBEL AND S. KNAPEK, Optimized tensor-product approximation spaces, Constructive Approximation, 16 (2000), pp. 525–540.
 - [16] H. GUOQIANG AND W. JIONG, Extrapolation of nystrom solution for two dimensional nonlinear fredholm integral equations, Journal of Computational and Applied Mathematics, 134 (2001), pp. 259–268.
 - [17] W. HACKBUSCH, The integral equation method, in Integral Equations, Springer, 1995, pp. 266–317.
 - [18] W. HACKBUSCH AND S. A. SAUTER, On the efficient use of the galerkin-method to solve fredholm integral equations, Applications of mathematics, 38 (1993), pp. 301–322.
 - [19] G. HAN AND R. WANG, Richardson extrapolation of iterated discrete galerkin solution for twodimensional fredholm integral equations, Journal of Computational and Applied Mathematics, 139 (2002), pp. 49–63.
 - [20] E. HELLINGER AND O. TOEPLITZ, Integralgleichungen und Gleichungen mit unendlichvielen Unbekannten, Leipzig und Berlin, 1928.
 - [21] T. HUISMAN AND R. J. BOUCHERIE, The sojourn time distribution in an infinite server resequencing queue with dependent interarrival and service times, Journal of applied probability, (2002), pp. 590–603.
 - [22] Y. IKEBE, The galerkin method for the numerical solution of fredholm integral equations of the second kind, Siam Review, 14 (1972), pp. 465–491.
 - [23] H. KAGIWADA, R. KALABA, AND B. VEREEKE, The invariant imbedding numerical method for fredholm integral equations with degenerate kernels, Journal of Approximation Theory, 1 (1968), pp. 355–364.
 - [24] H. H. KAGIWADA AND R. KALABA, An initial-value theory for fredholm integral equations with semidegenerate kernels, Journal of the ACM (JACM), 17 (1970), pp. 412–419.
 - [25] L. LANDWEBER, An iteration formula for fredholm integral equations of the first kind, American journal of mathematics, 73 (1951), pp. 615–624.
 - [26] D.-S. Lee, Analysis of a single server queue with semi-markovian service interruption, Queueing Systems, 27 (1997), pp. 153–178.
 - [27] S. LI AND S. MEHROTRA, A near-optimal finite approximation approach for computing stationary distribution and performance measures of continuous-state markov chains, arXiv, (2021), http://arxiv.org/abs/2112.14315.
 - [28] F. LIANG AND F.-R. LIN, A fast numerical solution method for two dimensional fredholm integral equations of the second kind based on piecewise polynomial interpolation, Applied mathematics and computation, 216 (2010), pp. 3073–3088.
 - [29] K. MALEKNEJAD AND H. DERILI, Numerical solution of integral equations by using combination of spline-collocation method and lagrange interpolation, Applied Mathematics and Computation, 175 (2006), pp. 1235–1244.
- 786 [30] K. MALEKNEJAD, R. MOLLAPOURASL, AND K. NOURI, Convergence of numerical solution of the 787 fredholm integral equation of the first kind with degenerate kernel, Applied Mathematics 788 and Computation, 181 (2006), pp. 1000–1007.
 - [31] S. NOEIAGHDAM, M. A. F. ARAGHI, AND S. ABBASBANDY, Valid implementation of sinccollocation method to solve the fuzzy fredholm integral equation, Journal of Computational and Applied Mathematics, 370 (2020), p. 112632.
- [32] I. H. Sloan, Quadrature methods for integral equations of the second kind over infinite inter vals, Mathematics of computation, 36 (1981), pp. 511–523.
- 794 [33] L. VENKATARAMANAN, Y.-Q. SONG, AND M. D. HURLIMANN, Solving fredholm integrals of the 795 first kind with tensor product structure in 2 and 2.5 dimensions, IEEE Transactions on 796 signal processing, 50 (2002), pp. 1017–1026.
 - [34] K. Weierstrass, On continuous functions of a real argument that do not have a well-defined

798 differential quotient, Mathematische werke, 2 (1895), pp. 71–74. 799 [35] W. XIONG, D. JAGERMAN, AND T. ALTIOK, M/g/1 queue with deterministic reneging times, Performance Evaluation, 65 (2008), pp. 308–316.