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FINDING DISTRIBUTION FUNCTION DEFINED BY INTEGRAL
EQUATIONS USING FINITE APPROXIMATION *

SHUKAI LI AND SANJAY MEHROTRA

Abstract. This paper develops a finite approximation approach to find the solution F(z) of
integral equations in the form F(z) = &(x) + [p k(z,u)dF(u),Vz € R, where F(z) may not be
continuous, and therefore not have a density function. The integral equations in this form, to the
best of our knowledge, have never been studied before. However, such equations arise frequently
when modeling stochastic systems. We construct a Banach space of (right-continuous) distribution
functions and reformulate the problem into an operator equation. We provide general necessary and
sufficient conditions that allow us to show convergence of the approximation approach developed
in this paper. We then provide two specific choices of approximation sequences and show that the
properties of these sequences are sufficient to generate approximate equation solutions that converge
to the true solution assuming solution uniqueness and some additional mild regularity conditions. Our
analysis is performed under the supremum norm, allowing wider applicability of our results. Worst-
case error bounds are also available from solving a linear program. We demonstrate the viability
and computational performance of our approach by constructing two examples. The solution of
the first example could be constructed manually, but demonstrates the correctness and convergence
properties of our approach. The second example solves a problem involving the Weierstrass function
for which no closed-form solution is available.

Key words. Integral Equation, Finite Approximation, Fredholm Equations, Operator Theory,
Collective Compactness, Markov Chain, Stationary Distribution.

AMS subject classifications. 45B05, 60H25, 65C30, 65R20

1. Introduction.

1.1. Overview of the problem. This paper aims to solve a general class of
integral equations of the form

(IE) F(z) =&(x)+ [pr(z,u)dF(u), VzeR

to a desired accuracy. Here £ : R — R is a given distribution, x : R? — R is a given
kernel, dF' is the measure associated with F and F' : R — R is to be determined.
We analyze (IE) by letting R as the support. A similar analysis can be developed
for support 2 C R. Our study of (IE) is motivated by the problem of finding the
stationary distribution and associated steady-state performance evaluation measures
of stochastic models that can be represented by continuous or mixed state Markov
chains. The current paper develops the mathematical foundations and a finite ap-
proximation approach for solving such equations. Its application in the context of
Markov chains is discussed in [27].

We may regard (IE) as a generalization of Fredholm equations of the second type:

(FIE) f(z)=g(x) + /Q t(z, u) f(u)du, x € R

The functions in (FIE) are usually assumed to be continuous and thereby integratable
w.r.t. z [17]. Suppose {2 is a closed interval. Then taking integration w.r.t. z on both
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2 S. LI, AND S. MEHROTRA

sides of (FIE) yields (IE). However, the opposite direction may not hold as functions
in (IE) are not necessarily continuously differentiable; see examples in section 6.

A finite approximation approach. Since exact solutions of (IE) are typically
unavailable and known integral equation solution methods are not applicable (see
subsection 1.2 for a review), we develop a method which approximates (IE) with a
sequence of “discretized” equations of the form

J
(A-IE) F(z) = €0 (z) + Zw(” (@)~ F(”)), VeeR,reN,
where (r) indexes the approximation sequence and for all r € N, —oo = cér) <
cgr) <. < c{(]r(),,) < CEIZ)">+1 = +oo, F(c )) =0 and £, w(?")vwér)’ . (J’E) R~ R

are to be specified depending on an approxnnatlon strategy. For any fixed r € N
and known f(r),wY),wg) ., we obtain the solution of (A-IE) by letting z =

PR R (COR)
cY), cg),. . cf]:)r) into (A-IE) and solving the system of J(") x J(") linear equations to
obtain F(c{"), F(c3”), ... F(c\),):
g
> — ) 4w NP =€), G =12, 00,
i=1
where w(J()T>+1 =0 and 0;; = 1{i = j}. Then the value of F(x) at any arbitrary point

2 can be obtained by using (A-IE). An illustration of finite approximation can be
found in Figure 1 of section 4.

1.2. Related literature. Solution methods for Fredholm integral equations of
the second type (FIE) are discussed in [17]. Table 1 provides the known methods
with a summary description. To the best of our knowledge, solution methods for
problems in the form of (IE) are not known. However, the methods for (IE) presented
here are motivated from the approximation methods for (FIE). Depending on the
specification of {wET)};]:(Tl), Type II approach in section 4 uses the concept behind
quadrature methods [32, 16, 1], and Type I uses iterated approximation concept [11,
19, 14]. A major challenge in using these concepts is that Fredholm/Volterra integral
equations are discussed in a space of continuous functions while (IE) is in a space
of right-continuous distribution functions with possible jumps. Our construction of
(A-IE) and selection of appropriate knots takes possible jumps into consideration.

As mentioned earlier, transformation from the Fredholm integral equation (FIE)
o (IE) is possible if functions in (FIE) are integratable w.r.t. z. Conversely, if
functions in (IE) are differentiable w.r.t. z, taking derivatives in  on both sides of
(IE) yields the form of (FIE). In the later case, the distribution problem is transformed
into a density problem. Stochastic modelling literature has used integral equations as
a density problem [9, 10, 26, 35]. However, in many cases it is unrealistic to assume the
existence of density, e.g., when a probability mass exists. Other stochastic modelling
literature using integral equation approaches include [21, 12, 4].

1.3. Contributions. We provide a general approximation scheme for (IE). The
approximate solutions are obtained by solving a linear equation system. We prove
the convergence of approximate solutions (Theorem 3.6) as well as their worst-case
error bounds (Theorem 3.7). In the process of developing our convergence analysis,
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of solution methods for classical Fredholm/Volterra integral equations in literature.

TABLE 1

Methods and

source

Description

I[{)egenlerate 1. Approximate kernel ¢(x,u) with a sequence of ¢, (z,u).
Kernel wome 2. Assume t,, is degenerate: ty(z,u) = > "_; a;j(z)b;(u).
e [23, 24, 30] j
. 1. Approximate kernel ¢(z, w) with a sequence of ¢, (z, u).
Interpolation . : R X ] .
20. 98. 6 2. Interpolation of t(z,u) in x yields following approximation:
29, 28, 6] talm,w) = 37 (@)t (ay,w).
Tensor 1. Approximate kernel ¢(z, ) with a sequence of ¢, (z, u).
approximation 2. Assume the tensor structure:
[15, 33] tn(z,u) =370 300 cijai(x)b;(u)-
Collocation 1. An interpolation may be formulated into an projection II.
Projection | method 2. Solve the approximate equation:
method [11, 2, 18, 31] If (z) = Hg(x) + [P Tt(x, u)df ().
Galerki 1. Assume the function space X is a Hilbert space. Let X,, be
atir clln a sub-space. Let II,, be the orthogonal projection onto X,,.
g; 70 8, 13] 2. Solve the approximate equation:
» oS I, f () = Mag(z) + [P My t(x, w)df (u).

1. Assume the integral operator K has a smoothing effect.

2. Define f = g 4+ ¢, ¢» = Kg. Then the equation is trans-
formed into: ¢ = ¢ + K.

3. The problem is reformulated into a new problem with a
regular (sufficiently smooth) solution.

Regularisation method [17]

[

. Obtain an approximate solution f from some other method.
Iterated approximation 2. Plug it into the right hand side (RHS) of original equation
[11, 19, 14] and obtain a new approximate solution:
f = g(@) + [7 e, w)df(w).
Solve an approximate equation:
F@) = glo) + 30, W) f(s:),
where the weight functions {W;} and knots {s;} are to be
specified depending on approximation strategies.
1. Assume the original equation can be reformulated into an operator
equation f = g + Lf. Assume £ has a norm less than 1.
2. The approximate solution is > Llg.

Quadrature method
(or Nystrom method,
discretization) [32, 16, 1]

Neumann method [20, 25, 3]

we provide necessary and sufficient conditions (Condition 1-Condition 4) for applying
operator equation convergence theory. Our analysis is performed under the supremum
norm, which requires weaker assumptions than the total variation norm (remark in
supplemental material section SM6). Different from many other integral equation
analyses which require the transition operator’s norm less than one to ensure solu-
tion uniqueness, we allow the norm greater than one (Theorem SM6.1). Our finite
approximation solution is near-optimal among all discrete approximate solutions un-
der appropriate assumptions (remark in section 5). Moreover, we outline specific
strategies on how to construct approximation equations (Condition 5) and provide
worst-case error bounds (subsection 5.2). We verify the accuracy and efficiency of our
approach via numerical examples.

1.4. Organization. In section 2, we show that (IE) can be written as an oper-
ator equation F' = £ + KF by defining an appropriate Banach space. Here we provide
the main definitions and assumptions used in this paper. We also state known re-
sults from operator equation convergence theory. In section 3, we use the collective
compactness theory to develop a convergence theory and error bounds on the ap-
proximate solutions available from (A-IE). In section 4, we provide specific strategies
for constructing (A-IE). In section 5, we provide sufficient conditions for solution
uniqueness and invertibility assumptions used in our results. We also discuss the
computation of errors and argue why our approximation is near-optimal among all
discrete approximate solutions. In section 6, we present numerical results for solv-
ing two test examples, one with multiple discontinuities and the other with every-
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4 S. LI, AND S. MEHROTRA

where non-differentiable functions. The multiple discontinuities example shows the
accuracy of our method in solving non-continuous problems. The example with non-
differentiability shows the applicability of our approach in an extreme case (FIE).

2. Definitions, Known Results, and Assumptions.

2.1. Known operator theory results. We now state key definitions and re-
sults from Anselone and Davis’ collective compactness theory [5, 17]. This theory
proves convergence and error bounds of approximate solutions to operator equations
under collective compactness, consistency and solution uniqueness preconditions.

DEFINITION 2.1 (Collective Compactness, Consistency, and Stability [17]). Con-
sider Banach space (Y,|| - ||) and a linear operator L on Y. A sequence of linear
operators {L)},.cn are

e collectively compact if the set {L")F |r € N,F € Y} is relatively compact,

e consistent if lim, o ||[LF — LF|| = 0,VF €Y, and

e stable if there exists ro € N and C' > 0 such that for all v > 1o, (T — L)1
exists and ||(Z— L) |oy < C, where T is the identity operator and ||-]|oy
is the operator norm of Y.

An error bound and convergence of solution is given in the following results.

LEMMA 2.2 (Theorem 4.7.11 in [17]). Consider a Banach space (Y, ||-1|), linear
operators L and L' on'Y, inhomogeneous terms £ and £ in'Y, and equation solutions
Fand F' inY:

F=¢+LF, F =¢+/F.
If (Z— L)1 exists, then ||F' — F|| < |[(Z — L) Moy - ([|L'F = LF[| + [|§" = &]]).

LEMMA 2.3 (Theorem 4.7.11 in [17]). Consider a Banach space (Y, ||-||), linear
operators L and {L)Y,.cn on Y, inhomogeneous terms & and {€7) Y, cn in Y such
that lim, oo €7 = ¢, and equation solutions F and {F")},.cy in Y:

F=¢+LF, FO=¢04Op0 N,

If {,C(T)}T.GN are collectively compact and consistent to L, and equation F' = E+LF has
a unique solution F in Y, then (i) {L")},en are stable. (zz) There exists ro € N such
that for all r > 1y, F(”) uniquely exists and satisfies ||F) — F|| < |[(Z— L") "oy -
(ILOF = LF|| + €™ = €ll). (idi) lim, o0 FT) = F.

LEMMA 2.4 (Theorem 1.3.28, 4.7.7 and 4.7.11 in [17]). Consider a Banach space
(Y,||-1]), linear operators £ and {L)},en on Y. Suppose {L)},cn are collectively
compact and consistent to L. The following statements are equivalent:

(1) Ker(Z—L) ={0}, i.e., V€ € Y, F = £+ LF has at most one solution F € Y ;

(i7) Im(I E) Y, ie,VEe€Y, F=¢(+ LF has at least one solution F € Y;
(iii) (T — L)1 emists, i.e., VEEY, F =&+ EF has a unique solution F € Y;
(iv) There exzsts r € N such that (1 — L)~ exists and ||(£ — L7)L]|oy, <
||(1*13("’))’1||oy
(v) There exists 1o € N such that ¥r > 1o, (1 — L)' exists and ||(£ —
(T))»C\loy < m

Particularly, statements (i) — (v) hold if ||L||oy < 1.

The convergence in Lemma 2.3 is proven by showing that in the error of Lemma 2.2,
the first term ||(Z — £")7!||o, is bounded (i.e., stability, indicated by collective com-
pactness) and the second term (||L'F — LF||+ || —&||) converges to 0 (consistency).

This manuscript is for review purposes only.
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DISTRIBUTION INTEGRAL EQUATIONS 5

We will prove that for (IE) in a specific space of distributions, these abstract
preconditions are ensured by the following conditions that are verifiable:
(7) uniformly bounded variation (Condition 1),
(#4) cadlag and countable jump discontinuities (Condition 2),
(#4t) proper construction of (A-TE) (Condition 3 or Condition 5), and
(iv) operator norm inequality or feasibility on a subset (see section 5).

2.2. A Banach space. Let D be the collection of probability distribution func-
tions defined on R and B be the Borel algebra for R. Let

X :=span(D) = {Zaka IneNyy,a, €R,Fy € D}
k=1

be a linear space of distribution functions of all finite signed measures on (R, B). Let
| - |loo be the supremum norm on X: ||F||« = sup,cp |F(z)|, VF € X. Let V(f;Q)
be the total variation of a function f : R — R on 2 C R. For convenience, let
V(f) :=V(f;R). Moreover, for a multivariate function f(z,u): R™ x R +— R, we use
Vu(f(z,u)) € Ry to denote the total variation of f(z,u) as a single variable function
of u with any fixed x € R™.

We construct a Banach space of right-continuous distribution functions as follows.

THEOREM 2.5 (A Banach Space and Properties). Let X be the closure of X C
{f : R+ R} under the norm || - ||oo- Then (X,]| - ||so) is a Banach space. Moreover,
(i) (Bound and variation) ||F||s < 00,VF € X. V(F) < o0, VF € X.
(ii) (Cadlag) For any F € X, F(—oc0) = 0 and F(+00) exists. The left limit
F(z—) and the right limit F(x+) exist for all x € R. F is right-continuous.
(iii) (Countable jump discontinuities) For any F € X, the set

Jr(e) ={z e R||F(z+) — F(z—)| > ¢}, e¢€Ry
is finite for any ¢ > 0, and therefore, its jump discontinuities are countable.
Let || - ||o be the operator norm of any linear operator K on X:

IKllo == sup  [[KF[|.
FEX,||F||oo=1

We write “F} converges to F' on X” as “Fy, = F” to emphasize uniform convergence.

2.3. Assumption and reformulation as operator equations. Let us define
the collection of finite transition kernels on (R, B) in the distribution sense.

DEFINITION 2.6 (Finite Transition Kernel). Let T(R,B) be the collection of
functions p(z,u) : R? — R such that

(i) for any fized x € R, p(x,u) is B-measurable w.r.t. u, and

(ii) for any fized u € R, p(x,u) = 0 or there exists a > 0 such that ap(z,u) € D.

We assume the following on (IE) and its finite approximations.

ASSUMPTION 1. For (IE) and a sequence of (A-IE) indered by r € N, we have:
(1) k€ T(R,B); F.§ € X;
(i) €M e X, Vr e N; €0 = ¢ {w) C X, Wr € N; and —oo = ¢ < {7 <

e < CST()T) < CST()T)+1 = 400, Vr € N.

This manuscript is for review purposes only.
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6 S. LI, AND S. MEHROTRA

Assumption 1 is met in the context of stochastic models, which are studied in [27].
The space for £ and F in (i) of Assumption 1 is relaxed to the closure X because X
is not closed under || - ||, and cannot be used as a Banach space in our analysis. We

will show later in specific examples the construction of &™), { }J ") and {c (T)}J o
(r € N) satisfying (i7) of Assumption 1.

We next reformulate (IE) and (A-IE) into operator equations on X. First, we
formulate x € T(R, B) as a continuous linear operator on X.

DEFINITION 2.7 (Transition Operator). For (IE), its transition operator K on X
is defined as follows: if F € X, then

(2.1) KF(zx):= / k(z,u)dF(u), VzeR.
R
Otherwise,
(2.2) KF(z):= klim KFy(z), VzeR,
—00
where {F},}22, C X is any sequence that converges to F on X.

The definition in (2.2) is because F' € X\X as a measure is ill defined and thereby,
(2.1) does not apply. Instead, we define via convergence, which is natural because any
continuous linear operator on X must have (2.2) as a property. In subsection 3.1, we
show that K is well deﬁned under mild assumptions. With slight abuse of notation,
we also write KF(z) as fR z,u)dF(u) for all F € X. Now with Definition 2.7, we
can write (IE) 1nto an operator equation ' = ¢ + CF.

Next we consider the sequence of (A-IE), specified by the inhomogeneous terms
{€M}(r € N), weight functions {w(r)}‘]( )(r € N) and knots {c }J( )(7“ € N). Similar
to IC, we construct a sequence of approximation operators {IC(T) }ren, defined by weight
functions {w!"”}7"} and knots {c!”}7"] in (A-IE).

DEFINITION 2.8 (Approximation Operators). For a sequence of (A-IE) indeved
by r € N, the approximation operators {IC(T)}reN on X are defined as:

g

(2.3) KM F(x Zw(r) T)) - F(cgi)l)], reR,r €N,
where —o0 = ¢ < {7 < . < c(ﬂ)” < CS()T>+1 = 400, and {w{"}1"] C X, vr e N.

Now we can write a sequence of (A-IE) into operator forms F = ¢ + KW F, r € N.

2.4. Verifiable conditions for using operator theory results. We now pres-
ent a list of conditions, which are necessary and sufficient for applying the collective
compactness and operator theory results in subsection 2.1 to solve (IE); see detailed
statements as well as their corresponding proof in subsection 3.1. Let us define the
following functions:

C(x1,29) = lim |k(xg,u) — k(xy,u)|, Vi, xs €R,

uU——+00

vpa(x1,x2) = Vi (k(ze,u) — k(z1,u)), Vi, ze €R.

CoNDITION 1 (Uniformly Bounded Variation). For all fized x € R, k(x,u) €
T (R, B) as a single-variable function of u has a uniformly bounded total variation:

vy, = sup Vy, (k(z,u)) < oo.
z€R

This manuscript is for review purposes only.
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ConDITION 2 (Cadlag and Countable Jump Discontinuities). For x € T(R, B),

(1) k(x,+00) is right-continuous, and

(i) Ve > 0, there exists a finite split of R denoted by knots —00 < $1 < $9 < ... <
sy, < oo and intervals By = (—00,81),F1 = [s1,52),...EN. = [sn.,+00),
such that Va1,xe € B, 21 < x2,i = 0,1, ..., N, we have vp(x1,x2) < €.

CONDITION 3. For k € T(R, B) satisfying Condition 1 (uniformly bounded vari-
ation), operator K in Definition 2.7, and approzimation operators {K("},cxn in Def-
inition 2.8, the quantities satisfy:

(i) (Point-wise convergence) VF € X, Vo € R, limy,_,00 KW F(z) = KF ().

(#4) (Uniform Cadlag and countable jump discontinuities) for all € > 0, there

exists a finite split of R denoted by knots —oo < s1 < 83 < ... < sn, < 00

and intervals Eg = (—00,$1), E1 = [s1,82),..., En. = [sn,, +00), such that
VreNyzy,20 € B2 < 9,1 =0,1,..., N., we have

g
(2.4) S 1AW (@) = Aw (21)] e,

i=1

where wff(z,)ﬂ(x) =0,Vr € N, and

Awi(r)(x) = wgi)l(m) - wi(r)(x), reRi=1,2,...,J7 reN.

CONDITION 4 (Solution Uniqueness). (IE) has a unique solution in X.

Condition 2 is referred to as “cadlag and countable jump discontinuities” because
it describes the property of limit existence, right continuity and countable jumps: &
can be regarded as a map from z € R to k(z, ) € Sy := {f : R = R|V(f) < oo}.
When set Sy is equipped with the distance |f(+00)| (resp. distance V(f)), (i) (resp.
(7i)) of Condition 2 is equivalent to that x has left limits on R, has limits on +oo, is
right continuous on R, and has countable jump discontinuities. We can easily verify
Condition 1 and Condition 2 via partial derivatives in many cases with bounded
supports; see a few examples in [27]. In Condition 3, (i7) describes a uniform “cadlag
and countable jump discontinuities” property across all » € N. Sufficient conditions
which are easier to verify will be given in section 4. Condition 4 is required by
Lemma 2.3, and a sufficient condition that ensures Condition 4 is given in section 5.

The results proved in this paper and their required conditions/assumptions are
summarized in Table 2 with a brief description.

3. Convergence results. This section presents our convergence results in solv-
ing (IE) via finite approximation defined in (A-IE). We show that bounds on errors
are computable and approximate solutions are converging to the true solution under
Condition 1-Condition 4.

3.1. Operator properties. Theorem 3.1 shows that I in Definition 2.7 is a
well-defined continuous linear operator on X under Condition 1. Moreover, this con-
dition is necessary and sufficient. Proofs for Theorem 3.1, and Lemma 3.2, Lemma 3.3
are given in supplementary material section SM2 and section SM3, respectively.

THEOREM 3.1 (Continuous Linearity). For k € T(R, B), operator K in Defini-
tion 2.7 is a well defined continuous linear operator on X if Condition 1 (uniformly
bounded variation) holds. Conversely, if a continuous linear operator K on X has the
form (2.1), then Condition 1 must hold.

This manuscript is for review purposes only.
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TABLE 2
A summary of theorems and their required assumptions in all sections.

Theorems Main preconditions Summary of results

Section 3. Convergence results.

Theorem 3.1 - Condition 1 < Continuous linearity

Theorem 3.4 Condition 1 Condition 2 < Compactness

Theorem 3.5 Condition 1 Condition 3 < Collective compactness & consistency
Theorem 3.6 Assumption 1 Condition 1-Condition 4 = Solution convergence
Theorem 3.7 Assumption 1 Condition 1, Invertibility = Error bound

Section 4. Choices of Finite Approximation.
a. Condition 3 = Condition 2
b. Condition 5 = Condition 3
Section 5. Conditions for Solution Uniqueness, Invertibility and Error Computation.
51 a. Inequality (5.1) = Condition 4
: b. Assumption 2 = Condition 4
Theorem 5.2 - Full rank < Invertibility
5.3 a. Computation of inverse norm
. b. Assumption 2 = Invertibility

Theorem 4.2 Condition 1

Theorem Condition 1,Condition 3

Theorem

Supplemental material.
Theorem SM6.1  Condition 1, Condition 2 Subset feasibility < Condition 4

Interpretations: Condition 1 - k(z, u) in (IE) has uniformly bounded variation.

Condition 2 - Cadlag and countable jump discontinuities for x(z, u) in (IE).

Condition 3 - Point-wise convergence, uniform cadlag and countable jump discontinuities for (A-1E).
Condition 4 - (IE) has a unique solution. Condition 5 - Proper construction of (A-IE).
Assumption 1 - A mild equation restriction for (IE). Assumption 2 - Operator norm less than 1.

LEMMA 3.2. In space X, a set [ C X is relatively compact iff

(1). F is uniformly bounded.

(#). Ve > 0, 3 a finite split of R denoted by knots —00 < s1 < 83 < ... < Sy, < 00
and intervals By = (—o00,s1), 1 = [s1,52),..., En. = [$Nn.,+00), such that
VF € F,Vx1,29 € E;,x1 < 9,1 =0,1,..., Ne, we have |F(z2) — F(z1)| < €.

LEMMA 3.3. Consider k € T(R,B) satisfying Condition 1 (uniformly bounded
variation), operator K defined in Definition 2.7, and the unit ball U = {F € X|
[|Flloo < 1}. For any x1, 29 € R, we have

(i) VF € U, |[KF(x3) — KF(x1)| < {(z1,22) + 2va(21, 22).

(#4) Ve >0, AF e UNX, |[KF(z2) — KF(x1)| = ((x1,22) + va(z1,22) — €.

The following theorem shows that Condition 2 is necessary and sufficient for the
compactness of IC.

THEOREM 3.4 (Compactness). For k € T(R,B) satisfying Condition 1 (uni-
formly bounded variation), operator K in Definition 2.7 is compact on X iff Con-
dition 2 (cadlag and countable jump discontinuities) holds.

Proof of Theorem 3.4. We first note that (¢) in Condition 2 can be equivalently
written as: Ve > 0, there exists a finite split of R denoted by knots —co < 1 < s9 <
. < sy. < oo and intervals Ey = (—o00,s1), F1 = [s1,82),..., En. = [sn,, +00),
such that Vaq,29 € E;, 21 < 22,1 =0,1,..., N, we have ((x1,22) < e. This can be
easily proven by noting the following facts: (a) x(-,+00) is bounded by M,, where
M, is a bound of k(z,u) for z,u € R. (b) (-, +00) is non-decreasing since x(-,u) is
non-decreasing for all u € R.

(<) Under (i) and (i7) of Condition 2, Ve > 0, there exists a finite split of R
denoted by knots —0co < 51 < 52 < ... < sy, < oo and intervals Ey = (—o0, s1), E1 =
[s1,82),..., En. = [sn.,+00), such that Vz,,29 € E;,21 < 22,i = 0,1,..., N, we
have ((z1,22) < § and va(z1,22) < §. By Lemma 3.3, VF € U,Vay, 20 € Ej, 11 <
29,4 = 0,1,..., N, we have |[KF(x2) — KF(x1)| < {(x1,22) + 2va(21,22) < €. By
Lemma 3.2, the bounded set {KF' | F € U} is relatively compact. Thus, K is compact.

(=) If (4) or (ii) of Condition 2 is not satisfied, then Je > 0, for all splits of R
denoted by knots —oo < 51 < s9 < ... < sy < 00 and intervals Ey = (—o0,s1), Fh =
[s1,82),..., En = [sn,+00), there exist x1,29 € E;,21 < 22,4 = 0,1,..., N such
that {(x1,22) > € or vp(x1,22) = e. By Lemma 3.3, 3F € U such that |[CF(x2) —

This manuscript is for review purposes only.
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KF(xz1)] = ((x1,22) + va(21,22) — § > §. By Lemma 3.2, {KF|F € U} is not
relatively compact, i.e., K is not compact. (i) and (i¢) of Condition 2 are necessary.l

Condition 3 ensures that approximation operators {IC(’”)}TeN in Definition 2.8 are
collective compact and consistent to K. It is also necessary and sufficient.

THEOREM 3.5 (Consistency & Collective Compactness). For k € T(R, B) satis-
fying Condition 1 (um'formly bounded variation), operator K in Definition 2.7, and
approzimation operators {K("}, e in Definition 2.8, {IC( M} ren are collectively com-
pact and consistent (i.e., K(WF = KF,YF € X) on X iff Condition 3 (point-wise
convergence, uniform cadlag and countable jump discontinuities) holds.

Proof. (<) Let Condition 3 hold. We first show KM is a continuous linear op-
erator on X for all 7 € N. Definition 2.8 suggests that KMF € X for all F e X
and () is linear. For any F € X such that ||F||. = 1, we have ||[K"F|| <

ZJ(T) |F'(c (T)) F(CET1 Hw(T)H J( X 1w (T)H < o0o. Thus, K is a linear,
bounded (i.e., continuous) operator on X for all r € N.
Next we prove that the set

g
S =Uren {(KWF|F e Uy = {3 wl” (@)[F(c{"”) = F(e{”)] |r eN,F € U
=1
g
=33 (@i — aim)w” (@) | r € N,ag = 0,0; € [-1,1],i € Nyy
=1

satisfies (i7) of Lemma 3.2. Note that (i) of Condition 3 suggests that Ve > 0,
there exists a finite split of R denoted by knots —oo < s1 < s2 < ... < sy, < ©
and intervals Ey = (—o0,81), E1 = [s1,82),...EN. = [sn.,+00), such that for all

re Nz, 20 € Bj,z1 < x9,i=0,1,..., N, we have ij(? |Aw§r)(x2) - Awir)(xlﬂ =
r (r) _ r r
Wi () — w0 (@) + 1) M AW (2) — Aw!” (21)] < e. Therefore,

g g

Z(M —a;_1)w)" (x2) — Z(ai —ai_1)w” (z1)

=1 =1

JM 1
= lay i), (22) =l @) = Y alAw” (22) — A (1))
=1
JM 1
< w‘(f()r) (JL‘Q) — wg:l) ($1)‘ + Z ‘Awgr)(mg) — Awl(r) (551) < €,
=1

for all ag =0, a; € [-1,1],i € Nyy. Thus, (#) of Lemma 3.2 is satisfied for S.

We next prove the uniform convergence (i.e., consistency) using the point-wise
convergence in (i) of Condition 3. For any fixed F* € X, either {K")F*},cxn
or {K") TFT= F*H }ren belongs to S and thus satisfies (i7) of Lemma 3.2. Therefore

{K" F*},en satisfies (i) of Lemma 3.2. Then for any ¢ > 0, we have intervals
Ey = (—00,81),F1 = [s1,82),...En = [sn,+00) such that for all » € Nyzq,29 €
Ei,x1 < x9,i = 0,1,...,N, we have |[K"F*(29) — K" F*(z;)| < £. Now we
arbitrarily select z; from F;, ¢ = 0,...,N, and M € N such that Vry,79 > M,
KD F*(2;) — K2 F* ()] < § for all i = 0,1,..., N. Therefore, Vri,ro > M,

This manuscript is for review purposes only.
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10 S. LI, AND S. MEHROTRA

Vo € Eii = 0,1,...,N, [KUVF*(z) — KO F ()| < |[KUIF*(x) — KOO F*(24)] +
IKTVF*(2;) — KUDF* ()] + |[KUDF*(2;) — KUY F*(2)] < £4 £+ £ < ¢ ie,
KO F* — K2 F¥|| o, < e for all 71,79 > M. Thus, K" F* = KCF* for all F* € X.

Lastly, we prove {K("},.cy is collectively compact. Since (i) of Lemma 3.2 is sat-
isfied for S, we only need to prove that (i) of Lemma 3.2 also holds. i.e., S is uniformly
bounded. For any F' € X, we have K(WF = KF, ||KF||s < oo and [|[KMF||o <
00,7 € N. Thus, sup, ¢y ||[K"F||ls < co. By the uniform boundedness principle,
we have sup,¢y |[K||o < co. Thereby, suppeg ||Flloo = Suppey ren KW F|ls <
sup,.cn [|K |0 < oo. Thus, (i) of Lemma 3.2 also holds.

(=) Let {K(M},en be collectively compact and consistent. Because the uniform
convergence (i.e., consistency) implies point-wise convergence, () of Condition 3 holds.

The collective compactness of {K(},eyn implies S is relatively compact. By
Lemma 3.2, for all € > 0, there exists a finite split of R denoted by knots —oco < s1 <
S < ... < sny. < oo and intervals Ey = (—o0, $1), E1 = [$1,82),...ENn. = [sn., +00),
such that for all r € N, x1, 25 € E;, 1 < 22,7 =0,1, ..., N, we have

g Jm
Y (i —ai e (@) = > (@ — ai)w” (31)| <6,
=1 =1

for all a9 = 0,a; € [-1,1],i € Ni4,r € N. For any fixed r € N, let a; =
—sign(Awgr)(xg) - Awfr)(xl)),i =1,2,...,J). Then we have

g g Jm
> A @2) = 2w ()| = Y (e - aim)wl” @) = (a5 — a1 (@) <e.
i=1 i=1 i=1

Thus, (i7) of Condition 3 holds. |

3.2. Convergence of approximate solutions. Recall that we are able to write
(IE) into operator equation F' = £ + KF in space X and a sequence of (A-IE) into
F =¢M 4 KM F (r € N). Then we have the approximate solution convergence results.

THEOREM 3.6 (Convergence of Finite Approximation). Consider (IE), a se-
quence of (A-IE) indexed by r € N, and their respective solutions F, {F(T)}TeN mn
X. If Assumption 1 and Condition 1-Condition 4 hold, then there exists ro € N such
that for all r > 1y,

o (T KU~ exists,
e (stability) {||(Z — K)"Y|o |r > ro} is bounded,
e (uniform convergence) F) uniquely exists, F") = F, and

(31)  IF = Fll < 1T~ K)o - (ICOF ~ KFllo + 167~ €llc)
where T is the identity operator, and operators K and {K(T)}TeN are as defined in

Definition 2.7 and Definition 2.8.

Proof. Using Lemma 2.3, collective compactness and consistency of {K},en (im-
plied by Condition 1-Condition 3, Theorem 3.5) and solution uniqueness of (IE) (i.e.,
Condition 4), we directly have Theorem 3.6. |

Remark: “equation stability”. The assumptions in Theorem 3.6 have an
“equation stability” interpretation from the perspective of linear algebra: if (IE) is
feasible and has a unique solution, then it remains feasible and has a unique solution

This manuscript is for review purposes only.
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for all £ and K in some neighborhood of ||€ — €||oe < € and HIC Kllo < € on the other
hand if (TE) is infeasible, then it remains infeasible for all € in some neighborhood of
||§ €|lo < €. See detailed proof in section SM4 in supplemental materials.

3.3. Approximation error bound.

THEOREM 3.7 (Error of Finite Approximation). Consider (IE), an instance of
(A-IE), and their respective solutions F, F") in X. If Assumption 1 and Condition 1
hold and (T — K))~1 exists, then inequality (3.1) holds, where T is the identity
operator, and operators K and K" are as defined in Definition 2.7 and Definition 2.8.

Proof. Recall the reformulation of (IE) into operator equation F' = ¢+ F and (A-
IE) into F = ¢ 4+ KM F. Lemma 2.2 directly implies error bounds in Theorem 3.7.0

Necessary and sufficient conditions for the existence of (Z — K())~! used in Theo-
rem 3.7 are outlined in subsection 5.2. The difference between the error bound in
Theorem 3.6 and that in Theorem 3.7 is that the later does not require Condition 2-
Condition 4 or a sufficiently large r, i.e., r > rg as in Theorem 3.6. Therefore, the
later is more suitable for error computation.

4. Choices of Finite Approximation. Despite the necessity and sufficiency
of Condition 3 for consistency and collective compactness, it may be difficult to de-
termine if Condition 3 is satisfied in practice. In this section, we provide tractable
sufficient conditions for Condition 3, and discuss how to satisfy Condition 3 by prop-
erly choosing the weight functions {w };] (1) and knots {cl(-r S (1> in (A-IE).

For convenience, we define the approximate transition kernel for K, which is

an analog of kernel x for K:

g
(4.1) £ (2, ) Zw(r) ) H{u e (c Er)l, Er)]}, Ve,u e R,r € N.

We now provide two types of approximation methods for solving our problem, which
can be interpreted as follows (see illustrations in Figure 1). In Type II sequence,
the approximate kernel k(") on a finite-support is obtained by truncating the origi-
nal kernel k, and the approximate solution is the stationary distribution under the
approximate kernel. For Type I sequence, we use Type II sequence in the first step.
After obtaining the approximate distribution, we “plug it back” into the original
model, subsequently perform an additional iteration of original transition and use
the final distribution as a solution. Therefore, Type I essentially uses the iterated
approximation idea briefly described in Table 1.

DEFINITION 4.1. For k € T(R,B), define two types of approzimation sequences
{wgr)};]:(?, {c (T)}J(T) (reN) as follows
o (Type I) {wfr)};»]:(rf, { }J( ! (r € N) are exact finite approzimation of K in
the sense that cgr) €ER,i=1,2,...J" rcN and w( )( ) = k(z, c( )) x €
R,i=1,2,...,J") reN.
o (Type II) {wgr)}{:(?, {c (T)}J(r) (r € N) are step-wise finite approzimation of
K in the sense: (1) (proper truncations) for all r € N,

g
Wi (@) =D k() ) e [, )Y, e Ri=1,2,.,00).
j=1

This manuscript is for review purposes only.
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FIG. 1. Plots of an example kernel function z = k(x,u) on [0,1]% and its finite approzimations
with 9 knots, where the smooth surface of original kernel is approximated by 8 “ribbons” in Type I
approximation and by 8 X 8 “squares” in Type II approxzimation.

3-D plot of the original kernel function . 3-D plot of the Type | approximate kernel function 3-D plot of the Type Il approximate kernel function
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, 2-D image of the original kernel function 2-D image of the Type | approximate kernel function_

2-D image of the Type Il approximate kemel function

431 (2) (Increasing partitions) for all ri < rg,r1,r2 € N, we have {c; Tl)}J(”) C
432 {c (Tz)}‘](”) (8) There exist {¢},en € Ry and lim, o € = 0 such that
433 Vr € N, Vzy,20 € [c(r)l, ET)) NR, z1 < z9,1 = 1,2,. J(T) + 1, we have
434 vp(z1,22) + C(21,22) < €. In other words, {c(r)} ", are defined by a
435 sequence of finite splits for cadlag and countable jump discontinuities of k.
436 The following theorem provides sufficient conditions for Condition 3.

437 THEOREM 4.2 (Properties of Condition 3). Consider x € T(R, B) satisfying Con-

438 dition 1 (uniformly bounded variation), operator K in Definition 2.7, and approxima-
439 tion operators {KK")},cn in Definition 2.8. Then

440 (¢) Condition 3 (point-wise convergence, uniform cadlag and countable jump dis-
441 continuities) implies Condition 2 (cadlag and countable jump discontinuities).
442 (i) Item (i) (point-wise convergence) of Condition 3 holds if AM,,, v, < o0,

443 (4.2) | (2, u)] < M,,, Va,ueR,reN,

444 (4.3) V(6" (z,u)) < v,, VzeRreN,

445 (4.4) lim (") (z,u) = k(z,u), Yu,z R,

446 T—00

447 i.e., approximate transition kernels {/@(”)}TGN defined in (4.1) are uniformly
448 bounded, uniformly variation-bounded and convergent to k.

449 (#91) Item (ii) (uniform cadlag and countable jump discontinuities) of Condition 3
450 holds if Condition 2 holds, and {w(r)}J(r) {c (T)}J(r) (r € N) belong to Type
451 I or Type II approzimation sequences given in Definition 4.1.

452 Proof. (i) is because consistency and collective compactness imply compactness

153 according to [17] (Remark 4.7.9). At the same time, the former is equivalent to
454 Condition 3 (Theorem 3.5), while the later is equivalent to Condition 2 (Theorem 3.4).
455 (#4) will be proven by dominated convergence. Note that {k("}, ey are bounded,
156 and for any F € X, K" F can be written as K" F(z =[x k) (x, w)dF (u),Yz €
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R, r € N. Thereby, for any F' € D C X and = € R the dominated convergence ensures

lim K" F(z) = / lim &™) (z,u)dF(u) = / k(z,u)dF(u) = KF(x).
700 R r—00 R
Because X is a linear span of D, for any F € X, lim,_, o K" F(z) = KF(z),Vz € R.
We next expand this convergence result to F € X. Consider FF = F' +e, F €
X,F" € X,|le|]|c < €. Here F’ can be regarded as an approximation to F with a
bounded error e in the subspace X. For any x € R, we have already proven that
lim, oo K F'(x) = KF'(z). We only need to prove lim_o limsup,_, . |[K(Me(z) —
Ke(z)] = 0. Indeed, according to eq(SM2.8) in the proof of Theorem 3.1, we have
[1Ke||loo < (2v,€ + M,)e, and ||[KMe||o < (20, + M,)e,Vr € N. Therefore, lim. o
limsup,_, o, |[KMe(x) — Ke(x)| = 0, lim, o K F(z) = KF(x).
(#i7) We will show for Type I and II sequences, {w( )}J( " are embedded in x and
inherit the property of cadlag and countable jump discontinuities. Rewrite (2.4) as

g
Z |Aw£r)(x2) - Awy) (z1)] <e
i=1
g

@2 |l

@Vu(f-@(r) (T2, u) — (") (x1,u)) + |/£(r)(332, +00) — () (21, +00)] <e.

’L+1 (w2) —w(+) (ml)] — [wfr)(xg) —wfr)(m)] <e

Recall that if Condition 2 holds, Ve > 0, there exists a finite split of R denoted
by knots —co < 51 < 82 < ... < sy, < oo and intervals Ey = (—o0,81), E1 =
[$1,82), ...y BN, = [SN., +00), such that Vzq,29 € E;,i =0,1,..., N, 21 < 2, we have
vp (w2, 1) +C (w2, 1) < €. For Type I, by definitions of £ in (4.1) and {w(r)}J( )(
N) in Definition 4.1, we have

Vu(n(r)(xg,u) — kM (z1,u)) + \/i(r) (29, +00) — K(T)(C,El, +00)|
Vu(k(w2,u) — K(21,u)) + |K(22, +00) — K(T1, +00)|
<vp(we, 21) + ((22,71) < e

In other words, the finite splits generated by Condition 2 also apply to that required
by (ii) of Condition 3. Thus, (i) of Condition 3 holds. The proof for Type II follows
similar analysis and is given in the supplemental material section SM5. ]
(T)}J(

Theorem 4.2 shows that we can choose {w , and knots {c }J o following Defini-

tion 4.1. It also naturally introduces the following sufficient condition for Condition 3.
ConDITION 5 (Sufficient Condition for Condition 3). Consider k € T(R, B) sat-
isfying Condition 1 (uniformly bounded variation), and the approximation sequence
{wy)}ij:(rf, {c (T)}J(T) (r € N). The quantities satisfy
(2) Condition 2 (cadlag and countable jump discontinuities).
(#4) IMy,, v, < oo such that (4.2)-(4.4) hold, i.e., {x"},en defined in (4.1) are
uniformly bounded, uniformly variation bounded and convergent to k.
(#41) {wET)}iJ:(Tl), {c (T)}J(T) (r € N) belong to any type in Definition 4.1.
5. Conditions for Solution Uniqueness, Invertibility and Error Com-
putation. In this section, we provide two sufficient conditions for Condition 4 (i.e.,
the solution uniqueness of (IE)) based on Lemma 2.4. The first condition is based

This manuscript is for review purposes only.
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14 S. LI, AND S. MEHROTRA

on norm inequality, and the second is based on feasibility. We demonstrate the first
condition in the main text. The second is given in supplemental material section SMG6,
where we also show that a stronger norm than |- || imposes stronger assumptions to
reach the same results. Finally, we show how to determine the invertibility of Z — (")
in Theorem 3.7 and a computing approach for errors in Theorem 3.6 and Theorem 3.7.

5.1. Approach I for solution uniqueness: norm inequality. Lemma 2.4
suggests that under Condition 1 and Condition 3 (implying collective compactness and
consistency), the following conditions are equivalent: (i) the solution uniqueness of
(IE) for all ¢ € X, (ii) the solution existence of (IE) for all ¢ € X, (iii) the invertibility
of T — K, and (iv) the stability of {K("},cy. In practice, we may prove solution
uniqueness by showing (5.1) or (5.2) below. Inequality (5.1) is “almost necessary”: it
holds as long as the solution is unique and r is sufficiently large.

THEOREM 5.1 (Solution Uniqueness I). For k € T(R, B) satisfying Condition 1,
operator K in Definition 2.7, and approzimation operators {IC(T)}TGN defined in Def-
inition 2.8 and satisfying Condition 3, the following statements are equivalent

(i) F =&+ KF has a unique solution F in X for all ¢ € X, (i.e., Condition 4).

(ii) There exists 7 € N, (T — K"))~1 ezists and

1
1Z = K)o

(5.1) (K = K)o <

(iii) There exists 1o € N such that ¥r > ro, (T — K))~1 ezists and (5.1) holds.
Finally, statements (i)-(ii2) hold if ||[K|lo <1 or

(5.2) Zlelg {K(x, +00) + 2V, (k(z, u))} <1.

Proof. This theorem is mainly direct results of Lemma 2.4: (i), (i¢) and (i) of
Theorem 5.1 respectively correspond to (7i7), (iv) and (v) of Lemma 2.4. Thus, (i),
(79) and (4i7) of Theorem 5.1 are equivalent statements.

Additionally, according to Lemma 2.4, (¢)-(¢i¢) of Theorem 5.1 hold if ||K||o < 1.

According to eq(SM2.8), [|K||o is bounded by sup, g {£(z, +00) 42V, (k(z,u))}.
Thus, (i)-(iii) of Theorem 5.1 hold if sup,cp {r(z, +00) +2V, (k(z,u))} < 1. ad

Theorem 5.1 naturally introduces the following assumption, which is easy to verify.
AsSUMPTION 2. Kernel k € T(R, B) satisfies inequality (5.2).

Assumption 2 is sufficient for (i)-(¢i¢) in Theorem 5.1 as well as Condition 4. In sec-
tion 6, we will use numerical examples satisfying Assumption 2 to demonstrate the
accuracy and efficiency of our solution methods. However, in practice, Assumption 2
can be too strong, particularly for stochastic models. A more practical sufficient con-
dition for Condition 4 is outlined, due to space limitations, in supplemental material
section SM6. Demonstrations with stochastic model examples can be found in [27].

5.2. Determining invertibility and computing approximation errors. In
this subsection, we simplify our notations. Since we focus on only one instance of (A-
IE), we omit the index (r). For example, knot cl(-r) will be denoted by ¢;. The only
exceptions are that operator K and kernel £ will be denoted by K’ and ' instead
to distinguish from the operator K in Definition 2.7 and & in (IE).

The invertibility of Z — K’ in Theorem 3.7 is easy to determine via determinants:

This manuscript is for review purposes only.
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THEOREM 5.2 (Invertibility). For an instance of operator K' in Definition 2.8,
(Z — K')~t exists iff matriz H is non-singular, i.e., det(H) # 0, where H is defined
by Hij = (52']' - wi(cj) + wi+1(cj), i,j =1, 2, ceny J.

Proof. (=) Due to the invertibility of T — K/, for any ¢ € X, there exists F € X
such that F(z) = &(z) + Z _ywi(2)[F(c;) — F(ci—1)], Vo € R, which yields a J x J
linear equation system

J
(5.3) D [0 — wiley) + wipa (¢)IF(e) =&(cj), G =1,2,...,J.

i=1
The coefficient matrix is exactly the transposed H. Since ({(c1),&(c2),...,€(cs)) can
take any values in R/, H must be non-singular.

(<) By the non-singularity of H, for any ¢ € X, there exists a vector (F*(cy),

F*(c3), ..., F*(c;s)) € R’ that uniquely solves (5.3). This yields F*(c;) = &(c;) +
ijl wi(c)[F*(¢i) — F*(ci—1)], § =1,2,..., J. Let us define

J
F(z):={(z) + Y wi(@)[F*(c;) — F*(ci-1)], Yz €R.

i=1
Then (F*(c1), F*(c2),..., F*(cy)) = (F(c1), F(c2),...,F(cy)) and Vz € R, F(z) =
)+ 370, wi(w)[F(c;) = F(ci-1)]. Thus, (Z - K')F = ¢ and T — K’ is surjective.

Suppose F' € X and (Z — K')F' = £ Then (F'(c1), F'(ca), ..., F'(cs)) € R also

solves (5.3). Since the solution is unique, we must have (F’(¢1), F'(¢c2), ..., F'(cy)) =
(F*(c1), F*(¢c2), ..., F*(cy)) = (F(c1), F(c2), ..., F(cy)). Thus,

F'( +sz ¢) — F'(ci—1)]

)+ Zwi(x)[F(ci) — F(cio1)] = F(z), VzeR.

Therefore, (Z — K')F = £ has a unique solution and Z — K’ is injective.
Finally, because Z — K’ is both injective and surjective, Z — K’ is invertible. O

We also need to compute errors outlined in (3.1) of Theorem 3.7. For the first
factor ||(Z — K')~||o, we can use the following theorem.

THEOREM 5.3 (Norm of Inverse). For an operator K' defined in Definition 2.8,

(i) |IK'|lo < sup,eg {K(@,+00) + Vi (k(z,u))} if K belongs to any type in Defi-
nition 4.1. Moreover, if ||K'||o < 1 or Assumption 2 holds, then (Z — K')™!
ezists and ||[(Z — K")7Y||o < m

(ii) If (T — K')~! exists and {w;}]_, are step functions with knots {c;}{_,, i.e.,
wl(x) = Z;‘Izlpijl{m P Cj}: Dij € Raiaj = 172a"'7‘]; then H(Z_ ’C/)71||(_)1
can be exactly obtained from a series of linear programs:

- n—1 —1: . *
(54) I -7 = _min {ui).

where y3, is obtained from the following linear program (where ag =0):
J

min -y < a; +10(1 —ay) — wi(ci)a; —a ,
meRa ey TS w1~ i) ; (oo = aa-a] <

This manuscript is for review purposes only.
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j=0,1,...J,7€{0,1}.
Here (5.4) is developed based on the observation that, by definition, |[(Z—K')!||5" =
inf); g1 <1 |[(Z — K')F||. The decision variables {a;};_, and y; are used to represent
the infimum. A proof is in supplement material section SM7.
For term ||K'F — KF||o, we discuss its computation when F defines a finite
measure. By definitions of K, K’ and x, we have that

(5.5) |K'F(z) = KF(z)| =

/IR K (2, w)dF (u) — /R Kz, u)dF (u)

< F(+00) - sup |k (z,u) — k(x,u),
z,u€eR

/ (li/(l‘, u) — Kz, u))dF(u)
R

where the approximate kernel #’ is defined based on {w;}:_;, {¢;};, and equation
(4.1). Thus, we have ||[K'F — KF||o < F(+00) - sup, ,eg |8 (7, u) — &(z,u)|.

Remark: near-optimal approximation. Suppose the support is bounded,
{k("},en are defined using Type IT in Definition 4.1, and {£€(")},.cy are step functions
approximating £. If both € and & in (IE) are Lipschitz continuous, then both || —¢'||c
and [|[K'F — KF||s (bounded by F(400) - sup, ,eg |+ (x,u) — £(z,u)|) can be as
small as O (1
F() | Because {F(T)}TGN are discrete distributions, J( is also the number of jumps.
Therefore, we can also conclude that the approximation error can be as small as
O(%), where J is the number of jumps in the discrete approximate solution provided
by finite approximation. Here, J can be regarded as a measure of complexity for
discrete approximate solutions to (IE). We will verify this error in section 6.

Such an error is near-optimal among all methods that use discrete distributions
as approximate solutions, as long as the true solution F' is continuous and strictly
increasing on some small interval. For a brief proof, we consider this special small
interval. Suppose the true solution increases by ¢ on this interval. Because the true
solution is continuous while the approximate solution is discrete, the error on this
small interval is at least ﬁ. Then the overall error is also at least ﬁ, which

is at least as large as the finite approximation error by a constant multiplier.

), where J (") is the number of knots used for approximate solution

6. Numerical Experiments. In this section, we verify the accuracy of our
approach by considering two example equations. The first equation has multiple dis-
continuities and an available solution. The second has “everywhere non-differentiable”
elements, and its solution is not available. For each experiment, we evaluate approx-
imation errors and use plots to show the generated solutions. All computations are
performed on a 32G memory 3.6GHz 8-Core Intel platform.
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6.1. Example I with multiple discontinuities. Let 2 = [0,1) and consider

(6.1) F(z) = &) —|—/ k(z,u)dF(u), =€,
Q
2
256 1.7257x 85(2 — z)?
= — 1
&) 3 x 103 +Z% {x } 1.2 x 10°
3 4
k) 3F2-2)° k1 3%(2-x)°
1 = 7 1 s
2 {x 4} 61 T2 {x 5} 3 % 10°
k=0 k=0
5
k 1.72
Z 1{z>=>%- ﬂ’ reQ,
6 3.6 x 102
k=0
62+ o1{z> ¢}
K(z,u) = 02 —u)F , x,u € Q.
The solution to (6.1) is F(z) = — 52553 +Zi:0 1{z > 8; 22>< 136)39 —i—Zi:O 1{z>*%}.
e s 1{e>k} 2l e
6x10° k=0 3><103 ’ :

Equation (6.1) is considered in the space Xq, defined by the collection of distribu-
tions in X with support Q. Condition 1 is satisfied because sup,cq Vi (£(z,u); ) <

6 1{z> . . . .
SUpP,co QHZ’“X—O{IG} < 1 < oo. Condition 2 is also satisfied because (-, 1) is

right-continuous and va (21, 22) < %\xz — x|, V(z1,22) € [%, w) k=0,1,...,5.

Type I approximation. For all » € N, define a Type I sequence as J(") =

752760 (2) = £(x), z € cz(-r) = 7?;%” 1= 1,2,...,J(’“);w§r)(x) = n(x,c£7')), T €
Q,i=1,2,...,J0) It is easy to show that {K(T)}T6N++ satisfy uniform boundedness,
uniform variation-boundedness and convergence to x. Thus, Condition 5 is satisfied.

Also, (6.1) has a unique solution F' € Xq (i.e., Condition 4) due to Theorem 5.1 and

sup 1 k(z, 1) + 2V, (k(x,u); Q) } < su 3K —

up {w(e, 1) + 2V (e, w)s )} < sup 40 10

With all preconditions satisfied, we have the convergence. -

For error computation, we have |[£(") — ||, = 0,7 € N.,. By (5.5), [|[K'F —

KF|ls < 222,r € Ny (note F is a linear combination of probablhty distributions).

Additionally, by (i) of Theorem 5.3, [|(Z — K")~Y|o < — <25, 7 €Ny, Then
5

(3.1) can be written as ||[F(") — F||,, < & 1.

Type II approximation. Alternatively, we define approximation equations by:

, ) (r " (r .
wl( )(ac) = ZJJ 1 k(e () ())1{90 € [c;),c§+)1)} e i=12.,J7r¢c N,y

€0) = T2 €N € [, el € 0 € N

As in Type I case, {},en ., satisfy uniform boundedness, uniform variation
boundedness and convergence to x. Thus, Condition 5 is satisfied. Also, £ = €.
With all preconditions satisfied, we have the convergence of finite approximation
solutions. For error computation, because |£/'(z)| < 7 if 6035 ¢ 7, we have ||¢(")
Eloo € 554577 € Ny By (5.5), ||[KWEF - KF||o < 5*2T,r €N,y Addltlonally,
according to (i) of Theorem 5.3, |[(Z — K)o < 25 < 2.5, 7 € N{;. Then (3.1)

can be written as ||[F(") — F||o < %‘f.".
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649 Results. Results for a series of finite approximation solutions (r = 2,4, ...,12
650 for Type I and II approximation sequences) are given in Table 3. In Table 3, the
651 “number of knots” refers to the knots used in finite approximation. The “theoretical

652 L error bounds” refer to the bound obtained from (3.1). The “empirical L* errors”
653 refer to the supremum-normed error between the true and the approximate solutions,
654 computed via discretizing support [0,1) and enumerating {z € [0,1)[10°z € N}.
655 Similarly, the “empirical L' errors” refer to the mean absolute error. The true solution
656 and some of the finite approximation solutions are plotted in Figure 2.

Fi1a. 2. Plots of the true solution to distribution integral equation (6.1) and finite approzimation
solutions from (A-1E) (r =1 for Type I and r = 1,2,3,4 for Type II), each type with a convergence
trend (discontinuities connected for visualization) in Experiment I.

a. True solution b. Type | solution (r = 1)

/
{
/
/

r=1) d. Type Il approximate solution (r = 2)

/
7

f. Type Il approximate solution (

I
&

/]
A
/]
/

TABLE 3
Comparison of empirical L1 errors, empirical L errors, theoretical L error bounds and
computation time (seconds) across a series of finite approximation solutions (r = 2,4, ...,12 for both

Type I and II) in Experiment I.

a. Type I approximate solutions

. Number of knots E[l:rllplrlcal erzool;s TheoretlcalLizror bounds Time

2 3.00E+01 5.62E-04  1.04E-03 1.53E4-00 2.72E-03
4 1.20E+-02 2.26E-04 4.17E-04 3.81E-01 6.62E-03
6 4.80E4-02 6.94E-05 1.28E-04 9.53E-02 5.15E-02
8 1.92E4-03 2.91E-05 5.38E-05 2.38E-02 8.24E-01
10 7.68E+03 1.90E-05  3.50E-05 5.96E-03 1.94E4-01
12 3.07E+4-04 9.96E-07  1.84E-06 1.49E-03 5.50E4-02

b. Type II approximate solutions

r Number of knots Egrllplrlcal erzool;s TheoretlcalLigror bounds Time

2 3.00E+01 4.73E-02  2.06E-01 1.60E+4-00 6.45E-02
4 1.20E4-02 1.17E-02  5.55E-02 4.00E-01 1.08E-02
6 4.80E4-02 2.91E-03 1.41E-02 1.00E-01 6.30E-02
8 1.92E4-03 7.27E-04  3.55E-03 2.50E-02 8.27E-01
10 7.68E+03 1.82E-04 8.87E-04 6.25E-03 1.90E+01
12 3.07TE+04 4.54E-05 2.21E-04 1.56E-03 5.22E4-02

657 While the solutions generated by both Type I and Type II sequences converge,

658 Type I generated solutions converge faster. With only 15 knots (r = 1), Type I
659 generated solution is barely distinguishable from the true solution in Figure 2. In
660 Table 3, the empirical L' errors, empirical L™ errors, and theoretical L> errors
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of Type I are all smaller than that for Type II. We observe that the empirical and
theoretical errors are in the order of O(+) (see remark in subsection 5.2). A reason for
improved performance of Type I is that it can be regarded as an “iterated” version
of Type II (see section 4). The extra iteration increases the “smoothness” of the
approximate solutions. This advantage is gained with no significant addition to the
computational time, as both approaches solve a system of N linear equations, where
N is the number of knots.

With the Banach space and the operator equations constructed in this paper, we
also tested a naive adaptation of Neumann method. Recall that the calculation of
Neumann series requires computation of K?¢. In our adaptation, we performed this
calculation by discretizing the support [0,1) and created {z € [0,1)[10'z € N}(i =
1,2,...,5) equally spaced points to numerically evaluate all integrals. We found that
the empirical L™ errors of the approach were greater than 0.72 even when using 10°
discretization points and a similar computational effort to that of Type I or Type II
approach. This is because such an approach does not consider possible jumps of the
true solution and the error is reflected at these jump points in the final solution.

6.2. Example 2 with everywhere non-differentible functions. We con-
struct the equation by taking the inhomogenenous term &(z) := Y2 a* cos(b*mz) to
be the Weierstrass function [34]. We use a = 1, b = 15 for the numerical testing. The
function is continuous but non-differentiable everywhere on 0 =10,1). With x(x,u) =

Ztan analytic solution of the integral equation F(z) = &(x)+ [, k(z,u)dF (u), x € Q
is not avallable Note that Condition 1 is satisfied because sup,cq Vu (k(z,u); Q) =
SUDycq 5 = < oo. Condition 2 is also satisfied because (-, 1) is right-continuous and
va(xy,x2) = |x2 1], V(x1,29) € Q. Let us define a Type II sequence: for all » € N,

T 97 €)@y — ST aF cos(brra), @ € Qe — 2L = 1,3, S50 (2) —

Z;](I)KZ( (T) (T))l{x € [cg , J+1)} reQi=12..,J" It is easy to show that
{k(" )}TGN satlsfy uniform boundedness, uniform Varlatlon—boundedness and conver-
gence to k. Thus, Condition 5 is satisfied. Additionally, £ = ¢. The integral
equation also has a unique solution F' € X (i.e., Condition 4 is satisfied) because
Sup,eq {K(2,1) + 2V, (k(z,u); Q) } = supyeq %2 = 2 < 1 (see Theorem 5.1). Given
all preconditions, we have the solution convergence.

Figure 3 plots the generated approximate solutions. Since the true solution is not
available, we use concepts of “equation residue” and “error from available solutions”
to discuss solution errors. The “L* equation residue” is obtained by evaluating the
maximal (across x) absolute difference of right and left side of the equation with each
approximate solution, while “L! equation residue” is the mean of absolute difference.
Since the integration is not computable in closed form, we estimate its value by
discretizing support [0,1) and enumerating {z € [0,1)|10*z € N}. The “L* error
from available solutions” is the maximal (across x) absolute difference (scaled by 2) of
the r-th approximate solution with subsequent solutions (till » = 15), while “L! error
from available solutions” is the mean absolute difference. All maximal/mean errors
are obtained by discretizing support [0,1) and enumerating {z € [0,1)[10°z € N}.
Statistics of a series of approximate solutions are given in Table 4.

Figure 3 and Table 4 indicate that the approximate solutions are converging
despite £ being an everywhere non-differentiable Weierstrass function. Because of the
nature of £, the true solution has a huge variation. In Figure 3, the first approximate
solution (r = 1) is able to roughly describe the “locally-averaged growth trend”.
Subsequent approximate solutions add local variations and gradually converge.
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Fic. 3. Plot of the approzimate solutions obtained from (A-IE) (r = 1,3,7,9,11,13) with a
convergence trend in FExperiment II.

Approximate solution (r = 1) Approximate solution (r = 3) Approximate solution (r = 7)

0 AAAAAN VWA

Approximate solution (r = 9) Approximate solution (r = 11) Approximate solution (r = 13)

WA WA WA

TABLE 4
Comparison of equation residues, errors from available solutions and computation time (sec-
onds) across a sequence of approzimation equations (r = 1,4,7,10,13) in Experiment II.

. Number of knots Egluation resi[(/iolée Errzli from availablz Oscf)lutions Time

1 2.00E+00 7.04E-02 1.70E-01 3.09E-02 1.12E-01 2.43E-03
4 1.60E+01 1.30E-01  2.60E-01 5.57E-02 1.58E-01 1.68E-03
7 1.28E+402 1.58E-02  3.17E-02 1.17E-02 6.49E-02 2.79E-03
10 1.02E+03 2.31E-02 4.62E-02 1.16E-02 3.61E-02 8.65E-02
13 8.19E+03 1.82E-03 3.71E-03 2.34E-03 7.61E-03 1.10E+4-01

7. Conclusion. The numerical examples used to demonstrate the effectiveness
of our approach satisfy ||[K||o < 1. The developed approach is also valid for ||K||o > 1.
Our method’s performance in solving problems with ||K||op > 1 is discussed in [27],
where it is further developed for use to find stationary distributions of continuous-
state Markov chains. Since the approximate solutions are obtained via solving a linear
equation system, its computational performance can be further improved by taking
advantage of the properties of matrices defining the linear system.
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