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Abstract

Molecular simulations of biomacromolecules that assemble into multimeric complexes
remain a challenge due to computationally inaccessible length and time scales. Low-
resolution and implicit-solvent coarse-grained modeling approaches using traditional
nonbonded interactions (both pairwise and spherically isotropic) have been able to
partially address this gap. However, these models may fail to capture the complex,
anisotropic interactions present at macromolecular interfaces unless higher-order
interaction potentials are incorporated at the expense of computational cost. In this
work, we introduce an alternate and systematic approach to represent directional
interactions at protein-protein interfaces using virtual sites restricted to pairwise
interactions. We show that virtual site interaction parameters can be optimized within a
relative entropy minimization framework using only information from known statistics
between coarse-grained sites. We compare our virtual site models to traditional coarse-
grained models using two case studies of multimeric protein assemblies and find that
the virtual site models predict pairwise correlations with higher fidelity and more
importantly, assembly behavior that is morphologically consistent with experiments. Our
study underscores the importance of anisotropic interaction representations and paves
the way for more accurate yet computationally efficient coarse-grained simulations of
macromolecular assembly in future research.
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Introduction

Molecular dynamics (MD) simulations have been widely used to investigate the
relationships between molecular phenomena and macroscopic behavior, offering spatial
or temporal resolutions that are difficult to probe experimentally. MD simulations at
atomic resolution are most common, allowing high spatial (~Angstroms) and temporal
(~femtoseconds) resolution yet limited to length and time scales on the order of
nanometers and microseconds." 2 For the study of macromolecular systems involving
dynamical behavior that requires longer (and possibly hierarchical) length and time
scale dependence, such as commonly seen in biology and soft materials, coarse-
grained (CG) modeling and simulation is an attractive alternative.3-

One of the benefits of CG models is that of computational cost, as CG models
represent sets of fine-grained (FG) particles (e.g., atoms) as pseudo-particles (i.e., CG
sites), thereby reducing the complexity of modeled macromolecules and facilitating
simulations of larger systems over longer times compared to those possible using
atomistic models. The CG modeling process involves two steps: mapping and
parameterization.*® Mapping determines the correspondence between FG and CG
particles while parameterization determines the effective interactions between CG
particles. One strategy to determine CG mappings and parameters is to derive CG
models that reproduce microscopic statistics from FG simulations, a strategy called the
“bottom-up” approach. Constructing CG models in this way provides a direct means to
first hypothesize then test the importance of molecular features (from CG mappings)
and correlations (from CG interactions) on observed macroscopic behavior.

Within the field of bottom-up CG modeling, various systematic algorithms have
been proposed for parameterization and, to a lesser extent, mapping. Mapping
algorithms follow the convention of chemistry where complex molecules are broken
down into clusters representing chemical moieties or functional groups. For
biomolecules, mapping is often a linearly weighted average of local atoms, for example
using the center-of-mass, which can be variationally optimized,” determined through
graph theoretic methods,® or modified in the context of dynamic linear mappings.® °

Parameterization algorithms have sought to derive CG models such that the sampled



distributions recapitulate the many-body configurational distribution of their FG
counterparts mapped to the CG phase space.! Under this criterion, which is known as
thermodynamic consistency, the ideal effective CG Hamiltonian is the CG-mapped
many-body potential of mean force (PMF). Several methods have been proposed,
including structure-matching methods'?>'” to iteratively capture correlation functions and
variational methods'" 1824 that minimize least-squared differences in forces or the
Kullback-Leiber (KL) divergence. However, using an arbitrarily complex basis set to
describe the CG Hamiltonian is both challenging and impractical. Instead, prior studies
have focused on simplified basis functions that recapitulate a reduced set of
microscopic statistics. For instance, nonbonded interactions are traditionally
represented using functions of pairwise distances, e.g., Lennard-Jones or Coulomb
interactions, which have also been demonstrably successful in atomistic modeling.?®

In recent years, CG models have moved toward increasingly lower resolutions to
bridge increasingly larger length and time scales. Hence, while the pairwise
approximation for the CG Hamiltonian may be acceptable for high-resolution CG
models, i.e., those mapping around 4-to-1 heavy atoms per CG site, it is unlikely that
this approximation will hold for low-resolution CG models. This problem is exacerbated
by the fact that CG mappings often represent CG sites as spherically isotropic particles,
as it is well-known that macromolecular interactions are typically anisotropic or highly
specific.?6: 27 Recognizing this limitation, several solutions have been proposed. One
solution is to include non-isotropic descriptors such as orientation vectors to delineate
anisotropic interactions, e.g., via Gay-Berne potentials.?3-3! Another solution is to include
higher-order interactions following the many-body expansion principle, such as
analytical three-body potentials3?-3¢ or data-driven approximations of N-body
potentials.3”-40 However, introducing non-isotropic or many-body interactions inevitably
reduces the efficiency gains from CG modeling due to their increased complexity and
computational cost.

An alternative approach to represent non-isotropic and/or higher-order CG
interactions, while retaining the low computational cost of pairwise interactions, is to
introduce “virtual” sites that may not explicitly represent sets of FG particles. Virtual sites

can interact with real sites through pairwise interactions and aim to impart subtle



anisotropic projections of forces acting upon real sites. One prototypical example of this
idea is the atomistic TIP4P water model.#' Similar types of virtual sites have been used
in the context of high-resolution CG models, notably for sterols and for aromatic
hydrocarbons.*? 43 Most recently, virtual sites have been implemented in low-resolution
CG models to represent anisotropic interactions in lipids, biopolymers, and viral capsid
proteins.% 44-53 While these studies demonstrate the viability of virtual sites as
representations of directional interactions, a lack of systematic rules to derive their
effective interactions limits their widespread adoption. To date, existing bottom-up
methodologies have focused on dipole-dipole interactions through a center-of-symmetry
framework or solvent-mediated interactions through representations of the hydration
layer.® 43 Yet, a formal framework to define virtual site interactions in the context of
biomacromolecular interfaces is still needed.

In this work, we present a systematic methodology to derive virtual site
interactions with an emphasis on representations of anisotropic interactions for
multimeric biomolecules. We then use our methodology to test the importance of
anisotropic representations as compared to isotropic representations when modeling
the self-assembly behavior of two different protein systems. The first protein is Q, which
is an engineered a-helical protein that forms pentameric coiled-coils that further
assemble into thermo-responsive nanofibers with upper critical solution temperature
behavior.54 %5 Coiled-coil proteins leverage both knob-in-hole interactions and
amphiphilicity as driving forces for oligomerization.®® 5 The second protein is the
bacterial microcompartment (BMC) hexamer (H) shell protein BMC-H from Haliangium
ochraceum®® %°; when expressed by itself, BMC-H assembles into hexameric
nanosheets that roll into rosette-like shapes.®? ¢ For both systems, we report CG
models using spherically-symmetric pairwise interactions and virtual site CG (VCG)
models using our presented methodology. We then compare the structures,
thermodynamics, and kinetics of protein assemblies using both models and argue that
anisotropic representations of protein-protein interactions result in higher fidelity models

that are essential for protein assembly studies.



Methods

Summary of computational methods. To derive each CG and VCG model, we first
performed all-atom (AA) MD simulations to generate reference statistics. Next, we
mapped the all-atom trajectories into VCG phase space and parameterized both CG
and VCG models. Then, we compared the CG/VCG energetics to that of all-atom PMF
calculations. Finally, we performed CGMD simulations of protein assembly using both

CG and VCG models. The details of each step of the process are described below.

All-atom molecular dynamics simulations. We performed AAMD simulations of two
axially aligned then stacked Q pentamers and two adjacent BMC-H hexamers. The
atomic model for Q pentamers was approximated using CCBuilder2.0.%? As the
hierarchical structure of Q fibrils is unknown, we aligned Q pentamers based on
complimentary charges at the two termini in an attempt to find a stable inter-coiled-coil
interface. However, the two coiled-coils tended to separate, and we instead focused on
intra-coiled-coil statistics. The atomic model for two BMC-H hexamers was isolated from
a 3.5 A resolution structure solved using X-ray crystallography?®: ', All structures were
processed then simulated using GROMACS 202152 using parameters summarized in
Table S1. First, a triclinic box was defined leaving a 2 nm buffer between the protein
and domain edges; both systems utilized periodic boundary conditions. Next, each
system was solvated in an aqueous solution with monovalent salt concentrations
consistent with prior experiments (Q: 500 mM, BMC: 150 mM)>%5 ', Proteins and ions
were modeled using the CHARMM36m force field (February 2021)% and water was
modeled using the TIP3P model*'. Energy minimization was performed using steepest
descent. Next, temperatures were equilibrated under the canonical (NVT) ensemble
using the stochastic velocity rescaling thermostat®® with parameters shown in Table S1.
All heavy atoms were restrained using a harmonic force with spring constant 1000
kJ/mol/nm?. Then, equilibration under the isobaric-isothermal (NPT) ensemble was
performed using the stochastic velocity rescaling thermostat®® and the Parrinello-
Rahman barostat®® using the parameters reported in Table S1. Finally, simulations were

extended under the NVT ensemble using the stochastic velocity rescaling thermostat®®



and the settings defined in Table S1. All simulations were run using a 2 fs timestep.
Harmonic restraints to a single Ca in each monomer within one of the two
supramolecular subunits present in each simulation (i.e., pentamer in Q and hexamer in
BMC-H) were applied with spring constant 1000 kJ/mol/nm? to prevent drift. The final
300 ns and 415 ns of each Q and BMC-H trajectory, respectively, was used as
reference data for CG modeling. Four independent replicates for each system were
generated. Analysis of the root mean squared deviation of backbone a-carbons across
the first 200 ns with respect to each atomic model shows that the CHARMM36m force-
field maintains the atomic structure with minimal deviation and equilibrates within 50 ns
(Figure S1).

All-atom umbrella sampling simulations. Umbrella sampling (US) simulations®” were
performed to compute the PMF associated with binding within a supramolecular subunit
(i.e., intra-pentamer/hexamer) and between supramolecular subunits (i.e., inter-
pentamer/hexamer). Each intra-subunit system was prepared by isolating two adjacent
monomers within a supramolecular subunit while the inter-subunit systems used the
same preparation as above. The first principal axis of each structure was aligned to a
coordinate axis using VMD.%8 Each system was prepared using identical conditions to
that of the AAMD simulations; exceptions and US simulation-specific parameters are
reported in Table S2. After constant NVT followed by constant NPT equilibration, US
windows were prepared by pulling and pushing monomers/subunits along the
coordinate axis using center-of-mass distance as the metric; moving harmonic biases
were applied under the constant NVT ensemble using GROMACS 202163 and PLUMED
2.759 with constants reported in Table S$2. The final 25 and 30 ns of each Q and BMC-H
window trajectory, respectively, was used for the final PMF calculation, which was
performed using the weighted histogram analysis method (WHAM).%7- 70 For the Q
system, a 2D PMF was initially computed with a final 1D PMF representing the
minimum free energy path determined using the string method (Figure $2).7

Histograms for each window are shown in Figure S3.



Integrating coarse-grained models with virtual sites. Following prior low-resolution

CG models,® 72 we define the CG Hamiltonian in four parts:
URN) =~ X1 Y11 Ubondea (rij) + Ucoul(’”ij) + Uexcr (Tij) + Uattr(rij) (1)

which includes bonded (Upongeq), Coulombic (U,y,,;), €xcluded volume (U,,.;), and

attractive (Uy,) contributions based on pair distance r;; between CG sites i and j

across all N sites. The Up,,404 te€rm represents all intramolecular interactions while the
latter three terms (U oui» Uexcr» @nd Ugyssr) represent intermolecular interactions due to
electrostatics, sterics, and close contacts, respectively. Prior CG models*® 3 have
defined virtual sites as centers for binding interactions between two real CG sites that
form a close contact (Figure 1), and we follow that same convention here. As such,
virtual sites only contribute to the U, term. As shown in Figure 1, the virtual site v is
bonded to CG site i and interacts with CG site j using a nonbonded potential that favors
the overlap between the virtual site and CG site j. Here, we define the bonded
interaction using a harmonic potential and the nonbonded interaction using a Gaussian

potential such that U,;;,- can be approximated by two contributions:

Uattr(rij) = UVCG(riwrvj) = Kiv(riv - riv,o)z - Avj exp(—ij(rvj) 2) (2)

where 4,; and B,,; are Gaussian parameters, K;, and r;, , are harmonic parameters,

and ry, (or r,,;) is the pair distance between CG sites i and v (or v and j).



1 i I Isotropic Model: 2

1 1 Tij~Tijo0

H -
-~ 9 Uiso (1ij) = L 20°
% ¥ Anisotropic Model:
N~ -
2
|—|r _ Upona(Tiw) = K (1w —7ij0) s K ~ AB
vj
l i e A
' I; L Uaniso(rvj) = —Ae Bl"v))

Figure 1. Coarse-grained modeling framework using virtual sites to represent anisotropic
interactions. Schematic of a virtual CG site v (dashed red circle) serving as a directional binding
interaction between real CG sites i and j (red circles) at the interface between two macromolecules.
The virtual site is bonded to CG site j via a harmonic potential and interacts with CG site j via a
Gaussian potential; the two potentials are coupled. In the equivalent isotropic model, CG sites i and

j interact directly through a Gaussian potential.

To optimize the unknown interaction parameters, we use the relative entropy

minimization (REM)’* method, which aims to minimize the KL divergence:

Paa(RN
Sret = [ Paa(RY) In (F2250) apv 3)
where §,.; is the relative entropy, P,, is the configurational probability density in the
atomistic ensemble, P, is the configurational probability density in the CG ensemble,
and R" is the CG configuration which can also be determined by mapping from atomic
configurations (i.e., M(r™)). Under the constant NVT ensemble, Eq. 3 can be

reformulated as:

Sret = BUcc — Uandaa — B(Acg — Ana) 4)

where Ucg 44 is the CG/AA internal energy and Acg 44 is the configurational part of the
CG/AA Helmholtz free energy, which in itself is a function of Ugg,44. One can

numerically minimize S,,; with respect to the parameters A that define U using gradient

descent:



AL = At — B ((g—ZLA — (Z—Z)Cc) +1(0,s) (5)

where g = (kgT)™1, t is the iteration number, y is the learning rate, and ( },, and ( )¢
are the averages over the respective AA and CG ensembles. Note that previous
implementations used the Newton-Raphson method”* but we chose to use an
alternative method due to the nonconvex nature of our parameter space. Taking
inspiration from perturbed gradient descent,”® we add random noise sampled from a
Gaussian distribution 1(0, s) to help escape from saddle points. As U is approximated
with a pairwise basis according to Eq. 1, we can evaluate the ensemble-averaged
guantities as follows:

()

— N N aU(Tij) § -
24/C6 izlzjzi“(f ar PAA/CG(rU)drU) (6)

Up to this point, we have described the REM method in a general sense.
However, Eq. 6 is not readily applicable to the virtual site interactions defined in Eq. 2 as
no explicit statistics for P, (r;,,) or Py4(7y;) exist. Instead, consider the fact that under an
idealized binding state induced by the virtual site, we expect P(r;,) ~ P(r;;) and
P(ryj) = P(ri, — Tiyp)- Then, it is possible to iteratively optimize the virtual site
interaction using P(r;;) statistics if the harmonic and Gaussian contributions to Eq. 2 are
coupled to each other. The Gaussian interaction term in Eq. 2 can be expanded around

p,; = 0 as an infinite power series:

N
—Ayj exp(=By; (1) 2) = —Ay; 2;:’:0% (7)

Taking Eq. 7 to first-order (k = 1) and relating the Gaussian force to the harmonic force

implied by Eq. 2 through the approximation P(r,;) = P(r;, — ri,0) shows that:



ZKL'U(riv - riv,o) ~ 2Avavj(riv - Tiv,O) (8)
Or more simply:
Kiy ~ AyiB,; (9)

which shows that the spring constant of the virtual site bond can be related to the
parameters of the virtual site binding interaction, which in turn are related to r;; statistics
through the approximation r;; ~ r;,,. We note that we also tried to optimize K;,,, 4,;, and
B,; independently but our attempts always led to the divergence of parameters K;,, and
A,;, which we attribute to the fact that the equations for K;, and 4,; emphasize the

longer-range and shorter-range regions of the probability distribution, respectively. To
summarize, we propose that the virtual site interaction in Eq. 2 can be coupled to real

CG site statistics in the following manner:

1. Approximate P(r,;) as P(1;; — Tiy,)
2. Apply Eq. 5 to iteratively update 4,; and B,,;
3. Apply Eq. 9 to iteratively update K;,,

In comparison, the isotropic analog of Eq. 2 can be defined as:

Hij rii—Tij 2
Unter (7)) = Uce (7)) = aijvjz_n exp <— %) (10)
where H;; and o;; are the Gaussian parameters and r;;, = 13, 5. Hence, Eq. 5 can be
directly applied to iteratively update H;; and g;; without approximation.
The remaining terms in Eq. 2 can be defined as follows. We represent the
intramolecular interactions through a harmonic bond network with each bond

represented by:



Ubonded (Tij) = Kij(rij - rij,O)z (11)

where K;; is the spring constant and r;; o is the minimum energy distance. Electrostatic

interactions were defined using the Yukawa potential:

Ueous (1) = i exp(—xri;) (12)

€rTij

where C is a unit conversion constant, g is the partial charge, ¢, is the dielectric
constant, and k is the inverse Debye screening length. Excluded volume repulsions

were defined as:

TL’T‘ij

Uexcl(rij) = DU [1 + COS( )] fOI’ rij < Te (13)

Tcij
where D;; is the amplitude and r;; is the cutoff distance.

Coarse-grained mapping and parameterization. CG sites were mapped to Ca
positions in the AA reference data with solvent integrated out. The final CG models were
mapped using the essential dynamics coarse-graining method.’® Virtual sites were
defined based on protein-protein pair distance distributions. The proximity and height of
peaks in the pair distributions were used to quantify the likelihood of a close contact;
sharp peaks with heights greater than 0.004 and widths smaller than 1.0 A were
selected to limit the number of virtual sites (see Table S3 and Table S4 for complete
list). These constraints were adjusted to ensure each interface was represented. The
first frame of the CG-mapped atomistic trajectory was used to initialize the isotropic CG
model. The VCG model was initialized by adding virtual sites to the position of CG site j
(see Figure 1) for each close contact pair. The masses and charges for CG sites were
computed using the sum of all residues used to define the CG site. Virtual sites were
given no charge with masses set to their real site counterpart. Intramolecular bonds

were parameterized using a heteroelastic network model (HENM)”” with a cutoff of 15 A



and 15.5 A for the Q and BMC-H systems, respectively. For close contact pairs, Tijo IN
Eq. 2 and Eq. 10 was set to the position of the peak in the pair distribution. For all
intermolecular pairs, r;; for steric interactions in Eq. 13 was determined using the onset
distance for non-zero density in the pair distribution up to a max r,;; of 12 A.The kin
Eqg. 12 was determined using experimental monovalent salt concentrations and
temperatures.

For Q, we investigated additional virtual sites (denoted as HP) that represent the
steric interactions of hydrophobic side chains populating the interior of the coiled-coll
pore. The positions of these HP sites were based on CG sites of A27, L34, L41, and
L48, which are the hydrophobic residues in each monomer that contribute to the buried
hydrophobic core. All HP sites were positioned 45% of the distance along the vector
connecting each CG site to the center of mass of all five corresponding CG sites.
Parameters for U, ,,40q4 @Nd U,,; Were defined via Boltzmann Inversion based on CG-
mapped distributions of the HP sites; bonds between real and HP sites were defined for
mean distances less than 10 A.

To perform REM optimization, CG simulations were run at each iteration using
LAMMPS”8 (2 Jun 2022) and Moltemplate’® under constant NVT using the Langevin
thermostat.8° Details on the integration timestep, equilibration time, production time, and
thermostat settings are provided in Table S5. As convexity is not guaranteed, multiple
initial guesses for all parameters were tested. After each CG simulation (at each
iteration), Eq. 5 was applied to determine the next iteration of parameters. For the CG
model, parameters H;; and o;; of Eq. 10 were iterated using REM. For the VCG model,
parameters A,; and B,,; of Eq. 2 were iterated using REM and K;,, was solved using Eq.
9. Alearning rate schedule (see Table $6-9) was applied to gradually decrease the
learning rate while the change in each parameter was capped (see Table S$6-9) to
prevent large changes; both strategies helped to smooth convergence. A total of 300
iterations for each trial set of parameters were performed. The mean squared error

(MSE) was computed at each iteration as:

MSE = 3,5, (Paas () = Pegy (1)) (14)



where [ is the index over all close contact pairs. Models yielding the lowest MSE were
selected as the final CG/VCG models. All derivatives used in Eqg. 6 are shown in Table
$10. Final CG/VCG model parameters are shown in Tables S11-13.

For protein Q, we quantified three structural characteristics of the coiled-coil.
First, we computed the root mean squared deviation (RMSD) compared to the atomic

model using:

RMSD = \/%zgvzouxi ~Y)? (15)

where X; represents the CG-mapped positions of site i in the atomistic dataset, Y;
represents the positions in the CG dataset, and N represents the number of CG sites.
To assess the symmetry, two metrics were used: a metric to quantify pentameric
symmetry (¥2P) and the standard deviation of the distance from the centroid (o.cntroia)
for each ring of residues (between residues 18 to 48) within the pentamer. y2° was

calculated using:

YP2P = %Z?:o cos (5 arccos (ﬂ)) (16)

ey
where 7] represents the vector from the centroid to a CG site i within the ring of
residues; 2P = 1 indicates perfect five-fold symmetry and decreases toward zero with

decreasing symmetry. o,..n:r0igWas calculated using:

1 2
Ocentroid = \|sym %:o ﬂy=02?=0(|7‘ic|—(|ric|)) (17)

where M represents the number of rings, N is the number of frames, |r;.| is the distance
between the residue and its corresponding ring centroid, and (|r;.|) is the mean
distance; larger o, .nt0ia COrresponds to less uniformity with o,.p,r0i¢ = 0 indicative of

perfect uniformity.

Coarse-grained molecular dynamics simulations and analysis. Optimized CG and
VCG models were analyzed by running assembly and pulling CGMD simulations using
LAMMPS"8 (2 Jun 2022). Assembly simulations were set up with evenly dispersed
monomers to achieve an initial monomer concentration of ~10-fold experimental

concentrations to maintain monomer concentrations at or above experimental



conditions while monomers are depleted during assembly and to accelerate assembly
kinetics (see Table S14 for complete details). To simulate the hierarchical assembly of
BMC-H with a fixed solution-state ratio of assembly-competent to assembly-
incompetent monomer populations, BMC-H monomers were switched between active
and inactive states based on a prior algorithm used in the study of viral protein
assembly.*8 %1 |In the inactive state, the U,,,; and Uy, potentials were turned off. A
constant solution-state monomers concentration of 4 mM (~2-fold experimental
concentrations®® 8') was maintained to promote protein multimerization. In contrast, our
Q simulations focused on the assembly of coiled-coil oligomers. Thus, instead of
controlling concentration throughout the course of the simulation, Q simulations were
initialized at 10 mM and allowed to equilibrate. Simulations were run under constant
NVT using the Langevin thermostat®® with details provided in Table S14. To determine
the extent of assembly, supramolecular structures were modeled as graphs using
NetworkX 3.182 where each monomer was treated as a node and close contacts
(defined in Table S$15) as edges. The size of each subgraph was used to represent the
size of each assembled supramolecular structure. The shape of each assembled
structure was visualized using VMD.58

To approximate the CG binding strengths within a supramolecular subunit and
between subunits, pulling CGMD simulations were performed between two Q/BMC-H
monomers and two BMC-H hexamers, respectively. Harmonic restraints were applied to
a single CG site within one of the monomers or subunits present in each simulation. The
harmonic restraint was shifted periodically, separating the two groups throughout the
simulation (see Table S16 for details). After each shift, simulations were run under
constant NVT using the Langevin thermostat® for the total time shown in Table S16.
Potential energies were saved every 5,000 steps and the final 30 ns of data was

averaged to approximate the CG binding energies that were compared to AA PMFs.

Results and Discussion

Coarse-Grained Model of Protein Q. Protein Q is a pentameric coiled-coil protein

capable of assembling into hydrogels composed of physically crosslinked fibrils.%4 55



The assembly is hierarchical with a-helical monomers of Q forming coiled-coil oligomers
followed by fibrillization. In general, coiled-coils are stabilized by both their amphiphilic
nature and knob-in-hole interactions between adjacent monomers.%’ Fibrillization, on the
other hand, has been attributed to electrostatic interactions between complimentary
charges at the N- and C-termini, a characteristic known as sticky ends.?? In the case of
Q, fibrils are 2.5-20 nm in diameter while gelation may take days to complete. °* %% Our
interest in Q is motivated by the different types of interactions involved in Q assembly,
making Q an attractive case study to compare CG models represented by anisotropic or
isotropic interactions. As an atomic model for the inter-coiled-coil interface is unavailable

at present, we focused our study in intra-coiled-coil interactions.

o
(e) @bueyn

Figure 2. The coarse-grained (CG) model for Q. (A) The charge profile of the CG monomer
(left) and pentamer (right) with CG sites colored by charge. (B) The bonds defined by the
HENM using a 15 A cutoff. (C) The VS pairs are represented by the blue bond between
the virtual sites (green) and the CG sites (magenta). The N-terminal view shows the virtual

sites (yellow) used to represent interactions in the inner hydrophobic region.

Our proposed VCG model for Q represents the knob-in-hole and amphiphilic
interactions of Q using virtual sites. Monomers were modeled using a 1 CG site per
residue resolution (Figures 2A-B). As shown in Figure 2C, virtual sites 1 to 5 (VS1-5)
represent attractive, directional knob-in-hole interactions while virtual sites 6 to 9 (VS6-
9) represent steric hindrance by hydrophobic side chains in the coiled-coil pore interior,
which we modeled as purely repulsive. In total, three models were parameterized: an
isotropic model with no virtual sites (CG model), a model with only VS1-5 (VCG model),
and one with VS1-5 and VS6-9 (VCG+HP model). Both virtual site models (VCG and



VCG+HP) had VS1-5 trained using REM while the VS6-9 interactions were trained via
Boltzmann Inversion independently from VS1-5; the presence or absence of VS6-9
interactions had negligible impact on VS1-5 training (Figure S4).

During REM, CG statistics generated from CG simulations using the trial model
in each iteration are compared to CG mapped statistics from the atomistic dataset to
update the U, parameters until those that minimize the loss are found. The values of
these parameters are shown in Figure 3A for the CG model and Figure 3B for the VCG
model. Figure 3A shows that the explored parameter space for VS1 and VS5 in the CG
model was more varied compared to VS2-4, which is likely a result of VS1 and VS5
being in more flexible regions of the protein. Figure 3B shows a similar trend for the
VCG model although exploratory behavior was only evident in VS5. Both the VCG and
CG models predicted weaker interactions in VS1 and VS5 compared to VS2-4.
Comparison of the MSE loss depicted in Figure 3C shows that the VCG model was
able to achieve a lower aggregate MSE loss (2.51x10* £ 6.40x10°") compared to that of
the CG model (2.60x10 + 4.18x107"), indicating that the VCG model achieved higher
fidelity to the reference atomistic data. To further analyze differences in fidelity, we
investigated differences in structural correlations. Figure 3D depicts the predicted
structures of the coiled-coil with the optimized VCG and CG model parameters. It is
evident that the VCG model is able to maintain the expected cylindrical shape and
pentameric symmetry of the atomistic coiled-coil better than the CG model (i.e., the
pentamer in the latter is oblongated). In particular, the VCG model had a lower RMSD of
0.123+0.014 nm compared to the CG model (0.132+0.020 nm) while a higher 12
(VCG: 0.923+0.092 and CG: 0.908+0.121) and a lower 6 ¢,t10ia (VCG: 0.172 nm and
CG: 0.316 nm) jointly indicate that the VCG model is more uniform and symmetric than
the CG model. Nonetheless, only minute differences were observed in the VS pair
distributions shown in Figure 3E. Both the VCG and CG models were able to capture
the first peak in the reference AA distribution and qualitatively match the peaks at longer
distances. The similarity in the VCG and CG pair distributions suggests that pairwise
correlations alone are likely insufficient to distinguish higher-order correlations, such as
the pentameric symmetry of the Q oligomer. However, as the VCG model is fit to

pairwise correlations through projection by a directional virtual site interaction, it



appears that this higher-order correlation can be implicitly preserved. Finally, we note
that simulations of the optimized CG model ran at a rate of ~6180 timesteps/s while the
VCG model ~4619 timesteps/s, indicating that the VCG model is only 25% slower than
the CG model.
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Figure 3. Coarse-grained (CG) model optimization for Q. Each U,;, parameter across
iterations is shown for the (A) CG and (B) VCG models. (C) Comparison of the mean-
squared error (MSE) of the CG and VCG models across iterations with standard deviations
across four replicates shown as a shaded region. (D) Comparison of Q structures predicted
by each optimized model based on the all-atom (AA) model of Q; each monomer in the CG
snapshots is depicted by different colors. (E) Comparison of pair distance probability
distributions between the real CG sites associated with each virtual site after model
optimization. The data presentedin (D) and (E) are from VCG iteration 243 and CG iteration
153.

Q Assembly into Coiled-Coil Oligomers. While the CG and VCG models of Q were
able to maintain a pentameric coiled-coil structure and adhere to atomistic statistics, it
would be informative to investigate the ability of such structures to form spontaneously.
Here, we discuss the VCG+HP model (i.e., inclusion of VS6-9 as representations of
hydrophobic core sterics) while results for the VCG model are shown in Figure S5. We
first quantified the binding free energy between Q monomers using US simulations at
atomic resolution and compared the resulting PMF to CG-derived energetics. As seen in

Figure 4A, the monomer-monomer binding energy of the VCG+HP model (-26.33+0.06



kcal/mol) better recapitulates the atomistic binding free energy (-22.11 kcal/mol)
compared to that of the CG model (-12.04+0.07 kcal/mol). The VCG+HP PMF also
exhibits features of the AA PMF that are absent in the CG PMF, namely the presence of
a metastable state at 10.0 A and long-range attraction that begins as far as 19.5 A.
Overall, our free energy calculations show that the CG model predicts weaker and
shorter-ranged attraction compared to the VCG+HP model, which further suggests that
the kinetics of assembly and the stability of resulting oligomers may be slower and
lower, respectively, for the CG model compared to the VCG+HP model. To test this
hypothesis, we next performed CGMD assembly simulations.

Each CGMD assembly simulation started from configurations with evenly
dispersed Q monomers at 10 mM concentration. Figure 4B shows the aggregate
number of oligomerized Q over time. Interestingly, the CG model exhibited a faster initial
rate of oligomerization compared to the VCG+HP model, although the maximum degree
of oligomerization plateaued and was exceeded by the VCG+HP model. Despite the
weaker binding energy shown in Figure 4A, the CG model showed faster assembly
kinetics at lower time steps compared to the VCG+HP model, which we attribute to less
stringent orientation requirements upon collision in the CG model case; at close
separation distances, the VCG+HP model requires the two monomers be oriented
according to the directionality of the virtual sites for successful binding. However, as
larger multimers assemble at longer times, we speculate that the sterics imposed by the
larger multimers implicitly enforce orientationally dependent association, which leads to
slower assembly rates for both the VCG+HP and CG models. It is also possible that the
additional mass of the virtual sites, which increases the mass of each Q monomer by
~16%, may contribute to slower assembly kinetics. However, when we tested the
VCG+HP model with repartitioned masses such that the total mass is equivalent to the
CG model, no noticeable differences in assembly rates or multimer assembly trends

were observed (Figure S6).
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Figure 4. Q self-assembly into coiled-coil pentamers. (A) Comparison of the potential of
mean force (PMF) as a function of distance between Q monomers for the CG, VCG+HP,
and AA models. (B) The number of monomers in oligomers (of size 2 or more) over time
for the CG and VCG+HP models; the inset shows the early stages of assembly. (C) The
fraction of monomers classified by oligomer size to total monomers over time; classes
ranging from monomers (circles) to hexamers (hexagons) for the CG (left) and VCG+HP
(right) models are depicted. (D) Representative snapshots depicting the assembled coiled-

coils predicted by the CG and VCG+HP assembly simulations.

While both models assembled into a variety of oligomers, not all assembled
structures reflected the expected pentameric coiled-coil structure of Q. Figure 4C
shows that the VCG+HP model was able to form pentamers with negligible higher-order
oligomers formation (i.e., hexamers and above). Both tetramers and trimers were
assembled as well, but we expect these to persist due to the depleting number of
available monomers and dimers in the simulation domain. In contrast, the CG model
tended to favor kinetically trapped “closed” trimer and tetramer structures that precluded
recruitment of additional monomers or dimers to form pentamers. Analysis of pair
distance distributions after assembly (Figure S7) reveals that both the CG and
VCG+HP models capture the first peak of each distribution, although the VCG+HP is

able to better replicate the atomistic distributions overall. The ability for the VCG+HP



model to form larger oligomers is driven by both the VS1-5 and VS6-9 interactions. The
directional nature of both VS1-5 attraction and VS6-9 repulsion likely increased the
preference for oligomers with pentameric symmetry; as shown in Figure S5, VS6-9 is
not required for pentamer formation but instead accelerates their formation. Importantly,
the VCG+HP model predicts the spontaneous formation of pentameric coiled-coils
consistent with the AA model, as seen in Figure 4D. The CG model, on the other hand,
was only able to predict tetrameric coiled-coils at most (see Figure 4D). It may be
possible for the CG model to form pentamers beyond our simulated timescales.
However, such an event is likely to be rare due to the high selectivity for kinetically
trapped trimers and tetramers.

Overall, the VCG+HP model was able to assemble into experimentally consistent
pentameric coiled-coils while the CG model could not. Our results demonstrate that the
incorporation of virtual sites improves the fidelity of coiled-coil assembly not only by
recapitulating the CG binding energy but also by introducing an orientation-dependent
“entropic” barrier. In addition, while the presence of VS1-5 alone is sufficient for
spontaneous pentamer assembly (see Figure S5), the rate and selectivity of pentamer
formation is improved with the aid of VS6-9, demonstrating that balancing attractive
(VS1-5) and repulsive (VS6-9) interactions through virtual sites is a viable CG modeling

approach.

Coarse-Grained Model of BMC-H. BMCs are proteinaceous organelles that allow
various bacterial species to thrive in diverse environments.84 This role is done through
the selective compartmentalization of enzymes and the controlled permeability of
metabolites and toxic intermediates through the protein shell, which allows important
biochemical processes to happen without interference or with high activity.®* The protein
shell of BMCs, which bear similarity to viral capsids, are composed of both hexameric
(BMC-H or BMC-T) and pentameric (BMC-P) oligomers that tile into polyhedra.8> &
However, these polyhedral structures differ from viral capsids in size and composition,
often irregular in shape and stoichiometry. Assembling different shell proteins into
various forms, including icosahedral shells, tubules, and “swiss-roll” structures,

suggests that the morphology and size of these constructs are highly tunable following



currently unknown mechanisms.0 6'.87 Here, we focus on BMC-H shell proteins from
Haliangium ochraceum®® %° that spontaneously assemble into hexameric nanosheets
that roll into a rosette shape.% ¢! Our interest in BMC-H is motivated by the different
hierarchies of oligomerization involved in BMC-H assembly, making BMC-H an

attractive case study to compare CG models represented by anisotropic or isotropic

interactions.

(o) abureyo

Figure 5. The coarse-grained (CG) model for BMC-H. (A) The charge profile (left-most)
and bonds defined by the HENM (middle left) of the CG monomer and the equivalent for
the hexamer (middle right and right-most). (B) The virtual site (VS) pairs are represented
by the bond between the virtual sites (green) and the CG sites (magenta). The two left
snapshots depict the intra-hexameric VS pairs while the two right snapshots depict the

inter-hexameric VS pairs.

Our proposed VCG model for BMC-H consists of the 99 residue BMC-H
monomer mapped to 26 CG sites with a net charge between +2 and intra-protein
fluctuations represented by an HENM bond network, as shown in Figure 5A. We
modeled the intra-hexameric protein-protein contacts as VS1-4 and the inter-hexameric
protein-protein contacts as VS5-6 (see Figure 5B). The same pairs of CG sites

projected onto the virtual sites were used to create a CG model represented by



spherically isotropic interactions. In total, two models were fit: the VCG and CG models

for BMC-H.
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Figure 6. Coarse-grained (CG) model optimization for BMC-H. Each U, parameter
across iterations is shown for the (A) CG and (B) VCG models. (C) Comparison of the
mean-squared error (MSE) of the CG and VCG models across iterations with standard
deviations across four replicates shown as a shaded region. (D) Comparison of pair
distance probability distributions between the real CG sites associated with each virtual

site after model optimization. The data presented are from VCG iteration 48 and CG

iteration 205.

The values of the CG and VCG model parameters across REM iterations are
shown in Figure 6A and Figure 6B, respectively. During both CG and VCG model
optimization, we find that the intra-hexameric interaction parameters for VS1-3 find a
minima and tend to remain stationary. However, VS5-6, and to a lesser extent, VS4,
tend to explore a larger parameter space. As seen in Figure 6C, the VCG model initially
explores a part of parameter space yielding an MSE loss as low as 3.69x10° + 2.78x10
7 but then enters a solution space with an MSE loss as low as 4.04x10-° + 1.75x10,
which highlights the complexity of this nonconvex optimization. Nonetheless, the VCG
model is able to achieve a lower aggregate MSE loss compared to that of the CG model

(7.00x10° £ 3.99x1077), similar to our observations for the Q system. From the pair



distance distributions shown in Figure 6D, we find that both the CG and VCG models
predict intra-hexameric distributions (i.e., VS1-4) that are consistent with the reference
AA distributions with only minor differences observed between the CG and VCG
models. More evident differences are observed in the inter-hexameric distributions
(VS5-6) where both the CG and VCG models yield sharper distributions in the first peak
for VS5 while the VCG model yields a broader distribution in the first peak for VS6. The
mismatch between the AA and CG/VCG distributions for VS5-6 suggests that
approximating the inter-hexameric interactions as Gaussians may be insufficient; in the
future, other functional forms for pair interaction potentials, such as Lennard Jones or
Morse, may be worthwhile to explore. However, no qualitative differences in BMC-H
hexameric structure were observed in the case of both models compared to the AA
model. While using a more complex basis may lead to quantitative improvement in
accuracy with respect to pair distributions, the additional complexity and associated cost
is not likely to be necessary. Finally, we note that simulations of the optimized CG model
ran at a rate of ~7010 timesteps/s while that of the VCG model ran at ~6761
timesteps/s, indicating that the VCG model is only 4% slower than the CG model.

BMC-H Assembly into Hexameric Sheets. After optimization of both the CG and VCG
models for BMC-H, we assessed the binding free energies at both the intra-hexameric
and inter-hexameric interfaces using US simulations at atomic resolution and compared
the resulting PMFs to CG-derived energetics. As seen in Figure 7A, the monomer-
monomer binding energy of the VCG model (-14.18+0.08 kcal/mol) and of the CG
model (-10.90£0.04 kcal/mol) both underestimate the atomistic binding free energy (-
18.73+0.21 kcal/mol), although the VCG model is closer. However, the CG PMF exhibits
a longer-range attraction at around 3.5 nm that is consistent with the AA PMF, unlike the
VCG PMF where the attraction begins around 3.0 nm. As seen in Figure 7B, the
hexamer-hexamer binding free energy of the VCG model (-21.83+0.65 kcal/mol) and of
the CG model (-11.23+0.22 kcal/mol) both overestimate the atomistic binding free
energy (-7.35+0.21 kcal/mol), although the CG model is closer. Overall, we find that
both CG and VCG models tend to partition energetics equally between the intra- and

inter-hexameric interfaces, while the AA PMFs suggest that the intra-hexameric



interface should have stronger binding affinity than that of the inter-hexameric interface.
This discrepancy highlights a current limitation in the CG/VCG models, which could be
addressed by redefining how protein-protein contacts are identified. More importantly,
we find that the VCG model predicts stronger attraction compared to the CG model.
However, as observed in the Q system, the stronger attraction may not be

commensurate with faster assembly kinetics.
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equivalent sizes in the CG and VCG assembilies. The arrows mark the time-points for each
of the depicted snapshots. The snapshots show representative assembled lattices with
inter-hexameric CG sites shown as green balls and the remaining CG sites shown as blue

balls.



We performed CGMD assembly simulations of BMC-H at a fixed concentration of
4 mM from a reservoir of 10 mM protein. Figure 7C depicts the aggregate size of
assembled BMC-H over time for both the CG and VCG models. It is evident that the CG
model assembles at a rate that significantly exceeds that of the VCG model; the VCG
model assembled into a lattice of size 86+36 BMC-H after 50x107 time steps, while the
CG model required 0.6x107 time steps to achieve a comparable size. The morphologies
predicted by the two models are also distinct. As seen in Figure 7C and Figure S8,
comparison of the lattices predicted by the two models at a size around 85 reveals that
the VCG model assembles with uniform hexamers while the CG model assembles with
an assortment of hexamers, pentamers, and heptamers. The pentamers and heptamers
observed in the CG model simulations are examples of kinetically trapped oligomers
that could not anneal into hexamers before becoming enclosed. The CG model
continued its rapid assembly until forming a ball-like structure composed of hexamers,
pentamers, heptamers, and vacancies (see Figure 7C). Interestingly, the pair distance
distributions for both the CG and VCG models after assembly (Figure S9) reveal that
both models recapitulate atomistic statistics, which further suggests that pentameric,
hexameric, and heptameric states are degenerate in the captured pairwise statistics.
Prior experiments have shown that BMC-H expressed in E. coli spontaneously
assemble into “swiss roll” or “rosette” structures that are likely curled hexameric sheets
of BMC-H.%% 61 Clearly, the ball-like structure predicted by the CG model is inconsistent
with experimental morphologies. The lattice predicted by the VCG model, however, is
consistent with hexameric sheets.

Similar to the Q system, we find that the VCG model is able to assemble into
experimentally consistent morphologies while the CG model results in defective and
kinetically trapped structures. Our results highlight the importance of anisotropic
representations of protein-protein interactions, which we capture using virtual sites, that
appear to reduce both assembly rates and defect production. We attribute the lower
assembly rates using the VCG model as compared to the CG model to the same
orientation-dependent entropic barrier noted in the Q study, which also compensates for

the larger binding energies observed in the VCG model.



Conclusions

We present a systematic coarse-graining approach to model anisotropic interactions at
protein-protein interfaces using virtual sites to facilitate low-resolution and implicit-
solvent molecular dynamics simulations of multimeric biomacromolecules. As the virtual
sites do not represent an explicit mapping from atomistic configurations, our
methodological premise is that the virtual site interactions can be inferred from the
statistics of the CG site pairs that the virtual sites are meant to represent. In this work,
we show how virtual sites represented by a combination of harmonic bonds and
Gaussian interactions can be coupled and related to CG site pair statistics, but we
envision that our approach can be adapted for other functional forms. We also note that
the VCG modeling framework is limited to pairwise interactions by design, such that the
additional computational cost of the VCG model is negligible in comparison to CG
models using pairwise interactions.

We show through two case studies of Q coiled-coil proteins and BMC-H shell
proteins that the proposed VCG models outperform CG models that use equivalent
spherically isotropic interactions in terms of both fidelity to the reference AA distributions
and in terms of assembly into higher-order supramolecular structures. The observed
discrepancies between reference AA PMFs and VCG PMFs, however, suggest that the
positions and numbers of virtual sites defined in VCG models require further tuning.
Interestingly, the VCG models consistently predicted larger binding energies compared
to the CG models yet also resulted in slower assembly kinetics and avoidance of kinetic
traps. We attribute this observation to the inherent anisotropy afforded by the virtual
sites, which necessitates specific orientations at protein-protein interfaces to be
explored, thereby introducing an entropic barrier for protein-protein association. In future
work, it would be insightful to test different virtual site selection schemes and generate
competing models using our methodology. For instance, one could adjust the probability
distribution-based criteria that we used to select for candidate protein contacts.
Alternatively, one could select protein contacts on the basis of protein-protein interaction

types such as cation-rr or salt-bridge interactions. By comparing VCG models that are



systematically constructed using different virtual site selection schemes, one can
formally investigate the importance of specific protein-protein interactions on
macroscopic properties of interest.

Given its systematic nature, our proposed methodology can be extended to other
macromolecular systems, including prior work that leveraged virtual sites for
intermolecular interactions.**->2 Our methodology also bears similarity to the recent
variational derivative REM (VD-REM) method reported by Sahrmann and coworkers.53
The VD-REM method optimizes virtual site interaction parameters within a REM
framework by approximating the conditional expectation of the potential energy
derivative (with respect to virtual site parameters) using machine learning models,
which, in turn, is related to the relative entropy derivative with respect to virtual site
parameters (this derivative appears in the second term of Eq. 5). The current work
sidesteps the need for a machine learning expectation estimator given the way our
virtual sites are formulated. However, as the VD-REM approach is clearly applicable, it
would be informative to investigate different model architectures for the estimator (e.g.,
gradient boost models or neural networks) to see if comparable model outcomes are
predicted or if different higher-order correlations can be captured.

Finally, it is interesting to consider our VCG modeling framework in the context of
prior low-resolution CG models that have successfully demonstrated the use of isotropic
interactions.”? 8. 8% While we did not systematically investigate the role of repulsive
potentials in the present work, e.g., those introduced by the excluded volume
interaction, we speculate that repulsive potentials in prior CG models may have had
large enough radii to restrict the orientations available to interacting CG sites, which
may have accomplished the same goal as our virtual site interactions. In our current
work, the differences between the VCG and CG models are quite evident, which may be
due to the smaller effective sizes assumed for each CG site.

In summary, we have demonstrated that virtual site representations are an
effective means to increase the expressivity of conventional CG models using isotropic
interactions and provide a starting point to extend our methodology to other

macromolecular systems of interest.
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