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Abstract 
Molecular simulations of biomacromolecules that assemble into multimeric complexes 
remain a challenge due to computationally inaccessible length and time scales. Low-
resolution and implicit-solvent coarse-grained modeling approaches using traditional 
nonbonded interactions (both pairwise and spherically isotropic) have been able to 
partially address this gap. However, these models may fail to capture the complex, 
anisotropic interactions present at macromolecular interfaces unless higher-order 
interaction potentials are incorporated at the expense of computational cost. In this 
work, we introduce an alternate and systematic approach to represent directional 
interactions at protein-protein interfaces using virtual sites restricted to pairwise 
interactions. We show that virtual site interaction parameters can be optimized within a 
relative entropy minimization framework using only information from known statistics 
between coarse-grained sites. We compare our virtual site models to traditional coarse-
grained models using two case studies of multimeric protein assemblies and find that 
the virtual site models predict pairwise correlations with higher fidelity and more 
importantly, assembly behavior that is morphologically consistent with experiments. Our 
study underscores the importance of anisotropic interaction representations and paves 
the way for more accurate yet computationally efficient coarse-grained simulations of 
macromolecular assembly in future research. 
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Introduction  
 

Molecular dynamics (MD) simulations have been widely used to investigate the 

relationships between molecular phenomena and macroscopic behavior, offering spatial 

or temporal resolutions that are difficult to probe experimentally. MD simulations at 

atomic resolution are most common, allowing high spatial (~Ångstroms) and temporal 

(~femtoseconds) resolution yet limited to length and time scales on the order of 

nanometers and microseconds.1, 2 For the study of macromolecular systems involving 

dynamical behavior that requires longer (and possibly hierarchical) length and time 

scale dependence, such as commonly seen in biology and soft materials, coarse-

grained (CG) modeling and simulation is an attractive alternative.3-6 

One of the benefits of CG models is that of computational cost, as CG models 

represent sets of fine-grained (FG) particles (e.g., atoms) as pseudo-particles (i.e., CG 

sites), thereby reducing the complexity of modeled macromolecules and facilitating 

simulations of larger systems over longer times compared to those possible using 

atomistic models. The CG modeling process involves two steps: mapping and 

parameterization.4-6 Mapping determines the correspondence between FG and CG 

particles while parameterization determines the effective interactions between CG 

particles. One strategy to determine CG mappings and parameters is to derive CG 

models that reproduce microscopic statistics from FG simulations, a strategy called the 

“bottom-up” approach. Constructing CG models in this way provides a direct means to 

first hypothesize then test the importance of molecular features (from CG mappings) 

and correlations (from CG interactions) on observed macroscopic behavior.  

Within the field of bottom-up CG modeling, various systematic algorithms have 

been proposed for parameterization and, to a lesser extent, mapping. Mapping 

algorithms follow the convention of chemistry where complex molecules are broken 

down into clusters representing chemical moieties or functional groups. For 

biomolecules, mapping is often a linearly weighted average of local atoms, for example 

using the center-of-mass, which can be variationally optimized,7 determined through 

graph theoretic methods,8 or modified in the context of dynamic linear mappings.9, 10 

Parameterization algorithms have sought to derive CG models such that the sampled 



distributions recapitulate the many-body configurational distribution of their FG 

counterparts mapped to the CG phase space.11 Under this criterion, which is known as 

thermodynamic consistency, the ideal effective CG Hamiltonian is the CG-mapped 

many-body potential of mean force (PMF). Several methods have been proposed, 

including structure-matching methods12-17 to iteratively capture correlation functions and 

variational methods11, 18-24 that minimize least-squared differences in forces or the 

Kullback-Leiber (KL) divergence. However, using an arbitrarily complex basis set to 

describe the CG Hamiltonian is both challenging and impractical. Instead, prior studies 

have focused on simplified basis functions that recapitulate a reduced set of 

microscopic statistics. For instance, nonbonded interactions are traditionally 

represented using functions of pairwise distances, e.g., Lennard-Jones or Coulomb 

interactions, which have also been demonstrably successful in atomistic modeling.25   

In recent years, CG models have moved toward increasingly lower resolutions to 

bridge increasingly larger length and time scales. Hence, while the pairwise 

approximation for the CG Hamiltonian may be acceptable for high-resolution CG 

models, i.e., those mapping around 4-to-1 heavy atoms per CG site, it is unlikely that 

this approximation will hold for low-resolution CG models. This problem is exacerbated 

by the fact that CG mappings often represent CG sites as spherically isotropic particles, 

as it is well-known that macromolecular interactions are typically anisotropic or highly 

specific.26, 27 Recognizing this limitation, several solutions have been proposed. One 

solution is to include non-isotropic descriptors such as orientation vectors to delineate 

anisotropic interactions, e.g., via Gay-Berne potentials.28-31 Another solution is to include 

higher-order interactions following the many-body expansion principle, such as 

analytical three-body potentials32-36 or data-driven approximations of N-body 

potentials.37-40 However, introducing non-isotropic or many-body interactions inevitably 

reduces the efficiency gains from CG modeling due to their increased complexity and 

computational cost.  

An alternative approach to represent non-isotropic and/or higher-order CG 

interactions, while retaining the low computational cost of pairwise interactions, is to 

introduce “virtual” sites that may not explicitly represent sets of FG particles. Virtual sites 

can interact with real sites through pairwise interactions and aim to impart subtle 



anisotropic projections of forces acting upon real sites. One prototypical example of this 

idea is the atomistic TIP4P water model.41 Similar types of virtual sites have been used 

in the context of high-resolution CG models, notably for sterols and for aromatic 

hydrocarbons.42, 43 Most recently, virtual sites have been implemented in low-resolution 

CG models to represent anisotropic interactions in lipids, biopolymers, and viral capsid 

proteins.9, 44-53 While these studies demonstrate the viability of virtual sites as 

representations of directional interactions, a lack of systematic rules to derive their 

effective interactions limits their widespread adoption. To date, existing bottom-up 

methodologies have focused on dipole-dipole interactions through a center-of-symmetry 

framework or solvent-mediated interactions through representations of the hydration 

layer.9, 43 Yet, a formal framework to define virtual site interactions in the context of 

biomacromolecular interfaces is still needed.  

 In this work, we present a systematic methodology to derive virtual site 

interactions with an emphasis on representations of anisotropic interactions for 

multimeric biomolecules. We then use our methodology to test the importance of 

anisotropic representations as compared to isotropic representations when modeling 

the self-assembly behavior of two different protein systems. The first protein is Q, which 

is an engineered -helical protein that forms pentameric coiled-coils that further 

assemble into thermo-responsive nanofibers with upper critical solution temperature 

behavior.54, 55 Coiled-coil proteins leverage both knob-in-hole interactions and 

amphiphilicity as driving forces for oligomerization.56, 57 The second protein is the 

bacterial microcompartment (BMC) hexamer (H) shell protein BMC-H from Haliangium 

ochraceum58, 59; when expressed by itself, BMC-H assembles into hexameric 

nanosheets that roll into rosette-like shapes.60, 61 For both systems, we report CG 

models using spherically-symmetric pairwise interactions and virtual site CG (VCG) 

models using our presented methodology. We then compare the structures, 

thermodynamics, and kinetics of protein assemblies using both models and argue that 

anisotropic representations of protein-protein interactions result in higher fidelity models 

that are essential for protein assembly studies. 

  
 



Methods 
 
Summary of computational methods. To derive each CG and VCG model, we first 

performed all-atom (AA) MD simulations to generate reference statistics. Next, we 

mapped the all-atom trajectories into VCG phase space and parameterized both CG 

and VCG models. Then, we compared the CG/VCG energetics to that of all-atom PMF 

calculations. Finally, we performed CGMD simulations of protein assembly using both 

CG and VCG models. The details of each step of the process are described below. 

 

All-atom molecular dynamics simulations. We performed AAMD simulations of two 

axially aligned then stacked Q pentamers and two adjacent BMC-H hexamers. The 

atomic model for Q pentamers was approximated using CCBuilder2.0.62 As the 

hierarchical structure of Q fibrils is unknown, we aligned Q pentamers based on 

complimentary charges at the two termini in an attempt to find a stable inter-coiled-coil 

interface. However, the two coiled-coils tended to separate, and we instead focused on 

intra-coiled-coil statistics. The atomic model for two BMC-H hexamers was isolated from 

a 3.5 Å resolution structure solved using X-ray crystallography58, 61. All structures were 

processed then simulated using GROMACS 202163 using parameters summarized in 

Table S1. First, a triclinic box was defined leaving a 2 nm buffer between the protein 

and domain edges; both systems utilized periodic boundary conditions. Next, each 

system was solvated in an aqueous solution with monovalent salt concentrations 

consistent with prior experiments (Q: 500 mM, BMC: 150 mM)55, 61. Proteins and ions 

were modeled using the CHARMM36m force field (February 2021)64 and water was 

modeled using the TIP3P model41. Energy minimization was performed using steepest 

descent. Next, temperatures were equilibrated under the canonical (NVT) ensemble 

using the stochastic velocity rescaling thermostat65 with parameters shown in Table S1. 

All heavy atoms were restrained using a harmonic force with spring constant 1000 

kJ/mol/nm2. Then, equilibration under the isobaric-isothermal (NPT) ensemble was 

performed using the stochastic velocity rescaling thermostat65 and the Parrinello-

Rahman barostat66 using the parameters reported in Table S1. Finally, simulations were 

extended under the NVT ensemble using the stochastic velocity rescaling thermostat65 



and the settings defined in Table S1. All simulations were run using a 2 fs timestep. 

Harmonic restraints to a single C in each monomer within one of the two 

supramolecular subunits present in each simulation (i.e., pentamer in Q and hexamer in 

BMC-H) were applied with spring constant 1000 kJ/mol/nm2 to prevent drift. The final 

300 ns and 415 ns of each Q and BMC-H trajectory, respectively, was used as 

reference data for CG modeling. Four independent replicates for each system were 

generated. Analysis of the root mean squared deviation of backbone 𝛼-carbons across 

the first 200 ns with respect to each atomic model shows that the CHARMM36m force-

field maintains the atomic structure with minimal deviation and equilibrates within 50 ns 

(Figure S1).  

 

All-atom umbrella sampling simulations. Umbrella sampling (US) simulations67 were 

performed to compute the PMF associated with binding within a supramolecular subunit 

(i.e., intra-pentamer/hexamer) and between supramolecular subunits (i.e., inter-

pentamer/hexamer). Each intra-subunit system was prepared by isolating two adjacent 

monomers within a supramolecular subunit while the inter-subunit systems used the 

same preparation as above. The first principal axis of each structure was aligned to a 

coordinate axis using VMD.68 Each system was prepared using identical conditions to 

that of the AAMD simulations; exceptions and US simulation-specific parameters are 

reported in Table S2. After constant NVT followed by constant NPT equilibration, US 

windows were prepared by pulling and pushing monomers/subunits along the 

coordinate axis using center-of-mass distance as the metric; moving harmonic biases 

were applied under the constant NVT ensemble using GROMACS 202163 and PLUMED 

2.769 with constants reported in Table S2. The final 25 and 30 ns of each Q and BMC-H 

window trajectory, respectively, was used for the final PMF calculation, which was 

performed using the weighted histogram analysis method (WHAM).67, 70 For the Q 

system, a 2D PMF was initially computed with a final 1D PMF representing the 

minimum free energy path determined using the string method (Figure S2).71 

Histograms for each window are shown in Figure S3.  

 



Integrating coarse-grained models with virtual sites. Following prior low-resolution 

CG models,3, 72 we define the CG Hamiltonian in four parts: 

 

𝑈(𝑅𝑁) ≈ ∑ ∑ 𝑈𝑏𝑜𝑛𝑑𝑒𝑑(𝑟𝑖𝑗) + 𝑈𝑐𝑜𝑢𝑙(𝑟𝑖𝑗) + 𝑈𝑒𝑥𝑐𝑙(𝑟𝑖𝑗) + 𝑈𝑎𝑡𝑡𝑟(𝑟𝑖𝑗)
𝑁
𝑗=𝑖+1

𝑁
𝑖=1  (1) 

 

which includes bonded (𝑈𝑏𝑜𝑛𝑑𝑒𝑑), Coulombic (𝑈𝑐𝑜𝑢𝑙), excluded volume (𝑈𝑒𝑥𝑐𝑙), and 

attractive (𝑈𝑎𝑡𝑡𝑟) contributions based on pair distance 𝑟𝑖𝑗 between CG sites 𝑖 and 𝑗 

across all 𝑁 sites. The 𝑈𝑏𝑜𝑛𝑑𝑒𝑑  term represents all intramolecular interactions while the 

latter three terms (𝑈𝑐𝑜𝑢𝑙, 𝑈𝑒𝑥𝑐𝑙 , and 𝑈𝑎𝑡𝑡𝑟) represent intermolecular interactions due to 

electrostatics, sterics, and close contacts, respectively. Prior CG models43, 73 have 

defined virtual sites as centers for binding interactions between two real CG sites that 

form a close contact (Figure 1), and we follow that same convention here. As such, 

virtual sites only contribute to the 𝑈𝑎𝑡𝑡𝑟 term. As shown in Figure 1, the virtual site 𝑣 is 

bonded to CG site 𝑖 and interacts with CG site 𝑗 using a nonbonded potential that favors 

the overlap between the virtual site and CG site 𝑗. Here, we define the bonded 

interaction using a harmonic potential and the nonbonded interaction using a Gaussian 

potential such that 𝑈𝑎𝑡𝑡𝑟 can be approximated by two contributions:       

 

𝑈𝑎𝑡𝑡𝑟(𝑟𝑖𝑗) = 𝑈𝑉𝐶𝐺(𝑟𝑖𝑣, 𝑟𝑣𝑗) = 𝐾𝑖𝑣(𝑟𝑖𝑣 − 𝑟𝑖𝑣,0)
2
− 𝐴𝑣𝑗 exp(−𝐵𝑣𝑗(𝑟𝑣𝑗) 

2)  (2) 

 

where 𝐴𝑣𝑗  and 𝐵𝑣𝑗 are Gaussian parameters, 𝐾𝑖𝑣 and 𝑟𝑖𝑣,0 are harmonic parameters, 

and 𝑟𝑖𝑣 (or 𝑟𝑣𝑗) is the pair distance between CG sites 𝑖 and 𝑣 (or 𝑣 and 𝑗).  

 



 
Figure 1. Coarse-grained modeling framework using virtual sites to represent anisotropic 

interactions. Schematic of a virtual CG site v (dashed red circle) serving as a directional binding 

interaction between real CG sites i and j (red circles) at the interface between two macromolecules. 

The virtual site is bonded to CG site j via a harmonic potential and interacts with CG site j via a 

Gaussian potential; the two potentials are coupled. In the equivalent isotropic model, CG sites i and 

j interact directly through a Gaussian potential. 

 

To optimize the unknown interaction parameters, we use the relative entropy 

minimization (REM)74 method, which aims to minimize the KL divergence: 

 

𝑆𝑟𝑒𝑙 = ∫ 𝑃𝐴𝐴(𝑅
𝑁) ln (

𝑃𝐴𝐴(𝑅𝑁)

𝑃𝐶𝐺(𝑅𝑁)
)𝑑𝑅𝑁       (3) 

 

where 𝑆𝑟𝑒𝑙 is the relative entropy, 𝑃𝐴𝐴 is the configurational probability density in the 

atomistic ensemble, 𝑃𝐶𝐺 is the configurational probability density in the CG ensemble, 

and 𝑅𝑁 is the CG configuration which can also be determined by mapping from atomic 

configurations (i.e., 𝑀(𝑟𝑛)). Under the constant NVT ensemble, Eq. 3 can be 

reformulated as: 

 

𝑆𝑟𝑒𝑙 = 𝛽〈𝑈𝐶𝐺 − 𝑈𝐴𝐴〉𝐴𝐴 − 𝛽(𝐴𝐶𝐺 − 𝐴𝐴𝐴)       (4) 

 

where 𝑈𝐶𝐺/𝐴𝐴 is the CG/AA internal energy and 𝐴𝐶𝐺/𝐴𝐴 is the configurational part of the 

CG/AA Helmholtz free energy, which in itself is a function of 𝑈𝐶𝐺/𝐴𝐴. One can 

numerically minimize 𝑆𝑟𝑒𝑙 with respect to the parameters 𝜆 that define 𝑈 using gradient 

descent: 



 

λt+1 = λt − 𝜒𝛽 (⟨
𝜕𝑈

𝜕𝜆
⟩
𝐴𝐴

− ⟨
𝜕𝑈

𝜕𝜆
⟩
𝐶𝐺

) + 𝜂(0, 𝑠)       (5) 

 

where 𝛽 = (𝑘𝐵𝑇)−1, 𝑡 is the iteration number, 𝜒 is the learning rate, and ⟨ ⟩𝐴𝐴 and ⟨ ⟩𝐶𝐺 

are the averages over the respective AA and CG ensembles. Note that previous 

implementations used the Newton-Raphson method74 but we chose to use an 

alternative method due to the nonconvex nature of our parameter space. Taking 

inspiration from perturbed gradient descent,75 we add random noise sampled from a 

Gaussian distribution 𝜂(0, 𝑠) to help escape from saddle points. As 𝑈 is approximated 

with a pairwise basis according to Eq. 1, we can evaluate the ensemble-averaged 

quantities as follows: 

 

⟨(
𝜕𝑈

𝜕𝜆
)⟩

𝐴𝐴/𝐶𝐺
= ∑ ∑ (∫

𝜕𝑈(𝑟𝑖𝑗)

𝜕𝜆
𝑃𝐴𝐴/𝐶𝐺(𝑟𝑖𝑗) 𝑑𝑟𝑖𝑗)

𝑁
𝑗=𝑖+1

𝑁
𝑖=1     (6) 

 

Up to this point, we have described the REM method in a general sense. 

However, Eq. 6 is not readily applicable to the virtual site interactions defined in Eq. 2 as 

no explicit statistics for 𝑃𝐴𝐴(𝑟𝑖𝑣) or 𝑃𝐴𝐴(𝑟𝑣𝑗) exist. Instead, consider the fact that under an 

idealized binding state induced by the virtual site, we expect 𝑃(𝑟𝑖𝑣) ≈ 𝑃(𝑟𝑖𝑗) and 

𝑃(𝑟𝑣𝑗) ≈ 𝑃(𝑟𝑖𝑣 − 𝑟𝑖𝑣,0). Then, it is possible to iteratively optimize the virtual site 

interaction using 𝑃(𝑟𝑖𝑗) statistics if the harmonic and Gaussian contributions to Eq. 2 are 

coupled to each other. The Gaussian interaction term in Eq. 2 can be expanded around 

𝑟𝑣𝑗 = 0 as an infinite power series: 

 

−𝐴𝑣𝑗 exp(−𝐵𝑣𝑗(𝑟𝑣𝑗) 
2) ≈ −𝐴𝑣𝑗 ∑

(−𝐵𝑣𝑗(𝑟𝑣𝑗)
2
)
𝑘

𝑘!

∞
𝑘=0       (7) 

 

Taking Eq. 7 to first-order (𝑘 = 1) and relating the Gaussian force to the harmonic force 

implied by Eq. 2 through the approximation 𝑃(𝑟𝑣𝑗) ≈ 𝑃(𝑟𝑖𝑣 − 𝑟𝑖𝑣,0) shows that: 

 



2𝐾𝑖𝑣(𝑟𝑖𝑣 − 𝑟𝑖𝑣,0) ≈ 2𝐴𝑣𝑗𝐵𝑣𝑗(𝑟𝑖𝑣 − 𝑟𝑖𝑣,0)      (8) 

 

Or more simply: 

 

𝐾𝑖𝑣 ≈ 𝐴𝑣𝑗𝐵𝑣𝑗           (9) 

 

which shows that the spring constant of the virtual site bond can be related to the 

parameters of the virtual site binding interaction, which in turn are related to 𝑟𝑖𝑗 statistics 

through the approximation 𝑟𝑖𝑗 ≈ 𝑟𝑖𝑣. We note that we also tried to optimize 𝐾𝑖𝑣, 𝐴𝑣𝑗 , and 

𝐵𝑣𝑗 independently but our attempts always led to the divergence of parameters 𝐾𝑖𝑣 and 

𝐴𝑣𝑗 , which we attribute to the fact that the equations for 𝐾𝑖𝑣 and 𝐴𝑣𝑗  emphasize the 

longer-range and shorter-range regions of the probability distribution, respectively. To 

summarize, we propose that the virtual site interaction in Eq. 2 can be coupled to real 

CG site statistics in the following manner: 

 

1. Approximate 𝑃(𝑟𝑣𝑗) as 𝑃(𝑟𝑖𝑗 − 𝑟𝑖𝑣,0) 

2. Apply Eq. 5 to iteratively update 𝐴𝑣𝑗  and 𝐵𝑣𝑗 

3. Apply Eq. 9 to iteratively update 𝐾𝑖𝑣  

  

In comparison, the isotropic analog of Eq. 2 can be defined as: 

 

𝑈𝑎𝑡𝑡𝑟(𝑟𝑖𝑗) = 𝑈𝐶𝐺(𝑟𝑖𝑗) =  
𝐻𝑖𝑗

𝜎𝑖𝑗√2𝜋
exp (−

(𝑟𝑖𝑗−𝑟𝑖𝑗,0)
2

2𝜎𝑖𝑗
2 )      (10) 

 

where 𝐻𝑖𝑗 and 𝜎𝑖𝑗 are the Gaussian parameters and 𝑟𝑖𝑗,0 = 𝑟𝑖𝑣,0. Hence, Eq. 5 can be 

directly applied to iteratively update 𝐻𝑖𝑗 and 𝜎𝑖𝑗 without approximation. 

 The remaining terms in Eq. 2 can be defined as follows. We represent the 

intramolecular interactions through a harmonic bond network with each bond 

represented by:  

 



𝑈𝑏𝑜𝑛𝑑𝑒𝑑(𝑟𝑖𝑗) = 𝐾𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑖𝑗,0)
2
       (11) 

 

where 𝐾𝑖𝑗 is the spring constant and 𝑟𝑖𝑗,0 is the minimum energy distance. Electrostatic 

interactions were defined using the Yukawa potential: 

 

𝑈𝑐𝑜𝑢𝑙(𝑟𝑖𝑗) =
𝐶𝑞𝑖𝑞𝑗

𝜖𝑟𝑟𝑖𝑗
exp(−𝜅𝑟𝑖𝑗)         (12) 

 

where 𝐶 is a unit conversion constant, 𝑞 is the partial charge, 𝜖𝑟 is the dielectric 

constant, and 𝜅 is the inverse Debye screening length. Excluded volume repulsions 

were defined as: 

  

𝑈𝑒𝑥𝑐𝑙(𝑟𝑖𝑗) = 𝐷𝑖𝑗 [1 + cos (
𝜋𝑟𝑖𝑗

𝑟𝑐,𝑖𝑗
)] for 𝑟𝑖𝑗 < 𝑟𝑐      (13) 

 

where 𝐷𝑖𝑗 is the amplitude and 𝑟𝑐,𝑖𝑗 is the cutoff distance.  

 
Coarse-grained mapping and parameterization. CG sites were mapped to Cα 

positions in the AA reference data with solvent integrated out. The final CG models were 

mapped using the essential dynamics coarse-graining method.76 Virtual sites were 

defined based on protein-protein pair distance distributions. The proximity and height of 

peaks in the pair distributions were used to quantify the likelihood of a close contact; 

sharp peaks with heights greater than 0.004 and widths smaller than 1.0 Å were 

selected to limit the number of virtual sites (see Table S3 and Table S4 for complete 

list). These constraints were adjusted to ensure each interface was represented. The 

first frame of the CG-mapped atomistic trajectory was used to initialize the isotropic CG 

model. The VCG model was initialized by adding virtual sites to the position of CG site 𝑗 

(see Figure 1) for each close contact pair. The masses and charges for CG sites were 

computed using the sum of all residues used to define the CG site. Virtual sites were 

given no charge with masses set to their real site counterpart. Intramolecular bonds 

were parameterized using a heteroelastic network model (HENM)77 with a cutoff of 15 Å 



and 15.5 Å for the Q and BMC-H systems, respectively. For close contact pairs, 𝑟𝑖𝑗,0 in 

Eq. 2 and Eq. 10 was set to the position of the peak in the pair distribution. For all 

intermolecular pairs, 𝑟𝑐,𝑖𝑗  for steric interactions in Eq. 13 was determined using the onset 

distance for non-zero density in the pair distribution up to a max 𝑟𝑐,𝑖𝑗 of 12 Å. The 𝜅 in 

Eq. 12 was determined using experimental monovalent salt concentrations and 

temperatures. 

For Q, we investigated additional virtual sites (denoted as HP) that represent the 

steric interactions of hydrophobic side chains populating the interior of the coiled-coil 

pore. The positions of these HP sites were based on CG sites of A27, L34, L41, and 

L48, which are the hydrophobic residues in each monomer that contribute to the buried 

hydrophobic core. All HP sites were positioned 45% of the distance along the vector 

connecting each CG site to the center of mass of all five corresponding CG sites. 

Parameters for 𝑈𝑏𝑜𝑛𝑑𝑒𝑑  and 𝑈𝑒𝑥𝑐𝑙  were defined via Boltzmann Inversion based on CG-

mapped distributions of the HP sites; bonds between real and HP sites were defined for 

mean distances less than 10 Å.    
 To perform REM optimization, CG simulations were run at each iteration using 

LAMMPS78 (2 Jun 2022) and Moltemplate79 under constant NVT using the Langevin 

thermostat.80 Details on the integration timestep, equilibration time, production time, and 

thermostat settings are provided in Table S5. As convexity is not guaranteed, multiple 

initial guesses for all parameters were tested. After each CG simulation (at each 

iteration), Eq. 5 was applied to determine the next iteration of parameters. For the CG 

model, parameters 𝐻𝑖𝑗 and 𝜎𝑖𝑗 of Eq. 10 were iterated using REM. For the VCG model, 

parameters 𝐴𝑣𝑗  and 𝐵𝑣𝑗 of Eq. 2 were iterated using REM and 𝐾𝑖𝑣 was solved using Eq. 

9. A learning rate schedule (see Table S6-9) was applied to gradually decrease the 

learning rate while the change in each parameter was capped (see Table S6-9) to 

prevent large changes; both strategies helped to smooth convergence. A total of 300 

iterations for each trial set of parameters were performed. The mean squared error 

(MSE) was computed at each iteration as:  

 

𝑀𝑆𝐸 = ∑ ∑ (𝑃𝐴𝐴,𝐼(𝑟) − 𝑃𝐶𝐺,𝐼(𝑟))
2

𝑟𝐼            (14) 



 

where 𝐼 is the index over all close contact pairs. Models yielding the lowest MSE were 

selected as the final CG/VCG models. All derivatives used in Eq. 6 are shown in Table 
S10. Final CG/VCG model parameters are shown in Tables S11-13.  

For protein Q, we quantified three structural characteristics of the coiled-coil. 

First, we computed the root mean squared deviation (RMSD) compared to the atomic 

model using: 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ (|𝑋𝑖 − 𝑌𝑖|)2

𝑁
𝑖=0                 (15) 

where 𝑋𝑖 represents the CG-mapped positions of site 𝑖 in the atomistic dataset, 𝑌𝑖 

represents the positions in the CG dataset, and 𝑁 represents the number of CG sites. 

To assess the symmetry, two metrics were used: a metric to quantify pentameric 

symmetry (𝜓5
2𝐷) and the standard deviation of the distance from the centroid (𝜎𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) 

for each ring of residues (between residues 18 to 48) within the pentamer. 𝜓5
2𝐷 was 

calculated using: 

𝜓5
2𝐷 =

1

5
∑ cos (5 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑟𝑖⃗⃗⃗  ⋅𝑟𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑟𝑖⃗⃗⃗  ||𝑟𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
))4

𝑖=0          (16) 

where 𝑟𝑖⃗⃗  represents the vector from the centroid to a CG site 𝑖 within the ring of 

residues; 𝜓5
2𝐷 = 1 indicates perfect five-fold symmetry and decreases toward zero with 

decreasing symmetry.  𝜎𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑was calculated using: 

𝜎𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = √
1

5𝑁𝑀
∑ ∑ ∑ (|𝑟𝑖𝑐| − ⟨|𝑟𝑖𝑐|⟩)

4
𝑖=0

2𝑁
𝑗=0

𝑀
𝑘=0          (17) 

where 𝑀 represents the number of rings, 𝑁 is the number of frames, |𝑟𝑖𝑐| is the distance 

between the residue and its corresponding ring centroid, and ⟨|𝑟𝑖𝑐|⟩ is the mean 

distance; larger 𝜎𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 corresponds to less uniformity with 𝜎𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 0 indicative of 

perfect uniformity.   

 
Coarse-grained molecular dynamics simulations and analysis. Optimized CG and 

VCG models were analyzed by running assembly and pulling CGMD simulations using 

LAMMPS78 (2 Jun 2022). Assembly simulations were set up with evenly dispersed 

monomers to achieve an initial monomer concentration of ~10-fold experimental 

concentrations to maintain monomer concentrations at or above experimental 



conditions while monomers are depleted during assembly and to accelerate assembly 

kinetics (see Table S14 for complete details). To simulate the hierarchical assembly of 

BMC-H with a fixed solution-state ratio of assembly-competent to assembly-

incompetent monomer populations, BMC-H monomers were switched between active 

and inactive states based on a prior algorithm used in the study of viral protein 

assembly.48, 51 In the inactive state, the 𝑈𝑐𝑜𝑢𝑙 and 𝑈𝑎𝑡𝑡𝑟 potentials were turned off. A 

constant solution-state monomers concentration of 4 mM (~2-fold experimental 

concentrations60, 81) was maintained to promote protein multimerization. In contrast, our 

Q simulations focused on the assembly of coiled-coil oligomers. Thus, instead of 

controlling concentration throughout the course of the simulation, Q simulations were 

initialized at 10 mM and allowed to equilibrate. Simulations were run under constant 

NVT using the Langevin thermostat80 with details provided in Table S14. To determine 

the extent of assembly, supramolecular structures were modeled as graphs using 

NetworkX 3.182 where each monomer was treated as a node and close contacts 

(defined in Table S15) as edges. The size of each subgraph was used to represent the 

size of each assembled supramolecular structure. The shape of each assembled 

structure was visualized using VMD.68 

 To approximate the CG binding strengths within a supramolecular subunit and 

between subunits, pulling CGMD simulations were performed between two Q/BMC-H 

monomers and two BMC-H hexamers, respectively. Harmonic restraints were applied to 

a single CG site within one of the monomers or subunits present in each simulation. The 

harmonic restraint was shifted periodically, separating the two groups throughout the 

simulation (see Table S16 for details). After each shift, simulations were run under 

constant NVT using the Langevin thermostat80 for the total time shown in Table S16. 

Potential energies were saved every 5,000 steps and the final 30 ns of data was 

averaged to approximate the CG binding energies that were compared to AA PMFs. 

 

Results and Discussion 

  

Coarse-Grained Model of Protein Q. Protein Q is a pentameric coiled-coil protein 

capable of assembling into hydrogels composed of physically crosslinked fibrils.54, 55 



The assembly is hierarchical with α-helical monomers of Q forming coiled-coil oligomers 

followed by fibrillization. In general, coiled-coils are stabilized by both their amphiphilic 

nature and knob-in-hole interactions between adjacent monomers.57 Fibrillization, on the 

other hand, has been attributed to electrostatic interactions between complimentary 

charges at the N- and C-termini, a characteristic known as sticky ends.83 In the case of 

Q, fibrils are 2.5-20 nm in diameter while gelation may take days to complete. 54, 55 Our 

interest in Q is motivated by the different types of interactions involved in Q assembly, 

making Q an attractive case study to compare CG models represented by anisotropic or 

isotropic interactions. As an atomic model for the inter-coiled-coil interface is unavailable 

at present, we focused our study in intra-coiled-coil interactions.  

 

 
Figure 2. The coarse-grained (CG) model for Q. (A) The charge profile of the CG monomer 

(left) and pentamer (right) with CG sites colored by charge. (B) The bonds defined by the 

HENM using a 15 Å cutoff. (C) The VS pairs are represented by the blue bond between 

the virtual sites (green) and the CG sites (magenta). The N-terminal view shows the virtual 

sites (yellow) used to represent interactions in the inner hydrophobic region. 

 

Our proposed VCG model for Q represents the knob-in-hole and amphiphilic 

interactions of Q using virtual sites. Monomers were modeled using a 1 CG site per 

residue resolution (Figures 2A-B). As shown in Figure 2C, virtual sites 1 to 5 (VS1-5) 

represent attractive, directional knob-in-hole interactions while virtual sites 6 to 9 (VS6-

9) represent steric hindrance by hydrophobic side chains in the coiled-coil pore interior, 

which we modeled as purely repulsive. In total, three models were parameterized: an 

isotropic model with no virtual sites (CG model), a model with only VS1-5 (VCG model), 

and one with VS1-5 and VS6-9 (VCG+HP model). Both virtual site models (VCG and 



VCG+HP) had VS1-5 trained using REM while the VS6-9 interactions were trained via 

Boltzmann Inversion independently from VS1-5; the presence or absence of VS6-9 

interactions had negligible impact on VS1-5 training (Figure S4).  

During REM, CG statistics generated from CG simulations using the trial model 

in each iteration are compared to CG mapped statistics from the atomistic dataset to 

update the 𝑈𝑎𝑡𝑡𝑟 parameters until those that minimize the loss are found. The values of 

these parameters are shown in Figure 3A for the CG model and Figure 3B for the VCG 

model. Figure 3A shows that the explored parameter space for VS1 and VS5 in the CG 

model was more varied compared to VS2-4, which is likely a result of VS1 and VS5 

being in more flexible regions of the protein. Figure 3B shows a similar trend for the 

VCG model although exploratory behavior was only evident in VS5. Both the VCG and 

CG models predicted weaker interactions in VS1 and VS5 compared to VS2-4. 

Comparison of the MSE loss depicted in Figure 3C shows that the VCG model was 

able to achieve a lower aggregate MSE loss (2.51x10-4 ± 6.40x10-7) compared to that of 

the CG model (2.60x10-4 ± 4.18x10-7), indicating that the VCG model achieved higher 

fidelity to the reference atomistic data. To further analyze differences in fidelity, we 

investigated differences in structural correlations. Figure 3D depicts the predicted 

structures of the coiled-coil with the optimized VCG and CG model parameters. It is 

evident that the VCG model is able to maintain the expected cylindrical shape and 

pentameric symmetry of the atomistic coiled-coil better than the CG model (i.e., the 

pentamer in the latter is oblongated). In particular, the VCG model had a lower RMSD of 

0.123±0.014 nm compared to the CG model (0.132±0.020 nm) while a higher 𝜓5
2𝐷 

(VCG: 0.923±0.092 and CG: 0.908±0.121) and a lower 𝜎𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (VCG: 0.172 nm and 

CG: 0.316 nm) jointly indicate that the VCG model is more uniform and symmetric than 

the CG model. Nonetheless, only minute differences were observed in the VS pair 

distributions shown in Figure 3E.  Both the VCG and CG models were able to capture 

the first peak in the reference AA distribution and qualitatively match the peaks at longer 

distances. The similarity in the VCG and CG pair distributions suggests that pairwise 

correlations alone are likely insufficient to distinguish higher-order correlations, such as 

the pentameric symmetry of the Q oligomer. However, as the VCG model is fit to 

pairwise correlations through projection by a directional virtual site interaction, it 



appears that this higher-order correlation can be implicitly preserved. Finally, we note 

that simulations of the optimized CG model ran at a rate of ~6180 timesteps/s while the 

VCG model ~4619 timesteps/s, indicating that the VCG model is only 25% slower than 

the CG model.    

 

 
Figure 3. Coarse-grained (CG) model optimization for Q. Each 𝑈𝑎𝑡𝑡𝑟 parameter across 

iterations is shown for the (A) CG and (B) VCG models. (C) Comparison of the mean-

squared error (MSE) of the CG and VCG models across iterations with standard deviations 

across four replicates shown as a shaded region. (D) Comparison of Q structures predicted 

by each optimized model based on the all-atom (AA) model of Q; each monomer in the CG 

snapshots is depicted by different colors. (E) Comparison of pair distance probability 

distributions between the real CG sites associated with each virtual site after model 

optimization. The data presented in (D) and (E) are from VCG iteration 243 and CG iteration 

153.  

 

Q Assembly into Coiled-Coil Oligomers. While the CG and VCG models of Q were 

able to maintain a pentameric coiled-coil structure and adhere to atomistic statistics, it 

would be informative to investigate the ability of such structures to form spontaneously. 

Here, we discuss the VCG+HP model (i.e., inclusion of VS6-9 as representations of 

hydrophobic core sterics) while results for the VCG model are shown in Figure S5. We 

first quantified the binding free energy between Q monomers using US simulations at 

atomic resolution and compared the resulting PMF to CG-derived energetics. As seen in 

Figure 4A, the monomer-monomer binding energy of the VCG+HP model (-26.33±0.06 



kcal/mol) better recapitulates the atomistic binding free energy (-22.11 kcal/mol) 

compared to that of the CG model (-12.04±0.07 kcal/mol). The VCG+HP PMF also 

exhibits features of the AA PMF that are absent in the CG PMF, namely the presence of 

a metastable state at 10.0 Å and long-range attraction that begins as far as 19.5 Å. 

Overall, our free energy calculations show that the CG model predicts weaker and 

shorter-ranged attraction compared to the VCG+HP model, which further suggests that 

the kinetics of assembly and the stability of resulting oligomers may be slower and 

lower, respectively, for the CG model compared to the VCG+HP model. To test this 

hypothesis, we next performed CGMD assembly simulations.  

 Each CGMD assembly simulation started from configurations with evenly 

dispersed Q monomers at 10 mM concentration. Figure 4B shows the aggregate 

number of oligomerized Q over time. Interestingly, the CG model exhibited a faster initial 

rate of oligomerization compared to the VCG+HP model, although the maximum degree 

of oligomerization plateaued and was exceeded by the VCG+HP model. Despite the 

weaker binding energy shown in Figure 4A, the CG model showed faster assembly 

kinetics at lower time steps compared to the VCG+HP model, which we attribute to less 

stringent orientation requirements upon collision in the CG model case; at close 

separation distances, the VCG+HP model requires the two monomers be oriented 

according to the directionality of the virtual sites for successful binding. However, as 

larger multimers assemble at longer times, we speculate that the sterics imposed by the 

larger multimers implicitly enforce orientationally dependent association, which leads to 

slower assembly rates for both the VCG+HP and CG models. It is also possible that the 

additional mass of the virtual sites, which increases the mass of each Q monomer by 

~16%, may contribute to slower assembly kinetics. However, when we tested the 

VCG+HP model with repartitioned masses such that the total mass is equivalent to the 

CG model, no noticeable differences in assembly rates or multimer assembly trends 

were observed (Figure S6). 



 
Figure 4. Q self-assembly into coiled-coil pentamers. (A) Comparison of the potential of 

mean force (PMF) as a function of distance between Q monomers for the CG, VCG+HP, 

and AA models. (B) The number of monomers in oligomers (of size 2 or more) over time 

for the CG and VCG+HP models; the inset shows the early stages of assembly. (C) The 

fraction of monomers classified by oligomer size to total monomers over time; classes 

ranging from monomers (circles) to hexamers (hexagons) for the CG (left) and VCG+HP 

(right) models are depicted. (D) Representative snapshots depicting the assembled coiled-

coils predicted by the CG and VCG+HP assembly simulations.  

 

While both models assembled into a variety of oligomers, not all assembled 

structures reflected the expected pentameric coiled-coil structure of Q. Figure 4C 

shows that the VCG+HP model was able to form pentamers with negligible higher-order 

oligomers formation (i.e., hexamers and above). Both tetramers and trimers were 

assembled as well, but we expect these to persist due to the depleting number of 

available monomers and dimers in the simulation domain. In contrast, the CG model 

tended to favor kinetically trapped “closed” trimer and tetramer structures that precluded 

recruitment of additional monomers or dimers to form pentamers. Analysis of pair 

distance distributions after assembly (Figure S7) reveals that both the CG and 

VCG+HP models capture the first peak of each distribution, although the VCG+HP is 

able to better replicate the atomistic distributions overall. The ability for the VCG+HP 



model to form larger oligomers is driven by both the VS1-5 and VS6-9 interactions. The 

directional nature of both VS1-5 attraction and VS6-9 repulsion likely increased the 

preference for oligomers with pentameric symmetry; as shown in Figure S5, VS6-9 is 

not required for pentamer formation but instead accelerates their formation. Importantly, 

the VCG+HP model predicts the spontaneous formation of pentameric coiled-coils 

consistent with the AA model, as seen in Figure 4D. The CG model, on the other hand, 

was only able to predict tetrameric coiled-coils at most (see Figure 4D). It may be 

possible for the CG model to form pentamers beyond our simulated timescales. 

However, such an event is likely to be rare due to the high selectivity for kinetically 

trapped trimers and tetramers.  

Overall, the VCG+HP model was able to assemble into experimentally consistent 

pentameric coiled-coils while the CG model could not. Our results demonstrate that the 

incorporation of virtual sites improves the fidelity of coiled-coil assembly not only by 

recapitulating the CG binding energy but also by introducing an orientation-dependent 

“entropic” barrier. In addition, while the presence of VS1-5 alone is sufficient for 

spontaneous pentamer assembly (see Figure S5), the rate and selectivity of pentamer 

formation is improved with the aid of VS6-9, demonstrating that balancing attractive 

(VS1-5) and repulsive (VS6-9) interactions through virtual sites is a viable CG modeling 

approach.  

 
Coarse-Grained Model of BMC-H. BMCs are proteinaceous organelles that allow 

various bacterial species to thrive in diverse environments.84 This role is done through 

the selective compartmentalization of enzymes and the controlled permeability of 

metabolites and toxic intermediates through the protein shell, which allows important 

biochemical processes to happen without interference or with high activity.84 The protein 

shell of BMCs, which bear similarity to viral capsids, are composed of both hexameric 

(BMC-H or BMC-T) and pentameric (BMC-P) oligomers that tile into polyhedra.85, 86 

However, these polyhedral structures differ from viral capsids in size and composition, 

often irregular in shape and stoichiometry. Assembling different shell proteins into 

various forms, including icosahedral shells, tubules, and “swiss-roll” structures, 

suggests that the morphology and size of these constructs are highly tunable following 



currently unknown mechanisms.60, 61, 87 Here, we focus on BMC-H shell proteins from 

Haliangium ochraceum58, 59 that spontaneously assemble into hexameric nanosheets 

that roll into a rosette shape.60, 61 Our interest in BMC-H is motivated by the different 

hierarchies of oligomerization involved in BMC-H assembly, making BMC-H an 

attractive case study to compare CG models represented by anisotropic or isotropic 

interactions. 

 

 
Figure 5. The coarse-grained (CG) model for BMC-H. (A) The charge profile (left-most) 

and bonds defined by the HENM (middle left) of the CG monomer and the equivalent for 

the hexamer (middle right and right-most). (B) The virtual site (VS) pairs are represented 

by the bond between the virtual sites (green) and the CG sites (magenta). The two left 

snapshots depict the intra-hexameric VS pairs while the two right snapshots depict the 

inter-hexameric VS pairs. 

 

 Our proposed VCG model for BMC-H consists of the 99 residue BMC-H 

monomer mapped to 26 CG sites with a net charge between ±2 and intra-protein 

fluctuations represented by an HENM bond network, as shown in Figure 5A. We 

modeled the intra-hexameric protein-protein contacts as VS1-4 and the inter-hexameric 

protein-protein contacts as VS5-6 (see Figure 5B). The same pairs of CG sites 

projected onto the virtual sites were used to create a CG model represented by 



spherically isotropic interactions. In total, two models were fit: the VCG and CG models 

for BMC-H. 

 

 
Figure 6. Coarse-grained (CG) model optimization for BMC-H. Each 𝑈𝑎𝑡𝑡𝑟 parameter 

across iterations is shown for the (A) CG and (B) VCG models. (C) Comparison of the 

mean-squared error (MSE) of the CG and VCG models across iterations with standard 

deviations across four replicates shown as a shaded region. (D) Comparison of pair 

distance probability distributions between the real CG sites associated with each virtual 

site after model optimization. The data presented are from VCG iteration 48 and CG 

iteration 205.  

 

The values of the CG and VCG model parameters across REM iterations are 

shown in Figure 6A and Figure 6B, respectively. During both CG and VCG model 

optimization, we find that the intra-hexameric interaction parameters for VS1-3 find a 

minima and tend to remain stationary. However, VS5-6, and to a lesser extent, VS4, 

tend to explore a larger parameter space. As seen in Figure 6C, the VCG model initially 

explores a part of parameter space yielding an MSE loss as low as 3.69x10-5 ± 2.78x10-

7 but then enters a solution space with an MSE loss as low as 4.04x10-5 ± 1.75x10-6, 

which highlights the complexity of this nonconvex optimization. Nonetheless, the VCG 

model is able to achieve a lower aggregate MSE loss compared to that of the CG model 

(7.00x10-5 ± 3.99x10-7), similar to our observations for the Q system. From the pair 



distance distributions shown in Figure 6D, we find that both the CG and VCG models 

predict intra-hexameric distributions (i.e., VS1-4) that are consistent with the reference 

AA distributions with only minor differences observed between the CG and VCG 

models. More evident differences are observed in the inter-hexameric distributions 

(VS5-6) where both the CG and VCG models yield sharper distributions in the first peak 

for VS5 while the VCG model yields a broader distribution in the first peak for VS6. The 

mismatch between the AA and CG/VCG distributions for VS5-6 suggests that 

approximating the inter-hexameric interactions as Gaussians may be insufficient; in the 

future, other functional forms for pair interaction potentials, such as Lennard Jones or 

Morse, may be worthwhile to explore. However, no qualitative differences in BMC-H 

hexameric structure were observed in the case of both models compared to the AA 

model. While using a more complex basis may lead to quantitative improvement in 

accuracy with respect to pair distributions, the additional complexity and associated cost 

is not likely to be necessary. Finally, we note that simulations of the optimized CG model 

ran at a rate of ~7010 timesteps/s while that of the VCG model ran at ~6761 

timesteps/s, indicating that the VCG model is only 4% slower than the CG model.   

 

BMC-H Assembly into Hexameric Sheets. After optimization of both the CG and VCG 

models for BMC-H, we assessed the binding free energies at both the intra-hexameric 

and inter-hexameric interfaces using US simulations at atomic resolution and compared 

the resulting PMFs to CG-derived energetics. As seen in Figure 7A, the monomer-

monomer binding energy of the VCG model (-14.18±0.08 kcal/mol) and of the CG 

model (-10.90±0.04 kcal/mol) both underestimate the atomistic binding free energy (-

18.73±0.21 kcal/mol), although the VCG model is closer. However, the CG PMF exhibits 

a longer-range attraction at around 3.5 nm that is consistent with the AA PMF, unlike the 

VCG PMF where the attraction begins around 3.0 nm. As seen in Figure 7B, the 

hexamer-hexamer binding free energy of the VCG model (-21.83±0.65 kcal/mol) and of 

the CG model (-11.23±0.22 kcal/mol) both overestimate the atomistic binding free 

energy (-7.35±0.21 kcal/mol), although the CG model is closer. Overall, we find that 

both CG and VCG models tend to partition energetics equally between the intra- and 

inter-hexameric interfaces, while the AA PMFs suggest that the intra-hexameric 



interface should have stronger binding affinity than that of the inter-hexameric interface. 

This discrepancy highlights a current limitation in the CG/VCG models, which could be 

addressed by redefining how protein-protein contacts are identified. More importantly, 

we find that the VCG model predicts stronger attraction compared to the CG model. 

However, as observed in the Q system, the stronger attraction may not be 

commensurate with faster assembly kinetics.   

 

 
Figure 7. BMC-H self-assembly into hexameric sheets. (A) Comparison of the potential of 

mean force (PMF) as a function of distance between BMC-H monomers along the intra-

hexameric interface for the CG, VCG, and AA models. (B) Comparison of the PMF as a 

function of distance between BMC-H hexamers along the inter-hexameric interface for the 

CG, VCG, and AA models. (C) The size of assembled BMC-H lattices over time for the CG 

and VCG models; the horizontal dashed line serves as a guide to the eye to show 

equivalent sizes in the CG and VCG assemblies. The arrows mark the time-points for each 

of the depicted snapshots. The snapshots show representative assembled lattices with 

inter-hexameric CG sites shown as green balls and the remaining CG sites shown as blue 

balls. 



 

 We performed CGMD assembly simulations of BMC-H at a fixed concentration of 

4 mM from a reservoir of 10 mM protein. Figure 7C depicts the aggregate size of 

assembled BMC-H over time for both the CG and VCG models. It is evident that the CG 

model assembles at a rate that significantly exceeds that of the VCG model; the VCG 

model assembled into a lattice of size 86±36 BMC-H after 50x107 time steps, while the 

CG model required 0.6x107 time steps to achieve a comparable size. The morphologies 

predicted by the two models are also distinct. As seen in Figure 7C and Figure S8, 

comparison of the lattices predicted by the two models at a size around 85 reveals that 

the VCG model assembles with uniform hexamers while the CG model assembles with 

an assortment of hexamers, pentamers, and heptamers. The pentamers and heptamers 

observed in the CG model simulations are examples of kinetically trapped oligomers 

that could not anneal into hexamers before becoming enclosed. The CG model 

continued its rapid assembly until forming a ball-like structure composed of hexamers, 

pentamers, heptamers, and vacancies (see Figure 7C). Interestingly, the pair distance 

distributions for both the CG and VCG models after assembly (Figure S9) reveal that 

both models recapitulate atomistic statistics, which further suggests that pentameric, 

hexameric, and heptameric states are degenerate in the captured pairwise statistics. 

Prior experiments have shown that BMC-H expressed in E. coli spontaneously 

assemble into “swiss roll” or “rosette” structures that are likely curled hexameric sheets 

of BMC-H.60, 61 Clearly, the ball-like structure predicted by the CG model is inconsistent 

with experimental morphologies. The lattice predicted by the VCG model, however, is 

consistent with hexameric sheets.  

Similar to the Q system, we find that the VCG model is able to assemble into 

experimentally consistent morphologies while the CG model results in defective and 

kinetically trapped structures. Our results highlight the importance of anisotropic 

representations of protein-protein interactions, which we capture using virtual sites, that 

appear to reduce both assembly rates and defect production. We attribute the lower 

assembly rates using the VCG model as compared to the CG model to the same 

orientation-dependent entropic barrier noted in the Q study, which also compensates for 

the larger binding energies observed in the VCG model.     



 

Conclusions 

 

We present a systematic coarse-graining approach to model anisotropic interactions at 

protein-protein interfaces using virtual sites to facilitate low-resolution and implicit-

solvent molecular dynamics simulations of multimeric biomacromolecules. As the virtual 

sites do not represent an explicit mapping from atomistic configurations, our 

methodological premise is that the virtual site interactions can be inferred from the 

statistics of the CG site pairs that the virtual sites are meant to represent. In this work, 

we show how virtual sites represented by a combination of harmonic bonds and 

Gaussian interactions can be coupled and related to CG site pair statistics, but we 

envision that our approach can be adapted for other functional forms. We also note that 

the VCG modeling framework is limited to pairwise interactions by design, such that the 

additional computational cost of the VCG model is negligible in comparison to CG 

models using pairwise interactions. 

 We show through two case studies of Q coiled-coil proteins and BMC-H shell 

proteins that the proposed VCG models outperform CG models that use equivalent 

spherically isotropic interactions in terms of both fidelity to the reference AA distributions 

and in terms of assembly into higher-order supramolecular structures. The observed 

discrepancies between reference AA PMFs and VCG PMFs, however, suggest that the 

positions and numbers of virtual sites defined in VCG models require further tuning. 

Interestingly, the VCG models consistently predicted larger binding energies compared 

to the CG models yet also resulted in slower assembly kinetics and avoidance of kinetic 

traps. We attribute this observation to the inherent anisotropy afforded by the virtual 

sites, which necessitates specific orientations at protein-protein interfaces to be 

explored, thereby introducing an entropic barrier for protein-protein association. In future 

work, it would be insightful to test different virtual site selection schemes and generate 

competing models using our methodology. For instance, one could adjust the probability 

distribution-based criteria that we used to select for candidate protein contacts. 

Alternatively, one could select protein contacts on the basis of protein-protein interaction 

types such as cation-𝜋 or salt-bridge interactions. By comparing VCG models that are 



systematically constructed using different virtual site selection schemes, one can 

formally investigate the importance of specific protein-protein interactions on 

macroscopic properties of interest.     

 Given its systematic nature, our proposed methodology can be extended to other 

macromolecular systems, including prior work that leveraged virtual sites for 

intermolecular interactions.44-52 Our methodology also bears similarity to the recent 

variational derivative REM (VD-REM) method reported by Sahrmann and coworkers.53 

The VD-REM method optimizes virtual site interaction parameters within a REM 

framework by approximating the conditional expectation of the potential energy 

derivative (with respect to virtual site parameters) using machine learning models, 

which, in turn, is related to the relative entropy derivative with respect to virtual site 

parameters (this derivative appears in the second term of Eq. 5). The current work 

sidesteps the need for a machine learning expectation estimator given the way our 

virtual sites are formulated. However, as the VD-REM approach is clearly applicable, it 

would be informative to investigate different model architectures for the estimator (e.g., 

gradient boost models or neural networks) to see if comparable model outcomes are 

predicted or if different higher-order correlations can be captured. 

 Finally, it is interesting to consider our VCG modeling framework in the context of 

prior low-resolution CG models that have successfully demonstrated the use of isotropic 

interactions.72, 88, 89 While we did not systematically investigate the role of repulsive 

potentials in the present work, e.g., those introduced by the excluded volume 

interaction, we speculate that repulsive potentials in prior CG models may have had 

large enough radii to restrict the orientations available to interacting CG sites, which 

may have accomplished the same goal as our virtual site interactions. In our current 

work, the differences between the VCG and CG models are quite evident, which may be 

due to the smaller effective sizes assumed for each CG site.  

In summary, we have demonstrated that virtual site representations are an 

effective means to increase the expressivity of conventional CG models using isotropic 

interactions and provide a starting point to extend our methodology to other 

macromolecular systems of interest.        
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