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A B S T R A C T

Knowledge of the thermospheric density is essential for calculating the drag in low Earth orbit satellites.
Existing models struggle to predict density accurately. In this paper, we propose thermospheric density
prediction using a deep evidential model-based framework that incorporates empirical models, accelerometer-
inferred density from the CHAMP satellite, and geomagnetic and solar indices. The framework is investigated
on both quiet and storm conditions. Our results demonstrate that the proposed model can predict the
thermospheric density with high accuracy and reliable uncertainty in both quiet and storm times. The predicted
results from the evidential model are advantageous over the Gaussian Processes (GPs) model in our previous
studies. Furthermore, the proposed model can also provide insightful aleatoric and epistemic uncertainties.

1. Introduction

Atmospheric drag is the dominant perturbation force and is the most
difficult to predict for orbit propagation of low Earth orbit satellites [1].
It is influenced by the drag coefficient, thermospheric density, the area
of the object facing the fluid, and the relative velocity of the satellite.
Knowledge of thermospheric density is essential for calculating the
drag of LEO satellites and the accuracy of the thermospheric density
will affect the prediction of the satellite trajectory. The thermospheric
density also plays a role when space debris reenter the Earth’s atmo-
sphere [2]. Accurate information on the thermospheric density leads
to more precise predictions of re-entry time and location, thereby
reducing the potential harm to people and property on the ground.

The study of thermospheric density prediction in space weather,
driven by the need for accuracy and reliability in predicting the atmo-
spheric density that affects the performance and safety of the space-
craft, has evolved significantly over the years. Early efforts to pre-
dict the density focus on using physical laws and observations to
develop empirical models, such as Naval Research Laboratory Mass
Spectrometer and Incoherent Scatter Radar Extended (NRLMSISE) [3]
and Jacchia-Bowman (JB) [4] models. Earth’s atmosphere is a complex
system affected by various factors, such as Solar flares, high-speed
solar winds, etc. Besides, the location and the corresponding temper-
ature also affect the atmospheric density [5]. Empirical physical-based
models struggle to capture the full complexity of the atmosphere,
and the accuracy of their predictions is limited. The empirical models
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are likely to generate huge errors during periods of high solar and
geomagnetic activities, and the uncertainties could reach beyond 100%
under some extreme conditions [6]. On the other hand, physics-based
models such as the Thermospheric General Circulation Models [7]
and Global Ionosphere Thermosphere Model [8] can overcome the
limitation of the empirical models and are critical for advancing our
knowledge of atmospheric physics. However, they currently suffer from
uncertain input and boundary conditions and have failed to outperform
the empirical models.

Studies indicate that the thermospheric density changes during ge-
omagnetic storms [9–11], which in turn lead to the fluctuation of drag
on satellites [12]. The magnetic storm is influenced by many factors,
mainly including solar winds, seasonal and solar cycle variations [13],
coronal mass ejections, Earth’s magnetic field, geomagnetic activity,
and other determinations [14]. The magnetic activity index Distur-
bance Storm Time (Dst) is commonly used to classify whether or not a
storm has occurred band to define the duration of a storm. Dst is also
used to distinguish between quiet and strongly disturbed geomagnetic
conditions. Commonly, a minor storm is defined when Dst is between
−30 nT to −50 nT; a moderate storm is defined when Dst is between
−50 nT to −100 nT; an intense storm is defined when Dst is smaller
than −100 nT, and the great storm is defined when Dst is smaller than
−250 nT [15]. In this paper, we will study predicting thermospheric
density in different space weather conditions. Two criteria have been
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defined for classification. Quiet time is defined as the period when the
minimum Dst is larger than −50 nT, and storm time is defined as the
period when the minimum Dst is smaller than −100 nT.

Over the past years, researchers have developed new methods to
predict thermospheric density during either quiet or storm time. Zhou
et al. [16] introduce a multiple linear regression analysis with proper
time shifts to study the atmospheric density during the storm time. Liu
et al. [17] investigate the thermospheric density of the merging electric
field during magnetic storms. Perez et al. [18] use artificial neural
networks to predict the density value. Xiong et al. [19] establish an em-
pirical model named CH-Therm-2018 using nine years of accelerometer
measurements from the CHAMP satellite with seven key parameters,
including height, solar flux index, day of the year, local magnetic time,
geographic latitude, longitude, and the magnetic activities represented
by the solar wind merging electric field. Oliveira et al. [2] investigate
the effects of satellite drag at low earth orbit during magnetic storms.
They use the GRACE and CHAMP data to estimate drag from historical
events. Bonasera et al. [20] use the Monte Carlo method and deep
ensembles to estimate the thermospheric density and the uncertainty
from 2002 to 2021. The network is designed to use density data
from CHAMP, GRACE, GOCE, SWARM-A, and SWARM-B, the orbital
information, and solar and geomagnetic indices as input. Gondelach
et al. [21] develop a dynamic reduced-order density model to estimate
the density using the TLE data, and a Kalman filter to quantify the
uncertainty in the estimates. Richard et al. [22] build the model based
on the Principal Component Analysis (PCA) method and test the density
along the satellite orbit from 2002 to 2010. It is worth noticing that
machine learning methods have recently become increasingly popular
in predicting thermospheric density [23]. Compared with traditional
empirical models, these methods could be highly effective, providing
better accuracy and reliability.

Our earlier studies [24,25] have proposed a density estimation
framework based on Gaussian Processes (GPs) that integrates infor-
mation from empirical models, environment conditions, and satellite
measurement data. We have demonstrated that the framework can be
used to predict thermospheric density during quiet time. In a recent
study [26], the model definition has been improved, and both GPs and
deep neural networks have been used to predict the density during
quiet and storm times. This study has shown advanced results than the
work from Perez [18] during quiet time and from Liu et al. [17] during
storm time in 2004.

This paper aims to incorporate uncertainty estimation into deep
neural networks to investigate the accuracy and precision of the pre-
dictions. At the same time, we hope to reveal the underlying sources
of uncertainty [27,28]. Quantifying model uncertainty is essential as it
provides a measure of confidence in the predictions made by the model.
In machine learning, there are two important types of uncertainty:
aleatoric and epistemic. Aleatoric uncertainty refers to the inherent
randomness or variability in the process, which can result in uncer-
tainty even with perfect knowledge of the underlying physics or data.
It could arise from measurement noise or natural variability in the
process being studied. Epistemic uncertainty, on the other hand, arises
from incomplete knowledge or understanding of a system. This can be
due to limited or inaccurate data, incomplete models, or other sources
of uncertainty. Different from aleatoric uncertainty, epistemic uncer-
tainty can be reduced by conducting additional research or obtaining
more data. Together aleatoric and epistemic uncertainty quantifies the
sources of uncertainty and can provide guidance on the potential to
improve the accuracy and reliability of models.

The deep evidential model (DEM), proposed by Amini et al. [29],
is a machine learning method that can estimate both the aleatoric
and epistemic uncertainties in training a deep neural network. In this
paper, we explore using DEM to build a data-driven framework for
thermospheric density prediction.

This paper makes four contributions. First, to the best of our knowl-
edge, this is the first time that a deep evidential learning method has
been used for thermospheric density prediction. This innovative use
of the deep evidential model provides a new and improved method
for thermospheric density prediction compared to the GPs model in
our previous studies [24–26]. Second, the proposed model accurately
predicts thermospheric density in both quiet and storm times. The
predicted results demonstrate that the evidential model built using the
same neural network structure is stable and robust in both quiet and
storm times. This makes it useful in a wide range of space weather
conditions. Third, the evidential model generates high-quality uncer-
tainty prediction for both quiet and storm times. Most of the truth
data are within the uncertainty boundaries, and the predictions have
high reliability according to the confidential level. Fourth, the proposed
evidential model can provide information about both aleatoric and
epistemic uncertainties. During the quiet time, the mean value of the
aleatoric is close to a constant value. When the storm happens, the
density is more unpredictable and the process becomes more random
than in the quiet period. It is always observed that the aleatoric
uncertainty increases as the storm begins and returns to the constant
value as the storm subsides. Furthermore, the total uncertainty value
always increases during the storm period.

The rest of this paper is organized as follows. Section 2 describes
the methodology in detail, including the basic algorithm of the deep
evidential method and the proposed neural network model. We also
introduce the model definition and the metrics used to evaluate model
performance. Section 3 describes the database we used for evalu-
ation including both the quiet and storm times, and discusses the
performance of the predictions. Conclusions are presented in the last
section.

2. Methodology

2.1. Deep evidential model

Amini et al. [29] propose the deep evidential regression method by
placing evidential priors over the original Gaussian likelihood function
and training the neural network to infer the hyperparameters of the
evidential distribution. Given a set of input variable 𝐗 =

{
𝒙𝑖

}𝑛
𝑖=1

∈ R
𝑛×𝑑

and its corresponding output 𝐲 =
{
𝑦𝑖
}𝑛
𝑖=1

∈ R
𝑛, where 𝑛 is the number

of samples in the data set and 𝑑 is the dimension of the input. Assume
the output follows a Gaussian distribution with unknown mean and
variance (𝜇, 𝜎2). The parameters are defined as 𝜽 =

(
𝜇, 𝜎2

)
, and a

Gaussian prior is placed on the unknown mean, and an Inverse-Gamma
prior is placed on the unknown variance. These assumptions can be
represented as:

(
𝑦1,… , 𝑦𝑁

)
∼  (

𝜇, 𝜎2
)

𝜇 ∼  (
𝛾, 𝜎2𝑣−1

)
𝜎2 ∼ 𝛤−1(𝛼, 𝛽)

(1)

where 𝛤 (̇) is the gamma function. The hyper-parameters now can be
defined as 𝒎 = (𝛾, 𝑣, 𝛼, 𝛽) and 𝛾 ∈ R, 𝑣 > 0, 𝛼 > 1, 𝛽 > 0.

The model is trained using a novel loss function so that the network
can make predictions as well as provide uncertainty estimations. The
loss function combines a term that measures the distance between the
predicted and true values with a term that measures the discrepancy be-
tween the predicted and actual uncertainties. The prediction, aleatoric
and epistemic uncertainties can be calculated as follows:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∶ E[𝜇] = 𝛾 (2)

𝐴𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑐𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ∶ E
[
𝜎2

]
=

𝛽

𝛼 − 1
(3)

𝐸𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ∶ Var[𝜇] =
𝛽

𝑣(𝛼 − 1)
(4)
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Fig. 1. Neural Network Structure.

2.2. Prediction framework definition

In this paper, we use a data-driven framework based on the deep ev-
idential model that combines the empirical models with high-resolution,
accelerometer-inferred densities from the CHAMP satellite, and other
geomagnetic and solar indices. The inputs and the output of the model
can be described as Eq. (5), which has been studied in our previous
papers [25,26]

lg (𝜌̂ (𝑡)) = 𝑓

⎛⎜⎜⎜⎜⎜⎜⎜⎝

lg
(
𝜌𝐽𝐵(𝑡)

)
,…lg

(
𝜌𝐽𝐵

(
𝑡 −𝐷𝐽𝐵𝑡𝑠

))

lg
(
𝜌𝑁𝑅𝐿(𝑡)

)
,…lg

(
𝜌𝑁𝑅𝐿

(
𝑡 −𝐷𝑁𝑅𝐿𝑡𝑠

))

𝐹10.7(𝑡 − 1𝑑), 𝐹10.7𝐴(𝑡 − 1𝑑)

𝐴𝑝(𝑡), 𝐹30(𝑡), 𝐷𝑠𝑡(𝑡), 𝑆𝑦𝑚𝐻(𝑡)

𝜌𝐶𝐻𝐴𝑀𝑃 (𝑡 − 𝑡𝐷)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(5)

The 𝜌̂ on the left side of the equation is the predicted density from
the evidential model at time 𝑡. 𝜌𝐽𝐵 and 𝜌𝑁𝑅𝐿 are the densities estimated
by the two empirical models JB2008 and NRLMSISE-00. 𝐹10.7(𝑡−1𝑑) and
𝐹10.7𝐴(𝑡 − 1𝑑) refer to the daily value of 𝐹10.7 solar flux and its 81-day
averaged value with one-day lag. 1𝑑 is equal to 24 h. 𝐴𝑝(𝑡) is derived
from the 3-hour geomagnetic index 𝐾𝑝. 𝐹30(𝑡) is the daily value of 𝐹30

solar index. 𝐷𝑠𝑡(𝑡) is the value of the magnetic activity index measuring
the intensity of the globally symmetrical equatorial electrical current.
𝑆𝑦𝑚𝐻(𝑡) is the one-minute resolution version of the Dst index [30].
𝜌𝐶𝐻𝐴𝑀𝑃 (𝑡) is the density value referred from CHAMP accelerometer.
Through a trial and error process, we set parameters for time delays.
𝐷𝐽𝐵 and 𝐷𝑁𝑅𝑙 are the numbers of delays in JB2008 or NRLMSISE-
00, which are set as 16. There is also a time delay 𝑡𝐷 in the CHAMP
density measurement, which is set as 300 s. Our previous studies have
demonstrated that it is necessary to provide these inputs in order for
the model to make accurate predictions.

The data we used are all from public websites. The density derived
from the empirical model JB-2008 was based on the open-source code
provided by [31]. The estimated density derived from the NRLMSISE-
00 model was obtained from [32]. For the geomagnetic indices 𝐹10.7,
𝐹10.7𝐴, 𝐴𝑝, and 𝐹30, we sourced the data from T.S Kelso, as referenced
in [33]. To access the 𝐷𝑠𝑡 data, we refer to [34], while the 𝑆𝑦𝑚ℎ data
can be obtained from [35]. For the density of the CHAMP satellite, we
refer to Mehta et al. [36,37]. Here we make the assumption that the
density from the CHAMP accelerometer serves as the true density value
as it provides the highest accuracy among all the available information
and it has been widely used in the literature for the performance
validation [18–20,24].

2.3. Neural network structure

The neural network is built based on the toolbox Keras [38] in
Python 3.9. We first optimize the neural network structures using the
KerasTuner [39] and then make further modifications to improve the
results. The neural network structure can be visualized in Fig. 1.

The architecture contains 256 neurons in the first hidden layer, 128
neurons in the second hidden layer, and four outputs, which are the
hyperparameters for the evidential distribution. The activation function
used in the network is linear, with a batch size of 256, and 500 epochs
for training. We normalize the data before training, and the same neural
network structure is used for both the quiet and storm conditions.

2.4. Performance metrics

To evaluate the performance of the proposed model, four metrics
are used in this paper to analyze the results. To assess the accuracy of
the predictions, we use the Pearson correlation coefficient (R) and the
Root Mean Squared Error (RMSE).

The definition of R and RMSE can be mathematically expressed as
Eqs. (6) and (7):

𝑅 =

∑𝑛

𝑖=1

(
𝜌𝑖 − 𝜌̄

) (
𝜌̂𝑖 − 𝜌̂

)

(𝑛 − 1)𝜎𝜌𝜎𝜌̂
(6)

𝑅𝑀𝑆𝐸 =

√√√√ 1

𝑛

𝑛∑
𝑖=1

(
𝜌̂𝑖 − 𝜌𝑖

)2
(7)

where 𝜌𝑖 and 𝜌̂𝑖 are the true density and predicted density. 𝜌̄ represents
the mean value of the density. 𝜎𝜌 and 𝜎𝜌̂ are the standard deviations
of the truth and the predictions, and 𝑛 is the size of the data that are
used for evaluation. A good performance shall have an R close to one
and an RMSE as small as possible.

To study the uncertainty prediction performance, we calculate the
coverage rate of 2𝜎 area (Cov Rate) to evaluate the quality of the
uncertainty. The coverage rate is defined as Eq. (8):

Cov Rate =
𝑘

𝑛
× 100% (8)

where 𝑘 is the number of the true density that is within the 2𝜎
uncertainty boundaries estimated by the evidential model. A good
performance shall have a Coverage Rate close to 100%.

We also evaluate the confidential level and calculate the Mean
Absolute Calibration Error (MACE) to evaluate the reliability of the un-
certainty. Calibration is a measure of a model’s predicted probabilities,
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and a well-calibrated model is one in which the predicted probabilities
are reliable and trustworthy. It is important for a model to be well-
calibrated in order to make effective use of predicted probabilities in
further analysis.

The range of confidence interval is defined as 𝐶𝐿 = [5%, 10%,… ,

95%, 99%]. The corresponding coefficients defining the uncertainty
bounds are then given as Eq. (9).

𝜁 [𝑘] =
√
2 erf−1(𝐶[𝑘]∕100) (9)

where 𝑒𝑟𝑓 is the error function, defined as Eq. (10):

erf 𝑥 =
2√
𝜋 ∫

𝑥

0

𝑒−𝑡
2
𝑑𝑡 (10)

To evaluate the reliability of the uncertainty, we calculate the mean
absolute calibration error (MACE), which is defined as Eq. (11).

𝑀𝐴𝐶𝐸 =
1

𝑛𝐶

𝑛𝐶∑
𝑘=1

|𝐶[𝑘] − 𝑃 [𝑘]| (11)

The MACE calculates the average difference between the predicted
probability and the actual frequency in the test set, allowing us to assess
the overall reliability of the model’s prediction. The lower values of the
MACE indicate better-calibrated models.

We apply a scalar factor [40] to the standard deviation of the
predicted value to help improve the overall calibration of the model.
The scalar factor is calculated by Eq. (12).

𝑠 =

√√√√ 1

𝑛𝑣

𝑛𝑣∑
𝑖=1

[‖‖𝐲𝐢 − 𝜇̂𝐢
‖‖2

𝜎̂2
𝑖

]
(12)

where 𝑛𝑣 is the number of validation data, 𝐲𝐢 is the true data, 𝜇̂𝐢 is the
predicted mean value, and 𝜎̂2

𝑖
is the predicted standard deviation for

the 𝑖th validation sample.

3. Case studies and results

3.1. Quiet time

The data used in this quiet time study is selected from the year 2007.
The training database is chosen from 04/14/2007 to 06/30/2007.
There are two reasons for the selection of this period. First, the smallest
Dst during the period is −63 nT, which is larger than the definition of
the intense storm which we will study later. By focusing on a period
that can be considered as ‘‘quiet time’’, we ensure that other factors
do not confound the results. Second, this is the period that has been
studied in [24,25], which uses GPs as the underlying machine learning
model. Therefore, the performance can now be compared between the
evidential model and the GPs model.

In order to evaluate the model’s performance when the test data
is both within and outside of the training range, two distinct test
sections are designed. The first test section includes data from the same
time period as the training data, providing insight into the model’s
performance when applied to the training data range. The second
test section is selected from 07/01/2007 to 07/31/2007, which is not
included in the training data and represents a future time period. The
purpose of this design is to show that the model is able to generalize
and can make predictions outside the training data.

We present the numerical results as Table 1 and compare them
with the results from the GPs model [26]. The evidential model shows
higher accuracy and a more reliable uncertainty prediction than the
GPs model, as the results from the evidential model show larger R and
coverage rate values and smaller RMSE and MACE values than the GPs
model. The results also indicate that when the test section is within the
training data range, the accuracy of the predicted results is better than
that of the test data that is out of the training range, which is what we
expect.

Table 1
Quiet time: Numerical result.

Model Evi-OutRange GPs-OutRange [26] Evi-InRange GPs-InRange

R 0.9027 0.9019 0.9495 0.9490
RMSE ×10−12 0.2616 0.2688 0.2958 0.3006
Coverage Rate 0.9388 0.9160 0.9851 0.9849
MACE 0.0062 0.0087 0.0091 0.0148

Fig. 2. Quiet Time - Recalibration Curve for test section within the training range. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Quiet Time - calibration Curve for test section out of training range.

We plot the calibration curve with and without the re-scale factor
in Fig. 2. The blue line is the perfectly calibrated curve, the red line
is the predicted calibration curve without the re-scale factor, and the
yellow line is the calibration curve with the re-scale factor. We can
clearly see that the uncertainty prediction has been improved with the
re-scale factor.

Based on the re-calibrated results, we plot the calibration curve
for the test section that is out of the range in Fig. 3. The calibration
curve shows a minimal gap compared to the perfectly calibrated line,
and the MACE value is also very close to zero. These indicate that the
uncertainty provided by the evidential model for the quiet time test
case is reliable and trustworthy.

We plot the uncertainty boundaries with the corresponding pre-
dicted results for the two conditions in Fig. 4. The first subplot shows
the predicted results when the test section is within the training range,
while the second subplot shows the results when the test section is
outside the training range. The red section represents the actual values,
the blue section represents the predicted values, and the lighter blue
area indicates the uncertainty boundary.

By comparing the two subplots in Fig. 4, we can see that when the
test data is out of the training range, the uncertainty range is more
expansive, indicating larger uncertainty in the predictions. The second
subplot shows some extreme values, which are not present in the first
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Fig. 4. Quiet Time - Predicted results for the whole period with corresponding 2𝜎

uncertainty boundary. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. Quiet Time - zoomed in predictions.

subplot, highlighting the effect of the test data when it is not included
in the training range.

To get a better idea of the overall trend, we zoom in on the 𝑦-axis to
exclude those extra large values, as Fig. 5 shows. It is now convenient
to compare the two test cases as the y-value range is the same for
both plots. Since both parts correspond to a quiet period of 2007, the
true density value (in red) does not significantly change over time. The
range of predicted values and the associated uncertainties are similar in
both cases. However, by observing the predicted values, we can see that
the predicted results are closer to the true values in the first subplot.
This is because the test data in the first subplot can be considered as
a validation part, while the second test data is a new, unused dataset
that is out of the training range.

We select a more specific short period on the two conditions for a
more detailed analysis, and the results are as Fig. 6 presents. When the
test is out of training range, the uncertainty boundaries on the second
subplot show very large fluctuations around July 13th, 16:00.

We plot the aleatoric and epistemic uncertainties along the Dst
for the two conditions. In Fig. 7 we show the uncertainties when
the test section is within the training range, and in Fig. 8 we show
the uncertainties when the test section is out of range. The red line
represents the aleatoric uncertainty, and the yellow line is the epistemic
uncertainty. From Figs. 7 and 8 we can see the uncertainties from the
second condition have a wider range. Extreme values appear in the test
section that is out of the training range, which makes it hard to see the
uncertainty distribution clearly. To reduce this effect, we zoom in on
the 𝑦-axis while excluding the extreme values, resulting in the plotted
results shown in Fig. 9.

Comparing Fig. 7 with Fig. 9, we can see the ranges of the aleatoric
uncertainty value for the two test cases are very close, except for
the extreme values that have been excluded. The mean values of the
aleatoric uncertainty for both cases are around 0.3.

Fig. 6. Quiet Time - Predictions in a short period.

Fig. 7. Quiet Time - The uncertainty distribution when the test is within training
range. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Quiet Time - The uncertainty distribution when the test is out of training range.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. Quiet Time - zoomed in uncertainty distribution when the test is out of training
range.
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Table 2
Storm period.

Year Date Min Dst Year Date Min Dst

2003

5.29–6.2 −164

2005

1.7-1.8 −112
6.18–6.19 −165 1.18-1.19 −107
8.18–8.19 −140 5.8-5.9 −117
10.29-10.30 −432 5.15-5.16 −305
11.20–11.21 −490 5.30-5.31 −127

2004

1.22–1.23 −137 6.13-6.14 −113
2.11–2.12 −107 6.23-6.24 −101
3.10–3.11 −101 7.10-7.11 −114
4.3–4.4 −149 8.24-8.25 −179
7.22–7.28 −208 8.31-9.1 −119
8.30–8.31 −128 9.11-9.12 −147

11.8–11.11 −397

Table 3
Test cases list.

Index Period

Case-A 10/29/2003-10/31/2003
Case-B 08/24/2005-08/25/2005
Case-C 08/31/2005-09/01/2005
Case-D 09/11/2005-09/12/2005

In Fig. 7, the Dst for the first condition displays a declining pattern
on April 26th, May 4th, May 17th, and June 12th. In Fig. 9, a rapid
reduction in Dst was observed on July 10th, July 13th, July 19th,
and July 23rd. The changes in Dst correspond to fluctuations of both
uncertainties. During significant Dst changes, both the aleatoric and
epistemic uncertainties rise for a short period. During the quiet time,
both uncertainties exhibit minimal variations, though the aleatoric
uncertainty shows more stability with smaller fluctuations.

During the quiet time, the aleatoric uncertainty generated by the
evidential model exhibits similar performances for both conditions. The
mean values of the aleatoric uncertainty are very similar regardless of
whether the test data falls within or outside the training range. The two
test cases also show a noticeable difference in epistemic uncertainty.
In cases with out-of-range test data, the mean value of the epistemic
uncertainty is larger than the value when the test data is within the
range. In general, we can conclude that the evidential model can
provide reliable uncertainty estimations and high-accuracy predictions
during quiet time, even when the test data is out of the training data
range.

3.2. Storm time

To study the model’s performance for storm situations, we find the
periods when the Dst is smaller than −100 nT from the years 2003
to 2005. The storm conditions are summarized in Table 2 with the
minimum Dst during the corresponding periods. The training data is
selected from the years 2003, 2004, and the first half of 2005 until
the end of July. The bold dates (except 10/29/2003 - 10/30/2003) are
used as the test section not included in the training database, which are
summarized in Table 3.

Case-A is when the test section is from 10/29/2003 to 10/30/2003,
which covers the 2003 Halloween storm and contains the second
biggest storm in 2003.

Case-B is when the test section is from 08/24/2005 to 08/25/2005,
which contains the second biggest storm in 2005. The training data is
defined as Table 2, from the beginning of 2003, until 07/11/2005. This
test case is not included in the training section but is in the future time
of the training data.

Case-C is when the test section is from 08/31/2005 to 09/01/2005.
The Dst distribution, in this case, is similar to Case-B, but the minimum
value is larger than Case-B. The test section is not included in the

Table 4
Case-A: Numerical results.

Model Case-A1 Case-A2 GPs Case-A1 [26] GPs Case-A2 [26]

R 0.8175 0.8086 0.8123 0.7986
RMSE ×10−12 2.0629 2.1079 2.1130 2.1181
Coverage Rate 0.9851 0.9907 0.9199 0.8950
MACE 0.0061 0.0072 0.1112 0.1154

Fig. 10. Case-A: Calibration Curve. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

training data, but the test section is in a further future time than the
training section.

In Case-D, the test section is during 09/11/2005 and 09/12/2005.
The test section is two months later than the last training date and is
the furthest future date from the training date.

3.2.1. Case-A
In this case, we will show two conditions: One is when the test

section is included in the training data, which we call ‘‘Case-A1’’ for
short. The other case is when the test section is not included in the
training sections, which means the training data are the selected storms
from the beginning of 2003 to the first half of 2005, except the period
from 10/29/2003 to 10/30/2003. To show the difference, we call this
‘‘Case-A2’’.

The numerical results of the two conditions are presented in Table 4,
and we compare the results from the evidential model with results from
the (Gaussian Processes) GPs model [26].

Table 4 indicates that when the storm period is excluded from the
training data, the prediction accuracy in Case-A2 is inferior to that in
Case-A1. Despite this, the result obtained from the evidential model still
achieves better results compared to the results obtained from the GPs
model used in [26]. In the evidential model, the coverage rate increases
significantly compared with the GPs model. The MACE value from the
evidential model also shows advantages over the GPs model.

We plot the calibration curve for the Case-A1 and Case-A2 of the
evidential model in Fig. 10. The difference in the calibration curves
between Case-A1 (Red) and Case-A2 (yellow) is small.

We plot the aleatoric and epistemic uncertainties from Case-A1 in
the first subplot and Case-A2 in the third subplot with the Dst in
the second subplot in Fig. 11, with the blue line representing total
uncertainty, the red line representing the aleatoric uncertainty, and the
yellow line representing the epistemic uncertainty.

The distributions of the uncertainties in the two cases are very
similar. There are two distinct minima of the Dst according to Fig. 11,
revealing there are two storms happened during the period from
10/29/2003 to 10/30/2003. The first storm occurred from Oct. 29th,
14:00 to Oct.30, 17:30, then followed by the second storm which ended
around Oct. 31st, 11:00. In Case-A1, when the test data is included in
the training range, the mean value of the aleatoric uncertainty during
the first storm is 0.4694, and the mean aleatoric value in the second
storm is 0.4028. In Case-A2, when the test data is not in the training
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Table 5
Case-B: Numerical results.

Model Evidential GPs [26]

R 0.8992 0.8985
RMSE ×10−12 1.3901 1.3926
Coverage Rate 0.9739 0.9057
MACE 0.0113 0.0639

Fig. 11. Case-A: Uncertainty Distribution. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

range, the aleatoric mean during the first storm is 0.4711, and the
second storm is 0.4114. For the epistemic uncertainty, on the other
hand, the mean value during the first storm in Case-A1 is 0.1089,
and 0.1319 for the second storm. While in Case-A2, the mean value
of the epistemic uncertainty during the first storm is 0.1661, and for
the second storm the value is 0.1762. Except for the storm period, the
mean of aleatoric during the quiet time from both Case-A1 and Case-A2
is close to 0.3, which is close to the mean aleatoric value during the
quiet time studied in the last subsection.

In this test case, Case-A1 performs better than Case-A2, showing
larger R and coverage rate values and smaller RMSE and MACE val-
ues, although the differences are small. Analyzing the aleatoric and
epistemic uncertainty distributions during the storm period, we can
see that the main uncertainty is from the aleatoric uncertainty and
the total uncertainty increases during the storm period. The possible
reason why the aleatoric uncertainty became more extensive during
the storm period is that the suddenly happened magnetic storm is a
more unpredictable and chaotic process which is what the aleatoric
uncertainty is designed to capture.

3.2.2. Case-B
The numerical results for this case are presented in Table 5 and

compared with the results from the GPs model.
The evidential model gives a better prediction on the accuracy, as its

R is larger than the GPs model, and the RMSE is smaller. Additionally,
the evidential model exhibits a higher coverage rate and a smaller
MACE than the GPs model. We plot the calibration curve for the
evidential model in Fig. 12.

The calibrated curve of the predicted results is very close to the
perfectly calibrated curve. The MACE from the evidential model is
smaller than the value from the GPs model, which indicates that the
evidential model can provide a more reliable uncertainty than our
previous model.

We plot the predicted value and the uncertainty boundaries with
the corresponding Dst along the time axis, as is shown in Fig. 13.

From Fig. 13, we can see most of the truth can be covered within
the uncertainty boundary. It is also interesting to see that during the
storm period, the value of the uncertainty increase. Around Aug. 24th,
11:00, an extremely large uncertainty occurs, which corresponds to the
time the smallest Dst happened.

We present the distribution of the aleatoric and epistemic uncertain-
ties, as shown in Fig. 14 along the Dst.

Fig. 12. Case-B: Calibration Curve.

Fig. 13. Case-B: Predicted results.

Fig. 14. Case-B - Uncertainty Distribution.

Fig. 15. Case-B - Zoomed in Uncertainty Distribution.

From Fig. 14 we can see the distribution of the aleatoric uncertainty

shows some extreme values during the storm period. To see the two

uncertainties more clearly, we zoom in from the 𝑦-axis to ignore the

outliers of the large values, and a more detailed plot is shown in Fig. 15.
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Table 6
Case-C: Numerical results.

Model Evidential GPs [26]

R 0.8874 0.8840
RMSE ×10−12 0.7026 0.7020
Coverage Rate 0.9961 0.9659
MACE 0.0128 0.0833

Table 7
Case-D: Numerical results.

Model Evidential GPs [26]

R 0.8067 0.7803
RMSE ×10−12 1.0915 1.1946
Coverage Rate 0.9859 0.9465
MACE 0.0355 0.0837

Fig. 16. Case-C: Calibration Curve. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

As presented in Fig. 15, the total uncertainty becomes larger during
the storm time. On the one hand, the aleatoric uncertainty value
remains relatively stable when the Dst index is larger than −100
nT, with a mean value of approximately 0.3, which is close to the
mean aleatoric value observed during quiet periods. However, when
the Dst index drops below −100 nT, around 09:00 on Aug. 24th, the
aleatoric uncertainty value increases significantly, remaining elevated
until the storm event ends at 02:00 on Aug. 25th. On the other hand,
the epistemic uncertainty remains relatively low until 14:00 on Aug.
25th, when the Dst goes up to −50 nT, which is commonly referred
to as a quiet time. Overall, we can see that the evidential model
effectively distinguishes between the data obtained during the storm
and quiet periods. And the model correctly outputs that its prediction
uncertainties are larger during the storm period.

3.2.3. Case-C
The predicted results in Case-C are presented in Table 6 and com-

pared with the GPs model.
The numerical results obtained from this period demonstrate that

the evidential model provides an improvement in performance com-
pared to the GPs model. The evidential model is able to produce more
accurate predictions and a better representation of the uncertainty
associated with these predictions.

We plot the calibration curve of this test case in Fig. 16. The blue
line is the perfectly calibrated system, and the red line is the coverage
rate from the predicted results.

As shown in the curve, the predicted coverage rate initially exceeds
the perfect line but then drops below it when the confidence level
exceeds 0.7. However, when the coverage rate reached above 95%,
the predicted coverage rate converged to the perfect line. The MACE
value is also very close to zero, which indicates the estimations from
the evidential model are reliable.

Fig. 17. Case-C: Predicted results.

Fig. 18. Case-C - Uncertainty Distribution.

Fig. 17 shows the truth value, predicted results, and uncertainty
boundaries along with the Dst in time series.

The evidential model can capture the distribution of the true density
well because the predicted results are very close to the true data. The
uncertainty boundaries can cover most of the truth data, leading to a
high coverage rate. The uncertainty shows a very large value when
the time is around Aug. 31st, 12:48, which is close to the time the
storm begins. We show the distributions of the aleatoric and epistemic
uncertainties in this case in Fig. 18.

From Fig. 18 we can see that the storm begins around Aug. 31st,
14:00, with an increment of the aleatoric uncertainty and a decrease
in epistemic uncertainty. Before Aug. 31st, 14:00, and after Sep. 1st,
00:00, the mean value of the aleatoric uncertainty during the quiet
period in this storm case is 0.3, the same as the mean aleatoric uncer-
tainty during the quiet time test case. However, unlike the aleatoric
uncertainty changing along the intense storm change, the epistemic
uncertainty remains relatively low until the Dst goes up −50 nT.

3.2.4. Case-D
The predicted results are listed in Table 7. The evidential model

gives more accurate predictions and more reliable uncertainty estima-
tions compared to the GPs model.

The calibration curve of the storm case is plotted in Fig. 19. We
can see the predicted results (red) shows a larger coverage rate than
the perfectly calibrated system line (blue). The coverage rate from the
predicted value is firstly smaller than the ideal value and then becomes
larger.

The predicted results and the corresponding uncertainty boundaries
are plotted in Fig. 20, with the corresponding Dst during the same
period. For this case, we can see the storm period is between Sep. 10th,
05:00 to Sep. 11th, 14:00. The total uncertainty shows an extremely
large value during this period.

We also plot the uncertainties in this storm case in Fig. 21. When
we look at the two uncertainties during this test case, we can see that
the epistemic uncertainty becomes smaller during the storm period.
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Fig. 19. Case-D: Calibration Curve. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Case-D: Predicted results.

Fig. 21. Case-D - Uncertainty Distribution.

Meanwhile, the aleatoric uncertainty becomes slighter larger than the
other time during the storm period. When the Dst are larger than −100
nT, the aleatoric values are around 0.3, which is very close to the
aleatoric uncertainty during the quiet time.

3.3. Aleatoric and epistemic uncertainties for all the cases

We calculate the mean value of the aleatoric and epistemic un-
certainties for all the cases that have been studied. ‘‘Quiet Time’’ in
the second row refers to the test case in 2007 when the minimum
Dst during this period was larger than −100 nT. Then we present the
uncertainty mean values in the storm cases. For Case-A1 and A2, the
1st storm refers to the period from Oct. 29th, 14:00 to Oct.30, 17:30,
which is followed by the 2nd storm that ends around Oct. 31st, 11:00.
For all the storm cases, ‘‘storm period’’ refers to the duration when the
Dst is smaller than −100 nT and ‘‘quiet period’’ in storm cases refers to
the duration before the storm begins and after it subsides (see Table 8).

Table 8
Mean values of aleatoric and epistemic uncertainties.

Alea Epis

Quiet Time 0.3064 0.0844

Case-A1 - 1st Storm 0.4694 0.1089
Case-A1 - 2nd Storm 0.4028 0.1319
Case-A1 - quiet period 0.3106 0.1003

Case-A2 - 1st Storm 0.4711 0.1611
Case-A2 - 2nd Storm 0.4114 0.1762
Case-A2 - quiet period 0.3179 0.1104

Case-B - storm period 0.5792 0.0218
Case-B - quiet period 0.3155 0.1207

Case-C - storm period 0.4582 0.0296
Case-C - quiet period 0.3029 0.1678

Case-D - storm period 0.4466 0.1162
Case-D - quiet period 0.3175 0.1189

Table 8 reveals that the mean value of the aleatoric uncertainty
during quiet time is around a specific value (0.3) and the aleatoric
mean during the storm period is larger than during the quiet period.
As for the epistemic uncertainty, the mean value is around 0.1 during
the quiet period. However, the epistemic value does not show a clear
pattern during the storm periods. The epistemic mean value is smaller
during the storm period for the last three storm cases. While for the first
storm case, because the double storm condition is more complicated
and unpredictable, the epistemic value shows fluctuations during the
storm and the mean values are larger than during the quiet period.

4. Conclusion

In this paper, we propose using an evidential model-based frame-
work to predict the density of the atmosphere during periods of both
the quiet time in 2007 and the storm cases in 2003 and 2005. Study
results show higher R values and smaller RMSE values than our pre-
vious framework based on the Gaussian Processes (GPs). For the quiet
time, when the test case is within the training data range, the R value
reaches 0.9495. When the test data is out of the training range, which
is in the future training dates, the R value can reach 0.9027. For the
storm cases we studied in the paper, the R value is always larger than
0.80, which is better than our previous study based on the GPs model.
The best R value of the storm from 08/31/2005 to 09/01/2005 reaches
0.8874, with the corresponding RMSE value as 0.7026 ×10−12 while the
test period is one and a half months later than the training database.

Additionally, the uncertainty boundaries from the proposed frame-
work can cover most of the actual data. The coverage rate is always
above 93% and with a small Mean Absolute Calibration Error (MACE)
value, indicating a high degree of confidence in the model’s predictions.
This suggests that the proposed model provides accurate predictions
and a robust representation of the uncertainty associated with the
predictions.

In summary, the proposed deep evidential model-based framework
is shown to provide accurate predictions with reliable uncertainties
for both quiet and storm periods. The evidential model also provides
insight into both aleatoric and epistemic uncertainties, which can be
used to analyze the data and the reliability of the models.
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