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Abstract. We study the problem of allocating indivisible items to
budget-constrained agents, aiming to provide fairness and efficiency
guarantees. Specifically, our goal is to ensure that the resulting al-
location is envy-free up to any item (EFx) while minimizing the
amount of inefficiency that this needs to introduce. We first show that
there exist two-agent problem instances for which no EFx allocation
is Pareto-efficient. We, therefore, turn to approximation and use the
(Pareto-efficient) maximum Nash welfare allocation as a benchmark.
For two-agent instances, we provide a procedure that always returns
an EFx allocation while achieving the best possible approximation
of the optimal Nash social welfare that EFx allocations can achieve.
For the more complicated case of three-agent instances, we provide
a procedure that guarantees EFx, while achieving a constant approx-
imation of the optimal Nash social welfare for any number of items.

1 Introduction

One of the central open challenges in the fair division literature is the
(approximately) envy-free allocation of indivisible goods [3, 2], i.e.,
goods that cannot be shared among multiple agents. Envy-freeness is
a very natural and well-motivated goal: an allocation of goods among
a group of agents is envy-free when no agent would prefer the set of
goods allocated to some other agents over the ones allocated to her.
However, the fundamental challenge that arises when the goods are
indivisible is that envy-freeness may only be achievable by discard-
ing all the goods, which provides no value to any of the agents. An
illustrative example of this fact arises when two agents compete over
a single indivisible good: if the good is allocated to any of the agents,
the other agent is bound to envy her.

To overcome this obstacle, the currently most vibrant line of re-
search in fair division focuses on relaxations of envy-freeness, aim-
ing to provide approximations of this natural fairness property with-
out sacrificing too much value. Two such relaxations that have domi-
nated these efforts are envy-freeness up to some good (EF1) (defined
explicitly by Budish [7] and implicitly in the earlier work of Lipton
et al. [17]) and the more demanding envy-freeness up to any good
(EFx) (defined by Caragiannis et al. [9]). Both of these notions en-
sure that any envy from agent 7 toward agent j would disappear if ¢
were to remove just one of the goods allocated to agent j (her favorite
good in the case of EF1 and any good in the case of EFx). Therefore,
any envy that may exist in EF1 and EFx allocations is up to just one
good, which nicely sidesteps the aforementioned single-good illus-
trative example. In fact, for the well-studied case where the agents’
valuations are additive across the goods (i.e., each agent ¢ has a value

* mgarbea@drexel.edu
** gkatz@drexel.edu
*** xizhi @drexel.edu

vi(g) for each good g and a value v;i(S) = >_ 5 vi(g) for any
set S of goods), a notable result by Caragiannis et al. [9] shows that
returning the highly appealing allocation that maximizes the Nash
social welfare (NSW), i.e., the geometric mean of the agents’ values,
always satisfies EF1. Therefore, unlike envy-freeness, EF1 can be
combined with Pareto efficiency. EFx allocations, on the other hand,
are much more elusive: if all the goods need to be allocated, then for
instances involving more than three agents we do not even know if
EFx allocations exist. For instances with up to three agents, Chaud-
hury et al. [10] proved the existence of EFx allocations using a highly
non-trivial procedure that does not guarantee Pareto efficiency.

Rather than assuming that all the goods need to be allocated, a re-
cent line of work has instead proposed procedures that may donate
some of the goods, as long as the allocation of the remaining goods
(i.e., the ones not donated) satisfies EFx as well as some approxi-
mate efficiency guarantees [8, 12, 6]. Notably, using this approach
for the case of additive valuations, Caragiannis et al. [8§] were able
to produce EFx allocations whose Nash social welfare is at least half
of the optimal Nash welfare. Therefore, these allocations simulta-
neously guarantee fairness, in the form of EFx, and efficiency, by
approximating a highly desirable Pareto-efficient allocation (unlike
other Pareto-efficient allocations, the one maximizing the Nash so-
cial welfare is known to provide a natural balance between fairness
and efficiency). In this paper, we study the extent to which analogous
results that combine fairness and efficiency can be achieved beyond
the special case of additive valuations, and we study the more de-
manding setting where the agents face budget constraints.

The fair allocation of indivisible goods among agents with additive
valuations but hard budget constraints was first studied by Wu et al.
[19]. In this setting, each good g is associated with a cost ¢(g), and
each agent ¢ has a budget B; which restricts her to allocations with a
total cost within her budget (i.e., she can be allocated a set of goods S
onlyif 3> 5 c(g) < B;). These “budgets” can correspond to actual
monetary budgets, but they can also capture several natural space or
time limitations beyond that (e.g., when each agent faces, possibly
different, capacity constraints for storing the goods allocated to her).
Wau et al. [19] showed that maximizing the Nash welfare subject to
these budget constraints does not guarantee EF1, in contrast to the
setting without budgets [9]. Restricting their attention to the Nash
welfare maximizing allocation, they showed that it is approximately
EF1 in the sense that agent ¢’s value for j’s bundle after removing
a good from it can be no more than 4 times her value for her own
bundle. Furthermore, they showed that this approximate EF1 bound
is tight. Subsequent work on this setting remained focused on the
same allocation, proving improved approximate EF1 guarantees for
the special case where all agents have identical valuations [15], or
approximate-EFx guarantees for the special case where the values
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are all binary (i.e., v;(g) € {0, 1} for all g) [13]. Very recent work
by Barman et al. [4] has shown the existence of EF2 allocations (in
which no agent envies another agent if he could remove 2 goods from
everyone’s bundle) even in the budgeted setting.

Our Results. We study the fair allocation of indivisible goods
among agents with budget constraints and rather than restricting our
attention to the maximum Nash welfare allocation, which does not
guarantee EF1 or EFx, we instead guarantee EFx exactly and follow
the approach of Caragiannis et al. [8]. That is, we do not assume
that all goods need to be allocated (which, in fact, may be infeasible
in a setting with budgets) and instead provide efficiency guarantees
by proving that our allocations approximate the Nash welfare op-
timal outcome, which is Pareto-efficient. In the presence of budget
constraints, even achieving EF1 without sacrificing too much effi-
ciency becomes a non-trivial problem, which is in contrast to the
trivial ways in which EF1 can be achieved in the unrestricted addi-
tive valuations case (e.g., using a round-robin procedure). In fact, our
first result shows that even for instances involving just three goods
and two agents with equal budgets, simultaneously guaranteeing EF1
and Pareto efficiency is infeasible. We then complement this negative
result with two positive results for instances involving an arbitrary
number of goods and two or three agents of arbitrary budgets.

In Section 3 we focus on instances involving two agents and pro-
vide a procedure that returns an EFx allocation with a /0.5 ~ 0.7
approximation of the optimal Nash welfare. We then show this pro-
cedure is optimal in a strong sense: it achieves the best possible ap-
proximation that one can guarantee not just for EFx allocations, but
even for the more permissive EF1 guarantee. This procedure starts
from the budget-feasible allocation with the optimal Nash welfare
and, if this is not EFx already, it partitions the bundle of the “envied”
agent into two sub-bundles, so that an EFx allocation can be achieved
by matching the two agents to two of the three bundles.

In Section 4 we study instances involving three agents. Even if all
these agents have the same budget, this is significantly more com-
plicated than unrestricted additive valuations because of the limited
ways in which goods can be reallocated across agents’ bundles with-
out violating budget feasibility. When each agent’s budget is differ-
ent, this obstacle becomes even more pronounced, as one agent’s fea-
sible bundle may be infeasible for another. We provide a procedure
that first considers the extreme solution of letting the agents arrive in
increasing order of their budgets and choosing their favorite budget-
feasible bundle among the remaining goods. We then observe that if
in the resulting allocation an agent ¢ envies some agent j who arrived
earlier, this allows us to lower ¢’s budget to be equal to agent j’s,
without sacrificing too much efficiency. Using this intuition, our pro-
cedure either reaches an EFx allocation with different budgets or re-
duces the problem to an instance with equal budgets. Our main result
in this section shows that the EFx allocations returned by our proce-
dure always guarantee a constant approximation of the optimal Nash
welfare (i.e., an approximation that does not grow with the number
of goods or the relative size of the agents’ budgets).

Due to space limitations, most of our proofs are deferred to the full
version of the paper [16].

Additional related work. Following the approach introduced by
Caragiannis et al. [8], i.e., donating goods to limit the envy, recent
work has also aimed to achieve EFx while minimizing the number of
donated goods [12, 6]. This is in contrast to the results of Caragiannis
et al. [8] and our results in this paper, which do not optimize for the
number of goods donated, as long as the resulting allocation is ap-

proximately efficient. Note that minimizing the number of donated
goods does not provide any efficiency guarantees in general (e.g.,
even donating a single good could lead to very low efficiency if that
was a highly valued good). Some of this work also ensures that no
agent envies the set of donated, which limits the amount of donated
value. In fact, even an EFx allocation that donates none of the goods
is not necessarily efficient: e.g., if each agent values a distinct sub-
set of goods, an allocation that partitions each such subset “equally”
among all the agents is envy-free, yet inefficient. For the special case
where all the agents have just two values for the goods and additive
values across goods, Amanatidis et al. [1] showed that maximizing
the Nash welfare does yield EFx allocations. In general, however,
efficiency and fairness cannot be fully achieved simultaneously.

Chaudhury et al. [11] consider the more general class of subaddi-
tive valuations and focus on allocations that are approximately, rather
than exactly, EFx and that approximate the Nash social welfare op-
timal outcome. Feldman et al. [14] then capture the tension between
EFx and the Nash social welfare by providing tight bounds regarding
the trade-off of the approximations achievable for these two notions,
both for additive and subadditive valuations.

2 Preliminaries

Given a set of indivisible goods M = {1,...,m}, we seek to allo-
cate (a subset of) these goods to a group of agents N = {1,...,n},
where each good ¢ € M has a cost ¢(g) > 0 and each agent
¢ € N has a budget B; > 0. For each subset of goods S C M,
we let ¢(S) = >° 5 c(g) represent the total cost of S and say that
S is budget-feasible for agent i if ¢(S) < B;. Each agent i has a
value v;(g) > O for each good g and her value for being allocated
a budget-feasible subset of goods S C M is additive, i.e., v;(S) =
> ges Vi(g). Given aset of goods G that may not be budget-feasible
for agent i, we use v;"**(G) = maxgscg:c(s)<n; vi(S) to denote
the maximum value that the agent can achieve through a subset .S of
G that is budget-feasible for her. We also use S;***(G) to denote the
subset of goods in G that is budget-feasible for ¢ and achieves the
maximum value, i.e. v]***(G) = v;(S7"*(G)).

An allocation X = (X4i,...,X,) determines what subset of
goods X; C M each agent¢ € N gets. Since the goods are indivisi-
ble, these sets need to be disjoint, i.e., X; N X; = @ forall¢,j € N.
We say that an allocation is budget-feasible if ¢(X;) < B; for all
1 € N. Note that we do not require an allocation X to be complete
(i.e., that every good is allocated to some agent); in fact, it may be
infeasible to do that in a budget-feasible allocation.

Given the agents’ budget constraints, an allocation X is envy-free
if no agent ¢ would improve her value by replacing their bundle with
a subset of another agent’s bundle that is budget-feasible for . For-
mally, for any two agents ¢, j € N we have v;(X;) > vi"**(X};),
so ¢ has no “justifiable complaints.” It is well-known that, even in
the absence of any budget constraints, it may be impossible to allo-
cate indivisible goods in an envy-free way, while ensuring that agents
receive any positive value.' To address this issue, the fair division lit-
erature has introduced the following approximate envy-freeness no-
tions, adjusted to our setting:

L For example, consider a simple instance with n = 2 agents and m = 2
goods, such that both agents ¢ € {1, 2} value the first good v;(1) = 100
and the second good v;(2) = 50. If any agent is allocated the first good, the
other agent will envy them, so the first good needs to remain unallocated.
Given that the first good remains unallocated, though, this similarly implies
that whoever receives the second good would be envied, so both goods
would have to remain unallocated, leading to a value of 0 for both agents.
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Definition 1. (EF1) An allocation X is envy-free up to one good
(EF1) with respect to budgets if for any two agents 1,5 € N and
every S C X; with ¢(S) < B;, there exists a good g € S such that

vi(Xi) > vi(S\ {g}).

Definition 2. (EFx) An allocation X is envy-free up to any good
(EFx) with respect to budgets if for any two agents 1,7 € N, every
S C X, with ¢(S) < B; and all goods g € S, we have

We also use the term EFx-envy to refer to a violation of the EFx
property for some pair of agents, as follows:

Definition 3. In allocation X, an agent i EFx-envies another agent
J if there exists S C X; with ¢(S) < B; and g € S such that

vi(Xi) < vi(S\ {g}).

Given these envy notions, we define the EFx-feasibility graph
Gerx which indicates the bundles we could assign to each agent such
that they would not EFx-envy any other agents.

Definition 4. Given a subset of agents N' C N and a set S of
disjoint bundles of goods (i.e., S; N S; = 0 for all S;,S; € S), the
EFx-feasibility graph Ggr.(N', S) is an undirected bipartite graph
whose edges are defined as follows:

E(Ger) ={(i,55) + vi"™(S;) 2 vi"™(Sk \ {g}) Vk, Vg € Sk}

In other words, if there is an edge between some agent 7 and bun-
dle S; in Gy, then allocating S; to agent ¢ will satisfy the EFx con-
straint for her, irrespective of how the other bundles are allocated.
Therefore, a perfect matching in Gggx corresponds to an EFx alloca-
tion (and hence it is “EFx-feasible”).

Note that it is always possible to remove any type of envy by keep-
ing all the items unallocated. However, this comes at a great cost in
terms of efficiency. To avoid this, we combine envy-freeness guaran-
tees (which capture fairness) with (approximate) guarantees in terms
of Pareto efficiency:

Definition 5. An allocation X is Pareto-efficient if there does not
exist any other allocation X' such that v;(X}) > v;(X;) for some
agent i, and v;(X};) > v;(X;) for all agents j € N.

Our first result in Section 3 shows that even for an instance involv-
ing just three items and two agents with the same budget, it is im-
possible to simultaneously guarantee EFx (in fact, not even EF1) and
Pareto efficiency. We, therefore, turn to approximation and, among
the multiple Pareto-efficient allocations, we use as a benchmark the
particularly appealing Pareto-efficient allocation that maximizes the
Nash social welfare (NSW) objective:

Definition 6. The Nash social welfare of an allocation X is

1/n
NSH(X) = (H vi(Xi)) .

ieN
Specifically, we use the term p-efficiency to determine how closely
our outcome approximates the optimal Nash social welfare.

Definition 7. If X is the set of all budget-feasible allocations and
X" = argmaxyx NSW(X) is a maximum Nash welfare alloca-
tion, then X € X is p-efficient, i.e., a p approximation, if

NSW(X) > p - NSw(XT).

Note that, since our benchmark, X", is Pareto-efficient, any p-
efficient allocation is also approximately Pareto-efficient, with ap-
proximation factor p. Without loss of generality, we normalize the
agents’ valuations so that for each agent i, their value in the Nash
welfare maximizing solution is equal to 1, i.e., v;(X$*") = 1.2

Finally, in section 4, we use the term monopoly value of some
given agent ¢ with respect to a given budget B to refer to the max-
imum value that this agent could achieve if she were allowed to
choose any bundle S C M with cost at most B.

Definition 8. For each agent i, let m;(B) denote the monopoly
value of agent 7 with respect to budget B, i.e.

m;(B) = max
SCM : ¢(S)<B

3 Instances Involving Two Agents

To exhibit the difficulties that arise in the presence of budgets, we first
show that simultaneously guaranteeing EFx (in fact, even EF1) and
Pareto efficiency is infeasible. We exhibit this using an instance with
just three items and two agents with equal budgets. Furthermore, us-
ing the same instance we prove an impossibility result regarding the
best approximation of the maximum Nash welfare that is achievable
by EF1 allocations (implying the same for EFx allocations as well).

Theorem 1. There exists a problem instance with two agents of
equal budget such that no budget-feasible allocation is both EFI
and Pareto-efficient. Furthermore, for the same instance, no budget-
feasible allocation is both EF1 and (\/1/2 + ¢)-efficient, for € > 0.

Proof. Consider the following instance with two agents, where
B1 = B; = 1, and the set of three items {1, 2,3}, whose costs

are:
1/2, forge{1,2
ela) =1V (2
1, forg=3
The values of the items from each agent’s perspective are as follows:
1/2, ge{l,2 14¢, ge{l,2
(g =B IEILE ) - (2
0, g=3 1, g=3.

For any € < 1, the budget-feasible allocation that maximizes NSW
allocates items {1, 2} to agent 1 and item {3} to agent 2, leading to
a NSW of 1. To verify this, note that if agent 1 were to receive none of
these two items her value, and thus also the NSW, would be 0. Also,
if agent 1 received just one of these two items, for a value of 1/2, the
value of agent 2 would be at most 1 + ¢ (since she can afford just one
of the remaining two items), leading to NSW less than 1.

However, the NSW maximizing allocation is not EF1 for agent 2,
and any EF1 allocation for agent 2 has to leave one item unallo-
cated and is not Pareto-efficient. The budget-feasible EF1 alloca-
tion with the largest NSW is X = ({1}, {2}), with NSW(X) =
V1/2-(1+¢) < y/1/2 + . Therefore, no budget-feasible EF1

allocation can achieve a NSW approximation of 1/1/2 + ¢. O

2 Note that since the NSW objective is scale-independent, scaling an agent’s
values for each item by the same constant does not affect the Nash welfare
optimal outcome, just its value, so this is without loss of generality.
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3.1 EFx Allocations for Two-Agent Instances

We now propose Procedure 1, which takes as input a set of two
agents (labeled 1 and 2) and an arbitrary budget-feasible allocation
for these two agents, and returns a budget-feasible allocation that is
EFx (therefore also EF1) with a NSW at least a 4/1/2 fraction of the
original allocation’s NSW. Therefore, if we choose the NSW optimal
allocation as the original allocation, this procedure returns a /1/2-
efficient EFx allocation. Note that this is optimal in quite a strong
sense, as it achieves the best approximation of the optimal NSW that
is possible not just by EFx allocations, but even for the more permis-
sive family of EF1 allocations, as shown in Theorem 1.

Our procedure first checks whether the input allocation is already
EFx, in which case it simply returns this allocation, or whether the
agents both EFx-envy each other, in which case it “swaps” their bun-
dles (while respecting their budget constraints) and terminates. Oth-
erwise, if just one of them envies the other, for simplicity we reindex
the agents so that it is agent 1 who EFx envies agent 2. The procedure
then continues with two different approaches based on the “amount”
of envy agent 1 has towards agent 2’s bundle, Xo.

If agent 1 prefers X5 at most 2 times more than she likes her own,
we proceed as follows: agent 1 repeatedly removes her least valued
good g from X5 and sets it aside in a separate bundle, R. The pro-
cedure terminates when it can find a “matching” between the two
agents and two of the three bundles (X1, X2, or R) that yields an EFx
allocation. The crucial observation is that agent 1 removes items from
X2 only while it EFx-envies that bundle (otherwise an EFx allocation
is reached), and since she always removes her least valued item from
it, even if after some removal she becomes EFx-feasible with another
bundle, she will remain EFx-feasible with Xs. This ensures that at
some point if no matching has been found already, at least two of the
three bundles will be EFx-feasible for agent 1 (specifically X; and
X> as shown in Lemma 1), allowing us to find a matching by giving
agent 2 the one she prefers. Note that the existence of this matching
relies on the assumption that v (X1) > 0*(X2).

If this assumption is not true, we use a different approach - the
leximin++ procedure (Algorithm 2) of Plaut and Roughgarden
[18]. Intuitively, this procedure splits a bundle of items between two
agents such that an EFx allocation can be achieved when agents have
general valuations (which includes our budget-feasible v™** func-
tion). We use this to split X2 into two parts such that agent 1 would
be EFx-feasible with both if these bundles were the only ones partici-
pating in the matching. This similarly allows us to prove the existence
of at least two edges for agent 1 in the EFx-feasibility graph, which
implies the existence of a perfect matching.

In order to prove the desired efficiency guarantees, we show a
stronger statement in terms of individual value guarantees. More
specifically, we show that Procedure 1 always finds a perfect match-
ing in which agent 1 (the envying agent) gets a weakly higher value
than in the input allocation, whereas agent 2 (the envied agent) gets
at least half of her original value.

For the following lemmas, let g; be the item removed in iteration
t of the while loop for the case when v1(X1) > 207" (X2). Also,
let X5 and R? be the state of the bundles at the end of this iteration
(after moving g; from X5 to R"). Note that if the input allocation X
is already EFx, or if both agents EFx-envy each other in X, we can
immediately return a budget-feasible EFx allocation in which both
agents (weakly) improve their value. If none of these two statements
are true, it must be that one agent (agent 1 by the reindexing in line 4)
EFx-envies the other, while the second agent does not EFx-envy the
first. For this reason, for the rest of the analysis, we assume that agent

Procedure 1: (EFx-22) EFx allocation for 2 agents

1 Input: Set of two agents {1, 2}; budget-feasible allocation X
for these agents

2 if X is EFx then return X

3 if both of the agents EFx-envy each other in X then return
(57 (Xa), 57 (X))

4 Reindex the agents so that agent 1 EFx-envies agent 2

5 if U1 (Xl) Z %Uiﬂax(XQ) then

6 R«0

7 while Gerc ({1, 2}, {X1, X2, R}) has no perfect
matching do

8 g + argmin, .y, v1(h)

9 Xo +— Xo \ {g}

10 R+ RU{g}

11 Update the edges of GErx

12 else

13 (X5, X5) + leximin++(Xa, v, v"*¥)

14 Construct Gerx ({1, 2}, {X1, X5, X5})

/* The relevant case above yields Ggrx */
15 Let {(1,X7), (2,X5)} be a perfect matching in Ggrx which
16 (a) maximizes the value of agent 2
17 (b) maximizes the value of agent 1 subject to (a)
18 return (S7***(X7), S5 (X3))

1 EFx-envies agent 2.
Note that every agent has at least one edge in Ggrx since they must
be EFx-feasible with at least their favorite bundle.

Lemma 1. If any agent has at least two edges in Ggrx, then Ggrx
has a perfect matching.

Proof. Note that every agent has at least one edge in Grrx (an edge
to the bundle they value the most). Therefore, if one of the two agents
has two edges, we can safely let the other agent choose their favorite
bundle first and then let the agent with the two agents choose second,
ensuring that at least one of her two EFx-feasible bundles will still
be available, leading to a perfect matching in Grx. O

Lemma 2. If v1(X1) > Lo"*(X2), Procedure 1 always finds a
perfect matching in Ggry.

Proof. If the input allocation forms a perfect matching, we are done.
Otherwise, both agents are initially only feasible with a single bun-
dle, by Lemma 1, and since there is no perfect matching, both agents
must only be feasible with the same bundle. By the reindexing in
line 4, this bundle is Xo.

Removing items from X2 will eventually create a new edge in
Gieryx for agent 1, either towards X; or R. Since R is initially empty
and agent 1 moves one item from X, to R at each iteration, there
exists an iteration ¢ such that v1"*(X5) < Lv**(X2), where
Xo is the input bundle. Let ¢ be the first such iteration. If a per-
fect matching is found before iteration ¢ — 1, we are done. Other-
wise, in iteration ¢ — 1, we have v***(X5™") > 207 (X). Since
VP(XE) = o (XS {g}) < LoP(X2), it must be that
in iteration ¢ — 1, agent 1 becomes EFx-feasible with X; due to the
assumption that v1 (X1) > F0**(X2).

As shown earlier in this proof, agent is initially EFx-feasible with
only X». By Lemma 1, since a perfect matching was not found before
iteration ¢t — 1, it must be that agent 1 had a single feasibility edge
throughout these iterations, and so at each iteration ¢’ < ¢—1, it must

be that v (X5 \ {gv}) = vI"**(X5+1) > 01(X1) (note that g
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is picked in such a way that this inequality holds). Thus, in iteration
t — 1, agent 1 is also EFx-feasible with X571,

Since agent 1 is EFx-feasible with both X; and X4~ ! in iteration
t — 1, a perfect matching exists by Lemma 1. O

Lemma3. [fv,(X1) > %v{"ax (X2), Procedure 1 returns an EFx al-
location such that agent 1 gets a weakly higher value than her initial
value, while agent 2 gets at least half of her initial value, Moreover,
no agent envies the unallocated bundle.

Proof. Note that a perfect matching in Ggrx implies an EFx alloca-
tion. If the input allocation forms a perfect matching, we are done.
Otherwise, by Lemma 2, a perfect matching always exists. Let ¢ — 1
be the final iteration of the while loop (before a matching is returned),
and X7 and X3 be the bundles in the returned matching assigned to
agents 1 and 2. Note that max {va (X5 "), v2(R*™ 1)} > 20y(Xa),
where X3 is the input bundle, since X5 U R*~! = X.,. Since agent
2 is EFx-feasible with her favorite bundle and the returned matching
maximizes agent 2’s value, it must be that

max * — — 1
03 (X5) > max {v2(X1), v2(X5 Y, va2 (R 1)} > ivg(Xz).

Also, agent 2 does not envy the unallocated bundle, since X3 is her
favorite bundle.

By the argument of Lemma 2, agent 1 becomes EFx-feasible
with X; in iteration ¢ — 1, where ¢’ is the earliest iteration for
which v"®(X4) < Loi@%(X,). Notice that v"®*(X5 1) >
oP*X(RY 1), since X, ~1 U RY ~! = Xy. Therefore, agent 1 could
not have been EFx-feasible with R* ~2 in iteration ¢’ — 2. This im-
plies that in the returned matching, agent 1 can be matched to ei-
ther X1 or X5 ' = X4~'. If she is matched to X1, then clearly
v (XT) = v1(X1), and if she is matched to Xo, then v***(X7) =
VP (XE™Y) > v1(X1) by the argument of Lemma 2. Furthermore,
agent 1 will similarly not envy the unallocated bundle since other-
wise matching her to this bundle would increase her value and violate
condition (b) in line 17. O

Lemma 4. If v1(X1) < 207"**(X2), Procedure 1 always finds a
perfect matching in Gggx.

Proof. If the input allocation forms a perfect matching, we are
done. Otherwise, since X5 U X4 = X,, it must be that
max {v7"(X5), v (X5)} > LoP*(X2) > v1(X1). Since one
of X% and X4 is agent 1’s favorite bundle (wlog X5%), and so it must
be EFx-feasible. Note that v1***(X5) > v5"**(X5% \ {g}) for any
g € X5 by the outcome of leximin++. If v1(X1) < vP**(X%),
then agent 1 is also EFx-feasible with v1**(X%). Otherwise, if
v1(X1) > vP*(X5), then vy (X1) > v5***(X5 \ {g}) and so agent
1 is also EFx-feasible with X;. Since agent 1 is EFx-feasible with at
least two bundles, a perfect matching exists. O

Lemma 5. If v1(X1) < v (X2), Procedure 1 returns an EFx
allocation such that one agent gets a weakly higher value than her
initial value, while the other gets at least half of her initial value,
Moreover, no agent envies the unallocated bundle.

Proof. Lemma 4 implies the existence of a perfect matching and
also that agent 1 is EFx-feasible with at least two bundles. Note
that max {v2(X5), v2(X5)} > Zv2(Xa), since X5 U X5 = Xo.
Since agent 2 is EFx-feasible with her favorite bundle and the re-
turned matching maximizes agent 2’s value, it must be that

max * 1
vy (X3) > max {v2(X5),v2(X5) } > 5’1}2(){2).

Also, for the same reason, she will not envy the unallocated bundle.
Lemma 4 also implies that at least two of agent 1’s feasible bundles
will have value at least v1(X1) for her. Since the returned matching
will allocate at least one of these two bundles to agent 1 (by the
maximality of condition (b) in line 17) and so her value vi***(X7) for
her allocated bundle is weakly better than her initial value. Moreover,
agent 1 will not envy the unallocated bundle or otherwise, we could
increase agent 1’s value and contradict the maximality of condition
(b) in line 17. O

We now show the main result of this section.

Theorem 2. EFx—2A returns a budget-feasible EFx allocation such
that one agent gets a weakly higher value than her initial value, while
the other gets at least half of her initial value, Moreover, no agent
envies the unallocated bundle.

Proof. Note that the returned allocation is budget-feasible by defi-
nition of S™**. Combining Lemmas 3 and 5 gives the desired effi-
ciency and envy guarantees. |

Note that since EFx—2A returns a budget-feasible allocation, some
items from the matched bundles, X7 and X35, might be left out (if
the agent they are allocated to does not have sufficient budget for
the whole bundle). In Lemma 6, we show that this is the case with
at most one of X7 and X3, and the left-out part is not EFx-envied
(respectively envied) by the agents. We use this lemma for the three
agents procedure later on.

Lemma 6. In the allocation returned by EF x—24, one of X1 and X3
will be completely allocated (to the agent with the higher budget),
while the other bundle may be partially allocated. If R’ is the left-
out part, then one agent will not envy R’', while the other will not
EFx-envy it.

4 EFx Allocations for 3-Agent Instances

In the case of two-agent instances, we were able to design a some-
what simple procedure in which the envying agent splits the envied
bundle into two parts in such a way that an EFx allocation with opti-
mal efficiency is returned. In the case of three-agent instances, how-
ever, things become significantly more complicated, since two agents
may envy the third agent, yet disagree on how their bundle should be
split. Furthermore, the fact that each of the three agents can have a
vastly different budget, adds to the complexity of the problem. To
address this issue, we first try to reduce the problem to the case of
equal budgets. In order to do so, we consider the “monopoly value”
of the higher-budget agents, if we were to limit their budget to the
lowest one (see Section 2 for a definition). If all agents’ monopoly
value with the smallest budget is “high enough” (this threshold is de-
termined by a parameter o whose exact value we determine later on),
then we reduce the problem to the case of equal budgets. If not, then
we essentially let the agents arrive in increasing order of their budgets
and choose their preferred budget-feasible bundle among the remain-
ing goods. Note that we assume that |M| > 3, since otherwise, the
problem is trivial - the maximum NSW allocation is EFx.

Our main procedure, Procedure 2, first reindexes the agents in
increasing order of their budgets, such that agent 1 has the small-
est budget, followed by agent 2, and then 3. Then, it runs a pre-
processing phase (described in Section 4.1) which allows each agent
to set aside a single “high value” good. Next, our procedure checks
whether we can reduce the input instance to one where all agents
have equal budgets B, while still guaranteeing constant efficiency
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through the monopoly value m(Bi1), and if so, we call Procedure
4 which returns an EFx allocation for instances with equal budgets
(see Section 4.2). Otherwise, we run Procedure 5 (see Section 4.3).
Once one of these subroutines returns an allocation, we provide each
agent with the option of dropping the bundle they were assigned in
exchange for the “high-value” good set aside for them during the
pre-processing phase. This ensures that agents with a lot of value
concentrated on a single item have the opportunity to achieve at least
that much value if it is set aside for them in the pre-processing phase.

Procedure 2: (EFx-32) EFx allocation for 3 agents

1 Input: Parameter v

2 Reindex the agents in increasing order of their budgets, such
that B < By < B3

3 M, (s1,s2,s3) < Procedure 3

4 if ma(B1) > aand mz(B1) > « then

5 327 Bg < Bl

6 X < Procedure 4

7 else

8 X <« Procedure 5

9 fori € N do

10 if v;(s;) > v;(X;) then

1 X < s

12 return X

4.1 The Pre-Processing Step: Procedure 3

We now present the pre-processing subroutine that we rely on to set
aside one item for each agent. This subroutine tries to match them
with one of their favorite three items and set it aside to ensure that
they will never end up with a lower value. We carefully design this
procedure so that this matching satisfies some useful properties that
we use later on to prove the desired EFx and efficiency guarantees.
In more detail, we use the maximum NSW allocation to “prioritize”
the agents who have a favorite item in their respective maximum
NSW bundle. Specifically, we guarantee that all these agents will be
matched to a good that is at least as valuable as the most valuable
good in their bundle (note that this can be achieved by just matching
each such agent with her favorite good in her bundle). Then, given
this hard constraint, we choose the maximum weight matching using
the agents’ values for the corresponding goods as the weights. This
procedure returns the goods matched to each agent (observe that each
agent gets one), sets them aside, and removes them from M. Note
that Procedure 2, at the very end, gives each agent the option to pick
their set-aside item if that would increase their value, which acts as a
safety net for their value guarantee.

From this point on, let X°*" be the maximum NSW allocation on
the remaining items M \ {s1, 2, s3}. We now lower bound each
agent’s value in the maximum NSW allocation on the remaining items
using the following lemma.

Lemma 7. At the end of Procedure 3, at least one of the following
three cases must hold for agents i, j, k:

o vi(XPT) > 1 — 3vi(s) and v (X577 = vp(XgT) =1
vi(X{) > 1 — 2vi(s;) and v;(X$7T) > 1 — v;(s;) and
’Uk(XZPT) =1

o (XY > 1 — wisi) and v;(X37) > 1 — v;(s;) and
uk(XR) = 1= v(sk)

Procedure 3: Pre-processing for 3 agents

1 Input: Set of items M, maximum NSW allocation X°"" (M)

2 For each agent i, let S; be the set of their most favorite three
budget-feasible goods in M

3 Let G be a bipartite graph with vertices {1, 2, 3},
corresponding to agents, on one side, and vertices
S1 U S2 U S3, corresponding to goods, on the other. An edge
with weight v; (g) connects each agent 4 to each good g € S;

4 Let P be the set of all matchings of G such that every agent 4
with S = S; N X$¥T £ () is matched to an item of value at
least max,es: vi(9)

5 Let P be a maximum weight matching in P and for each
agent i, let s; be the good they are matched to in P

6 M + M\ {s1, 52,53}

7 return M, (s1, s2, 83)

4.2 The Equal Budget Case: Procedure 4

We now introduce Procedure 4 which outputs an EFx allocation with
high NSW when the agents have equal budgets. The main idea behind
this procedure is to reduce the budget-feasible problem to the case of
unrestricted additive valuations. To do this, it removes a fraction of
each agent’s bundle in the NSW maximizing allocation, so that the set
of all remaining items 7 is affordable for every agent, i.e., the total
cost across these items is within the common budget B; . It does so,
however, while keeping enough value for every agent. The procedure
then computes a complete EFx allocation (i.e., all items in Z are al-
located), which was proven to exist by Chaudhury et al. [10] - note
that their existence proof is algorithmic, so we can use this approach
to find a complete EFx allocation. Lastly, as an optimization, we al-
low agents to swap bundles with each other if they envy each other
since the computed EFx allocation only guarantees the absence of
EFx-envy. Note that before the procedure starts, we assume that the
budgets are normalized to 1, which is without loss of generality.

We crucially use the fact that the value of every agent for any item
is upper bounded by the value of their set-aside item to ensure that
they can maintain roughly 1/n of their original value using at most
1/n of their total budget. Note that our procedure can handle any
number of agents, however, we use n = 3 for most of the analysis.

Procedure 4: EFx allocation for 3 agents with equal budgets

1 Input: Maximum NSW allocation X = X" (M)
2 fori € N do
3 whilec(X;) > L do

4 X+ Xi '\ {argmin I’Ci(g) }
geX;

(9)
5 Z + UienX;
6 X**¢ + a complete EFx allocation of Z

7 if i envies j and j envies k and k envies i for any agents i, j, k
then

ALG ALG ALG ALG ALG ALG
8 X X, X7 = X5, X 7L X
9 while i envies j for any agents i, j do
10 }(?LG7 X?LG — ){Z}‘}LG7 XZ;LG

11 return X*°

v (X$7T)
n

Lemma 8. After line 4 of Procedure 4, v;(X;) >
forall agents i € {1,...,n}.

— ’Uz‘(Si)
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Lemma 9. For three-agent instances with equal budgets, Procedure
4 returns a budget-feasible EFx allocation with the following indi-
vidual guarantees:

s (XJFT i(Si
o v; (X34 > uX) v (35 )for an agent i
(XOPTY 90 (s
o v;(X55) > o 9] ) _ vjés]) foran agent j # i
ok (Xi)

o v (X3H°) > — vk (sk) for an agent k # i,

9

Lemma 10. Procedure 4 returns an allocation X*'° that is budget-

. 2 .
feasible, EFx, and {/ 151518 -¢fficient.

4.3 The Remaining Case: Procedure 5

Below, we present the description of Procedure 5, which we call
when some agent cannot be satisfied with a reduced budget. This
procedure starts by assigning agent 1 her monopoly bundle and run-
ning EFx~-2A on agents 2 and 3 with the remaining items. Intuitively,
the subroutine checks how much more value agents 2 and 3 have for
agent 1’s bundle, handling the cases where at least one of them would
lose a lot of value if their budget was reduced to B;. If agents 2 and
3 do not envy agent 1, then we return the allocation. The case when
one agent envies agent 1 and the other is “far” away from envying
agent 1 (that will be agent 3 or otherwise we reindex the agents with-
out loss) is more tricky and requires more careful analysis. At a high
level, since agent 3 has much more value for her bundle compared to
any other bundle she could get with a budget of B, she can afford
to lose a few subsets of her bundle that cost at most B;. Note that
both agents 1 and 2 split agent 1’s monopoly bundle, which fits into
a budget of B, so as long as we guarantee that agent 3 gets a bundle
that she values more than anything she could get with a budget of
B, she will not envy the other agents.

In order to guarantee that the final allocation is EFx, we use the
round-robin procedure in line 11 on X3 (agent 3’s bundle). Intu-
itively, this procedure splits X3 into two parts, in a round-robin fash-
ion, such that the resulting parts, X% and X4, are “roughly” equal in
value (up to one item) for agent 3.

Lemma 11. Procedure 5 always returns an allocation that is budget-
feasible, EFx for any o < 31—5 and {/ 61.1_39;1 -efficient.

‘We now present the main result of our paper, which combines the
properties of Procedures 3, 4, and 5 to achieve an EFx allocation with
constant NSW for three-agent instances.

Theorem 3. For instances with 3 agents, Procedure EFx—3A re-
turns a budget-feasible EFx allocation with constant efficiency.

S Conclusion and Open Problems

The main open problem is whether a constant approximation of the
maximum Nash welfare is achievable through EFx budget-feasible
allocations for an arbitrary number of agents. In fact, this question
is open even for EF1 budget-feasible allocations. Note that in very
recent and independent work, Barman et al. [5] extended the re-
sult of Chaudhury et al. [12] to allow for generalized assignment
constraints. This captures our setting and implies the existence of
budget-feasible EFx allocations in which no agent envies the char-
ity for an arbitrary number of agents. While their algorithm does not

Procedure 5: Subroutine for Procedure 2

-

Input: Set of items M

2 Xy + SP™(M)

3 (X2,X3) ¢+ max NSW allocation for agents 2, 3 and items

M\ X,

(XQ, X3) — EFX*ZA({Q, 3} , (}_(2, )_(3))

if m2(B1) < a and ms(B1) < « then
return (X1, X2, X3)

Reindex agents 2 and 3 such that ms(B1) < «

if 'UQ(XQ) 2 vz(Xl) then
return (X1, X2, X3)

10 (X4,X5) + EFx-22({1,2}, (0, X1))

11 Let agent 3 run round-robin by value with himself on X3 and
(X35, X5) be the two resulting partitions

12 X3+ X3\ ArgMaxge rx, xuy U2 (S)

13 XY+ SP*¥(X3)

14 X7« X]

15 if v1(X]) < v1(X7) then

16 X5« XY

v X5 e X3\ XY

18 return (X7, X5, X35)

DI B Y N

yield a bounded approximation of the maximum NSW, we believe that
a modification using some of the ideas introduced in our paper can
be shown to achieve a constant approximation of the NSW objective
for a constant number of agents and, in general, a O(n) approxi-
mation. Specifically, in the modified algorithm each agent initially
sets aside the most valuable item from the bundle they receive in the
maximum NSW allocation (if such bundle is not empty) and then a
budget-feasible EFx allocation (with respect to the charity as well) is
computed on the remaining goods using the ComputeFEFx proce-
dure described in [5]. Lastly, each agent can pick their preferred set
of goods between the bundle allocated to them by ComputeFEFx
and the single good that they set aside in the first step. Similarly to
our analysis in this paper, setting aside an good for each agent acts
as a safety net against situations in which a very valuable good for
one agent is allocated to another agent or to charity, which would
still achieve EFx but can severely reduce efficiency. However, even
if this approach could guarantee a linear approximation to the maxi-
mum NSW objective, it does not look like it could be used to achieve a
constant approximation, which (or better than O(n)), which remains
an interesting open problem.

Another interesting direction is to study the approximation achiev-
able via budget-feasible envy-free allocations of divisible goods. Al-
though maximizing the NSW with divisible goods is always envy-free
for (unrestricted) additive valuations, this is not true in the presence
of budget constraints. For example, consider the following instance
with two agents, both with a budget of 1, and two goods with cost
¢(1) = ¢(2) = 1, where the valuations are v1(1) = 1,v1(2) = 0,
and v2(1) = 0.6,v2(2) = 0.4. The maximum NSW allocation gives
agent 1 the whole good 1 and agent 2 the whole good 2 for a NSW of
1/0.4. However, the best envy-free allocation in terms of NSW gives
agent 1 a 3/4 fraction of good 1 and agent 2 a 1/4 fraction of good 1
and a 3/4 fraction of good 2. This allocation has a NSW of 1/0.3375.
Therefore, this instance yields no better than a 0.918 approximation
of the maximum Nash welfare. What is the best approximation of
NSW achievable using envy-free budget-feasible allocations of divis-
ible goods?
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