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Abstract—We study the problem faced by a data analyst
or platform that wishes to collect private data from privacy-
aware agents. To incentivize participation, in exchange for
this data, the platform provides a service to the agents in
the form of a statistic computed using all agents’ submitted
data. The agents decide whether to join the platform
(and truthfully reveal their data) or not participate by
considering both the privacy costs of joining and the benefit
they get from obtaining the statistic. The platform must
ensure the statistic is computed differentially privately and
chooses a central level of noise to add to the computation,
but can also induce personalized privacy levels (or costs)
by giving different weights to different agents in the
computation as a function of their heterogeneous privacy
preferences (which are known to the platform). We assume
the platform aims to optimize the accuracy of the statistic,
and must pick the privacy level of each agent to trade-off
between i) incentivizing more participation and ii) adding
less noise to the estimate.

We provide a semi-closed form characterization of the
optimal choice of agent weights for the platform in two
variants of our model. In both of these models, we identify
a common nontrivial structure in the platform’s optimal
solution: an instance-specific number of agents with the
least stringent privacy requirements are pooled together
and given the same weight, while the weights of the
remaining agents decrease as a function of the strength
of their privacy requirement. We also provide algorithmic
results on how to find the optimal value of the noise
parameter used by the platform and of the weights given
to the agents.

Index Terms—online platforms, data acquisition,
privacy-aware agents, differential privacy, endogenous
participation
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I. INTRODUCTION

Recent advancements in machine learning algorithms
and large-scale computation has reaffirmed the crucial
value of information, leading to unprecedented levels of
data gathering. For example, the recommendation sys-
tems used by platforms like Netflix, TikTok, or YouTube
are trained on massive amounts of data regarding user
behavior and preferences. However, this accumulation
of information has raised important concerns regarding
the privacy costs suffered by the users that this infor-
mation pertains to. To mitigate this issue, a large body
of research has focused on designing algorithms that
process the sensitive user information while limiting
their incurred privacy costs (a prominent line of such
work focuses on differential privacy). The main limita-
tion of this approach is that the reduced privacy costs
often come at the expense of lower quality outcomes
(e.g., a recommendation system with very strong privacy
guarantees may yield poor recommendations), hurting
the same users that it is aiming to protect. Our goal
in this paper is to develop a better understanding of the
trade-offs that such users face between privacy costs and
the resulting quality of service, and to design optimal
data acquisition mechanisms which respect the users’
preferences.

The privacy cost that agents may suffer by releasing
access to their data is well-studied: e.g., users in online
platforms and social media applications may not want
to reveal their search and watch histories or content
preferences. In response to these concerns, many plat-
forms allow their users to opt out of sharing their data
(e.g., a YouTube user can opt out of letting the platform
track their activity). Another common example where
collecting sensitive information may be really valuable



are medical studies aimed at developing a better un-
derstanding of some rare disease. Clearly, an individual
that has this disease may be reluctant to share this
information, and prefer not to participate in the study.

What may not be as well-understood in these examples
is the impact of the potential non-monetary benefits that
the agents can accrue by contributing their data: e.g.,
a prime motivation to participate in a medical study
about a rare disease is the hope that it may lead to new
treatments, which would directly benefit those who suffer
from it. Similarly, by revealing their content preferences,
users of platforms like Netflix or Youtube can help these
platforms improve their recommendation engines which,
in turn, provides these users with a higher quality of
service. In general, the more significant the potential
benefits are, the less reluctant the agents are to share
their data. Furthermore, it is often the case that these
benefits increase (and privacy costs drop) when more
users participate, giving rise to interesting and, to the best
of our knowledge, less well-understood complementarity
phenomena across users.

Our goal in this paper is to model and analyze such
settings in which agents can decide whether or not to
release access to their data, by considering both the
benefit they would obtain and the privacy losses they
would incur. Specifically, we approach this problem from
the perspective of a platform whose goal is to maximize
the value of the final computation (e.g., the quality of
service of a system or the accuracy of a study), while
respecting the preferences of the agents. To achieve this
goal, the platform can determine the extent to which
it will introduce differential privacy protections, taking
into consideration the agents’ preferences and aiming to
incentivize their participation.

A. Summary of contributions

In this paper, for simplicity, we consider a learner
or platform that is interested in performing a simple
estimation task: understanding the mean of a population
distribution. We see this simple estimation task as a
possible proxy for more complex machine learning tasks
(such as training a recommendation system), and leave
the study of such machine learning tasks to future work.
We consider a setting in which the learner controls two
types of variables: i) the amount of noise η centrally
added to the computation for differential privacy, and
ii) the weights w1, . . . , wn given to the data of agents
1, . . . , n in the learner’s computation. By giving different
weights to different agents, the platform can provide
personalized privacy levels to agents with varying pri-
vacy attitudes; see the preliminary Section III for more

details on how the privacy level obtained by an agent i
depends on η and wi. We are interested in designing the
weights w⃗ and the noise η to optimize the accuracy of
the learner’s statistic.

Ultimately, the accuracy of this statistic will depend on
the participation decisions of the agents: as more agents
participate, the learner is able to collect more data and
to refine his statistic. The first main contribution of our
paper is to propose two potential models of how agents
decide whether to participate in the platform:

• In Section IV-A, we introduce the “quasi-linear”
agent model. In this model, an agent explicitly
trades-off the privacy losses they incur with the
benefit they get from the platform. They only decide
to participate in the platform if the anticipated
benefit is higher than the cost for sharing their
data. A version of this model is also used in the
concurrent work of [1].

• In Section IV-B, we introduce a simpler variant of
our model, called the “privacy-constrained” model.
In this model, an agent is willing to join the
platform as long as i) they get some benefit from it
and ii) a minimum privacy requirement (that may
be different for different agents) is met.

We then proceed to characterizing the optimal choice
of estimator (i.e. of weights w⃗ and noise parameter η)
in semi closed-form:

• In Section V, we do so for the quasi-linear agent
participation model. There, we remark that the
optimal solution has a non-trivial structure, similar
to that of [2]: namely, the agents with the least
stringent privacy requirements are pooled together
and given the same weight, while agents with
higher privacy requirements are given weights that
decrease with the strength of their privacy attitudes.
We also provide algorithmic guidance on how to
find the optimal value of η. We note that how
to elicit the agents’ privacy costs when they are
strategic and can misreport these costs is discussed
in [1].

• In Section VI, we show that a similar structure (a
pooling region followed by a decreasing weight as
privacy attitudes become more stringent) arises in
the alternative, privacy-constrained model. We pro-
vide expressions for both w1, . . . , wn and η nearly
in closed-form, up to a single unknown parameter t
which controls the number of agents that are pooled
together. We also remark that this variant of the
model has simple incentive properties: it is in the
agents’ best interest to report their privacy costs
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truthfully, even without interventions or payments
by the learner.

II. RELATED WORK

Recently, there has been a lot of interest in the study
of data transactions in the computer science, operations
research, and economics literatures. For example, [3], [4]
study how to model and design data markets.

Much of the literature focuses on one major building
block for data transactions–deciding how to efficiently
and optimally acquire data from a collection of agents
(or “data providers”). On main focus of this literature is
settings in which the data providers must be compensated
for their data. For example, [2], [5]–[11] look at the
pricing and purchase of such data when the provided
data is verifiable (but providers may be strategic and lie
about their costs for revealing their data). There is also
a significant line of work–such as [12]–[20]–on the case
of non-verifiable data points, where providers can also
lie about their data in order to steer the learner’s model
towards desired outcomes.

A significant part of this literature singles out privacy
loss as the main reason data providers must be com-
pensated for their data. This gave rise to a body of work
that focuses on data acquisition under differential privacy
constraints, e.g. [21]–[28]. I.e., the seller must provide
formal privacy guarantees on how the providers’ data
is used, while often still compensating them for any
remaining privacy losses. This is where our work lies;
we adopt the same point of view as [22], [28] in that
we consider settings in which agents have an inherent
interest in the statistic or service offered by the platform
that is trained on their data, rather than solely in the
payments they receive from the platform.

One of the main, salient elements of our model is
that the quality of the estimate or service provided by
the platform depends not only on the privacy level that
the platform offers, but also on the number of providers
that join the platform and report their data. In turn,
the agents’ participation decisions are an endogenous
aspect of our model, as in the works of [29] and [1].
Similarly to our setting, [29] consider a setting in which
the privacy cost a data provider incurs depends on other
providers’ participation decision; the main distinction
compared to our work is that in [29], agents only care
about how much privacy they obtain, not on how the
collected data is used by the buyer or platform to offer
a useful service or statistic in return. The new work of
[1] considers a data acquisition setting with verifiable
data where agents obtain a benefit that depends on the
accuracy of the platform’s model, rather than only from

payments they get from their data. [1]’s model is similar
and contemporaneous to ours; while we assume that
the privacy preferences of the agents were known, [1]
considers settings where agents strategically report and
may lie about their privacy costs. We remark that our
results are mostly orthogonal to theirs: they provide
novel algorithms to solve the mechanism design problem
of incentivizing truthful cost reporting while optimizing
the accuracy of the platform’s estimate; we focus on
understanding properties of and on characterizing how
much the optimal estimator for the platform weights
each agent’s data in semi- closed form, as a function
of their privacy preferences. We also incorporate several
additional modeling elements relative to [1]: in particu-
lar, i) we assume that each agent may benefit from the
platform’s estimation in a possibly non-linear way, and
ii) we provide a second, alternative model of agents’
privacy preferences and of how they decide to participate
in the platform.

III. DIFFERENTIAL PRIVACY PRELIMINARIES

In this paper, we focus on differential privacy as our
main privacy technique. Differential privacy was first in-
troduced in the seminal work of [30] and aims to prevent
an attacker from being able to infer an agent’s data by
observing or post-processing the output of an algorithm,
e.g. the output of a learner’s statistical computation or
machine learning model. In this section, we focus on
presenting the minimal knowledge of differential privacy
needed for this paper; for a more detailed discussion of
differential privacy, please refer to [31].

Differential privacy protects an agent’s data by com-
paring two possible worlds for each agent; the difference
between these two worlds is that they consider two
possible different values for the data of this agent.
Differential privacy requires that one (almost) cannot
distinguish between these two worlds by looking at the
(distribution over) outputs of the learner’s computation;
i.e., one cannot tell with any reasonable certainty what
the data point of the agent was, since the outcome of
the computation (nearly) does not depend on its value.
Formally, a learner runs a computation of mechanism
M which takes a dataset x as an input, and outputs
some function or property M(x) of that dataset. Given
n agents whose data is used in the learner’s mechanism,
one can think of a dataset x as a vector of entries
(x1, . . . , xn), where xi is the data of agent i. We first
introduce the definition of neighboring datasets:

Definition 1. Two datasets x and x′ are neighboring
with respect to agent i (or “i-neighbors”) if they differ
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only in agent i’s data. I.e., xj = x′
j for all j ̸= i.

Differential privacy, as informally described above,
requires that the outputs of mechanism M differ little
on any two neighboring databases x and x′. This is
formalized as follows:

Definition 2 (ε-differential privacy). Let ε > 0. A ran-
domized algorithm M is ε-differentially private with re-
spect to agent i if for any outcome set O ⊂ Range (M)
and for all neighboring databases x, x′ with respect to
i,

Pr [M(x) ∈ O] ≤ exp(ε) Pr [M(x′) ∈ O] .

Here, the parameter ε controls how much privacy
each agent gets. As ε decreases, exp(ε) also decreases
and the above constraint becomes more and more strin-
gent, improving the level of privacy guaranteed by
the mechanism. For ε = 0, it in fact requires that
Pr [M(x) = o] = Pr [M(x′) = o]; i.e., the outcome of
the mechanism is independent of the input data and thus
perfectly preserves privacy. As ε → +∞, the above
constraint is trivially satisfied by any mechanism and
no privacy protection is provided.

One of the simplest way to answer a desired statistical
query in a differentially private manner is to add noise
to the output of said query. Intuitively, as the amount
of added noise increases, the dependency of the result
of said query on any particular agent’s data decreases
(equivalently, the level of privacy obtained by agents
increases). The most basic and common mechanism to
obtain differential privacy answers to numerical queries
is the Laplace mechanism, which adds Laplace noise to
the output of a query.

Definition 3. Let q be a numerical query, i.e. q(x) ∈ R
for all x. The Laplace mechanism is defined as

ML(x, q, η) = q(x) + Z,

where Z is a random variable drawn from the Laplace
distribution with parameter η.

The level of privacy obtained by the Laplace mecha-
nism depends on the sensitivity of the query we aim to
answer; i.e., how much the value of this query changes
when the data entry of a single agent in the database
changes. Formally, the sensitivity of a query with respect
to agent i is defined as

(∆q)i = max
x,x′ i-neighbors

|q(x)− q(x′)|.

We then have the following privacy guarantee for agent
i:

Definition 4. ML(x, q, ε) = q(x) + Z is η (∆q)i-
differentially private with respect to agent i.

Finally, we note that our goal is to both provide indi-
vidual agents reporting their data with privacy guarantees
while at the same time obtaining an accurate estimate of
the statistic we are interested in. Because we consider
unbiased estimators in this paper, the accuracy of said
estimator is directly linked to its variance. The variance
of the Laplace mechanism with parameter η on query q
is given by

Var (q(x) + Z) = Var x (q(x)) +
2

η2
.

IV. MODEL

We model a setting in which a data analyst or platform
aims to incentivize privacy-aware agents to share their
data with or join the platform, then collects their data
and uses it to estimate a statistic. To incentivize agent
participation, the platform simultaneously aims to pro-
vide privacy guarantees to agents who join the platform
while also offering a useful service to the agents who join
through their machine learning model. E.g., the machine
learning model could be a platform’s recommendation
system, such as the ones offered by platforms such as
YouTube and TikTok; it could also be the product of a
medical study on a rare disease, where the individuals
contribute their sensitive medical data to a study in the
hopes of getting better treatments and medical outcomes
in return.

The platform faces a population of n agents. Each
agent has a private data point di. The data points are
drawn i.i.d. from an unknown distribution with unknown
mean µ but known variance σ2. Each agent also has a
linear privacy cost function given by ciεi, where ci ≥
0 is an agent-specific scalar and εi > 0 is the level
of differential privacy obtain by agent i if he joins the
platform; this linearity assumption follows that of [25].

The goal of the platform is to i) incentivize agents to
join the platform, then ii) compute an unbiased estimator
µ̂ of µ. The platform wants this estimator to be as
accurate as possible. Letting S ∈ [n] be the set of agents
that decide to join the platform, we assume that the
platform’s estimator is linear, i.e. given by

µ̂(S,w, η) =
∑
i∈S

widi + Z(η),

where wi is the weight assigned to the data of agent i and
Z is a random variable drawn from a Laplace distribution
with parameter η ≥ 0 for privacy. We denote as w the
vector of all wi’s. Since we require our estimator to be
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unbiased, we assume that wi ≥ 0 for all i ∈ [n] and
that

∑
i∈S wi = 1. The platform optimizes over both

the choice of weights {wi}i∈S and of noise parameter
η.

Because the estimator used by the platform is unbi-
ased, we can measure its performance (here, its expected
mean-squared error) through its variance. The variance
of µ̂, as per preliminary section III, is given by

Var(µ̂) =
∑
i∈S

w2
i σ

2 +
2

η2
.

The order of operations is then the following:

1) The analyst announces the weight vector w and
the noise parameter η that she will use in the
computation.

2) Each agent i decides whether he wants to partici-
pate given w, η.

3) The analyst computes the estimator µ̂ on the
participating agents.

We propose two variants on how we model agents’
privacy attitudes, utilities, and participation decisions.
In the “quasi-linear agent” model, agents maximize a
quasi-linear utility functions that trades-off the quality of
the final model and their privacy costs. In the “privacy-
constrained agent” model, agents aim to maximize the
utility they get from the platform’s model under a
constraint that their privacy is not violated by more than
a desired tolerance.

A. The Quasi-Linear Agent Model

In the quasi-linear model, agent i has a quasi linear
utility for participating in the platform, which trades-off
his privacy cost for reporting his data and his utility from
the platform’s estimation. Noting that the sensitivity of
estimator µ̂ with respect to agent i is given by wi, the
level of privacy obtained by agent i is given by εi = wiη
(as discussed in Section III), and i incurs cost ciwiη for
participating in the platform. In turn, we consider the
following quasi-linear utility for the agent:

ui(w, η) = f

(
σ2
∑
i∈S

w2
i +

2

η2

)
− ciwiη

for some decreasing function f ; i.e., agent i’s utility
increases when the variance of the platform’s model
decreases, and when his privacy cost decreases. If the
agent does not join the platform, we assume they have
access to an outside option with utility o (for example,

they could use their own data point as an estimate). The
agent then decides to participate if and only if

f

(
σ2
∑
i∈S

w2
i +

2

η2

)
− ciwiη ≥ o.

The platform then aims to solve the following optimiza-
tion problem:

min
η,w,S

∑
i∈S

w2
i σ

2 +
2

η2

s.t. ciwiη ≤ f

(
σ2
∑
i∈S

w2
i +

2

η2

)
− o ∀i ∈ S∑

i∈S

wi = 1

wi ≥ 0 ∀i

(1)

where the first constraint ensures that agents in S choose
to participate, and the last two constraints enforce that
the platform’s estimator is unbiased.

Finally, we make the following assumption that func-
tion f is well-behaved for our purposes:

Assumption 1. f is concave and differentiable.

B. The Privacy-Constrained Agent Model

We now consider a variant of our model of agent
behavior. In the “privacy-constrained agent model”, each
agent i, on top of a privacy cost, also has a privacy
budget Bi which is the maximum privacy cost the agent
is willing to incur. An agent’s utility for participation is
then given by

ui(w, η) =

{
g
(∑

i∈S w2
i σ

2 + 2
η2

)
if ciwiη ≤ Bi

−∞ otherwise,

where g is a non-negative (agents get more utility
from participating than non-participating) and decreasing
function. I.e., an agent is never willing to participate if
his privacy budget is violated. Otherwise, if the agent’s
privacy requirement is met, his utility is given by a
function of the accuracy of the model. The analyst’s
program is then given by:

min
η,w,S

∑
i∈S

w2
i σ

2 +
2

η2

s.t. ciwiη ≤ Bi ∀i ∈ S∑
i∈S

wi = 1

wi ≥ 0 ∀i

(2)
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Note that in this case, each agent gets utility
g
(∑

i∈S w2
i σ

2 + 2
η2

)
, and minimizing the variance of

the platform’s estimate also maximizes the agents’ util-
ities. We can further re-write the program as

min
η,w,S

∑
i∈S

w2
i σ

2 +
2

η2

s.t. wiη ≤ τi ∀i ∈ S∑
i∈S

wi = 1

wi ≥ 0 ∀i,

(3)

where τi ≜
Bi

ci
is called the privacy threshold of agent

i. We assume τi > 0 for all i; agents with τi = 0 require
wi = 0, do not affect the objective function, and can be
dropped from the computation without loss of generality.

This model is a more tractable variant of the quasi-
linear one in that participation decisions by the agents
are significantly simplified. Even when the value of
η used by the platform is known or announced, the
“quasi-linear” model considers agents that trade-off their
privacy losses with their benefit from the platform’s
model. In this case, an agent’s participation decision
depends on them being able to anticipate the quality of
the final model, which requires access to the weights
given to other agents. To do so, the platform either
needs to communicate these weights to the agent, or each
agent can solve the optimization himself, which may
require unrealistic knowledge about the other agents’
costs as well as unrealistic reasoning and computational
power. In contrast, an agent in the “privacy-constrained”
setting makes a simpler decision that only depends on
his own weight wi (this can be interpreted as a promise
to the agent on how much their data is going to be
used at most) and their privacy preferences τi. In Section
VI, we will note that despite its relative simplicity, the
“privacy-contrained” model offers similar insights to that
of the “quasi-linear” model in Section V; this provides
evidence that even this simplified model can provide
valuable guidance on how to acquire and use data from
agents with heterogeneous privacy preferences.

V. CHARACTERIZING THE OPTIMAL SOLUTION
UNDER THE “QUASI-LINEAR” AGENT MODEL

Recall that the optimization problem solved by the
platform is given by

min
η,w,S

∑
i∈S

w2
i σ

2 +
2

η2

s.t. ciwiη ≤ f

(
σ2
∑
i∈S

w2
i +

2

η2

)
− o ∀i ∈ S∑

i∈S

wi = 1

wi ≥ 0 ∀i

(4)

a) Re-writing the optimization problem: We first
rewrite the optimization problem solved by the analyst
in a simpler form. To do so, we show how to drop the
dependency of the optimization program in S. We now
only need to optimize over w⃗ and η.

Claim 1. Consider the following program:

min
η,w

σ2
n∑

i=1

w2
i +

2

η2

s.t. ciwiη ≤ f

(
σ2

n∑
i=1

w2
i +

2

η2

)
− o ∀i ∈ [n]

n∑
i=1

wi = 1

wi ≥ 0 ∀i.

(5)

Let S = {i s.t. wi > 0}. Then (w, η, S) is an optimal
solution to Program (4) if and only if (w, η) is an
optimal solution to Program (5), and both programs have
the same optimal value.

Proof Sketch. Clearly (w, η, S) yields the same objec-
tive value for Program (4) as (w, η) does for Pro-
gram (5). Further, (w, η, S) is feasible for Program (4)
if and only if (w, η) is feasible for Program (5). Both
statements put together imply that both programs have
the same optimal value and that said optimal value
is reached at (w, η, S) and (w, η) respectively. More
details are provided in Appendix B-A.

In short, note that if we find an optimal solution to
Program 5, we can construct an optimal solution to
Program (4) with the same objective value. Studying
Program 5 is without loss of generality.

Note however that the above optimization problem
may be hard to solve directly as it is not convex: indeed,
(w, η) → wiη is not a jointly convex function of w and
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η. To deal with this issue, we note that once we fix the
value of η, the problem is now entirely convex. Indeed,
i) the objective function is convex in w, ii) ciwiη is
convex in w and −f

(
σ2
∑n

i=1 w
2
i +

2
η2

)
is convex in

w (because -f is convex increasing and σ2
∑n

i=1 w
2
i +

2
η2

is convex), and iii) the weight constraints are linear.
In this section, we mostly focus on understanding this
convex optimization problem for any fixed value of η.
Finding the best η corresponds to finding the optimum of
a one-dimensional function, which can be approximated
heuristically through black-box optimization techniques.

b) Properties of the optimal solution: In the rest
of this section, we order agents as a function of their
privacy costs. I.e., without loss of generality, we number
agents such that c1 ≤ . . . ≤ cn. As mentioned above, we
now consider optimization at fixed η. I.e., for any given
η, we aim to solve program

OPT (η) =

min
w

σ2
n∑

i=1

w2
i +

2

η2

s.t. ciwiη ≤ f

(
σ2

n∑
i=1

w2
i +

2

η2

)
− o ∀i ∈ [n]

(6)
n∑

i=1

wi = 1

wi ≥ 0 ∀i.

We first note the following simple monotonicity result
on the structure of an optimal solution to Program (6)
hence (5):

Claim 2. Take any η ≥ 0 such that Program (6)
is feasible, then any optimal solution to Program (6)
satisfies w1 ≥ . . . ≥ wn.

I.e., as we would intuitively expect, agents with
smaller privacy costs get more weight in the compu-
tation. This allows the platform to provide more privacy
to agents with higher costs to ensure said costs do not
become too high and violate the participation constraint.
We also note the following monotonicity result of inde-
pendent interest, which states that the privacy costs of
the agents are in fact monotone increasing in the ci’s.
I.e., agents with less stringent privacy attitudes also end
up incurring lower privacy costs.

Claim 3. Any optimal solution w to Program (6) satis-
fies ciwiη ≤ cjwjη for all i < j.

The proofs of the three previous claims are provided
in Appendix B-A. The proofs are by contradiction and
show that if an optimal solution satisfies the condition
of each of the claim, then we can construct a feasible
solution with better objective, contradicting optimality.
Putting the previous claims together, we obtain the
following corollary:

Corollary 1. Any optimal solution w satisfies wi > 0
for all i ∈ [n].

Proof. Suppose this were not true, i.e. for some i, wi =
0. Then by monotonicity of w proven in Claim 2, it must
be that wn = 0. But then, by Claim 3, it must be that
ciwi ≤ cnwn = 0 for all i. This implies wi = 0 for all
i, which contradicts

∑
i wi = 1.

We note that in our optimal solution, every agent
is incentivized to participate in the platform and to
report their data. This is the result of a self-reinforcing
effect exhibited in our setting: on the one hand, more
participation means that the platform computes a more
accurate model, which incentivizes more agent partici-
pation; on the other hand, more participation lowers the
privacy costs of the agents (as it lowers how much the
computation depends on any given agent’s data), which
also helps incentivizing more participation.

c) A semi-closed form characterization: We now
provide the main characterization result of this section;
namely, a semi-closed form solution for Program (6).

Theorem 1. Assume Program 6 is feasible. Let w be any
optimal solution to Program 6. There exists constants K
and W and an integer t such that wi = W for all i ≤ t
and wi = K/ci for all i ≥ t+ 1.

Proof sketch. The full proof of the result relies
follows by examining the implications of the
Karush–Kuhn–Tucker (KKT) conditions for optimality
and is provided in Appendix A-A. One technicality is
that the KKT conditions require that Slater’s condition
holds. This means that the optimization program needs
to be strictly feasible, i.e. there must exist a feasible
solution such that all inequality constraints are strictly
satisfied. To circumvent this issue, we note that when
we do not have strict feasibility, any feasible (hence the
optimal) solution must make all participation constraints
tight hence is easy to characterize.

We remark that our optimal solution exhibits interest-
ing structure. First, there is a pooling region in which the
agents with the lowest privacy costs are given the same
weights. Then, agent weights start decreasing in their

7



cost to ensure that their privacy losses do not become
too big. We note that this result is in line with that
of [2]. This is perhaps surprising given that [2] considers
a different objective and constraints for the platform.

A potential explanation may be that absent privacy
constraint, the optimal solution in terms of variance
is to give the same weight to every agent. However,
this may not be possible due to the agents’ privacy
requirements. Instead, one wants to have a solution
that keeps the weights of different agents equal when
possible to minimize the variance due to these agents,
and only give a different, lower weight to the agents
when this is unavoidable to ensure they participate in
the computation.

d) Finding the optimal value of η: One possible
approach to optimize over the value of η is to do a
grid search over said 1-dimensional parameter. However,
OPT (η) is a black-box, not well understood function of
η, that may be complex to optimize over. Another ap-
proach is to refine our understanding of the relationship
between K, W , and η. One way to do so is to first note
that if we know t, there is a closed-form relationship
between K and W . In particular, we have that

tW +K
∑
i>t

1

ci
= 1,

implying that

W =
1

t

(
1−K

∑
i>t

1

ci

)
.

From the proof of Theorem 1 found in Appendix A-A,
we also know that the participation constraint is tight for
all agents i > t with wi =

K
ci

, hence it must be that

Kη = f

(
σ2tW 2 +K2

∑
i>t

1

ci

2

+
2

η2

)
− o.

This can be rewritten as

Kη

= f

σ2

t

(
1−K

∑
i>t

1

ci

)2

+K2
∑
i>t

1

cj

2

+
2

η2

− o.

In particular, for each possible value of t, we can restrict
our search to the parameters K and η that satisfy the
above equation. In the special case where f is linear,
this equation is quadratic and has (at most) two well-
behaved solutions that depend continuously on the value
of η. This facilitates a grid search approach to find the
best η for each possible value of t. We can then simply
pick the value of t that leads to the best objective value.

VI. CHARACTERIZING THE OPTIMAL SOLUTION
UNDER THE “PRIVACY-CONSTRAINED” AGENT

MODEL

Recall that the optimization program solved by the
platform is given by:

min
η,w,S

∑
i∈S

w2
i σ

2 +
2

η2

s.t. wiη ≤ τi ∀i ∈ S∑
i∈S

wi = 1

wi ≥ 0 ∀i,

(7)

a) Re-writing the optimization problem: We start
by noting that Program 7 can be rewritten in a simpler
form involving no S variable. Indeed:

Claim 4. Consider the following program:

min
η,w

n∑
i=1

w2
i σ

2 +
2

η2

s.t. wiη ≤ τi ∀i ∈ [n]
n∑

i=1

wi = 1

wi ≥ 0 ∀i,

(8)

Let S = {i s.t. wi > 0}. Then (w, η, S) is an optimal
solution to Program (7) if and only if (w, η) is an
optimal solution to Program (8), and both programs have
the same optimal value.

Proof. The proof is nearly identical to that of Claim 1
and is omitted for the sake of brevity.

Once again, this optimization problem is not convex.
However, if we fix η and only consider w as a variable,
our optimization problem becomes convex. We can then
solve the problem efficiently for any desired value of η,
then search over η to find the optimal solution.

In the rest of this section, we first show that the
optimal solution has similar positivity and monotonicity
properties to that of the “quasi-linear” model. We then
show that we can characterize the optimal solution in
semi-closed form. Finally, we exploit the structure of
our problem to provide a simple characterization and
algorithm for finding the optimal η.

b) Properties of the optimal solution: Without loss
of generality, we number agents so that τ1 ≥ τ2 ≥
. . . ≥ τn. I.e., agents with higher indices have more
stringent privacy requirements. As mentioned above, we

8



now consider the optimization at fixed η, and study the
problem

min
w

n∑
i=1

w2
i σ

2 +
2

η2

s.t. wiη ≤ τi ∀i ∈ [n]
n∑

i=1

wi = 1

wi ≥ 0 ∀i.

(9)

To draw a parallel with the “quasi-linear” model, we
first show that this variant of our model exhibits strong
monotonicity and positivity properties.

Claim 5. Suppose w is an optimal solution. Then wi >
0 ∀i ∈ [n], w1 ≥ . . . ≥ wn, and w1

τ1
≤ . . . ≤ wn

τn
.

c) A semi-closed form solution: Claim 5 provides
a high level understanding of the shape of the optimal
solution. We now refine this understanding by providing
a semi-closed form solution to Program 8.

Theorem 2. Let w be any optimal solution to Program 9
(assuming feasibility). There exists t ∈ {0, . . . , n} and
W ≥ 0 such that is given by wi = W for all i ≤ t and
wi =

τi
η for all i ≥ t+ 1.

Proof Sketch. As before, the full proof of the result
relies on the Karush–Kuhn–Tucker (KKT) conditions
and is provided in Appendix A-B. The proof suffers from
the same technicality that the KKT conditions require
that the optimization program is strictly feasible, and we
use the same techniques as for Theorem 1 to circumvent
said issue.

We note that the above result bears similarities to
that of Theorem 1 in the “quasi-linear” model. Indeed,
note that τi is a parameter that is smaller as the privacy
preferences of agent i are more stringent, similarly to
1/ci in the “quasi-linear” model. Both solutions then
have the same structure: agents with more lax privacy
requirements are pooled together and have the same
weight, while agents with stronger requirements see
their weight decrease as a function of how strong that
requirement is.

Corollary 2. There exists t ∈ {0, . . . , n} such that the
optimal solution to Program 9 (assuming feasibility) is
given by wi =

1
t

(
1− 1

η

∑n
i=t+1 τi

)
for all i ≤ t and

wi =
τi
η for all i ≥ t+ 1.

Proof. It suffices to use the fact that the weights of the
agents must sum to 1. I.e.,

∑n
i=1 wi = 1 can be rewritten

as
t∑

i=1

W +
n∑

i=t+1

τi
η

= 1,

or equivalently

tW +
1

η

n∑
i=t+1

τi = 1.

This immediately leads to W = 1
t

(
1− 1

η

∑n
i=t+1 τi

)
.

d) Finding the optimal value of η exactly: We show
that, in fact, η can be found by simply minimizing a
function of a single variable on a closed interval:

Claim 6. The optimal value of η is given by

η∗ = argmin
η

h(η) s.t. η ∈

[
t+1∑
i=1

τi, tτt +

t+1∑
i=1

τi

]
,

(10)

where

h(η) =
σ2

t2

t∑
i=1

(
1− 1

η

n∑
i=t+1

τi

)2

+
σ2

η2

n∑
i=t+1

τ2i +
2

η2
.

Proof. Assuming the optimal value of t is known, plug-
ging the solution of Corollary 2 back into Program (7)
shows that η must solve

min
η≥0

σ2

t2

t∑
i=1

(
1− 1

η

n∑
i=t+1

τi

)2

+
σ2

η2

n∑
i=t+1

τ2i +
2

η2

s.t.
1

t

(
1− 1

η

n∑
i=t+1

τi

)
η ≤ τi ∀i ≤ t

1

t

(
1− 1

η

n∑
i=t+1

τi

)
≥ 0

Note that we dropped the constraint that the weights
sum to 1: this is guaranteed to hold for any plugged-
in solution of the form given in Corollary 2. Using the
fact that τ1 ≥ . . . ≥ τt, we can rewrite the problem as

min
η≥0

σ2

t

(
1− 1

η

n∑
i=t+1

τi

)2

+
σ2

η2

n∑
i=t+1

τ2i +
2

η2

s.t.
1

t

(
1− 1

η

n∑
i=t+1

τi

)
η ≤ τt,

1

t

(
1− 1

η

n∑
i=t+1

τi

)
≥ 0,

(11)
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or equivalently

min
η

σ2

t

(
1− 1

η

n∑
i=t+1

τi

)2

+
σ2

η2

n∑
i=t+1

τ2i +
2

η2

s.t. η ≤ tτt +
n∑

i=t+1

τi,

η ≥
t+1∑
i=1

τi.

(12)

We further show that this is a simple optimization
problem in that f(η) is well-behaved and easy to mini-
mize.

Claim 7. There exists η∗ such that f(η) is decreasing
for η < η∗, and increasing for η > η∗. In turn, η∗ is
the unique solution to f ′(η) = 0, and is given in closed
form by

η∗ =

(∑n
i=t+1 τi

)2
+ t
∑n

i=t+1 τ
2
i + 2t

σ2∑n
i=t+1 τi

.

If η∗ ∈ [
∑t+1

i=1 τi, tτt +
∑t+1

i=1 τi], it minimizes f ; other-
wise, the minimizer is either

∑t+1
i=1 τi or tτt +

∑t+1
i=1 τi.

The proof follows from simple algebra and is given in
Appendix B-B2. We note that the above characterization
gives us an immediate algorithm to find the optimal η.
Indeed, it suffices to explore all n possible values of
t. For each η, then, one only has to compare f(η∗),
f
(∑t+1

i=1 τi

)
and f

(
tτt +

∑t+1
i=1 τi

)
. This algorithm

takes time O(n).
e) Incentive properties of the “privacy-

constrained” model: Finally, we remark that the
privacy-constrained model enjoys nice incentive
properties: e.g., it is a weakly dominated strategy for
agents to misreport their privacy thresholds. We note
that this property holds without having to pay agents
to report their privacy preferences truthfully. This is
a major advantage in that it reflects what happens in
real-life platforms, who often do not pay their users to
incentivize participation; in fact, platforms commonly
ask users to pay to be able to access the service they
offer in return. We divide the incentive properties in the
following two claims:

Claim 8. For any agent i, reporting τ̂i < τi is a weakly
dominated strategy.

Proof. Fix the participation strategy of all the other
agents–let S−i the set of agents that decide to join the

platform and report their data–, as well as their reports
τ̂j for all j ∈ S−i. Suppose the set of participating
agents is S = S−i ∪ i (i.e. i decides to participate) and
τ̂i < τi. Let OPT (S, τ̂) be the optimal objective value
of Program (8) when the inputs are S, τ̂ . We immediately
have that

OPT (S, τ̂) ≥ OPT (S, (τi, τ̂−i))

by virtue of the left-hand side optimization program
being strictly more constrained. Since agent i’s privacy
constraint is always satisfied when reporting his true
threshold (by construction of Program (8)), agent i gets
utility g (OPT (S, (τi, τ̂−i))). This is at least as high
(by virtue of g being decreasing) as the utility agent i
gets from misreporting as above, since then agent i gets
utility either g (OPT (S, τ̂)) or −∞ if his true privacy
constraint is not satisfied.

Claim 9. Fix any agent i. Reporting τ̂i > τi cannot
increase agent i’s utility.

Proof. Let us once again fix S−i and τ−i. We have two
cases for agent i:

• In (S, τ̂), agent i receives wiη ≤ τi. In this case,
note that the optimization program with threshold
τi and τ̂i are equivalent and

OPT (S, τ̂) = OPT (S, (τi, τ̂−i)) .

In this case, agent i’s privacy constraint is sat-
isfied and he gets utility g (OPT (S, τ̂)) =
g (OPT (S, (τi, τ̂−i))). I.e., his utility is unchanged.

• Otherwise, agent i’s privacy constraint is not sat-
isfied and he receives the worst possible utility of
−∞.

This concludes the proof.
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APPENDIX A
PROOFS OF THE MAIN THEOREMS

A. Proof of Theorem 1

First, we consider the case in which Program 5 is not
strictly feasible; i.e., there exists no feasible weights w
such that for all i,

ciwiη < f

(
σ2

n∑
i=1

w2
i +

2

η2

)
− o.

Claim 10. Suppose Program 5 is feasible, but has no
strictly feasible solution. Then any feasible, hence the
optimal solution is given by wi = K/ci for all i and for
some constant K.

Proof. First, suppose the program is not strictly feasible.
In particular, let us look at w the optimal solution to the
program. We consider two cases:

1) There exists i such that

ciwiη < f

(
σ2

n∑
i=1

w2
i +

2

η2

)
− o.

Let w̃i = wi + (n − 1)ε and w̃j = wj − ε for
all j ̸= i. Note that for ε small enough, the w̃
define proper weights: they are positive, since by
Corollary 1, wj > 0 for all j, and they sum to 1
by construction. Further,

cjw̃jη < cjwjη ≤ f

(
σ2

n∑
i=1

w2
i +

2

η2

)
−o ∀j ̸= i,

hence the participation constraints are strict for all
j ̸= i. Finally, for ε small enough, by continuity
of f , we have

ciw̃iη < f

(
σ2

n∑
i=1

w̃2
i +

2

η2

)
− o,

since the left-hand side converges to ciwiη and the
right-hand side to f

(
σ2
∑n

i=1 w
2
i +

2
η2

)
−o when
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ε goes to 0. Hence, w̃ is a strictly feasible solution,
which is a contradiction.

2) For all i, the participation constraint is tight, i.e.

ciwiη = f

(
σ2

n∑
i=1

w2
i +

2

η2

)
− o.

Then wi = K/ci for all i, where K ≜
f
(
σ2 ∑n

i=1 w2
i+

2
η2

)
−o

η is the same for all agents i.

Now, we can consider without loss of generality the
case in which the program is strictly feasible. In this
case, Slater’s condition holds and we can apply the KKT
conditions. Note that the Lagrangian of Program (6) is
given by

L(w, λ⃗, λ⃗0, γ)

= σ2
n∑

i=1

w2
i +

2

η2
+ γ

(
1−

n∑
i=1

wi

)
−

n∑
i=1

λ0
iwi

+
n∑

i=1

λi

ciwiη − f

σ2
n∑

j=1

w2
j +

2

η2

+ o)



The first order condition, taking the derivative with
respect to wi (remembering that f is differentiable by
assumption), is given by

0 = 2σ2wi + λiciη − γ − λ0
i

− 2σ2

∑
j

λj

wi · f ′

σ2
n∑

j=1

w2
j +

2

η2


This implies wi =

−λiciη+γ+λ0
i

2σ2
(
1−(

∑
j λj)·f ′

(
σ2

∑n
j=1 w2

j+
2
η2

)) .

Since wi > 0 for all i, complementary slackness yields
that λ0

i = 0 for all i. The first order condition then
simplifies to

wi =
−λiciη + γ

2σ2
(
1−

(∑
j λj

)
· f ′
(
σ2
∑n

j=1 w
2
j +

2
η2

)) .
We now have two cases:

1) Either ciwiη = f
(
σ2
∑n

i=1 w
2
i +

2
η2

)
−o, i.e. the

participation constraint is tight. Then we can write

wi =
f
(
σ2
∑n

i=1 w
2
i +

2
η2

)
− o

ηci
≜

K

ci
,

where K is a constant in that it is the same for all
agents.

2) Either wi is such that i’s participation constraint is
not tight. Then, by complementary slackness, we
have that λi = 0, hence we can rewrite

wi

=
γ

2σ2
(
1−

(∑
j λj

)
· f ′
(
σ2
∑n

j=1 w
2
j +

2
η2

))
≜ W

is a constant that is the same for all agents.
Therefore, in any optimal solution, there exists constants
K and W such that either wi = K/ci, or wi = W . To
conclude the proof, suppose that i < j, but wi satisfies
case (1) above (and wi = K/ci) while wj satisfies case
(2) (and wj = W ). We have that wj < K/cj since
the participation constraint cjwj ≤ K is not tight for
j by definition of case (2). Hence, ciwi = K while
cjwj < K, implying that ciwi > cjwj . This contradicts
Claim 3. Therefore, for any j, if wj = W , it must be
that wi = W for all i < j. This concludes the proof.

B. Proof of Theorem 2

First, we consider the case in which Slater’s condition
does not hold, and there exists at least one i such that
wiη = τi in any feasible solution. We have two cases:

1) There exists j such that wjη < τj . Then let w̃
be such that w̃i = wi − ε for all i ̸= j and let
w̃j = wj + (n − 1)ε. When ε is small enough,
w̃ ≥ 0 (noting that we have w > 0 at an optimal
solution by Claim 5), the weights sum to 1, w̃iη <
(wiη ≤)τi for all i ̸= j, and w̃jη < τj . Hence w̃
is strictly feasible, which is a contradiction.

2) For all i, wiη = τi. Then the optimal solution is
fully determined by these equations, and satisfies
wi =

τi
η for all i.

Now, suppose we have strict feasibility, i.e. Slater’s
condition holds. The Lagrangian of the optimization
problem is given by

L(w, λ, λ0, µ) =
∑
i

w2
i σ

2 +
2

η2
+
∑
i

λi (wiη − τi)

+ µ

(∑
i

wi − 1

)
−
∑
i

λ0
iwi.

The first order condition (with respect to agent i) is then
given by

2wiσ
2 + λiη + µ− λ0

i = 0,

which implies

wi =
λiη + µ− λ0

i

2σ2
.
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By Claim 5, wi > 0, hence by KKT conditions, λ0
i = 0.

Therefore, we can rewrite

wi =
λiη + µ

2σ2
.

We now have two cases:
1) Either agent i’s privacy constraint is tight. Then,

wiη = τi, i.e. wi =
τi
η .

2) Otherwise, the privacy constraint is not tight. Then,
by the KKT conditions, it must be that λi = 0,
hence wi = µ

2σ2 = W for some constant W .
Since the privacy constraint is not tight, we have
in particular that W < τi

η .
To complete the proof, suppose that we have i < j

such that i is in case (1) and wi = τi/η, while j is in
case (2) and wj = W . We have that wi/τi ≤ wj/τj by
Claim 5. This then implies that 1/η ≤ W/τj , and in turn
that τj ≤ Wη < τj (remember that since j is in case
(2), Wη < τj). This is a contradiction. Hence, it must
be the case that if if wi is in case (1), we must have
wj = wj/η for all subsequent j > i.

APPENDIX B
PROOFS OF SUPPORTING CLAIMS

A. In the Quasi-Linear Utility Model

1) Proof of Claim 1: Pick any w, η, and let S =
{i s.t. wi > 0}. We first note that

σ2
∑
i∈S

w2
i +

2

η2
= σ2

∑
i∈[n]

w2
i +

2

η2

since wi = 0 for all i /∈ S. Hence, (w, η, S) achieves
the same objective value for Program 4 as (w, η) for
Program 5 for any w, η, and S constructed as above.

Second, with respect to Program 4, we have that:
1)
∑

i∈S wi = 1 ⇔
∑

i∈[n] wi = 1 by virtue of wi =
0 for all i /∈ S.

2) Since we have that

f

σ2
∑
i∈[n]

w2
i +

2

η2

 = f

(
σ2
∑
i∈S

w2
i +

2

η2

)
,

for all i, ciwiη ≤ f
(
σ2
∑

i∈[n] w
2
i +

2
η2

)
− o if

and only if ciwiη ≤ f
(
σ2
∑

i∈S w2
i +

2
η2

)
− o.

Therefore (w, η, S) is feasible for Program 4 if
and only (w, η) is feasible for Program 5.

This is enough to conclude the proof. Indeed,
since (w, η) feasible for Program (5)(w, η, S) implies
(w, η, S) feasible for Program 4 and they both have the
same objective value, the optimal value of Program (4)

is at least that of Program (5). Vice-versa, the optimal
value of Program 5 is at least that of Program 4. Hence,
Program 4 and Program 5 have the same optimal value.
Further, if (w, η) is optimal, then (w, η, S) is optimal
by virtue of having the same objective value, and vice-
versa. This concludes the proof.

2) Proof of Claim 2: Let w be an optimal solution to
Program (6). Suppose there exists i < j such that wi <
wj . Now, let us look at a possible alternative solution w̃
where w̃i ≜ wi+ε, w̃j ≜ wj−ε for ε > 0 small enough,
and w̃k ≜ wk for all agents k ̸= i, j. We will show that
this solution leads to a smaller objective, contradicting
optimality.

First,
n∑

k=1

w̃2
k −

n∑
k=1

w2
k = (wi + ε)2 − w2

i + (wj − ε)2 − w2
j

= 2wiε+ ε2 + (ε2 − 2wjε)

= 2ε(wi − wj + ε)

< 0,

for ε small enough, as wi < wj . This shows that w̃ leads
to a better variance than w, since it directly implies

n∑
k=1

w̃2
kσ

2 +
2

η2
< σ2

n∑
k=1

w2
i +

2

η2
.

Second, since ci ≤ cj , w̃j < wj , for ε small enough
we have w̃i ≤ w̃j , and because f is decreasing, it follows
that

ciw̃iη ≤ ciw̃jη < cjwjη ≤ f

(
σ2

n∑
i=1

w2
i +

2

η2

)

≤ f

(
σ2

n∑
i=1

w̃2
i +

2

η2

)
.

Further, because w̃j < wj , we have

cjw̃jη < cjwjη ≤ f

(
σ2

n∑
i=1

w2
i +

2

η2

)

≤ f

(
σ2

n∑
i=1

w̃2
i +

2

η2

)
.

Therefore, w̃ is feasible, since it satisfies the participa-
tion constraints and that the weights are still positive and
sum to 1. This concludes the proof.

3) Proof of Claim 3: Let w be an optimal solution
with ciwiη > cjwjη; in particular, it must be that wi >
wj since ci ≤ cj . For small enough ε, let w̃i = wi − ε,
w̃j = wj + ε, and w̃k = wk i for any other agent k ̸=
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i, j. First, we note that this transformation decreases the
variance. Indeed,

w2
i + w2

j − w̃2
i − w̃2

j

= w2
i + w2

j − w2
i + 2εwi − ε2 − w2

j − 2εwj − ε2

= 2ε(wi − wj)− 2ε2

= 2ε(wi − wj − ε)

> 0

when ε is small enough, by virtue of wi > wj . Further,
the constraints that the weights must sum to 1 still holds,
as well as the non-negativity constraint so long as ε
is small enough (smaller than wi). Finally, ciw̃iη =
ci(wi−ε)η ≤ ciwiη, and cjw̃jη = cj(wjη+εη) ≤ ciwiη
for small enough ε (as cjwjη < ciwiη); combining this
with the fact that the variance decreases, the participa-
tion constraints still holds. Therefore, w̃ is feasible for
Program 5 and has strictly better objective value than an
optimal solution, which is a contradiction.

B. In the Privacy-Constrained Utility Model

1) Proof of Claim 5: We show the results in the claim
by contradiction. First, suppose there exists i such that
wi = 0. We will show that we can construct alternative
weight vector w that is feasible and leads to a strictly
better objective value, contradicting optimality of w. To
do so, let j be such that wj > 0, and let w̃i = ε, w̃j =
wj−ε, and w̃j = wj for all k ̸= i, j. For ε small enough,
note that w̃ is feasible: all weights remain non-negative,
sum to 1, w̃jη ≤ wjη ≤ τj , and w̃iη = εη ≤ τi so as
long as ε is sufficiently small. Further, the objective value
under w̃ is smaller than under w. Indeed, the change in
variance (renormalized by 1/σ2) is given by

w2
i − w̃2

i + w2
j − w̃2

j = −ε2 + w2
j − (wj − ε)2

= −ε2 + w2
j − w2

j + 2wjε− ε2

= 2ε(wj − ε)

> 0.

where the last inequality follows from ε being small
enough. This is a contradiction.

Second, suppose there exists i < j such that wi < wj .
Let us construct as before an alternative weight vector
w̃ such that w̃i = wi+ε, w̃j = wj−ε, and w̃k = wk for
all k ̸= i, j. First, w̃ is feasible:

∑
i w̃i = 1, w̃j ≥ 0 for

ε small enough (since wj > 0), w̃iη < wjη ≤ τj ≤ τi

for ε small enough (as wi < wj), and w̃jη ≤ wjη ≤ τj .
Further, w̃ yields better variance than w. Indeed,

n∑
i=1

w2
i −

n∑
i=1

w̃2
i

= w2
i − w̃2

i + w2
j − w̃2

j

= w2
i − (wi + ε)2 + w2

j − (wj − ε)2

= w2
i − w2

i − ε2 − 2wiε+ w2
j − w2

j + 2wjε− ε2

= 2 (wj − wi − ε)

> 0

for ε small enough, remembering that wj > wi. This is
a contradiction.

Finally, suppose there exists i < j such that wi

τi
>

wj

τj
(note that since τi ≥ τj , this also implies wi > wj).
Then, consider alternative weight vector w̃i = wi − ε,
w̃j = wj+ε, and w̃k = wk for all k ̸= i, j. First, we note
that w is feasible. Indeed,

∑
i w̃i = 1, w̃iη < wiη ≤ τi,

and for ε small enough,

w̃j

τj
η <

w̃i

τi
η <

wi

τi
η ≤ 1.

w̃ also has lower variance than w, by a similar calcula-
tion as before:

n∑
i=1

w2
i −

n∑
i=1

w̃2
i

= w2
i − w̃2

i + w2
j − w̃2

j

= w2
i − (wi − ε)2 + w2

j − (wj + ε)2

= w2
i − w2

i − ε2 + 2wiε+ w2
j − w2

j − 2wjε− ε2

= 2ε (wi − wj − ε)

> 0

where the last step follows from wi > wj and ε small
enough. This is a contradiction.

2) Proof of Claim 7: We have that

f ′(η)

=
2σ2

∑n
i=t+1 τi

tη2

(
1− 1

η

n∑
i=t+1

τi

)
− 2σ2

η3

n∑
i=t+1

τ2i − 4

η3

=
2σ2

∑n
i=t+1 τi

tη3

(
η −

n∑
i=t+1

τi

)
− 2σ2

η3

n∑
i=t+1

τ2i − 4

η3

=
2σ2

η3

η

t

n∑
i=t+1

τi −
1

t

(
n∑

i=t+1

τi

)2

−
n∑

i=t+1

τ2i − 2

σ2

 .

In turn, f ′(η) < 0 if and only if η <
(
∑n

i=t+1 τi)
2
+t

∑n
i=t+1 τ2

i +2t/σ2∑n
i=t+1 τi

and f ′(η) > 0 if and

14



only if η <
(
∑n

i=t+1 τi)
2
+t

∑n
i=t+1 τ2

i +2/σ2∑n
i=t+1 τi

. Finally, note
that f ′(η) = 0 can be written as

η

t

n∑
i=t+1

τi −
1

t

(
n∑

i=t+1

τi

)2

−
n∑

i=t+1

τ2i − 2

σ2
= 0.

This immediately leads to

η∗ =

(∑n
i=t+1 τi

)2
+ t
∑n

i=t+1 τ
2
i + 2t

σ2∑n
i=t+1 τi

.
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