
Stealing Static Slack via WCRT and Sporadic
P-Servers in Deadline-Driven Scheduling

Zhishan Guo∗¶, Sudharsan Vaidhun†¶, Abdullah Al Arafat∗¶, Nan Guan‡, Kecheng Yang§
∗North Carolina State University, †University of Central Florida, ‡City University of Hong Kong, §Texas State University

{zguo32, aalaraf}@ncsu.edu, sudharsan.vaidhun@knights.ucf.edu, nanguan@cityu.edu.hk, yangk@txstate.edu

Abstract—Real-time systems are characterized by strict timing
constraints represented by deadlines. Some systems are tight,
such that jobs finish their execution right at the deadlines in the
worst case, while others may not be so tight. Static slack is a con-
cept that captures such non-tightness, and it can often be “stolen”
to handle additional aperiodic job requests, task suspensions,
and occasional task overruns. This paper identifies an interesting
and direct correlation between worst-case response time (WCRT)
and static slack in a deadline-driven uniprocessor system. We
propose a systematic approach for safely constructing a set of
Sporadic P-Servers to tightly capture the available static slack,
given any feasible task set under a preemptive earliest deadline
first. These P-Servers are special in that each task has only a
unit-length execution budget and runs in a discrete manner. To
leverage these P-Servers and “steal” the slack, we propose a novel
consume-replenish algorithm to handle online hard aperiodic
jobs. We also extend the theory for other applications, such as
dealing with early and arbitrary self-suspensions and servicing
job overruns in mixed-criticality systems without triggering a
mode switch. Experiments demonstrate that the proposed theory
can provide new and better schedulability in some subcases for
each application.

Index Terms—Slack Stealing, WCRT, Sporadic Server, EDF

I. INTRODUCTION

Recurring workloads with real-time requirements have been

traditionally modeled using task models such as the Liu

and Layland model [19]. These task models are designed to

capture the worst-case execution requirements of the workload.

Similarly, the assumptions on the platform are based on

worst-case availability. For example, when the clock speed

of a microcontroller is susceptible to changes in the device’s

operating temperature, the slowest clock speed is considered

and modeled. For a given workload-platform combination,

there can be unreserved resources referred to as static slack.

For example, if a workload requires 80% utilization of a fixed-

speed uniprocessor, then the remaining 20% of the utilization

capacity can be quantified as static slack—this paper focuses

on how to calculate, model, and leverage them. On the other

hand, dynamic slack refers to the unused portion of the

reserved resources during execution—which is out of the scope

of this work.

As models and workloads grow in complexity, static slacks

play an increasingly vital role in modern systems’ efficiency.

Such an important role might not be obvious as workload

and system models are proposed with “fancier” names. Below

¶
These authors contributed equally

we highlight some well-known models in real-time scheduling

theory by discussing their relationships with static slack.

a) Dealing with Online Aperiodic Jobs. Modern systems

increasingly interact with the world and may need to react

to unexpected situations via pre-designed components. As a

result, it can be very helpful to design a system that can admit

occasional additional workload requirements during run time.

Static slack is naturally correlated with one-time Aperiodic
job requests. With careful models describing static slack,

correctness guarantees can be made to those aperiodic jobs

if their behaviors (e.g., worst-case execution time) are known.

b) Self-Suspending Tasks. In the era of the Internet of

Things and Deep Learning, real-time tasks communicate with

external devices (such as solid-state/ magnetic disks and

network cards) or leverage accelerators (such as GPUs). Such

interactions often introduce self-suspension delays. In general,

modeling such ‘unavailability’ with additional execution re-

quirements can lead to significant resource capacity waste [9].

A moment’s thought would convince the reader: multiple tasks

may simultaneously suspend but can never execute together

upon a uniprocessor platform. Unfortunately, classical worst-

case response time and schedulability analyses, such as the

critical instant theorem [19], Time-Demand Analysis [17], or

the demand bound function [4], do not apply to real-time

workloads with self-suspension, and has been demonstrated

to be prone to flaw [9]. The study of static slack can be very

powerful in handling some sub-cases for self-suspension tasks.

We can tolerate early self-suspensions from all tasks with per-

task static slack, while with system-level static slack, we may

handle dynamic self-suspensions.

c) Handling Task Overrun without Dropping any Task
in Mixed-Criticality Systems. As proposed by Steve Vestal,

mixed-criticality systems [25] have two parallel components

to its temporal correctness guarantees: the correctness criteria

(of the workload) has to be met in low criticality mode

as well as in high criticality mode. Generally, in the high

criticality mode, there is some additional workload to be

scheduled and with hard deadlines. Unlike most existing work

in mixed-criticality that sacrifices correctness guarantees to

less important workload (in the high criticality mode), we

could maintain the execution budget for all workloads even

when some critical tasks overrun by considering the problem

in terms of static slack. For instance, a portion of the available

static slack in the low criticality mode can be utilized to satisfy

the additional workload without affecting the correctness of

any task in the system.

Since static slack can be leveraged as a common resource for

multiple important aspects of real-time systems, it is worth in-

vestigating. Despite several foundational works on calculating

static slack [11], [24], [10], this work adds a novel and unique

approach by studying its relationship with WCRT directly

from a per-task perspective. From a system-wide perspective,

we propose a novel Sporadic P-Server that calculates the

minimal guaranteed static slack for a schedulable workload

under Earliest Deadline First (EDF) and describe techniques

to apply such a server to handle additional workloads or

suspensions.

Section II formally describes the models and notations,

after which we answer the following research questions in

Section III: (i) Given any non-tight EDF-schedulable task

set (where jobs always finish before the deadlines), can we

systematically calculate a minimum available static slack? (ii)

If so, what could be the slack availability pattern—Is it per-

task or per-system (hyperperiod)? Is it periodic or aperiodic?

(iii) What would be the usability conditions of slack; i.e., can

one leverage slack at any time in the window?

Specifically, the contributions of Section III are two folds:

(i) we establish a link between EDF WCRT analysis and

per-task available static slack1 in the beginning part of its

scheduling window, and prove its correctness; (ii) we propose

to capture static slack as a function of time in a novel

sporadic P-Fair-style server form named Sporadic P-Server,

and establish the corresponding server calculation algorithm

and prove its correctness and tightness.

Section IV further demonstrate several use-cases for static

slacks in (i) how to consume the budget of Sporadic P-

Server and how to replenish in order to handle the aperiodic

jobs with hard deadlines; (ii) handling task self-suspensions

both offline (restricted to early suspension only that appears

before calculation) and online (with known total suspension

length per task but arbitrary suspension window numbers and

locations); and (iii) dealing with task overrun without dropping

workload in mixed-criticality systems.

Since the proposed slack stealing approach is a ‘one-size-

fits-all’ solution for multiple problems, we do not expect

it to outperform the state-of-the-art methods in each of the

application problems separately in general. However, for sev-

eral sub-cases with certain additional restrictions, the pro-

posed approach outperforms state-of-the-art methods in each

aforementioned application domain. Section V describes these

experimental comparisons in sub-cases of those applications to

show the applicability and flexibility of the proposed approach.

Section VII concludes the work and points out several future

research directions.

1Note that per-task static slack (in short, static slack, or slack) in this paper
is different from per-job laxity/slack in the existing literature. The static slack
is an offline worst-case parameter and must be safe for “stealing” from all
jobs’ perspectives, not only for the job/task being considered. For example,
in the EDF schedule of the task set in Table I shown in Figure 2, Slack of τ2
is 2. Although it has a laxity or online slack of 3 at time zero, there can be
deadline miss (for τ1) if we set τ2 to be ineligible for three-time units upon
release, although τ2,j has 3 units of laxity for any j.

II. MODEL, NOTATIONS, AND PRELIMINARIES

For the real-time scheduling problems considered in this

work, we use a 2−tuple 〈J ,Sched〉, where the first term de-

notes the workload and the second term denotes the scheduling

algorithm used. Collectively, the 2−tuple is a valid system if

J is schedulable by the Sched. Note that we consider the

workload to be a set of jobs while they can be ‘released’ by

a set of tasks. This paper focuses on a uniprocessor system

with preemptive schedulers.

A. Workload and Optimality of EDF

Consider a job set J with N jobs, each job Jk ∈ J is

represented by a 3-tuple Jk = (rk, dk, Ck), where rk is the

release time of the job, dk is the absolute deadline of the job

(by which it must finish its execution), and Ck is the WCET.

In real-time systems, pieces of code are often repeatedly

executed. Thus we also consider sporadic task set T with n
tasks, where each task τi ∈ T is represented by a 3-tuple

τi = (Ci, Ti, Di) (1)

where Ci is the WCET of the task, Ti is the minimum inter-

arrival time between consecutive job releases, and Di is the

relative deadline of the task. The hyperperiod of the task set

is H . The deadlines are assumed to be constrained deadlines,

i.e., Di ≤ Ti, ∀i.
Since the focus of this paper is to ‘steal’ slack from an

existing system, we are only interested in feasible task sets.

According to Theorem 1 on the optimality of EDF, we as-

sume the considered workload is schedulable by (preemptive)

EDF scheduling algorithm upon a uniprocessor platform. In

plain words, Theorem 1 tells us for any workload (with no

suspensions or predecessor constraints), if there is a way to

construct a correct schedule, then it would be schedulable

under preemptive EDF.

Theorem 1. [19] [15] When preemption is allowed and jobs
do not contend for resources, the EDF algorithm can produce
a feasible schedule of a set J of jobs with arbitrary release
times and deadlines on a uniprocessor if and only if J has
feasible schedules.

Remark 1. Note that J is any feasible set of jobs—these
jobs could be generated by periodic or sporadic tasks (with
implicit, constrained, or arbitrary deadlines), or they could
be ‘one-shot’ jobs without a notion of recurrences. However,
suspensions are not allowed.

Remark 2. Note that deadline tie-breaking rules do not affect
the optimality of EDF. However, for consistency and easier
applicability, this paper assumes that jobs with smaller task
index values will be prioritized when jobs of the same absolute
deadline compete for resources.

During run-time, the tasks represented by the task model

release a potentially infinite sequence of jobs. However, within

a hyperperiod, the total number of jobs is finite. We use τi,j
to denote the jth job released by task τi, released at time ri,j ,

and its absolute deadline becomes di,j = ri,j +Di.

TABLE I: Workload considered in Example II.1

Ci Ti Di Ri Si = Di −Ri

τ1 1 3 3 1 2
τ2 2 5 5 3 2
τ3 1 10 8 5 3

At the task level, the WCRT Ri of any task τi indicates how

long in the worst case (∀j) it would take for τi,j to finish its

execution from its release. By worst, we mean under all release

patterns and among all the jobs released by this task. The

WCRT can be calculated using EDF response time analysis

proposed by Spuri [22]. Techniques such as QPA [26] can

also be adapted to calculate WCRT more efficiently.

B. Static Slack

An important requirement of all schedulable task sets is that

for each task τi, its WCRT cannot exceed its relative deadline,

i.e., Ri ≤ Di. We define the difference between the deadline

and WCRT as the static slack Si of the task τi, i.e.,

Si = Di −Ri ≥ 0, ∀i. (2)

It somehow represents the per-task spare time from a

system’s perspective and is different from dynamic slack or

laxity, as stated in Footnote 1. We further explain why these

spare resources are defined as static slack with the following

motivational example.

Example II.1. Consider a sporadic task set τ with three tasks.
The task parameters are as shown in Table I. Assuming the
(classical) EDF scheduling policy, these tasks’ WCRT can be
analyzed and are shown in the table. Each task has a slack
of either 2 or 3 based on the definition Si = Di − Ri.
Let us consider a modification to the scheduler where each
of the released jobs is not eligible (i.e., added to the ready
queue) immediately, but rather after Si = 2 time units.
Correspondingly, each released job instance has a delayed
deadline (for priority ordering purposes) that is Si time units
beyond its original deadline. The task set is then scheduled
using EDF based on their delayed deadlines (in gray). The
resulting schedule is presented in Figure 1. In the figure, the
gray cross-hatched represents the idle times caused by such
delay/suspension. Notice that although we propose to postpone
all deadlines by 2 to 3-time units, all jobs meet their original
(non-delayed) deadlines (in black).

Note that if all jobs are following the original deadlines (in
black), the system will still be schedulable under EDF (as the
priority order of any pair of jobs remains the same as before).
In this situation, one may ignore the delayed deadlines (in
gray) and treat the delayed release times (in gray) as the time
that a job becomes eligible in Figure 1. The demonstrated
schedule remains unchanged and correct.

This example demonstrates the maximum amount of time

each job can be delayed from execution without violating

its deadline guarantees. Since we can leave the computing

resources unused without violating any deadlines, we consider

the delay to be the static slack (or, in short, slack) time of

the task. For the sake of convenience of discussions in later

sections, we define a concept now:

Release Slack. Release slack of a job represents the length

that the job may not be eligible for execution since its release

without affecting system schedulability. A release slack of a

task means that each of its released job has at least such

amount of release slack. We later prove that upon such

(early) suspension, the original deadlines are satisfied for all

schedulable task sets.

Section III-A demonstrates how release slack can be safely

used by other higher-priority workloads. However, this ap-

proach only provides pre-fixed windows of slack, which can

be difficult to leverage. In Section III-B, we propose to transfer

release slack into a set of Sporadic P-Servers to capture the

system slack. Real-time tasks can still be correctly scheduled

following the EDF policy, despite the additional workload

from the servers. Additionally, since Sporadic P-Servers are

sporadic, one can leverage not only the release slack but also

the static slack within the entire scheduling window.
Before going into details about the theory and algorithm,

we demonstrate such an approach at a high level using the

following example.

Example II.2. Let us consider the same task set τ from
Example II.1 with parameters described in Table I. It is
possible to calculate the time windows in a hyperperiod where
the additional server tasks, each with an execution budget of 1
time unit, can be allowed to execute safely. For the considered
task set, the hyperperiod is 30, and the relative deadlines of
the five server tasks are 1, 2, 11, 17, and 22, respectively. The
server tasks may release sporadically and will be scheduled
using EDF policy, just the same as the rest of the tasks. The
resulting schedule is presented in Figure 2. The schedule varies
from the schedule in Figure 1, yet no task misses any deadline
while following EDF. Note that we can only demonstrate the
worst-case from schedulability perspectives that all tasks are
synchronously released, and the remaining jobs follow a strict
periodic release manner. The correctness of other situations
will be proven in Section III-B (majorly due to the whole
system, including server tasks can be treated as a sporadic
task system from a schedulability perspective).

III. SLACK CALCULATION AND CONSTRUCTION

In this section, we propose two methods to capture the

available slack of any given task set. Subsection III-A shows

that any EDF schedulable system can handle (for free) a

release slack of up to Si time units of each job τi,j . However,

this is a static slack at the beginning of jobs’ scheduling

windows that may not well handle workloads or delays online

at arbitrary time. To address this, Subsection III-B captures

the slack in the form of Sporadic P-Servers, which can be

leveraged dynamically during run time in a sporadic manner.
For the sake of convenience of future discussions, we

propose two new schedulers for any valid system 〈T ,EDF〉:
a) EDF-R Scheduler. For each task τi ∈ T , we apply an

earlier (virtual) deadline as its worst-case response time Ri

original release time delayed release timeoriginal absolute deadline delayed absolute deadline

Fig. 1: Schedule of jobs released by the task set in Table I within a hyperperiod, with delayed release times and deadlines following the EDF policy.

Fig. 2: EDF schedule within a hyperperiod for the set of jobs released by the task set in Table I, in addition to five independent slack (server) tasks (or
jobs, as their periods are the same as the hyperperiod) with constrained deadlines at 1, 2, 11, 17, 22, respectively.

(≤ Di, due to the feasibility assumption). When the system

is scheduled using EDF, workloads in the ready queue are

prioritized according to their virtual deadlines. The virtual

absolute deadline d̄i,j of a job τi,j released by τi at ri,j is

d̄i,j = ri,j + Ri. The EDF with WCRT (EDF-R) scheduler

assigns a higher priority to the job with the smaller d̄i,j .

b) EDF-D Scheduler. For any job τi,j ∈ T released at time

ri,j , we define its eligible time r̄i,j = ri,j + Si, where Si =
Di−Ri is the static slack of τi. The absolute deadline of τi,j
is di,j = ri,j +Di. As opposed to classical EDF scheduling

where the job is considered eligible for execution at release

time ri,j , the EDF with Delay (EDF-D) scheduler considers

the job eligible for execution at r̄i,j . Among all the eligible

jobs, EDF-D scheduler executes the one with the smallest di,j .

Note that given any job set, the schedule under EDF-D
will be identical to that under EDF-R if for each job τi,j , the

release time is delayed by Si time units. This way, they share

the same deadline settings of all jobs (Si+Ri for EDF-R and

Di for EDF-D since τi,j’s release), and also the same eligible

window and both follow EDF2.

Example III.1. Consider the same task set τ from Exam-
ple II.1 with parameters described in Table I. Under EDF-R
scheduler, it is essentially the same as considering a new task

2Note that although the actual schedule under EDF-D may be identical as
considering each job τi,j suspending itself for Si time units upon release,
EDF-D is a system scheduling behavior that enforces such delay while
handling jobs/tasks without suspension. This scheduler perspective (instead of
task perspective) is essential for the proof in Section III-B, which leverages
the optimality of uniprocessor EDF scheduler (of normal sporadic tasks only).

set with further reduced deadlines of D′
1 = 1, D′

2 = 3, D′
3 =

5, with all other parameters unchanged, scheduled under EDF,
as depicted in Figure 3. Figure 4 demonstrates how this task
set (using original deadlines) would be scheduled under the
EDF-D scheduler.

Note that compared to the schedule in Figure 1, although

both are enforcing identical delays and following EDF, the

deadline settings are not the same: the schedule in Figure

1 following delayed deadlines (gray), while EDF-D follows

the (earlier) original deadlines (dark). Later on, we will

formally show that such modification of deadlines will not

affect schedulability/correctness due to Theorem 1, although

the actual schedule may be different.

A. Minimum Static Slack

We say a job is ineligible if it is released, but the scheduler

chooses not to dispatch it for execution regardless of the

priority and processor availability. We now prove that in a

feasible system, each job τi,j can be ineligible for up to

Si = Di − Ri time units upon its release without affecting

the (preemptive) EDF schedulability of the whole system.

As illustrated in Figure 5, the whole proof consists of three

“transition” steps:

(i) Lemma 1 shows that it is safe to “shrink” all deadlines

from Di to Ri, and the WCRT of each task will not increase.

(ii) Lemma 2 shows that after shrinking all the deadlines (to

Ri time units apart from release), one can safely “delay” any

subset of jobs’ release (which is equivalent to suspending the

job from the workload perspectives) by exactly Si time units.

original release time original absolute deadline early absolute deadline

Fig. 3: Schedule of jobs released by the task set in Table I within a hyperperiod, following the EDFR policy.

ineligibleoriginal release time original absolute deadline

Fig. 4: EDFD Schedule of jobs released by the task set in Table I within a hyperperiod. Note that this schedule
is identical to the one in Figure 1, which follows a different deadline setting. It would also be identical to the
EDFR schedule if each job is ineligible for Si time units since its release.

Lemma 1

Lemma 2

Lemma 3

Fig. 5: Illustration of the proof flow
of Theorem 2.

The system will still be schedulable under EDF by considering

the new deadline(s) as Ri time units after the delayed release,

which would be the same as the original deadline upon regular

release (Di = Si +Ri). Equivalently speaking, each task can

be ineligible for exactly Si time units right after its release

without affecting system correctness.

(iii) Lemma 3 shows that a release delay of anywhere be-

tween 0 and Si time units will not affect the EDF correctness

without modification of the deadlines, as it can be considered

as an “early” release comparing to the previous case (with

exactly Si time units of release delay). Equivalently speaking,

each task may be ineligible for up to Si time units right after

its release without affecting system correctness. Note that the

absolute deadline settings for all jobs remain unchanged for

this latter transition step, and job priorities are still ordered by

those unchanged deadlines.

Lemma 1. If a task set T is schedulable by EDF, then T is
schedulable by EDF-R.

Proof. We know that T is schedulable by EDF. Let A
represent the schedule generated by EDF. The worst-case

response time of an arbitrary job τi,j in A is at most Ri. Now

consider the new task set T ′ with shrunk deadlines D′
i = Ri.

We know that there exists a correct schedule, A, for this new

set. According to Theorem 1, when there is a feasible schedule,

following EDF can guarantee all the deadlines to be met (for

the new task set, T ′). Since T ′ has “shrunk” deadlines of

D′
i = Ri for any i, EDF for this new task set is exactly

EDF-R for the original task set (by the definition of EDF-R

scheduler), which must be correct.

Lemma 2. If a task set T is schedulable by EDF-R, then
T is schedulable by EDF even if each job τi,j is ineligible

for exactly Si time units right after its release. I.e., T is
schedulable by EDF-D.

Proof. Note that EDF-R for the original task set is exactly

EDF for the new set with virtual deadlines of D′
i = Ri.

From the fact that synchronous periodic release of all tasks

provides the worst-case scenario from EDF schedulability

perspectives [4] and EDF already provides a correct schedule

for the new task set, we know that any delay of releases to

the new set can be considered as a sporadic release pattern,

and will be schedulable by EDF3.

Note that a release delay of exactly Si time units will cause

the delay of the new job’s deadline from D′
i = Ri into Ri+Si

time units from its original release, which matches the deadline

Di = Ri + Si of the original task set. As a result, T is

schedulable by EDF-D.

So far, we have shown that when the set is scheduled by

EDF following original deadlines, each job τi,j will receive

sufficient execution by its deadline under two situations: (i)

immediately ready for execution upon release (and meeting a

deadline of Ri), and (ii) be eligible after exactly Si time units

upon release (and meeting a deadline of Di = Si +Ri). The

3This is also the reason why demand bound function based schedulability
test is necessary and sufficient for both synchronous periodic task sets and
also sporadic task sets under preemptive EDF.

following lemma further relaxes the ability to tolerate such

ineligible periods into anywhere between 0 and Si.

Lemma 3. If a task set T is schedulable by EDF-D, it
is schedulable by EDF if each job τi,j becomes eligible at
anywhere between 0 and Si time units since its release.

Proof. We know that T is schedulable by EDF-D. Let A
represent this schedule. Note that under this schedule, each

job τi,j is ineligible for exactly Si time units right after its

release.

Now consider a new situation when some jobs become

eligible earlier (less than Si from its release)—consider this

as a new task set and treat the eligible time as the release

time of each job in the new task set. Compared to T , each

job’s scheduling (or eligible) window is either enlarged (with

a potentially earlier release time) or unchanged (as deadlines

remain the same). As a result, A is still a correct schedule for

this new task set.

According to Theorem 1, when there is a feasible schedule,

EDF can guarantee all the deadlines to be met for the new

task set. Since the absolute deadlines remain unchanged during

this transition, which is Di time units since the release of τi,j ,

EDF can guarantee all the deadlines to be met for T as well,

although each job τi,j may be ineligible for up to Si time units

since its release.

Theorem 2. If a task set T is schedulable by EDF, then under
the same deadline setting, EDF will guarantee all deadlines
being met when each job τi,j is “ineligible” for a period of
anywhere between 0 and Si time units since its release, where
Si = Di −Ri and Ri is the WCRT.

Proof. It follows immediately from Lemmas 1, 2, and 3.

In plain words, each job τi,j’s static slack (Si = Di − Ri)

can be freely “leveraged” at the beginning of its scheduling

window without affecting the correctness of the whole system.

B. Static Slack as a function-of-time in Sporadic P-Server
Form

One cannot always ensure that the additional suspension

or aperiodic workload will align well with the beginning

part of scheduling windows of all jobs. In those situations,

Theorem 2 can help little in providing the required slack. As

a result, and also motivated by Example II.2 and Figure 2, this

subsection seeks to formulate the slack in the form of sporadic

servers [21], [13]. In addition, motivated by the optimality of

P-Fair [5], our server will be represented as multiple ones,

each with an execution budget of 1 time unit. For these

reasons, we name it Sporadic P-Server.

Sporadic P-Servers are sporadic ones such that the start-

ing point of consumption can be freely postponed for

each server, providing sufficient freedom to additional work-

load/suspension requests online. While from a system schedu-

lability point of view, sporadic servers can be treated safely

as ordinary sporadic tasks as they were designed carefully

to overcome the additional blocking time other servers may

impose on lower-priority jobs—see, e.g., Chapter 7.3.3 of

[20] for proofs and its schedulability analysis under dynamic

priority settings.

Definition 1. For any valid system 〈T ,EDF〉, let us consider
a corresponding new system model (T SP,EDF) such that

• The periodic tasks τSPi ∈ T SP have no offset and are
released Synchronously at time t = 0.

• Each sporadic constrained deadline task τi ∈ T is
replaced with a strictly Periodic task τSPi in T SP whose
relative deadline remains unchanged.

From Lemmas 1 and 2, we know that the system

〈T SP,EDF-D〉 has a valid schedule—denoted as D.

For the task set T SP, we define a static slack budget B:

Definition 2. Static slack budget B is the set of idle instants
in the schedule D generated by 〈T SP,EDF-D〉.

Algorithm 1 presents a pseudocode to calculate the static

slack budget B for T SP. The budget B is calculated by

emulating the EDF-D scheduler for a given task set (in its

synchronized and periodic release form) and storing all the

idle instants (where there is no task available for execution)

until the hyperperiod.

Specifically, first, a for-loop initializes the tasks for exe-

cution. Next, a while-loop iterates through the hyperperiod

H . Within the while-loop, tasks that are both eligible and

pending execution are added to a priority queue according to

their absolute deadlines and index. If the queue is empty at

time instant x, then x is idle; otherwise, the task with the

earliest deadline is scheduled, and its budget is decremented.

Finally, a for-loop re-initializes the tasks for future release.

The algorithm returns the set of idle points.

Fact 1. The slack budget B returned by Algorithm 1 is the set
of idle points in D within a hyperperiod.

For a valid system 〈T SP,EDF-D〉, we define a set of

Sporadic P-Server tasks Ψ and their equivalent periodic tasks

ΨSP as follows:

Definition 3. Ψ is a set of independent Sporadic P-Server
tasks with unit execution time and have a period equal to the
hyperperiod H of T SP. Formally,

Ψ = {(1, H, δ) | δ ∈ B} (3)

Definition 4. ΨSP is a set of independent periodic tasks with
task parameters identical to their corresponding task in Ψ.
Additionally, the periodic tasks ψSP ∈ ΨSP have no offset and
are released synchronously at time t = 0.

It is trivial that under EDF-D schedule of T SP, the first

mini{Si} time units will always be idle. As a result, the

following fact holds:

Fact 2. There are Smin number of Sporadic P-Server tasks
with relative deadlines no greater than Smin, where

Smin = min
i
{Si}.

Algorithm 1: Static slack budget for the task set T SP

Input : Task set T SP with n periodic tasks, task-level slack
values {Si | ∀τSP

i ∈ T SP}
Output: Static slack budget B
H ← lcm({Ti | τi ∈ T SP}) ; // Hyperperiod
B ← φ ; // Initialize set
for τSP

i ∈ T SP do
τSP
i .s ← Si ; // Available slack
τSP
i .p ← Ti ; // Time to next release
τSP
i .d ← Di ; // Absolute deadline
τSP
i .c ← Ci ; // Execution budget

end
x ← 1;
while x ≤ H do

Q ← φ ; // Initialize priority queue
for τSP

i ∈ T SP do
if τSP

i .s ≤ 0 ∧ τSP
i .c > 0 then

Q.put(〈τSP
i .d, i〉);

end
end
if Q is not empty then

τSP
i .d, i ← Q.get(); τSP

i .c ← τSP
i .c− 1;

else
B ← B ∪ {x} ; // Idle instant

end
for τSP

i ∈ T SP do
τSP
i .p ← τSP

i .p− 1; τSP
i .s ← τSP

i .s− 1;

if τSP
i .p = 0 then
τSP
i .s ← Si; τSP

i .p ← Ti;

τSP
i .d ← Di; τSP

i .c ← Ci;
end

end
x ← x+ 1;

end
return B

Example III.2. Consider the same task set τ from Ex-
ample II.1 with parameters described in Table I. Applying
Algorithm 1 will yield a slack budget of B = 1, 2, 11, 17, 22.

As a consequence, the system can handle additional Spo-
radic P-Server tasks of ψ1 = (1, 30, 1), ψ2 = (1, 30, 2),
ψ3 = (1, 30, 11), ψ4 = (1, 30, 17), ψ5 = (1, 30, 22). Note that
Smin = 2, and there are two servers with relative deadlines
no greater than 2, as illustrated by Figure 2.

Lemma 4. The task set T SP ∪ΨSP has a feasible schedule.

Proof. From Fact 1, 〈T SP,EDF-D〉 is valid and has a schedule

D. By construction, B is the set of idle points in schedule D.

By definition, ΨSP has a task with deadline x for each idle

instant x ∈ B with unit execution time. There is exactly one

job ψSP
i,j released by ψSP

i ∈ ΨSP. By scheduling the server

job ψSP
i,j within 1 time unit of its corresponding deadline x,

ψSP
i,j meets its deadline x. All jobs released by periodic tasks

over an hyperperiod in the system meet their deadlines, and

therefore the lemma follows.

Lemma 5. The task set T SP ∪ΨSP is schedulable by EDF.

Proof. From Lemma 4, T SP ∪ ΨSP has a feasible schedule.

Following the optimality of EDF from Theorem 1, the taskset

T SP ∪ΨSP is also schedulable by EDF.

Theorem 3. The taskset T ∪Ψ is schedulable by EDF.

Proof. From Definition 4, ΨSP is the periodic equivalent of Ψ.

From Definition 1, the task set T SP is the periodic equivalent

of T . From Lemma 5, the set of periodic tasks T SP ∪ ΨSP

is schedulable by EDF. Since a synchronous periodic release

represents the worst-case situation from EDF schedulability

perspectives, the set of sporadic tasks T ∪ Ψ is schedulable

by EDF.

Computational Complexity. First, we need to calculate the

static slack Si for each task τi. This can be computed in

pseudo-polynomial time. Next, we need to compute the static

slack budget over the hyper-period H . Unfortunately, if the

periods of the tasks are co-prime, the hyper-period H could be

exponentially large in the worst-case scenario. As a result, the

computation of the Sporadic P-Server could take exponential

time in the worst case. However, in practice, most workloads

have harmonic periods, which means that the periods are co-

factors of the largest period. This makes the overall complexity

of the algorithm pseudo-polynomial.

Remark 3. Theorem 3 guarantees that Sporadic P-Servers are
safe to be included in the system, as long as the replenishment

rule is followed within the sporadic server ‘umbrella’, such
as the simple sporadic server [21] and sporadic background
server [13]. Since each Sporadic P-Server task has an execu-
tion budget of only 1, and we assume an integer timing model
in this paper, the consumption rules can be much simpler
than existing ones. In Section IV-A, one potential consumption
method for aperiodic jobs is discussed in detail.

Remark 4. From the way Sporadic P-Server is constructed,
we know that, in the worst case, these servers can provide
the desired one-unit supply right before their deadline. As a
result, the construction approach (Algorithm 1) is tight, which
means that any attempt to shrink the deadline or enlarge the
budget of any server task would lead to an infeasible system.

System Implementation and Possible Overheads. Although

the sporadic P-servers are single-unit ones, their periods are

relatively large (hyper-period), and thus, it would not create

a huge number of preemptions during each period of any

task. In actual implementations, to allow extended executions,

one can trace the use of server jobs and their deadlines in

the background without creating actual unit-length jobs. This

avoids additional context switches, which contribute to the

majority of preemption overheads. For example, in Fig. 4,

extended execution of any job at Timespots 10, 16, and 21 (in

gray) may not cause an additional context switch. Moreover,

this concern only applies to the case for Application D, which

discussed the usage of Sporadic P-server for overrun in mixed-

criticality scheduling (ref. IV-D). However, for Applications

B & C (self-suspension) (ref. IV-B and IV-C), the calculated

slack can be directly applied to the schedulability test, and

during runtime, there is no server actually involved.

IV. APPLICATIONS

We now discuss how to leverage the proven theoretical

results in handling several important application scenarios.

A. Server Consumption and Handling Aperiodic Jobs

Most existing server approaches focus on the direction of

each single server, potentially with a large capacity, accommo-

dating multiple aperiodic jobs. By contrast, the servers created

by our construction scheme described in Sec. III-B work in

the other direction that each aperiodic job receives budgets

from multiple server tasks to satisfy its execution requirement.

Specifically, Algorithm 1 results in a set of sporadic servers.

For each server task, the budget is always the exact 1 time

unit and the period of H , which is the hyperperiod of the

real-time sporadic tasks for which we have calculated the

slacks. Consequently, an aperiodic job with an execution time

greater than 1 and a relative deadline at most H—a typical

case of aperiodic jobs arriving into the system—would need

to consume budgets of multiple servers.

In order to apply multiple such servers to every single

aperiodic job in a predictable and systematic manner, two

questions must be addressed: (i) admission control: whether

an arriving aperiodic job can be safely admitted to the system

to meet its deadline without affecting the deadline guarantees

of existing sporadic tasks and previously admitted aperiodic

jobs; (ii) consumption rule: if yes for (i), which of the servers

should be consumed by this aperiodic job being admitted.

To answer these two questions, we propose an aperiodic job

admission algorithm presented as Algorithm 2. Please note that

we assume discrete time, i.e., time parameters are all integers.

Therefore, the budget of each server invocation must be used

up once consumed. This is because of the single-unit budget

per server setting by construction, and results in a binary state

of each server for any given aperiodic job (use up its budget or

do not use its budget at all), assuming that the relative deadline

of this aperiodic job at most H . This is also an assumption

that Algorithm 2 makes. We will discuss handling aperiodic

jobs with relative deadlines exceeding H later by Remark 5.

Since our constructed servers are implemented as sporadic

servers, they do not need to be invoked if not to be consumed,

but once invoked, the next invocation cannot happen within

a server period (H). Therefore, when an aperiodic job is

arriving, it is important to know what is the earliest time for

the next invocation of each server. For this purpose, an system-

wide array replenish[] is maintained by Algorithm 2 whenever

an aperiodic job is arriving.

With replenish[i] initialized as 0 for all i when the system

starts (not when each time Algorithm 2 is called), at any time

instant t, the later one of replenish[i] and t is the earliest time

when server i can make a new invocation. Moreover, if server

i is invoked at time t∗, it can only guarantee to provide one

unit of budget by time t∗ + δi, as δi is the relative deadline

of server i. Therefore, an aperiodic job arriving at time t
with an absolute deadline of d can only receive guaranteed

budgets from servers such that max{t, replenish[i]}+ δi ≤ d.

Furthermore, note that, in general, the shorter the δi, the more

Algorithm 2: Aperiodic job admission algorithm.

Input : Current time t, where an aperiodic job arrives;
WCET of this job c;
absolute deadline of this job at time d;
number of server tasks n ← |Ψ|;
relative deadlines of server tasks
{δ1, δ2, . . . , δn}, in non-decreasing order.

Output: Whether this aperiodic job is admitted to the
system, and if yes, the indices (W) of the server
tasks this aperiodic job uses.

Read replenish[1..n] as rep[1..n];
for i ← n downto 1 do

if max{t, rep[i]}+ δi ≤ d and c > 0 then
W ← W ∪ {i};
rep[i] ← max{t, rep[i]}+H;
c ← c− 1;

end
end
if c = 0 then

Write rep[1..n] into replenish[1..n];
return (TRUE, W)

else
return (FALSE, ∅)

end

“powerful” the server i to provide the budget in an invocation.

For example, δi = 1 means that the server can provide one

unit of budget immediately upon its invocation. Based on this

observation, we prioritize consuming the servers with larger δi
as long as they can provide a guaranteed budget at or before

the deadline of the arriving aperiodic job, such that more

“powerful” servers remain available to subsequent aperiodic

jobs potentially with tighter deadlines. The ideas described in

this paragraph yield Algorithm 2. In practice, these servers

can be implemented as sporadic tasks, which may be blocked

until triggered for release by an incoming aperiodic job. The

complexity of identifying the release of the required server

would then be comparable to that of a normal sporadic task

release, which follows a scheduling policy such as EDF or

FIFO.

Remark 5. Algorithm 2 handles aperiodic jobs with the
assumption that their relative deadlines are at most H . Given
that H is the hyperperiod of all real-time tasks in the system,
we believe this assumption is reasonable for “real-time”
aperiodic jobs. Nonetheless, we can still allow aperiodic jobs
with relative deadlines exceeding H in the following manner:
when such an aperiodic job arrives at time t that has an
absolute deadline at d > t+H , we do not allow it to use any
server until time d−H but just schedule it in the background
(i.e., leveraging idle instant without charging servers). At the
time d −H , we treat it as a new arrival of an aperiodic job
with the remaining execution, and Algorithm 2 applies.

B. Application: Early Self-Suspension

Self-suspension behavior in real-time tasks due to I/O com-

munication or offloading workload to accelerators is modeled

using self-suspension task models such as dynamic and seg-

mented self-suspension models. The dynamic self-suspension

model is represented by a 4-tuple:

τi = (Ci, σi, Di, Ti), (4)

where σi represents the worst-case self-suspension time.

The segmented self-suspension model uses an array

(C1
i , σ

1
i , C

2
i , σ

2
i , · · · , Cmi−1

i , σmi−1
i , Cmi

i) to denote the al-

ternating mi computing and mi − 1 suspension segments.

The segmented model is a more precise model, in which∑mi

k=1 C
k
i = Ci and

∑mi−1
k=1 σk

i = σSP
i .

Corollary 1. For a set of n self-suspending sporadic tasks,
let Ri represent the worst-case response time of τi when
scheduled using EDF with σi (or

∑
∀k σ

k
i) ignored. Then, the

self-suspending tasks are schedulable under EDF if suspension
behaviors always occur within Si time units since τi,j’s release
for any job (∀i, j).

Proof. This trivially follows from Theorem 2 and the fact

that Cmi
i ≤ Ci: in the worst case when no execution is

conducted during the ineligible window, each job can still meet

its original deadline by following EDF-D, which prioritizes

jobs in the same order as EDF.

Although this corollary provides suspension allowance si-

multaneously to all jobs/tasks, suspensions can only occur

during the allowed ineligible window at the beginning of

each job’s scheduling window. This is why we named this

subsection “early” self-suspension. A practical application for

such a scenario is the I/O read/write operations that are

required to be performed before the start of each execution

of a task in real-time systems.

C. Application: Arbitrary Self-Suspension

To overcome the limitations in handling early-only

self-suspensions, this subsection studies “arbitrary” self-

suspension, where the suspension can occur during any execu-

tion phase of a task. We focus on the dynamic self-suspension

model defined in Equation 4.

First of all, here is some bad news:

Theorem 4. Even if there is only one self-suspending task
in a set T , the system may miss a deadline if the arbitrary
self-suspension is cumulatively capped by Smin time units.

Proof. Consider the task set in Table I with τ2 being the only

self-suspending task with σ2 = Smin = 2. See Figure 6 for

an illustration of the schedule under EDF (with synchronous

release) that the second job of τ2 misses its deadline at 10.

This indicates that there is little hope in serving self-

suspensions from a task’s perspective. It matches existing

results in self-suspending task scheduling well and reminds us

how “evil” arbitrary suspension can be for real-time schedu-

lability analysis [9]. As a result, we switch our focus to

providing guarantees at the hyperperiod level in this subsection

and also the following one (which handles task overrun).

original release time original absolute deadline
self-suspension

Fig. 6: EDF schedule within [0,11] for the set of jobs released by the task
set in Table I, with each job released by τ2 suspending for σ2 = 2 time units
arbitrarily and cumulatively. τ2,2 misses its deadline at time 10.

Corollary 2. Within each hyperperiod, the system can tolerate
an accumulated self-suspension of up to Smin = mini{Si}
time units at any time point.

Proof. From Fact 2, there are Smin number of unit servers

with deadlines shorter than any non-server job (i.e., Smin ≤
Si < Di). From a scheduling perspective, it is always safe

to treat suspension as execution [9]. Thus, upon any job’s

release, we can leverage Algorithm 2 to assign σi of these

“short-deadline” servers to handle the additional “execution”

requirement upon the job’s release time—these servers will be

scheduled before the job’s deadline, and thus the additional

“execution” requirement will finish on time. In total, these

servers can handle an accumulated self-suspension of up to

Smin time units at any time point within a hyperperiod.

When the accumulated suspension exceeds Smin, one may

always consider suspension as additional workloads and apply

the exact server-charging approach described in Algorithm 2

for more precise handling. If the suspension patterns lie within

a certain range, the additional suspension requirements of up to

|B| time units can be tolerated within a hyperperiod. Note that

at any time instant, if multiple jobs suspend simultaneously,

only one unit of server should be charged.

The provided support to arbitrary suspension is reasoned

within a hyperperiod, which seems limited. However, it can be

helpful in many situations for modern systems where compu-

tations and communications (suspension) are tightly correlated

over tasks. For example, consider a component corresponding

to a sensor triggered every 10 ms; its suspension is triggered

only when any of its intermediate results are needed by another

component triggered every 200 ms—which could be at the

hyperperiod scale. As a result, although this 10 ms−period

task would need to be modeled as a self-suspension task, it

may suspend very few times within a hyperperiod and can

be well-handled by the approach described in this subsection.

Unfortunately, the traditional self-suspension task model as-

sumes it suspends every time, and such pessimistic modeling

could lead to an infeasible system.

D. Application: Mixed-Criticality Scheduling

Mixed-criticality (MC) design allows components of differ-

ent levels of importance to be facilitated on a common system.

This can bring benefits in many aspects, such as computation

resource utilization, energy consumption, and financial costs.

However, it also comes with the potential compromise of

providing real-time correctness guarantees. To address this

issue, theory, and techniques of real-time MC scheduling have

been proposed and investigated.4

Assuming a dual-criticality system for simplicity, the most

popular MC workload/system model by Steve Vestal [25]

allows two WCET estimates, CL and CH , to each high-critical

task such that CL ≤ CH . In normal circumstances where

all tasks finish within its less pessimistic WCET CL, it is

required that all tasks must meet all their deadlines. If any

high-critical task overruns its CL, all high-critical tasks are

still required to meet their deadlines as long as they complete

within their CH WCET estimates, whereas low-critical tasks

may be sacrificed by dropping or limiting their execution

in order to “free up” sufficient computation resource for the

overrunning high-critical tasks.

Most existing work on MC scheduling makes such a mode

switch at the time when any high-critical task overrunning

CL is detected for the first time and immediately sacrifices

the low-critical tasks with the assumption that every single

unfinished or subsequent job of every high-critical task will

also overrun their CL estimate. In other words, such an

approach makes a dramatic drop in its service guarantees

to low-critical tasks even if only a single high-critical task

overruns for only one time unit. Such high sensitivity to

occasional overrunning can be annoying [12]. Leveraging

the results in previous sections, this subsection discusses a

scheme, called Slack-MC, to potentially handle high-critical

tasks overrunning their CL estimate without triggering mode

switch, while maintaining the same schedulability test for

existing deadline-driven MC scheduling approaches.

Many dynamic priority approaches use the concept of

virtual deadlines to schedule MC tasks in the normal mode,

where the virtual deadlines (at or before corresponding actual

deadlines) are required to be met for high-critical tasks. With

respect to the virtual deadlines, we can apply our proposed

methods in Sec. III to calculate the release slacks and construct

the set of slack-based sporadic servers. Then, whenever a job

of high-critical task overruns, one can treat the overrunning

workload (only the part that exceeds CL) as an aperiodic job

that is accommodated by the servers as described in Sec. IV-A,

such that system mode switch does not need to be triggered,

and if such attempt fails, the mode switch is triggered instead

to guarantee MC schedulability still.

Specifically, recall that an array replenish[] in initiated as
�0 and maintained during runtime by Algorithm 2. When a job

of high-critical task τk (with virtual deadline at time dVk) has

executed for CL
k time units but did not signal its completion

at time t∗, we construct an aperiodic job J with arrival time

4In this subsection, we assume that readers are familiar with and have
basic knowledge of MC scheduling in real-time systems. If not, we would
like to refer readers to [7] for a comprehensive review of this topic, [3] for
the specific foundation of handling MC tasks under dynamic priority settings,
and [2] for general MC framework.

t = t∗, WCET c = CH
k − CL

k , and absolute deadline at d =
dVk , where t, c, d are required input for Algorithm 2. Then,

we apply the admission control test, Algorithm 2, to J . If

Algorithm 2 returns TRUE, then the replenishment array is

updated, no mode switch is triggered, and the overrunning

portion is indeed treated as an aperiodic job; if Algorithm 2

returns FALSE, such construction of aperiodic job is voided,

and a mode switch is triggered immediately.

Corollary 3. A mode switch will not happen under Slack-

MC if the cumulative overrun amount stays no greater than
Smin = mini{Si} within a hyperperiod. Here, all Si’s are
calculated based on the virtual deadlines under normal mode
with CL

i values.

Proof. From Fact 2, there are Smin number of unit servers

with relative deadlines no greater than Smin. According to

the Slack-MC procedures described above, each task will

have a slack at least Smin time units earlier than the virtual

deadline, if no server is consumed yet. When there are k
servers consumed, active jobs can only be delayed for at most

k time units. That is, at any time a job is overrunning, if k
(0 ≤ k ≤ Smin) servers were consumed (i.e., having a future

replenish time), the virtual deadline of this job must be at

least Smin−k time units away. In other words, the constructed

“aperiodic job” representing the overrun amount must have a

deadline of at least Smin − k time units in the future. On the

other hand, since only k servers were consumed, there must be

at least Smin − k servers with δi ≤ Smin − k available (as we

consume servers with larger δi first). Therefore, Algorithm 2

must return TRUE for this constructed “aperiodic job” if its

WCET is at most δi ≤ Smin − k, which is implied by the

corollary statement that cumulative overrun amount stays no

greater than Smin = mini{Si} as a cumulative overrun amount

of k already consumed k servers.

Remark 6. Slack-MC can be applied to any deadline-driven
MC system and does not affect its schedulability test. On top of
that, it can handle limited overrun by any task (not necessarily
a high-critical one) under the normal mode without triggering
a mode switch. While if overrun exceeds the server capacity
described in Corollary 3, the system can still safely switch into
high mode on time (at or before the virtual deadline of the
overrunning job) and provide guarantees to the high-critical
tasks, just as in classical Vestal MC systems but without Slack-

MC.

V. EVALUATION RESULTS

We have discussed how the proposed static slack calculation

and stealing with Sporadic P-Server can be leveraged to

handle several application scenarios. We now examine how

it performs by comparing it with the state-of-the-art method

within each application domain.
Let us first introduce a standard metric for evaluating

workload—utilization—which is defined as the ratio of ex-

ecution time and period of a task. For instance, utilization of

task τi is ui =
Ci

Ti
, and the utilization of a task set of n tasks

is U =
∑

i={1,··· ,n} ui.

Workload Generation. For each task set, with a desired

utilization U = {u | 0.1 ≤ u ≤ 0.9}, we use the Uunifast

algorithm [6] to generate a set of utilization values for n = 10
tasks. The task period T for each task is chosen as the

product of four values randomly sampled (with replacement)

from {2, 3, 5} (such that we may get periods of, e.g., 16,

36, 54, 100, 225, etc.). We use this method as opposed to

sampling periods from log-uniform distribution to maintain a

manageable hyperperiod. All tasks have implicit deadlines.

A. Response Time of Aperiodic Jobs
For the purpose of evaluating the proposed analysis to ac-

commodate aperiodic jobs through static slacks, the commonly

reported schedulability ratio is not relevant. Therefore, we only

choose task sets that are schedulable under EDF and evaluate

the performance of accommodated aperiodic jobs using ‘re-

sponse time’ as a metric for each job. The execution time of

the aperiodic jobs is randomly chosen from the interval of 1

to 20 time units. Under each utilization setting, we generate

1000 task sets following the workload generation procedure.

For comparison, we choose ‘background server [19]’, which

schedules the jobs whenever the processor is idle and is

commonly used to serve aperiodic jobs in real-time scheduling.

We compared the proposed servers with background servers

instead of well-known sporadic [13], [21] or deferrable [23]

servers because laters do not leverage slacks. The results of the

evaluation are presented in Figure 7, which shows the response

time of the jobs normalized by their hyperperiods. We observe

that for lower utilizations (U < 0.5), although the performance

of the background server is worse, still comparable to the

proposed server. However, as utilization goes beyond 0.5, the

background server experiences a significant delay, while the

proposed server results in relatively unchanged mean response

times for the aperiodic jobs. This behavior can be explained

by the reduced availability of idle times for dense workloads.

Under such sparse idle time availability, the proposed server

allows for earlier than later consumption of these idle instants.

Comparision with CASH [8] and GRUB [18]. Experimental
setup. the experiments are conducted on 5000 task sets where

each task set consists of 5 regular hard real-time tasks and

aperiodic workload with an execution requirement of C =
Uniform(1, (1 − U) ∗ H/2), where H is the hyper-period of

the task set. To compare the performance of our algorithm

with CASH and GRUB, we run a simulation for two hyper-

periods for the same synthetic workloads for each algorithm,

including the vanilla CBS server. Observations. Fig. 8 shows

the (non-normalized) response times of the jobs of the ape-

riodic workload. CASH and GRUB are dominated in high

workload utilization, which is expected, as these algorithms

dynamically utilize the slacks, whereas our algorithm only

uses static slacks. However, in low utilization systems, our

algorithm performs similarly or better than the CASH and

GRUB. It is noteworthy that both CASH and GRUB reclaim

resources during runtime, and it is possible to implement the

Sporadic P-server with CASH complementarily to utilize both

static and dynamic slack.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization (U)

0.000

0.025

0.050

0.075

0.100

N
or
m
al
iz
ed

R
es
p
on

se
T
im

e Algorithm

Background Server

Proposed Server

Fig. 7: Comparison showing the distribution of normalized response times
(lower being preferred) for aperiodic jobs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization

0

25

50

75

100

125

150

175

200

A
v
g.

of
av
g.

re
sp
on

se

Algorithm

EDF-P-Server

EDF-CBS

EDF-CBS-CASH

EDF-GRUB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization

0

25

50

75

100

125

150

175

200

A
v
g.

of
m
ax

.
re
sp
on

se

Algorithm

EDF-P-Server

EDF-CBS

EDF-CBS-CASH

EDF-GRUB

Fig. 8: Comparison of Sporadic P-servers with CASH and GRUB for
aperiodic job scheduling showing the average response time (Fig. 8 (Top)),
and the maximum response time (Fig. 8 (Bottom)).

B. Early Self-Suspension

We consider the task model described in Equation 4 along

with a restriction on the suspension segments to evaluate early

self-suspension. The suspension occurs only at the beginning

of the job’s execution. Note that the parameters—worst-case

self-suspension time σi and the slack Si—are not directly

related to each other. We only use the Si parameter to evaluate

whether a task set is schedulable by EDF if they self-suspend

only within the first Si time units since release. Since there are

no existing works with the considered special case scenario,

we consider the state-of-the-art EDF scheduling for self-

suspending tasks by Günzel et al. [14] to evaluate a set of n
implicit-deadline periodic tasks with dynamic self-suspension.

The workload generation procedure has been discussed, while

the self-suspension lengths are sampled from the following

ranges under five settings:

• Very short: Log-Uniform[0.0001(Ti −Ci), 0.1(Ti −Ci)]
• Short: Uniform [0.0(Ti − Ci), 0.1(Ti − Ci)]
• Moderate: Uniform [0.1(Ti − Ci), 0.3(Ti − Ci)]
• Large: Uniform [0.3(Ti − Ci), 0.6(Ti − Ci)]

0.2 0.4 0.6 0.8 1.0

Utilization

0.0

0.2

0.4

0.6

0.8

1.0

S
ch
ed
u
la
b
il
it
y
R
at
io

Algorithm

Suspension-aware EDF [8]

Proposed Slack-based Test

Suspension Length

Extreme

Long

Moderate

Short

Very Short

Fig. 9: Schedulability ratio of EDF schedulers for the dynamic self-
suspension model under varying system utilization and relative early self-
suspension lengths.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization (U)

0.00

0.02

0.04

0.06

0.08

0.10

N
or
m
.
T
im

e
to

F
ir
st

M
o
d
e
S
w
it
ch

EDF-VD [1]

EDF-VD with Proposed Server

Fig. 10: Comparison showing the distribution of normalized time to first
mode switch (higher being preferred) for mixed-criticality task sets.

• Extreme: Uniform [0.7(Ti − Ci), 1.0(Ti − Ci)]

The self-suspension generation is chosen to be consistent

with the existing literature [14]. We randomly generate 1000
task sets under each configuration and present the results in

Figure 9. Since we outperform with 100% schedulability ratio

for all suspension lengths considered in [14], we introduce the

“extreme suspension length” setting in our evaluations. Our

proposed approach is able to schedule almost all task sets up

to 0.9 utilization and fails only when availability of slack (or

idle points) become too sparse in dense task sets.

C. Mixed Criticality: Time of the First Mode Switch

To evaluate the application to mixed-criticality scheduling,

we choose the well-known EDF-VD [3] scheduling algorithm

as the baseline. Similar to the previous application, we only

choose task sets that are schedulable under EDF-VD. During

the scheduling of any given task set, the probability of a high-

criticality job exceeding its CL is set to 10%. The overrun

budget (CH − CL) is drawn from a log-normal distribution,

as opposed to a fixed value. This is to emulate the skewed

distribution of the overrun probability. 1000 task sets that

meet the workload generation requirements are generated for

each configuration. Figure 10 shows the time to first mode

switch instant for a task set, normalized by their hyperperiods.

The results show a clear delay in the time to the first mode-

switch. For brevity and to emphasize the average performance

difference, we omit the outliers (can be up to about 1.5H time

units) from the plot.

VI. RELATED WORKS

Aperiodic jobs are typically scheduled with regular hard-

deadline periodic/sporadic tasks through server-based resource

reservations such as periodic server, sporadic server [16],

Constant-bandwidth server (CBS) [1], etc. In addition to

server-based approaches, another way to support aperiodic

jobs is through static and dynamic slacks of regular jobs.

The static slack calculation for fixed-priority scheduling was

introduced by the seminal works [10], [11] and has been

used in scheduling of hard deadline periodic tasks with hard-

deadline aperiodic jobs in fixed-priority jobs [24]. Compared

with [24], our proposed method is developed explicitly for

EDF scheduling.

Caccamo et al. [8] and Lipari and Baruah [18] pre-

sented dynamic resource reclamation approaches for CBS-

based scheduling, CASH, and GRUB, respectively. CASH [8]

scheduled each task in the system using a CBS sever. If any

job is finished earlier than the execution budget, the remaining

budget with the corresponding deadline is stored in a global

queue. Any new job first tries to use the residual execution

budget with a deadline equal to or less than its deadline from

the global queue. While CASH leverages the unused budgets

by other server tasks, GRUB [18] dynamically reclaims the

unused system utilization. Compared with these algorithms,

our proposed algorithm significantly differs from CASH as

CASH dynamically reclaimed the unused resource budget

considering the variable execution time of each task. Whereas

our algorithm only utilizes the static slack for worst-case

analysis. Importantly, it is possible to implement both CASH

and Sporadic P-servers together to utilize both static and

dynamic slacks. Compared with GRUB, our algorithm, and

GRUB utilize system-level unused utilization. However, there

is a fundamental difference in resource reclamation, such as

static (ours) vs. dynamic (GRUB) reclamation. Moreover, both

the CASH and GRUB algorithms are developed on CBS and

do not use standard EDF algorithms directly for scheduling.

VII. CONCLUSION AND FUTURE WORKS

This paper builds a simple yet effective relationship between

static slack and WCRT under EDF. It further proposes a special

Sporadic P-Server to capture static slack precisely. Consump-

tion and replenishment rules are proposed and proven correct.

Applications to handling aperiodic jobs, self-suspensions, and

task overruns in mixed-criticality systems are handled with ex-

tended theory and superior experimental performance demon-

strated. The extension to multiprocessor can be challenging.

Leveraging WCRT for server construction and consumption

rules can be more complicated for the Global-EDF scheduler.

Even with partitioned EDF, if we allow aperiodic jobs to

migrate, it is not trivial to choose the proper combination of

Sporadic P-Servers among multiple processors to serve one

job. We leave these as future work.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers for their valu-

able feedback and the anonymous shepherd for guiding us to

improve the paper. This research has been supported in part

by NSF Awards FRR-2246672, CNS-2104181, and a startup

funding from North Carolina State University.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in
hard real-time systems. In Proceedings 19th IEEE Real-Time Systems
Symposium (Cat. No. 98CB36279), pages 4–13. IEEE, 1998.

[2] A. A. Arafat, S. Vaidhun, L. Liu, K. Yang, and Z. Guo. Compositional
mixed-criticality systems with multiple executions and resource-budgets
model. In 2023 IEEE 29th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 67–79. IEEE, 2023.

[3] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie. Preemptive uniprocessor scheduling of
mixed-criticality sporadic task systems. Journal of the ACM (JACM),
62(2):14, 2015.

[4] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proceedings 11th Real-Time
Systems Symposium (RTSS), pages 182–190, 1990.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-
ate progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[6] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-time systems, 30(1-2):129–154, 2005.

[7] A. Burns and R. I. Davis. A survey of research into mixed criticality
systems. ACM Computing Surveys (CSUR), 50(6):82, 2017.

[8] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun
control. In Proceedings 21st IEEE Real-Time Systems Symposium, pages
295–304. IEEE, 2000.

[9] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley, et al. Many
suspensions, many problems: a review of self-suspending tasks in real-
time systems. Real-Time Systems, 55(1):144–207, 2019.

[10] H. Chetto and M. Chetto. Some results of the earliest deadline
scheduling algorithm. IEEE Transactions on software engineering,
15(10):1261, 1989.

[11] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack time in fixed
priority pre-emptive systems. In 1993 Proceedings Real-Time Systems
Symposium, pages 222–231. IEEE, 1993.

[12] R. Ernst and M. Di Natale. Mixed criticality systems—a history of
misconceptions? IEEE Design Test, 33(5):65–74, 2016.

[13] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a deadline
scheduling environment. Real-Time Systems, 9(1):31–67, 1995.

[14] M. Günzel, G. von der Brüggen, and J.-J. Chen. Suspension-
aware earliest-deadline-first scheduling analysis. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):4205–4216, 2020.

[15] W. Horn. Some simple scheduling algorithms. Naval Research Logistics
Quarterly, 21(1):177–185, 1974.

[16] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham. Integrated
scheduling of multimedia and hard real-time tasks. In 17th IEEE Real-
Time Systems Symposium, pages 206–217. IEEE, 1996.

[17] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior. In Proceedings.
Real-Time Systems Symposium (RTSS), pages 166–171, 1989.

[18] G. Lipari and S. Baruah. Greedy reclamation of unused bandwidth in
constant-bandwidth servers. In Proceedings 12th Euromicro Conference
on Real-Time Systems. Euromicro RTS 2000, pages 193–200. IEEE,
2000.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[20] J. W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, 1st edition,
2000.

[21] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-
real-time systems. Real-Time Systems, 1(1):27–60, 1989.

[22] M. Spuri. Analysis of deadline scheduled real-time systems. [Research
Report] RR-2772, 1996. inria-00073920.

[23] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments. IEEE Transactions on Computers, 44(1):73–91, 1995.

[24] S. R. Thuel and J. P. Lehoczky. Algorithms for scheduling hard aperiodic
tasks in fixed-priority systems using slack stealing. In RTSS, pages 22–
33, 1994.

[25] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In the 28th IEEE Real-
Time Systems Symposium (RTSS’07), 2007.

[26] F. Zhang and A. Burns. Schedulability analysis for real-time systems
with EDF scheduling. IEEE Transactions on Computers, 58(9):1250–
1258, 2009.

