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Abstract
Recent developments have enabled the modeling of longitudinal assessment data 
in a diagnostic classification model (DCM) framework. These longitudinal DCMs 
were developed to provide measures of student growth on a discrete scale in the 
form of attribute mastery transitions, thereby supporting categorical and criterion-
referenced interpretations of growth. Studies employing longitudinal DCMs have 
used different statistical approaches to model examinee attribute mastery transitions. 
Yet, there has not been research that systematically compares the potential advan-
tages and shortcomings of these different approaches. Via simulation, this study 
compares and evaluates the performance of three different approaches to estimating 
longitudinal DCMs. Results show that performance is similar in terms of classifica-
tion accuracy and reliability, but practical considerations and the overall goals of 
the application should guide the choice of modeling approach. Implications of these 
results are discussed.
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1  Introduction

Over the past two decades or so, educational assessment researchers and practi-
tioners have shifted attention to studying how students change or ‘grow’ over time. 
These examinations of student growth can illuminate the learning that has occurred 
over a period of time. Traditionally, classical test theory and item response theory 
(IRT) approaches have been used to model student growth over time. The CTT and 
IRT frameworks primarily have been used to provide measures of student growth 
on a continuous scale in the form of gain scores or latent ability gain scores, respec-
tively. Additionally, student growth percentiles (SGPs; Betebenner 2009) have been 
used to provide norm-referenced quantifications of student growth. More recently, 
diagnostic classification models (DCMs; Rupp et  al. 2010; see also Bradshaw 
2016) have been used to provide measures of student growth on a discrete scale. 
For DCMs, growth at the individual level is defined as transitions in attribute mas-
tery over time. On a group level, growth for DCMs is defined as changes in overall 
attribute mastery proportions over time. In these ways, longitudinal DCMs support 
categorical and criterion-referenced interpretations of growth.

The utilization of longitudinal DCMs in research studies and operational assess-
ment is promising, but due to their very recent development, there is a need for a 
deeper examination into the application of these models. In particular, the studies 
employing longitudinal DCMs have used different statistical approaches for estima-
tion. Jurich and Bradshaw (2014) used a calibrate-and-score approach, where pre-
test classifications were obtained during the pre-test item calibration, and post-test 
classifications were obtained by scoring the post-test responses with item param-
eters fixed according to the pre-test item parameter calibration. Madison and Brad-
shaw (2018a, b) obtained pre- and post-test classifications and item parameter esti-
mates simultaneously using a latent transition analysis framework (LTA; Collins and 
Wugalter 1992), which is a longitudinal extension of the latent class model. Addi-
tionally, one could specify separate attributes for each time point. This is the ana-
logue of an approach used in the IRT literature, where an additional ability dimen-
sion is specified for each individual time point (Paek et al. 2014).

The purpose of this study is to compare these three approaches (calibrate-and-
score, latent transition, specifying separate attributes) to estimating longitudinal 
DCMs. These are not the only approaches to estimating longitudinal DCMs (see 
Hansen 2013; Wang et  al. 2018; Huang 2017), but the three included approaches 
have been used more widely in published studies and are available in commercial 
software and therefore, are expected to be most accessible for researchers. First, we 
describe a general DCM, the log-linear cognitive diagnosis model (LCDM; Henson 
et al. 2009) and the three approaches for extending the LCDM for longitudinal data. 
Then, using a simulation study, we compare the classification accuracy and classifi-
cation reliability of each approach. We close by discussing the advantages and short-
comings of each approach and implications of the results for research and practice.
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2 � Log‑linear cognitive diagnosis model (LCDM)

The LCDM is a general DCM that employs a canonical logit function to link 
binary item responses to examinee latent traits and item parameters. In the LCDM, 
the latent traits are the attribute profiles that represent the mastery status patterns 
across all attributes. In this study, we focus on dichotomous attributes (e.g., mastery/
non-mastery). For a test measuring A dichotomous attributes, there are a total of 2A 
potential attribute profiles. Each attribute profile is represented by a vector of length 
A, where each element indicates the mastery status of the corresponding attribute. 
For example, an attribute profile of [0,1,1] would indicate that the examinee had 
mastered Attributes 2 and 3, but has not mastered Attribute 1. The LCDM proba-
bilistically classifies each examinee into one of these profiles based on the observed 
item responses.

The LCDM models the conditional probability of a correct response as a function 
of the attribute profile of an individual, the attributes measured by the item and the 
item parameters. The LCDM is a general DCM, where many popular DCMs can be 
specified by constraining certain item parameters. Using a general DCM like the 
LCDM allows for a “top–down” approach to finding the most parsimonious DCM. 
Among other general DCMs (GDINA, de la Torre 2011; GDM, von Davier 2005), 
we chose the LCDM because of its availability in Mplus (Muthén and Muthén 
1998–2017), whose generality makes the longitudinal extensions possible. In the 
LCDM, the item parameters for a simple structure item include an intercept and a 
main effect, and for complex items measuring multiple attributes, also include inter-
action effects of the attributes measured by the item.

Here, we introduce the mathematical form of the LCDM logit response function. 
Consider an item measuring two attributes, Attribute 1 ( �1 ) and Attribute 3 ( �3 ). The 
probability of a correct response to item i by an examinee with attribute profile � is 
expressed as:

Here, �i,0 is the intercept for item i and represents the log-odds of a correct 
response for examinees who have mastered neither Attribute 1 nor Attribute 3. 
The main effect terms, �i,1(1) and �i,1(3) , represent the increase in log-odds of a cor-
rect response given mastery of Attribute 1 or Attribute 3, respectively. Lastly, the 
interaction term, �i,2(1,3) , represents the change in log-odds of a correct response for 
examinees who have mastered both Attribute 1 and Attribute 3.

Based on the LCDM described above, this study assessed three approaches 
for longitudinal settings. The first two approaches draw similarities from IRT, 
while the third approach is based on the LTA framework. Thus, prior to introduc-
ing our approaches, it is worthwhile to briefly consider how growth is modeled in 
IRT framework (e.g., Paek et al. 2014). In the IRT context, there are primarily two 
methods of accommodating longitudinal data, separate calibration and concurrent 
calibration. In separate calibration, the item parameters are estimated separately for 
each time point (with common item parameters constrained equal) and the latent 
ability distributions are usually specified as � ∼ N(0, 1) , and then linked through 

(1)logit
(
Xic = 1|�

)
= �i,0 + �i,1(1)�1 + �i,1(3)�3 + �i,2(1,3)�1 ⋅ �3
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a linking process (see Kolen and Brennan 2004; von Davier and von Davier 2007 
for more details). Then, individual growth is determined by adjusting each ability 
estimate via linking coefficients with reference to the ability estimate from the ini-
tial testing occasion. In concurrent calibration, item parameters and latent abilities 
for each time point are estimated concurrently. In the next sections, we describe 
the foundations of each approach to extending the LCDM to longitudinal data. For 
this study, we focus on the simplest case of two time points (pre-test/post-test) and 
a common test design. We note, however, that these approaches are not limited to 
two time points (see Wang et  al. 2018), nor a common test design (see, Madison 
and Bradshaw 2018a). For each of the three approaches described below, growth 
for individuals is defined as transitions between non-mastery and mastery over time, 
and growth for the group is defined as changes in overall attribute mastery propor-
tions over time. Finally, within each approach, conditional attribute transition prob-
ability matrices can be obtained using the estimated classifications or in the case of 
the TDCM, directly from transitional parameter estimates.

3 � Approach 1—Calibrate‑and‑score

In Approach 1, calibrate-and-score (CS), the LCDM is fit to the pre-test data (or 
one of the measurement occasions more generally), items are calibrated, and pre-
test classifications and attribute mastery proportions are obtained. Next, post-test 
classifications and attribute mastery proportions are obtained by scoring post-test 
item responses with post-test item parameters constrained equal to the calibrated 
pre-test parameter estimates. With calibrated item parameters, the posterior prob-
ability examinee e has an attribute profile �k at post-test can be computed using their 
observed post-test item response vector xe:

The model estimates include the vector of proportions of examinees in each 
attribute profile (�c) . Using the estimated classifications from each time point, mar-
ginal attribute conditional transition probability matrices can be obtained in a post 
hoc fashion. For example, to obtain the overall group’s conditional probability of 
transitioning from non-mastery to mastery ( 0 → 1 ), we can take the number of 
examinees who were classified as non-masters at the pre-test and classified as mas-
ters at the post-test, and divide that number by the number of examinees who were 
classified as non-masters at the pretest. This calculation is Bayes’ Theorem applied 
to the pre- and post-test classifications:

(2)P
�
�e = �k�xe

�
=

�k

∏I

i=1
�
xei
ki

�
1 − �ki

�1−xei
∑2A

c=1
�c

∏I

i=1
�
xei
ci

�
1 − �ci

�1−xei .

P
(
�post = 1|�pre = 0

)
=

P
(
�pre = 0 ∩ �post = 1

)

P
(
�pre = 0

) .



1 3

Behaviormetrika	

Assuming simple structure items, the total number of parameters in the CS 
approach for the pre-test is given by 2nt + (2A − 1) , where nt is the total number of 
items at each time point. The first term, 2nt, represents the number of item param-
eters to be estimated (would increase with complex items with multiple main 
effects and interactions effects). The second term, 2A − 1 , represents the number 
of attribute profile proportions to be estimated; the last attribute profile propor-
tion is not estimated as they all must sum to 1. With a common item design, the 
number of parameters estimated at post-test is 2A − 1 ; only the attribute profile 
proportions need to be estimated. Admittedly, as noted by others (e.g., Paek et al. 
2014; Huang 2017), this approach does not account for the interdependency at 
pre- and post-test due to the measurement of the same respondents. An advan-
tage of making this sacrifice is that estimation is simplified with fewer parameters 
being estimated. In the simulation study, we examine the impact of ignoring these 
dependencies.

4 � Approach 2—Concurrent I

Approach 2 is a hybrid of DCM and concurrent-calibration IRT. Here, each time 
point’s items are calibrated concurrently and akin to multidimensional IRT frame-
work, additional attributes are specified to accommodate the additional time points. 
For example, if there are three measured attributes measured over two occasions, 
then this approach would consist of six total correlated attributes (three at pre-test, 
three at post-test). With these attributes specified, pre- and post-items are calibrated 
jointly, imposing equality constraints on common items. Recall that in the post-test 
run of Approach 1, the common item parameters were constrained to be equal to 
their respective pre-test estimates. In Approach 2, on the other hand, all item param-
eters are estimated concurrently, with common item parameters constrained to be 
equal.

With only simple structure items assumed invariant over time, the total number 
of parameters to be estimated in Approach 2 is 2nt + (22A − 1) . Since the number 
of attributes A is doubled, the number of attribute profiles to be estimated is greater 
than in Approach 1. While the computational load increases compared to Approach 
1, this procedure yields proper estimation since the doubly increased number of 
attributes directly reflects the same attributes being measured at pre- and post-test 
by the same respondents. In this approach, transition probabilities can be estimated 
in a post-hoc fashion using estimated classifications as in Approach 1, or they can be 
more properly estimated using the estimated attribute profile proportions.

DCMs do not have identification constraints for the latent ability distribution. In 
concurrent-calibration IRT, only the distribution of � at post-test is freely estimated, 
and growth is defined in reference to � at pre-test, which is typically fixed to be 
normally distributed with a mean of 0 and standard deviation of 1. With DCMs, the 
attribute mastery distribution is freely estimated at all time points. This free estima-
tion of the attribute mastery distribution at both time points is permissible because 
the scale is not arbitrarily defined.
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5 � Approach 3—Concurrent II

The third approach uses an LTA framework to accommodate the longitudinal 
item response data. The transition diagnostic classification model (TDCM; Madi-
son and Bradshaw 2018a, b) is specified as a constrained LTA and is statistically 
equivalent to Approach 2 in terms of examinee classifications, model fit, and 
the number of parameters estimated; however, due to the LTA structural para-
metrization, transition probabilities are immediately output, and the secondary 
application of Bayes’ Theorem is not necessary for the estimation of transition 
probabilities.

In Approach 3, we fit a TDCM to account for the longitudinal data. The TDCM 
is a constrained LTA with attribute profiles, analogues to the latent classes in 
LTA, specified at each time point in advance. With LCDM as the measurement 
model at each time point, the TDCM estimates transition probabilities between 
different attribute mastery status across testing occasions. Given these transition 
probabilities, we can evaluate whether learning was successful.

Unlike the first two approaches, TDCM explicitly estimates the attribute pro-
files at different time points simultaneously. In TDCM, the probability of the item 
response vector for examinee e is expressed as a function of the item response 
probabilities, the probability of transition between different attribute profiles 
across time points, and the probability of membership in a specific profile at 
the initial occasion. In a pre-test/post-test design with two testing occasions, the 
probability of item response vector xe, a realization of the random variable Xe is 
defined as:

Here, �c1 is the probability of belonging to the attribute profile c in the pre-test, 
�c2|c1 represents the attribute mastery status transition probabilities from pre- to 
post-test, and xeit is Examinee e ’s response to Item i in Time t  . The item response 
probabilities, �ic , are estimated with the LCDM. Notice that the item response 
probabilities are not time dependent; rather, they are assumed equal across time 
points. In this approach, marginal attribute transition probabilities can be esti-
mated in a post-hoc fashion using the estimated classifications as in Approach 1 
and 2, or they can be more properly calculated using the estimated profile level 
transition probabilities (see Madison and Bradshaw 2018b).

In the TDCM, when considering only simple structure items and assuming 
item parameter invariance, there are 2nt item parameter estimates, 2 ∗

(
2A − 1

)
 

attribute profile proportions, and 2A(2A − 1) transition probabilities. This yields 
the same total number of parameters as in Approach 2. The TDCM framework 
affords some additional flexibility in terms of incorporating covariates to predict 
examinee transitions; predictors can be included in the TDCM by conditioning 
transition probabilities and attribute profile proportions on a continuous or cat-
egorical predictor (e.g., Madison and Bradshaw 2018a, b; Wang, et al. 2018).

(3)P
(
Xe = xe

)
=

C∑

c1=1

C∑

c2=1

�c1
�c2|c1

2∏

t=1

I∏

i=1

�
xeit
ic

(
1 − �ic

)1−xeit
.
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6 � Simulation study

To compare the performance of the three approaches under different assessment con-
texts, we designed a simulation study. The primary manipulated factor was the esti-
mation approach with three levels (Approach 1, 2, and 3). Fixed conditions include 
the sample size (1000), number of attributes (3), number of time points (2), Q-matrix, 
attribute mastery and change distributions, and item parameters. We focused on the 
case of two time points (e.g., pre-test/post-test). There were 15 items with each attribute 
being measured 7 times total (3 simple structure for each attribute, 6 complex struc-
ture items measuring two attributes). Pre-test mastery proportions were fixed at 0.40 
for all attributes and the post-test mastery proportions were 0.40, 0.55, and 0.70, for the 
three attributes, respectively. These pre- and post-test proportions correspond to mas-
tery proportion growth rates of 0, 0.15, and 0.30. The within time-point and between 
time-point attribute correlations were both fixed at 0.50 to represent a moderate-sized 
correlation expected in educational assessment contexts (e.g., Bradshaw et  al. 2014; 
Kunina-Habenicht et al. 2009).

For each item, intercepts were fixed at 0.2; main effects were fixed at 2.5 and 1.5 
on simple and complex structure items, respectively; and two-way interactions were 
fixed at 1. The parameter values produce a 0.50 difference in correct response prob-
ability between complete masters (examinees mastering none of the required attributes) 
and complete non-masters (examinees mastering none of the required attributes). These 
item parameters were chosen to reflect modest and realistic item qualities observed in 
applied DCM studies (Bradshaw et al. 2014; Madison and Bradshaw 2018a; Kunina-
Habenicht et al. 2009; Templin and Hoffman 2013).

Madison and Bradshaw (2018a) demonstrated via simulation that the TDCM 
is robust to departures from full measurement invariance over time. More specifi-
cally, they showed that when item parameter invariance was assumed over time, but 
item parameter drift (IPD; Goldstein 1983) was present, the TDCM was able to pro-
vide accurate and reliable classifications. We wanted to explore this result for the other 
approaches (1 and 2). Therefore, we included item parameter drift conditions. More 
specifically, we added three IPD amount conditions (20%, 40%, and 60%). In each IPD 
amount condition, 1.0 was added or subtracted to the 20%, 40%, and 60% of the mod-
el’s intercepts and main effects.

Data were generated using R, Version 4.2.2 (R Core Team 2022) and analyzed using 
Mplus, Version 8 (Muthén and Muthén 1998–2017). Within each modeling approach, 
the full LCDM with up to two-way interaction effects was estimated. Mplus syntax 
for each modeling approach is provided at the first author’s website. There were 250 
replications per condition, creating a total of 12 × 250 = 3000 analyses. In the results 
section next, we summarize results by condition with respect to classification accuracy, 
classification reliability, and structural parameter recovery.
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7 � Simulation results

7.1 � Classification accuracy

To compute classification accuracy rates, the estimated attribute mastery classi-
fications were compared to the generated attribute mastery classifications. Table 1 
shows the classification accuracy rates for each condition. Because the classifica-
tions accuracy rates for each attribute were nearly identical, and pre- and post-test 
classification accuracy rates were nearly identical, accuracy rates were averaged 
over individual attributes and over pre- and post-test. Overall, classification accu-
racy rates were strong, consistently greater than 0.912. As expected, classification 
accuracy rates were identical for Approach 2 and 3. We observed a slight decrease in 
classification accuracy for Approach 1. Similar to results reported by Madison and 
Bradshaw (2018a), we observed a small negative effect of ignoring IPD; for all three 
approaches, comparing 60% IPD to 0% IPD, classification accuracy decreased by 
approximately 0.02.

7.2 � Classification reliability

To compute classification reliability, we employed a longitudinal extension of 
the DCM reliability metric developed by Templin and Bradshaw (2013; Madison 
2019). At a single testing occasion, this reliability metric is interpreted as the cor-
relation between classifications obtained from two independent administrations of 
the same test. In longitudinal contexts, this reliability metric is interpreted as the 
correlation between estimated transitions obtained from two independent pre-test/
post-test experiments. We applied this reliability metric to the pre- to post-test mas-
tery classifications (e.g., [0 → 1] ) to capture the consistency of these mastery status 
transitions. Table 2 displays the transition reliabilities for each estimation approach. 
Because the transitions reliabilities for each attribute were nearly identical, reliabili-
ties were averaged over individual attributes. Overall, classification reliability was 
high, ranging from 0.892 to 0.931. Similar to classification accuracy, classification 
reliabilities were identical for Approach 2 and 3. Also similar to results for clas-
sification accuracy, we observed a slight decrease in classification reliability for 

Table 1   Simulation study 
classification accuracy rates

IPD = item parameter drift, ±1 adjustment to intercept/main effect; 
Approach 1 = calibrate and score; Approach 2 = specify separate 
attributes; Approach 3 = transition DCM; accuracy rates averaged 
over the three attributes and over pre- and post-test

IPD amount 
(%)

Approach 1 Approach 2 Approach 3

0 0.926 0.931 0.931
20 0.923 0.930 0.930
40 0.917 0.924 0.924
60 0.912 0.923 0.923



1 3

Behaviormetrika	

Approach 1. Following previous results, this decrease was slight, with an average 
decrease of 0.03 across conditions.

7.3 � Structural parameter recovery

We examined the recovery of two aggregate structural parameters: (1) overall 
growth in attribute mastery proportions and (2) marginal attribute transition prob-
abilities. Recall that for overall growth in attribute mastery, we generated Attrib-
utes 1, 2, and 3 to have growth rates of 0, 0.10, and 0.20. Table 3 shows the aver-
age estimated growth in attribute mastery proportion for the three approaches. 
First, as expected, Approaches 2 and 3 were identical. Next, we observed that as 
IPD increased, growth in attribute mastery tended to be overestimated. Finally, in 
comparing the approaches, we observed that when there was no IPD, the calibrate 
and score approach growth rates were recovered as well as the other approaches. 
But when IPD was present, the calibrate and score approach tended to overestimate 
growth slightly more than the other approaches.

Table  4 shows the median absolute deviation for marginal attribute tran-
sition probabilities and includes both �01 = P

(
�post = 1|�pre = 0

)
 and 

�10 = P
(
�post = 0|�pre = 1

)
 . The other transitions ( �00 and �11 ) do not need to be 

Table 2   Simulation study 
transition reliability estimates

IPD = item parameter drift, ±1 adjustment to intercept/main effect; 
Approach 1 = calibrate and score; Approach 2 = specify separate 
attributes; Approach 3 = transition DCM; reliability averaged over 
the three attributes

IPD amount 
(%)

Approach 1 Approach 2 Approach 3

0 0.906 0.931 0.931
20 0.903 0.929 0.929
40 0.898 0.925 0.925
60 0.892 0.922 0.922

Table 3   Simulation study overall growth in mastery proportion recovery

IPD = item parameter drift, ±1 adjustment to intercept/main effect; Approach 1 = calibrate and score; 
Approach 2 = specify separate attributes; Approach 3 = transition DCM; Attributes 1, 2, and 3 had 0, 
0.10, and 0.20 growth in attribute mastery, respectively

IPD 
amount 
(%)

Approach 1 Approach 2 Approach 3

Att1 Att2 Att3 Att1 Att2 Att3 Att1 Att2 Att3

0 0.003 0.103 0.199 0.003 0.099 0.198 0.003 0.099 0.198
20 0.011 0.111 0.215 0.001 0.103 0.207 0.001 0.103 0.207
40 0.023 0.123 0.219 0.017 0.117 0.212 0.017 0.117 0.212
60 0.038 0.138 0.235 0.016 0.120 0.224 0.016 0.120 0.224
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reported as �00 + �01 = 1 and �10 + �11 = 1 . In Table 4, we combined Approaches 2 
and 3 as we have seen they are identical. Recall that for Approach 1 (calibrate-and-
score), marginal attribute transition probabilities are calculated in a post-hoc fashion 
using the estimated classifications. This is not ideal as it does not account for error 
in classifications. Approaches 2 and 3 use estimated profile proportions and tran-
sition probabilities, respectively, to estimate the marginal attribute transition prob-
abilities. A couple of results are immediately noticeable. First, Approaches 2/3 had 
better recovery of transition probabilities than Approach 1. Second, for Approach 
1, attributes with more growth had worse recovery. For Approaches 2–3, however, 
recovery was not impacted by attribute growth. Finally, it is apparent that increases 
in IPD resulted in worse parameter recovery for all approaches, with the decrease in 
performance more pronounced for Approach 1.

8 � Discussion

The utilization of DCMs has recently expanded to longitudinal settings for modeling 
changes in attribute mastery over time. Using a simulation study, this study com-
pares three different approaches to estimating longitudinal DCMs: calibrate-and-
score, specifying separate attributes for each time point, and LTA. In the methods 
sections, we described how the LTA approach is statistically equivalent to specify-
ing separate attributes for each time point with common item parameter equality 
constraints. Results from the simulation confirmed this result, with classification 
accuracy and reliability all being identical for the LTA approach and specifying sep-
arate attributes for each time point. From a practical perspective, this equivalency is 
a key discovery because to date, Mplus has been the only software used in published 
studies applying the TDCM (Kaya and Leite 2016; Madison and Bradshaw 2018b; 
Tian et al. 2020). Knowing that the TDCM is statistically equivalent to specifying 
separate attributes means that the TDCM can be made available in the R packages 

Table 4   Simulation study 
transition probability median 
absolute deviations

IPD = item parameter drift, ±1 adjustment to intercept/main effect; 
Approach 1 = calibrate and score; Approach 2 = specify separate 
attributes; Approach 3 = transition DCM; parameter recovery aver-
aged over the three attributes

Parameter IPD 
amount 
(%)

Approach 1 Approach 2/3

Att1 Att2 Att3 Att1 Att2 Att3

�01 0 0.020 0.015 0.030 0.011 0.012 0.010
20 0.032 0.019 0.045 0.009 0.011 0.011
40 0.044 0.042 0.062 0.015 0.016 0.023
60 0.057 0.068 0.080 0.013 0.020 0.027

�10 0 0.014 0.021 0.026 0.013 0.014 0.015
20 0.017 0.026 0.030 0.015 0.014 0.010
40 0.018 0.033 0.033 0.015 0.016 0.011
60 0.017 0.036 0.039 0.022 0.021 0.014



1 3

Behaviormetrika	

(CDM, George et al. 2016; GDINA, Ma and de la Torre 2020; mirt, Chalmers 2012), 
which are more efficient than Mplus for estimating DCMs. For the calibrate-and-
score approach, classification accuracy, classification  reliability, and structural 
parameter recovery were slightly decreased compared to the other two estimation 
approaches. In the presence of item parameter drift, a misspecification often found 
in longitudinal studies, we observed that all three methods were robust in terms of 
classification accuracy and reliability.

While the simulation study showed that all three methods are similar in terms of 
performance, practical considerations must be considered. First, if the sample size 
is small relative to the number of attributes and Q-matrix complexity, then the more 
complex approaches may have estimation issues. As the number of time points and 
number of attributes increase, the LTA and specifying separate attributes approaches 
both quickly become extremely complex with exponentially increasing dimension-
ality. For T  time points and A dichotomous attributes, the total number of latent 
classes in these two approaches is 2AT . In our explorations (limited to Mplus with 
maximum likelihood estimation), with greater than four dichotomous attributes or 
greater than two time points, the estimation time and data requirements for these two 
approaches are not feasible for most applications. In these cases, the calibrate-and-
score approach may be the only option. Also, in operational contexts, where items 
are pre-calibrated, the calibrate-and-score approach is commonly applied. There-
fore, it is an appealing result that the calibrate-and-score approach is only slightly, 
almost negligibly, less accurate and reliable than the other two, more complex 
approaches. These results are limited to the simulation conditions presented and are 
not expected to hold in every assessment situation. Specifically, under other types 
of model misspecification or misfit, the more complex approaches are expected to 
perform increasingly better than the calibrate-and-score approach. Of course, more 
research is needed examining these approaches under varying types of tests and 
study designs, misfit, and model misspecifications.

Another consideration in choosing an estimation approach is the overall goal of 
the analysis. If the sole purpose is to obtain examinee classifications at multiple time 
points, then the calibrate-and-score or specifying separate attributes approaches will 
suffice. But if the application involves the inclusion of covariates to predict exami-
nee transition, the LTA approach provides powerful methodology to evaluate inter-
vention effects in a DCM framework (e.g., Madison and Bradshaw 2018b; Wang 
et al. 2018).

We note that these are not the only approaches to estimating longitudinal DCMs. 
Hansen et al. (2016) proposed a hierarchical extension to the LCDM that included 
continuous dimensions to account for local item dependence over time. Huang 
(2017) used a multilevel DCM to assess change over time in a DCM framework. 
Wang et  al. (2018) employed a higher-order hidden Markov model. Pan et  al. 
(2020) applied a generalized multivariate growth curve model. Other recent stud-
ies have applied measurement and structural model reductions and Bayesian estima-
tion approaches to overcome potential estimation complexities (Chen et  al. 2018; 
Wang et al. 2018; e.g., Zhan et al. 2019). These different approaches have different 
advantages and limitations depending on characteristics of the sample, design of the 
assessment, goals of the analysis, and data collection process. We limited our study 
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to these three approaches because they have been used in published studies and they 
are publicly available in commonly applied software (see https://​www.​matth​ewmad​
ison.​com for Mplus syntax), and therefore, are expected to be most accessible more 
researchers. We hope that this study provides some guidance in the application of 
these methods. We also hope that this paper brings more attention to DCMs and 
their utility in longitudinal settings, which may be of interest to researchers desiring 
psychometric methods that support categorical and criterion-referenced interpreta-
tions of growth.
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