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ABSTRACT

Live codingÐa pedagogical technique in which an instructor plans,

writes, and executes code in front of a classÐis generally considered

a best practice when teaching programming. However, only a few

studies have evaluated the effect of live coding on student learning

in a controlled experiment and most of the literature relating to live

coding identifies students’ perceived benefits of live-coding exam-

ples. In order to empirically evaluate the impact of live coding, we

designed a controlled experiment in a CS1 course taught in Python

at a large public university. In the two remote lecture sections for

the course, one was taught using live-coding examples and the other

was taught using static-code examples. Throughout the term, we

collected code snapshots from students’ programming assignments,

students’ grades, and the questions that they asked during the

remote lectures. We then applied a set of process-oriented program-

ming metrics to students’ programming data to compare students’

adherence to effective programming processes in the two learning

groups and categorized each question asked in lectures following

an open-coding approach. Our results revealed a general lack of

difference between the two groups across programming processes,

grades, and lecture questions asked. However, our experiment un-

covered minimal effects in favor of the live-coding group indicating

improved programming processes but lower performance on as-

signments and grades. Our results suggest an overall insignificant

impact of the style of presenting code examples, though we reflect

on the threats to validity in our study that should be addressed in

future work.
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1 INTRODUCTION

Live coding is a pedagogical technique in which an instructor writes 
code in real-time in front of students in a class [26]. In contrast 
to static-code examples, live-coding examples allow the instruc-
tor to demonstrate coding concepts and techniques in a dynamic 
and interactive way. Multiple prior studies have shown benefits 
of live coding, such as improved learning outcomes [6, 25] and 
reduced extraneous cognitive load during lectures [22]. Specifically, 
students and instructors have also reported perceived benefits to 
the programming process, such as engaging in incremental coding 
[3, 23, 25], improved debugging skills [4, 19], and better testing 
skills [3, 16].

Despite live-coding being recommended as a best practice for 
teaching programming [5], a literature review on live coding [26] 
revealed a lack of work that evaluates the empirical impact of 
live coding on student learning and programming processes. To 
bridge this gap, we conducted a quasi-experimental study during 
the Spring 2022 term at UC San Diego, a research-intensive public 
university in the United States, where a CS1 course was taught 
remotely with live-coding examples in one section and with static-
code examples in another section. The purpose of our study is to 
provide an empirical examination of unresolved questions from 
prior work, relating to students’ programming processes, learning 
outcomes, and lecture experiences.

Throughout the term, as students completed weekly program-

ming assignments, we collected snapshots of their code every time 
they ran it. We also collected students’ grades on each assignment, 
exam, and other course activities. Finally, we obtained the text of
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each question students asked in lecture via chat, enabled by the

remote technology used for lectures. Together, these sources of data

allowed us to empirically evaluate whether a live-coding pedagogy

impacts students’ programming processes and the types of ques-

tions that students asked during lectures. Specifically, we ask the

following research questions:

(1) How does a remote, live-coding pedagogy impact students’

programming processes, such as adherence to incremental

development and using debugging techniques?

(2) How does a remote, live-coding pedagogy impact student

performance on assignments and exams?

(3) How does a remote, live-coding pedagogy impact the types

of questions that students ask during lectures?

2 RELATEDWORK

2.1 Prior Live Coding Controlled Studies

Live coding has been empirically evaluated over the past couple

of decades, with numerous studies evaluating the impact of live

coding on student perceptions. However, a literature review of

live coding [26] indicated that only three prior studies have used

an experimental approach to assess the impact of live coding on

student learning [22, 25, 29].

In 2013, Rubin conducted the first controlled study that com-

pared the impact of live-coding examples and static-code examples

on students’ grades on assignments, exams, and a project [25].

The experimental design carefully controlled for the effect of the

live-coding examples by keeping all other conditions consistent

between the two groups, including the instructor, course content,

and assignments. The results indicated no significant difference in

assignment and exam grades, but students in the live-coding group

earned significantly higher grades on the final course project.

A 2016 Tan et al. used a pre- and post-test approach to mea-

sure the improvement of students’ conceptual understanding and

program implementation skills after 18 weeks of asynchronous

live-coding lecture videos [29]. The results of the study showed

that conceptual understanding did not improve from the interven-

tion, but the program implementation skills did show improvement.

However, since the study did not use a control and treatment group,

the results do not show the advantages of live-coding examples

over static-code examples.

In 2020, Soosai Raj et al. conducted a randomized, controlled

experiment to measure improvement in student learning [22]. The

study was designed such that the only difference between the two

groups was in the presentation of coding examplesÐthe live-coding

group only saw code examples in which the instructor wrote the

code from scratch. The study found that students in the static-code

group showed slightly higher improvement between pre- and post-

tests than students in the live-coding group, although the difference

was not statistically significant. This result suggests that live coding

may not improve student outcomes in traditional assessments such

as exams that involve skills besides code writing (e.g., code tracing).

Although the results of these studies are inconclusive, we aim

to replicate these attempts to evaluate the learning impact of a

live-coding pedagogy. Further, these prior works are limited to

evaluating learning in terms of student grades; however, they do not

shed light on the impact of live coding on the specific programming

processes that students use.

2.2 Programming Process Metrics

In order to assess the impact of a live-coding pedagogy on stu-

dent programming processes, we leverage pre-existing metrics that

measure how effectively students adhere to ideal processes, such

as incremental development and effective debugging techniques.

In this section, we describe the process-oriented metrics that are

relevant to our research questions.

2.2.1 Incremental Development. The Measure of Incremental De-

velopment (MID) developed by Shah et al. measures a student’s

adherence to incremental development based on whether a student

added manageable chunks of code [27]. It was developed for CS1

programming tasks and is designed to be agnostic to the size of

the task. The metric rewards a student for writing code in smaller

chunks and not experiencing excessive struggle after large code

additions. The recent work by Charitsis et al. similarly aims to quan-

tify program decomposition, using Natural Language Processing

[8]. We note, however, that program decomposition can be slightly

different from incremental development. The metric by Charitsis

et al. defines program decomposition by the progression of functions

written by students, whereas the MID is agnostic to the number of

functions written.

2.2.2 Debugging. Since Jadud introduced the Error Quotient in

2006 [13], numerous metrics have been developed that relate to stu-

dents’ debugging processes and frequency of encountering errors

[2, 7, 15, 30, 31]. The metrics developed by Kazerouni et al. reward

students for starting the assignment early with regard to the as-

signment deadline [14], which is not the skill we aim to measure

for this experiment. The Normalized Programming State Model

[7] and the Watwin Score [31] rely on features such as time spent

working and semantic correctness of the code, which are expensive

features to obtain. However, the Repeated Error Density (RED) [2]

is not dependent on the size and programming language of the task

and accounts for cases when students encounter repeated errors

[30]. A lower score on the RED indicates that the student rarely

encountered the error or resolved the error message quickly.

2.3 In-Lecture Effects of Live Coding

There is currently little research that evaluates the impact of live-

coding examples on students during lecture. One of the few works

in this area compared the cognitive load of viewing static-code and

live-coding examples [22], which revealed students experience less

cognitive load when viewing live-coding example. Although the

work from Soosai Raj et al. evaluated the effect of bilingual instruc-

tion on the questions asked during lecture, we were moved by the

methods applied in that study. Soosai Raj et al. noted the questions

asked by students during lectures and grouped the questions into

categories based on Bloom’s taxonomy [24]. Although this previ-

ous analysis was outside the context of a live-coding pedagogy,

we plan to conduct a similar analysis by comparing the types of

questions between the treatment and control group in our study,

since our remote pedagogy enabled easy access to questions asked

by students.
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3 STUDY DESIGN

3.1 Participants

Our study was conducted in a CS1 course at UC San Diego, which

is a large public R1 university. It was approved by the UC San

Diego IRB, and the IRB number is 201792. Of the 199 students

that consented to participate in the study, 91 students were in the

live-coding group and 108 students were in the static-code group.

Students were not randomly assigned to groups; they self-selected

into one of two lectures that were held at 9:30 AM or 11 AM on

Tuesdays and Thursdays each week. At the time of enrolling, they

did not know that there would be one live-coding lecture and one

static-code lecture.

We asked students to complete a pre-course survey when the

term started. In the survey, students self-reported their current

year in university, race, and prior experience with programming.

Students from each of the four yearsÐfrom first year to fourth

yearÐwere represented roughly evenly in the two groups. In the

live-coding group, 80% of students reported not having prior pro-

gramming experience, compared to 75% in the static-code group. In

the live-coding group, 50% of students self-identified as Asian, 20.5%

identified as Latinx, and 17% identified as White. In the static-code

group, 47.6% of students self-identified as Asian, 2.9% identified as

Latinx, and 13.3% identified as White. Across both lectures, less

than 10 students self-identified as any other race.

3.2 Experimental Design

We conducted our study over one academic term in Spring 2022.

We used an experimental setup similar to that in Rubin’s initial

controlled study [25]. Each week, students attended two remote

80-minute lectures, a mandatory 50-minute in-person lab, and an

optional 50-minute in-person discussion section. Students also had

the option to attend office hours, either online or in-person, hosted

by instructional assistants or the instructor.

Both groups were taught by the same instructor, who has expe-

rience teaching a CS1 course with both static-code and live-coding

examples. The slides used in each lecture were identical for both

groups, except for the 4-6 code examples per lecture that were

shown to students. Importantly, students from both groups could

access previous lecture slides, which included the static code snip-

pets presented in class. Moreover, both the live-coding group and

the static-code group were explicitly taught about incremental de-

velopment, debugging techniques, and how to write test cases in a

lecture halfway through the term. We elaborate on the impact of

this lecture in Section 6.2.

The only difference between the treatment and control group

in the remote lectures was the presentation of the code examples.

In line with previous studies that used live-coding examples [26],

no pre-written code was presented to students when the instructor

used live coding. Instead, the instructor started with an empty

Python file and wrote the code from scratch. While live coding in

front of the class, the instructor intentionally engaged in effective

programming processes, such as incremental development and

using print statements for debugging. For example, when showing

longer code examples, the instructor broke the example down into

smaller chunks and compiled the code after writing each smaller

part. Additionally, the instructor occasionally made syntactic or

semantic errors and demonstrated how to use print statements to

locate them. Because of this unique aspect of the live-coding lecture,

we hypothesize the students in the live-coding group may have

acquired and used these implicit skills in their own programming

tasks. Some sample code snippets that were developed during the

live-coding portion of the lecture can be found at the following

link: https://bit.ly/code-examples-live-vs-static.

In the static-code group, the instructor showed a slide that had

pre-written Python code on it. The code snippets were identical to

the code written during the live-coding group. However, instead

of writing the code in an IDE, the instructor annotated the code

snippet by drawing memory diagrams, listing values of variables

during execution, or other notes that may be helpful for student

comprehension.

The controlled parts of the experiment included all other aspects

of the course, such as the required lab sections, optional discussion

sections, and office hours. Lab sections typically involved students

working in pairs on short programming tasks that covered lecture

content and did not provide an opportunity for a presentation of

code examples. In each discussion section, three teaching assistants

spent 50minutes reviewing recent lecture material and had students

work through roughly 3 to 5 code tracing questions. However, we

were not able to control the office hour interactions, as the 30

teaching assistants may have had different teaching styles in the

1-on-1 interactions with students.

4 METHODS

4.1 RQ1: Programming Processes

Throughout the term, students completed 8 programming assign-

ments (PAs), each of which had two to three programming tasks.

Students were given oneweek to work on each PA andwere allowed

to use pair programming [18]. The PAs covered all of the content

taught in our CS1 course: basic syntax, conditionals, functions, for

loops, while loops, image manipulation using 2-D lists of tuples

as images, dictionaries, and reading files. Students completed the

PAs on EdStem [9], a platform that includes an online integrated

development environment (IDE). EdStem provided our research

team with snapshots at runtime across all assignments for each

student who consented to participate in the research, consistent

with our human subjects research protocol. In total, we collected

approximately 150,000 snapshots across the 8 assignments.

Although we assigned 18 total programming tasks across 8 PAs,

not every task lent itself to analysis. In some tasks, students were

not asked to write functions and were given significant scaffolding.

Similarly, some tasks in later assignments were only one function

long or did not require complex logic. Instead, we wanted to an-

alyze the longer, more complex programming tasks to collect a

fuller representation of their programming processes. Therefore,

we removed PAs 1 and 2 from our analysis, since they both included

scaffolding and did not require students to write any functions. A

member of the research team then selected one task from each

PA that required more functions or needed more complex logic

to implement than the other task(s). The exact instructions and

content of each programming task in our final data can be found at

https://bit.ly/programming-tasks.
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Once we decided on the six tasks to analyze, we applied a suite

of process-oriented metrics to measure incremental development

and debugging skills. Due to their flexibility and relevance to our

research questions, we applied the Measure of Incremental De-

velopment (MID) [27], which computes a student’s adherence to

incremental development, and the Repeated Error Density (RED)

[2], which represents the amount a student struggled to fix a spe-

cific error. The MID was trained and evaluated on a similar data

set to our programming tasks [27] and the RED is agnostic to the

language or size of the program being analyzed [30]. Since other

metrics required an input such as time spent in the IDE [7, 31],

which we could not collect, or require unit tests to be written [15],

which was outside the scope of our assignments, we could not

apply them. Conversely, the MID and RED metrics only require

snapshots at the time of compilation, which can be readily collected

by online IDEs. We also applied a custom metric: the proportion of

snapshots that include a print statement within a function. While

this metric is not empirically evaluated and does not fully represent

debugging skills, we chose this specific metric because the instruc-

tor used print-statement debugging during the live-coding lectures

only. Therefore, this metric may reveal whether students implic-

itly picked up the programming processes demonstrated during

live-coding lectures.

4.2 RQ2: Student Grades

We recorded the grades of all students1 throughout the term, in-

cluding those from weekly programming assignments, lab work,

and reading quizzes on the Stepik e-textbook [28]. The labs and

reading quizzes were required for students and were graded based

on correctness, with unlimited attempts allowed until the deadline.

Additionally, we collected scores from the midterm and final exams,

as well as the overall course grades.

We evaluated student performance on weekly programming

assignments (PAs), a midterm exam, a final exam, and overall grade

(which included points from weekly lab and reading quizzes). For

each student, we removed the lowest score out of the 8 PA scores

as per course policy and calculated the average PA score.

4.3 RQ3: Lecture Questions Asked

One of the unique affordances of our remote experimental setting

was access to all of the questions students asked via the Zoom chat.

Teaching assistants monitored the chat and relayed questions to

the professor that they thought would be useful to the class. Other-

wise, teaching assistants responded in the chat. We have access to

427 questions asked during the 20 lectures. Of the 427 questions,

206 were asked by the live-coding group and 221 were asked by

the static-code group. Since questions about course logistics are

irrelevant to the impact of code examples on student learning, they

were excluded, resulting in a set of 406 questions.

We used an open-coding (łaffinity diagrammingž) approach [11]

to categorize the student questions based on common characteris-

tics. In order to categorize questions in an unbiased manner, the

researchers were made blind to whether the questions were from

1Note that the sample size for our student grades data is higher than the sample size
for our other analyses. This occurred because more students consented to releasing
their grades data from the course than to releasing their programming process data.

Table 1: Final code book achieved through open coding and

deliberation

Label Description: łQuestions about...ž

Conceptual - how an element of programming works in

general (not specific to the current program)

- practical applications or real world scenarios

Syntax - why a programming character or phrase is

needed in an example

- what certain Python terms mean

Result

Explanation

- how/why a specific output was produced or

why a result was correct

- an idea of why a certain result occurred

- how variables (names or values) change

Process - the motivation for writing part of the code

- why a programming element is used to further

the current program

- why a variable was given a certain name or

assigned a specific value

- where a portion of code was written

What If - a hypothetical scenario (these are along the

lines of łWhat if we ...ž)

the live-coding or static-code lecture by combining and randomly

ordering the questions across all lectures.

Two researchers independently coded the first 60 student ques-

tions, creating their own initial code books. Those two code books

were compared and combined to create a common code book. The

researchers then began an iterative process of individually cate-

gorizing 50 unseen student questions according to the new code

book, comparing results, discussing, and updating properties in the

code book. After each iteration, the inter-rater reliability was mea-

sured and checked against an 80% agreement threshold. Following

the third iteration, the researchers agreed on 41 (82%) of the 50

responses, resulting in a Cohen’s kappa statistic of 0.77. After this

point, the two researchers evenly divided the remaining questions

and independently coded them according to the final code book,

shown in Table 1.

5 RESULTS

5.1 RQ1: Programming Process Results

We conducted two-sample t-tests [21] to compare the MID, RED,

and our custom metric between the two groups. In each application

of the t-test, we had a sample size of well over 25 [17] and similar

distributions between groups. We used an 𝛼 value of 0.05 as our

significance threshold for all tests, and applied a Holm-Bonferroni

correction for tests with multiple comparisons on the same topic

[12]. Table 2 shows the mean, standard deviation (SD), t-statistic

(t), p-value (p), and Cohen’s effect size (d) of all t-tests conducted.

The Cohen’s effect size indicates the standardized mean difference

between the two groups (e.g., an effect size of 0.2 denotes that the

mean in one group was 0.2 standard deviations higher than the

mean in another group) [10].
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Table 2: Comparison of programming process metrics be-

tween live coding (n = 90) and static code group (n = 107)

Summary Statistics

Metric Group Mean SD t-stat p d

MID
Live

Static

1.75

1.77

0.98

1.07
-0.08 0.93 -0.01

RED of

TypeError

Live

Static

0.32

0.34

0.41

0.49
-0.41 0.68 -0.06

RED of

NameError

Live

Static

0.14

0.15

0.25

0.23
-0.17 0.87 -0.02

RED of

SyntaxError

Live

Static

0.21

0.27

0.30

0.46
-0.97 0.33 -0.14

Ratio of

Prints

Live

Static

0.19

0.17

0.19

0.15
0.84 0.40 0.12

5.1.1 Incremental Development. We compared the adherence to

incremental development between the two learning groups using

the Measure of Incremental Development (MID). In Table 2, the first

row summarizes the results of a two-sample t-test [21] of the overall

MID between the two groups across all six programming tasks in

our data set. When interpreting the MID, a lower value indicates

greater adherence to incremental development. The average MID

of the live-coding group was lower than the static-code group, and

the effect size minimally favors the live-coding group. However,

the high p-value suggests that the difference is not statistically

significant. In fact, when we compared the MID values across each

assignment between PA3 and PA8, none of the comparisons were

statistically significant after we applied the Holm-Bonferroni [12]

correction to our 𝛼 values.

5.1.2 Debugging. We conducted two-sample t-tests on the Re-

peated Error Density (RED) values across 5 different error types:

Type Errors, Name Errors, Syntax Errors, Value Errors, Index Errors,

and Key Errors (only found in PA7 and PA8). In this table, a lower

score indicates a lower frequency of that error occurring through-

out a student’s development process for that PA, which generally

indicates better debugging skills. Table 2 displays the RED values

for the three most common types of errors we saw among the PAs

by a significant margin: Type Errors, Name Errors, and Syntax Er-

rors. The results show a small effect size in favor of the live-coding

group across all three types of errors, though the differences are not

statistically significant. Further, the two-sample t-tests across all

error types and all assignments revealed no statistically significant

difference in the RED value between the two groups.

Table 2 also shows the average proportion of snapshots that

include a print statement inside of a function. For this metric, a

higher value indicates more frequent use of print statements inside

a function. Similar to the results of the MID and RED metrics,

we found a small effect of 0.12 in favor of the live-coding group,

although the results were not statistically significant.

5.2 RQ2: Student Grades Results

We conducted two-sample t-tests to compare students’ grades. We

found that the mean scores of the static-code group were slightly

higher than those of the live-coding group for assignments, both

Table 3: Comparison of grades between live coding and static

code learning groups

Grade (out of 100)

Item Group N Mean SD t p d

PAs
Live

Static

115

126

82.50

84.38

21.75

18.58
-0.72 0.47 -0.09

Midterm

Exam

Live

Static

115

126

85.05

86.90

21.75

18.63
-0.70 0.48 -0.09

Final

Exam

Live

Static

115

126

73.19

76.19

27.44

25.64
-0.87 0.38 -0.11

Overall
Live

Static

115

126

82.94

84.83

20.12

17.80
-0.77 0.44 -0.10

Table 4: Comparison of the types of questions asked between

the live coding lectures and static code lectures

Frequency of Label

Label Live Coding Static Coding

Process
32.9%

(n = 61)

33.9%

(n = 75)

Result

Explanation

18.9%

(n = 35)

18.0%

(n = 40)

What if
7.5%

(n = 14)

13.1%

(n = 29)

Conceptual
24.8%

(n = 46)

19.0%

(n = 42)

Syntax
15.6%

(n = 29)

15.8%

(n = 35)

Total
100%

(n = 185)

100%

(n = 221)

exams, and overall grades. Indeed, the effect sizes for each item in

Table 3 are favorable for the static-code group, though the p-values

are too large to identify any statistically significant differences.

5.3 RQ3: Lecture Questions Results

Table 4 displays the frequency of each label in our code book across

all 406 questions asked between the two groups. Notably, the live-

coding group asked more łConceptualž questions than the static-

code group, but asked fewer łWhat ifž questions. In order to test

for an association between the type of code example and the types

of questions asked, we conducted a chi-squared test [20]. Our test

returned a chi-square statistic of 4.60, which has a p-value of 0.33.

Therefore, with an 𝛼 value of 0.05, there was no relationship de-

tected between the types of questions asked by either group.

6 DISCUSSION

6.1 Findings

Our results are unable to confirm the perception among instructors

and students that live-coding examples improve students’ program-

ming processes [3, 4, 16, 19] due to the lack of significant differences

in the programming metrics between the two groups. One inter-

pretation of the minimal effect we detected is that the style of code
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examples in lecture does not have a significant impact on how stu-

dents program. Within any given week of the CS1 course at our

large, public university, students attended two lectures, one lab

section, one optional discussion section, and optional tutor hours.

They also read one chapter from their interactive, online textbook

[28], completed all the shorter-form programming activities in the

textbook, and wrote two to three longer functions in their pro-

gramming assignment. Among all these weekly activities, the code

examples that are displayed in class make up only a fraction of

lectures, which themselves are only a fraction of the time spent on

learning material related to the class. Though the p-values were

ultimately insignificant, it is noteworthy that in all five metrics

in Table 2, the direction of the effect is in favor of the live-coding

group, though the effect size is minimal.

Our results on the impact of live coding on students’ grades

also revealed no significant differences, though the effect size for

all four items in Table 3 were minimally in favor of the static-

code group. The lack of a significant difference across exam or

assignment scores aligns with Rubin’s study [25]. On our exams,

students had to demonstrate declarative knowledge, such as code

tracing and identifying correct syntax, more so than procedural

knowledge, such as how to develop code. Since the lecture content

was exactly the same for the experimental and treatment groups,

we suspect that students in both groups acquired similar declarative

knowledge. This reasoning also holds true for assignment scoresÐ

both groups had access to the same code snippets regardless of

whether the snippets were live coded or presented as static code.

Since assignment grades were given based on the correctness of

the final state of the students’ submitted code, they only needed

to demonstrate a correct implementation of the logic, which both

groups could obtain from revisiting the lecture slides.

Our analysis regarding the types of questions asked between the

two lecture groups also detected no significant relationship between

the type of questions asked and the lecture group that students were

in. One notable takeaway, however, is that the static-code group

asked more questions across the entire quarter. Unfortunately, the

interpretation for such a finding is ambiguous since it could either

be the case that students were more engaged in the static-code

lectures, so they wanted to ask more questions, or it may be that

students were more confused in the static code lectures, so they

needed to ask more questions. Similarly, we note that there was

nearly double the rate of łWhat ifž questions asked by the static-

code group. Although the results were not statistically significant,

we believe this finding may lend some evidence to the advantages of

the dynamic aspect of live coding in showing students hypothetical

changes to the code, thereby reducing łWhat ifž questions.

6.2 Threats to Validity

The largest threat to validity occurred in the collection of our pro-

gramming process data. Specifically, the process data was noisy in

two ways. First, students were allowed to use pair programming

while completing their assignments, even though both students

would have to submit the code separately on EdStem. Although

students could only work with a partner within their lecture sec-

tion, which meant there was limited contamination between the

two groups, they still could work together on one computer and

copy-paste the finished code onto the other partner’s computer.

Second, students could get help from teaching assistants on the

assignments, which means that the development patterns we ob-

serve may also be a result of assistance from teaching assistants

on how to design and approach a solution. Both of these potential

confounds threaten the reliability of our data.

Another major threat to validity in our experiment is that we

taught students about incremental development and print statement

debugging in a lecture during Week 5 of the course. In this lecture,

the instructor explicitly showed students in both groups an exam-

ple of incremental development and how to use print statements

to validate a program’s logic. As a result, it is hard to determine

whether the programming processes we observed are a result of the

implicit skills they may have picked up during the lecture examples

or of the explicit instruction about these skills in the Week 5 lecture.

6.3 Limitations

A significant limitation of our study is that both the static-code and

live-coding pedagogy were administered remotely. Since nearly

every student in the lectures had their cameras turned off, we do

not know to what degree students were actually engaged during the

lecture and paying attention during the code examples. Therefore,

although many universities are using blended or hybrid learning

models after the COVID-19 pandemic [1], the results of a study

that implements a live-coding pedagogy in a traditional classroom

setting may shed further light on the true impact of live coding.

A second major limitation is that we administered live coding

in a CS1 course, so our findings may not extend to more advanced

courses. A large majority of our students did not have any prior

coding experience before taking the course. It may be the case that

first-time programmers do not pick up meaningful process-oriented

skills at this stage in their learning. Therefore, we urge a replication

of this work in contexts outside of a remote, CS1 course.

7 CONCLUSION

In our quasi experiment that compares a remote, live-coding ped-

agogy to a remote, static-code pedagogy, we ultimately found no

statistically significant differences between the control and treat-

ment group on programming processes, grades, or lecture questions

asked. One explanation for our lack of statistically significant re-

sults is that students’ programming processes on assignments and

students’ grades on exams are minimally impacted by the style of

code examples in lecture. Despite the lack of statistical significance,

the sizes and directions of the effect sizes indicate that the live-

coding group exhibited slightly better adherence to programming

processes, but the static-code group earned slightly better scores

on assignments and exams. Given that live coding is hailed as a

best practice to teach programming, future work should continue

to investigate the empirical impacts of the pedagogy so that instruc-

tors may know in which contexts, courses, and modalities to use a

live-coding pedagogy.
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