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ABSTRACT

Background and Context. Live coding is a teaching method in
which an instructor dynamically writes code in front of students
in an effort to impart skills such as incremental development and
debugging. By contrast, traditional, static-code examples typically
involve an instructor annotating or explaining components of pre-
written code. Despite recommendations to use live coding and a
wealth of qualitative analyses that identify perceived learning ben-
efits of it, there are a lack of empirical evaluations to confirm those
learning benefits, especially with respect to students’ programming
processes.

Objectives. Our work aims to provide a holistic, empirical compar-
ison of a live-coding pedagogy with a static-code one. We evalu-
ated the impact of a live-coding pedagogy on three main areas: 1)
students’” adherence to effective programming processes, 2) their
performance on exams and assignments, and 3) their lecture experi-
ences, such as engagement during lecture and perceptions of code
examples.

Method. In our treatment-control quasi-experimental setup, one
lecture group saw live-coding examples while the other saw only
static-code ones. Both lecture groups were taught by the same in-
structor, were taught the exact same content, and completed the
same assignments and exams. We collected compilation-level pro-
gramming process data, student performance on exam and home-
work questions, and feedback via a survey and course evaluations.
Findings. Our findings showed no statistically significant differ-
ences between the live-coding and static-code groups on program-
ming process metrics related to incremental development, debug-
ging, and productivity. Similarly, there was no difference between
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the groups on course performance on assignments and exams. Fi-
nally, student feedback suggests that more students in the live-
coding group reported that lectures were too fast and failed to
facilitate note-taking, potentially mitigating the perceived benefits
of live coding.

Implications. Live coding alone may not lead to many of the
perceived and intended benefits that prior work identifies, but
future work may investigate how to realize these benefits while
minimizing the drawbacks we identified.
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1 INTRODUCTION

A “live-coding” pedagogy typically involves an instructor program-
ming in front of the class [42]. As opposed to an instructor annotat-
ing and explaining a pre-written, static piece of code, live coding
aims to model heuristic programming strategies (i.e., the approaches
and techniques to complete tasks [11]), such as incremental devel-
opment [4, 25, 42] and debugging techniques [4, 7, 25, 36, 42]. A
plethora of qualitative studies reveal that students and instruc-
tors perceive an improvement to students’ programming processes
from live-coding examples [4, 5, 25, 36, 42]. However, despite live
coding being considered a recommended practice in teaching pro-
gramming [7] and using a fundamentally different approach than
traditional static-code examples, there are two glaring gaps in the
literature related to live coding. First, very few experimental studies
have compared a live-coding pedagogy to a static-code pedagogy.
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Second, little work has evaluated the impact of live coding on stu-
dents’ programming processes, such as incremental development
and debugging.

Our goal in this work is to evaluate the impact of a live-coding
pedagogy on students’ adherence to effective programming pro-
cesses and on student performance on assignments and exams. In
an effort to understand the students’ experience during the lectures,
we also analyze student feedback on the code examples and survey
responses about engagement in lecture. Specifically, we ask the
following research questions:

(1) How do adherence to effective programming processes and
programming productivity differ between students in live-
coding and static-code pedagogies?

(2) How does course performance on exams and assignments,
specifically on code tracing, code explaining, and code writ-
ing questions, differ between students in live-coding and
static-code pedagogies?

(3) How does the lecture experience, in terms of engagement
during lecture and perceptions of code examples, differ be-
tween students in live-coding and static-code pedagogies?

Despite a wealth of qualitative studies that identify perceived and
intended benefits of live coding, our results suggest that perception
may not match reality. Overall, our results generally showed no
significant differences with respect to student adherence to effective
programming processes and student performance on exams and
assignments. However, students in the live-coding group reported
seeing various programming processes (step-by-step development,
debugging, and testing) in their lectures at a higher rate than the
static-code group. Therefore, our inconclusive results may suggest
that while live coding demonstrates effective programming strate-
gies to students, it alone may not be enough to actually impart
these skills to students. We also identify the main drawbacks of
live coding that may help guide instructors that use it. More stu-
dents in the live-coding group indicated that the lectures were too
fast, did not hold their attention, and did not facilitate note-taking,
indicating that live coding may not be optimal for every student.
We conclude with a call for future work to explore techniques that
help realize the perceived benefits of live coding while addressing
its drawbacks.

2 THEORETICAL FRAMEWORK

2.1 Cognitive Apprenticeship: Modeling

Apprenticeship is a method of teaching that has been used for thou-
sands of years in fields ranging from art to medicine to law [11].
Broadly, apprenticeship refers to the process of transferring knowl-
edge from one person to another where the instructor shows the
apprentice what to do and how to do it [11]. Whereas traditional
apprenticeship typically involves one-on-one instruction and can
impart knowledge of how to do tasks that can be learned through
observation [19], the theory of Cognitive Apprenticeship, introduced
by Collins et al. in 1989, involves the instructor making their think-
ing visible to students on reasoning-based tasks [11, 12, 14]. Collins
et al. say that via Cognitive Apprenticeship, the expert should
impart “domain knowledge” (specific concepts, facts, and proce-
dures on the subject matter), “heuristic strategies” (techniques and
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approaches for accomplishing tasks), “control strategies” (metacog-
nitive approaches for controlling the process of solving problems
and carrying out tasks), and “learning strategies” (knowledge for
learning domain knowledge, heuristic strategies, and control strate-
gies) to learners [11]. In a programming context, heuristic strategies
involve the processes and techniques to create a program, such as
writing code, debugging errors, and testing for correctness.

Cognitive Apprenticeship encompasses six distinct teaching
methods: modeling, coaching, scaffolding, articulation, reflection,
and exploration [11]. Specifically, in the modeling method of Cog-
nitive Apprenticeship, the instructor verbalizes their thought pro-
cesses and explains the purpose behind specific choices while
problem-solving [11]. For example, Collins et al. describe a mod-
eling approach in which an instructor solves math problems in
front of students during class to impart heuristic and control strate-
gies [11]. Thus, modeling also draws upon key aspects of Albert
Bandura’s observational learning—the theory that humans learn
from each other using observation, imitation, and modeling [2]. A
learner taught with an observational learning model might first
observe an instructor conducting some behavior and then later
imitate the behavior if the learner associates a positive outcome
with the behavior [2, 48].

Modeling is the most commonly mentioned theory in studies
related to live coding because live coding typically involves an in-
structor doing a programming task in front of the students while
explaining their problem-solving approach [42]. Instructors may
also intentionally introduce bugs into the code and show how to de-
bug them [4, 25, 42] or develop a program in small steps to illustrate
the process of incremental development [4, 36] (i.e., heuristic strate-
gies of programming). Therefore, when contextualizing our results,
readers should note that our work is an experimental evaluation
of a specific modeling method—live coding—on student learning.
Though live coding itself has not been confirmed to empirically
improve student learning, other Cognitive Apprenticeship methods
have shown success in disciplines such as writing [16], mathemat-
ics [23], and even programming [15, 51].

2.2 Comprehension vs. Generation

In 2003, Robins et al. conducted a literature review of major trends
in teaching and learning programming for novices [39]. The au-
thors highlight the difference between program comprehension
skills (demonstrating understanding on a pre-written snippet of
code) and program generation skills (demonstrating ability to write
code) among novices, noting that studies pertaining to students’
comprehension skills are far more common in the computing edu-
cation literature [39].

Brooks proposed a theory of program comprehension that frames
program comprehension as a “top-down” approach in which novices
examine an entire block of code and use their high-level domain
knowledge to generate a hypothesis about the meaning of the
code [6, 39]. With this high-level hypothesis, students then search
for specific cues or markers in the code to confirm or reject their
hypothesis [6]. Brooks posits that students vary in their compre-
hension strategies and programming knowledge, which in turn
impacts their ability to understand a piece of code [6]. The model
presented by Brooks has also been confirmed in many works that
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show how differences in domain knowledge, task requirements, and
comprehension strategies impact novices’ program comprehension
skills [39].

On the other hand, Rist presents a model of program genera-
tion for novices that represents the generative process as one in
which students are continuously searching for the next action, or
code snippet, to add based on the next subgoal in the development
process [38]. Rist mentions that a novice’s development pattern
is typically composed of many such actions, requiring a student
to constantly generate ideas for next steps in the programming
process. This forward-looking process contrasts with the program
comprehension model posed by Brooks, since students do not have
a pre-written chunk of code as evidence to confirm their beliefs or
instincts. Instead, students work from a “blank-slate” and have to
build a program by retrieving and implementing various blocks of
code [38].

Live-coding and static-code examples represent the fundamental
contrast between generation and comprehension. In a live-coding
pedagogy, an instructor aims to share their reasoning for adding cer-
tain pieces of code and verbalizing components of the generation
process described by Rist. On the other hand, static-code exam-
ples that display a pre-written block of code to student embody
the program comprehension model by Brooks. This fundamental
difference in approach between live-coding and static-code exam-
ples may potentially lead to differences in student performance on
generative tasks and comprehension tasks. For example, students
taught with live coding that observe the step-by-step process of the
instructor may engage in better incremental development practices
and students taught with static-code examples that break down
pre-written code may perform better on code tracing questions.

3 RELATED WORK
3.1 Prior Work to Evaluate Live Coding

A recent literature review of live coding revealed that the pedagog-
ical approach has been studied for two decades, including several
quasi-experimental studies and experience reports [42]. The major-
ity of prior live-coding studies have focused on student learning
measured by grades or on students’ perceptions and experiences in
live-coding lectures. However, these studies have not evaluated the
impact of live coding on students’ programming processes, which
is a key learning goal of live coding [4, 7, 25]. These studies have
demonstrated that live coding seems to benefit students’ ability to
follow effective programming processes, such as incremental devel-
opment [36, 42], debugging [4, 5, 25, 33, 36], and testing [25, 36, 42]
as determined by feedback, interviews, or surveys. By contrast,
fewer studies have empirically compared the effects of live-coding
to static-code examples on student learning.

One of the first empirical, comparative studies of live-coding and
static-code examples was conducted by Rubin in an introductory
computer science class [40]. The results showed that students in
both groups had similar performance on assignments and exams.
However, the live-coding group scored significantly higher on the
large programming project, graded on correctness and code clarity.
Notably, Rubin hypothesized that live coding may improve students’
programming processes such as debugging and testing [40], but did
not assess this in the study. Second, following Rubin’s experimental

478

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

design, Soosai Raj et al. conducted a study on 180 students in an
advanced data structures course in India [35]. A key result from
this study was that students in the live-coding group experienced
less extraneous cognitive load during lectures compared to the
static-code group [35]. Nonetheless, the study did not uncover any
significant differences between the two groups with respect to
student learning measured using a pre-test and post-test.

More recently, we utilized a similar experimental design to Ru-
bin’s [40], but conducted our analysis in a remote course taught
in Python [43]. Perhaps the most similar work to the goals of the
present work, our previous study compared students’ program-
ming processes, measured by applying a set of process-oriented
metrics to the compilation-level histories of students’ program-
ming assignments [43]. The study found no differences between
students’ programming processes or overall performance on exams,
yet suffered from several key threats to validity. First, the remote
setting made it difficult to gauge attendance, so we are unsure how
many students even saw the code examples. Second, the course
exams were administered remotely in a non-proctored setting, en-
abling collaboration or cheating. Third, we leveraged programming
process data from programming assignments on which students
could engage in pair programming [31] and could receive help from
course tutors or online sources [43].

In view of the above discussion, one of the key contributions of
our work is to use reliable and representative data to empirically
evaluate the impact of live coding on students’ adherence to ef-
fective programming processes. We also extend the programming
process analysis we conducted in earlier work [43] by comparing
students’ productivity on programming tasks in terms of time on
task and correctness. Aside from programming process analyses,
we also aim to provide a more holistic comparison of the two lecture
styles on students’ course performance and lecture experience than
previous literature. The few comparative studies on the effects of
live coding have reported coarse measures of performance, such as
overall outcomes on assignments and exams [35, 40, 42, 43, 45, 49].
Given our theory-driven hypothesis (see Section 2) that the two
lecture styles may impart different skills to students, there is a
need for a deeper comparison between live and static examples
on various types of coding questions (tracing, explaining, writing,
etc). Last, our work builds upon the wealth of qualitative analyses
of live coding by utilizing a combination of open-feedback and
course evaluation data to compare students’ perceived benefits and
drawbacks between the two groups.

3.2 Programming Process Metrics

Relying on traditional assessments such as exams or the correct-
ness of a final state of a program may not capture the differences in
students’ ability to use effective practices during the development
process [26, 52]. Therefore, a key contribution of our study is an
empirical investigation into the differences between students’ pro-
gramming processes in the two learning groups. In this section, we
describe process-oriented metrics related to incremental develop-
ment and debugging, since these have been cited as both learning
goals [4, 25] and perceived benefits [36, 40, 42] of live coding.
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3.2.1 Incremental Development. There are two metrics we found
that aim to measure incremental development and program decom-
position. The Measure of Incremental Development (MID), which
we introduced in a previous work [44], aims to measure how well
a student adhered to a process of adding manageable code chunks
without experiencing excessive struggle after each addition of code.
The metric was created to be agnostic to program size and aligns
with instructor judgments of a student’s adherence to incremental
development at a rate of 80-85% [44]. Although this metric has not
been evaluated on courses outside of CS1, the present study regards
CS1 and analyzes a set of programming tasks similar in length and
difficulty to those on which the metric was developed [44]. An
adjacent metric related to program decomposition was developed
by Charitsis et al., who leveraged natural language processing to
gain insights into how a student decomposed the task into smaller
chunks [9]. The model makes use of naming conventions of func-
tions and variables to capture the components that a student adds
to their program over time [9]. This metric is better suited to longer-
form programming tasks that have many functions, since the model
considers decomposition at the function level [9].

3.2.2 Debugging and Error Frequencies. Two outcomes of Jadud’s
early work to analyze student compilation behaviors were 1) the
development of a metric called the Error Quotient (EQ), which
characterizes how much a student struggles with a syntax error
while programming [22], and 2) a deeper investigation into process
data to capture various aspects of student debugging and error-
handling behaviors [52]. Multiple works expanded upon the EQ
and introduced ways to improve the predictive accuracy of the
metric on course performance, such as the Watwin Score (WS) [53],
Normalized Programming State Model (NPSM) [8], and the Re-
peated Error Density (RED) [3]. The WS uses the amount of time
that a student took to fix an error to reward students for fixing
errors more quickly [52, 53]. Similarly, the NPSM uses syntactic
and semantic correctness, determined by the presence of a runtime
exception [8, 52]. Finally, the Repeated Error Density (RED) mea-
sures the amount that a student struggled with a specific type of
error; the RED achieved a higher predictive accuracy than Jadud’s
EQ on students’ performance on programming tasks since it penal-
izes students more for encountering repeated errors of the same
type [3, 52]. A score of 0 on the RED for a certain error means that
either 1) the student never experienced that type of error or 2) the
student resolved the error of that type after one compilation [3].
These metrics require various input data, such as the WS requiring
time to resolve an error, the NPSM requiring the semantic correct-
ness of a program state, and the RED requiring the type of error
in the error message. Previous work found that the RED is less
context-dependent than the EQ and NPSM and does not require
time spent working on the IDE (which the WS metric requires) [52].

4 EXPERIMENTAL DESIGN
4.1 Course Setup

We ran a quasi-controlled experiment on a CS1 course at UC San
Diego—a large, public, research-intensive university—in the Fall
2022 term. Our work was approved by the UCSD Institutional Re-
view Board, Project #201792. Because of the size of the course, the
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538 students in the course self-selected into three lecture sections,
offered at various times in the day on Tuesdays and Thursdays. Two
of the three lecture sections were taught by the same instructor,
providing our research team with an opportunity to evaluate the
effect of live coding in a treatment-control setup that controls for
the instructor. At the time of registration, the students did not know
one lecture would be taught with live-coding examples and one
would be taught with static-code examples.

Each week, students attended two lectures, a lab, and an optional
discussion section. They completed weekly programming assign-
ments (PAs), worksheets, and reading quizzes. Table 1 contains
the frequency and description of each key course component. The
course was taught in Python and covers basic syntax, data types,
conditionals, for loops, while loops, objects in memory, function
calls, and image transformation (where images are represented as
a 2-D list of RGB coordinates).

4.2 Treatment Condition

We chose a treatment-control design between the two lecture sec-
tions that were taught by the same instructor, who has taught CS1
extensively in the past using both static-code and live-coding ex-
amples. Both lecture sections covered the same material each week,
included the same participation activities, and were recorded for
students of that lecture section to watch later. Further, during both
types of code examples, students watched the instructor explain
the material and were free to take notes or follow along if they
wanted. The only difference between the two lectures was the time
of day (one was at 9:30AM and the other was at 11AM) and the
presentation of the code examples.

In the earlier lecture section—the static-code group—the instruc-
tor showed students pre-written examples of code when demon-
strating an implementation of a concept. When presenting these
static-code examples, the instructor wrote annotations on the slides
with static-code to help explain the static code snippet. For example,
the instructor drew memory diagrams, underlined important lines
of code, and listed the iterations of a loop. Though the specific anno-
tation varied from example to example, the goal of the annotations
was to enhance students’ understanding of the code example. Figure
1(a) displays a static-code example and the instructor’s annotations
during a lecture about modifying lists within a function. In this
example, the instructor helped students visualize the list object in
memory and also drew a table to track the iterating variable i and
the value of nums[il].

In the other lecture section—the live-coding group—the instruc-
tor showed code examples by opening a Python file in an IDE and
writing code in front of the students. As best as they could, the in-
structor aimed to follow the recommendations provided by Brown
and Wilson [7]. Specifically, the instructor sometimes started with
boilerplate code rather than a blank file to avoid having to type in
code that was needed for the program but unrelated to the topic in
the example [7]. While live coding, the instructor verbalized their
thought process and explained their rationale for including certain
lines of code. The instructor also exhibited effective development
strategies, such as adding code in small, manageable chunks or
using print statements to track variable updates. Similarly, the in-
structor sometimes deliberately ran into an error and demonstrated
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Table 1: Key course components of the CS1 course

Component Frequency Description
. Students attend two 80-minute lectures and complete an active learning activity
Lectures Twice per week L . . . .
for participation credit (such as code challenges) and then discuss with their peers.
Programming Students individually complete 6 assignments which ask students to complete two

(@) k | . . .
nice per wee independent programming tasks that cover the lecture material of the week.

Students individually complete code tracing, explanation, writing questions in a
one-week long assignment that covers the lecture material of the week.
Students work in pairs in a 50-minute, in-person session to complete short,
Labs Once per week | scaffolded programming tasks. Students receive credit for completing the tasks
before the end of the week.

Assignments

Worksheets Once per week

Reading Students individually complete interactive activities in an online textbook [47].
. Once per week . . . .
Quizzes Students can submit responses unlimited times until they are correct.
. Once in the Students individually complete a proctored, in-person exam for 2 hours that
Midterm Exam .
term covered the concepts taught in the first half of the term.
Final Exam Once in the Students individually complete a proctored, in-person final exam for 3 hours that
term covered all concepts taught in course.
Discussion Once per week | Students can attend a 50-minute, in-person session to review the lecture material
(optional) for the week and preview the upcoming programming assignment.
Every da Students can attend open hours hosted by course staff (TAs, tutors, etc.) for hel
Office Hours very cay N p 4 Y colt ( ! ) P

(optional) on course material. These were roughly held M-F from 9AM to 7PM.

debugging techniques by interpreting the error message, adding a
print statement, and fixing the bug. Figure 1(b) displays the end- Figure 1: Static-code vs live-coding example
state of a live-coding example where the instructor executed the

Python file and added print statements to track the values of i and

nums[i].

We also tracked students’ lecture attendance to monitor expo- -
sure to the treatment condition. Figure 2 displays the high rate of
attendance for the 14 required lectures. Notably, we had to halt the
course for the last two weeks of the term prior to finals due to an
academic strike by teaching assistants. During these two weeks,
students did not attend lectures, labs, or discussion sections and
there were no programming assignments or worksheets students
had to complete. Students were told to review the content until
the current point in the course. Fortunately, at this point in the
term, the majority of data had been collected. Following the stall,
students completed only the final coding challenge, the final exam,

Code Example: Mc?difying a List within a
F " —

ef add_one(nums):

for ii len(nums)):
nums[i] += 1

num_list = [1@, 20, 30]
print(num_list
—one(num_list)
Vprint(num_list)

(a) Static-code example

modifyList.py
and course evaluations. Although we aimed to control for every def add_one(nums) :
factor besides the lecture code examples, we certainly acknowledge for i in range(len(nums)):
that there are confounding effects and limitations to our design (see nums[i] +=
Section 7.3). print(i, nums[i])
5

1st = [10, , ]

4.3 Participants print("Initial list", 1lst)
. add_one(lst)

Per our approved human subjects protocol, students consented to orint("Final list", lst)
releasing their course data at the start of the term. In total, 115
students (63.1%) of the static-code group and 110 students (62.5%) 7 user@sahara:~

[user@sahara ~]$ python modifyList.py

of the live-coding group consented to our study. We administered a
Initial list [10, 20, 30]

survey at the start of the term to understand our participants’ prior

experience, demographics, and confidence levels for the course. (i i

Table 2 summarizes the participants’ information in each group. 2 31

The populations had nearly identical rates of programming expe- Final list [11, 21, 31]
riences and had similar distributions across the five school years. (b) Live-coding example

We also saw no glaring differences between the gender or racial
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Figure 2: Lecture attendance throughout the term

8 90
£l
E} 60
E 50
- 40
g 30
E 20 — Static-Code Group
& 10 — . Live-Coding Group
0 L1 12 I3 14 L5 L6 L7 L8 19 L10 L11 L12 L13 L14
Lecture

makeup of our population groups. In the live-coding group, 52% of
the students identified with he/him/his pronouns and 47% identi-
fied with she/her/hers pronouns. In the static-code group, the split
between he/him/his and she/her/hers pronouns was 55%/44%. Simi-
larly, the self-identified racial makeup of both groups consisted of
roughly 50% Asian or Asian-American students, roughly 20% Latinx
or Chicanx students, and 10-15% White students. The remaining
roughly 15% of students self-identified in racial groups of less than
10 students. Per our human subjects protocol, we do not disclose
these groups.

We noticed that the students in the live-coding lecture were
slightly more confident in their ability to succeed and wanted a
slightly higher grade in the course, on average. Therefore, we com-
pared the average GPAs of the two groups as an additional check
for incoming differences between our two groups. A two-sample
t-test [34] of the incoming, unweighted GPAs of the live-coding and
static-code groups revealed no significant difference between the
groups (the live-coding and static-code groups had an average GPA
of 3.85 and 3.87, respectively). Due to the relative similarity in prior
programming experience, university standing, racial and gender
makeup, and incoming GPA, we were ultimately not worried about
the slight difference in the students confidence ratings (which tend
to be inflated, especially in lower-division classes [32]) or desired
final course grade.

5 METHODS

Table 3 summarizes our research questions, data collection, and
statistical analyses as a guide to understanding our methods.

5.1 ROQ1: Programming Processes

We had access to snapshots of students’ code each time they com-
piled their code by clicking “Run” or “Submit” on our course’s
online IDE (EdStem) [17]. To gather clean, representative student
process data, we conducted a series of coding challenges! in which
students completed programming tasks within a set timeframe in
a proctored environment so that they did not work with partners,
get help from tutors, or copy answers from online. We held seven
“short” challenges during lectures in which students had 10 minutes
to implement one to two functions, one “medium” challenge in
which students had 15 minutes to implement a modified “Rainfall
Problem” [46], and one “long” challenge in which students had 40
minutes to implement two functions related to image processing.
These questions were created by members of the research team to

!https://bit.ly/allCodingChallenges
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enable students to engage in a programming process. Specifically,
three of the seven short challenges included multiple functions,
the medium-length challenge—the modified “Rainfall Problem”—
included one function that had multiple requirements, and the
final, 40-minute coding challenge included two functions that each
required students to write nested for-loops. One of the short chal-
lenges was a debugging activity, in which students were given an
already-written function that had a semantic error (i.e., the code ran
without errors, but it outputted an incorrect value from what was
required). Students had 10 minutes to find and fix the error. For the
seven short coding challenges and the one medium length coding
challenge, students were not graded on correctness but rather on
participation. The final coding challenge, on the other hand, was
part of students’ course grade.

Because prior work mentioned a general improvement in the
programming process as a perceived benefit of live coding [36,
42], with specific references to incremental development [4, 36]
and debugging [25, 33], we focused our analysis on incremental
development, debugging, and general programmer productivity.
Per our discussion in Section 3.2.1, we applied the Measure of
Incremental Development (MID) to our data since it has been tested
on Python programming tasks with one to three functions [44]. We
separated our analysis between challenges that required only one
function and those that required two functions since the program
decomposition in one-function tasks may be different from the
decomposition in longer tasks that are already decomposed into
multiple functions.

For debugging and error-frequency measures, we applied the
Repeated Error Density (RED) for TypeErrors, NameErrors, Syntax-
Errors, and IndexErrors because of the required input data and its
improvement upon previous metrics (see Section 3.2.2). However,
the RED alone does not shed light on students’ actual debugging
techniques. Since using print statements is one of the most common
debugging techniques among intermediate programmers [29] and
the instructor regularly used print statements during live-coding
lectures to show students the output of the code, we also report
the proportion of unique print statements added per snapshot to
determine if students imitated the instructor’s debugging technique.

Finally, we gathered metrics related to programmer productiv-
ity, such as the rate of correctness, time until reaching a correct
implementation, and the number of compilations used in the de-
velopment session. We chose these measures in line with software
engineering research on developer productivity, which broadly is
a comparison between the input (time spent working, amount of
code) and output (clean and correct code) by a programmer [21].
We focused our productivity analysis on the 40-minute, final cod-
ing challenge as it was the only challenge that counted towards
students’ grade and was the summative programming task for the
course. We also replicated this analysis on the debugging challenge,
but we note that students were awarded credit for the debugging
challenge based on participation and not for correctness. For these
coding challenges, we noted down the time that students started
working on the task when we administered the coding challenges.
We then calculated the time until completion by finding the dif-
ference between the time that the students started and the first
timestamp in which a student produced the correct solutions (i.e.,
passed all the test cases).
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Table 2: Comparison of treatment and control populations

Prior Programming Experience
Yes No
Live-coding 48.1% 51.9%
Static-code 48.7% 51.3%
School Year
First Second Third Fourth Fifth
Live-coding 47.7% 23.9% 17.5% 9.2% 1.8%
Static-code 52.6% 21.9% 13.2% 8.8% 3.5%
Confidence rating in ability to do well in course
1 2 3 4 5
Live-coding 1.8% 5.5% 44.5% 37.3% 10.9%
Static-code 4.3% 11.3% 36.5% 38.3% 9.6%
Minimum final course grade that students would be satisfied with
A-range B-range C-range
Live-coding 61.7% 32.2% 6.1%
Static-code 50.9% 46.4% 2.7%
Table 3: Summary of data collection and methods
Research . . ‘..
. Sub-Analysis Data Source Metric Statistical Tests
Question
I tal . M f1 tal
nerementa All coding challenges easure of ncrementa Two-sample t-tests
Development Development
. Repeated Error Density for
Error Frequencies and .
. Debugging All coding challenges | Name, Syntax, and Type Errors; | Two-sample t-tests
RQ1: Program- print statements added
ming Processes Two-sample
. . Rate of correctness; time to .
Programmer Final and debugging . t-tests/Mann-Whitney
.. completion; number of
Productivity code challenges U-tests/z-test for

compilations used proportions

Code Tracing, Writing, | Worksheets and

Average correctness per
& P Two-sample t-tests

RQ2: Course and Explaining Exams question type
PAs, Worksheet
Performance Overall Performance S, WOIKSheets, Grade out of 100 Two-sample t-tests
and Exams
Perceptions of Code Open-ended,
. Frequency of themes
Examples (Benefits and | one-time student determined by open-codin None
Drawbacks) feedback Y op &
RQ3: Lecture % of students reporting that Chi-Square test of
Experience i i
p Engagement End-of-term lectures held their at.tentlon trer'ld
evaluations % of students reporting that Chi-Square test of
lectures facilitated note-taking | trend

Statistical Analysis Our sample size for these analyses was
roughly 110 students per group (some students did not attempt
certain code challenges if they were absent from lecture). For the
metrics related to incremental development and debugging, we
conducted a series of two-sample t-tests [34] to determine the sig-
nificance and size of the differences between the two groups. T-tests
are more powerful than their non-parametric alternative—Mann-
Whitney U tests—for equal sample sizes [54] and a sample size of 25
in each group is sufficient for the t-test to perform moderately well
even on skewed data [27]. As the sample size increases, the t-test
becomes more tolerant of more extreme data distributions and for

482

large sample sizes, the assumption of normality is generally not
needed for t-tests [27]. Therefore, we conducted two-sample t-tests
despite observing some skew in our data. To compare the rate of
correctness on the coding challenges, represented by a proportion,
we used a z-test for proportions [41]. For the comparison of the
minutes until correct and number of compilations used in reaching
the correct solution on the final code challenge, we again applied a
t-test because of the larger sample sizes. However, the productivity
metrics for the debugging challenge required Mann-Whitney U
tests [28] because of the smaller sample sizes of the two groups
(since we were comparing only the correct implementations). To
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adjust for multiple comparisons, we applied a Holm-Bonferroni
correction to hypothesis tests [1] in the same family (i.e., tests re-
lated to incremental development, tests related to debugging/error
frequencies, etc) when we obtained p-values less than 0.05.

5.2 RQ2: Course Performance

Students’ course performance data on programming assignments
(PAs), worksheets, and two exams were collected throughout the
quarter. Based on the threats to validity in a previous attempt to
compare student performance [43], the midterm and final exam
were administered in an in-person, proctored, and closed environ-
ment. The worksheets and exams asked students to demonstrate
code comprehension skills and declarative knowledge of Python.
For example, some questions asked students to explain code, some
asked students to write a short program, and others asked students
to predict code output. To compare student performance across
the different types of questions, we grouped worksheet and exam
questions into the categories proposed in Venables et al. [50]: Basic
Questions, Code Tracing with Loops, Code Tracing without Loops,
Code Writing, and Code Explaining. Every question from the work-
sheets and exams was placed into a single category based on the
following descriptions:

e Code explaining questions ask the student to explain what
a piece of code does or how a piece of code works at a higher
level than just asking for the output.

o Code writing questions ask the student to either fill in a
blank of a pre-written code block or write a short block of
code from scratch.

e Code tracing questions ask the student to track values of
variables or predict the output of a code snippet. The authors
distinguished between code tracing with and without loops
based on the added difficulty of tracing iterations [50].

e Basic questions are questions that don’t fall into the above
categories, such as, “Do all functions require a return state-
ment?”

The proportions and counts of questions in each question cate-
gory for each assignment are outlined in Table 4. For each question
type, a student’s score was calculated by adding the scores on indi-
vidual questions.

Table 4: Counts of each question type on worksheets and
exams

Question Type Worksheets Midterm  Final
Basic Questions 3 4 7
Code Writing 4 2 4
Code Tracing (Loops) 5 2 7
Code Tracing (No Loops) 7 7 6
Code Explaining 13 0 0

Statistical Analysis Each comparison made between students
performance on question type (basic, code tracing, writing, and
explaining questions) and on course component (PAs, worksheets,
exams) included roughly 110 students. Therefore, we conducted a
series of two-sample t-tests since our learning groups had roughly
equal, sufficiently large sample sizes [27, 34, 54].
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5.3 RQ3: Lecture Experience

Our data regarding students’ self-reported lecture experience comes
from two sources: 1) a required survey that we administered to
students halfway through the term, and 2) the official, end-of-term
course evaluations by students. The required survey accompanied a
weekly programming assignment (PA) halfway through the course.
Students completed the survey in their own time, which included
the following open-ended questions:

e Benefits: What are specific things about the [pre-written]/
[live-demo of ] code examples that are helpful for your learn-
ing?

e Drawbacks: What are some suggestions to improve the
code examples so that they may be more beneficial for your
learning?

In total, we obtained 97 responses from the static-code group,
which is a 84% response rate from consenting students in that
group, and 94 responses from the live-coding group, which is 85%
of the consenting students in that group. For each question, two
members of the research team analyzed the responses using an
open-coding (“affinity-diagramming”) approach, which involves
identifying common themes in the responses and then categorizing
the responses based on these themes [20]. The coders followed an
identical open-coding process for both open-ended questions.

In the open-coding process, the two coders simultaneously con-
ducted their own analyses of the 30 responses from each lecture
group (60 total responses) by constructing a code book with names,
descriptions, and examples of the groupings. The coders were in-
structed to label a single student response with multiple codes if
they deemed the response appropriate for more than one theme.
After the first set of 60 responses were individually analyzed, the
coders met together to compare code books and deliberated until
creating a unified code book. Then, using the new unified code
book, the coders repeated the process for the next 60 responses
(again, 30 for each group), adding themes and descriptions to the
code book as they proceeded. After a second round of deliberation,
the coders independently labelled a third set of 60 responses and
computed the kappa statistic for inter-rater reliability (IRR) [30]
at the end of the third round. The IRR between the two raters was
0.70 for the analysis of the perceived benefits and was 0.91 for the
analysis on the perceived drawbacks. Even though the two raters
never separately rated their own responses (every response was
rated by both reviewers), we report the IRR for transparency in the
agreement during our open-coding analysis. After creating a final
code book after this third round, the two coders sat together to as-
sign a label and resolve any discrepancies for all student responses.
Tables 12 and 13 in the Appendix show our final code books after
our open-coding approach.

We also leveraged data from the official, end-of-term course
evaluations. The evaluations are anonymized when reported to
the instructor, so students are encouraged to be truthful when
evaluating a class so that the course staff and future students may
benefit from the feedback. In total, 107 students from the static-
code group and 95 students from the live-coding group provided
an evaluation. Though there were other questions about the course
and content in general, we report only the lecture-specific items
that may be impacted by the style of code examples. Specifically,
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we analyze student agreement with following two statements, for
which students responded with either Strongly Disagree, Disagree,
Neutral, Agree, or Strongly Agree:

o Attention: Lectures hold your attention.

o Note-taking: Instructor’s lecture style facilitates note-taking.

Statistical Analysis We did not conduct any inferential statis-
tics to the results of our open-coding process. However, the response
format of the course evaluation items enables a Chi-square test for
trend [24]. The Chi-square test of trend is applied to ordered cate-
gories (such as a spectrum of agreement) to detect whether there is
an association between the condition (live coding) and the outcome
(agreement with the statements). A significant result for the test of
trend would indicate that there is evidence for a trend towards one
“side” of the agreement spectrum based on the treatment condition
[24].

6 RESULTS

To interpret our statistical tests, we focus on the significance of the
difference represented by the p-value and the direction and magni-
tude of the effect size. We applied a Holm-Bonferroni correction [1]
to the p-values within a specific sub-analysis (incremental develop-
ment, debugging/testing, worksheet comparisons, etc), though we
rarely saw any p-values lower than 0.05. For the two-sample t-tests,
our effect sizes are calculated via Cohen’s method [10] since our
standard deviations were relatively equal. For the Mann-Whitney
U-test, our effect size is computed with the rank-biserial correlation,
which is typically used for non-parametric tests [13]. We follow the
reasoning provided by Funder and Ozer, who point out that Cohen
himself eventually regretted proposing the often-used, arbitrary
standard for interpreting effect sizes (where 0.1, 0.3, and 0.5 are the
thresholds for small, medium, and large effects) [18]. As such, we
interpret our effect sizes using the data-driven thresholds proposed
by Funder and Ozer: an effect size of 0.05 indicates a very small
effect, 0.10 is a small effect, 0.20 is a medium effect, and a 0.30 is
a large effect. We report the direction of the effect size such that
a positive effect indicates that the live-coding group had a more
favorable score (whether that is less error frequency, higher score
on exams, a higher rate of correctness, etc).

6.1 Programming Processes

While we replicated the following analyses on students’ program-
ming assignment data, we do not report the results because they
are more prone to noise [43]. Further, the in-lecture coding chal-
lenges were held directly after exposing students to their respective
style of lecture code examples. Regardless, we found statistically
insignificant differences in the below analyses across programming
assignments.

6.1.1 Incremental Development. Table 5 shows the results of the
two-sample t-tests between the live-coding and static-code groups
on their MID scores for the coding challenges. Across one-function
and two-function challenges, there was no statistically significant
difference between the two groups.

6.1.2 Debugging and Error Frequency. Table 6 summarizes the two-
sample t-tests for the debugging metrics. Although we calculated
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the Repeated Error Density for more types of errors than are dis-
played, we only display results for TypeErrors, SyntaxErrors, and
NameErrors since these were the three most common error types
across the coding challenges. For all the comparisons we made,
there were not any statistically significant differences and very
small effect sizes. The difference between the groups in terms of
the number of print statements added per run was also trivial.

6.1.3  Programmer Productivity. Table 7 displays the results of a z-
test of proportions to evaluate differences in rates of correctness on
the debugging and the final coding challenges. The rate of correct-
ness in the live-coding group was 11.8% percentage points higher
on the debugging challenge with an effect size of 0.299. However,
the difference between the groups was not statistically significant.

Table 8 compares the minutes until correct and compilations
until correct on the final coding challenge among students who
produced the correct answer. Though the time until a correct imple-
mentation was about 2 minutes lower—an effect size of 0.278—for
the live-coding group, on average, we ultimately saw no statistically
significant difference based on the p-values.

Table 9 displays the productivity comparisons for the debugging
activity, which had a smaller sample size due to the limited num-
ber of correct submissions. There was no significant difference in
the minutes or compilations until a correct implementation after
applying a Holm-Bonferroni correction [1].

6.2 Course Performance

6.2.1 Code Tracing, Writing, and Explaining. Table 10 shows the
comparison of student performance on basic, tracing (no loops),
tracing (loops), explaining, and code-writing questions over all six
worksheets in the course. None of our p-values indicate statistical
significance. Similarly, Figure 3 shows the same comparison on
exam questions. None of the comparisons showed any significant
p-values or effect sizes greater than the threshold for a small effect.

6.2.2 Grades Analysis. Table 11 shows the results of two-sample
t-tests between grades on PAs, worksheets, the two exams, and
overall course grade. The results suggest that there was no signif-
icant difference in academic performance throughout the course.
Accordingly, we only see very small or negligible effect sizes.

6.3 Lecture Experience

6.3.1 Perceived Benefits and Suggestions for Improvement. Figure
4 displays the frequency of each label among our open-ended re-
sponses related to perceived benefits. The percentages in each col-
umn sum to over 100 because some student responses had multiple
labels. The percentages in the figure represent the proportion of
responses that mentioned each label. Note that the labels were de-
termined through an open-coding approach, but the “Categories”
column was created after the open-coding process in order to or-
ganize the results of our qualitative analysis. A comparison of the
relative frequencies of the labels reveals that more responses from
the static-code group mentioned a “Code Comprehension” reason
than the live-coding group but the live-coding group mentioned
benefits related to “Programming Processes” at a higher rate.
Figure 5 shows the same table of frequencies but for the perceived
drawbacks. Notably, almost one-fifth (18%) of responses from the
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Table 5: Comparison of Measure of Incremental Development (MID) between live-coding and static-code group on coding

challenges

Std Effect
Metric Interpretation Group N Mean t-stat p ee
dev size
MID on'Short Challenges Lower = Better lee. 108 | 1.447 1.374 0656 0513 0.088
(1 function only) Incr. Dev. Static 114 | 1.562  1.227
MID on'Longer Challenges Lower = Better lee. 107 | 1.376  0.986 0503 0616 0.063
(2 functions) Incr. Dev. Static 111 | 1.446  1.047

Table 6: Comparison of error frequencies and debugging metrics between live-coding and static-code group on coding challenges

Metric Interpretation Group N Mean Z:‘l/ t-stat p fig:Ct
RED of TypeError E?;ZfereI;]ise:Sncy ]giZfic 1 1(5) 8 1 :Z g;g; 0494 0.622  0.066
RED of SyntaxError E;’;Z‘EIF;E;ZSHCY nglc ﬁg 81;2 8323 -0.021 0983 -0.003
RED of NameError I];l;);z:ereI;]isfzsncy ]giZ:ic 1 1(5) gggz g 1 23 0212 0832 0028
# of Prints Added per Run ;Iriign};:tdgizre E;Z;C 1?: 8:822 gg;g 0.048 0961 0.007

Table 7: Comparison of rate of correctness between live-coding and static-code group on debugging and final coding challenges

Effect

Coding Challenge Group N  %correct | z-score p siz:C
. Live 99 64.6%

Final Challenge Static 103 57.3% 1.072 0.284 0.151
. Live 81  25.9%

Debugging Challenge Static 78 14.1% 1.859 0.063  0.299

Table 8: Comparison of time and compilations until correct implementation between live-coding and static-code group on final
coding challenge

Std Effect
Metric Interpretation Group N | Mean t-stat p ee
dev size
Minutes until Lower = Faster  Live 64 | 13.715 8.655
. . 1.539 0.126 0.278
correct (final) Completion Static 59 | 16.111 8.379
Compilations until Lowerb = Eewer lee' 64 | 16.492 13.855 0521 0.603  0.095
correct (final) Compilations Static 59 | 17.745 12.395

Table 9: Comparison of time and compilations until correct implementation between live-coding and static-code group on

debugging challenge
. . . Effect

Metric Interpretation Group N | Mean Median IQR U-stat p size
Minutes until Lower = Faster  Live 21 | 5.36 5.81 3.73

. . . 102 0.606 0.117
correct (debugging) Completion Static 11 | 6.25 6.31 1.41
Compilations ur'1t11 Lower. = Eewer lee. 21 | 6.00 4.00 4.00 ¢s 0046 0437
correct (debugging) Compilations Static 11 | 8.45 7.00 2.50
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Table 10: Comparison of student performance on basic, code-explaining, code-tracing, and code-writing questions between
live-coding and static-code group on worksheets

Question Avg % Std Effect
t-stat p .
Correct dev size

Type
. . Live 108 0.906 0.147
Basic Question Static 115 0.886 0.159 0.986  0.325 0.132

- Live 108 0.888 0.155
Code Explaining Static 115 0884 0137 0.196  0.845 0.026

Code Tracing (Loops) IS‘;ZEC i(l)g 82212 gi? -0.183  0.855 -0.025

Code Tracing (No Loops) Is‘gtelc 12? g:gg g:izg 0.834 0405 0.112

Group N

i Live 108 0.724 0.268
Code Writing Static 115 | 0715  0.245 0.260  0.795 0.035

Figure 3: Comparison of student performance on basic, code tracing, and code writing questions between live-coding and
static-code groups on exams

Correctness by Question Type (Midterm)

m Live © Static

Basic 91.17%
Questions 91.08%
Code Tracing
(Loops)
Code Tracing 83.03%
(No Loops) 82.25%
Code 82.57%
Writing
(a) Correctness by question type on midterm exam
Correctness by Question Type (Final)
W Live © Static
Basic 88.21%
Questions | a0
Code Tracing 71.36%
(Loops) 70.13%
Code Tracing 87.33%
(No Loops) 88.88%

75.73%
76.73%

Code
Writing

(b) Correctness by question type on final exam
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Table 11: Comparison of overall course performance between live-coding and static-code groups

Grade (out of 100)
Item Group N Mean 3:1, t-stat p ]sigzct
e B Tl R
T A TR
Midterm Exam ggic ﬂg :?Z;Z 123; 0429  0.668 0.057
Final Exam ggic ﬂg Zg;;g 1:?22 -0.231 0817 -0.031
Overall ggtelc ﬂg :zgii gi;}; 0.135 0.892 0.018

Anshul Shah et al.

Figure 4: Comparison of student responses to: “What are specific things about the [pre-written]/[live-demo of] code examples
that are helpful for your learning?” A darker hue indicates more responses with that label.

Frequency in Frequency in

Category Label Static-Code Live-Coding

Responses Responses
part-by-part breakdown 23.71% 14.89%
c ompcr:rc:een sion reference of correct code 20.62% 9.57%
general code understanding 16.49% 0.00%
thought process while coding 7.22% 9.57%
Programming debugging/avoiding errors 6.19% 13.83%
Process code writing 4.12% 11.70%
testing code 0% 7.45%
instructor's explanation 8.25% 13.83%
Features of Code Variations of code 2.06% 7.45%
Examples predicting output 2.06% 3.19%
seeing output 5.15% 0.00%
following along with instructor 3.09% 8.51%

Lecture ,

Experience taking notes 0.00% 2.13%
group learning 1.03% 5.32%
Application igr?ggzttgn of sbstract 13.40% 2.13%

live-coding group mentioned that the instructor should slow down
in the live-coding group, whereas only 2% of responses from the
static-code group mentioned that the instructor should slow down.
However, more students in the static-code group suggested the
instructor include more documentation, show the process of coding,
and include more variations of the code, which were reported at
much lower frequencies in the live-coding group.
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6.3.2 Lecture Engagement. Figure 6 shows a comparison of stu-
dents’ responses to the questions about lectures holding attention
and facilitating note-taking. Note that a larger proportion of red or
gray in the figures indicates that more students did not agree that
lectures held attention or facilitated note-taking. A Chi-square test
of trend for both evaluation items revealed an association between
the type of lecture example and students’ feeling that lectures held
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Figure 5: Comparison of student responses to: “What are some suggestions to improve the code examples so that they may be
more beneficial for your learning?” A darker hue indicates more responses with that label.

Frequency in Frequency in

Category Label Static-Code Live-Coding

Responses Responses
Pace slow down 2.06% 18.09%
speed up 1.03% 1.06%
more interactive 6.19% 7.45%
- Level more examples 4.12% 7.45%

ecture Leve .
Changes post examples online 2.06% 5.32%
more organized 1.03% 1.06%
use live coding 3.09% 0.00%
more explanation 8.25% 12.77%
show process 5.15% 2.13%
Presentation of more documentation 5.15% 2.13%
examples show other resources 2.06% 0.00%
better annotations 10.31% 0.00%
show output 5.15% 0.00%
more similar to PAs 4.12% 4.26%
S more code variations 9.28% 5.32%
ontent o -

examples more difficult examples 6.19% 4.26%
more bugs 5.15% 1.06%
less bugs 0.00% 1.06%

No Suggestions nothing

Figure 6: Comparison of student responses to survey items about lecture engagement

Lectures hold your attention.

B Strongly Disagree Disagree Neutral Agree W Strongly Agree

Ct}(‘iiivneg-l 1.09% 15.22% 45.65%
S‘C"gﬂfgl 0.95% 10.48% 55.24%
(a) Responses to question about lecture holding attention
Instructor's lecture style facilitates note-taking.
B Strongly Disagree Disagree Neutral Agree @ Strongly Agree
C(fa‘ivlfg‘l 2120% 2637% 37.36%
S‘C“;ifgl 0197% 18.45% 44.66%

(b) Responses to question about lecture facilitating note-taking
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attention and facilitated note-taking. We obtained p-values < 0.001
when applying this test, indicating that students in the live-coding
group were more likely to disagree that lectures held attention or
facilitated note taking.

7 DISCUSSION
7.1 Key Takeaways

Nearly across the board, we saw a lack of statistically significant
differences between the live-coding and static-code groups. Where
there was significance, we found that students in the live-coding
group:

e more commonly reported that the lectures did not hold their
attention (see Section 6.3.2).

e more commonly reported that the lectures did not facilitate
note-taking (see Section 6.3.2).

Compared to the static-code group in terms of programming
processes, the students in the live-coding lecture:

o demonstrated similar adherence to incremental development
according to the MID (see Section 6.1.1).

o experienced similar amounts of struggle with common errors
(see Section 6.1.2).

e demonstrated similar use of print statements (see Section
6.1.2).

e had a slightly higher rate of correctness on the final and
the debugging coding challenges, though not statistically
significant (see Section 6.1.3).

Compared to the static-code group in terms of course perfor-
mance, the students in the live-coding lecture:

o performed similarly across all types of coding questions
(basic, tracing, explaining, writing) on worksheets and exams
(see Section 6.2.1).

e carned overall similar grades on assignments, worksheets,
and exams (see Section 6.2.2).

We ultimately conclude that live coding neither improved stu-
dents’ programming process skills based on our chosen metrics nor
did it detract from students’ performance on traditional assessments.
Though our findings from RQ1 (programming processes) and RQ2
(course performance) point to a lack of a meaningful difference
between the two groups, students’ open-ended feedback suggests a
difference in what skills students reportedly observed during lec-
tures. Specifically, more students mentioned seeing the instructor’s
thought process, the code writing process, and debugging tech-
niques in the live-coding group (see Section 6.3.1). However, these
differences in perceived benefits did not materialize into discernible
differences in programming processes or code comprehension ac-
cording to the metrics we applied.

A potential reason for the lack of meaningful differences be-
tween the groups is that lectures were only one part of the learning
experience in the course. Each week, students were responsible for
attending lectures and labs and for completing required reading
activities, programming assignments, and worksheets (summarized
in Table 1). A student may pick up domain knowledge or heuris-
tic strategies from any of these required learning activities, not
to mention the optional activities such as discussions and office
hours. Moreover, within the lectures themselves, code examples
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make up only half of the time, with other time dedicated to intro-
ducing new ideas, reviewing past content, or participation activities.
Ultimately, the code examples presented in lecture make up only
a fraction of students’ learning experience in CS1, so the impact
of the style of code examples may be limited. Indeed, our work
confirms prior work that showed no significant differences in stu-
dents’ course performance between live-coding and static-code
pedagogies [35, 40, 43, 45].

Our findings related to the drawbacks of live coding may shed
light on why these perceived benefits, and the benefits cited in
prior works [4, 5, 25, 36], did not materialize. Our main takeaway
from asking students about suggestions for improvement is that
far more students in the live-coding lecture—nearly one-fifth of
respondents—felt the instructor was going too fast on the examples.
Live-coding examples require the instructor to move away from
the lecture slides and open a new file in an IDE for each example,
which leads to an inherent overhead cost of showing the examples.
Though the instructor sometimes started with boilerplate code and
generally adhered to recommended live-coding practices [7], our
results suggest that the time-consuming nature of live coding still
persisted. Indeed, student responses on the two course evaluation
items confirms that the live-coding group felt lectures were worse
at holding attention and facilitating note-taking. These results may
be due to the instructor simultaneously writing code while also
explaining their reasoning and strategies. Students could be unsure
whether to write down the code or the instructors’ explanations,
potentially resulting in an inability to focus at all. Moreover, the
lack of annotations means that students are not able to copy down
memory diagrams or tables to trace variable values during execu-
tion, potentially resulting in more live-coding students disagreeing
with the statement that lectures facilitated note-taking. Ultimately,
students may not have been able to fully absorb the programming
processes demonstrated in the live-coding examples because of the
pace and difficulty in focusing. However, we posit that improve-
ments and additions to a live-coding pedagogy may offer a path
to mitigate the drawbacks of the pedagogy. For example, instruc-
tors might consider supplementing their live-coding demos with
scaffolded worksheets for students to fill out during class.

7.2 Broader Implications

A key motivation of our work was to determine whether the per-
ception among students and instructors that live coding improves
students’ programming processes [4, 25, 42] is empirically true.
While our analysis of student feedback confirmed that live-coding
students reported seeing more “Programming Process” skills in lec-
ture, we ultimately did not find evidence to confirm that students in
the live-coding group empirically demonstrate better programming
process skills. Through a modeling lens set forth in theories of Cog-
nitive Apprenticeship [11] and Bandura’s observational learning
[2], students in the live-coding group more frequently identified
the modeling of heuristic strategies for solving programming tasks
(code-writing process, debugging, testing), but this did not result in
those students more frequently engaging with, or imitating, those
heuristic strategies according to the process-oriented metrics we
applied. Therefore, a key implication of our work is that there may
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be an additional step between students observing effective pro-
gramming processes and being able to apply these processes in
their own work. Fortunately, theory offers a potential path forward.
Of the 6 teaching methods of Cognitive Apprenticeship [11], live
coding only makes use of the modeling method. Therefore, it may
be worth exploring live coding in conjunction with other Cognitive
Apprenticeship methods to help students externalize the program-
ming processes observed via live coding. Collins et al. also describe
methods such as scaffolding and coaching to help students identify
and apply the heuristic strategies they observed [11]. For example,
a “collaborative” live-coding approach where the instructor asks
students to complete sub-tasks of the overall code example may
engage these two methods since students would complete small,
manageable tasks and get immediate feedback from the instructor.

Through a theoretical lens, our experimental approach to com-
pare static-code examples to live coding is fundamentally a compar-
ison of top-down, program-comprehension-focused examples [6]
to bottom-up, program-generation-focused examples [37]. Though
static-code emphasizes aspects of Brooks’ model of novices’ pro-
gram comprehension, students in the static-code group did not
display significantly better performance on code-tracing or code-
explaining questions on the exams or worksheets. Similarly, though
live coding demonstrates the step-by-step process described by
Rist [38], the live-coding group did not perform significantly better
on code-writing tasks or exhibit better adherence to incremental
development. We speculate that despite the fundamental difference
in approach between live-coding and static-code pedagogies, both
approaches impart comparable program comprehension and gener-
ation skills. Live coding does not only demonstrate program gener-
ation skills and static-code examples do not only demonstrate code
comprehension. Furthermore, given the prevalence of static-code
examples in other course material, such as the course textbook [47],
students in the live-coding group will also pick up comprehension
skills from these other sources.

7.3 Threats to Validity and Limitations

Our study includes two key threats to validity related to potentially
confounding factors to our analysis. First, we did not randomize
assignment to either condition since students self-selected into the
lecture groups. Though we compared the two groups’ demograph-
ics, prior experience, and high school performance, there may have
been other differences between students in the two groups that
could threaten our findings. Similarly, our analysis of engagement
via course evaluations may suffer from selection bias, since students
with more extreme perceptions of the class may be more likely to
respond. Second, as discussed in Section 7.1, there naturally exist
extraneous influences to a students’ programming processes or
course performance besides the lecture code examples. Many learn-
ing experiences may occur outside of lecture, potentially drowning
out the effect of lecture examples. This may have had a pronounced
impact on our study, especially during the two-week stall in the
course. During the stall, students may have spent time reviewing
the course content through a variety of means, such as reviewing
lecture slides or the textbook, holding group review sessions, or
using external resources. Though we collected the majority of the
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data before the stall, there may have been differences in the way
students responded to this stall.

The scope of our study also has limitations to generalizability.
Our study was conducted on an introductory, CS1 course in which
half of our participants were first-year undergraduate students at
a four-year university. Live coding may have different impacts on
students in advanced courses in which programming processes
are more greatly emphasized. Additionally, there are variations of
“live coding” besides an instructor coding in front of a class during
lecture. These variations include students writing code in front
of the class during lecture or the instructor creating pre-recorded
screen recordings of programming to show in lecture [42]. While
we evaluated the most common form of live coding according to
the literature [42], our analysis is limited to this form of live coding.
Other live-coding approaches may have different impacts that we
did not uncover.

Readers should also note that live coding may have varying im-
pacts across different subpopulations of learners. For example, our
programming process data was typically collected during lectures,
which means the data typically represents students who attended
lectures. On one hand, this is a strength of our design (since the
treatment condition involves the lecture examples themselves), but
it means we lose information on how live coding may impact more
disengaged students (i.e., the ones who did not come to lectures).
Similarly, we note that the vast majority of students had a per-
sonal computer which they typically brought to lecture. Access to
a personal computer may aid in the consumption of live-coding ex-
amples, so further studies to evaluate live coding in lower-resource
settings will be beneficial.

8 CONCLUSION

Despite live coding being a recommended teaching practice in com-
puting, our findings indicate that live coding might not actually
impart the multitude of perceived and intended benefits of the ped-
agogy identified in prior work. However, “live coding” has several
variations, so future work to evaluate the various live-coding ap-
proaches may aid in our understanding of the pedagogy and its
empirical impacts on student learning. In the meantime, our find-
ings may motivate educators and researchers to consider methods
to realize the perceived learning benefits of live coding while miti-
gating its drawbacks.
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Table 12: Final code book for perceived benefits

Label Description

. Explaining code line by line

. Student mentions seeing individual parts of the code

. Labeling or color coding separate components of a program

. Breaking down a program

. Making the program more simple to understand

. Student mentions using it to guide other similar activities

. See what code is “supposed to look like”

. Thinking about how this code could be modified to do something similar
. Examples of the correct code for a concept

part-by-part
breakdown

reference of correct
code

general code . Understanding ""how the code works"" in general
understanding . Useful to review for understanding
thought process . Learning the problem solving process
while coding . Understanding why the professor writes certain lines of code
debue- . Identifying and understanding common errors
cbugm . Process of fixing errors
ging/avoiding .
OITOrsS . Seeing errors/unexpected output

. Showing where code can go wrong

. Modeling the process of writing code

. How to approach writing code “from scratch”

. Seeing the step-by-step process

. Learning how to test the correctness of code

. Understanding why a test passed or failed

. Seeing examples of test cases

. Live commentary on code

. Explanation of code

. Thorough answers to questions from students

. Showing different variations/changes in a code example
. Showing ""
Student mentions enjoying trying to guess the output

. The instructor asking students to guess what the code will output
. Seeing output of code examples along with them

code writing

testing code

instructor’s
explanation

variations of code

"

trial and error"" process

predicting output

seeing output
following along
with instructor

1. The ability to follow along with code as it is written live

taking notes 1. Taking notes to reinforce understanding

1. Suggestions from classmates who have better understanding

learni . - . .
group fearmng 2. Students in class giving suggestions for next coding steps

application of

concepts 1. Seeing concepts immediately applied during lecture
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Table 13: Final code book for suggestions for improvements (drawbacks)

Label Description
1. Take more time during the code examples
slow down 2. Examples go by too fast to grasp a concept
3. Go into more detail on specific concepts
speed up 1. Make explanations and examples faster
more interactive 1. Add more participation activities, group exercises, or ask more questions
more examples 1. Add more examples in the lecture

make examples
easier to see later

—_

. Make it easier reference everything done in the live demo later

more organized

. The organization/flow of the lecture is hard to follow

use live coding

. Show more live-coding examples examples during lecture
. Show a mix of live coding with the static-code examples

more explanation

(SN IS FS

. Instructor should include more or better explanation (ex. of how each line of
code works)

show process

1. Write down a step-by-step process during the example

more
documentation

1. Write more comments in code examples

show references to
textbook chapters

1. Include references to additional resources with code examples (ex. textbook
chapter)

2. Review background knowledge required to understand examples
. 1. Show more handwritten annotation

better annotations . . i -

2. Write clearer annotations (handwriting, organization, etc.)

1. Add more print statements to show more output
show output 2. Show output alongside code examples

3. Run code in Edstem

1. Examples should be more similar to the content on PAs/assignments
more similar to PAs | 2. Show how the professor would approach PAs

3. Similar to code examples on exams
more variations 1. More variations of code examples for each topic
more difficult 1. Lecture examples should be more complicated/difficult
examples 2. Testing more complex inputs/edge cases

1. Lecture examples should show more errors to see how they are fixed and
more bugs .

how to avoid them
less bugs 1. Show less errors during the code examples
nothing 1. No suggestion provided

2. Suggestion is unrelated to code examples
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