A Computational Framework to Accelerate the Discovery of Perovskites for Solar Thermochemical Hydrogen Production: Identification of Gd Perovskite Oxide Redox Mediators

Zachary J. L. Bare, Ryan J. Morelock, and Charles B. Musgrave*

A high-throughput computational framework to identify novel multinary perovskite redox mediators is presented, and this framework is applied to discover the Gd-containing perovskite oxide compositions Gd₂BB'O₆. GdA'B₂O₆, and GdA'BB'O₆ that split water. The computational scheme uses a sequence of empirical approaches to evaluate the stabilities, electronic properties, and oxygen vacancy thermodynamics of these materials, including contributions to the enthalpies and entropies of reduction, ΔH_{TR} and ΔS_{TR} . This scheme uses the machine-learned descriptor au to identify compositions that are likely stable as perovskites, the bond valence method to estimate the magnitude and phase of BO₆ octahedral tilting and provide accurate initial estimates of perovskite geometries, and density functional theory including magnetic- and defect-sampling to predict STCH-relevant properties. Eighty-three promising STCH candidate perovskite oxides down-selected from 4392 Gd-containing compositions are reported, three of which are referred to experimental collaborators for characterization and exhibit STCH activity. The results demonstrate that the high-throughput computational scheme described herein-which is used to evaluate Gd-containing compositions but can be applied to any multinary perovskite oxide compositional space(s) of interest—accelerates the discovery of novel STCH active redox mediators with reasonable computational expense.

Z. J. L. Bare, R. J. Morelock, C. B. Musgrave
Department of Chemical and Biological Engineering
University of Colorado Boulder
Boulder, CO 80309, USA
E-mail: charles.musgrave@colorado.edu
C. B. Musgrave
Renewable and Sustainable Energy Institute
University of Colorado Boulder
Boulder, CO 80309, USA
C. B. Musgrave
Materials Science and Engineering Program
University of Colorado Boulder

İD

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adfm.202200201.

DOI: 10.1002/adfm.202200201

Boulder, CO 80309, USA

1. Introduction

Solar thermochemical hydrogen (STCH) production is a promising method to generate carbon neutral fuels from water using concentrated solar energy.[1,2] STCH is typically produced by either low-temperature, multistep processes or high-temperature, two-step processes.[3] Although some notable multistep STCH processes have been demonstrated.[4] these methods involve design complications and inefficiencies such that two-step STCH processes are now generally preferred.^[5] Two-step STCH processes involve a reducible metal oxide, referred to as a redox mediator, that facilitates the dissociation of steam. These processes begin with a high-temperature thermal reduction step ($T_{\rm TR} \leq 1500$ °C) to reduce the redox mediator, resulting in a phase change and/or partial reduction of the mediator. The reduction step is followed by the oxidation step, which splits water and is typically performed at lower temperatures $(T_{\text{WS}} \ge 850 \,^{\circ}\text{C})$, during which steam reoxidizes the redox mediator and, in the process, generates hydrogen gas.^[6-8] The gold standard STCH redox mediator, CeO2,

exhibits rapid oxidation kinetics, long-term cyclability, and consistent H₂ production at low steam-to-H₂ ratios, all of which are desirable for STCH.^[9,10] However, CeO₂ also suffers from low H₂ yields at reduction temperatures $T_{\rm TR} \leq 1500$ °C, the practical operating temperature limit for conventional reactor materials, which limits its use in industrial applications. The development of novel redox mediators that exhibit enhanced water-splitting performances at lower temperatures ($T_{\rm TR} < 1500$ °C) is therefore critical for the commercial viability of STCH production.

The perovskite oxide chemical space provides a large and promising source of potential STCH redox mediators. [11] Single perovskite oxides (ABO $_3$ compositions) have the same crystal structure as the prototypical mineral perovskite CaTiO $_3$, in which large radii A-site cations occupy the same sites as Ca, smaller radii B-site cations occupy the octahedrally coordinated sites of Ti, and O occupies the corners of the corner-sharing octahedra. Complex perovskite oxides

www.afm-journal.de

1616928, 2022, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.20220201 by University Of Colonado Library, Wiley Commons Licenses and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

with $A_x A'_{1-x} B_y B'_{1-y} O_3$ compositions, such as $BaCe_{0.25} Mn_{0.75} O_3$ $(BCM)^{[12]}$ and $Sr_{0.4}La_{0.6}Mn_{0.4}Al_{0.6}O_3$ (SLMA), $^{[11,13,14]}$ were previously demonstrated as redox mediators for STCH, and exhibit improved redox cyclability relative to redox mediators that operate by a phase change mechanism, such as Fe₃O₄,^[15] and lower reduction temperatures relative to CeO₂. Perovskite oxides are an attractive STCH materials space due to the expected diverse and tunable^[16] properties of the many different compositions that adopt the perovskite structure, [17] which include high-temperature stability, reducibility, high ionic conductivity, and facile reoxidation.[18] However, currently known STCH active perovskites suffer from low hydrogen production capacities and slow oxidation kinetics, which have impeded the development of these materials as redox mediators for commercial-scale STCH processes. Identifying novel perovskite oxide compositions with improved H₂ production capacity and rapid reduction and oxidation kinetics continues to be a primary goal of the STCH community.

Thermodynamic analysis by Muhich et al. and others showed that viable STCH redox materials must satisfy the following STCH Gibbs free energy inequalities^[5,19]

$$\Delta H_{\text{cycle}} = \Delta H_{\text{TR}} + \Delta H_{\text{WS}} \ge 286 \text{ kJ/mol}$$
 (1)

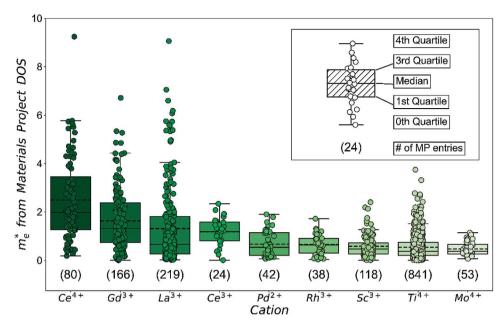
$$\Delta S_{\text{cycle}} = \Delta S_{\text{TR}} + \Delta S_{\text{WS}} \ge 44.4 \text{ J/mol K}$$
 (2)

Ideal STCH redox mediators possess a reduction enthalpy, ΔH_{TR} , large enough to reduce steam, but not so large that excessively high temperatures are required to reduce the mediator.^[19] In contrast, maximizing the reduction entropy, ΔS_{TR} , benefits both requirements, as large ΔS_{TR} decreases the free energy of reduction at a given temperature and therefore lowers the temperature necessary to reduce a material with a given ΔH_{TR} . Recent investigations of STCH active materials have characterized contributions to ΔS_{TR} . For instance, Naghavi et al. showed that the state-of-the-art STCH redox material CeO2 exhibits a "giant," positive onsite electronic entropy of reduction, $\Delta S_{\mathrm{TR,elec}}$ ^[20] in addition to configurational and vibrational entropies associated with oxygen vacancy formation.^[21] Ceria's large $\Delta S_{\text{TR.elec}}$ arises from the multiplicity of unoccupied Ce f-orbital states that lie near the conduction band minimum (CBM), which become thermally accessible relative to the Fermi level of CeO₂ at STCH reduction temperatures. This insight led to the identification of CeTi2O6 as a STCH active redox material following a computational investigation of Ce-containing oxides by Naghavi et al.[22]

More generally, Lany et al. showed that the formation of charged oxygen vacancy defects under STCH reduction conditions results in large $\Delta S_{\text{TR,elec}}$ if a material possesses a large density of states (DOS) electron effective mass, denoted as m_e^* , near the CBM.^[23] m_e^* quantifies the multiplicity of states in a manner that is not Ce f-orbital specific, meaning that the contributions to the multiplicity of states from other elements are also considered. Larger m_e^* corresponds with larger $\Delta S_{\text{TR,elec}}$, and can be rapidly and accurately characterized using first-principles electronic structure calculations such as density functional theory (DFT). Oftentimes, the evaluation of $\Delta S_{\text{TR,elec}}$ incurs no additional computational expense relative to first-principles bulk stability screening, which is typically

performed in computational studies of theoretical perovskite oxides prior to experimental STCH characterization to assess the likelihood that a metal oxide composition is synthesizable and phase stable as a perovskite. [24,25] In this manner, the evaluation of m_e^* and $\Delta S_{\rm TR,elec}$ can be efficiently integrated into high-throughput computational frameworks for STCH candidate discovery.

Herein, we demonstrate that perovskite oxides with the lanthanides Ce, La, and Gd possess large m_{ε}^* and thus, potentially large $\Delta S_{TR.elec}$. While Ce- and La-based perovskites have previously demonstrated STCH redox activity,[12,13,26,27] Gd-based perovskites are relatively unexplored for STCH; some Lacontaining, STCH-active perovskite oxides retain their STCH activity when Gd is substituted for La,[28] but to our knowledge, no high-throughput computational investigations specific to the STCH activity of Gd-containing perovskites have been performed. Therefore, we focused our computational investigation on the set of theoretical Gd-containing multinary perovskite oxides with compositions Gd₂BB'O₆, GdA'B₂O₆, and GdA'BB'O6, and predicted their STCH activity using a combination of ab initio and empirical approaches to evaluate the stabilities, electronic properties, and oxygen vacancy thermodynamics of these materials. Eighty-three promising STCH candidate oxides were identified from the 4392 GdA'BB'O₆ compositions we evaluated, which were referred to our experimental collaborators for synthesis and characterization. Of those, three were selected for synthesis and characterization over the other 80 Gd-containing candidates because they span a range of stabilities and oxygen vacancy enthalpies, which is useful for validating our choice of screening criteria. Of those, GdLa-CoFeO6 (GLCF), GdLaMnNiO6 (GLMN), and SrGdMnAlO6 (SGMA) were first synthesized because similar compositions have reported perovskite synthesis procedures. STCH activity was experimentally demonstrated for these three Gd-containing perovskites identified by our framework.[29-31] This demonstrates that the high-throughput materials discovery scheme we have developed—which evaluates perovskite/nonperovskite synthesizability, ΔH_{TR} , and $\Delta S_{TR,elec}$ using the m_e^* of complex Gd-containing perovskites—accelerates the discovery of novel STCH materials with reasonable computational expense.


2. Results and Discussion

2.1. Large m_e^* Attributable to Gd^{3+}

2.1.1. Cation Contributions to m_e^*

Perovskite oxides that possess large m_e^* should by extension exhibit larger $\Delta S_{\mathrm{TR,elec}}$ relative to perovskite oxides with smaller m_e^* . Previous studies have shown that certain cation species (e.g., Ce⁴⁺) contribute large numbers of electronic states to the DOS near the CBM of metal oxides, which can result in large m_e^* . To quantify contributions to m_e^* on a cation-bycation basis, we evaluated the m_e^* of all available metal oxides, including nonperovskites, tabulated in the Materials Project (MP) database. [29] The MP currently contains the DFT-computed structures and energies of >140 000 inorganic materials with \approx 70 000 of these entries being metal oxides. Of these,

1616928, 2022, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.202202011 by University of Cobrado Library, Vieley Commons Licresses

Figure 1. Distributions of m_e^* for the nine cations present in Materials Project tabulated oxides that, on average, have the largest m_e^* (only the cations present in at least 20 MP entries with tabulated DOS are reported). Cations are ordered by their mean m_e^* (black dashed line) from left to right. MP entries containing the cations Ce^{4+} , Ce^{3+} , and Ce^{3+} are predicted to have the largest average Ce^{4+} , nd Ce^{4+} , are predicted to have the largest average Ce^{4+} , Ce^{4+} , Ce^{4+} , Ce^{4+} , Ce^{4+} , Ce^{4+} , and Ce^{4+} , Ce^{4

 \approx 24000 metal oxides possess tabulated electronic structure information from which m_e^* can be computed. To make the following analysis cation specific, we assigned oxidation states to elements present in the MP-tabulated perovskite oxides using the pymatgen^[30] python package's oxidation state assignment algorithm. In this manner, we identified the cations that produce the largest m_e^* among the cations present in MP entries with tabulated DOS.

Figure 1 plots the distributions of m_e^* for the 23 723 MP metal oxides with tabulated DOS. The horizontal axis shows the nine cations present in at least 20 MP entries with tabulated DOS that have the largest mean m_e^* . Notably, Ce^{4+} is rediscovered as the cation that, on average, contributes the largest density of accessible electronic states near the CBM at 1000 K, followed by the lanthanide cations Gd³⁺, La³⁺, and Ce³⁺ in decreasing order. MP entries containing these four cations are computed to possess larger average m_{ϵ}^* than MP entries containing the 86 other cations considered (see Table S1, Supporting Information), which suggests that one or more of these cations should be included in STCH metal oxide candidate compositions to increase ΔS_{TR} . This analysis identifies the cations that, on average, result in the largest m_e^* , but does not quantify changes in the m_e^* if one cation is substituted for another. Additionally, the data analyzed constitutes all metal oxide entries tabulated by the MP, as opposed to specifically evaluating the perovskite oxide structures. This suggests that Gd³⁺ substitution in metal oxide compositions could increase ΔS_{TR} regardless of geometry. However, as this investigation is focused on perovskites, we leveraged our ABO3 perovskite dataset to isolate contributions to the m_{ℓ}^* attributable to single cation substitutions in perovskite oxides. Our data set consists of 657 single perovskite oxide compositions generated in up to six unique perovskite geometries as denoted by their Glazer tilt notation.^[31] A complete description of the ABO₃ data set used and the criteria enforced to create the substitution matrices are detailed in the Supporting Information ("ABO₃ Perovskite Dataset and Substitution Matrices").

2.1.2. +3 Cation Contributions to m_e^* : ABO₃ Perovskite Oxides

Figure 2 displays the average shifts in the m_e^* following the replacement of starting +3 cations (vertical axis) with substituted +3 cations (horizontal axis). This matrix shows that, on average, substitution of nearly all +3 cations present in our dataset by Ce^{3+} or Gd^{3+} increases m_e^* . Consistent with the MP analysis described above, substitution of Ce^{3+} by Gd^{3+} also increases m_e^* on average. Substitutions by La^{3+} generally increase m_{ϵ}^* when La³⁺ is substituted for other lanthanide +3 cations, e.g., Tb³⁺, Yb3+, Pr3+, etc. Therefore, our ABO3 perovskite dataset confirms the trends in m_e^* uncovered in the MP tabulated metal oxides reported in Section 1 (Figure 1), which suggests that to maximize m_{ε}^* for STCH applications, perovskite oxides should preferentially include one or more of the +3 lanthanides Ce³⁺, Gd³⁺ and La³⁺. Additional details regarding the substitution matrix, as well as matrices for +2 and +4 cation substitutions present in our dataset, are reported in the Supporting Information ("ABO3 Perovskite Dataset and Substitution Matrices"). Because the Ceand La-containing compositional spaces possess known STCH redox mediators that have been previously characterized, we examined the largely unexplored Gd-containing compositional space and identified several novel STCH perovskite oxides. As described in Section II, our high-throughput computational screening approach combines the machine-learned descriptor τ , the empirical bond valence method (BVM), and DFT into the scheme illustrated in Figure 3.

www.afm-journal.de

16163028, 2022, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200201 by University Of Colorado Librari, Wiley Online Library on [17/02/2024]. See the Terms

conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

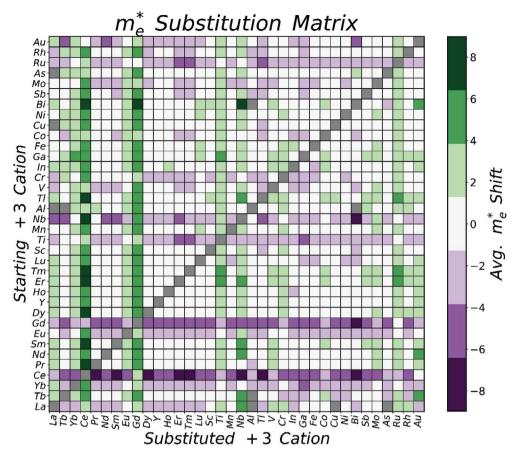
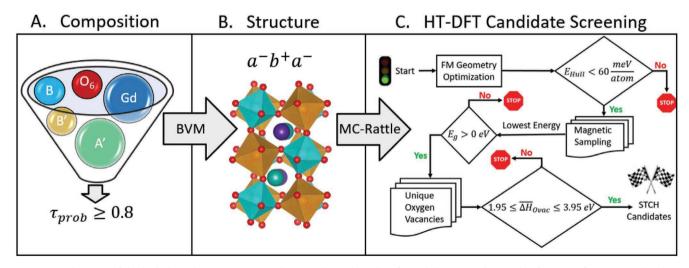



Figure 2. Substitution matrix showing the average shift in the m_e^* upon substitution of the starting A-site cation (vertical axis) with a substituted cation (horizontal axis) for the 657 ABO₃ perovskite oxides in our database. Green indicates an increase in m_e^* following substitution, whereas purple indicates a decrease in m_e^* . Cations that cannot be interchanged because the ABO₃ substitution criteria are not satisfied (see "ABO₃ Perovskite Dataset and Substitution Matrices," Supporting Information) are colored gray. Substitutions of nearly all +3 cations present in our dataset by Ca³⁺ or Gd³⁺ (fourth and ninth columns, respectively) increase m_e^* . On average, Gd³⁺ substitutions for Ce³⁺ increase the m_e^* in the ABO₃ perovskite oxides considered.

Figure 3. Schematic of the high-throughput computational approach used to identify candidate perovskite oxides for STCH from 4392 $Gd_2BB'O_{6}$, $GdA'B_2O_{6}$, and $GdA'BB'O_{6}$ compositions. A) Step 1: Compositional screening for perovskite stability using the machine-learned descriptor τ . B) Step 2: Determination of perovskite geometry, i.e., Glazer octahedral tilt system, using the BVM to eliminate unstable polymorphs and provide accurate initial structures for DFT geometry optimization. C) Step 3: Evaluations of stabilities, electronic properties, and oxygen vacancy enthalpies using DFT.

www.afm-journal.de

1616928, 2022, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.202202011 by University of Cobrado Library, Vieley Commons Licresses

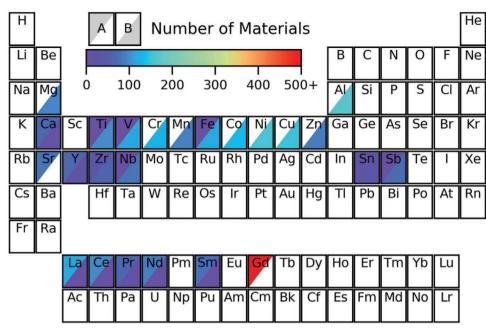


Figure 4. Periodic table plot of the $824 \, \text{Gd}_2\text{BB}'\text{O}_6$, $\text{GdA}'\text{B}_2\text{O}_6$, and $\text{GdA}'\text{BB}'\text{O}_6$ perovskite compositions evaluated using high-throughput DFT calculations. A-site occupation is indicated by the color in the upper left corner of each element, whereas B-site occupation is indicated by the color in the lower right corner. Consistent with experiment, lanthanides most frequently occupy A-sites in our dataset, while transition metals most frequently occupy the B-sites. As indicated in the figure, all compositions investigated herein have Gd occupying the A-site.

2.2. Computational Scheme Used to Identify STCH Candidates

2.2.1. Composition Selection Using the Tolerance Factor au

Experimental ABO3 perovskites are more frequently observed with Gd³⁺ occupying the A-site than the B-site.^[32] The Gd-containing perovskite oxides investigated herein were therefore limited to Gd₂BB'O₆, GdA'B₂O₆, and GdA'BB'O₆ compositions, where Gd only occupies the perovskite A-site. 4392 chargebalanced Gd-containing compositions were enumerated using combinations of the 24 elements determined to be commercially viable, nontoxic, nonradioactive, and therefore relevant for STCH (see the Supporting Information "Viable STCH Elements"). These 4392 compositions were first screened by their perovskite stabilities using $\tau^{[33]}$ τ classifies ABX₃ compositions as perovskite or nonperovskite using the Shannon radii^[34] of the A, B, and X cations and the formal oxidation state of the A-site cation as inputs. Furthermore, τ can be extended to the A₂BB'X₆, AA'BB'X₆, etc. compositions by fractionally weighting the A- and B-site cation radii. Fractional weighting results in a 91% classification accuracy for A₂BB'X₆ compositions, only slightly lower than the 92% accuracy τ achieves for the ABO₃ single perovskites on which it was trained. au predicts that 1325 of 4392 compositions evaluated herein are synthesizable as perovskites (e.g., $\tau_{\text{prob}} > 0.5$). For the present work, the STCH relevant properties for 824 of the 890 Gd-containing compositions that have $\tau_{\text{prob}} \ge 0.8$ —and are therefore most likely to be stable as perovskites—were predicted using DFT. We were unable to predict structures for 66 of 890 compositions due to missing bond valence parameters for some cations (e.g., Ti²⁺). Figure 4 displays the frequency of A- and B-site occupation of all elements in the 824 Gd-containing compounds. Consistent with experimental perovskite oxides, [32] τ predicts that transition metals and metalloids most frequently occupy the B-sites, whereas alkali, alkaline earth and lanthanide elements most frequently occupy the A-sites.

2.2.2. Initial Structure Generation for DFT

BVM Initial Structure Prediction: Initial perovskite geometries for the 824 compositions optimized by DFT were generated using PySPuDS, a custom high-throughput python wrapper for the BVM-based SPuDS program.^[35] For perovskites, the symmetry and magnitude of BO₆ octahedral tilting can be described using Glazer notation (e.g., $a^-b^+a^-$). [31] SPuDS predicts the magnitude of high-symmetry BO6 octahedral tilting for 11 Glazer modes by minimizing the BVM Global Instability Index (GII), which is strongly correlated with the DFT energies of experimental ABO₃ perovskite oxide compositions.^[36,37] SPuDS can therefore accurately estimate the magnitude of BO₆ octahedral tilting for a given phase relative to structures optimized using DFT. Additionally, we have previously shown that the DFToptimized orthorhombic symmetry ($a^-b^+a^-$ Glazer mode) is the ground state perovskite structure predicted for ≈95% ABO₃ compositions examined. [38] To best capture the ground state properties of Gd₂BB'O₆, GdA'B₂O₆, and GdA'BB'O₆ perovskites, all initial structures for DFT optimization in the present investigation were generated by SPuDS in the monoclinic P2₁/n (#14) space group ($a^-b^+a^-$ Glazer mode). For reference, an example AA'BB'O₆ structure generated in the $a^-b^+a^-$ Glazer mode is depicted in Figure 3B. The perovskite compositions with B-site alloying (e.g., Gd₂BB'O₆ and GdA'BB'O₆) were generated using rock salt site ordering, while the perovskite compositions with A-site alloying (e.g., GdA'B2O6 and GdA'BB'O6) were ordered to

www.afm-journal.de

1616928, 2022, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.20220201 by University Of Colonado Library, Wiley Commons Licenses and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

minimize the Ewald sum over the four perovskite A-sites in the 20-atom unit cell of the $a^-b^+a^-$ Glazer mode.

Monte Carlo Site Displacements of High-Symmetry Structures: SPuDS generates perovskite structures that are stabilized by BO₆ tilting without the incurred expense of DFT geometry optimizations. This is vital to high-throughput computational investigations of STCH relevant properties, as previous computational studies of ABX₃ and $A_2BB'X_6$ perovskites (X = O, Cl, F, Br) have shown that the stabilities, oxygen vacancy enthalpies, and electronic properties (e.g., band gap and DOS m_e) of perovskites are highly sensitive to the BX₆ tilting phase and magnitude.^[39–41] However, BO₆ tilting alone cannot capture all experimentally observed properties of perovskite oxides. For instance, off-site displacements of Ti within the TiO6 octahedra result in the observed ferroelectricity of the perovskite oxides PbTiO₃ and BaTiO₃.^[42] Because SPuDS generates high-symmetry Glazer tilt structures—which restricts B-sites to their high-symmetry positions within the BO6 octahedra—when optimized in DFT these structures cannot capture the more subtle electronic effects observed in perovskite oxides with lower symmetry. [43] Therefore, we perturbed the site positions of structures predicted by SPuDS from their high-symmetry positions prior to DFT optimization using a modified MC rattling procedure.^[44] MC rattling breaks crystal symmetries while maintaining physical interatomic distances, which allows DFT optimization to better capture the effects of symmetry-breaking on STCH relevant properties.

2.2.3. High-Throughput DFT Screening to Identify STCH Candidates

Stage 1: Materials Project-Compatible Geometry Optimization to Predict E_{Hull}: The 824 τ -stable Gd-containing perovskite structures—generated in the a-b+a-Glazer tilt and MC-rattled were first screened by their DFT-predicted phase stabilities. Because all 824 of these perovskites contain Gd, which is a magnetic element, their magnetic ordering must be specified prior to DFT optimization. For a set of 252 binary compounds, Stevanovic et al. showed that the stabilization attributed to magnetic orderings other than high-spin ferromagnetic (FM), i.e., antiferromagnetic (AFM) or ferrimagnetic (FiM), is on the order of 10-20 meV/atom. [45] Likewise, we also found that the mean difference in DFT total energies between ABO3 perovskites initialized as FM versus the lowest energy ABO3 perovskite initialized in up to 20 unique AFM orderings was 7 meV/ atom, although some outliers can exceed 100 meV/atom.[38] Because these reported differences are typically very small, the 824 structures optimized by DFT were initialized with FM ordering and evaluated by their stabilities relative to competing phases tabulated in the MP database. The energy of a material relative to the convex hull, $E_{\rm Hull}$, quantifies its energy relative to the energies of its decomposition products. For the present work, the 385 perovskite oxides with DFT-computed, FM $E_{Hull} \le$ 60 meV/atom were magnetically sampled in Stage 2 of DFT screening. This E_{Hull} tolerance accommodates the reported error of ~30 meV/atom intrinsic to DFT-computed oxide formation energies $^{[46]}$ as well as the additional 0–20 meV/atom error that can, on average, be attributed to FM initialization in DFT.[38,45]

Stage 2: Self-Consistent Bulk Magnetic Sampling to Predict E_g and m_e^* : Whereas DFT stability predictions are relatively insensitive

to magnetic ordering-particularly when stability prediction errors are incorporated into the screening scheme, as we have done using the E_{Hull} tolerance—electronic property predictions are considerably more susceptible to the spin configuration. For instance, Malyi et al. showed that DFT optimizations of YTiO3 and LaTiO3 perovskite oxides that did not correctly consider magnetic ordering resulted in false metal predictions ($E_{\sigma} = 0$) for these semiconductors.[47] High-throughput computational schemes in which materials are indiscriminately initialized high-spin, highsymmetry FM and optimized in DFT are likely insufficient to reliably predict metallic/non-metallic behavior. This shortcoming is particularly detrimental for STCH candidate discovery, as the STCH-relevant m_{ε}^* are generally computed for semiconductors and insulators ($E_g > 0$) using DFT. To mitigate inaccurate electronic property predictions in Gd-containing perovskites, geometry optimizations followed by self-consistent field (SCF) DFT calculations in up to 20 unique initial magnetic orderings were performed for each of the 385 geometry-optimized candidate structures. Magnetic sampling was performed using pymatgen's MagneticStructureEnumerator module, which computes all symmetrically unique magnetic orderings for a structure's elements and site positions. Sampling introduces initial spin disorder that can widen artificially small E_g attributable to high-symmetry spin initializations. Following magnetic sampling, 311 of 385 compositions were computed to have $E_g > 0$, and therefore a nonzero m_e^* . These 311 perovskites were passed to the subsequent stage of DFT evaluation of oxygen vacancy formation energies, of which we successfully completed calculations for 231 of the 311 materials. For the remaining 80 compositions, convergence issues resulted in either unphysical oxygen vacancies, i.e., $\Delta H_{Ovac} < 0$ or $\Delta H_{\rm Ovac} \gg 10$ eV, or unconverged calculations for which $\Delta H_{\rm Ovac}$ could not be computed. As a result, and although a number of these materials could be competent redox mediators, these 80 compositions were excluded from further analysis.

Stage 3: Defect Cell Oxygen Vacancy Calculations to Estimate ΔH_{TR} : The ΔH_{TR} of STCH redox mediators dictates many STCH properties, from hydrogen production capacity to long-term cyclability.^[5] Thermal reduction of STCH materials in two-step processes typically follows one of two reduction mechanisms, either: 1) a complete or partial phase change, such as the complete reduction of ZnO to elemental Zn,^[48] or 2) an off-stoichiometry mechanism during which oxygen vacancies form but the phase is preserved, such as the partial reduction of the $\mathrm{Sr}_x\mathrm{La}_{1-x}\mathrm{Mn}_y\mathrm{Al}_{1-y}\mathrm{O}_3$ (SLMA) perovskites.^[11,13,14] ΔH_{TR} is typically estimated using DFT-computed oxygen vacancy formation enthalpies at T=0 K, ΔH_{Ovac} (eV). ΔH_{TR} of a redox mediator can therefore be estimated by DFT using Equation (3)

$$\Delta H_{TR} \approx \Delta H_{\text{Ovac}} = E_{\text{tot}}^{\text{defect}} - E_{\text{tot}}^{\text{Host}} + \mu_{\text{O}}$$
(3)

where $E_{
m tot}^{
m Host}$ is the DFT total energy of the defect-free (Host) oxide, $E_{
m tot}^{
m defect}$ is the DFT total energy of the reduced/defective oxide containing a single oxygen vacancy, and $\mu_{
m O}$ is the chemical potential of oxygen at T=0 K. Herein, we define $\mu_{
m O}=-4.948$ eV/ atom, which is the lowest energy O₂ entry tabulated in the MP (mp-12957). We also assume that the 231 Gd-containing perovskite oxide candidates in our screening are reduced via the off-stoichiometry mechanism, which is most frequently observed in STCH active perovskite oxides. [11,12,26] $\Delta H_{
m TR}$ was

1616928, 2022, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.202202011 by University of Cobrado Library, Vieley Commons Licresses

Table 1. Computed E_{Hull} , m_e^* , E_g , and $\overline{\Delta H}_{\text{Ovac}}$ for eight STCH active perovskite compositions identified by computational screening. The STCH activities of SrLaMnAlO₆, Sr₂TiMnO₆, and Ca₂TiMnO₆ were previously demonstrated. Materials are ordered by increasing average oxygen vacancy enthalpy. The DFT predicted structures for SrGdMnAlO₆, GdLaCoFeO₆, and GdLaMnNiO₆ are shown in Figures S4 and S5 (Supporting Information).

Compound	E _{Hull} [meV/atom]	m_e^*	E _g [eV]	$\overline{\Delta H}_{Ovac}$ [eV]	First discovered by this framework	Other references
SrGdMnAlO ₆	33.4	2.54	1.09	1.95	Yes	Bare et al. ^[54]
SrLaMnAlO ₆	77.0	3.27	1.50	2.10	No	McDaniel et al.a)[11]
Sr ₂ TiMnO ₆	7.8	7.31	1.31	2.23	No	Qian et al. ^{a)[57]}
Ca ₂ TiMnO ₆	5.9	9.46	1.71	2.38	No	Qian et al. ^{a)[58]}
GdLaCoFeO ₆	0.0	8.52	1.01	2.77	Yes	Park et al. ^[52]
La ₂ MnNiO ₆	48.0	4.04	1.61	3.13	Yes	Morelock et al. ^[53]
GdLaMnNiO ₆	58.8	2.36	1.35	3.33	Yes	Morelock et al. ^[53]
Nd ₂ MnNiO ₆	0.6	2.63	1.49	3.67	Yes	Morelock et al.[53]

a) References to experimental demonstrations of STCH activity for Mn-containing known STCH redox mediators that this work rediscovered.

therefore estimated using DFT charge-neutral oxygen vacancy defect calculations, enforcing an oxygen vacancy defect concentration limit of $C_{\rm d} < 0.1$ to avoid spurious self-interactions with periodic images. Distortions that lower the symmetry relative to the nominal cubic perovskite, such as BO₆ tilting and MC-rattling prior to DFT optimization, can lead to variable local oxygen coordination environments within the theoretical structures investigated herein. These unique oxygen environments result in distributions of $\Delta H_{\rm Ovac}$; accordingly, defect calculations were performed for all symmetrically unique oxygen sites present in the bulk perovskite lattices. Symmetrically unique oxygen sites were determined using pymatgen's PointGroupAnalyzer module.

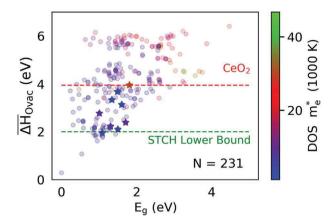
Our screening approach prioritizes Gd-containing compositions with 1.95 eV $\leq \Delta H_{\text{Ovac}} \leq$ 3.95 eV. We preferentially screen for compositions with $\Delta H_{Ovac} \leq 3.95$ eV because CeO₂ has $\Delta H_{\text{Ovac}} = 3.95 \text{ eV}$ computed within our high-throughput framework, and CeO2 only exhibits its exceptional H2 production capacities near the upper limit of the practical STCH temperature range ($T_{\rm red} \ge 1500$ °C).^[9] We evaluated compositions that have computed ΔH_{Ovac} within -2 eV of CeO_2 ($\Delta H_{\text{Ovac}} \ge 1.95 \text{ eV}$), which includes compositions with ΔH_{Ovac} greater than the standard state formation enthalpy of steam, $\Delta H_{H_{2O(g)}} \approx 2.5 \text{ eV}.^{[49]}$ STCH activity under high-pressure steam conditions can be observed for redox mediators with $\Delta H_{TR} \approx \Delta H_{Ovac} < 2.5$ eV such as hercynite (FeAl2O4), whereby H2 production is driven by the chemical potential difference between the reduced mediator and reactor steam conditions.^[50] Cycles that change the chemical potential difference incur additional energetic costs, however, and are therefore suboptimal.^[51] Despite this, we consider some compositions with $\Delta H_{\rm Ovac} < 2.5$ eV, consistent with previous DFT investigations, [16,22] as these perovskites could feasibly demonstrate STCH activity under certain reactor conditions.

2.3. Data Set Statistics and STCH Candidates

2.3.1. STCH Active Materials Identified by Computational Screening

Table 1 lists the DFT-computed properties of the Gd-containing compositions identified by our computational approach that were referred to experimental collaborators, who synthesized

them as perovskites and demonstrated their STCH activity. [52–54] We chose the compositions $GdLaCoFeO_6$, $GdLaMnNiO_6$, and $SrGdMnAlO_6$ for initial experimental studies because similar compositions have documented perovskite synthesis procedures that could be easily modified by our experimental collaborators, $^{[11,55,56]}$ and they exhibit E_{Hull} and $\overline{\Delta H}_{Ovac}$ values that span the full range of screening criteria used in this study (0 meV/atom $\leq E_{Hull} \leq 60$ meV/atom and 1.95 eV/atom $\leq \overline{\Delta H}_{Ovac} \leq 3.95$ eV/atom). $GdLaCoFeO_6$ (GLCF) has $E_{Hull} = 0$ eV/atom and $\overline{\Delta H}_{Ovac}$ near the middle of our range ($\overline{\Delta H}_{Ovac} = 2.77$ eV/atom). $SrGdMnAlO_6$ (SGMA) has $E_{Hull} = 33.4$ eV/atom, or near the middle of our stability range, and a $\overline{\Delta H}_{Ovac}$ at the lower bound of our range ($\overline{\Delta H}_{Ovac} = 1.95$ eV/atom). Finally, E_{Hull} and $\overline{\Delta H}_{Ovac}$ of $GdLaMnNiO_6$ (GLMN) both approach the upper end of our ranges (58.8 and 3.33 eV/atom, respectively).


To further validate our high-throughput computational workflow we also evaluated Mn-containing perovskites, including three known STCH-active perovskite manganates, as they have been extensively investigated as STCH redox mediators. Application of our workflow to Mn-containing multinary perovskites (compositions A₂MnB'O₆, AA'Mn₂O₆, and AA'MnB'O6, see the Supporting Information "Investigation of Mn-containing Perovskite Oxides") rediscovers the known STCH-active perovskites SrLaMnAlO₆, Sr₂TiMnO₆, and Ca₂TiMnO₆ as promising STCH candidates. The DFT properties of these materials computed using our workflow are also listed in Table 1. This work also identified the perovskite manganates La₂MnNiO₆ and Nd₂MnNiO₆ as promising STCH candidates, which to our knowledge had not yet been reported as STCHactive. We also referred these materials to our experimental collaborators who successfully synthesized and demonstrated them as STCH active perovskites.^[53] The identification of STCH competent Mn-containing redox mediators using our scheme further illustrates the generalizability of the empirical approaches used herein.

The broad $\overline{\Delta H}_{\text{Ovac}}$ range of 1.7 eV, as well as the observed conditions of $E_{\text{g}} > 0$ and $E_{\text{Hull}} < 60$ meV/atom for STCH active materials in Table 1 (apart from SLMA), justify our MP compatible screening criteria. SGMA was discovered using our scheme and has a $\overline{\Delta H}_{\text{Ovac}}$ of 1.95 eV, representing the lower ΔH_{Ovac} boundary (1.95 eV) used to identify STCH redox mediator candidates in the present investigation. The SGMA composition

www.afm-journal.de

16163028, 2022, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200201 by University Of Colorado Librari, Wiley Online Library on [170022024]. See the Terms and Conditions (https://onlinelibrary.wiley

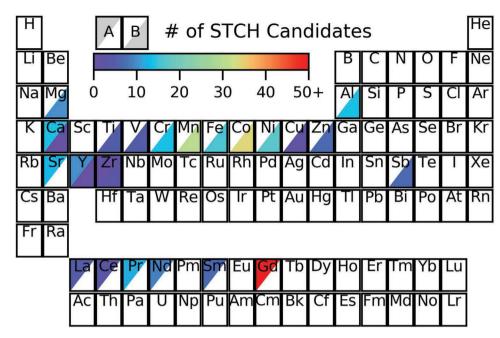
and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Figure 5. STCH relevant properties for the 231 Gd compounds evaluated in Stage 3 of our screening scheme. The stars indicate CeO₂ and the eight experimentally verified water splitting materials listed in Table 1. We identified 83 of 231 compounds with $\overline{\Delta H}_{\text{Ovac}}$ within the estimated STCH active range (1.95 eV $\leq \overline{\Delta H}_{\text{Ovac}} \leq 3.95$ eV). Generally, E_g and $\overline{\Delta H}_{\text{Ovac}}$ increase with increasing m_e^* , and most of the compounds with the largest m_e^* are outside of the STCH active range of $\overline{\Delta H}_{\text{Ovac}}$.

Sr_{0.4}Gd_{0.6}Mn_{0.6}Al_{0.4}O₃ exhibits hydrogen production capacities of 141, 162, and 171 µmol g⁻¹ over three consecutive redox cycles under 40% volume H₂O conditions and with reduction and oxidation temperatures of $T_{\rm TR}$ = 1350 °C and $T_{\rm WS}$ = 850 °C, respectively.^[54] Qian et al. identified the perovskite oxide Ca₂TiMnO₆ (CTM55) and demonstrated its exceptional STCH yield of 10.0 mL g⁻¹ at $T_{\rm TR}$ = 1350 °C and $T_{\rm WS}$ = 1150 °C with a cycle time of 1.5 h.^[58] Our computational approach predicts the $\overline{\Delta H}_{\rm Ovac}$ of this material to be 2.38 eV, well within the STCH active range, and predicts a relatively large, favorable contribution from $\Delta S_{\rm TR,elec}$ attributed to its relatively high m_e^* of 9.46. Our computational approach predicted similar properties and water splitting behavior for the perovskite oxide Sr₂TiMnO₆ (STM55) identified by Qian et al.^[57]

GLCF was identified by our computational approach and exhibited hydrogen production capacities of 101 and 141 µmol g⁻¹ over consecutive redox cycles.^[52] GLCF also has improved STCH cyclability relative to the similar perovskite oxides $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ and $LaFe_{0.75}Co_{0.25}O_3$, which degrade during redox cycling. This behavior was explained by GLCF's broad $\Delta H_{\rm Ovac}$ range computed using our computational scheme relative to the previously reported perovskite LaCo_{0.5}Fe_{0.5}O₃^[59] (L2CF); vacancies with larger ΔH_{Ovac} are less likely to form at water splitting temperatures, and thus preserve the perovskite lattice during redox cycling. The perovskite oxide compositions GLMN, LaMn_{0.5}Ni_{0.5}O₃ (L2MN), and NdMn_{0.5}Ni_{0.5}O₃ (Nd2MN) were first computationally predicted using our scheme and subsequently characterized for their STCH activity by Morelock et al.[53] Relative to GLCF, GLMN, and L2MN exhibited enhanced hydrogen production capacities with H2 present in a 1:1333 ratio to steam (16 μ mol g⁻¹ vs 36 μ mol g⁻¹ and 34 μ mol g⁻¹). This novel STCH behavior was rationalized by GLMN and L2MN's average oxygen vacancy enthalpies $\overline{\Delta H}_{\text{Ovac}}$, as these materials possess $\overline{\Delta H}_{\text{Ovac}}$ (3.33 and 3.13 eV) that are closer to the $\overline{\Delta H}_{Ovac}$ of the high-conversion redox mediator CeO₂ (3.95 eV) than the $\overline{\Delta H}_{\text{Ovac}}$ of GLCF (2.77 eV). All of Nd2MN's unique oxygen sites have $\Delta H_{\rm Ovac} > 3.40$ eV, which approach the upper boundary of our screening of $\Delta H_{\rm Ovac} = 3.95$ eV. Like CeO₂, the corresponding large $\Delta H_{\rm TR}$ of Nd2MN predicted from $\overline{\Delta H}_{\rm Ovac}$ results in significantly decreased STCH production relative to L2MN at $T_{\rm TR} = 1350$ °C when H₂ is not present in steam.

2.3.2. Computationally Identified STCH Candidate Materials


Of the 231 compounds evaluated in Stage 3 of our screening, 83 have 1.95 eV $\leq \overline{\Delta H}_{Ovac} \leq$ 3.95 eV. Additional STCH relevant properties for the 83 candidate materials are listed in Gd_Multinary_Perovsktie_Oxide_STCH_Candidates.csv. most promising STCH candidates should have m_e^* comparable to that of CeO_2 ($m_e^* = 30.71$) and $\overline{\Delta H}_{Ovac}$ in the STCH active range; however, we find that as m_e^* increases, E_g and $\overline{\Delta H}_{Ovac}$ generally increase as well, which can result in $\overline{\Delta H}_{\text{Ovac}}$ outside the STCH active range (**Figure 5**). The increase in $\overline{\Delta H}_{\text{Ovac}}$ with increasing E_g is consistent with the results reported by Deml et al., who used this correlation to predict the oxygen vacancy formation enthalpies of 45 binary and ternary oxides.[60] We find that compounds with $m_e^* > 20$ possess $\overline{\Delta H}_{\text{Ovac}} > 3.95$ eV/ atom, with a few notable exceptions. For example, compounds with Ce on the A-site, namely, CeGdCoNiO₆, CeGdMnNiO₆, and CeGdCoFeO₆ have the largest m_e^* (38.30, 29.30, and 32.05, respectively) of all compounds with $\overline{\Delta H}_{\text{Ovac}}$ in the STCH active range (3.44, 3.80, and 3.95, respectively), and are therefore predicted to be excellent candidates for STCH. Likewise, GdYMn₂O₆ is a promising STCH candidate, with $m_e^* = 31.88$, $E_{\rm Hull} = 7$ meV/atom, and $\overline{\Delta H}_{\rm Ovac} = 3.77$ eV. However, the bandgap of $GdYMn_2O_6$ ($E_g=0.47$ eV) is small, which may restrict temperature-dependent changes in the Fermi level under STCH operating conditions and thus the magnitude of $\Delta S_{\text{TR,elec.}}$ GdSmAlFeO₆ is another promising STCH candidate, with $m_e^* = 21.85$, $E_{\text{Hull}} = 24.77$ meV/atom, and $\overline{\Delta H}_{\text{Ovac}} = 3.38$ eV. However, the computed bandgap of GdSmAlFeO₆ (E_g = 2.60 eV) is 0.8 eV larger than that of CeO2, which could inhibit electron promotion to states near the CBM at STCH reduction temperatures and thus limit $\Delta S_{TR,elec}$.

Although few materials possess both large m_e^* and $\overline{\Delta H}_{\text{Ovac}}$ in the STCH active range, we find 78 potential STCH candidates with low to intermediate m_e^* (1.0 $\leq m_e^* \leq$ 20.0) and 1.95 eV $\leq \overline{\Delta H}_{\text{Ovac}} \leq 3.95$ eV. These candidates include the experimentally demonstrated water-splitting materials in Table 1, which are displayed as stars and colored by m_e^* in Figure 5. The majority of STCH candidates contain a 3d transition metal (Cr, Mn, Fe, Co, and/or Ni) and/or Al, Mg, or Sb on the B-sites, and a lanthanide (La, Y, Pr, Nd, Sm, or Gd) or Ca/Sr mixed with Gd on the A-site (Figure 6). For compounds with fixed B/B' elements, we find that lanthanide/Gd mixing on the A-site results in higher $\overline{\Delta H}_{\text{Ovac}}$ compared with Sr/Gd or Ca/Gd mixing on the A-site, and that Ca generally has a slightly larger $\overline{\Delta H}_{\text{Ovac}}$ compared with Sr (see Figure S6, Supporting Information). As a result, when B and B' elements are fixed between compositions the most promising STCH candidates have either lanthanides or Sr/Ca occupying the A-site with Gd, but rarely both (Table 2). One notable exception is the Gd-A'-Al-Mn-O chemical space, in which the Sr and Ca containing compounds have $\overline{\Delta H}_{\text{Ovac}}$

16163028, 2022, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200201 by University Of Colorado Librari, Wiley Online Library on [17/02/2024]. See the Terms and Conditions

on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

www.advancedsciencenews.com www.afm-journal.de

Figure 6. Periodic table plot of the $83 \text{ Gd}_2\text{BB}'O_{6}$, GdA' B_2O_{6} , and GdA' $BB'O_{6}$ STCH candidate perovskite compositions. A-site occupation is indicated by the color in the upper left corner of each element, whereas B-site occupation is indicated by the color in the lower right corner. The majority of STCH candidates contain a 3d transition metal (Cr, Mn, Fe, Co, and/or Ni) and/or Al, Mg, or Sb on the B-sites, and a lanthanide (La, Y, Pr, Nd, Sm, or Gd) and/or Ca/Sr mixed with Gd on the A-site.

approaching the lower end of the STCH active range (1.95 and 2.62 eV, respectively) and the lanthanide elements Y, Pr, Nd, Sm, and Gd have $\overline{\Delta H}_{\text{Ovac}}$ approaching the upper bound of the STCH active range (3.86, 3.64, 3.90, 3.90, and 3.62 eV,

respectively). Substitution of Sr, Ca, and lanthanides on A-sites of perovskites within the Gd-A'-Al-Mn-O chemical space should therefore result in a class of highly tunable STCH materials that exhibit a broad range of $\overline{\Delta H}_{\text{Ovac}}$.

Table 2. Ranges of STCH relevant properties grouped by unique B/B' sites for 65 of the 83 GdA'BB'O₆ STCH candidates with A' = Ca, Sr, or a lanthanide. The m_e^* of Ce-containing STCH candidates that are outliers with respect to other lanthanide elements with fixed B/B' elements are reported in parentheses.

В	В′	A' (Alk)	A' (Ln)	E_g range [eV]	$\overline{\Delta H}_{Ovac}$ range [eV]	m_e^st range
Al	Mn	Ca, Sr	Y, Pr, Nd, Sm, Gd	1.09–1.73	1.95–3.90	2.54–5.97
Co	Co	_	Y, La, Nd	0.92-1.10	2.05-2.30	7.50-9.82
Co	Fe	_	Y, La, Ce, Pr, Nd, Gd	0.88-1.61	2.49–3.95	3.20-8.52 (32.05)
Al	Co	_	Y, La, Pr, Gd	0.96-2.02	2.59–3.63	4.84-6.42
Cr	Ni	_	Pr, Nd, Sm	0.58-0.58	2.40-2.45	3.46-3.6
Mn	Ni	-	Y, La, Ce, Pr, Gd	1.34–1.73	3.33–3.74	2.36-3.58 (29.30)
Со	Mg	_	Y, La, Pr, Nd, Sm, Gd	1.12–1.31	2.05-2.28	3.86–7.72
Co	Ni	_	Y, Ce, Nd, Gd	0.29–1.12	1.95–3.42	2.72-3.76 (28.30)
Mg	Mn	_	Y, Pr	1.95–1.95	3.38-3.38	3.52-3.79
Co	Cr	_	Nd, Sm, Gd	0.62-1.54	3.34–3.85	5.09-6.75
Cr	Zn	_	Pr, Nd, Sm, Gd	0.82-1.10	2.12-2.19	3.54-3.82
Mn	Mn	_	Y, Sm	0.23-0.47	3.71–3.77	1.77–31.89
Cu	Fe	_	Y, Pr	0.31-0.31	2.28–2.82	4.94-5.94
Fe	Sb	Ca, Sr	-	1.83-2.05	3.73–3.78	5.43-5.58
Cr	Mn	Ca, Sr	-	1.23–1.23	2.90-3.26	3.61–3.86
Fe	Ti	Ca, Sr	-	1.85–2.11	3.32–3.70	2.98-3.41
Ni	Sb	Ca, Sr	-	2.38-2.89	3.79–3.86	4.12-4.76
Mn	Ti	Ca, Sr	_	0.48-0.71	2.98-3.42	1.88-2.06
Sb	Zn	Ca, Sr	-	2.27-2.43	3.63-3.69	1.38–1.43
Mn	Zr	Ca, Sr	_	0.47-0.94	3.55–3.70	1.12-2.17

www.afm-journal.de

Chemical spaces with at least two compounds in the STCH active range are grouped by B/B' site and listed in Table 2. In addition to the Gd-A'-Al-Mn-O chemical space, we identified 12 unique B/B' combinations with Gd-lanthanide mixing on the A-site and seven unique B/B' combinations with Gd-Ca/Sr mixing on the A-site which contain compositions in the STCH active range. The B/B' combinations Cr/Ni, Mn/Mn, and Cu/Fe have small computed bandgaps ($E_{\rm g}$ < 0.6 eV), whereas the B/B' combinations Ni/Sb and Sb/Zn have large computed bandgaps $(E_{\sigma} > 2.2 \text{ eV})$. The properties of these B/B' combinations are relatively unaffected by the identity of the A-site cation, which could limit electronic property (i.e., E_g and m_e^*) tuning within these chemical spaces. Additionally, the B-site combinations Co/Co, Cr/Ni, Co/Mg, and Cr/Zn have compositions with $\Delta H_{\text{Ovac}} < 2.77$, which is the ΔH_{Ovac} computed for GLCF. GLCF has poor STCH performance under high steam-to-hydrogen ratios, which are relevant conditions for industrial-scale STCH production.^[53] We anticipate that perovskite oxides with these B-site combinations will therefore have insufficient ΔH_{TR} to underly grid-scale STCH technologies. The remaining B-site combinations (Co/Fe, Al/ Co, Mn/Ni, Co/Ni, Mg/Mn, Co/Cr, Fe/Sb, Cr/Mn, Fe/Ti, Mn/Ti, and Mn/Zr) are predicted to contain industrially relevant STCH candidate perovskite oxides and could provide exceptional STCH materials with further compositional tuning.

3. Conclusions

We report a high-throughput framework to evaluate complex multinary perovskite oxide spaces for their STCH applications. We focus this investigation on the relatively unstudied Gd-containing perovskite oxides (compositions Gd₂BB'O₆, GdA'B₂O₆, and GdA'BB'O6) because GdBO3 perovskites have large predicted m_e^* , and are therefore likely to possess large ΔS_{TR} under STCH conditions. Our theoretical materials screening framework leverages ab initio and empirical methods to characterize the stability, structure, and STCH relevant properties of these materials (i.e., $E_{\rm g}$, m_e^* , and $\overline{\Delta H}_{\rm Ovac}$). From a candidate space of 4392 possible compositions, we identified 83 Gd-containing STCH candidates, three of which have been synthesized and demonstrated experimental STCH activity by our experimental collaborators. By extending this framework to other compositions of interest to the STCH community, i.e., the Mn-containing perovskite oxides, we rediscovered three previously known STCH redox mediators and discovered two novel STCH-active perovskites, further validating our screening approach. Ultimately, we report several STCH candidate redox mediators in the multinary perovskite oxide space and an effective high-throughput approach to screen vast alloyed compositional spaces for solar thermochemical applications.

4. Experimental Section

DOS Electron Effective Mass Calculations: Cation contributions to the DOS electron effective mass (m_e^*) were calculated from the DFT orbital-projected DOS computed for non–defect host structures. Energy densities contributing to cation-specific DOS effective masses were multiplied by their temperature-dependent Boltzmann weighting

$$\mathbf{w}_{F} = e^{(E_{i} - E_{CBM})/kT} \tag{4}$$

where w_{E_i} is the weighting associated with a given eigenvalue i, E_i , E_{CBM} is the orbital-projected conduction band minimum as determined from the vasprun.xml output of the Vienna Ab Initio Simulation Package, VASP, and kT is Boltzmann's constant multiplied by the temperature of interest (T = 1000 K for the present work). The orbital projected DOS effective mass of cation j, m_e^* , is calculated as the following summation

$$m_e^* = \sum_i w_{E_i} \cdot DOS(E_i) \cdot dE \tag{5}$$

where $DOS(E_i)$ is the density of electronic states at the energy level E_i above E_{CBM} , and dE is the energy difference between eigenvalues i and i+1.

Generation and Optimization: All Gd-containing Structure compositions with $au_{\text{prob}} \geq 0.8$ were input to SPuDS (DOS version > 2.20.08.06) and generated in the $a^-b^+a^-$ Glazer octahedral tilt system using a custom python wrapper; this python wrapper is publicly available for download at https://github.com/zaba1157/PySPuDS. SPuDS enforces symmetric BO₆ octahedra and the B-site occupation of high-symmetry Wyckoff positions. MC rattling was therefore performed to break these symmetry constraints prior to DFT optimization. Magnetic effects on the stabilities and electronic properties of theoretical perovskites were explicitly considered by first performing two consecutive spin-polarized relaxations initialized in a high-spin ferromagnetic configuration, with species-specific initial magnetic moments dictated by the default MP spin parameters. Magnetic sampling of these computed structures was performed for up to 20 different magnetic symmetries using pymatgen's MagneticStructureEnumerator. Finally, the internal coordinates of the DFT structures—with lattice vectors and initial magnetic moments fixed from previous optimizations—were optimized such that total energies were converged to within $10^{-6} \, \, \text{eV}$ and forces were converged to within 0.01 eV Å⁻¹. In this manner, the effects of spin configuration on the electronic DOS were explicitly captured. All geometry optimizations were performed without symmetry constraints on the optimized wavefunction.

GGA+U DFT calculations were performed using the Vienna Ab-initio Simulation Program (VASP 5.4.1) $^{[61-63]}$ with the Perdew– Burke–Ernzerhof (PBE)^[64] exchange-correlation functional and periodic boundary conditions using projector augmented wave (PAW) pseudopotentials. [65,66] All calculations are compatible with the MP database, which tabulates the structures and energies of inorganic materials computed at the PBE (GGA+U) level of theory. The electronic wave functions were expanded in a plane wave basis set with an energy cutoff of 520 eV. The Brillouin zones were sampled during geometry optimizations using the Monkhorst-Pack algorithm to automatically generate a Γ-point centered k-point mesh with a grid density of at least 1000/(atoms/unit cell). The specific pseudopotentials used are consistent with pymatgen's MPRelaxSet, which is the default relaxation parameter set for the MP. Hubbard U parameters for the elements Mn, Fe, Co, Cr, Mo, W, V, and Ni were taken from the pymatgen^[30] python package's MPRelaxSet, which tabulates U parameters calibrated using the approach described by Wang et al. [67] Energies above the convex hull, EHull, included MP-specific corrections as described by pymatgen's MP Compatibility Settings. These include oxide-specific corrections based on the structure type (i.e., oxide, peroxide, superoxide, or ozonide). As discussed in https://docs.materialsproject.org/methodology/totalenergies/, the coordination environments of oxygen anions present in these materials determine their structure type classifications. E_{Hull} of DFT optimized Gd₂BB'O₆, GdA'B₂O₆, and GdA'BB'O₆ structures in this study's data set were calculated relative to their lowest enthalpy decomposition products as tabulated in the MP.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

ADVANCED FUNCTIONAL

16163028, 2022,

, 25, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200201 by University Of Colorado Librari, Wiley Online Library on [17/02/2024]. See the Terms

and Conditions (https://onlinelibrary.wiley.

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Acknowledgements

Z.B. and R.M. contributed equally to this work. The authors would like to thank their experimental collaborators, A. H. McDaniel, A. W. Weimer, E. N. Coker, J. T. Tran, J. E. Park, A. Ambrosini, J. A. Trindell, and M. A. Rodriguez for synthesizing and characterizing the candidate materials. The authors also thank S.L. Millican for helpful discussions related to candidate materials selection. Z.B. generated the computational data, workflow scheme, STCH candidate materials plots, and wrote the manuscript. R.M. created the MP effective mass plot, substitution matrix plot, and wrote the manuscript. C.M. supervised the project and calculations and edited the manuscript. This work was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Hydrogen and Fuel Cell Technologies Office (HFTO), and specifically the HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under this same office (Award No. DE-EE0008088). C.M., Z.B., and R.M. also acknowledge support from the National Science Foundation, Award Nos. NSF CHEM-1800592 and CBET-2016225. The views expressed in this article do not necessarily represent the views of the U.S. Department of Energy or the U.S. Government. R.M. would also like to acknowledge support from the University of Colorado-Boulder's Graduate Assistance in Areas of National Need, GAANN, Materials for Energy Conversion and Sustainability grant, Award No. P200A180012.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords

concentrated solar energy, density functional theory, hydrogen, perovskite, thermochemical water splitting

Received: January 6, 2022 Revised: February 17, 2022 Published online: March 20, 2022

- [1] A. Steinfeld, Sol. Energy 2005, 78, 603.
- $\label{eq:chemSusChem 2010} \ensuremath{\texttt{[2]}} \ensuremath{\mathsf{G.}} \ensuremath{\mathsf{Centi}}, \ensuremath{\mathsf{S.}} \ensuremath{\mathsf{Perathoner}}, \ensuremath{\mathsf{ChemSusChem}} \ensuremath{\mathsf{2010}}, \ensuremath{\mathsf{3}}, \ensuremath{\mathsf{195}}.$
- [3] C. N. R. Rao, S. Dey, Proc. Natl. Acad. Sci. USA 2017, 114, 13385.
- [4] B. Xu, Y. Bhawe, M. E. Davis, *Proc. Natl. Acad. Sci. USA* **2012**, *109*, 9260.
- [5] C. L. Muhich, B. D. Ehrhart, I. Al-Shankiti, B. J. Ward, C. B. Musgrave, A. W. Weimer, Wiley Interdiscip. Rev. Energy Environ. 2016, 5, 261.
- [6] N. P. Siegel, J. E. Miller, I. Ermanoski, R. B. Diver, E. B. Stechel, *Ind. Eng. Chem. Res.* 2013, 52, 3276.
- [7] J. E. Miller, A. H. McDaniel, M. D. Allendorf, Adv. Energy Mater. 2014, 4, 1300469.
- [8] B. Bulfin, J. Vieten, C. Agrafiotis, M. Roeb, C. Sattler, J. Mater. Chem. A 2017, 5, 18951.
- [9] S. Abanades, G. Flamant, Sol. Energy 2006, 80, 1611.
- [10] H. Kaneko, H. Ishihara, S. Taku, Y. Naganuma, N. Hasegawa, Y. Tamaura, J. Mater. Sci. 2008, 43, 3153.
- [11] A. H. McDaniel, A. Ambrosini, E. N. Coker, J. E. Miller, W. C. Chueh, R. O'Hayre, J. Tong, Energy Proc. 2014, 49, 2009.

- [12] D. R. Barcellos, M. D. Sanders, J. Tong, A. H. McDaniel, R. P. O'Hayre, Energy Environ. Sci. 2018, 11, 3256.
- [13] J. R. Scheffe, D. Weibel, A. Steinfeld, Energy Fuels 2013, 27, 4250.
- [14] M. Ezbiri, M. Takacs, D. Theiler, R. Michalsky, A. Steinfeld, J. Mater. Chem. A 2017, 5, 4172.
- [15] T. Nakamura, Sol. Energy 1977, 19, 467.
- [16] A. M. Deml, V. Stevanović, A. M. Holder, M. Sanders, R. O'Hayre, C. B. Musgrave, Chem. Mater. 2014, 26, 6595.
- [17] J. Vieten, B. Bulfin, P. Huck, M. Horton, D. Guban, L. Zhu, Y. Lu, K. A. Persson, M. Roeb, C. Sattler, Energy Environ. Sci. 2019, 12, 1369.
- [18] M. Kubicek, A. H. Bork, J. L. M. Rupp, J. Mater. Chem. A 2017, 5, 11983.
- [19] B. Meredig, C. Wolverton, Phys. Rev. B: Condens. Matter 2009, 80, 245119.
- [20] S. S. Naghavi, A. A. Emery, H. A. Hansen, F. Zhou, V. Ozolins, C. Wolverton, *Nat. Commun.* 2017, 8, 285.
- [21] C. B. Gopal, A. van de Walle, Phys. Rev. B: Condens. Matter 2012, 86, 134117.
- [22] S. S. Naghavi, J. He, C. Wolverton, ACS Appl. Mater. Interfaces 2020, 12, 21521.
- [23] S. Lany, J. Chem. Phys. 2018, 148, 071101.
- [24] A. A. Emery, C. Wolverton, Sci. Data 2017, 4, 170153.
- [25] G. Sai Gautam, E. B. Stechel, E. A. Carter, Chem. Mater. 2020, 32, 9964.
- [26] D. R. Barcellos, F. G. Coury, A. Emery, M. Sanders, J. Tong, A. McDaniel, C. Wolverton, M. Kaufman, R. O'Hayre, *Inorg. Chem.* 2019, 58, 7705.
- [27] C.-K. Yang, Y. Yamazaki, A. Aydin, S. M. Haile, J. Mater. Chem. A 2014, 2, 13612.
- [28] S. Dey, B. S. Naidu, C. N. R. Rao, Chemistry 2015, 21, 7077.
- [29] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013. 1, 011002.
- [30] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, G. Ceder, *Comput. Mater. Sci.* 2013, 68, 314.
- [31] A. M. Glazer, Acta Crystallogr., B 1972, 28, 3384.
- [32] H. Zhang, N. Li, K. Li, D. Xue, Acta Crystallogr., B 2007, 63, 812.
- [33] C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, M. Scheffler, *Sci. Adv.* **2019**, *5*, eaav0693.
- [34] R. D. Shannon, Acta Crystallogr., A 1976, 32, 751.
- [35] M. W. Lufaso, P. M. Woodward, Acta Crystallogr., B 2001, 57, 725.
- [36] R. J. Morelock, Z. J. L. Bare, C. B. Musgrave, unpublished.
- [37] I. Yamada, A. Takamatsu, H. Ikeno, Sci. Technol. Adv. Mater. 2018, 19, 101.
- [38] Z. J. L. Bare, R. J. Morelock, C. B. Musgrave, unpublished.
- [39] N. Xie, J. Zhang, S. Raza, N. Zhang, X. Chen, D. Wang, J. Phys. Condens. Matter 2020, 32, 315901.
- [40] X. Zhang, C. Pei, X. Chang, S. Chen, R. Liu, Z.-J. Zhao, R. Mu, J. Gong, J. Am. Chem. Soc. 2020, 142, 11540.
- [41] C. J. Bartel, J. M. Clary, C. Sutton, D. Vigil-Fowler, B. R. Goldsmith, A. M. Holder, C. B. Musgrave, J. Am. Chem. Soc. 2020, 142, 5135.
- [42] R. E. Cohen, Nature 1992, 358, 136.
- [43] X.-G. Zhao, G. M. Dalpian, Z. Wang, A. Zunger, Phys. Rev. B: Condens. Matter 2020, 101, 155137.
- [44] F. Eriksson, E. Fransson, P. Erhart, Adv. Theory Simul. 2019, 2, 1800184.
- [45] V. Stevanović, S. Lany, X. Zhang, A. Zunger, Phys. Rev. B: Condens. Matter 2012, 85, 115104.
- [46] G. Hautier, S. P. Ong, A. Jain, C. J. Moore, G. Ceder, Phys. Rev. B: Condens. Matter 2012, 85, 155208.
- [47] O. I. Malyi, A. Zunger, Appl. Phys. Rev. 2020.
- [48] A. Steinfeld, Int. J. Hydrogen Energy **2002**, 27, 611.
- [49] M. W. Chase, National Institute of Standards and Technology (U.S.), NIST-JANAF Thermochemical Tables, American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology, [Washington, DC], Woodbury, NY 1998.

ADVANCED FUNCTIONAL MATERIALS

www.advancedsciencenews.com www.afm-journal.de

- [50] C. L. Muhich, B. W. Evanko, K. C. Weston, P. Lichty, X. Liang, J. Martinek, C. B. Musgrave, A. W. Weimer, Science 2013, 341, 540.
- [51] C. L. Muhich, S. Blaser, M. C. Hoes, A. Steinfeld, Int. J. Hydrogen Energy 2018, 43, 18814.
- [52] J. E. Park, Z. J. L. Bare, R. J. Morelock, M. A. Rodriguez, A. Ambrosini, C. B. Musgrave, A. H. McDaniel, E. N. Coker, Front. Energy Res. 2021, 9.
- [53] R. J. Morelock, J. Tran, Z. J. L. Bare, A. H. McDaniel, A. W. Weimer, C. B. Musgrave, unpublished.
- [54] Z. J. L. Bare, J. T. Tran, R. J. Morelock, A. H. McDaniel, A. W. Weimer, C. B. Musgrave, unpublished.
- [55] C. L. Bull, D. Gleeson, K. S. Knight, J. Phys. Condens. Matter 2003, 15, 4927.
- [56] D. V. Karpinsky, I. O. Troyanchuk, K. Bärner, H. Szymczak, M. Tovar, J. Phys. Condens. Matter 2005, 17, 7219.

- [57] X. Qian, J. He, E. Mastronardo, B. Baldassarri, C. Wolverton, S. M. Haile, Chem. Mater. 2020, 32, 9335.
- [58] X. Qian, J. He, E. Mastronardo, B. Baldassarri, W. Yuan, C. Wolverton, S. M. Haile, Matter 2021, 4, 688.
- [59] X. Gao, Z. Jin, R. Hu, J. Hu, Y. Bai, P. Wang, J. Zhang, C. Zhao, J. Rare Earths 2021, 39, 398.
- [60] A. M. Deml, A. M. Holder, R. P. O'Hayre, C. B. Musgrave, V. Stevanović, J. Phys. Chem. Lett. 2015, 6, 1948.
- [61] G. Kresse, J. Hafner, Phys. Rev. B: Condens. Matter 1993, 47, 558.
- [62] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- [63] G. Kresse, J. Furthmüller, Phys. Rev. B: Condens. Matter 1996, 54, 11169.
- [64] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [65] G. Kresse, J. Hafner, J. Phys. Condens. Matter 1994, 6, 8245.
- [66] G. Kresse, D. Joubert, Phys. Rev. B: Condens. Matter 1999, 59, 1758.
- [67] L. Wang, T. Maxisch, G. Ceder, Phys. Rev. B: Condens. Matter 2006, 73, 195107.